Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firewire/ohci.c
48907 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* Driver for OHCI 1394 controllers
4
*
5
* Copyright (C) 2003-2006 Kristian Hoegsberg <[email protected]>
6
*/
7
8
#include <linux/bitops.h>
9
#include <linux/bug.h>
10
#include <linux/compiler.h>
11
#include <linux/delay.h>
12
#include <linux/device.h>
13
#include <linux/dma-mapping.h>
14
#include <linux/firewire.h>
15
#include <linux/firewire-constants.h>
16
#include <linux/init.h>
17
#include <linux/interrupt.h>
18
#include <linux/io.h>
19
#include <linux/kernel.h>
20
#include <linux/list.h>
21
#include <linux/mm.h>
22
#include <linux/module.h>
23
#include <linux/moduleparam.h>
24
#include <linux/mutex.h>
25
#include <linux/pci.h>
26
#include <linux/pci_ids.h>
27
#include <linux/slab.h>
28
#include <linux/spinlock.h>
29
#include <linux/string.h>
30
#include <linux/time.h>
31
#include <linux/vmalloc.h>
32
#include <linux/workqueue.h>
33
34
#include <asm/byteorder.h>
35
#include <asm/page.h>
36
37
#ifdef CONFIG_PPC_PMAC
38
#include <asm/pmac_feature.h>
39
#endif
40
41
#include "core.h"
42
#include "ohci.h"
43
#include "packet-header-definitions.h"
44
#include "phy-packet-definitions.h"
45
46
#include <trace/events/firewire.h>
47
48
static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
49
50
#define CREATE_TRACE_POINTS
51
#include <trace/events/firewire_ohci.h>
52
53
#define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
54
#define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
55
56
#define DESCRIPTOR_OUTPUT_MORE 0
57
#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
58
#define DESCRIPTOR_INPUT_MORE (2 << 12)
59
#define DESCRIPTOR_INPUT_LAST (3 << 12)
60
#define DESCRIPTOR_STATUS (1 << 11)
61
#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
62
#define DESCRIPTOR_PING (1 << 7)
63
#define DESCRIPTOR_YY (1 << 6)
64
#define DESCRIPTOR_NO_IRQ (0 << 4)
65
#define DESCRIPTOR_IRQ_ERROR (1 << 4)
66
#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
67
#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
68
#define DESCRIPTOR_WAIT (3 << 0)
69
70
#define DESCRIPTOR_CMD (0xf << 12)
71
72
struct descriptor {
73
__le16 req_count;
74
__le16 control;
75
__le32 data_address;
76
__le32 branch_address;
77
__le16 res_count;
78
__le16 transfer_status;
79
} __aligned(16);
80
81
#define CONTROL_SET(regs) (regs)
82
#define CONTROL_CLEAR(regs) ((regs) + 4)
83
#define COMMAND_PTR(regs) ((regs) + 12)
84
#define CONTEXT_MATCH(regs) ((regs) + 16)
85
86
#define AR_BUFFER_SIZE (32*1024)
87
#define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88
/* we need at least two pages for proper list management */
89
#define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90
91
#define MAX_ASYNC_PAYLOAD 4096
92
#define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
93
#define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94
95
struct ar_context {
96
struct fw_ohci *ohci;
97
struct page *pages[AR_BUFFERS];
98
void *buffer;
99
struct descriptor *descriptors;
100
dma_addr_t descriptors_bus;
101
void *pointer;
102
unsigned int last_buffer_index;
103
u32 regs;
104
struct work_struct work;
105
};
106
107
struct context;
108
109
typedef int (*descriptor_callback_t)(struct context *ctx,
110
struct descriptor *d,
111
struct descriptor *last);
112
113
/*
114
* A buffer that contains a block of DMA-able coherent memory used for
115
* storing a portion of a DMA descriptor program.
116
*/
117
struct descriptor_buffer {
118
struct list_head list;
119
dma_addr_t buffer_bus;
120
size_t buffer_size;
121
size_t used;
122
struct descriptor buffer[];
123
};
124
125
struct context {
126
struct fw_ohci *ohci;
127
u32 regs;
128
int total_allocation;
129
u32 current_bus;
130
bool running;
131
132
/*
133
* List of page-sized buffers for storing DMA descriptors.
134
* Head of list contains buffers in use and tail of list contains
135
* free buffers.
136
*/
137
struct list_head buffer_list;
138
139
/*
140
* Pointer to a buffer inside buffer_list that contains the tail
141
* end of the current DMA program.
142
*/
143
struct descriptor_buffer *buffer_tail;
144
145
/*
146
* The descriptor containing the branch address of the first
147
* descriptor that has not yet been filled by the device.
148
*/
149
struct descriptor *last;
150
151
/*
152
* The last descriptor block in the DMA program. It contains the branch
153
* address that must be updated upon appending a new descriptor.
154
*/
155
struct descriptor *prev;
156
int prev_z;
157
158
descriptor_callback_t callback;
159
};
160
161
struct at_context {
162
struct context context;
163
struct work_struct work;
164
bool flushing;
165
};
166
167
struct iso_context {
168
struct fw_iso_context base;
169
struct context context;
170
void *header;
171
size_t header_length;
172
unsigned long flushing_completions;
173
u32 mc_buffer_bus;
174
u16 mc_completed;
175
u16 last_timestamp;
176
u8 sync;
177
u8 tags;
178
};
179
180
#define CONFIG_ROM_SIZE (CSR_CONFIG_ROM_END - CSR_CONFIG_ROM)
181
182
struct fw_ohci {
183
struct fw_card card;
184
185
__iomem char *registers;
186
int node_id;
187
int generation;
188
int request_generation; /* for timestamping incoming requests */
189
unsigned quirks;
190
unsigned int pri_req_max;
191
u32 bus_time;
192
bool bus_time_running;
193
bool is_root;
194
bool csr_state_setclear_abdicate;
195
int n_ir;
196
int n_it;
197
/*
198
* Spinlock for accessing fw_ohci data. Never call out of
199
* this driver with this lock held.
200
*/
201
spinlock_t lock;
202
203
struct mutex phy_reg_mutex;
204
205
void *misc_buffer;
206
dma_addr_t misc_buffer_bus;
207
208
struct ar_context ar_request_ctx;
209
struct ar_context ar_response_ctx;
210
struct at_context at_request_ctx;
211
struct at_context at_response_ctx;
212
213
u32 it_context_support;
214
u32 it_context_mask; /* unoccupied IT contexts */
215
struct iso_context *it_context_list;
216
u64 ir_context_channels; /* unoccupied channels */
217
u32 ir_context_support;
218
u32 ir_context_mask; /* unoccupied IR contexts */
219
struct iso_context *ir_context_list;
220
u64 mc_channels; /* channels in use by the multichannel IR context */
221
bool mc_allocated;
222
223
__be32 *config_rom;
224
dma_addr_t config_rom_bus;
225
__be32 *next_config_rom;
226
dma_addr_t next_config_rom_bus;
227
__be32 next_header;
228
229
__le32 *self_id;
230
dma_addr_t self_id_bus;
231
232
u32 self_id_buffer[512];
233
};
234
235
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
236
{
237
return container_of(card, struct fw_ohci, card);
238
}
239
240
#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
241
#define IR_CONTEXT_BUFFER_FILL 0x80000000
242
#define IR_CONTEXT_ISOCH_HEADER 0x40000000
243
#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
244
#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
245
#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
246
247
#define CONTEXT_RUN 0x8000
248
#define CONTEXT_WAKE 0x1000
249
#define CONTEXT_DEAD 0x0800
250
#define CONTEXT_ACTIVE 0x0400
251
252
#define OHCI1394_MAX_AT_REQ_RETRIES 0xf
253
#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
254
#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
255
256
#define OHCI1394_REGISTER_SIZE 0x800
257
#define OHCI1394_PCI_HCI_Control 0x40
258
#define SELF_ID_BUF_SIZE 0x800
259
#define OHCI_VERSION_1_1 0x010010
260
261
static char ohci_driver_name[] = KBUILD_MODNAME;
262
263
#define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
264
#define PCI_DEVICE_ID_AGERE_FW643 0x5901
265
#define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
266
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267
#define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
268
#define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
269
#define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
270
#define PCI_DEVICE_ID_VIA_VT630X 0x3044
271
#define PCI_REV_ID_VIA_VT6306 0x46
272
#define PCI_DEVICE_ID_VIA_VT6315 0x3403
273
274
#define QUIRK_CYCLE_TIMER 0x1
275
#define QUIRK_RESET_PACKET 0x2
276
#define QUIRK_BE_HEADERS 0x4
277
#define QUIRK_NO_1394A 0x8
278
#define QUIRK_NO_MSI 0x10
279
#define QUIRK_TI_SLLZ059 0x20
280
#define QUIRK_IR_WAKE 0x40
281
282
// On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
283
// ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
284
// (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
285
// clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
286
// while it is probable due to detection of any type of PCIe error.
287
#define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000
288
289
#if IS_ENABLED(CONFIG_X86)
290
291
static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
292
{
293
return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
294
}
295
296
#define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080
297
298
static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
299
{
300
const struct pci_dev *pcie_to_pci_bridge;
301
302
// Detect any type of AMD Ryzen machine.
303
if (!static_cpu_has(X86_FEATURE_ZEN))
304
return false;
305
306
// Detect VIA VT6306/6307/6308.
307
if (pdev->vendor != PCI_VENDOR_ID_VIA)
308
return false;
309
if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
310
return false;
311
312
// Detect Asmedia ASM1083/1085.
313
pcie_to_pci_bridge = pdev->bus->self;
314
if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
315
return false;
316
if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
317
return false;
318
319
return true;
320
}
321
322
#else
323
#define has_reboot_by_cycle_timer_read_quirk(ohci) false
324
#define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false
325
#endif
326
327
/* In case of multiple matches in ohci_quirks[], only the first one is used. */
328
static const struct {
329
unsigned short vendor, device, revision, flags;
330
} ohci_quirks[] = {
331
{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
332
QUIRK_CYCLE_TIMER},
333
334
{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
335
QUIRK_BE_HEADERS},
336
337
{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
338
QUIRK_NO_MSI},
339
340
{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
341
QUIRK_RESET_PACKET},
342
343
{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
344
QUIRK_NO_MSI},
345
346
{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
347
QUIRK_CYCLE_TIMER},
348
349
{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
350
QUIRK_NO_MSI},
351
352
{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
353
QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
354
355
{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
356
QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
357
358
{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
359
QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
360
361
{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
362
QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363
364
{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
365
QUIRK_RESET_PACKET},
366
367
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
368
QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
369
370
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
371
QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
372
373
{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
374
QUIRK_NO_MSI},
375
376
{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
377
QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
378
};
379
380
/* This overrides anything that was found in ohci_quirks[]. */
381
static int param_quirks;
382
module_param_named(quirks, param_quirks, int, 0644);
383
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
384
", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
385
", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
386
", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
387
", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
388
", disable MSI = " __stringify(QUIRK_NO_MSI)
389
", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
390
", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
391
")");
392
393
static bool param_remote_dma;
394
module_param_named(remote_dma, param_remote_dma, bool, 0444);
395
MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
396
397
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
398
{
399
writel(data, ohci->registers + offset);
400
}
401
402
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
403
{
404
return readl(ohci->registers + offset);
405
}
406
407
static inline void flush_writes(const struct fw_ohci *ohci)
408
{
409
/* Do a dummy read to flush writes. */
410
reg_read(ohci, OHCI1394_Version);
411
}
412
413
/*
414
* Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
415
* read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
416
* In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
417
* directly. Exceptions are intrinsically serialized contexts like pci_probe.
