Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firewire/ohci.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Driver for OHCI 1394 controllers
4
*
5
* Copyright (C) 2003-2006 Kristian Hoegsberg <[email protected]>
6
*/
7
8
#include <linux/bitops.h>
9
#include <linux/bug.h>
10
#include <linux/compiler.h>
11
#include <linux/delay.h>
12
#include <linux/device.h>
13
#include <linux/dma-mapping.h>
14
#include <linux/firewire.h>
15
#include <linux/firewire-constants.h>
16
#include <linux/init.h>
17
#include <linux/interrupt.h>
18
#include <linux/io.h>
19
#include <linux/kernel.h>
20
#include <linux/list.h>
21
#include <linux/mm.h>
22
#include <linux/module.h>
23
#include <linux/moduleparam.h>
24
#include <linux/mutex.h>
25
#include <linux/pci.h>
26
#include <linux/pci_ids.h>
27
#include <linux/slab.h>
28
#include <linux/spinlock.h>
29
#include <linux/string.h>
30
#include <linux/time.h>
31
#include <linux/vmalloc.h>
32
#include <linux/workqueue.h>
33
34
#include <asm/byteorder.h>
35
#include <asm/page.h>
36
37
#ifdef CONFIG_PPC_PMAC
38
#include <asm/pmac_feature.h>
39
#endif
40
41
#include "core.h"
42
#include "ohci.h"
43
#include "packet-header-definitions.h"
44
#include "phy-packet-definitions.h"
45
46
#include <trace/events/firewire.h>
47
48
static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
49
50
#define CREATE_TRACE_POINTS
51
#include <trace/events/firewire_ohci.h>
52
53
#define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
54
#define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
55
56
#define DESCRIPTOR_OUTPUT_MORE 0
57
#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
58
#define DESCRIPTOR_INPUT_MORE (2 << 12)
59
#define DESCRIPTOR_INPUT_LAST (3 << 12)
60
#define DESCRIPTOR_STATUS (1 << 11)
61
#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
62
#define DESCRIPTOR_PING (1 << 7)
63
#define DESCRIPTOR_YY (1 << 6)
64
#define DESCRIPTOR_NO_IRQ (0 << 4)
65
#define DESCRIPTOR_IRQ_ERROR (1 << 4)
66
#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
67
#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
68
#define DESCRIPTOR_WAIT (3 << 0)
69
70
#define DESCRIPTOR_CMD (0xf << 12)
71
72
struct descriptor {
73
__le16 req_count;
74
__le16 control;
75
__le32 data_address;
76
__le32 branch_address;
77
__le16 res_count;
78
__le16 transfer_status;
79
} __aligned(16);
80
81
#define CONTROL_SET(regs) (regs)
82
#define CONTROL_CLEAR(regs) ((regs) + 4)
83
#define COMMAND_PTR(regs) ((regs) + 12)
84
#define CONTEXT_MATCH(regs) ((regs) + 16)
85
86
#define AR_BUFFER_SIZE (32*1024)
87
#define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88
/* we need at least two pages for proper list management */
89
#define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90
91
#define MAX_ASYNC_PAYLOAD 4096
92
#define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
93
#define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94
95
struct ar_context {
96
struct fw_ohci *ohci;
97
struct page *pages[AR_BUFFERS];
98
void *buffer;
99
struct descriptor *descriptors;
100
dma_addr_t descriptors_bus;
101
void *pointer;
102
unsigned int last_buffer_index;
103
u32 regs;
104
struct work_struct work;
105
};
106
107
struct context;
108
109
typedef int (*descriptor_callback_t)(struct context *ctx,
110
struct descriptor *d,
111
struct descriptor *last);
112
113
/*
114
* A buffer that contains a block of DMA-able coherent memory used for
115
* storing a portion of a DMA descriptor program.
116
*/
117
struct descriptor_buffer {
118
struct list_head list;
119
dma_addr_t buffer_bus;
120
size_t buffer_size;
121
size_t used;
122
struct descriptor buffer[];
123
};
124
125
struct context {
126
struct fw_ohci *ohci;
127
u32 regs;
128
int total_allocation;
129
u32 current_bus;
130
bool running;
131
132
/*
133
* List of page-sized buffers for storing DMA descriptors.
134
* Head of list contains buffers in use and tail of list contains
135
* free buffers.
136
*/
137
struct list_head buffer_list;
138
139
/*
140
* Pointer to a buffer inside buffer_list that contains the tail
141
* end of the current DMA program.
142
*/
143
struct descriptor_buffer *buffer_tail;
144
145
/*
146
* The descriptor containing the branch address of the first
147
* descriptor that has not yet been filled by the device.
148
*/
149
struct descriptor *last;
150
151
/*
152
* The last descriptor block in the DMA program. It contains the branch
153
* address that must be updated upon appending a new descriptor.
154
*/
155
struct descriptor *prev;
156
int prev_z;
157
158
descriptor_callback_t callback;
159
};
160
161
struct at_context {
162
struct context context;
163
struct work_struct work;
164
bool flushing;
165
};
166
167
struct iso_context {
168
struct fw_iso_context base;
169
struct context context;
170
void *header;
171
size_t header_length;
172
unsigned long flushing_completions;
173
u32 mc_buffer_bus;
174
u16 mc_completed;
175
u16 last_timestamp;
176
u8 sync;
177
u8 tags;
178
};
179
180
#define CONFIG_ROM_SIZE (CSR_CONFIG_ROM_END - CSR_CONFIG_ROM)
181
182
struct fw_ohci {
183
struct fw_card card;
184
185
__iomem char *registers;
186
int node_id;
187
int generation;
188
int request_generation; /* for timestamping incoming requests */
189
unsigned quirks;
190
unsigned int pri_req_max;
191
u32 bus_time;
192
bool bus_time_running;
193
bool is_root;
194
bool csr_state_setclear_abdicate;
195
int n_ir;
196
int n_it;
197
/*
198
* Spinlock for accessing fw_ohci data. Never call out of
199
* this driver with this lock held.
200
*/
201
spinlock_t lock;
202
203
struct mutex phy_reg_mutex;
204
205
void *misc_buffer;
206
dma_addr_t misc_buffer_bus;
207
208
struct ar_context ar_request_ctx;
209
struct ar_context ar_response_ctx;
210
struct at_context at_request_ctx;
211
struct at_context at_response_ctx;
212
213
u32 it_context_support;
214
u32 it_context_mask; /* unoccupied IT contexts */
215
struct iso_context *it_context_list;
216
u64 ir_context_channels; /* unoccupied channels */
217
u32 ir_context_support;
218
u32 ir_context_mask; /* unoccupied IR contexts */
219
struct iso_context *ir_context_list;
220
u64 mc_channels; /* channels in use by the multichannel IR context */
221
bool mc_allocated;
222
223
__be32 *config_rom;
224
dma_addr_t config_rom_bus;
225
__be32 *next_config_rom;
226
dma_addr_t next_config_rom_bus;
227
__be32 next_header;
228
229
__le32 *self_id;
230
dma_addr_t self_id_bus;
231
struct work_struct bus_reset_work;
232
233
u32 self_id_buffer[512];
234
};
235
236
static struct workqueue_struct *selfid_workqueue;
237
238
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
239
{
240
return container_of(card, struct fw_ohci, card);
241
}
242
243
#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
244
#define IR_CONTEXT_BUFFER_FILL 0x80000000
245
#define IR_CONTEXT_ISOCH_HEADER 0x40000000
246
#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
247
#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
248
#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
249
250
#define CONTEXT_RUN 0x8000
251
#define CONTEXT_WAKE 0x1000
252
#define CONTEXT_DEAD 0x0800
253
#define CONTEXT_ACTIVE 0x0400
254
255
#define OHCI1394_MAX_AT_REQ_RETRIES 0xf
256
#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
257
#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
258
259
#define OHCI1394_REGISTER_SIZE 0x800
260
#define OHCI1394_PCI_HCI_Control 0x40
261
#define SELF_ID_BUF_SIZE 0x800
262
#define OHCI_VERSION_1_1 0x010010
263
264
static char ohci_driver_name[] = KBUILD_MODNAME;
265
266
#define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
267
#define PCI_DEVICE_ID_AGERE_FW643 0x5901
268
#define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
269
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
270
#define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
271
#define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
272
#define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
273
#define PCI_DEVICE_ID_VIA_VT630X 0x3044
274
#define PCI_REV_ID_VIA_VT6306 0x46
275
#define PCI_DEVICE_ID_VIA_VT6315 0x3403
276
277
#define QUIRK_CYCLE_TIMER 0x1
278
#define QUIRK_RESET_PACKET 0x2
279
#define QUIRK_BE_HEADERS 0x4
280
#define QUIRK_NO_1394A 0x8
281
#define QUIRK_NO_MSI 0x10
282
#define QUIRK_TI_SLLZ059 0x20
283
#define QUIRK_IR_WAKE 0x40
284
285
// On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
286
// ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
287
// (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
288
// clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
289
// while it is probable due to detection of any type of PCIe error.
290
#define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000
291
292
#if IS_ENABLED(CONFIG_X86)
293
294
static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
295
{
296
return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
297
}
298
299
#define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080
300
301
static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
302
{
303
const struct pci_dev *pcie_to_pci_bridge;
304
305
// Detect any type of AMD Ryzen machine.
306
if (!static_cpu_has(X86_FEATURE_ZEN))
307
return false;
308
309
// Detect VIA VT6306/6307/6308.
310
if (pdev->vendor != PCI_VENDOR_ID_VIA)
311
return false;
312
if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
313
return false;
314
315
// Detect Asmedia ASM1083/1085.
316
pcie_to_pci_bridge = pdev->bus->self;
317
if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
318
return false;
319
if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
320
return false;
321
322
return true;
323
}
324
325
#else
326
#define has_reboot_by_cycle_timer_read_quirk(ohci) false
327
#define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false
328
#endif
329
330
/* In case of multiple matches in ohci_quirks[], only the first one is used. */
331
static const struct {
332
unsigned short vendor, device, revision, flags;
333
} ohci_quirks[] = {
334
{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
335
QUIRK_CYCLE_TIMER},
336
337
{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
338
QUIRK_BE_HEADERS},
339
340
{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
341
QUIRK_NO_MSI},
342
343
{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
344
QUIRK_RESET_PACKET},
345
346
{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
347
QUIRK_NO_MSI},
348
349
{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
350
QUIRK_CYCLE_TIMER},
351
352
{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
353
QUIRK_NO_MSI},
354
355
{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
356
QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
357
358
{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
359
QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
360
361
{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
362
QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363
364
{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
365
QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
366
367
{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
368
QUIRK_RESET_PACKET},
369
370
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
371
QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
372
373
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
374
QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
375
376
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
377
QUIRK_NO_MSI},
378
379
{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
380
QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
381
};
382
383
/* This overrides anything that was found in ohci_quirks[]. */
384
static int param_quirks;
385
module_param_named(quirks, param_quirks, int, 0644);
386
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
387
", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
388
", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
389
", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
390
", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
391
", disable MSI = " __stringify(QUIRK_NO_MSI)
392
", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
393
", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
394
")");
395
396
#define OHCI_PARAM_DEBUG_AT_AR 1
397
#define OHCI_PARAM_DEBUG_SELFIDS 2
398
#define OHCI_PARAM_DEBUG_IRQS 4
399
400
static int param_debug;
401
module_param_named(debug, param_debug, int, 0644);
402
MODULE_PARM_DESC(debug, "Verbose logging, deprecated in v6.11 kernel or later. (default = 0"
403
", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
404
", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
405
", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
406
", or a combination, or all = -1)");
407
408
static bool param_remote_dma;
409
module_param_named(remote_dma, param_remote_dma, bool, 0444);
410
MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
411
412
static void log_irqs(struct fw_ohci *ohci, u32 evt)
413
{
414
if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
415
return;
416
417
ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
418
evt & OHCI1394_selfIDComplete ? " selfID" : "",
419
evt & OHCI1394_RQPkt ? " AR_req" : "",
420
evt & OHCI1394_RSPkt ? " AR_resp" : "",
421
evt & OHCI1394_reqTxComplete ? " AT_req" : "",
422
evt & OHCI1394_respTxComplete ? " AT_resp" : "",
423
evt & OHCI1394_isochRx ? " IR" : "",
424
evt & OHCI1394_isochTx ? " IT" : "",
425
evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
426
evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
427
evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
428
evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
429
evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
430
evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
431
evt & OHCI1394_busReset ? " busReset" : "",
432
evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
433
OHCI1394_RSPkt | OHCI1394_reqTxComplete |
434
OHCI1394_respTxComplete | OHCI1394_isochRx |
435
OHCI1394_isochTx | OHCI1394_postedWriteErr |
436
OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
437
OHCI1394_cycleInconsistent |
438
OHCI1394_regAccessFail | OHCI1394_busReset)
439
? " ?" : "");
440
}
441
442
static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
443
{
444
static const char *const speed[] = {
445
[0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
446
};
447
static const char *const power[] = {
448
[0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
449
[4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
450
};
451
static const char port[] = {
452
[PHY_PACKET_SELF_ID_PORT_STATUS_NONE] = '.',
453
[PHY_PACKET_SELF_ID_PORT_STATUS_NCONN] = '-',
454
[PHY_PACKET_SELF_ID_PORT_STATUS_PARENT] = 'p',
455
[PHY_PACKET_SELF_ID_PORT_STATUS_CHILD] = 'c',
456
};
457
struct self_id_sequence_enumerator enumerator = {
458
.cursor = ohci->self_id_buffer,
459
.quadlet_count = self_id_count,
460
};
461
462
if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
463
return;
464
465
ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
466
self_id_count, generation, ohci->node_id);
467
468
while (enumerator.quadlet_count > 0) {
469
unsigned int quadlet_count;
470
unsigned int port_index;
471
const u32 *s;
472
int i;
473
474
s = self_id_sequence_enumerator_next(&enumerator, &quadlet_count);
475
if (IS_ERR(s))
476
break;
477
478
ohci_notice(ohci,
479
"selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
480
*s,
481
phy_packet_self_id_get_phy_id(*s),
482
port[self_id_sequence_get_port_status(s, quadlet_count, 0)],
483
port[self_id_sequence_get_port_status(s, quadlet_count, 1)],
484
port[self_id_sequence_get_port_status(s, quadlet_count, 2)],
485
speed[*s >> 14 & 3], *s >> 16 & 63,
486
power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
487
*s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
488
489
port_index = 3;
490
for (i = 1; i < quadlet_count; ++i) {
491
ohci_notice(ohci,
492
"selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
493
s[i],
494
phy_packet_self_id_get_phy_id(s[i]),
495
port[self_id_sequence_get_port_status(s, quadlet_count, port_index)],
496
port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 1)],
497
port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 2)],
498
port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 3)],
499
port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 4)],
500
port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 5)],
501
port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 6)],
502
port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 7)]
503
);
504
505
port_index += 8;
506
}
507
}
508
}
509
510
static const char *evts[] = {
511
[0x00] = "evt_no_status", [0x01] = "-reserved-",
512
[0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
513
[0x04] = "evt_underrun", [0x05] = "evt_overrun",
514
[0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
515
[0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
516
[0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
517
[0x0c] = "-reserved-", [0x0d] = "-reserved-",
518
[0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
519
[0x10] = "-reserved-", [0x11] = "ack_complete",
520
[0x12] = "ack_pending ", [0x13] = "-reserved-",
521
[0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
522
[0x16] = "ack_busy_B", [0x17] = "-reserved-",
523
[0x18] = "-reserved-", [0x19] = "-reserved-",
524
[0x1a] = "-reserved-", [0x1b] = "ack_tardy",
525
[0x1c] = "-reserved-", [0x1d] = "ack_data_error",
526
[0x1e] = "ack_type_error", [0x1f] = "-reserved-",
527
[0x20] = "pending/cancelled",
528
};
529
530
static void log_ar_at_event(struct fw_ohci *ohci,
531
char dir, int speed, u32 *header, int evt)
532
{
533
static const char *const tcodes[] = {
534
[TCODE_WRITE_QUADLET_REQUEST] = "QW req",
535
[TCODE_WRITE_BLOCK_REQUEST] = "BW req",
536
[TCODE_WRITE_RESPONSE] = "W resp",
537
[0x3] = "-reserved-",
538
[TCODE_READ_QUADLET_REQUEST] = "QR req",
539
[TCODE_READ_BLOCK_REQUEST] = "BR req",
540
[TCODE_READ_QUADLET_RESPONSE] = "QR resp",
541
[TCODE_READ_BLOCK_RESPONSE] = "BR resp",
542
[TCODE_CYCLE_START] = "cycle start",
543
[TCODE_LOCK_REQUEST] = "Lk req",
544
[TCODE_STREAM_DATA] = "async stream packet",
545
[TCODE_LOCK_RESPONSE] = "Lk resp",
546
[0xc] = "-reserved-",
547
[0xd] = "-reserved-",
548
[TCODE_LINK_INTERNAL] = "link internal",
549
[0xf] = "-reserved-",
550
};
551
int tcode = async_header_get_tcode(header);
552
char specific[12];
553
554
if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
555
return;
556
557
if (unlikely(evt >= ARRAY_SIZE(evts)))
558
evt = 0x1f;
559
560
if (evt == OHCI1394_evt_bus_reset) {
561
ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
562
dir, (header[2] >> 16) & 0xff);
563
return;
564
}
565
566
switch (tcode) {
567
case TCODE_WRITE_QUADLET_REQUEST:
568
case TCODE_READ_QUADLET_RESPONSE:
569
case TCODE_CYCLE_START:
570
snprintf(specific, sizeof(specific), " = %08x",
571
be32_to_cpu((__force __be32)header[3]));
572
break;
573
case TCODE_WRITE_BLOCK_REQUEST:
574
case TCODE_READ_BLOCK_REQUEST:
575
case TCODE_READ_BLOCK_RESPONSE:
576
case TCODE_LOCK_REQUEST:
577
case TCODE_LOCK_RESPONSE:
578
snprintf(specific, sizeof(specific), " %x,%x",
579
async_header_get_data_length(header),
580
async_header_get_extended_tcode(header));
581
break;
582
default:
583
specific[0] = '\0';
584
}
585
586
switch (tcode) {
587
case TCODE_STREAM_DATA:
588
ohci_notice(ohci, "A%c %s, %s\n",
589
dir, evts[evt], tcodes[tcode]);
590
break;
591
case TCODE_LINK_INTERNAL:
592
ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
593
dir, evts[evt], header[1], header[2]);
594
break;
595
case TCODE_WRITE_QUADLET_REQUEST:
596
case TCODE_WRITE_BLOCK_REQUEST:
597
case TCODE_READ_QUADLET_REQUEST:
598
case TCODE_READ_BLOCK_REQUEST:
599
case TCODE_LOCK_REQUEST:
600
ohci_notice(ohci,
601
"A%c spd %x tl %02x, %04x -> %04x, %s, %s, %012llx%s\n",
602
dir, speed, async_header_get_tlabel(header),
603
async_header_get_source(header), async_header_get_destination(header),
604
evts[evt], tcodes[tcode], async_header_get_offset(header), specific);
605
break;
606
default:
607
ohci_notice(ohci,
608
"A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
609
dir, speed, async_header_get_tlabel(header),
610
async_header_get_source(header), async_header_get_destination(header),
611
evts[evt], tcodes[tcode], specific);
612
}
613
}
614
615
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
616
{
617
writel(data, ohci->registers + offset);
618
}
619
620
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
621
{
622
return readl(ohci->registers + offset);
623
}
624
625
static inline void flush_writes(const struct fw_ohci *ohci)
626
{
627
/* Do a dummy read to flush writes. */
628
reg_read(ohci, OHCI1394_Version);
629
}
630
631
/*
632
* Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
633
* read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
634
* In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
635
* directly. Exceptions are intrinsically serialized contexts like pci_probe.