418
*/
419
static int read_phy_reg(struct fw_ohci *ohci, int addr)
420
{
421
u32 val;
422
int i;
423
424
reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
425
for (i = 0; i < 3 + 100; i++) {
426
val = reg_read(ohci, OHCI1394_PhyControl);
427
if (!~val)
428
return -ENODEV; /* Card was ejected. */
429
430
if (val & OHCI1394_PhyControl_ReadDone)
431
return OHCI1394_PhyControl_ReadData(val);
432
433
/*
434
* Try a few times without waiting. Sleeping is necessary
435
* only when the link/PHY interface is busy.
436
*/
437
if (i >= 3)
438
msleep(1);
439
}
440
ohci_err(ohci, "failed to read phy reg %d\n", addr);
441
dump_stack();
442
443
return -EBUSY;
444
}
445
446
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
447
{
448
int i;
449
450
reg_write(ohci, OHCI1394_PhyControl,
451
OHCI1394_PhyControl_Write(addr, val));
452
for (i = 0; i < 3 + 100; i++) {
453
val = reg_read(ohci, OHCI1394_PhyControl);
454
if (!~val)
455
return -ENODEV; /* Card was ejected. */
456
457
if (!(val & OHCI1394_PhyControl_WritePending))
458
return 0;
459
460
if (i >= 3)
461
msleep(1);
462
}
463
ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
464
dump_stack();
465
466
return -EBUSY;
467
}
468
469
static int update_phy_reg(struct fw_ohci *ohci, int addr,
470
int clear_bits, int set_bits)
471
{
472
int ret = read_phy_reg(ohci, addr);
473
if (ret < 0)
474
return ret;
475
476
/*
477
* The interrupt status bits are cleared by writing a one bit.
478
* Avoid clearing them unless explicitly requested in set_bits.
479
*/
480
if (addr == 5)
481
clear_bits |= PHY_INT_STATUS_BITS;
482
483
return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
484
}
485
486
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
487
{
488
int ret;
489
490
ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
491
if (ret < 0)
492
return ret;
493
494
return read_phy_reg(ohci, addr);
495
}
496
497
static int ohci_read_phy_reg(struct fw_card *card, int addr)
498
{
499
struct fw_ohci *ohci = fw_ohci(card);
500
501
guard(mutex)(&ohci->phy_reg_mutex);
502
503
return read_phy_reg(ohci, addr);
504
}
505
506
static int ohci_update_phy_reg(struct fw_card *card, int addr,
507
int clear_bits, int set_bits)
508
{
509
struct fw_ohci *ohci = fw_ohci(card);
510
511
guard(mutex)(&ohci->phy_reg_mutex);
512
513
return update_phy_reg(ohci, addr, clear_bits, set_bits);
514
}
515
516
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
517
{
518
return page_private(ctx->pages[i]);
519
}
520
521
static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
522
{
523
struct descriptor *d;
524
525
d = &ctx->descriptors[index];
526
d->branch_address &= cpu_to_le32(~0xf);
527
d->res_count = cpu_to_le16(PAGE_SIZE);
528
d->transfer_status = 0;
529
530
wmb(); /* finish init of new descriptors before branch_address update */
531
d = &ctx->descriptors[ctx->last_buffer_index];
532
d->branch_address |= cpu_to_le32(1);
533
534
ctx->last_buffer_index = index;
535
536
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
537
}
538
539
static void ar_context_release(struct ar_context *ctx)
540
{
541
struct device *dev = ctx->ohci->card.device;
542
unsigned int i;
543
544
if (!ctx->buffer)
545
return;
546
547
vunmap(ctx->buffer);
548
549
for (i = 0; i < AR_BUFFERS; i++) {
550
if (ctx->pages[i])
551
dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
552
ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
553
}
554
}
555
556
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
557
{
558
struct fw_ohci *ohci = ctx->ohci;
559
560
if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
561
reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
562
flush_writes(ohci);
563
564
ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
565
}
566
/* FIXME: restart? */
567
}
568
569
static inline unsigned int ar_next_buffer_index(unsigned int index)
570
{
571
return (index + 1) % AR_BUFFERS;
572
}
573
574
static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
575
{
576
return ar_next_buffer_index(ctx->last_buffer_index);
577
}
578
579
/*
580
* We search for the buffer that contains the last AR packet DMA data written
581
* by the controller.
582
*/
583
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
584
unsigned int *buffer_offset)
585
{
586
unsigned int i, next_i, last = ctx->last_buffer_index;
587
__le16 res_count, next_res_count;
588
589
i = ar_first_buffer_index(ctx);
590
res_count = READ_ONCE(ctx->descriptors[i].res_count);
591
592
/* A buffer that is not yet completely filled must be the last one. */
593
while (i != last && res_count == 0) {
594
595
/* Peek at the next descriptor. */
596
next_i = ar_next_buffer_index(i);
597
rmb(); /* read descriptors in order */
598
next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
599
/*
600
* If the next descriptor is still empty, we must stop at this
601
* descriptor.
602
*/
603
if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
604
/*
605
* The exception is when the DMA data for one packet is
606
* split over three buffers; in this case, the middle
607
* buffer's descriptor might be never updated by the
608
* controller and look still empty, and we have to peek
609
* at the third one.
610
*/
611
if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
612
next_i = ar_next_buffer_index(next_i);
613
rmb();
614
next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
615
if (next_res_count != cpu_to_le16(PAGE_SIZE))
616
goto next_buffer_is_active;
617
}
618
619
break;
620
}
621
622
next_buffer_is_active:
623
i = next_i;
624
res_count = next_res_count;
625
}
626
627
rmb(); /* read res_count before the DMA data */
628
629
*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
630
if (*buffer_offset > PAGE_SIZE) {
631
*buffer_offset = 0;
632
ar_context_abort(ctx, "corrupted descriptor");
633
}
634
635
return i;
636
}
637
638
static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
639
unsigned int end_buffer_index,
640
unsigned int end_buffer_offset)
641
{
642
unsigned int i;
643
644
i = ar_first_buffer_index(ctx);
645
while (i != end_buffer_index) {
646
dma_sync_single_for_cpu(ctx->ohci->card.device,
647
ar_buffer_bus(ctx, i),
648
PAGE_SIZE, DMA_FROM_DEVICE);
649
i = ar_next_buffer_index(i);
650
}
651
if (end_buffer_offset > 0)
652
dma_sync_single_for_cpu(ctx->ohci->card.device,
653
ar_buffer_bus(ctx, i),
654
end_buffer_offset, DMA_FROM_DEVICE);
655
}
656
657
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
658
static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
659
{
660
return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
661
}
662
663
static bool has_be_header_quirk(const struct fw_ohci *ohci)
664
{
665
return !!(ohci->quirks & QUIRK_BE_HEADERS);
666
}
667
#else
668
static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
669
{
670
return le32_to_cpu(value);
671
}
672
673
static bool has_be_header_quirk(const struct fw_ohci *ohci)
674
{
675
return false;
676
}
677
#endif
678
679
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
680
{
681
struct fw_ohci *ohci = ctx->ohci;
682
struct fw_packet p;
683
u32 status, length, tcode;
684
int evt;
685
686
p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
687
p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
688
p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
689
690
tcode = async_header_get_tcode(p.header);
691
switch (tcode) {
692
case TCODE_WRITE_QUADLET_REQUEST:
693
case TCODE_READ_QUADLET_RESPONSE:
694
p.header[3] = (__force __u32) buffer[3];
695
p.header_length = 16;
696
p.payload_length = 0;
697
break;
698
699
case TCODE_READ_BLOCK_REQUEST :
700
p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
701
p.header_length = 16;
702
p.payload_length = 0;
703
break;
704
705
case TCODE_WRITE_BLOCK_REQUEST:
706
case TCODE_READ_BLOCK_RESPONSE:
707
case TCODE_LOCK_REQUEST:
708
case TCODE_LOCK_RESPONSE:
709
p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
710
p.header_length = 16;
711
p.payload_length = async_header_get_data_length(p.header);
712
if (p.payload_length > MAX_ASYNC_PAYLOAD) {
713
ar_context_abort(ctx, "invalid packet length");
714
return NULL;
715
}
716
break;
717
718
case TCODE_WRITE_RESPONSE:
719
case TCODE_READ_QUADLET_REQUEST:
720
case TCODE_LINK_INTERNAL:
721
p.header_length = 12;
722
p.payload_length = 0;
723
break;
724
725
default:
726
ar_context_abort(ctx, "invalid tcode");
727
return NULL;
728
}
729
730
p.payload = (void *) buffer + p.header_length;
731
732
/* FIXME: What to do about evt_* errors? */
733
length = (p.header_length + p.payload_length + 3) / 4;
734
status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
735
evt = (status >> 16) & 0x1f;
736
737
p.ack = evt - 16;
738
p.speed = (status >> 21) & 0x7;
739
p.timestamp = status & 0xffff;
740
p.generation = ohci->request_generation;
741
742
/*
743
* Several controllers, notably from NEC and VIA, forget to
744
* write ack_complete status at PHY packet reception.
745
*/
746
if (evt == OHCI1394_evt_no_status && tcode == TCODE_LINK_INTERNAL)
747
p.ack = ACK_COMPLETE;
748
749
/*
750
* The OHCI bus reset handler synthesizes a PHY packet with
751
* the new generation number when a bus reset happens (see
752
* section 8.4.2.3). This helps us determine when a request
753
* was received and make sure we send the response in the same
754
* generation. We only need this for requests; for responses
755
* we use the unique tlabel for finding the matching
756
* request.
757
*
758
* Alas some chips sometimes emit bus reset packets with a
759
* wrong generation. We set the correct generation for these
760
* at a slightly incorrect time (in handle_selfid_complete_event).
761
*/
762
if (evt == OHCI1394_evt_bus_reset) {
763
if (!(ohci->quirks & QUIRK_RESET_PACKET))
764
ohci->request_generation = (p.header[2] >> 16) & 0xff;
765
} else if (ctx == &ohci->ar_request_ctx) {
766
fw_core_handle_request(&ohci->card, &p);
767
} else {
768
fw_core_handle_response(&ohci->card, &p);
769
}
770
771
return buffer + length + 1;
772
}
773
774
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
775
{
776
void *next;
777
778
while (p < end) {
779
next = handle_ar_packet(ctx, p);
780
if (!next)
781
return p;
782
p = next;
783
}
784
785
return p;
786
}
787
788
static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
789
{
790
unsigned int i;
791
792
i = ar_first_buffer_index(ctx);
793
while (i != end_buffer) {
794
dma_sync_single_for_device(ctx->ohci->card.device,
795
ar_buffer_bus(ctx, i),
796
PAGE_SIZE, DMA_FROM_DEVICE);
797
ar_context_link_page(ctx, i);
798
i = ar_next_buffer_index(i);
799
}
800
}
801
802
static void ohci_ar_context_work(struct work_struct *work)
803
{
804
struct ar_context *ctx = from_work(ctx, work, work);
805
unsigned int end_buffer_index, end_buffer_offset;
806
void *p, *end;
807
808
p = ctx->pointer;
809
if (!p)
810
return;
811
812
end_buffer_index = ar_search_last_active_buffer(ctx, &end_buffer_offset);
813
ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
814
end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
815
816
if (end_buffer_index < ar_first_buffer_index(ctx)) {
817
// The filled part of the overall buffer wraps around; handle all packets up to the
818
// buffer end here. If the last packet wraps around, its tail will be visible after
819
// the buffer end because the buffer start pages are mapped there again.
820
void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
821
p = handle_ar_packets(ctx, p, buffer_end);
822
if (p < buffer_end)
823
goto error;
824
// adjust p to point back into the actual buffer
825
p -= AR_BUFFERS * PAGE_SIZE;
826
}
827
828
p = handle_ar_packets(ctx, p, end);
829
if (p != end) {
830
if (p > end)
831
ar_context_abort(ctx, "inconsistent descriptor");
832
goto error;
833
}
834
835
ctx->pointer = p;
836
ar_recycle_buffers(ctx, end_buffer_index);
837
838
return;
839
error:
840
ctx->pointer = NULL;
841
}
842
843
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
844
unsigned int descriptors_offset, u32 regs)
845
{
846
struct device *dev = ohci->card.device;
847
unsigned int i;
848
dma_addr_t dma_addr;
849
struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
850
struct descriptor *d;
851
852
ctx->regs = regs;
853
ctx->ohci = ohci;
854
INIT_WORK(&ctx->work, ohci_ar_context_work);
855
856
for (i = 0; i < AR_BUFFERS; i++) {
857
ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
858
DMA_FROM_DEVICE, GFP_KERNEL);
859
if (!ctx->pages[i])
860
goto out_of_memory;
861
set_page_private(ctx->pages[i], dma_addr);
862
dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
863
DMA_FROM_DEVICE);
864
}
865
866
for (i = 0; i < AR_BUFFERS; i++)
867
pages[i] = ctx->pages[i];
868
for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
869
pages[AR_BUFFERS + i] = ctx->pages[i];
870
ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
871
if (!ctx->buffer)
872
goto out_of_memory;
873
874
ctx->descriptors = ohci->misc_buffer + descriptors_offset;
875
ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
876
877
for (i = 0; i < AR_BUFFERS; i++) {
878
d = &ctx->descriptors[i];
879
d->req_count = cpu_to_le16(PAGE_SIZE);
880
d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
881
DESCRIPTOR_STATUS |
882
DESCRIPTOR_BRANCH_ALWAYS);
883
d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
884
d->branch_address = cpu_to_le32(ctx->descriptors_bus +
885
ar_next_buffer_index(i) * sizeof(struct descriptor));
886
}
887
888
return 0;
889
890
out_of_memory:
891
ar_context_release(ctx);
892
893
return -ENOMEM;
894
}
895
896
static void ar_context_run(struct ar_context *ctx)
897
{
898
unsigned int i;
899
900
for (i = 0; i < AR_BUFFERS; i++)
901
ar_context_link_page(ctx, i);
902
903
ctx->pointer = ctx->buffer;
904
905
reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
906
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
907
}
908
909
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
910
{
911
__le16 branch;
912
913
branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
914
915
/* figure out which descriptor the branch address goes in */
916
if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
917
return d;
918
else
919
return d + z - 1;
920
}
921
922
static void context_retire_descriptors(struct context *ctx)
923
{
924
struct descriptor *d, *last;
925
u32 address;
926
int z;
927
struct descriptor_buffer *desc;
928
929
desc = list_entry(ctx->buffer_list.next,
930
struct descriptor_buffer, list);
931
last = ctx->last;
932
while (last->branch_address != 0) {
933
struct descriptor_buffer *old_desc = desc;
934
address = le32_to_cpu(last->branch_address);
935
z = address & 0xf;
936
address &= ~0xf;
937
ctx->current_bus = address;
938
939
/* If the branch address points to a buffer outside of the
940
* current buffer, advance to the next buffer. */
941
if (address < desc->buffer_bus ||
942
address >= desc->buffer_bus + desc->used)
943
desc = list_entry(desc->list.next,
944
struct descriptor_buffer, list);
945
d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
946
last = find_branch_descriptor(d, z);
947
948
if (!ctx->callback(ctx, d, last))
949
break;
950
951
if (old_desc != desc) {
952
// If we've advanced to the next buffer, move the previous buffer to the
953
// free list.
954
old_desc->used = 0;
955
guard(spinlock_irqsave)(&ctx->ohci->lock);
956
list_move_tail(&old_desc->list, &ctx->buffer_list);
957
}
958
ctx->last = last;
959
}
960
}
961
962
static void ohci_at_context_work(struct work_struct *work)
963
{
964
struct at_context *ctx = from_work(ctx, work, work);
965
966
context_retire_descriptors(&ctx->context);
967
}
968
969
static void ohci_isoc_context_work(struct work_struct *work)
970
{
971
struct fw_iso_context *base = from_work(base, work, work);
972
struct iso_context *isoc_ctx = container_of(base, struct iso_context, base);
973
974
context_retire_descriptors(&isoc_ctx->context);
975
}
976
977
/*
978
* Allocate a new buffer and add it to the list of free buffers for this
979
* context. Must be called with ohci->lock held.
980
*/
981
static int context_add_buffer(struct context *ctx)
982
{
983
struct descriptor_buffer *desc;
984
dma_addr_t bus_addr;
985
int offset;
986
987
/*
988
* 16MB of descriptors should be far more than enough for any DMA
989
* program. This will catch run-away userspace or DoS attacks.
990
*/
991
if (ctx->total_allocation >= 16*1024*1024)
992
return -ENOMEM;
993
994
desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
995
if (!desc)
996
return -ENOMEM;
997
998
offset = (void *)&desc->buffer - (void *)desc;
999
/*
1000
* Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1001
* for descriptors, even 0x10-byte ones. This can cause page faults when
1002
* an IOMMU is in use and the oversized read crosses a page boundary.
1003
* Work around this by always leaving at least 0x10 bytes of padding.
1004
*/
1005
desc->buffer_size = PAGE_SIZE - offset - 0x10;
1006
desc->buffer_bus = bus_addr + offset;
1007
desc->used = 0;
1008
1009
list_add_tail(&desc->list, &ctx->buffer_list);
1010
ctx->total_allocation += PAGE_SIZE;
1011
1012
return 0;
1013
}
1014
1015
static int context_init(struct context *ctx, struct fw_ohci *ohci,
1016
u32 regs, descriptor_callback_t callback)
1017
{
1018
ctx->ohci = ohci;
1019
ctx->regs = regs;
1020
ctx->total_allocation = 0;
1021
1022
INIT_LIST_HEAD(&ctx->buffer_list);
1023
if (context_add_buffer(ctx) < 0)
1024
return -ENOMEM;
1025
1026
ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1027
struct descriptor_buffer, list);
1028
1029
ctx->callback = callback;
1030
1031
/*
1032
* We put a dummy descriptor in the buffer that has a NULL
1033
* branch address and looks like it's been sent. That way we
1034
* have a descriptor to append DMA programs to.
1035
*/
1036
memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1037
ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1038
ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1039
ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1040
ctx->last = ctx->buffer_tail->buffer;
1041
ctx->prev = ctx->buffer_tail->buffer;
1042
ctx->prev_z = 1;
1043
1044
return 0;
1045
}
1046
1047
static void context_release(struct context *ctx)
1048
{
1049
struct fw_card *card = &ctx->ohci->card;
1050
struct descriptor_buffer *desc, *tmp;
1051
1052
list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1053
dmam_free_coherent(card->device, PAGE_SIZE, desc,
1054
desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1055
}
1056
}
1057
1058
/* Must be called with ohci->lock held */
1059
static struct descriptor *context_get_descriptors(struct context *ctx,
1060
int z, dma_addr_t *d_bus)
1061
{
1062
struct descriptor *d = NULL;
1063
struct descriptor_buffer *desc = ctx->buffer_tail;
1064
1065
if (z * sizeof(*d) > desc->buffer_size)
1066
return NULL;
1067
1068
if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1069
/* No room for the descriptor in this buffer, so advance to the
1070
* next one. */
1071
1072
if (desc->list.next == &ctx->buffer_list) {
1073
/* If there is no free buffer next in the list,
1074
* allocate one. */
1075
if (context_add_buffer(ctx) < 0)
1076
return NULL;
1077
}
1078
desc = list_entry(desc->list.next,
1079
struct descriptor_buffer, list);
1080
ctx->buffer_tail = desc;
1081
}
1082
1083
d = desc->buffer + desc->used / sizeof(*d);
1084
memset(d, 0, z * sizeof(*d));
1085
*d_bus = desc->buffer_bus + desc->used;
1086
1087
return d;
1088
}
1089
1090
static void context_run(struct context *ctx, u32 extra)
1091
{
1092
struct fw_ohci *ohci = ctx->ohci;
1093
1094
reg_write(ohci, COMMAND_PTR(ctx->regs),
1095
le32_to_cpu(ctx->last->branch_address));
1096
reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1097
reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1098
ctx->running = true;
1099
flush_writes(ohci);
1100
}
1101
1102
static void context_append(struct context *ctx,
1103
struct descriptor *d, int z, int extra)
1104
{
1105
dma_addr_t d_bus;
1106
struct descriptor_buffer *desc = ctx->buffer_tail;
1107
struct descriptor *d_branch;
1108
1109
d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1110
1111
desc->used += (z + extra) * sizeof(*d);
1112
1113
wmb(); /* finish init of new descriptors before branch_address update */
1114
1115
d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1116
d_branch->branch_address = cpu_to_le32(d_bus | z);
1117
1118
/*
1119
* VT6306 incorrectly checks only the single descriptor at the
1120
* CommandPtr when the wake bit is written, so if it's a
1121
* multi-descriptor block starting with an INPUT_MORE, put a copy of
1122
* the branch address in the first descriptor.
1123
*
1124
* Not doing this for transmit contexts since not sure how it interacts
1125
* with skip addresses.
1126
*/
1127
if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1128
d_branch != ctx->prev &&
1129
(ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1130
cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1131
ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1132
}
1133
1134
ctx->prev = d;
1135
ctx->prev_z = z;
1136
}
1137
1138
static void context_stop(struct context *ctx)
1139
{
1140
struct fw_ohci *ohci = ctx->ohci;
1141
u32 reg;
1142
int i;
1143
1144
reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1145
ctx->running = false;
1146
1147
for (i = 0; i < 1000; i++) {
1148
reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1149
if ((reg & CONTEXT_ACTIVE) == 0)
1150
return;
1151
1152
if (i)
1153
udelay(10);
1154
}
1155
ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1156
}
1157
1158
struct driver_data {
1159
u8 inline_data[8];
1160
struct fw_packet *packet;
1161
};
1162
1163
/*
1164
* This function appends a packet to the DMA queue for transmission.
1165
* Must always be called with the ochi->lock held to ensure proper
1166
* generation handling and locking around packet queue manipulation.