636
*/
637
static int read_phy_reg(struct fw_ohci *ohci, int addr)
638
{
639
u32 val;
640
int i;
641
642
reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
643
for (i = 0; i < 3 + 100; i++) {
644
val = reg_read(ohci, OHCI1394_PhyControl);
645
if (!~val)
646
return -ENODEV; /* Card was ejected. */
647
648
if (val & OHCI1394_PhyControl_ReadDone)
649
return OHCI1394_PhyControl_ReadData(val);
650
651
/*
652
* Try a few times without waiting. Sleeping is necessary
653
* only when the link/PHY interface is busy.
654
*/
655
if (i >= 3)
656
msleep(1);
657
}
658
ohci_err(ohci, "failed to read phy reg %d\n", addr);
659
dump_stack();
660
661
return -EBUSY;
662
}
663
664
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
665
{
666
int i;
667
668
reg_write(ohci, OHCI1394_PhyControl,
669
OHCI1394_PhyControl_Write(addr, val));
670
for (i = 0; i < 3 + 100; i++) {
671
val = reg_read(ohci, OHCI1394_PhyControl);
672
if (!~val)
673
return -ENODEV; /* Card was ejected. */
674
675
if (!(val & OHCI1394_PhyControl_WritePending))
676
return 0;
677
678
if (i >= 3)
679
msleep(1);
680
}
681
ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
682
dump_stack();
683
684
return -EBUSY;
685
}
686
687
static int update_phy_reg(struct fw_ohci *ohci, int addr,
688
int clear_bits, int set_bits)
689
{
690
int ret = read_phy_reg(ohci, addr);
691
if (ret < 0)
692
return ret;
693
694
/*
695
* The interrupt status bits are cleared by writing a one bit.
696
* Avoid clearing them unless explicitly requested in set_bits.
697
*/
698
if (addr == 5)
699
clear_bits |= PHY_INT_STATUS_BITS;
700
701
return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
702
}
703
704
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
705
{
706
int ret;
707
708
ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
709
if (ret < 0)
710
return ret;
711
712
return read_phy_reg(ohci, addr);
713
}
714
715
static int ohci_read_phy_reg(struct fw_card *card, int addr)
716
{
717
struct fw_ohci *ohci = fw_ohci(card);
718
719
guard(mutex)(&ohci->phy_reg_mutex);
720
721
return read_phy_reg(ohci, addr);
722
}
723
724
static int ohci_update_phy_reg(struct fw_card *card, int addr,
725
int clear_bits, int set_bits)
726
{
727
struct fw_ohci *ohci = fw_ohci(card);
728
729
guard(mutex)(&ohci->phy_reg_mutex);
730
731
return update_phy_reg(ohci, addr, clear_bits, set_bits);
732
}
733
734
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
735
{
736
return page_private(ctx->pages[i]);
737
}
738
739
static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
740
{
741
struct descriptor *d;
742
743
d = &ctx->descriptors[index];
744
d->branch_address &= cpu_to_le32(~0xf);
745
d->res_count = cpu_to_le16(PAGE_SIZE);
746
d->transfer_status = 0;
747
748
wmb(); /* finish init of new descriptors before branch_address update */
749
d = &ctx->descriptors[ctx->last_buffer_index];
750
d->branch_address |= cpu_to_le32(1);
751
752
ctx->last_buffer_index = index;
753
754
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
755
}
756
757
static void ar_context_release(struct ar_context *ctx)
758
{
759
struct device *dev = ctx->ohci->card.device;
760
unsigned int i;
761
762
if (!ctx->buffer)
763
return;
764
765
vunmap(ctx->buffer);
766
767
for (i = 0; i < AR_BUFFERS; i++) {
768
if (ctx->pages[i])
769
dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
770
ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
771
}
772
}
773
774
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
775
{
776
struct fw_ohci *ohci = ctx->ohci;
777
778
if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
779
reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
780
flush_writes(ohci);
781
782
ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
783
}
784
/* FIXME: restart? */
785
}
786
787
static inline unsigned int ar_next_buffer_index(unsigned int index)
788
{
789
return (index + 1) % AR_BUFFERS;
790
}
791
792
static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
793
{
794
return ar_next_buffer_index(ctx->last_buffer_index);
795
}
796
797
/*
798
* We search for the buffer that contains the last AR packet DMA data written
799
* by the controller.
800
*/
801
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
802
unsigned int *buffer_offset)
803
{
804
unsigned int i, next_i, last = ctx->last_buffer_index;
805
__le16 res_count, next_res_count;
806
807
i = ar_first_buffer_index(ctx);
808
res_count = READ_ONCE(ctx->descriptors[i].res_count);
809
810
/* A buffer that is not yet completely filled must be the last one. */
811
while (i != last && res_count == 0) {
812
813
/* Peek at the next descriptor. */
814
next_i = ar_next_buffer_index(i);
815
rmb(); /* read descriptors in order */
816
next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
817
/*
818
* If the next descriptor is still empty, we must stop at this
819
* descriptor.
820
*/
821
if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
822
/*
823
* The exception is when the DMA data for one packet is
824
* split over three buffers; in this case, the middle
825
* buffer's descriptor might be never updated by the
826
* controller and look still empty, and we have to peek
827
* at the third one.
828
*/
829
if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
830
next_i = ar_next_buffer_index(next_i);
831
rmb();
832
next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
833
if (next_res_count != cpu_to_le16(PAGE_SIZE))
834
goto next_buffer_is_active;
835
}
836
837
break;
838
}
839
840
next_buffer_is_active:
841
i = next_i;
842
res_count = next_res_count;
843
}
844
845
rmb(); /* read res_count before the DMA data */
846
847
*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
848
if (*buffer_offset > PAGE_SIZE) {
849
*buffer_offset = 0;
850
ar_context_abort(ctx, "corrupted descriptor");
851
}
852
853
return i;
854
}
855
856
static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
857
unsigned int end_buffer_index,
858
unsigned int end_buffer_offset)
859
{
860
unsigned int i;
861
862
i = ar_first_buffer_index(ctx);
863
while (i != end_buffer_index) {
864
dma_sync_single_for_cpu(ctx->ohci->card.device,
865
ar_buffer_bus(ctx, i),
866
PAGE_SIZE, DMA_FROM_DEVICE);
867
i = ar_next_buffer_index(i);
868
}
869
if (end_buffer_offset > 0)
870
dma_sync_single_for_cpu(ctx->ohci->card.device,
871
ar_buffer_bus(ctx, i),
872
end_buffer_offset, DMA_FROM_DEVICE);
873
}
874
875
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
876
static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
877
{
878
return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
879
}
880
881
static bool has_be_header_quirk(const struct fw_ohci *ohci)
882
{
883
return !!(ohci->quirks & QUIRK_BE_HEADERS);
884
}
885
#else
886
static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
887
{
888
return le32_to_cpu(value);
889
}
890
891
static bool has_be_header_quirk(const struct fw_ohci *ohci)
892
{
893
return false;
894
}
895
#endif
896
897
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
898
{
899
struct fw_ohci *ohci = ctx->ohci;
900
struct fw_packet p;
901
u32 status, length, tcode;
902
int evt;
903
904
p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
905
p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
906
p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
907
908
tcode = async_header_get_tcode(p.header);
909
switch (tcode) {
910
case TCODE_WRITE_QUADLET_REQUEST:
911
case TCODE_READ_QUADLET_RESPONSE:
912
p.header[3] = (__force __u32) buffer[3];
913
p.header_length = 16;
914
p.payload_length = 0;
915
break;
916
917
case TCODE_READ_BLOCK_REQUEST :
918
p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
919
p.header_length = 16;
920
p.payload_length = 0;
921
break;
922
923
case TCODE_WRITE_BLOCK_REQUEST:
924
case TCODE_READ_BLOCK_RESPONSE:
925
case TCODE_LOCK_REQUEST:
926
case TCODE_LOCK_RESPONSE:
927
p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
928
p.header_length = 16;
929
p.payload_length = async_header_get_data_length(p.header);
930
if (p.payload_length > MAX_ASYNC_PAYLOAD) {
931
ar_context_abort(ctx, "invalid packet length");
932
return NULL;
933
}
934
break;
935
936
case TCODE_WRITE_RESPONSE:
937
case TCODE_READ_QUADLET_REQUEST:
938
case TCODE_LINK_INTERNAL:
939
p.header_length = 12;
940
p.payload_length = 0;
941
break;
942
943
default:
944
ar_context_abort(ctx, "invalid tcode");
945
return NULL;
946
}
947
948
p.payload = (void *) buffer + p.header_length;
949
950
/* FIXME: What to do about evt_* errors? */
951
length = (p.header_length + p.payload_length + 3) / 4;
952
status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
953
evt = (status >> 16) & 0x1f;
954
955
p.ack = evt - 16;
956
p.speed = (status >> 21) & 0x7;
957
p.timestamp = status & 0xffff;
958
p.generation = ohci->request_generation;
959
960
log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
961
962
/*
963
* Several controllers, notably from NEC and VIA, forget to
964
* write ack_complete status at PHY packet reception.
965
*/
966
if (evt == OHCI1394_evt_no_status && tcode == TCODE_LINK_INTERNAL)
967
p.ack = ACK_COMPLETE;
968
969
/*
970
* The OHCI bus reset handler synthesizes a PHY packet with
971
* the new generation number when a bus reset happens (see
972
* section 8.4.2.3). This helps us determine when a request
973
* was received and make sure we send the response in the same
974
* generation. We only need this for requests; for responses
975
* we use the unique tlabel for finding the matching
976
* request.
977
*
978
* Alas some chips sometimes emit bus reset packets with a
979
* wrong generation. We set the correct generation for these
980
* at a slightly incorrect time (in bus_reset_work).
981
*/
982
if (evt == OHCI1394_evt_bus_reset) {
983
if (!(ohci->quirks & QUIRK_RESET_PACKET))
984
ohci->request_generation = (p.header[2] >> 16) & 0xff;
985
} else if (ctx == &ohci->ar_request_ctx) {
986
fw_core_handle_request(&ohci->card, &p);
987
} else {
988
fw_core_handle_response(&ohci->card, &p);
989
}
990
991
return buffer + length + 1;
992
}
993
994
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
995
{
996
void *next;
997
998
while (p < end) {
999
next = handle_ar_packet(ctx, p);
1000
if (!next)
1001
return p;
1002
p = next;
1003
}
1004
1005
return p;
1006
}
1007
1008
static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
1009
{
1010
unsigned int i;
1011
1012
i = ar_first_buffer_index(ctx);
1013
while (i != end_buffer) {
1014
dma_sync_single_for_device(ctx->ohci->card.device,
1015
ar_buffer_bus(ctx, i),
1016
PAGE_SIZE, DMA_FROM_DEVICE);
1017
ar_context_link_page(ctx, i);
1018
i = ar_next_buffer_index(i);
1019
}
1020
}
1021
1022
static void ohci_ar_context_work(struct work_struct *work)
1023
{
1024
struct ar_context *ctx = from_work(ctx, work, work);
1025
unsigned int end_buffer_index, end_buffer_offset;
1026
void *p, *end;
1027
1028
p = ctx->pointer;
1029
if (!p)
1030
return;
1031
1032
end_buffer_index = ar_search_last_active_buffer(ctx, &end_buffer_offset);
1033
ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
1034
end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
1035
1036
if (end_buffer_index < ar_first_buffer_index(ctx)) {
1037
// The filled part of the overall buffer wraps around; handle all packets up to the
1038
// buffer end here. If the last packet wraps around, its tail will be visible after
1039
// the buffer end because the buffer start pages are mapped there again.