1167
*/
1168
static int at_context_queue_packet(struct at_context *ctx, struct fw_packet *packet)
1169
{
1170
struct context *context = &ctx->context;
1171
struct fw_ohci *ohci = context->ohci;
1172
dma_addr_t d_bus, payload_bus;
1173
struct driver_data *driver_data;
1174
struct descriptor *d, *last;
1175
__le32 *header;
1176
int z, tcode;
1177
1178
d = context_get_descriptors(context, 4, &d_bus);
1179
if (d == NULL) {
1180
packet->ack = RCODE_SEND_ERROR;
1181
return -1;
1182
}
1183
1184
d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1185
d[0].res_count = cpu_to_le16(packet->timestamp);
1186
1187
tcode = async_header_get_tcode(packet->header);
1188
header = (__le32 *) &d[1];
1189
switch (tcode) {
1190
case TCODE_WRITE_QUADLET_REQUEST:
1191
case TCODE_WRITE_BLOCK_REQUEST:
1192
case TCODE_WRITE_RESPONSE:
1193
case TCODE_READ_QUADLET_REQUEST:
1194
case TCODE_READ_BLOCK_REQUEST:
1195
case TCODE_READ_QUADLET_RESPONSE:
1196
case TCODE_READ_BLOCK_RESPONSE:
1197
case TCODE_LOCK_REQUEST:
1198
case TCODE_LOCK_RESPONSE:
1199
ohci1394_at_data_set_src_bus_id(header, false);
1200
ohci1394_at_data_set_speed(header, packet->speed);
1201
ohci1394_at_data_set_tlabel(header, async_header_get_tlabel(packet->header));
1202
ohci1394_at_data_set_retry(header, async_header_get_retry(packet->header));
1203
ohci1394_at_data_set_tcode(header, tcode);
1204
1205
ohci1394_at_data_set_destination_id(header,
1206
async_header_get_destination(packet->header));
1207
1208
if (ctx == &ohci->at_response_ctx) {
1209
ohci1394_at_data_set_rcode(header, async_header_get_rcode(packet->header));
1210
} else {
1211
ohci1394_at_data_set_destination_offset(header,
1212
async_header_get_offset(packet->header));
1213
}
1214
1215
if (tcode_is_block_packet(tcode))
1216
header[3] = cpu_to_le32(packet->header[3]);
1217
else
1218
header[3] = (__force __le32) packet->header[3];
1219
1220
d[0].req_count = cpu_to_le16(packet->header_length);
1221
break;
1222
case TCODE_LINK_INTERNAL:
1223
ohci1394_at_data_set_speed(header, packet->speed);
1224
ohci1394_at_data_set_tcode(header, TCODE_LINK_INTERNAL);
1225
1226
header[1] = cpu_to_le32(packet->header[1]);
1227
header[2] = cpu_to_le32(packet->header[2]);
1228
d[0].req_count = cpu_to_le16(12);
1229
1230
if (is_ping_packet(&packet->header[1]))
1231
d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1232
break;
1233
1234
case TCODE_STREAM_DATA:
1235
ohci1394_it_data_set_speed(header, packet->speed);
1236
ohci1394_it_data_set_tag(header, isoc_header_get_tag(packet->header[0]));
1237
ohci1394_it_data_set_channel(header, isoc_header_get_channel(packet->header[0]));
1238
ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
1239
ohci1394_it_data_set_sync(header, isoc_header_get_sy(packet->header[0]));
1240
1241
ohci1394_it_data_set_data_length(header, isoc_header_get_data_length(packet->header[0]));
1242
1243
d[0].req_count = cpu_to_le16(8);
1244
break;
1245
1246
default:
1247
/* BUG(); */
1248
packet->ack = RCODE_SEND_ERROR;
1249
return -1;
1250
}
1251
1252
BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1253
driver_data = (struct driver_data *) &d[3];
1254
driver_data->packet = packet;
1255
packet->driver_data = driver_data;
1256
1257
if (packet->payload_length > 0) {
1258
if (packet->payload_length > sizeof(driver_data->inline_data)) {
1259
payload_bus = dma_map_single(ohci->card.device,
1260
packet->payload,
1261
packet->payload_length,
1262
DMA_TO_DEVICE);
1263
if (dma_mapping_error(ohci->card.device, payload_bus)) {
1264
packet->ack = RCODE_SEND_ERROR;
1265
return -1;
1266
}
1267
packet->payload_bus = payload_bus;
1268
packet->payload_mapped = true;
1269
} else {
1270
memcpy(driver_data->inline_data, packet->payload,
1271
packet->payload_length);
1272
payload_bus = d_bus + 3 * sizeof(*d);
1273
}
1274
1275
d[2].req_count = cpu_to_le16(packet->payload_length);
1276
d[2].data_address = cpu_to_le32(payload_bus);
1277
last = &d[2];
1278
z = 3;
1279
} else {
1280
last = &d[0];
1281
z = 2;
1282
}
1283
1284
last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1285
DESCRIPTOR_IRQ_ALWAYS |
1286
DESCRIPTOR_BRANCH_ALWAYS);
1287
1288
/* FIXME: Document how the locking works. */
1289
if (ohci->generation != packet->generation) {
1290
if (packet->payload_mapped)
1291
dma_unmap_single(ohci->card.device, payload_bus,
1292
packet->payload_length, DMA_TO_DEVICE);
1293
packet->ack = RCODE_GENERATION;
1294
return -1;
1295
}
1296
1297
context_append(context, d, z, 4 - z);
1298
1299
if (context->running)
1300
reg_write(ohci, CONTROL_SET(context->regs), CONTEXT_WAKE);
1301
else
1302
context_run(context, 0);
1303
1304
return 0;
1305
}
1306
1307
static void at_context_flush(struct at_context *ctx)
1308
{
1309
// Avoid dead lock due to programming mistake.
1310
if (WARN_ON_ONCE(current_work() == &ctx->work))
1311
return;
1312
1313
disable_work_sync(&ctx->work);
1314
1315
WRITE_ONCE(ctx->flushing, true);
1316
ohci_at_context_work(&ctx->work);
1317
WRITE_ONCE(ctx->flushing, false);
1318
1319
enable_work(&ctx->work);
1320
}
1321
1322
static int find_fw_device(struct device *dev, const void *data)
1323
{
1324
struct fw_device *device = fw_device(dev);
1325
const u32 *params = data;
1326
1327
return (device->generation == params[0]) && (device->node_id == params[1]);
1328
}
1329
1330
static int handle_at_packet(struct context *context,
1331
struct descriptor *d,
1332
struct descriptor *last)
1333
{
1334
struct at_context *ctx = container_of(context, struct at_context, context);
1335
struct fw_ohci *ohci = ctx->context.ohci;
1336
struct driver_data *driver_data;
1337
struct fw_packet *packet;
1338
int evt;
1339
1340
if (last->transfer_status == 0 && !READ_ONCE(ctx->flushing))
1341
/* This descriptor isn't done yet, stop iteration. */
1342
return 0;
1343
1344
driver_data = (struct driver_data *) &d[3];
1345
packet = driver_data->packet;
1346
if (packet == NULL)
1347
/* This packet was cancelled, just continue. */
1348
return 1;
1349
1350
if (packet->payload_mapped)
1351
dma_unmap_single(ohci->card.device, packet->payload_bus,
1352
packet->payload_length, DMA_TO_DEVICE);
1353
1354
evt = le16_to_cpu(last->transfer_status) & 0x1f;
1355
packet->timestamp = le16_to_cpu(last->res_count);
1356
1357
switch (evt) {
1358
case OHCI1394_evt_timeout:
1359
/* Async response transmit timed out. */
1360
packet->ack = RCODE_CANCELLED;
1361
break;
1362
1363
case OHCI1394_evt_flushed:
1364
/*
1365
* The packet was flushed should give same error as
1366
* when we try to use a stale generation count.
1367
*/
1368
packet->ack = RCODE_GENERATION;
1369
break;
1370
1371
case OHCI1394_evt_missing_ack:
1372
if (READ_ONCE(ctx->flushing))
1373
packet->ack = RCODE_GENERATION;
1374
else {
1375
/*
1376
* Using a valid (current) generation count, but the
1377
* node is not on the bus or not sending acks.
1378
*/
1379
packet->ack = RCODE_NO_ACK;
1380
}
1381
break;
1382
1383
case ACK_COMPLETE + 0x10:
1384
case ACK_PENDING + 0x10:
1385
case ACK_BUSY_X + 0x10:
1386
case ACK_BUSY_A + 0x10:
1387
case ACK_BUSY_B + 0x10:
1388
case ACK_DATA_ERROR + 0x10:
1389
case ACK_TYPE_ERROR + 0x10:
1390
packet->ack = evt - 0x10;
1391
break;
1392
1393
case OHCI1394_evt_no_status:
1394
if (READ_ONCE(ctx->flushing)) {
1395
packet->ack = RCODE_GENERATION;
1396
break;
1397
}
1398
fallthrough;
1399
1400
default:
1401
if (unlikely(evt == 0x10)) {
1402
u32 params[2] = {
1403
packet->generation,
1404
async_header_get_destination(packet->header),
1405
};
1406
struct device *dev;
1407
1408
fw_card_get(&ohci->card);
1409
dev = device_find_child(ohci->card.device, (const void *)params, find_fw_device);
1410
fw_card_put(&ohci->card);
1411
if (dev) {
1412
struct fw_device *device = fw_device(dev);
1413
int quirks = READ_ONCE(device->quirks);
1414
1415
put_device(dev);
1416
if (quirks & FW_DEVICE_QUIRK_ACK_PACKET_WITH_INVALID_PENDING_CODE) {
1417
packet->ack = ACK_PENDING;
1418
break;
1419
}
1420
}
1421
}
1422
packet->ack = RCODE_SEND_ERROR;
1423
break;
1424
}
1425
1426
packet->callback(packet, &ohci->card, packet->ack);
1427
1428
return 1;
1429
}
1430
1431
static u32 get_cycle_time(struct fw_ohci *ohci);
1432
1433
static void handle_local_rom(struct fw_ohci *ohci,
1434
struct fw_packet *packet, u32 csr)
1435
{
1436
struct fw_packet response;
1437
int tcode, length, i;
1438
1439
tcode = async_header_get_tcode(packet->header);
1440
if (tcode_is_block_packet(tcode))
1441
length = async_header_get_data_length(packet->header);
1442
else
1443
length = 4;
1444
1445
i = csr - CSR_CONFIG_ROM;
1446
if (i + length > CONFIG_ROM_SIZE) {
1447
fw_fill_response(&response, packet->header,
1448
RCODE_ADDRESS_ERROR, NULL, 0);
1449
} else if (!tcode_is_read_request(tcode)) {
1450
fw_fill_response(&response, packet->header,
1451
RCODE_TYPE_ERROR, NULL, 0);
1452
} else {
1453
fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1454
(void *) ohci->config_rom + i, length);
1455
}
1456
1457
// Timestamping on behalf of the hardware.
1458
response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1459
fw_core_handle_response(&ohci->card, &response);
1460
}
1461
1462
static void handle_local_lock(struct fw_ohci *ohci,
1463
struct fw_packet *packet, u32 csr)
1464
{
1465
struct fw_packet response;
1466
int tcode, length, ext_tcode, sel, try;
1467
__be32 *payload, lock_old;
1468
u32 lock_arg, lock_data;
1469
1470
tcode = async_header_get_tcode(packet->header);
1471
length = async_header_get_data_length(packet->header);
1472
payload = packet->payload;
1473
ext_tcode = async_header_get_extended_tcode(packet->header);
1474
1475
if (tcode == TCODE_LOCK_REQUEST &&
1476
ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1477
lock_arg = be32_to_cpu(payload[0]);
1478
lock_data = be32_to_cpu(payload[1]);
1479
} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1480
lock_arg = 0;
1481
lock_data = 0;
1482
} else {
1483
fw_fill_response(&response, packet->header,
1484
RCODE_TYPE_ERROR, NULL, 0);
1485
goto out;
1486
}
1487
1488
sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1489
reg_write(ohci, OHCI1394_CSRData, lock_data);
1490
reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1491
reg_write(ohci, OHCI1394_CSRControl, sel);
1492
1493
for (try = 0; try < 20; try++)
1494
if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1495
lock_old = cpu_to_be32(reg_read(ohci,
1496
OHCI1394_CSRData));
1497
fw_fill_response(&response, packet->header,
1498
RCODE_COMPLETE,
1499
&lock_old, sizeof(lock_old));
1500
goto out;
1501
}
1502
1503
ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1504
fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1505
1506
out:
1507
// Timestamping on behalf of the hardware.
1508
response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1509
fw_core_handle_response(&ohci->card, &response);
1510
}
1511
1512
static void handle_local_request(struct at_context *ctx, struct fw_packet *packet)
1513
{
1514
struct fw_ohci *ohci = ctx->context.ohci;
1515
u64 offset, csr;
1516
1517
if (ctx == &ohci->at_request_ctx) {
1518
packet->ack = ACK_PENDING;
1519
packet->callback(packet, &ohci->card, packet->ack);
1520
}
1521
1522
offset = async_header_get_offset(packet->header);
1523
csr = offset - CSR_REGISTER_BASE;
1524
1525
/* Handle config rom reads. */
1526
if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1527
handle_local_rom(ohci, packet, csr);
1528
else switch (csr) {
1529
case CSR_BUS_MANAGER_ID:
1530
case CSR_BANDWIDTH_AVAILABLE:
1531
case CSR_CHANNELS_AVAILABLE_HI:
1532
case CSR_CHANNELS_AVAILABLE_LO:
1533
handle_local_lock(ohci, packet, csr);
1534
break;
1535
default:
1536
if (ctx == &ohci->at_request_ctx)
1537
fw_core_handle_request(&ohci->card, packet);
1538
else
1539
fw_core_handle_response(&ohci->card, packet);
1540
break;
1541
}
1542
1543
if (ctx == &ohci->at_response_ctx) {
1544
packet->ack = ACK_COMPLETE;
1545
packet->callback(packet, &ohci->card, packet->ack);
1546
}
1547
}
1548
1549
static void at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
1550
{
1551
struct fw_ohci *ohci = ctx->context.ohci;
1552
unsigned long flags;
1553
int ret;
1554
1555
spin_lock_irqsave(&ohci->lock, flags);
1556
1557
if (async_header_get_destination(packet->header) == ohci->node_id &&
1558
ohci->generation == packet->generation) {
1559
spin_unlock_irqrestore(&ohci->lock, flags);
1560
1561
// Timestamping on behalf of the hardware.
1562
packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1563
1564
handle_local_request(ctx, packet);
1565
return;
1566
}
1567
1568
ret = at_context_queue_packet(ctx, packet);
1569
spin_unlock_irqrestore(&ohci->lock, flags);
1570
1571
if (ret < 0) {
1572
// Timestamping on behalf of the hardware.
1573
packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1574
1575
packet->callback(packet, &ohci->card, packet->ack);
1576
}
1577
}
1578
1579
static void detect_dead_context(struct fw_ohci *ohci,
1580
const char *name, unsigned int regs)
1581
{
1582
static const char *const evts[] = {
1583
[0x00] = "evt_no_status", [0x01] = "-reserved-",
1584
[0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
1585
[0x04] = "evt_underrun", [0x05] = "evt_overrun",
1586
[0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
1587
[0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
1588
[0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
1589
[0x0c] = "-reserved-", [0x0d] = "-reserved-",
1590
[0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
1591
[0x10] = "-reserved-", [0x11] = "ack_complete",
1592
[0x12] = "ack_pending ", [0x13] = "-reserved-",
1593
[0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
1594
[0x16] = "ack_busy_B", [0x17] = "-reserved-",
1595
[0x18] = "-reserved-", [0x19] = "-reserved-",
1596
[0x1a] = "-reserved-", [0x1b] = "ack_tardy",
1597
[0x1c] = "-reserved-", [0x1d] = "ack_data_error",
1598
[0x1e] = "ack_type_error", [0x1f] = "-reserved-",
1599
[0x20] = "pending/cancelled",
1600
};
1601
u32 ctl;
1602
1603
ctl = reg_read(ohci, CONTROL_SET(regs));
1604
if (ctl & CONTEXT_DEAD)
1605
ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1606
name, evts[ctl & 0x1f]);
1607
}
1608
1609
static void handle_dead_contexts(struct fw_ohci *ohci)
1610
{
1611
unsigned int i;
1612
char name[8];
1613
1614
detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1615
detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1616
detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1617
detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1618
for (i = 0; i < 32; ++i) {
1619
if (!(ohci->it_context_support & (1 << i)))
1620
continue;
1621
sprintf(name, "IT%u", i);
1622
detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1623
}
1624
for (i = 0; i < 32; ++i) {
1625
if (!(ohci->ir_context_support & (1 << i)))
1626
continue;
1627
sprintf(name, "IR%u", i);
1628
detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1629
}
1630
/* TODO: maybe try to flush and restart the dead contexts */
1631
}
1632
1633
static u32 cycle_timer_ticks(u32 cycle_timer)
1634
{
1635
u32 ticks;
1636
1637
ticks = cycle_timer & 0xfff;
1638
ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1639
ticks += (3072 * 8000) * (cycle_timer >> 25);
1640
1641
return ticks;
1642
}
1643
1644
/*
1645
* Some controllers exhibit one or more of the following bugs when updating the
1646
* iso cycle timer register:
1647
* - When the lowest six bits are wrapping around to zero, a read that happens
1648
* at the same time will return garbage in the lowest ten bits.
1649
* - When the cycleOffset field wraps around to zero, the cycleCount field is
1650
* not incremented for about 60 ns.
1651
* - Occasionally, the entire register reads zero.
1652
*
1653
* To catch these, we read the register three times and ensure that the
1654
* difference between each two consecutive reads is approximately the same, i.e.
1655
* less than twice the other. Furthermore, any negative difference indicates an
1656
* error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1657
* execute, so we have enough precision to compute the ratio of the differences.)
1658
*/
1659
static u32 get_cycle_time(struct fw_ohci *ohci)
1660
{
1661
u32 c0, c1, c2;
1662
u32 t0, t1, t2;
1663
s32 diff01, diff12;
1664
int i;
1665
1666
if (has_reboot_by_cycle_timer_read_quirk(ohci))
1667
return 0;
1668
1669
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1670
1671
if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1672
i = 0;
1673
c1 = c2;
1674
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1675
do {
1676
c0 = c1;
1677
c1 = c2;
1678
c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1679
t0 = cycle_timer_ticks(c0);
1680
t1 = cycle_timer_ticks(c1);
1681
t2 = cycle_timer_ticks(c2);
1682
diff01 = t1 - t0;
1683
diff12 = t2 - t1;
1684
} while ((diff01 <= 0 || diff12 <= 0 ||
1685
diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1686
&& i++ < 20);
1687
}
1688
1689
return c2;
1690
}
1691
1692
/*
1693
* This function has to be called at least every 64 seconds. The bus_time
1694
* field stores not only the upper 25 bits of the BUS_TIME register but also
1695
* the most significant bit of the cycle timer in bit 6 so that we can detect
1696
* changes in this bit.
1697
*/
1698
static u32 update_bus_time(struct fw_ohci *ohci)
1699
{
1700
u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1701
1702
if (unlikely(!ohci->bus_time_running)) {
1703
reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1704
ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1705
(cycle_time_seconds & 0x40);
1706
ohci->bus_time_running = true;
1707
}
1708
1709
if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1710
ohci->bus_time += 0x40;
1711
1712
return ohci->bus_time | cycle_time_seconds;
1713
}
1714
1715
static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1716
enum phy_packet_self_id_port_status *status)
1717
{
1718
int reg;
1719
1720
scoped_guard(mutex, &ohci->phy_reg_mutex) {
1721
reg = write_phy_reg(ohci, 7, port_index);
1722
if (reg < 0)
1723
return reg;
1724
1725
reg = read_phy_reg(ohci, 8);
1726
if (reg < 0)
1727
return reg;
1728
}
1729
1730
switch (reg & 0x0f) {
1731
case 0x06:
1732
// is child node (connected to parent node)
1733
*status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1734
break;
1735
case 0x0e:
1736
// is parent node (connected to child node)
1737
*status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1738
break;
1739
default:
1740
// not connected
1741
*status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1742
break;
1743
}
1744
1745
return 0;
1746
}
1747
1748
static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1749
int self_id_count)
1750
{
1751
unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1752
int i;
1753
1754
for (i = 0; i < self_id_count; i++) {
1755
u32 entry = ohci->self_id_buffer[i];
1756
unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1757
1758
if (left_phy_id == right_phy_id)
1759
return -1;
1760
if (left_phy_id < right_phy_id)
1761
return i;
1762
}
1763
return i;
1764
}
1765
1766
static int detect_initiated_reset(struct fw_ohci *ohci, bool *is_initiated_reset)
1767
{
1768
int reg;
1769
1770
guard(mutex)(&ohci->phy_reg_mutex);
1771
1772
// Select page 7
1773
reg = write_phy_reg(ohci, 7, 0xe0);
1774
if (reg < 0)
1775
return reg;
1776
1777
reg = read_phy_reg(ohci, 8);
1778
if (reg < 0)
1779
return reg;
1780
1781
// set PMODE bit
1782
reg |= 0x40;
1783
reg = write_phy_reg(ohci, 8, reg);
1784
if (reg < 0)
1785
return reg;
1786
1787
// read register 12
1788
reg = read_phy_reg(ohci, 12);
1789
if (reg < 0)
1790
return reg;
1791
1792
// bit 3 indicates "initiated reset"
1793
*is_initiated_reset = !!((reg & 0x08) == 0x08);
1794
1795
return 0;
1796
}
1797
1798
/*
1799
* TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1800
* attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1801
* Construct the selfID from phy register contents.
1802
*/
1803
static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1804
{
1805
int reg, i, pos, err;
1806
bool is_initiated_reset;
1807
u32 self_id = 0;
1808
1809
// link active 1, speed 3, bridge 0, contender 1, more packets 0.