1040
void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
1041
p = handle_ar_packets(ctx, p, buffer_end);
1042
if (p < buffer_end)
1043
goto error;
1044
// adjust p to point back into the actual buffer
1045
p -= AR_BUFFERS * PAGE_SIZE;
1046
}
1047
1048
p = handle_ar_packets(ctx, p, end);
1049
if (p != end) {
1050
if (p > end)
1051
ar_context_abort(ctx, "inconsistent descriptor");
1052
goto error;
1053
}
1054
1055
ctx->pointer = p;
1056
ar_recycle_buffers(ctx, end_buffer_index);
1057
1058
return;
1059
error:
1060
ctx->pointer = NULL;
1061
}
1062
1063
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1064
unsigned int descriptors_offset, u32 regs)
1065
{
1066
struct device *dev = ohci->card.device;
1067
unsigned int i;
1068
dma_addr_t dma_addr;
1069
struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1070
struct descriptor *d;
1071
1072
ctx->regs = regs;
1073
ctx->ohci = ohci;
1074
INIT_WORK(&ctx->work, ohci_ar_context_work);
1075
1076
for (i = 0; i < AR_BUFFERS; i++) {
1077
ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1078
DMA_FROM_DEVICE, GFP_KERNEL);
1079
if (!ctx->pages[i])
1080
goto out_of_memory;
1081
set_page_private(ctx->pages[i], dma_addr);
1082
dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1083
DMA_FROM_DEVICE);
1084
}
1085
1086
for (i = 0; i < AR_BUFFERS; i++)
1087
pages[i] = ctx->pages[i];
1088
for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1089
pages[AR_BUFFERS + i] = ctx->pages[i];
1090
ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1091
if (!ctx->buffer)
1092
goto out_of_memory;
1093
1094
ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1095
ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1096
1097
for (i = 0; i < AR_BUFFERS; i++) {
1098
d = &ctx->descriptors[i];
1099
d->req_count = cpu_to_le16(PAGE_SIZE);
1100
d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1101
DESCRIPTOR_STATUS |
1102
DESCRIPTOR_BRANCH_ALWAYS);
1103
d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1104
d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1105
ar_next_buffer_index(i) * sizeof(struct descriptor));
1106
}
1107
1108
return 0;
1109
1110
out_of_memory:
1111
ar_context_release(ctx);
1112
1113
return -ENOMEM;
1114
}
1115
1116
static void ar_context_run(struct ar_context *ctx)
1117
{
1118
unsigned int i;
1119
1120
for (i = 0; i < AR_BUFFERS; i++)
1121
ar_context_link_page(ctx, i);
1122
1123
ctx->pointer = ctx->buffer;
1124
1125
reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1126
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1127
}
1128
1129
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1130
{
1131
__le16 branch;
1132
1133
branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1134
1135
/* figure out which descriptor the branch address goes in */
1136
if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1137
return d;
1138
else
1139
return d + z - 1;
1140
}
1141
1142
static void context_retire_descriptors(struct context *ctx)
1143
{
1144
struct descriptor *d, *last;
1145
u32 address;
1146
int z;
1147
struct descriptor_buffer *desc;
1148
1149
desc = list_entry(ctx->buffer_list.next,
1150
struct descriptor_buffer, list);
1151
last = ctx->last;
1152
while (last->branch_address != 0) {
1153
struct descriptor_buffer *old_desc = desc;
1154
address = le32_to_cpu(last->branch_address);
1155
z = address & 0xf;
1156
address &= ~0xf;
1157
ctx->current_bus = address;
1158
1159
/* If the branch address points to a buffer outside of the
1160
* current buffer, advance to the next buffer. */
1161
if (address < desc->buffer_bus ||
1162
address >= desc->buffer_bus + desc->used)
1163
desc = list_entry(desc->list.next,
1164
struct descriptor_buffer, list);
1165
d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1166
last = find_branch_descriptor(d, z);
1167
1168
if (!ctx->callback(ctx, d, last))
1169
break;
1170
1171
if (old_desc != desc) {
1172
// If we've advanced to the next buffer, move the previous buffer to the
1173
// free list.
1174
old_desc->used = 0;
1175
guard(spinlock_irqsave)(&ctx->ohci->lock);
1176
list_move_tail(&old_desc->list, &ctx->buffer_list);
1177
}
1178
ctx->last = last;
1179
}
1180
}
1181
1182
static void ohci_at_context_work(struct work_struct *work)
1183
{
1184
struct at_context *ctx = from_work(ctx, work, work);
1185
1186
context_retire_descriptors(&ctx->context);
1187
}
1188
1189
static void ohci_isoc_context_work(struct work_struct *work)
1190
{
1191
struct fw_iso_context *base = from_work(base, work, work);
1192
struct iso_context *isoc_ctx = container_of(base, struct iso_context, base);
1193
1194
context_retire_descriptors(&isoc_ctx->context);
1195
}
1196
1197
/*
1198
* Allocate a new buffer and add it to the list of free buffers for this
1199
* context. Must be called with ohci->lock held.
1200
*/
1201
static int context_add_buffer(struct context *ctx)
1202
{
1203
struct descriptor_buffer *desc;
1204
dma_addr_t bus_addr;
1205
int offset;
1206
1207
/*
1208
* 16MB of descriptors should be far more than enough for any DMA
1209
* program. This will catch run-away userspace or DoS attacks.
1210
*/
1211
if (ctx->total_allocation >= 16*1024*1024)
1212
return -ENOMEM;
1213
1214
desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1215
if (!desc)
1216
return -ENOMEM;
1217
1218
offset = (void *)&desc->buffer - (void *)desc;
1219
/*
1220
* Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1221
* for descriptors, even 0x10-byte ones. This can cause page faults when
1222
* an IOMMU is in use and the oversized read crosses a page boundary.
1223
* Work around this by always leaving at least 0x10 bytes of padding.
1224
*/
1225
desc->buffer_size = PAGE_SIZE - offset - 0x10;
1226
desc->buffer_bus = bus_addr + offset;
1227
desc->used = 0;
1228
1229
list_add_tail(&desc->list, &ctx->buffer_list);
1230
ctx->total_allocation += PAGE_SIZE;
1231
1232
return 0;
1233
}
1234
1235
static int context_init(struct context *ctx, struct fw_ohci *ohci,
1236
u32 regs, descriptor_callback_t callback)
1237
{
1238
ctx->ohci = ohci;
1239
ctx->regs = regs;
1240
ctx->total_allocation = 0;
1241
1242
INIT_LIST_HEAD(&ctx->buffer_list);
1243
if (context_add_buffer(ctx) < 0)
1244
return -ENOMEM;
1245
1246
ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1247
struct descriptor_buffer, list);
1248
1249
ctx->callback = callback;
1250
1251
/*
1252
* We put a dummy descriptor in the buffer that has a NULL
1253
* branch address and looks like it's been sent. That way we
1254
* have a descriptor to append DMA programs to.
1255
*/
1256
memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1257
ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1258
ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1259
ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1260
ctx->last = ctx->buffer_tail->buffer;
1261
ctx->prev = ctx->buffer_tail->buffer;
1262
ctx->prev_z = 1;
1263
1264
return 0;
1265
}
1266
1267
static void context_release(struct context *ctx)
1268
{
1269
struct fw_card *card = &ctx->ohci->card;
1270
struct descriptor_buffer *desc, *tmp;
1271
1272
list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1273
dmam_free_coherent(card->device, PAGE_SIZE, desc,
1274
desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1275
}
1276
}
1277
1278
/* Must be called with ohci->lock held */
1279
static struct descriptor *context_get_descriptors(struct context *ctx,
1280
int z, dma_addr_t *d_bus)
1281
{
1282
struct descriptor *d = NULL;
1283
struct descriptor_buffer *desc = ctx->buffer_tail;
1284
1285
if (z * sizeof(*d) > desc->buffer_size)
1286
return NULL;
1287
1288
if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1289
/* No room for the descriptor in this buffer, so advance to the
1290
* next one. */
1291
1292
if (desc->list.next == &ctx->buffer_list) {
1293
/* If there is no free buffer next in the list,
1294
* allocate one. */
1295
if (context_add_buffer(ctx) < 0)
1296
return NULL;
1297
}
1298
desc = list_entry(desc->list.next,
1299
struct descriptor_buffer, list);
1300
ctx->buffer_tail = desc;
1301
}
1302
1303
d = desc->buffer + desc->used / sizeof(*d);
1304
memset(d, 0, z * sizeof(*d));
1305
*d_bus = desc->buffer_bus + desc->used;
1306
1307
return d;
1308
}
1309
1310
static void context_run(struct context *ctx, u32 extra)
1311
{
1312
struct fw_ohci *ohci = ctx->ohci;
1313
1314
reg_write(ohci, COMMAND_PTR(ctx->regs),
1315
le32_to_cpu(ctx->last->branch_address));
1316
reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1317
reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1318
ctx->running = true;
1319
flush_writes(ohci);
1320
}
1321
1322
static void context_append(struct context *ctx,
1323
struct descriptor *d, int z, int extra)
1324
{
1325
dma_addr_t d_bus;
1326
struct descriptor_buffer *desc = ctx->buffer_tail;
1327
struct descriptor *d_branch;
1328
1329
d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1330
1331
desc->used += (z + extra) * sizeof(*d);
1332
1333
wmb(); /* finish init of new descriptors before branch_address update */
1334
1335
d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1336
d_branch->branch_address = cpu_to_le32(d_bus | z);
1337
1338
/*
1339
* VT6306 incorrectly checks only the single descriptor at the
1340
* CommandPtr when the wake bit is written, so if it's a
1341
* multi-descriptor block starting with an INPUT_MORE, put a copy of
1342
* the branch address in the first descriptor.
1343
*
1344
* Not doing this for transmit contexts since not sure how it interacts
1345
* with skip addresses.
1346
*/
1347
if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1348
d_branch != ctx->prev &&
1349
(ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1350
cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1351
ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1352
}
1353
1354
ctx->prev = d;
1355
ctx->prev_z = z;
1356
}
1357
1358
static void context_stop(struct context *ctx)
1359
{
1360
struct fw_ohci *ohci = ctx->ohci;
1361
u32 reg;
1362
int i;
1363
1364
reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1365
ctx->running = false;
1366
1367
for (i = 0; i < 1000; i++) {
1368
reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1369
if ((reg & CONTEXT_ACTIVE) == 0)
1370
return;
1371
1372
if (i)
1373
udelay(10);
1374
}
1375
ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1376
}
1377
1378
struct driver_data {
1379
u8 inline_data[8];
1380
struct fw_packet *packet;
1381
};
1382
1383
/*
1384
* This function appends a packet to the DMA queue for transmission.
1385
* Must always be called with the ochi->lock held to ensure proper
1386
* generation handling and locking around packet queue manipulation.
1387
*/
1388
static int at_context_queue_packet(struct at_context *ctx, struct fw_packet *packet)
1389
{
1390
struct context *context = &ctx->context;
1391
struct fw_ohci *ohci = context->ohci;
1392
dma_addr_t d_bus, payload_bus;
1393
struct driver_data *driver_data;
1394
struct descriptor *d, *last;
1395
__le32 *header;
1396
int z, tcode;
1397
1398
d = context_get_descriptors(context, 4, &d_bus);
1399
if (d == NULL) {
1400
packet->ack = RCODE_SEND_ERROR;
1401
return -1;
1402
}
1403
1404
d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1405
d[0].res_count = cpu_to_le16(packet->timestamp);
1406
1407
tcode = async_header_get_tcode(packet->header);
1408
header = (__le32 *) &d[1];
1409
switch (tcode) {
1410
case TCODE_WRITE_QUADLET_REQUEST:
1411
case TCODE_WRITE_BLOCK_REQUEST:
1412
case TCODE_WRITE_RESPONSE:
1413
case TCODE_READ_QUADLET_REQUEST:
1414
case TCODE_READ_BLOCK_REQUEST:
1415
case TCODE_READ_QUADLET_RESPONSE:
1416
case TCODE_READ_BLOCK_RESPONSE:
1417
case TCODE_LOCK_REQUEST:
1418
case TCODE_LOCK_RESPONSE:
1419
ohci1394_at_data_set_src_bus_id(header, false);
1420
ohci1394_at_data_set_speed(header, packet->speed);
1421
ohci1394_at_data_set_tlabel(header, async_header_get_tlabel(packet->header));
1422
ohci1394_at_data_set_retry(header, async_header_get_retry(packet->header));
1423
ohci1394_at_data_set_tcode(header, tcode);
1424
1425
ohci1394_at_data_set_destination_id(header,
1426
async_header_get_destination(packet->header));
1427
1428
if (ctx == &ohci->at_response_ctx) {
1429
ohci1394_at_data_set_rcode(header, async_header_get_rcode(packet->header));
1430
} else {
1431
ohci1394_at_data_set_destination_offset(header,
1432
async_header_get_offset(packet->header));
1433
}
1434
1435
if (tcode_is_block_packet(tcode))
1436
header[3] = cpu_to_le32(packet->header[3]);
1437
else
1438
header[3] = (__force __le32) packet->header[3];
1439
1440
d[0].req_count = cpu_to_le16(packet->header_length);
1441
break;
1442
case TCODE_LINK_INTERNAL:
1443
ohci1394_at_data_set_speed(header, packet->speed);
1444
ohci1394_at_data_set_tcode(header, TCODE_LINK_INTERNAL);
1445
1446
header[1] = cpu_to_le32(packet->header[1]);
1447
header[2] = cpu_to_le32(packet->header[2]);
1448
d[0].req_count = cpu_to_le16(12);
1449
1450
if (is_ping_packet(&packet->header[1]))
1451
d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1452
break;
1453
1454
case TCODE_STREAM_DATA:
1455
ohci1394_it_data_set_speed(header, packet->speed);
1456
ohci1394_it_data_set_tag(header, isoc_header_get_tag(packet->header[0]));
1457
ohci1394_it_data_set_channel(header, isoc_header_get_channel(packet->header[0]));
1458
ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
1459
ohci1394_it_data_set_sync(header, isoc_header_get_sy(packet->header[0]));
1460
1461
ohci1394_it_data_set_data_length(header, isoc_header_get_data_length(packet->header[0]));
1462
1463
d[0].req_count = cpu_to_le16(8);
1464
break;
1465
1466
default:
1467
/* BUG(); */
1468
packet->ack = RCODE_SEND_ERROR;
1469
return -1;
1470
}
1471
1472
BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1473
driver_data = (struct driver_data *) &d[3];
1474
driver_data->packet = packet;
1475
packet->driver_data = driver_data;
1476
1477
if (packet->payload_length > 0) {
1478
if (packet->payload_length > sizeof(driver_data->inline_data)) {
1479
payload_bus = dma_map_single(ohci->card.device,
1480
packet->payload,
1481
packet->payload_length,
1482
DMA_TO_DEVICE);
1483
if (dma_mapping_error(ohci->card.device, payload_bus)) {
1484
packet->ack = RCODE_SEND_ERROR;
1485
return -1;
1486
}
1487
packet->payload_bus = payload_bus;
1488
packet->payload_mapped = true;
1489
} else {
1490
memcpy(driver_data->inline_data, packet->payload,
1491
packet->payload_length);
1492
payload_bus = d_bus + 3 * sizeof(*d);
1493
}
1494
1495
d[2].req_count = cpu_to_le16(packet->payload_length);
1496
d[2].data_address = cpu_to_le32(payload_bus);
1497
last = &d[2];
1498
z = 3;
1499
} else {
1500
last = &d[0];
1501
z = 2;
1502
}
1503
1504
last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1505
DESCRIPTOR_IRQ_ALWAYS |
1506
DESCRIPTOR_BRANCH_ALWAYS);
1507
1508
/* FIXME: Document how the locking works. */
1509
if (ohci->generation != packet->generation) {
1510
if (packet->payload_mapped)
1511
dma_unmap_single(ohci->card.device, payload_bus,
1512
packet->payload_length, DMA_TO_DEVICE);
1513
packet->ack = RCODE_GENERATION;
1514
return -1;
1515
}
1516
1517
context_append(context, d, z, 4 - z);
1518
1519
if (context->running)
1520
reg_write(ohci, CONTROL_SET(context->regs), CONTEXT_WAKE);
1521
else
1522
context_run(context, 0);
1523
1524
return 0;
1525
}
1526
1527
static void at_context_flush(struct at_context *ctx)
1528
{
1529
// Avoid dead lock due to programming mistake.
1530
if (WARN_ON_ONCE(current_work() == &ctx->work))
1531
return;
1532
1533
disable_work_sync(&ctx->work);
1534
1535
WRITE_ONCE(ctx->flushing, true);
1536
ohci_at_context_work(&ctx->work);
1537
WRITE_ONCE(ctx->flushing, false);
1538
1539
enable_work(&ctx->work);
1540
}
1541
1542
static int handle_at_packet(struct context *context,
1543
struct descriptor *d,
1544
struct descriptor *last)
1545
{
1546
struct at_context *ctx = container_of(context, struct at_context, context);
1547
struct fw_ohci *ohci = ctx->context.ohci;
1548
struct driver_data *driver_data;
1549
struct fw_packet *packet;
1550
int evt;
1551
1552
if (last->transfer_status == 0 && !READ_ONCE(ctx->flushing))
1553
/* This descriptor isn't done yet, stop iteration. */
1554
return 0;
1555
1556
driver_data = (struct driver_data *) &d[3];
1557
packet = driver_data->packet;
1558
if (packet == NULL)
1559
/* This packet was cancelled, just continue. */
1560
return 1;
1561
1562
if (packet->payload_mapped)
1563
dma_unmap_single(ohci->card.device, packet->payload_bus,
1564
packet->payload_length, DMA_TO_DEVICE);
1565
1566
evt = le16_to_cpu(last->transfer_status) & 0x1f;
1567
packet->timestamp = le16_to_cpu(last->res_count);
1568
1569
log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1570
1571
switch (evt) {
1572
case OHCI1394_evt_timeout:
1573
/* Async response transmit timed out. */
1574
packet->ack = RCODE_CANCELLED;
1575
break;
1576
1577
case OHCI1394_evt_flushed:
1578
/*
1579
* The packet was flushed should give same error as
1580
* when we try to use a stale generation count.
1581
*/
1582
packet->ack = RCODE_GENERATION;
1583
break;
1584
1585
case OHCI1394_evt_missing_ack:
1586
if (READ_ONCE(ctx->flushing))
1587
packet->ack = RCODE_GENERATION;
1588
else {
1589
/*
1590
* Using a valid (current) generation count, but the
1591
* node is not on the bus or not sending acks.
1592
*/
1593
packet->ack = RCODE_NO_ACK;
1594
}
1595
break;
1596
1597
case ACK_COMPLETE + 0x10:
1598
case ACK_PENDING + 0x10:
1599
case ACK_BUSY_X + 0x10:
1600
case ACK_BUSY_A + 0x10:
1601
case ACK_BUSY_B + 0x10:
1602
case ACK_DATA_ERROR + 0x10:
1603
case ACK_TYPE_ERROR + 0x10:
1604
packet->ack = evt - 0x10;
1605
break;
1606
1607
case OHCI1394_evt_no_status:
1608
if (READ_ONCE(ctx->flushing)) {
1609
packet->ack = RCODE_GENERATION;
1610
break;
1611
}
1612
fallthrough;
1613
1614
default:
1615
packet->ack = RCODE_SEND_ERROR;
1616
break;
1617
}
1618
1619
packet->callback(packet, &ohci->card, packet->ack);
1620
1621
return 1;
1622
}
1623
1624
static u32 get_cycle_time(struct fw_ohci *ohci);
1625
1626
static void handle_local_rom(struct fw_ohci *ohci,
1627
struct fw_packet *packet, u32 csr)
1628
{
1629
struct fw_packet response;
1630
int tcode, length, i;
1631
1632
tcode = async_header_get_tcode(packet->header);
1633
if (tcode_is_block_packet(tcode))
1634
length = async_header_get_data_length(packet->header);
1635
else
1636
length = 4;
1637
1638
i = csr - CSR_CONFIG_ROM;
1639
if (i + length > CONFIG_ROM_SIZE) {
1640
fw_fill_response(&response, packet->header,
1641
RCODE_ADDRESS_ERROR, NULL, 0);
1642
} else if (!tcode_is_read_request(tcode)) {
1643
fw_fill_response(&response, packet->header,
1644
RCODE_TYPE_ERROR, NULL, 0);
1645
} else {
1646
fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1647
(void *) ohci->config_rom + i, length);
1648
}
1649
1650
// Timestamping on behalf of the hardware.
1651
response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1652
fw_core_handle_response(&ohci->card, &response);
1653
}
1654
1655
static void handle_local_lock(struct fw_ohci *ohci,
1656
struct fw_packet *packet, u32 csr)
1657
{
1658
struct fw_packet response;
1659
int tcode, length, ext_tcode, sel, try;
1660
__be32 *payload, lock_old;
1661
u32 lock_arg, lock_data;
1662
1663
tcode = async_header_get_tcode(packet->header);
1664
length = async_header_get_data_length(packet->header);
1665
payload = packet->payload;
1666
ext_tcode = async_header_get_extended_tcode(packet->header);
1667
1668
if (tcode == TCODE_LOCK_REQUEST &&
1669
ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1670
lock_arg = be32_to_cpu(payload[0]);
1671
lock_data = be32_to_cpu(payload[1]);
1672
} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1673
lock_arg = 0;
1674
lock_data = 0;
1675
} else {
1676
fw_fill_response(&response, packet->header,
1677
RCODE_TYPE_ERROR, NULL, 0);
1678
goto out;
1679
}
1680
1681
sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1682
reg_write(ohci, OHCI1394_CSRData, lock_data);
1683
reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1684
reg_write(ohci, OHCI1394_CSRControl, sel);
1685
1686
for (try = 0; try < 20; try++)
1687
if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1688
lock_old = cpu_to_be32(reg_read(ohci,
1689
OHCI1394_CSRData));
1690
fw_fill_response(&response, packet->header,
1691
RCODE_COMPLETE,
1692
&lock_old, sizeof(lock_old));
1693
goto out;
1694
}
1695
1696
ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1697
fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1698
1699
out:
1700
// Timestamping on behalf of the hardware.
1701
response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1702
fw_core_handle_response(&ohci->card, &response);
1703
}
1704
1705
static void handle_local_request(struct at_context *ctx, struct fw_packet *packet)
1706
{
1707
struct fw_ohci *ohci = ctx->context.ohci;
1708
u64 offset, csr;
1709
1710
if (ctx == &ohci->at_request_ctx) {
1711
packet->ack = ACK_PENDING;
1712
packet->callback(packet, &ohci->card, packet->ack);
1713
}
1714
1715
offset = async_header_get_offset(packet->header);
1716
csr = offset - CSR_REGISTER_BASE;
1717
1718
/* Handle config rom reads. */
1719
if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1720
handle_local_rom(ohci, packet, csr);
1721
else switch (csr) {
1722
case CSR_BUS_MANAGER_ID:
1723
case CSR_BANDWIDTH_AVAILABLE:
1724
case CSR_CHANNELS_AVAILABLE_HI:
1725
case CSR_CHANNELS_AVAILABLE_LO:
1726
handle_local_lock(ohci, packet, csr);
1727
break;
1728
default:
1729
if (ctx == &ohci->at_request_ctx)
1730
fw_core_handle_request(&ohci->card, packet);
1731
else
1732
fw_core_handle_response(&ohci->card, packet);
1733
break;
1734
}
1735
1736
if (ctx == &ohci->at_response_ctx) {
1737
packet->ack = ACK_COMPLETE;
1738
packet->callback(packet, &ohci->card, packet->ack);
1739
}
1740
}
1741
1742
static void at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
1743
{
1744
struct fw_ohci *ohci = ctx->context.ohci;
1745
unsigned long flags;
1746
int ret;
1747
1748
spin_lock_irqsave(&ohci->lock, flags);
1749
1750
if (async_header_get_destination(packet->header) == ohci->node_id &&
1751
ohci->generation == packet->generation) {
1752
spin_unlock_irqrestore(&ohci->lock, flags);
1753
1754
// Timestamping on behalf of the hardware.
1755
packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1756
1757
handle_local_request(ctx, packet);
1758
return;
1759
}
1760
1761
ret = at_context_queue_packet(ctx, packet);
1762
spin_unlock_irqrestore(&ohci->lock, flags);
1763
1764
if (ret < 0) {
1765
// Timestamping on behalf of the hardware.
1766
packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1767
1768
packet->callback(packet, &ohci->card, packet->ack);
1769
}
1770
}
1771
1772
static void detect_dead_context(struct fw_ohci *ohci,
1773
const char *name, unsigned int regs)
1774
{
1775
u32 ctl;
1776
1777
ctl = reg_read(ohci, CONTROL_SET(regs));
1778
if (ctl & CONTEXT_DEAD)
1779
ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1780
name, evts[ctl & 0x1f]);
1781
}
1782
1783
static void handle_dead_contexts(struct fw_ohci *ohci)
1784
{
1785
unsigned int i;
1786
char name[8];
1787
1788
detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1789
detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1790
detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1791
detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1792
for (i = 0; i < 32; ++i) {
1793
if (!(ohci->it_context_support & (1 << i)))
1794
continue;
1795
sprintf(name, "IT%u", i);
1796
detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1797
}
1798
for (i = 0; i < 32; ++i) {
1799
if (!(ohci->ir_context_support & (1 << i)))
1800
continue;
1801
sprintf(name, "IR%u", i);
1802
detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1803
}
1804
/* TODO: maybe try to flush and restart the dead contexts */
1805
}
1806
1807
static u32 cycle_timer_ticks(u32 cycle_timer)
1808
{
1809
u32 ticks;
1810
1811
ticks = cycle_timer & 0xfff;
1812
ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1813
ticks += (3072 * 8000) * (cycle_timer >> 25);
1814
1815
return ticks;
1816
}
1817
1818
/*
1819
* Some controllers exhibit one or more of the following bugs when updating the
1820
* iso cycle timer register:
1821
* - When the lowest six bits are wrapping around to zero, a read that happens
1822
* at the same time will return garbage in the lowest ten bits.
1823
* - When the cycleOffset field wraps around to zero, the cycleCount field is
1824
* not incremented for about 60 ns.
1825
* - Occasionally, the entire register reads zero.
1826
*
1827
* To catch these, we read the register three times and ensure that the
1828
* difference between each two consecutive reads is approximately the same, i.e.
1829
* less than twice the other. Furthermore, any negative difference indicates an
1830
* error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1831
* execute, so we have enough precision to compute the ratio of the differences.)
1832
*/
1833
static u32 get_cycle_time(struct fw_ohci *ohci)
1834
{
1835
u32 c0, c1, c2;
1836
u32 t0, t1, t2;
1837
s32 diff01, diff12;
1838
int i;
1839
1840
if (has_reboot_by_cycle_timer_read_quirk(ohci))
1841
return 0;
1842
1843
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1844
1845
if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1846
i = 0;
1847
c1 = c2;
1848
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1849
do {
1850
c0 = c1;
1851
c1 = c2;
1852
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1853
t0 = cycle_timer_ticks(c0);
1854
t1 = cycle_timer_ticks(c1);
1855
t2 = cycle_timer_ticks(c2);
1856
diff01 = t1 - t0;
1857
diff12 = t2 - t1;
1858
} while ((diff01 <= 0 || diff12 <= 0 ||
1859
diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1860
&& i++ < 20);
1861
}
1862
1863
return c2;
1864
}
1865
1866
/*
1867
* This function has to be called at least every 64 seconds. The bus_time
1868
* field stores not only the upper 25 bits of the BUS_TIME register but also
1869
* the most significant bit of the cycle timer in bit 6 so that we can detect
1870
* changes in this bit.
1871
*/
1872
static u32 update_bus_time(struct fw_ohci *ohci)
1873
{
1874
u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1875
1876
if (unlikely(!ohci->bus_time_running)) {
1877
reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1878
ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1879
(cycle_time_seconds & 0x40);
1880
ohci->bus_time_running = true;
1881
}
1882
1883
if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1884
ohci->bus_time += 0x40;
1885
1886
return ohci->bus_time | cycle_time_seconds;
1887
}
1888
1889
static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1890
enum phy_packet_self_id_port_status *status)
1891
{
1892
int reg;
1893
1894
scoped_guard(mutex, &ohci->phy_reg_mutex) {
1895
reg = write_phy_reg(ohci, 7, port_index);
1896
if (reg < 0)
1897
return reg;
1898
1899
reg = read_phy_reg(ohci, 8);
1900
if (reg < 0)
1901
return reg;
1902
}
1903
1904
switch (reg & 0x0f) {
1905
case 0x06:
1906
// is child node (connected to parent node)
1907
*status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1908
break;
1909
case 0x0e:
1910
// is parent node (connected to child node)
1911
*status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1912
break;
1913
default:
1914
// not connected
1915
*status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1916
break;
1917
}
1918
1919
return 0;
1920
}
1921
1922
static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1923
int self_id_count)
1924
{
1925
unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1926
int i;
1927
1928
for (i = 0; i < self_id_count; i++) {
1929
u32 entry = ohci->self_id_buffer[i];
1930
unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1931
1932
if (left_phy_id == right_phy_id)
1933
return -1;
1934
if (left_phy_id < right_phy_id)
1935
return i;
1936
}
1937
return i;
1938
}
1939
1940
static int detect_initiated_reset(struct fw_ohci *ohci, bool *is_initiated_reset)
1941
{
1942
int reg;
1943
1944
guard(mutex)(&ohci->phy_reg_mutex);
1945
1946
// Select page 7
1947
reg = write_phy_reg(ohci, 7, 0xe0);
1948
if (reg < 0)
1949
return reg;
1950
1951
reg = read_phy_reg(ohci, 8);
1952
if (reg < 0)
1953
return reg;
1954
1955
// set PMODE bit
1956
reg |= 0x40;
1957
reg = write_phy_reg(ohci, 8, reg);
1958
if (reg < 0)
1959
return reg;
1960
1961
// read register 12
1962
reg = read_phy_reg(ohci, 12);
1963
if (reg < 0)
1964
return reg;
1965
1966
// bit 3 indicates "initiated reset"
1967
*is_initiated_reset = !!((reg & 0x08) == 0x08);
1968
1969
return 0;
1970
}
1971
1972
/*
1973
* TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1974
* attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1975
* Construct the selfID from phy register contents.
1976
*/
1977
static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1978
{
1979
int reg, i, pos, err;
1980
bool is_initiated_reset;
1981
u32 self_id = 0;
1982
1983
// link active 1, speed 3, bridge 0, contender 1, more packets 0.