1810
phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1811
phy_packet_self_id_zero_set_link_active(&self_id, true);
1812
phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1813
phy_packet_self_id_zero_set_contender(&self_id, true);
1814
1815
reg = reg_read(ohci, OHCI1394_NodeID);
1816
if (!(reg & OHCI1394_NodeID_idValid)) {
1817
ohci_notice(ohci,
1818
"node ID not valid, new bus reset in progress\n");
1819
return -EBUSY;
1820
}
1821
phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1822
1823
reg = ohci_read_phy_reg(&ohci->card, 4);
1824
if (reg < 0)
1825
return reg;
1826
phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
1827
1828
reg = ohci_read_phy_reg(&ohci->card, 1);
1829
if (reg < 0)
1830
return reg;
1831
phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
1832
1833
for (i = 0; i < 3; i++) {
1834
enum phy_packet_self_id_port_status status;
1835
1836
err = get_status_for_port(ohci, i, &status);
1837
if (err < 0)
1838
return err;
1839
1840
self_id_sequence_set_port_status(&self_id, 1, i, status);
1841
}
1842
1843
err = detect_initiated_reset(ohci, &is_initiated_reset);
1844
if (err < 0)
1845
return err;
1846
phy_packet_self_id_zero_set_initiated_reset(&self_id, is_initiated_reset);
1847
1848
pos = get_self_id_pos(ohci, self_id, self_id_count);
1849
if (pos >= 0) {
1850
memmove(&(ohci->self_id_buffer[pos+1]),
1851
&(ohci->self_id_buffer[pos]),
1852
(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1853
ohci->self_id_buffer[pos] = self_id;
1854
self_id_count++;
1855
}
1856
return self_id_count;
1857
}
1858
1859
static irqreturn_t handle_selfid_complete_event(int irq, void *data)
1860
{
1861
struct fw_ohci *ohci = data;
1862
int self_id_count, generation, new_generation, i, j;
1863
u32 reg, quadlet;
1864
void *free_rom = NULL;
1865
dma_addr_t free_rom_bus = 0;
1866
bool is_new_root;
1867
1868
reg = reg_read(ohci, OHCI1394_NodeID);
1869
if (!(reg & OHCI1394_NodeID_idValid)) {
1870
ohci_notice(ohci,
1871
"node ID not valid, new bus reset in progress\n");
1872
goto end;
1873
}
1874
if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1875
ohci_notice(ohci, "malconfigured bus\n");
1876
goto end;
1877
}
1878
ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1879
OHCI1394_NodeID_nodeNumber);
1880
1881
is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1882
if (!(ohci->is_root && is_new_root))
1883
reg_write(ohci, OHCI1394_LinkControlSet,
1884
OHCI1394_LinkControl_cycleMaster);
1885
ohci->is_root = is_new_root;
1886
1887
reg = reg_read(ohci, OHCI1394_SelfIDCount);
1888
if (ohci1394_self_id_count_is_error(reg)) {
1889
ohci_notice(ohci, "self ID receive error\n");
1890
goto end;
1891
}
1892
1893
trace_self_id_complete(ohci->card.index, reg, ohci->self_id, has_be_header_quirk(ohci));
1894
1895
/*
1896
* The count in the SelfIDCount register is the number of
1897
* bytes in the self ID receive buffer. Since we also receive
1898
* the inverted quadlets and a header quadlet, we shift one
1899
* bit extra to get the actual number of self IDs.
1900
*/
1901
self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
1902
1903
if (self_id_count > 252) {
1904
ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1905
goto end;
1906
}
1907
1908
quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
1909
generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
1910
rmb();
1911
1912
for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1913
u32 id = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
1914
u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
1915
1916
if (id != ~id2) {
1917
/*
1918
* If the invalid data looks like a cycle start packet,
1919
* it's likely to be the result of the cycle master
1920
* having a wrong gap count. In this case, the self IDs
1921
* so far are valid and should be processed so that the
1922
* bus manager can then correct the gap count.
1923
*/
1924
if (id == 0xffff008f) {
1925
ohci_notice(ohci, "ignoring spurious self IDs\n");
1926
self_id_count = j;
1927
break;
1928
}
1929
1930
ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1931
j, self_id_count, id, id2);
1932
goto end;
1933
}
1934
ohci->self_id_buffer[j] = id;
1935
}
1936
1937
if (ohci->quirks & QUIRK_TI_SLLZ059) {
1938
self_id_count = find_and_insert_self_id(ohci, self_id_count);
1939
if (self_id_count < 0) {
1940
ohci_notice(ohci,
1941
"could not construct local self ID\n");
1942
goto end;
1943
}
1944
}
1945
1946
if (self_id_count == 0) {
1947
ohci_notice(ohci, "no self IDs\n");
1948
goto end;
1949
}
1950
rmb();
1951
1952
/*
1953
* Check the consistency of the self IDs we just read. The
1954
* problem we face is that a new bus reset can start while we
1955
* read out the self IDs from the DMA buffer. If this happens,
1956
* the DMA buffer will be overwritten with new self IDs and we
1957
* will read out inconsistent data. The OHCI specification
1958
* (section 11.2) recommends a technique similar to
1959
* linux/seqlock.h, where we remember the generation of the
1960
* self IDs in the buffer before reading them out and compare
1961
* it to the current generation after reading them out. If
1962
* the two generations match we know we have a consistent set
1963
* of self IDs.
1964
*/
1965
1966
reg = reg_read(ohci, OHCI1394_SelfIDCount);
1967
new_generation = ohci1394_self_id_count_get_generation(reg);
1968
if (new_generation != generation) {
1969
ohci_notice(ohci, "new bus reset, discarding self ids\n");
1970
goto end;
1971
}
1972
1973
// FIXME: Document how the locking works.
1974
scoped_guard(spinlock_irq, &ohci->lock) {
1975
ohci->generation = -1; // prevent AT packet queueing
1976
context_stop(&ohci->at_request_ctx.context);
1977
context_stop(&ohci->at_response_ctx.context);
1978
}
1979
1980
/*
1981
* Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1982
* packets in the AT queues and software needs to drain them.
1983
* Some OHCI 1.1 controllers (JMicron) apparently require this too.
1984
*/
1985
at_context_flush(&ohci->at_request_ctx);
1986
at_context_flush(&ohci->at_response_ctx);
1987
1988
scoped_guard(spinlock_irq, &ohci->lock) {
1989
ohci->generation = generation;
1990
reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1991
reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1992
1993
if (ohci->quirks & QUIRK_RESET_PACKET)
1994
ohci->request_generation = generation;
1995
1996
// This next bit is unrelated to the AT context stuff but we have to do it under the
1997
// spinlock also. If a new config rom was set up before this reset, the old one is
1998
// now no longer in use and we can free it. Update the config rom pointers to point
1999
// to the current config rom and clear the next_config_rom pointer so a new update
2000
// can take place.
2001
if (ohci->next_config_rom != NULL) {
2002
if (ohci->next_config_rom != ohci->config_rom) {
2003
free_rom = ohci->config_rom;
2004
free_rom_bus = ohci->config_rom_bus;
2005
}
2006
ohci->config_rom = ohci->next_config_rom;
2007
ohci->config_rom_bus = ohci->next_config_rom_bus;
2008
ohci->next_config_rom = NULL;
2009
2010
// Restore config_rom image and manually update config_rom registers.
2011
// Writing the header quadlet will indicate that the config rom is ready,
2012
// so we do that last.
2013
reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2]));
2014
ohci->config_rom[0] = ohci->next_header;
2015
reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(ohci->next_header));
2016
}
2017
2018
if (param_remote_dma) {
2019
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2020
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2021
}
2022
}
2023
2024
if (free_rom)
2025
dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2026
2027
fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2028
self_id_count, ohci->self_id_buffer,
2029
ohci->csr_state_setclear_abdicate);
2030
ohci->csr_state_setclear_abdicate = false;
2031
end:
2032
return IRQ_HANDLED;
2033
}
2034
2035
static irqreturn_t irq_handler(int irq, void *data)
2036
{
2037
struct fw_ohci *ohci = data;
2038
u32 event, iso_event;
2039
int i;
2040
2041
event = reg_read(ohci, OHCI1394_IntEventClear);
2042
2043
if (!event || !~event)
2044
return IRQ_NONE;
2045
2046
/*
2047
* busReset and postedWriteErr events must not be cleared yet
2048
* (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2049
*/
2050
reg_write(ohci, OHCI1394_IntEventClear,
2051
event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2052
trace_irqs(ohci->card.index, event);
2053
2054
// The flag is masked again at handle_selfid_complete_event() scheduled by selfID event.
2055
if (event & OHCI1394_busReset)
2056
reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2057
2058
if (event & OHCI1394_RQPkt)
2059
queue_work(ohci->card.async_wq, &ohci->ar_request_ctx.work);
2060
2061
if (event & OHCI1394_RSPkt)
2062
queue_work(ohci->card.async_wq, &ohci->ar_response_ctx.work);
2063
2064
if (event & OHCI1394_reqTxComplete)
2065
queue_work(ohci->card.async_wq, &ohci->at_request_ctx.work);
2066
2067
if (event & OHCI1394_respTxComplete)
2068
queue_work(ohci->card.async_wq, &ohci->at_response_ctx.work);
2069
2070
if (event & OHCI1394_isochRx) {
2071
iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2072
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2073
2074
while (iso_event) {
2075
i = ffs(iso_event) - 1;
2076
fw_iso_context_schedule_flush_completions(&ohci->ir_context_list[i].base);
2077
iso_event &= ~(1 << i);
2078
}
2079
}
2080
2081
if (event & OHCI1394_isochTx) {
2082
iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2083
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2084
2085
while (iso_event) {
2086
i = ffs(iso_event) - 1;
2087
fw_iso_context_schedule_flush_completions(&ohci->it_context_list[i].base);
2088
iso_event &= ~(1 << i);
2089
}
2090
}
2091
2092
if (unlikely(event & OHCI1394_regAccessFail))
2093
ohci_err(ohci, "register access failure\n");
2094
2095
if (unlikely(event & OHCI1394_postedWriteErr)) {
2096
reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2097
reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2098
reg_write(ohci, OHCI1394_IntEventClear,
2099
OHCI1394_postedWriteErr);
2100
dev_err_ratelimited(ohci->card.device, "PCI posted write error\n");
2101
}
2102
2103
if (unlikely(event & OHCI1394_cycleTooLong)) {
2104
dev_notice_ratelimited(ohci->card.device, "isochronous cycle too long\n");
2105
reg_write(ohci, OHCI1394_LinkControlSet,
2106
OHCI1394_LinkControl_cycleMaster);
2107
}
2108
2109
if (unlikely(event & OHCI1394_cycleInconsistent)) {
2110
/*
2111
* We need to clear this event bit in order to make
2112
* cycleMatch isochronous I/O work. In theory we should
2113
* stop active cycleMatch iso contexts now and restart
2114
* them at least two cycles later. (FIXME?)
2115
*/
2116
dev_notice_ratelimited(ohci->card.device, "isochronous cycle inconsistent\n");
2117
}
2118
2119
if (unlikely(event & OHCI1394_unrecoverableError))
2120
handle_dead_contexts(ohci);
2121
2122
if (event & OHCI1394_cycle64Seconds) {
2123
guard(spinlock)(&ohci->lock);
2124
update_bus_time(ohci);
2125
} else
2126
flush_writes(ohci);
2127
2128
if (event & OHCI1394_selfIDComplete)
2129
return IRQ_WAKE_THREAD;
2130
else
2131
return IRQ_HANDLED;
2132
}
2133
2134
static int software_reset(struct fw_ohci *ohci)
2135
{
2136
u32 val;
2137
int i;
2138
2139
reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2140
for (i = 0; i < 500; i++) {
2141
val = reg_read(ohci, OHCI1394_HCControlSet);
2142
if (!~val)
2143
return -ENODEV; /* Card was ejected. */
2144
2145
if (!(val & OHCI1394_HCControl_softReset))
2146
return 0;
2147
2148
msleep(1);
2149
}
2150
2151
return -EBUSY;
2152
}
2153
2154
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2155
{
2156
size_t size = length * 4;
2157
2158
memcpy(dest, src, size);
2159
if (size < CONFIG_ROM_SIZE)
2160
memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2161
}
2162
2163
static int configure_1394a_enhancements(struct fw_ohci *ohci)
2164
{
2165
bool enable_1394a;
2166
int ret, clear, set, offset;
2167
2168
/* Check if the driver should configure link and PHY. */
2169
if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2170
OHCI1394_HCControl_programPhyEnable))
2171
return 0;
2172
2173
/* Paranoia: check whether the PHY supports 1394a, too. */
2174
enable_1394a = false;
2175
ret = read_phy_reg(ohci, 2);
2176
if (ret < 0)
2177
return ret;
2178
if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2179
ret = read_paged_phy_reg(ohci, 1, 8);
2180
if (ret < 0)
2181
return ret;
2182
if (ret >= 1)
2183
enable_1394a = true;
2184
}
2185
2186
if (ohci->quirks & QUIRK_NO_1394A)
2187
enable_1394a = false;
2188
2189
/* Configure PHY and link consistently. */
2190
if (enable_1394a) {
2191
clear = 0;
2192
set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2193
} else {
2194
clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2195
set = 0;
2196
}
2197
ret = update_phy_reg(ohci, 5, clear, set);
2198
if (ret < 0)
2199
return ret;
2200
2201
if (enable_1394a)
2202
offset = OHCI1394_HCControlSet;
2203
else
2204
offset = OHCI1394_HCControlClear;
2205
reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2206
2207
/* Clean up: configuration has been taken care of. */
2208
reg_write(ohci, OHCI1394_HCControlClear,
2209
OHCI1394_HCControl_programPhyEnable);
2210
2211
return 0;
2212
}
2213
2214
static int probe_tsb41ba3d(struct fw_ohci *ohci)
2215
{
2216
/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2217
static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2218
int reg, i;
2219
2220
reg = read_phy_reg(ohci, 2);
2221
if (reg < 0)
2222
return reg;
2223
if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2224
return 0;
2225
2226
for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2227
reg = read_paged_phy_reg(ohci, 1, i + 10);
2228
if (reg < 0)
2229
return reg;
2230
if (reg != id[i])
2231
return 0;
2232
}
2233
return 1;
2234
}
2235
2236
static int ohci_enable(struct fw_card *card,
2237
const __be32 *config_rom, size_t length)
2238
{
2239
struct fw_ohci *ohci = fw_ohci(card);
2240
u32 lps, version, irqs;
2241
int i, ret;
2242
2243
ret = software_reset(ohci);
2244
if (ret < 0) {
2245
ohci_err(ohci, "failed to reset ohci card\n");
2246
return ret;
2247
}
2248
2249
/*
2250
* Now enable LPS, which we need in order to start accessing
2251
* most of the registers. In fact, on some cards (ALI M5251),
2252
* accessing registers in the SClk domain without LPS enabled
2253
* will lock up the machine. Wait 50msec to make sure we have
2254
* full link enabled. However, with some cards (well, at least
2255
* a JMicron PCIe card), we have to try again sometimes.
2256
*
2257
* TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2258
* cannot actually use the phy at that time. These need tens of
2259
* millisecods pause between LPS write and first phy access too.
2260
*/
2261
2262
reg_write(ohci, OHCI1394_HCControlSet,
2263
OHCI1394_HCControl_LPS |
2264
OHCI1394_HCControl_postedWriteEnable);
2265
flush_writes(ohci);
2266
2267
for (lps = 0, i = 0; !lps && i < 3; i++) {
2268
msleep(50);
2269
lps = reg_read(ohci, OHCI1394_HCControlSet) &
2270
OHCI1394_HCControl_LPS;
2271
}
2272
2273
if (!lps) {
2274
ohci_err(ohci, "failed to set Link Power Status\n");
2275
return -EIO;
2276
}
2277
2278
if (ohci->quirks & QUIRK_TI_SLLZ059) {
2279
ret = probe_tsb41ba3d(ohci);
2280
if (ret < 0)
2281
return ret;
2282
if (ret)
2283
ohci_notice(ohci, "local TSB41BA3D phy\n");
2284
else
2285
ohci->quirks &= ~QUIRK_TI_SLLZ059;
2286
}
2287
2288
reg_write(ohci, OHCI1394_HCControlClear,
2289
OHCI1394_HCControl_noByteSwapData);
2290
2291
reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2292
reg_write(ohci, OHCI1394_LinkControlSet,
2293
OHCI1394_LinkControl_cycleTimerEnable |
2294
OHCI1394_LinkControl_cycleMaster);
2295
2296
reg_write(ohci, OHCI1394_ATRetries,
2297
OHCI1394_MAX_AT_REQ_RETRIES |
2298
(OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2299
(OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2300
(200 << 16));
2301
2302
ohci->bus_time_running = false;
2303
2304
for (i = 0; i < 32; i++)
2305
if (ohci->ir_context_support & (1 << i))
2306
reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2307
IR_CONTEXT_MULTI_CHANNEL_MODE);
2308
2309
version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2310
if (version >= OHCI_VERSION_1_1) {
2311
reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2312
0xfffffffe);
2313
card->broadcast_channel_auto_allocated = true;
2314
}
2315
2316
/* Get implemented bits of the priority arbitration request counter. */
2317
reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2318
ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2319
reg_write(ohci, OHCI1394_FairnessControl, 0);
2320
card->priority_budget_implemented = ohci->pri_req_max != 0;
2321
2322
reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2323
reg_write(ohci, OHCI1394_IntEventClear, ~0);
2324
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2325
2326
ret = configure_1394a_enhancements(ohci);
2327
if (ret < 0)
2328
return ret;
2329
2330
/* Activate link_on bit and contender bit in our self ID packets.*/
2331
ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2332
if (ret < 0)
2333
return ret;
2334
2335
/*
2336
* When the link is not yet enabled, the atomic config rom
2337
* update mechanism described below in ohci_set_config_rom()
2338
* is not active. We have to update ConfigRomHeader and
2339
* BusOptions manually, and the write to ConfigROMmap takes
2340
* effect immediately. We tie this to the enabling of the
2341
* link, so we have a valid config rom before enabling - the
2342
* OHCI requires that ConfigROMhdr and BusOptions have valid
2343
* values before enabling.
2344
*
2345
* However, when the ConfigROMmap is written, some controllers
2346
* always read back quadlets 0 and 2 from the config rom to
2347
* the ConfigRomHeader and BusOptions registers on bus reset.
2348
* They shouldn't do that in this initial case where the link
2349
* isn't enabled. This means we have to use the same
2350
* workaround here, setting the bus header to 0 and then write
2351
* the right values in the bus reset work item.
2352
*/
2353
2354
if (config_rom) {
2355
ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2356
&ohci->next_config_rom_bus, GFP_KERNEL);
2357
if (ohci->next_config_rom == NULL)
2358
return -ENOMEM;
2359
2360
copy_config_rom(ohci->next_config_rom, config_rom, length);
2361
} else {
2362
/*
2363
* In the suspend case, config_rom is NULL, which
2364
* means that we just reuse the old config rom.
2365
*/
2366
ohci->next_config_rom = ohci->config_rom;
2367
ohci->next_config_rom_bus = ohci->config_rom_bus;
2368
}
2369
2370
ohci->next_header = ohci->next_config_rom[0];
2371
ohci->next_config_rom[0] = 0;
2372
reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2373
reg_write(ohci, OHCI1394_BusOptions,
2374
be32_to_cpu(ohci->next_config_rom[2]));
2375
reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2376
2377
reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2378
2379
irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2380
OHCI1394_RQPkt | OHCI1394_RSPkt |
2381
OHCI1394_isochTx | OHCI1394_isochRx |
2382
OHCI1394_postedWriteErr |
2383
OHCI1394_selfIDComplete |
2384
OHCI1394_regAccessFail |
2385
OHCI1394_cycleInconsistent |
2386
OHCI1394_unrecoverableError |
2387
OHCI1394_cycleTooLong |
2388
OHCI1394_masterIntEnable |
2389
OHCI1394_busReset;
2390
reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2391
2392
reg_write(ohci, OHCI1394_HCControlSet,
2393
OHCI1394_HCControl_linkEnable |
2394
OHCI1394_HCControl_BIBimageValid);
2395
2396
reg_write(ohci, OHCI1394_LinkControlSet,
2397
OHCI1394_LinkControl_rcvSelfID |
2398
OHCI1394_LinkControl_rcvPhyPkt);
2399
2400
ar_context_run(&ohci->ar_request_ctx);
2401
ar_context_run(&ohci->ar_response_ctx);
2402
2403
flush_writes(ohci);
2404
2405
/* We are ready to go, reset bus to finish initialization. */
2406
fw_schedule_bus_reset(&ohci->card, false, true);
2407
2408
return 0;
2409
}
2410
2411
static void ohci_disable(struct fw_card *card)
2412
{
2413
struct pci_dev *pdev = to_pci_dev(card->device);
2414
struct fw_ohci *ohci = pci_get_drvdata(pdev);
2415
int i, irq = pci_irq_vector(pdev, 0);
2416
2417
// If the removal is happening from the suspend state, LPS won't be enabled and host
2418
// registers (eg., IntMaskClear) won't be accessible.
2419
if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS))
2420
return;
2421
2422
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2423
flush_writes(ohci);
2424
2425
if (irq >= 0)
2426
synchronize_irq(irq);
2427
2428
flush_work(&ohci->ar_request_ctx.work);
2429
flush_work(&ohci->ar_response_ctx.work);
2430
flush_work(&ohci->at_request_ctx.work);
2431
flush_work(&ohci->at_response_ctx.work);
2432
2433
for (i = 0; i < ohci->n_ir; ++i) {
2434
if (!(ohci->ir_context_mask & BIT(i)))
2435
flush_work(&ohci->ir_context_list[i].base.work);
2436
}
2437
for (i = 0; i < ohci->n_it; ++i) {
2438
if (!(ohci->it_context_mask & BIT(i)))
2439
flush_work(&ohci->it_context_list[i].base.work);
2440
}
2441
2442
at_context_flush(&ohci->at_request_ctx);
2443
at_context_flush(&ohci->at_response_ctx);
2444
}
2445
2446
static int ohci_set_config_rom(struct fw_card *card,
2447
const __be32 *config_rom, size_t length)
2448
{
2449
struct fw_ohci *ohci;
2450
__be32 *next_config_rom;
2451
dma_addr_t next_config_rom_bus;
2452
2453
ohci = fw_ohci(card);
2454
2455
/*
2456
* When the OHCI controller is enabled, the config rom update
2457
* mechanism is a bit tricky, but easy enough to use. See
2458
* section 5.5.6 in the OHCI specification.
2459
*
2460
* The OHCI controller caches the new config rom address in a
2461
* shadow register (ConfigROMmapNext) and needs a bus reset
2462
* for the changes to take place. When the bus reset is
2463
* detected, the controller loads the new values for the
2464
* ConfigRomHeader and BusOptions registers from the specified
2465
* config rom and loads ConfigROMmap from the ConfigROMmapNext
2466
* shadow register. All automatically and atomically.