1984
phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1985
phy_packet_self_id_zero_set_link_active(&self_id, true);
1986
phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1987
phy_packet_self_id_zero_set_contender(&self_id, true);
1988
1989
reg = reg_read(ohci, OHCI1394_NodeID);
1990
if (!(reg & OHCI1394_NodeID_idValid)) {
1991
ohci_notice(ohci,
1992
"node ID not valid, new bus reset in progress\n");
1993
return -EBUSY;
1994
}
1995
phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1996
1997
reg = ohci_read_phy_reg(&ohci->card, 4);
1998
if (reg < 0)
1999
return reg;
2000
phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
2001
2002
reg = ohci_read_phy_reg(&ohci->card, 1);
2003
if (reg < 0)
2004
return reg;
2005
phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
2006
2007
for (i = 0; i < 3; i++) {
2008
enum phy_packet_self_id_port_status status;
2009
2010
err = get_status_for_port(ohci, i, &status);
2011
if (err < 0)
2012
return err;
2013
2014
self_id_sequence_set_port_status(&self_id, 1, i, status);
2015
}
2016
2017
err = detect_initiated_reset(ohci, &is_initiated_reset);
2018
if (err < 0)
2019
return err;
2020
phy_packet_self_id_zero_set_initiated_reset(&self_id, is_initiated_reset);
2021
2022
pos = get_self_id_pos(ohci, self_id, self_id_count);
2023
if (pos >= 0) {
2024
memmove(&(ohci->self_id_buffer[pos+1]),
2025
&(ohci->self_id_buffer[pos]),
2026
(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
2027
ohci->self_id_buffer[pos] = self_id;
2028
self_id_count++;
2029
}
2030
return self_id_count;
2031
}
2032
2033
static void bus_reset_work(struct work_struct *work)
2034
{
2035
struct fw_ohci *ohci = from_work(ohci, work, bus_reset_work);
2036
int self_id_count, generation, new_generation, i, j;
2037
u32 reg, quadlet;
2038
void *free_rom = NULL;
2039
dma_addr_t free_rom_bus = 0;
2040
bool is_new_root;
2041
2042
reg = reg_read(ohci, OHCI1394_NodeID);
2043
if (!(reg & OHCI1394_NodeID_idValid)) {
2044
ohci_notice(ohci,
2045
"node ID not valid, new bus reset in progress\n");
2046
return;
2047
}
2048
if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
2049
ohci_notice(ohci, "malconfigured bus\n");
2050
return;
2051
}
2052
ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
2053
OHCI1394_NodeID_nodeNumber);
2054
2055
is_new_root = (reg & OHCI1394_NodeID_root) != 0;
2056
if (!(ohci->is_root && is_new_root))
2057
reg_write(ohci, OHCI1394_LinkControlSet,
2058
OHCI1394_LinkControl_cycleMaster);
2059
ohci->is_root = is_new_root;
2060
2061
reg = reg_read(ohci, OHCI1394_SelfIDCount);
2062
if (ohci1394_self_id_count_is_error(reg)) {
2063
ohci_notice(ohci, "self ID receive error\n");
2064
return;
2065
}
2066
/*
2067
* The count in the SelfIDCount register is the number of
2068
* bytes in the self ID receive buffer. Since we also receive
2069
* the inverted quadlets and a header quadlet, we shift one
2070
* bit extra to get the actual number of self IDs.
2071
*/
2072
self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
2073
2074
if (self_id_count > 252) {
2075
ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
2076
return;
2077
}
2078
2079
quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
2080
generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
2081
rmb();
2082
2083
for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
2084
u32 id = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
2085
u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
2086
2087
if (id != ~id2) {
2088
/*
2089
* If the invalid data looks like a cycle start packet,
2090
* it's likely to be the result of the cycle master
2091
* having a wrong gap count. In this case, the self IDs
2092
* so far are valid and should be processed so that the
2093
* bus manager can then correct the gap count.
2094
*/
2095
if (id == 0xffff008f) {
2096
ohci_notice(ohci, "ignoring spurious self IDs\n");
2097
self_id_count = j;
2098
break;
2099
}
2100
2101
ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2102
j, self_id_count, id, id2);
2103
return;
2104
}
2105
ohci->self_id_buffer[j] = id;
2106
}
2107
2108
if (ohci->quirks & QUIRK_TI_SLLZ059) {
2109
self_id_count = find_and_insert_self_id(ohci, self_id_count);
2110
if (self_id_count < 0) {
2111
ohci_notice(ohci,
2112
"could not construct local self ID\n");
2113
return;
2114
}
2115
}
2116
2117
if (self_id_count == 0) {
2118
ohci_notice(ohci, "no self IDs\n");
2119
return;
2120
}
2121
rmb();
2122
2123
/*
2124
* Check the consistency of the self IDs we just read. The
2125
* problem we face is that a new bus reset can start while we
2126
* read out the self IDs from the DMA buffer. If this happens,
2127
* the DMA buffer will be overwritten with new self IDs and we
2128
* will read out inconsistent data. The OHCI specification
2129
* (section 11.2) recommends a technique similar to
2130
* linux/seqlock.h, where we remember the generation of the
2131
* self IDs in the buffer before reading them out and compare
2132
* it to the current generation after reading them out. If
2133
* the two generations match we know we have a consistent set
2134
* of self IDs.
2135
*/
2136
2137
reg = reg_read(ohci, OHCI1394_SelfIDCount);
2138
new_generation = ohci1394_self_id_count_get_generation(reg);
2139
if (new_generation != generation) {
2140
ohci_notice(ohci, "new bus reset, discarding self ids\n");
2141
return;
2142
}
2143
2144
// FIXME: Document how the locking works.
2145
scoped_guard(spinlock_irq, &ohci->lock) {
2146
ohci->generation = -1; // prevent AT packet queueing
2147
context_stop(&ohci->at_request_ctx.context);
2148
context_stop(&ohci->at_response_ctx.context);
2149
}
2150
2151
/*
2152
* Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2153
* packets in the AT queues and software needs to drain them.
2154
* Some OHCI 1.1 controllers (JMicron) apparently require this too.
2155
*/
2156
at_context_flush(&ohci->at_request_ctx);
2157
at_context_flush(&ohci->at_response_ctx);
2158
2159
scoped_guard(spinlock_irq, &ohci->lock) {
2160
ohci->generation = generation;
2161
reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2162
reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2163
2164
if (ohci->quirks & QUIRK_RESET_PACKET)
2165
ohci->request_generation = generation;
2166
2167
// This next bit is unrelated to the AT context stuff but we have to do it under the
2168
// spinlock also. If a new config rom was set up before this reset, the old one is
2169
// now no longer in use and we can free it. Update the config rom pointers to point
2170
// to the current config rom and clear the next_config_rom pointer so a new update
2171
// can take place.
2172
if (ohci->next_config_rom != NULL) {
2173
if (ohci->next_config_rom != ohci->config_rom) {
2174
free_rom = ohci->config_rom;
2175
free_rom_bus = ohci->config_rom_bus;
2176
}
2177
ohci->config_rom = ohci->next_config_rom;
2178
ohci->config_rom_bus = ohci->next_config_rom_bus;
2179
ohci->next_config_rom = NULL;
2180
2181
// Restore config_rom image and manually update config_rom registers.
2182
// Writing the header quadlet will indicate that the config rom is ready,
2183
// so we do that last.
2184
reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2]));
2185
ohci->config_rom[0] = ohci->next_header;
2186
reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(ohci->next_header));
2187
}
2188
2189
if (param_remote_dma) {
2190
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2191
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2192
}
2193
}
2194
2195
if (free_rom)
2196
dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2197
2198
log_selfids(ohci, generation, self_id_count);
2199
2200
fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2201
self_id_count, ohci->self_id_buffer,
2202
ohci->csr_state_setclear_abdicate);
2203
ohci->csr_state_setclear_abdicate = false;
2204
}
2205
2206
static irqreturn_t irq_handler(int irq, void *data)
2207
{
2208
struct fw_ohci *ohci = data;
2209
u32 event, iso_event;
2210
int i;
2211
2212
event = reg_read(ohci, OHCI1394_IntEventClear);
2213
2214
if (!event || !~event)
2215
return IRQ_NONE;
2216
2217
if (unlikely(param_debug > 0)) {
2218
dev_notice_ratelimited(ohci->card.device,
2219
"The debug parameter is superseded by tracepoints events, and deprecated.");
2220
}
2221
2222
/*
2223
* busReset and postedWriteErr events must not be cleared yet
2224
* (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2225
*/
2226
reg_write(ohci, OHCI1394_IntEventClear,
2227
event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2228
trace_irqs(ohci->card.index, event);
2229
log_irqs(ohci, event);
2230
// The flag is masked again at bus_reset_work() scheduled by selfID event.
2231
if (event & OHCI1394_busReset)
2232
reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2233
2234
if (event & OHCI1394_selfIDComplete) {
2235
if (trace_self_id_complete_enabled()) {
2236
u32 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2237
2238
trace_self_id_complete(ohci->card.index, reg, ohci->self_id,
2239
has_be_header_quirk(ohci));
2240
}
2241
queue_work(selfid_workqueue, &ohci->bus_reset_work);
2242
}
2243
2244
if (event & OHCI1394_RQPkt)
2245
queue_work(ohci->card.async_wq, &ohci->ar_request_ctx.work);
2246
2247
if (event & OHCI1394_RSPkt)
2248
queue_work(ohci->card.async_wq, &ohci->ar_response_ctx.work);
2249
2250
if (event & OHCI1394_reqTxComplete)
2251
queue_work(ohci->card.async_wq, &ohci->at_request_ctx.work);
2252
2253
if (event & OHCI1394_respTxComplete)
2254
queue_work(ohci->card.async_wq, &ohci->at_response_ctx.work);
2255
2256
if (event & OHCI1394_isochRx) {
2257
iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2258
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2259
2260
while (iso_event) {
2261
i = ffs(iso_event) - 1;
2262
fw_iso_context_schedule_flush_completions(&ohci->ir_context_list[i].base);
2263
iso_event &= ~(1 << i);
2264
}
2265
}
2266
2267
if (event & OHCI1394_isochTx) {
2268
iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2269
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2270
2271
while (iso_event) {
2272
i = ffs(iso_event) - 1;
2273
fw_iso_context_schedule_flush_completions(&ohci->it_context_list[i].base);
2274
iso_event &= ~(1 << i);
2275
}
2276
}
2277
2278
if (unlikely(event & OHCI1394_regAccessFail))
2279
ohci_err(ohci, "register access failure\n");
2280
2281
if (unlikely(event & OHCI1394_postedWriteErr)) {
2282
reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2283
reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2284
reg_write(ohci, OHCI1394_IntEventClear,
2285
OHCI1394_postedWriteErr);
2286
dev_err_ratelimited(ohci->card.device, "PCI posted write error\n");
2287
}
2288
2289
if (unlikely(event & OHCI1394_cycleTooLong)) {
2290
dev_notice_ratelimited(ohci->card.device, "isochronous cycle too long\n");
2291
reg_write(ohci, OHCI1394_LinkControlSet,
2292
OHCI1394_LinkControl_cycleMaster);
2293
}
2294
2295
if (unlikely(event & OHCI1394_cycleInconsistent)) {
2296
/*
2297
* We need to clear this event bit in order to make
2298
* cycleMatch isochronous I/O work. In theory we should
2299
* stop active cycleMatch iso contexts now and restart
2300
* them at least two cycles later. (FIXME?)
2301
*/
2302
dev_notice_ratelimited(ohci->card.device, "isochronous cycle inconsistent\n");
2303
}
2304
2305
if (unlikely(event & OHCI1394_unrecoverableError))
2306
handle_dead_contexts(ohci);
2307
2308
if (event & OHCI1394_cycle64Seconds) {
2309
guard(spinlock)(&ohci->lock);
2310
update_bus_time(ohci);
2311
} else
2312
flush_writes(ohci);
2313
2314
return IRQ_HANDLED;
2315
}
2316
2317
static int software_reset(struct fw_ohci *ohci)
2318
{
2319
u32 val;
2320
int i;
2321
2322
reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2323
for (i = 0; i < 500; i++) {
2324
val = reg_read(ohci, OHCI1394_HCControlSet);
2325
if (!~val)
2326
return -ENODEV; /* Card was ejected. */
2327
2328
if (!(val & OHCI1394_HCControl_softReset))
2329
return 0;
2330
2331
msleep(1);
2332
}
2333
2334
return -EBUSY;
2335
}
2336
2337
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2338
{
2339
size_t size = length * 4;
2340
2341
memcpy(dest, src, size);
2342
if (size < CONFIG_ROM_SIZE)
2343
memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2344
}
2345
2346
static int configure_1394a_enhancements(struct fw_ohci *ohci)
2347
{
2348
bool enable_1394a;
2349
int ret, clear, set, offset;
2350
2351
/* Check if the driver should configure link and PHY. */
2352
if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2353
OHCI1394_HCControl_programPhyEnable))
2354
return 0;
2355
2356
/* Paranoia: check whether the PHY supports 1394a, too. */
2357
enable_1394a = false;
2358
ret = read_phy_reg(ohci, 2);
2359
if (ret < 0)
2360
return ret;
2361
if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2362
ret = read_paged_phy_reg(ohci, 1, 8);
2363
if (ret < 0)
2364
return ret;
2365
if (ret >= 1)
2366
enable_1394a = true;
2367
}
2368
2369
if (ohci->quirks & QUIRK_NO_1394A)
2370
enable_1394a = false;
2371
2372
/* Configure PHY and link consistently. */
2373
if (enable_1394a) {
2374
clear = 0;
2375
set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2376
} else {
2377
clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2378
set = 0;
2379
}
2380
ret = update_phy_reg(ohci, 5, clear, set);
2381
if (ret < 0)
2382
return ret;
2383
2384
if (enable_1394a)
2385
offset = OHCI1394_HCControlSet;
2386
else
2387
offset = OHCI1394_HCControlClear;
2388
reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2389
2390
/* Clean up: configuration has been taken care of. */
2391
reg_write(ohci, OHCI1394_HCControlClear,
2392
OHCI1394_HCControl_programPhyEnable);
2393
2394
return 0;
2395
}
2396
2397
static int probe_tsb41ba3d(struct fw_ohci *ohci)
2398
{
2399
/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2400
static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2401
int reg, i;
2402
2403
reg = read_phy_reg(ohci, 2);
2404
if (reg < 0)
2405
return reg;
2406
if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2407
return 0;
2408
2409
for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2410
reg = read_paged_phy_reg(ohci, 1, i + 10);
2411
if (reg < 0)
2412
return reg;
2413
if (reg != id[i])
2414
return 0;
2415
}
2416
return 1;
2417
}
2418
2419
static int ohci_enable(struct fw_card *card,
2420
const __be32 *config_rom, size_t length)
2421
{
2422
struct fw_ohci *ohci = fw_ohci(card);
2423
u32 lps, version, irqs;
2424
int i, ret;
2425
2426
ret = software_reset(ohci);
2427
if (ret < 0) {
2428
ohci_err(ohci, "failed to reset ohci card\n");
2429
return ret;
2430
}
2431
2432
/*
2433
* Now enable LPS, which we need in order to start accessing
2434
* most of the registers. In fact, on some cards (ALI M5251),
2435
* accessing registers in the SClk domain without LPS enabled
2436
* will lock up the machine. Wait 50msec to make sure we have
2437
* full link enabled. However, with some cards (well, at least
2438
* a JMicron PCIe card), we have to try again sometimes.
2439
*
2440
* TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2441
* cannot actually use the phy at that time. These need tens of
2442
* millisecods pause between LPS write and first phy access too.
2443
*/
2444
2445
reg_write(ohci, OHCI1394_HCControlSet,
2446
OHCI1394_HCControl_LPS |
2447
OHCI1394_HCControl_postedWriteEnable);
2448
flush_writes(ohci);
2449
2450
for (lps = 0, i = 0; !lps && i < 3; i++) {
2451
msleep(50);
2452
lps = reg_read(ohci, OHCI1394_HCControlSet) &
2453
OHCI1394_HCControl_LPS;
2454
}
2455
2456
if (!lps) {
2457
ohci_err(ohci, "failed to set Link Power Status\n");
2458
return -EIO;
2459
}
2460
2461
if (ohci->quirks & QUIRK_TI_SLLZ059) {
2462
ret = probe_tsb41ba3d(ohci);
2463
if (ret < 0)
2464
return ret;
2465
if (ret)
2466
ohci_notice(ohci, "local TSB41BA3D phy\n");
2467
else
2468
ohci->quirks &= ~QUIRK_TI_SLLZ059;
2469
}
2470
2471
reg_write(ohci, OHCI1394_HCControlClear,
2472
OHCI1394_HCControl_noByteSwapData);
2473
2474
reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2475
reg_write(ohci, OHCI1394_LinkControlSet,
2476
OHCI1394_LinkControl_cycleTimerEnable |
2477
OHCI1394_LinkControl_cycleMaster);
2478
2479
reg_write(ohci, OHCI1394_ATRetries,
2480
OHCI1394_MAX_AT_REQ_RETRIES |
2481
(OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2482
(OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2483
(200 << 16));
2484
2485
ohci->bus_time_running = false;
2486
2487
for (i = 0; i < 32; i++)
2488
if (ohci->ir_context_support & (1 << i))
2489
reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2490
IR_CONTEXT_MULTI_CHANNEL_MODE);
2491
2492
version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2493
if (version >= OHCI_VERSION_1_1) {
2494
reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2495
0xfffffffe);
2496
card->broadcast_channel_auto_allocated = true;
2497
}
2498
2499
/* Get implemented bits of the priority arbitration request counter. */
2500
reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2501
ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2502
reg_write(ohci, OHCI1394_FairnessControl, 0);
2503
card->priority_budget_implemented = ohci->pri_req_max != 0;
2504
2505
reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2506
reg_write(ohci, OHCI1394_IntEventClear, ~0);
2507
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2508
2509
ret = configure_1394a_enhancements(ohci);
2510
if (ret < 0)
2511
return ret;
2512
2513
/* Activate link_on bit and contender bit in our self ID packets.*/
2514
ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2515
if (ret < 0)
2516
return ret;
2517
2518
/*
2519
* When the link is not yet enabled, the atomic config rom
2520
* update mechanism described below in ohci_set_config_rom()
2521
* is not active. We have to update ConfigRomHeader and
2522
* BusOptions manually, and the write to ConfigROMmap takes
2523
* effect immediately. We tie this to the enabling of the
2524
* link, so we have a valid config rom before enabling - the
2525
* OHCI requires that ConfigROMhdr and BusOptions have valid
2526
* values before enabling.
2527
*
2528
* However, when the ConfigROMmap is written, some controllers
2529
* always read back quadlets 0 and 2 from the config rom to
2530
* the ConfigRomHeader and BusOptions registers on bus reset.
2531
* They shouldn't do that in this initial case where the link
2532
* isn't enabled. This means we have to use the same
2533
* workaround here, setting the bus header to 0 and then write
2534
* the right values in the bus reset work item.
2535
*/
2536
2537
if (config_rom) {
2538
ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2539
&ohci->next_config_rom_bus, GFP_KERNEL);
2540
if (ohci->next_config_rom == NULL)
2541
return -ENOMEM;
2542
2543
copy_config_rom(ohci->next_config_rom, config_rom, length);
2544
} else {
2545
/*
2546
* In the suspend case, config_rom is NULL, which
2547
* means that we just reuse the old config rom.
2548
*/
2549
ohci->next_config_rom = ohci->config_rom;
2550
ohci->next_config_rom_bus = ohci->config_rom_bus;
2551
}
2552
2553
ohci->next_header = ohci->next_config_rom[0];
2554
ohci->next_config_rom[0] = 0;
2555
reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2556
reg_write(ohci, OHCI1394_BusOptions,
2557
be32_to_cpu(ohci->next_config_rom[2]));
2558
reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2559
2560
reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2561
2562
irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2563
OHCI1394_RQPkt | OHCI1394_RSPkt |
2564
OHCI1394_isochTx | OHCI1394_isochRx |
2565
OHCI1394_postedWriteErr |
2566
OHCI1394_selfIDComplete |
2567
OHCI1394_regAccessFail |
2568
OHCI1394_cycleInconsistent |
2569
OHCI1394_unrecoverableError |
2570
OHCI1394_cycleTooLong |
2571
OHCI1394_masterIntEnable |
2572
OHCI1394_busReset;
2573
reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2574
2575
reg_write(ohci, OHCI1394_HCControlSet,
2576
OHCI1394_HCControl_linkEnable |
2577
OHCI1394_HCControl_BIBimageValid);
2578
2579
reg_write(ohci, OHCI1394_LinkControlSet,
2580
OHCI1394_LinkControl_rcvSelfID |
2581
OHCI1394_LinkControl_rcvPhyPkt);
2582
2583
ar_context_run(&ohci->ar_request_ctx);
2584
ar_context_run(&ohci->ar_response_ctx);
2585
2586
flush_writes(ohci);
2587
2588
/* We are ready to go, reset bus to finish initialization. */
2589
fw_schedule_bus_reset(&ohci->card, false, true);
2590
2591
return 0;
2592
}
2593
2594
static int ohci_set_config_rom(struct fw_card *card,
2595
const __be32 *config_rom, size_t length)
2596
{
2597
struct fw_ohci *ohci;
2598
__be32 *next_config_rom;
2599
dma_addr_t next_config_rom_bus;
2600
2601
ohci = fw_ohci(card);
2602
2603
/*
2604
* When the OHCI controller is enabled, the config rom update
2605
* mechanism is a bit tricky, but easy enough to use. See
2606
* section 5.5.6 in the OHCI specification.
2607
*
2608
* The OHCI controller caches the new config rom address in a
2609
* shadow register (ConfigROMmapNext) and needs a bus reset
2610
* for the changes to take place. When the bus reset is
2611
* detected, the controller loads the new values for the
2612
* ConfigRomHeader and BusOptions registers from the specified
2613
* config rom and loads ConfigROMmap from the ConfigROMmapNext
2614
* shadow register. All automatically and atomically.
2615
*
2616
* Now, there's a twist to this story. The automatic load of
2617
* ConfigRomHeader and BusOptions doesn't honor the
2618
* noByteSwapData bit, so with a be32 config rom, the
2619
* controller will load be32 values in to these registers
2620
* during the atomic update, even on little endian
2621
* architectures. The workaround we use is to put a 0 in the
2622
* header quadlet; 0 is endian agnostic and means that the
2623
* config rom isn't ready yet. In the bus reset work item we
2624
* then set up the real values for the two registers.
2625
*
2626
* We use ohci->lock to avoid racing with the code that sets
2627
* ohci->next_config_rom to NULL (see bus_reset_work).
2628
*/
2629
2630
next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2631
&next_config_rom_bus, GFP_KERNEL);
2632
if (next_config_rom == NULL)
2633
return -ENOMEM;
2634
2635
scoped_guard(spinlock_irq, &ohci->lock) {
2636
// If there is not an already pending config_rom update, push our new allocation
2637
// into the ohci->next_config_rom and then mark the local variable as null so that
2638
// we won't deallocate the new buffer.
2639
//
2640
// OTOH, if there is a pending config_rom update, just use that buffer with the new
2641
// config_rom data, and let this routine free the unused DMA allocation.
2642
if (ohci->next_config_rom == NULL) {
2643
ohci->next_config_rom = next_config_rom;
2644
ohci->next_config_rom_bus = next_config_rom_bus;
2645
next_config_rom = NULL;
2646
}
2647
2648
copy_config_rom(ohci->next_config_rom, config_rom, length);
2649
2650
ohci->next_header = config_rom[0];
2651
ohci->next_config_rom[0] = 0;
2652
2653
reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2654
}
2655
2656
/* If we didn't use the DMA allocation, delete it. */
2657
if (next_config_rom != NULL) {
2658
dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2659
next_config_rom_bus);
2660
}
2661
2662
/*
2663
* Now initiate a bus reset to have the changes take
2664
* effect. We clean up the old config rom memory and DMA
2665
* mappings in the bus reset work item, since the OHCI
2666
* controller could need to access it before the bus reset
2667
* takes effect.
2668
*/
2669
2670
fw_schedule_bus_reset(&ohci->card, true, true);
2671
2672
return 0;
2673
}
2674
2675
static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2676
{
2677
struct fw_ohci *ohci = fw_ohci(card);
2678
2679
at_context_transmit(&ohci->at_request_ctx, packet);
2680
}
2681
2682
static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2683
{
2684
struct fw_ohci *ohci = fw_ohci(card);
2685
2686
at_context_transmit(&ohci->at_response_ctx, packet);
2687
}
2688
2689
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2690
{
2691
struct fw_ohci *ohci = fw_ohci(card);
2692
struct at_context *ctx = &ohci->at_request_ctx;
2693
struct driver_data *driver_data = packet->driver_data;
2694
int ret = -ENOENT;
2695
2696
// Avoid dead lock due to programming mistake.
2697
if (WARN_ON_ONCE(current_work() == &ctx->work))
2698
return 0;
2699
disable_work_sync(&ctx->work);
2700
2701
if (packet->ack != 0)
2702
goto out;
2703
2704
if (packet->payload_mapped)
2705
dma_unmap_single(ohci->card.device, packet->payload_bus,
2706
packet->payload_length, DMA_TO_DEVICE);
2707
2708
log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2709
driver_data->packet = NULL;
2710
packet->ack = RCODE_CANCELLED;
2711
2712
// Timestamping on behalf of the hardware.
2713
packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2714
2715
packet->callback(packet, &ohci->card, packet->ack);
2716
ret = 0;
2717
out:
2718
enable_work(&ctx->work);
2719
2720
return ret;
2721
}
2722
2723
static int ohci_enable_phys_dma(struct fw_card *card,
2724
int node_id, int generation)
2725
{
2726
struct fw_ohci *ohci = fw_ohci(card);
2727
int n, ret = 0;
2728
2729
if (param_remote_dma)
2730
return 0;
2731
2732
/*
2733
* FIXME: Make sure this bitmask is cleared when we clear the busReset
2734
* interrupt bit. Clear physReqResourceAllBuses on bus reset.
2735
*/
2736
2737
guard(spinlock_irqsave)(&ohci->lock);
2738
2739
if (ohci->generation != generation)
2740
return -ESTALE;
2741
2742
/*
2743
* Note, if the node ID contains a non-local bus ID, physical DMA is
2744
* enabled for _all_ nodes on remote buses.
2745
*/
2746
2747
n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2748
if (n < 32)
2749
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2750
else
2751
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2752
2753
flush_writes(ohci);
2754
2755
return ret;
2756
}
2757
2758
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2759
{
2760
struct fw_ohci *ohci = fw_ohci(card);
2761
u32 value;
2762
2763
switch (csr_offset) {
2764
case CSR_STATE_CLEAR:
2765
case CSR_STATE_SET:
2766
if (ohci->is_root &&
2767
(reg_read(ohci, OHCI1394_LinkControlSet) &
2768
OHCI1394_LinkControl_cycleMaster))
2769
value = CSR_STATE_BIT_CMSTR;
2770
else
2771
value = 0;
2772
if (ohci->csr_state_setclear_abdicate)
2773
value |= CSR_STATE_BIT_ABDICATE;
2774
2775
return value;
2776
2777
case CSR_NODE_IDS:
2778
return reg_read(ohci, OHCI1394_NodeID) << 16;
2779
2780
case CSR_CYCLE_TIME:
2781
return get_cycle_time(ohci);
2782
2783
case CSR_BUS_TIME:
2784
{
2785
// We might be called just after the cycle timer has wrapped around but just before
2786
// the cycle64Seconds handler, so we better check here, too, if the bus time needs
2787
// to be updated.
2788
2789
guard(spinlock_irqsave)(&ohci->lock);
2790
return update_bus_time(ohci);
2791
}
2792
case CSR_BUSY_TIMEOUT:
2793
value = reg_read(ohci, OHCI1394_ATRetries);
2794
return (value >> 4) & 0x0ffff00f;
2795
2796
case CSR_PRIORITY_BUDGET:
2797
return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2798
(ohci->pri_req_max << 8);
2799
2800
default:
2801
WARN_ON(1);
2802
return 0;
2803
}
2804
}
2805
2806
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2807
{
2808
struct fw_ohci *ohci = fw_ohci(card);
2809
2810
switch (csr_offset) {
2811
case CSR_STATE_CLEAR:
2812
if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2813
reg_write(ohci, OHCI1394_LinkControlClear,
2814
OHCI1394_LinkControl_cycleMaster);
2815
flush_writes(ohci);
2816
}
2817
if (value & CSR_STATE_BIT_ABDICATE)
2818
ohci->csr_state_setclear_abdicate = false;
2819
break;
2820
2821
case CSR_STATE_SET:
2822
if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2823
reg_write(ohci, OHCI1394_LinkControlSet,
2824
OHCI1394_LinkControl_cycleMaster);
2825
flush_writes(ohci);
2826
}
2827
if (value & CSR_STATE_BIT_ABDICATE)
2828
ohci->csr_state_setclear_abdicate = true;
2829
break;
2830
2831
case CSR_NODE_IDS:
2832
reg_write(ohci, OHCI1394_NodeID, value >> 16);
2833
flush_writes(ohci);
2834
break;
2835
2836
case CSR_CYCLE_TIME:
2837
reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2838
reg_write(ohci, OHCI1394_IntEventSet,
2839
OHCI1394_cycleInconsistent);
2840
flush_writes(ohci);
2841
break;
2842
2843
case CSR_BUS_TIME:
2844
{
2845
guard(spinlock_irqsave)(&ohci->lock);
2846
ohci->bus_time = (update_bus_time(ohci) & 0x40) | (value & ~0x7f);
2847
break;
2848
}
2849
case CSR_BUSY_TIMEOUT:
2850
value = (value & 0xf) | ((value & 0xf) << 4) |
2851
((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2852
reg_write(ohci, OHCI1394_ATRetries, value);
2853
flush_writes(ohci);
2854
break;
2855
2856
case CSR_PRIORITY_BUDGET:
2857
reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2858
flush_writes(ohci);
2859
break;
2860
2861
default:
2862
WARN_ON(1);
2863
break;
2864
}
2865
}
2866
2867
static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2868
{
2869
trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2870
ctx->header_length);
2871
trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2872
ctx->header_length);
2873
2874
ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2875
ctx->header_length, ctx->header,
2876
ctx->base.callback_data);
2877
ctx->header_length = 0;
2878
}
2879
2880
static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2881
{
2882
u32 *ctx_hdr;
2883
2884
if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2885
if (ctx->base.drop_overflow_headers)
2886
return;
2887
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2888
}
2889
2890
ctx_hdr = ctx->header + ctx->header_length;
2891
ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2892
2893
/*
2894
* The two iso header quadlets are byteswapped to little
2895
* endian by the controller, but we want to present them
2896
* as big endian for consistency with the bus endianness.
2897
*/
2898
if (ctx->base.header_size > 0)
2899
ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2900
if (ctx->base.header_size > 4)
2901
ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2902
if (ctx->base.header_size > 8)
2903
memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2904
ctx->header_length += ctx->base.header_size;
2905
}
2906
2907
static int handle_ir_packet_per_buffer(struct context *context,
2908
struct descriptor *d,
2909
struct descriptor *last)
2910
{
2911
struct iso_context *ctx =
2912
container_of(context, struct iso_context, context);
2913
struct descriptor *pd;
2914
u32 buffer_dma;
2915
2916
for (pd = d; pd <= last; pd++)
2917
if (pd->transfer_status)
2918
break;
2919
if (pd > last)
2920
/* Descriptor(s) not done yet, stop iteration */
2921
return 0;
2922
2923
while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2924
d++;
2925
buffer_dma = le32_to_cpu(d->data_address);
2926
dma_sync_single_range_for_cpu(context->ohci->card.device,
2927
buffer_dma & PAGE_MASK,
2928
buffer_dma & ~PAGE_MASK,
2929
le16_to_cpu(d->req_count),
2930
DMA_FROM_DEVICE);
2931
}
2932
2933
copy_iso_headers(ctx, (u32 *) (last + 1));
2934
2935
if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2936
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2937
2938
return 1;
2939
}
2940
2941
/* d == last because each descriptor block is only a single descriptor. */
2942
static int handle_ir_buffer_fill(struct context *context,
2943
struct descriptor *d,
2944
struct descriptor *last)
2945
{
2946
struct iso_context *ctx =
2947
container_of(context, struct iso_context, context);
2948
unsigned int req_count, res_count, completed;
2949
u32 buffer_dma;
2950
2951
req_count = le16_to_cpu(last->req_count);
2952
res_count = le16_to_cpu(READ_ONCE(last->res_count));
2953
completed = req_count - res_count;
2954
buffer_dma = le32_to_cpu(last->data_address);
2955
2956
if (completed > 0) {
2957
ctx->mc_buffer_bus = buffer_dma;
2958
ctx->mc_completed = completed;
2959
}
2960
2961
if (res_count != 0)
2962
/* Descriptor(s) not done yet, stop iteration */
2963
return 0;
2964
2965
dma_sync_single_range_for_cpu(context->ohci->card.device,
2966
buffer_dma & PAGE_MASK,
2967
buffer_dma & ~PAGE_MASK,
2968
completed, DMA_FROM_DEVICE);
2969
2970
if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2971
trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2972
FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2973
2974
ctx->base.callback.mc(&ctx->base,
2975
buffer_dma + completed,
2976
ctx->base.callback_data);
2977
ctx->mc_completed = 0;
2978
}
2979
2980
return 1;
2981
}
2982
2983
static void flush_ir_buffer_fill(struct iso_context *ctx)
2984
{
2985
dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2986
ctx->mc_buffer_bus & PAGE_MASK,
2987
ctx->mc_buffer_bus & ~PAGE_MASK,
2988
ctx->mc_completed, DMA_FROM_DEVICE);
2989
2990
trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed,
2991
FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2992
2993
ctx->base.callback.mc(&ctx->base,
2994
ctx->mc_buffer_bus + ctx->mc_completed,
2995
ctx->base.callback_data);
2996
ctx->mc_completed = 0;
2997
}
2998
2999
static inline void sync_it_packet_for_cpu(struct context *context,
3000
struct descriptor *pd)
3001
{
3002
__le16 control;
3003
u32 buffer_dma;
3004
3005
/* only packets beginning with OUTPUT_MORE* have data buffers */
3006
if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3007
return;
3008
3009
/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
3010
pd += 2;
3011
3012
/*
3013
* If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
3014
* data buffer is in the context program's coherent page and must not
3015
* be synced.
3016
*/
3017
if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
3018
(context->current_bus & PAGE_MASK)) {
3019
if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3020
return;
3021
pd++;
3022
}
3023
3024
do {
3025
buffer_dma = le32_to_cpu(pd->data_address);
3026
dma_sync_single_range_for_cpu(context->ohci->card.device,
3027
buffer_dma & PAGE_MASK,
3028
buffer_dma & ~PAGE_MASK,
3029
le16_to_cpu(pd->req_count),
3030
DMA_TO_DEVICE);
3031
control = pd->control;
3032
pd++;
3033
} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
3034
}
3035
3036
static int handle_it_packet(struct context *context,
3037
struct descriptor *d,
3038
struct descriptor *last)
3039
{
3040
struct iso_context *ctx =
3041
container_of(context, struct iso_context, context);
3042
struct descriptor *pd;
3043
__be32 *ctx_hdr;
3044
3045
for (pd = d; pd <= last; pd++)
3046
if (pd->transfer_status)
3047
break;
3048
if (pd > last)
3049
/* Descriptor(s) not done yet, stop iteration */
3050
return 0;
3051
3052
sync_it_packet_for_cpu(context, d);
3053
3054
if (ctx->header_length + 4 > PAGE_SIZE) {
3055
if (ctx->base.drop_overflow_headers)
3056
return 1;
3057
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
3058
}
3059
3060
ctx_hdr = ctx->header + ctx->header_length;
3061
ctx->last_timestamp = le16_to_cpu(last->res_count);
3062
/* Present this value as big-endian to match the receive code */
3063
*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
3064
le16_to_cpu(pd->res_count));
3065
ctx->header_length += 4;
3066
3067
if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
3068
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
3069
3070
return 1;
3071
}
3072
3073
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
3074
{
3075
u32 hi = channels >> 32, lo = channels;
3076
3077
reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
3078
reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
3079
reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
3080
reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
3081
ohci->mc_channels = channels;
3082
}
3083
3084
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
3085
int type, int channel, size_t header_size)
3086
{
3087
struct fw_ohci *ohci = fw_ohci(card);
3088
struct iso_context *ctx;
3089
descriptor_callback_t callback;
3090
u64 *channels;
3091
u32 *mask, regs;
3092
int index, ret = -EBUSY;
3093
3094
scoped_guard(spinlock_irq, &ohci->lock) {
3095
switch (type) {
3096
case FW_ISO_CONTEXT_TRANSMIT:
3097
mask = &ohci->it_context_mask;
3098
callback = handle_it_packet;
3099
index = ffs(*mask) - 1;
3100
if (index >= 0) {
3101
*mask &= ~(1 << index);
3102
regs = OHCI1394_IsoXmitContextBase(index);
3103
ctx = &ohci->it_context_list[index];
3104
}
3105
break;
3106
3107
case FW_ISO_CONTEXT_RECEIVE:
3108
channels = &ohci->ir_context_channels;
3109
mask = &ohci->ir_context_mask;
3110
callback = handle_ir_packet_per_buffer;
3111
index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3112
if (index >= 0) {
3113
*channels &= ~(1ULL << channel);
3114
*mask &= ~(1 << index);
3115
regs = OHCI1394_IsoRcvContextBase(index);
3116
ctx = &ohci->ir_context_list[index];
3117
}
3118
break;
3119
3120
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3121
mask = &ohci->ir_context_mask;
3122
callback = handle_ir_buffer_fill;
3123
index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3124
if (index >= 0) {
3125
ohci->mc_allocated = true;
3126
*mask &= ~(1 << index);
3127
regs = OHCI1394_IsoRcvContextBase(index);
3128
ctx = &ohci->ir_context_list[index];
3129
}
3130
break;
3131
3132
default:
3133
index = -1;
3134
ret = -ENOSYS;
3135
}
3136
3137
if (index < 0)
3138
return ERR_PTR(ret);
3139
}
3140
3141
memset(ctx, 0, sizeof(*ctx));
3142
ctx->header_length = 0;
3143
ctx->header = (void *) __get_free_page(GFP_KERNEL);
3144
if (ctx->header == NULL) {
3145
ret = -ENOMEM;
3146
goto out;
3147
}
3148
ret = context_init(&ctx->context, ohci, regs, callback);
3149
if (ret < 0)
3150
goto out_with_header;
3151
fw_iso_context_init_work(&ctx->base, ohci_isoc_context_work);
3152
3153
if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3154
set_multichannel_mask(ohci, 0);
3155
ctx->mc_completed = 0;
3156
}
3157
3158
return &ctx->base;
3159
3160
out_with_header:
3161
free_page((unsigned long)ctx->header);
3162
out:
3163
scoped_guard(spinlock_irq, &ohci->lock) {
3164
switch (type) {
3165
case FW_ISO_CONTEXT_RECEIVE:
3166
*channels |= 1ULL << channel;
3167
break;
3168
3169
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3170
ohci->mc_allocated = false;
3171
break;
3172
}
3173
*mask |= 1 << index;
3174
}
3175
3176
return ERR_PTR(ret);
3177
}
3178
3179
static int ohci_start_iso(struct fw_iso_context *base,
3180
s32 cycle, u32 sync, u32 tags)
3181
{
3182
struct iso_context *ctx = container_of(base, struct iso_context, base);
3183
struct fw_ohci *ohci = ctx->context.ohci;
3184
u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3185
int index;
3186
3187
/* the controller cannot start without any queued packets */
3188
if (ctx->context.last->branch_address == 0)
3189
return -ENODATA;
3190
3191
switch (ctx->base.type) {
3192
case FW_ISO_CONTEXT_TRANSMIT:
3193
index = ctx - ohci->it_context_list;
3194
match = 0;
3195
if (cycle >= 0)
3196
match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3197
(cycle & 0x7fff) << 16;
3198
3199
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3200
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3201
context_run(&ctx->context, match);
3202
break;
3203
3204
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3205
control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3206
fallthrough;
3207
case FW_ISO_CONTEXT_RECEIVE:
3208
index = ctx - ohci->ir_context_list;
3209
match = (tags << 28) | (sync << 8) | ctx->base.channel;
3210
if (cycle >= 0) {
3211
match |= (cycle & 0x07fff) << 12;
3212
control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3213
}
3214
3215
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3216
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3217
reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3218
context_run(&ctx->context, control);
3219
3220
ctx->sync = sync;
3221
ctx->tags = tags;
3222
3223
break;
3224
}
3225
3226
return 0;
3227
}
3228
3229
static int ohci_stop_iso(struct fw_iso_context *base)
3230
{
3231
struct fw_ohci *ohci = fw_ohci(base->card);
3232
struct iso_context *ctx = container_of(base, struct iso_context, base);
3233
int index;
3234
3235
switch (ctx->base.type) {
3236
case FW_ISO_CONTEXT_TRANSMIT:
3237
index = ctx - ohci->it_context_list;
3238
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3239
break;
3240
3241
case FW_ISO_CONTEXT_RECEIVE:
3242
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3243
index = ctx - ohci->ir_context_list;
3244
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3245
break;
3246
}
3247
flush_writes(ohci);
3248
context_stop(&ctx->context);
3249
3250
return 0;
3251
}
3252
3253
static void ohci_free_iso_context(struct fw_iso_context *base)
3254
{
3255
struct fw_ohci *ohci = fw_ohci(base->card);
3256
struct iso_context *ctx = container_of(base, struct iso_context, base);
3257
int index;
3258
3259
ohci_stop_iso(base);
3260
context_release(&ctx->context);
3261
free_page((unsigned long)ctx->header);
3262
3263
guard(spinlock_irqsave)(&ohci->lock);
3264
3265
switch (base->type) {
3266
case FW_ISO_CONTEXT_TRANSMIT:
3267
index = ctx - ohci->it_context_list;
3268
ohci->it_context_mask |= 1 << index;
3269
break;
3270
3271
case FW_ISO_CONTEXT_RECEIVE:
3272
index = ctx - ohci->ir_context_list;
3273
ohci->ir_context_mask |= 1 << index;
3274
ohci->ir_context_channels |= 1ULL << base->channel;
3275
break;
3276
3277
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3278
index = ctx - ohci->ir_context_list;
3279
ohci->ir_context_mask |= 1 << index;
3280
ohci->ir_context_channels |= ohci->mc_channels;
3281
ohci->mc_channels = 0;
3282
ohci->mc_allocated = false;
3283
break;
3284
}
3285
}
3286
3287
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3288
{
3289
struct fw_ohci *ohci = fw_ohci(base->card);
3290
3291
switch (base->type) {
3292
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3293
{
3294
guard(spinlock_irqsave)(&ohci->lock);
3295
3296
// Don't allow multichannel to grab other contexts' channels.
3297
if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3298
*channels = ohci->ir_context_channels;
3299
return -EBUSY;
3300
} else {
3301
set_multichannel_mask(ohci, *channels);
3302
return 0;
3303
}
3304
}
3305
default:
3306
return -EINVAL;
3307
}
3308
}
3309
3310
static void __maybe_unused ohci_resume_iso_dma(struct fw_ohci *ohci)
3311
{
3312
int i;
3313
struct iso_context *ctx;
3314
3315
for (i = 0 ; i < ohci->n_ir ; i++) {
3316
ctx = &ohci->ir_context_list[i];
3317
if (ctx->context.running)
3318
ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3319
}
3320
3321
for (i = 0 ; i < ohci->n_it ; i++) {
3322
ctx = &ohci->it_context_list[i];
3323
if (ctx->context.running)
3324
ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3325
}
3326
}
3327
3328
static int queue_iso_transmit(struct iso_context *ctx,
3329
struct fw_iso_packet *packet,
3330
struct fw_iso_buffer *buffer,
3331
unsigned long payload)
3332
{
3333
struct descriptor *d, *last, *pd;
3334
struct fw_iso_packet *p;
3335
__le32 *header;
3336
dma_addr_t d_bus, page_bus;
3337
u32 z, header_z, payload_z, irq;
3338
u32 payload_index, payload_end_index, next_page_index;
3339
int page, end_page, i, length, offset;
3340
3341
p = packet;
3342
payload_index = payload;
3343
3344
if (p->skip)
3345
z = 1;
3346
else
3347
z = 2;
3348
if (p->header_length > 0)
3349
z++;
3350
3351
/* Determine the first page the payload isn't contained in. */
3352
end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3353
if (p->payload_length > 0)
3354
payload_z = end_page - (payload_index >> PAGE_SHIFT);
3355
else
3356
payload_z = 0;
3357
3358
z += payload_z;
3359
3360
/* Get header size in number of descriptors. */
3361
header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3362
3363
d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3364
if (d == NULL)
3365
return -ENOMEM;
3366
3367
if (!p->skip) {
3368
d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3369
d[0].req_count = cpu_to_le16(8);
3370
/*
3371
* Link the skip address to this descriptor itself. This causes
3372
* a context to skip a cycle whenever lost cycles or FIFO
3373
* overruns occur, without dropping the data. The application
3374
* should then decide whether this is an error condition or not.
3375
* FIXME: Make the context's cycle-lost behaviour configurable?
3376
*/
3377
d[0].branch_address = cpu_to_le32(d_bus | z);
3378
3379
header = (__le32 *) &d[1];
3380
3381
ohci1394_it_data_set_speed(header, ctx->base.speed);
3382
ohci1394_it_data_set_tag(header, p->tag);
3383
ohci1394_it_data_set_channel(header, ctx->base.channel);
3384
ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
3385
ohci1394_it_data_set_sync(header, p->sy);
3386
3387
ohci1394_it_data_set_data_length(header, p->header_length + p->payload_length);
3388
}
3389
3390
if (p->header_length > 0) {
3391
d[2].req_count = cpu_to_le16(p->header_length);
3392
d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3393
memcpy(&d[z], p->header, p->header_length);
3394
}
3395
3396
pd = d + z - payload_z;
3397
payload_end_index = payload_index + p->payload_length;
3398
for (i = 0; i < payload_z; i++) {
3399
page = payload_index >> PAGE_SHIFT;
3400
offset = payload_index & ~PAGE_MASK;
3401
next_page_index = (page + 1) << PAGE_SHIFT;
3402
length =
3403
min(next_page_index, payload_end_index) - payload_index;
3404
pd[i].req_count = cpu_to_le16(length);
3405
3406
page_bus = page_private(buffer->pages[page]);
3407
pd[i].data_address = cpu_to_le32(page_bus + offset);
3408
3409
dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3410
page_bus, offset, length,
3411
DMA_TO_DEVICE);
3412
3413
payload_index += length;
3414
}
3415
3416
if (p->interrupt)
3417
irq = DESCRIPTOR_IRQ_ALWAYS;
3418
else
3419
irq = DESCRIPTOR_NO_IRQ;
3420
3421
last = z == 2 ? d : d + z - 1;
3422
last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3423
DESCRIPTOR_STATUS |
3424
DESCRIPTOR_BRANCH_ALWAYS |
3425
irq);
3426
3427
context_append(&ctx->context, d, z, header_z);
3428
3429
return 0;
3430
}
3431
3432
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3433
struct fw_iso_packet *packet,
3434
struct fw_iso_buffer *buffer,
3435
unsigned long payload)
3436
{
3437
struct device *device = ctx->context.ohci->card.device;
3438
struct descriptor *d, *pd;
3439
dma_addr_t d_bus, page_bus;
3440
u32 z, header_z, rest;
3441
int i, j, length;
3442
int page, offset, packet_count, header_size, payload_per_buffer;
3443
3444
/*
3445
* The OHCI controller puts the isochronous header and trailer in the
3446
* buffer, so we need at least 8 bytes.
3447
*/
3448
packet_count = packet->header_length / ctx->base.header_size;
3449
header_size = max(ctx->base.header_size, (size_t)8);
3450
3451
/* Get header size in number of descriptors. */
3452
header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3453
page = payload >> PAGE_SHIFT;
3454
offset = payload & ~PAGE_MASK;
3455
payload_per_buffer = packet->payload_length / packet_count;
3456
3457
for (i = 0; i < packet_count; i++) {
3458
/* d points to the header descriptor */
3459
z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3460
d = context_get_descriptors(&ctx->context,
3461
z + header_z, &d_bus);
3462
if (d == NULL)
3463
return -ENOMEM;
3464
3465
d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3466
DESCRIPTOR_INPUT_MORE);
3467
if (packet->skip && i == 0)
3468
d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3469
d->req_count = cpu_to_le16(header_size);
3470
d->res_count = d->req_count;
3471
d->transfer_status = 0;
3472
d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3473
3474
rest = payload_per_buffer;
3475
pd = d;
3476
for (j = 1; j < z; j++) {
3477
pd++;
3478
pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3479
DESCRIPTOR_INPUT_MORE);
3480
3481
if (offset + rest < PAGE_SIZE)
3482
length = rest;
3483
else
3484
length = PAGE_SIZE - offset;
3485
pd->req_count = cpu_to_le16(length);
3486
pd->res_count = pd->req_count;
3487
pd->transfer_status = 0;
3488
3489
page_bus = page_private(buffer->pages[page]);
3490
pd->data_address = cpu_to_le32(page_bus + offset);
3491
3492
dma_sync_single_range_for_device(device, page_bus,
3493
offset, length,
3494
DMA_FROM_DEVICE);
3495
3496
offset = (offset + length) & ~PAGE_MASK;
3497
rest -= length;
3498
if (offset == 0)
3499
page++;
3500
}
3501
pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3502
DESCRIPTOR_INPUT_LAST |
3503
DESCRIPTOR_BRANCH_ALWAYS);
3504
if (packet->interrupt && i == packet_count - 1)
3505
pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3506
3507
context_append(&ctx->context, d, z, header_z);
3508
}
3509
3510
return 0;
3511
}
3512
3513
static int queue_iso_buffer_fill(struct iso_context *ctx,
3514
struct fw_iso_packet *packet,
3515
struct fw_iso_buffer *buffer,
3516
unsigned long payload)
3517
{
3518
struct descriptor *d;
3519
dma_addr_t d_bus, page_bus;
3520
int page, offset, rest, z, i, length;
3521
3522
page = payload >> PAGE_SHIFT;
3523
offset = payload & ~PAGE_MASK;
3524
rest = packet->payload_length;
3525
3526
/* We need one descriptor for each page in the buffer. */
3527
z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3528
3529
if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3530
return -EFAULT;
3531
3532
for (i = 0; i < z; i++) {
3533
d = context_get_descriptors(&ctx->context, 1, &d_bus);
3534
if (d == NULL)
3535
return -ENOMEM;
3536
3537
d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3538
DESCRIPTOR_BRANCH_ALWAYS);
3539
if (packet->skip && i == 0)
3540
d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3541
if (packet->interrupt && i == z - 1)
3542
d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3543
3544
if (offset + rest < PAGE_SIZE)
3545
length = rest;
3546
else
3547
length = PAGE_SIZE - offset;
3548
d->req_count = cpu_to_le16(length);
3549
d->res_count = d->req_count;
3550
d->transfer_status = 0;
3551
3552
page_bus = page_private(buffer->pages[page]);
3553
d->data_address = cpu_to_le32(page_bus + offset);
3554
3555
dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3556
page_bus, offset, length,
3557
DMA_FROM_DEVICE);
3558
3559
rest -= length;
3560
offset = 0;
3561
page++;
3562
3563
context_append(&ctx->context, d, 1, 0);
3564
}
3565
3566
return 0;
3567
}
3568
3569
static int ohci_queue_iso(struct fw_iso_context *base,
3570
struct fw_iso_packet *packet,
3571
struct fw_iso_buffer *buffer,
3572
unsigned long payload)
3573
{
3574
struct iso_context *ctx = container_of(base, struct iso_context, base);
3575
3576
guard(spinlock_irqsave)(&ctx->context.ohci->lock);
3577
3578
switch (base->type) {
3579
case FW_ISO_CONTEXT_TRANSMIT:
3580
return queue_iso_transmit(ctx, packet, buffer, payload);
3581
case FW_ISO_CONTEXT_RECEIVE:
3582
return queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3583
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3584
return queue_iso_buffer_fill(ctx, packet, buffer, payload);
3585
default:
3586
return -ENOSYS;
3587
}
3588
}
3589
3590
static void ohci_flush_queue_iso(struct fw_iso_context *base)
3591
{
3592
struct context *ctx =
3593
&container_of(base, struct iso_context, base)->context;
3594
3595
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3596
}
3597
3598
static int ohci_flush_iso_completions(struct fw_iso_context *base)
3599
{
3600
struct iso_context *ctx = container_of(base, struct iso_context, base);
3601
int ret = 0;
3602
3603
if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3604
ohci_isoc_context_work(&base->work);
3605
3606
switch (base->type) {
3607
case FW_ISO_CONTEXT_TRANSMIT:
3608
case FW_ISO_CONTEXT_RECEIVE:
3609
if (ctx->header_length != 0)
3610
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3611
break;
3612
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3613
if (ctx->mc_completed != 0)
3614
flush_ir_buffer_fill(ctx);
3615
break;
3616
default:
3617
ret = -ENOSYS;
3618
}
3619
3620
clear_bit_unlock(0, &ctx->flushing_completions);
3621
smp_mb__after_atomic();
3622
}
3623
3624
return ret;
3625
}
3626
3627
static const struct fw_card_driver ohci_driver = {
3628
.enable = ohci_enable,
3629
.read_phy_reg = ohci_read_phy_reg,
3630
.update_phy_reg = ohci_update_phy_reg,
3631
.set_config_rom = ohci_set_config_rom,
3632
.send_request = ohci_send_request,
3633
.send_response = ohci_send_response,
3634
.cancel_packet = ohci_cancel_packet,
3635
.enable_phys_dma = ohci_enable_phys_dma,
3636
.read_csr = ohci_read_csr,
3637
.write_csr = ohci_write_csr,
3638
3639
.allocate_iso_context = ohci_allocate_iso_context,
3640
.free_iso_context = ohci_free_iso_context,
3641
.set_iso_channels = ohci_set_iso_channels,
3642
.queue_iso = ohci_queue_iso,
3643
.flush_queue_iso = ohci_flush_queue_iso,
3644
.flush_iso_completions = ohci_flush_iso_completions,
3645
.start_iso = ohci_start_iso,
3646
.stop_iso = ohci_stop_iso,
3647
};
3648
3649
#ifdef CONFIG_PPC_PMAC
3650
static void pmac_ohci_on(struct pci_dev *dev)
3651
{
3652
if (machine_is(powermac)) {
3653
struct device_node *ofn = pci_device_to_OF_node(dev);
3654
3655
if (ofn) {
3656
pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3657
pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3658
}
3659
}
3660
}
3661
3662
static void pmac_ohci_off(struct pci_dev *dev)
3663
{
3664
if (machine_is(powermac)) {
3665
struct device_node *ofn = pci_device_to_OF_node(dev);
3666
3667
if (ofn) {
3668
pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3669
pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3670
}
3671
}
3672
}
3673
#else
3674
static inline void pmac_ohci_on(struct pci_dev *dev) {}
3675
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3676
#endif /* CONFIG_PPC_PMAC */
3677
3678
static void release_ohci(struct device *dev, void *data)
3679
{
3680
struct pci_dev *pdev = to_pci_dev(dev);
3681
struct fw_ohci *ohci = pci_get_drvdata(pdev);
3682
3683
pmac_ohci_off(pdev);
3684
3685
ar_context_release(&ohci->ar_response_ctx);
3686
ar_context_release(&ohci->ar_request_ctx);
3687
3688
dev_notice(dev, "removed fw-ohci device\n");
3689
}
3690
3691
static int pci_probe(struct pci_dev *dev,
3692
const struct pci_device_id *ent)
3693
{
3694
struct fw_ohci *ohci;
3695
u32 bus_options, max_receive, link_speed, version;
3696
u64 guid;
3697
int i, flags, irq, err;
3698
size_t size;
3699
3700
if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3701
dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3702
return -ENOSYS;
3703
}
3704
3705
ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3706
if (ohci == NULL)
3707
return -ENOMEM;
3708
fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3709
pci_set_drvdata(dev, ohci);
3710
pmac_ohci_on(dev);
3711
devres_add(&dev->dev, ohci);
3712
3713
err = pcim_enable_device(dev);
3714
if (err) {
3715
dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3716
return err;
3717
}
3718
3719
pci_set_master(dev);
3720
pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3721
3722
spin_lock_init(&ohci->lock);
3723
mutex_init(&ohci->phy_reg_mutex);
3724
3725
INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3726
3727
if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3728
pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3729
ohci_err(ohci, "invalid MMIO resource\n");
3730
return -ENXIO;
3731
}
3732
3733
ohci->registers = pcim_iomap_region(dev, 0, ohci_driver_name);
3734
if (IS_ERR(ohci->registers)) {
3735
ohci_err(ohci, "request and map MMIO resource unavailable\n");
3736
return -ENXIO;
3737
}
3738
3739
for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3740
if ((ohci_quirks[i].vendor == dev->vendor) &&
3741
(ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3742
ohci_quirks[i].device == dev->device) &&
3743
(ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3744
ohci_quirks[i].revision >= dev->revision)) {
3745
ohci->quirks = ohci_quirks[i].flags;
3746
break;
3747
}
3748
if (param_quirks)
3749
ohci->quirks = param_quirks;
3750
3751
if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3752
ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3753
3754
/*
3755
* Because dma_alloc_coherent() allocates at least one page,
3756
* we save space by using a common buffer for the AR request/
3757
* response descriptors and the self IDs buffer.
3758
*/
3759
BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3760
BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3761
ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3762
GFP_KERNEL);
3763
if (!ohci->misc_buffer)
3764
return -ENOMEM;
3765
3766
err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3767
OHCI1394_AsReqRcvContextControlSet);
3768
if (err < 0)
3769
return err;
3770
3771
err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3772
OHCI1394_AsRspRcvContextControlSet);
3773
if (err < 0)
3774
return err;
3775
3776
err = context_init(&ohci->at_request_ctx.context, ohci,
3777
OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3778
if (err < 0)
3779
return err;
3780
INIT_WORK(&ohci->at_request_ctx.work, ohci_at_context_work);
3781
3782
err = context_init(&ohci->at_response_ctx.context, ohci,
3783
OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3784
if (err < 0)
3785
return err;
3786
INIT_WORK(&ohci->at_response_ctx.work, ohci_at_context_work);
3787
3788
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3789
ohci->ir_context_channels = ~0ULL;
3790
ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3791
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3792
ohci->ir_context_mask = ohci->ir_context_support;
3793
ohci->n_ir = hweight32(ohci->ir_context_mask);
3794
size = sizeof(struct iso_context) * ohci->n_ir;
3795
ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3796
if (!ohci->ir_context_list)
3797
return -ENOMEM;
3798
3799
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3800
ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3801
/* JMicron JMB38x often shows 0 at first read, just ignore it */
3802
if (!ohci->it_context_support) {
3803
ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3804
ohci->it_context_support = 0xf;
3805
}
3806
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3807
ohci->it_context_mask = ohci->it_context_support;
3808
ohci->n_it = hweight32(ohci->it_context_mask);
3809
size = sizeof(struct iso_context) * ohci->n_it;
3810
ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3811
if (!ohci->it_context_list)
3812
return -ENOMEM;
3813
3814
ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2;
3815
ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3816
3817
bus_options = reg_read(ohci, OHCI1394_BusOptions);
3818
max_receive = (bus_options >> 12) & 0xf;
3819
link_speed = bus_options & 0x7;
3820
guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3821
reg_read(ohci, OHCI1394_GUIDLo);
3822
3823
flags = PCI_IRQ_INTX;
3824
if (!(ohci->quirks & QUIRK_NO_MSI))
3825
flags |= PCI_IRQ_MSI;
3826
err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3827
if (err < 0)
3828
return err;
3829
irq = pci_irq_vector(dev, 0);
3830
if (irq < 0) {
3831
err = irq;
3832
goto fail_msi;
3833
}
3834
3835
err = request_threaded_irq(irq, irq_handler, NULL,
3836
pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3837
ohci);
3838
if (err < 0) {
3839
ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3840
goto fail_msi;
3841
}
3842
3843
err = fw_card_add(&ohci->card, max_receive, link_speed, guid, ohci->n_it + ohci->n_ir);
3844
if (err)
3845
goto fail_irq;
3846
3847
version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3848
ohci_notice(ohci,
3849
"added OHCI v%x.%x device as card %d, "
3850
"%d IR + %d IT contexts, quirks 0x%x%s\n",
3851
version >> 16, version & 0xff, ohci->card.index,
3852
ohci->n_ir, ohci->n_it, ohci->quirks,
3853
reg_read(ohci, OHCI1394_PhyUpperBound) ?
3854
", physUB" : "");
3855
3856
return 0;
3857
3858
fail_irq:
3859
free_irq(irq, ohci);
3860
fail_msi:
3861
pci_free_irq_vectors(dev);
3862
3863
return err;
3864
}
3865
3866
static void pci_remove(struct pci_dev *dev)
3867
{
3868
struct fw_ohci *ohci = pci_get_drvdata(dev);
3869
int irq;
3870
3871
/*
3872
* If the removal is happening from the suspend state, LPS won't be
3873
* enabled and host registers (eg., IntMaskClear) won't be accessible.
3874
*/
3875
if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3876
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3877
flush_writes(ohci);
3878
}
3879
cancel_work_sync(&ohci->bus_reset_work);
3880
fw_core_remove_card(&ohci->card);
3881
3882
/*
3883
* FIXME: Fail all pending packets here, now that the upper
3884
* layers can't queue any more.
3885
*/
3886
3887
software_reset(ohci);
3888
3889
irq = pci_irq_vector(dev, 0);
3890
if (irq >= 0)
3891
free_irq(irq, ohci);
3892
pci_free_irq_vectors(dev);
3893
3894
dev_notice(&dev->dev, "removing fw-ohci device\n");
3895
}
3896
3897
static int __maybe_unused pci_suspend(struct device *dev)
3898
{
3899
struct pci_dev *pdev = to_pci_dev(dev);
3900
struct fw_ohci *ohci = pci_get_drvdata(pdev);
3901
3902
software_reset(ohci);
3903
pmac_ohci_off(pdev);
3904
3905
return 0;
3906
}
3907
3908
3909
static int __maybe_unused pci_resume(struct device *dev)
3910
{
3911
struct pci_dev *pdev = to_pci_dev(dev);
3912
struct fw_ohci *ohci = pci_get_drvdata(pdev);
3913
int err;
3914
3915
pmac_ohci_on(pdev);
3916
3917
/* Some systems don't setup GUID register on resume from ram */
3918
if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3919
!reg_read(ohci, OHCI1394_GUIDHi)) {
3920
reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3921
reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3922
}
3923
3924
err = ohci_enable(&ohci->card, NULL, 0);
3925
if (err)
3926
return err;
3927
3928
ohci_resume_iso_dma(ohci);
3929
3930
return 0;
3931
}
3932
3933
static const struct pci_device_id pci_table[] = {
3934
{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3935
{ }
3936
};
3937
3938
MODULE_DEVICE_TABLE(pci, pci_table);
3939
3940
static SIMPLE_DEV_PM_OPS(pci_pm_ops, pci_suspend, pci_resume);
3941
3942
static struct pci_driver fw_ohci_pci_driver = {
3943
.name = ohci_driver_name,
3944
.id_table = pci_table,
3945
.probe = pci_probe,
3946
.remove = pci_remove,
3947
.driver.pm = &pci_pm_ops,
3948
};
3949
3950
static int __init fw_ohci_init(void)
3951
{
3952
selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3953
if (!selfid_workqueue)
3954
return -ENOMEM;
3955
3956
return pci_register_driver(&fw_ohci_pci_driver);
3957
}
3958
3959
static void __exit fw_ohci_cleanup(void)
3960
{
3961
pci_unregister_driver(&fw_ohci_pci_driver);
3962
destroy_workqueue(selfid_workqueue);
3963
}
3964
3965
module_init(fw_ohci_init);
3966
module_exit(fw_ohci_cleanup);
3967
3968
MODULE_AUTHOR("Kristian Hoegsberg <[email protected]>");
3969
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3970
MODULE_LICENSE("GPL");
3971
3972
/* Provide a module alias so root-on-sbp2 initrds don't break. */
3973
MODULE_ALIAS("ohci1394");
3974
3975