2467
*
2468
* Now, there's a twist to this story. The automatic load of
2469
* ConfigRomHeader and BusOptions doesn't honor the
2470
* noByteSwapData bit, so with a be32 config rom, the
2471
* controller will load be32 values in to these registers
2472
* during the atomic update, even on little endian
2473
* architectures. The workaround we use is to put a 0 in the
2474
* header quadlet; 0 is endian agnostic and means that the
2475
* config rom isn't ready yet. In the bus reset work item we
2476
* then set up the real values for the two registers.
2477
*
2478
* We use ohci->lock to avoid racing with the code that sets
2479
* ohci->next_config_rom to NULL (see handle_selfid_complete_event).
2480
*/
2481
2482
next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2483
&next_config_rom_bus, GFP_KERNEL);
2484
if (next_config_rom == NULL)
2485
return -ENOMEM;
2486
2487
scoped_guard(spinlock_irq, &ohci->lock) {
2488
// If there is not an already pending config_rom update, push our new allocation
2489
// into the ohci->next_config_rom and then mark the local variable as null so that
2490
// we won't deallocate the new buffer.
2491
//
2492
// OTOH, if there is a pending config_rom update, just use that buffer with the new
2493
// config_rom data, and let this routine free the unused DMA allocation.
2494
if (ohci->next_config_rom == NULL) {
2495
ohci->next_config_rom = next_config_rom;
2496
ohci->next_config_rom_bus = next_config_rom_bus;
2497
next_config_rom = NULL;
2498
}
2499
2500
copy_config_rom(ohci->next_config_rom, config_rom, length);
2501
2502
ohci->next_header = config_rom[0];
2503
ohci->next_config_rom[0] = 0;
2504
2505
reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2506
}
2507
2508
/* If we didn't use the DMA allocation, delete it. */
2509
if (next_config_rom != NULL) {
2510
dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2511
next_config_rom_bus);
2512
}
2513
2514
/*
2515
* Now initiate a bus reset to have the changes take
2516
* effect. We clean up the old config rom memory and DMA
2517
* mappings in the bus reset work item, since the OHCI
2518
* controller could need to access it before the bus reset
2519
* takes effect.
2520
*/
2521
2522
fw_schedule_bus_reset(&ohci->card, true, true);
2523
2524
return 0;
2525
}
2526
2527
static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2528
{
2529
struct fw_ohci *ohci = fw_ohci(card);
2530
2531
at_context_transmit(&ohci->at_request_ctx, packet);
2532
}
2533
2534
static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2535
{
2536
struct fw_ohci *ohci = fw_ohci(card);
2537
2538
at_context_transmit(&ohci->at_response_ctx, packet);
2539
}
2540
2541
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2542
{
2543
struct fw_ohci *ohci = fw_ohci(card);
2544
struct at_context *ctx = &ohci->at_request_ctx;
2545
struct driver_data *driver_data = packet->driver_data;
2546
int ret = -ENOENT;
2547
2548
// Avoid dead lock due to programming mistake.
2549
if (WARN_ON_ONCE(current_work() == &ctx->work))
2550
return 0;
2551
disable_work_sync(&ctx->work);
2552
2553
if (packet->ack != 0)
2554
goto out;
2555
2556
if (packet->payload_mapped)
2557
dma_unmap_single(ohci->card.device, packet->payload_bus,
2558
packet->payload_length, DMA_TO_DEVICE);
2559
2560
driver_data->packet = NULL;
2561
packet->ack = RCODE_CANCELLED;
2562
2563
// Timestamping on behalf of the hardware.
2564
packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2565
2566
packet->callback(packet, &ohci->card, packet->ack);
2567
ret = 0;
2568
out:
2569
enable_work(&ctx->work);
2570
2571
return ret;
2572
}
2573
2574
static int ohci_enable_phys_dma(struct fw_card *card,
2575
int node_id, int generation)
2576
{
2577
struct fw_ohci *ohci = fw_ohci(card);
2578
int n, ret = 0;
2579
2580
if (param_remote_dma)
2581
return 0;
2582
2583
/*
2584
* FIXME: Make sure this bitmask is cleared when we clear the busReset
2585
* interrupt bit. Clear physReqResourceAllBuses on bus reset.
2586
*/
2587
2588
guard(spinlock_irqsave)(&ohci->lock);
2589
2590
if (ohci->generation != generation)
2591
return -ESTALE;
2592
2593
/*
2594
* Note, if the node ID contains a non-local bus ID, physical DMA is
2595
* enabled for _all_ nodes on remote buses.
2596
*/
2597
2598
n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2599
if (n < 32)
2600
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2601
else
2602
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2603
2604
flush_writes(ohci);
2605
2606
return ret;
2607
}
2608
2609
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2610
{
2611
struct fw_ohci *ohci = fw_ohci(card);
2612
u32 value;
2613
2614
switch (csr_offset) {
2615
case CSR_STATE_CLEAR:
2616
case CSR_STATE_SET:
2617
if (ohci->is_root &&
2618
(reg_read(ohci, OHCI1394_LinkControlSet) &
2619
OHCI1394_LinkControl_cycleMaster))
2620
value = CSR_STATE_BIT_CMSTR;
2621
else
2622
value = 0;
2623
if (ohci->csr_state_setclear_abdicate)
2624
value |= CSR_STATE_BIT_ABDICATE;
2625
2626
return value;
2627
2628
case CSR_NODE_IDS:
2629
return reg_read(ohci, OHCI1394_NodeID) << 16;
2630
2631
case CSR_CYCLE_TIME:
2632
return get_cycle_time(ohci);
2633
2634
case CSR_BUS_TIME:
2635
{
2636
// We might be called just after the cycle timer has wrapped around but just before
2637
// the cycle64Seconds handler, so we better check here, too, if the bus time needs
2638
// to be updated.
2639
2640
guard(spinlock_irqsave)(&ohci->lock);
2641
return update_bus_time(ohci);
2642
}
2643
case CSR_BUSY_TIMEOUT:
2644
value = reg_read(ohci, OHCI1394_ATRetries);
2645
return (value >> 4) & 0x0ffff00f;
2646
2647
case CSR_PRIORITY_BUDGET:
2648
return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2649
(ohci->pri_req_max << 8);
2650
2651
default:
2652
WARN_ON(1);
2653
return 0;
2654
}
2655
}
2656
2657
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2658
{
2659
struct fw_ohci *ohci = fw_ohci(card);
2660
2661
switch (csr_offset) {
2662
case CSR_STATE_CLEAR:
2663
if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2664
reg_write(ohci, OHCI1394_LinkControlClear,
2665
OHCI1394_LinkControl_cycleMaster);
2666
flush_writes(ohci);
2667
}
2668
if (value & CSR_STATE_BIT_ABDICATE)
2669
ohci->csr_state_setclear_abdicate = false;
2670
break;
2671
2672
case CSR_STATE_SET:
2673
if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2674
reg_write(ohci, OHCI1394_LinkControlSet,
2675
OHCI1394_LinkControl_cycleMaster);
2676
flush_writes(ohci);
2677
}
2678
if (value & CSR_STATE_BIT_ABDICATE)
2679
ohci->csr_state_setclear_abdicate = true;
2680
break;
2681
2682
case CSR_NODE_IDS:
2683
reg_write(ohci, OHCI1394_NodeID, value >> 16);
2684
flush_writes(ohci);
2685
break;
2686
2687
case CSR_CYCLE_TIME:
2688
reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2689
reg_write(ohci, OHCI1394_IntEventSet,
2690
OHCI1394_cycleInconsistent);
2691
flush_writes(ohci);
2692
break;
2693
2694
case CSR_BUS_TIME:
2695
{
2696
guard(spinlock_irqsave)(&ohci->lock);
2697
ohci->bus_time = (update_bus_time(ohci) & 0x40) | (value & ~0x7f);
2698
break;
2699
}
2700
case CSR_BUSY_TIMEOUT:
2701
value = (value & 0xf) | ((value & 0xf) << 4) |
2702
((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2703
reg_write(ohci, OHCI1394_ATRetries, value);
2704
flush_writes(ohci);
2705
break;
2706
2707
case CSR_PRIORITY_BUDGET:
2708
reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2709
flush_writes(ohci);
2710
break;
2711
2712
default:
2713
WARN_ON(1);
2714
break;
2715
}
2716
}
2717
2718
static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2719
{
2720
trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2721
ctx->header_length);
2722
trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2723
ctx->header_length);
2724
2725
ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2726
ctx->header_length, ctx->header,
2727
ctx->base.callback_data);
2728
ctx->header_length = 0;
2729
}
2730
2731
static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2732
{
2733
u32 *ctx_hdr;
2734
2735
if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2736
if (ctx->base.drop_overflow_headers)
2737
return;
2738
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2739
}
2740
2741
ctx_hdr = ctx->header + ctx->header_length;
2742
ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2743
2744
/*
2745
* The two iso header quadlets are byteswapped to little
2746
* endian by the controller, but we want to present them
2747
* as big endian for consistency with the bus endianness.
2748
*/
2749
if (ctx->base.header_size > 0)
2750
ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2751
if (ctx->base.header_size > 4)
2752
ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2753
if (ctx->base.header_size > 8)
2754
memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2755
ctx->header_length += ctx->base.header_size;
2756
}
2757
2758
static int handle_ir_packet_per_buffer(struct context *context,
2759
struct descriptor *d,
2760
struct descriptor *last)
2761
{
2762
struct iso_context *ctx =
2763
container_of(context, struct iso_context, context);
2764
struct descriptor *pd;
2765
u32 buffer_dma;
2766
2767
for (pd = d; pd <= last; pd++)
2768
if (pd->transfer_status)
2769
break;
2770
if (pd > last)
2771
/* Descriptor(s) not done yet, stop iteration */
2772
return 0;
2773
2774
while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2775
d++;
2776
buffer_dma = le32_to_cpu(d->data_address);
2777
dma_sync_single_range_for_cpu(context->ohci->card.device,
2778
buffer_dma & PAGE_MASK,
2779
buffer_dma & ~PAGE_MASK,
2780
le16_to_cpu(d->req_count),
2781
DMA_FROM_DEVICE);
2782
}
2783
2784
copy_iso_headers(ctx, (u32 *) (last + 1));
2785
2786
if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2787
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2788
2789
return 1;
2790
}
2791
2792
/* d == last because each descriptor block is only a single descriptor. */
2793
static int handle_ir_buffer_fill(struct context *context,
2794
struct descriptor *d,
2795
struct descriptor *last)
2796
{
2797
struct iso_context *ctx =
2798
container_of(context, struct iso_context, context);
2799
unsigned int req_count, res_count, completed;
2800
u32 buffer_dma;
2801
2802
req_count = le16_to_cpu(last->req_count);
2803
res_count = le16_to_cpu(READ_ONCE(last->res_count));
2804
completed = req_count - res_count;
2805
buffer_dma = le32_to_cpu(last->data_address);
2806
2807
if (completed > 0) {
2808
ctx->mc_buffer_bus = buffer_dma;
2809
ctx->mc_completed = completed;
2810
}
2811
2812
if (res_count != 0)
2813
/* Descriptor(s) not done yet, stop iteration */
2814
return 0;
2815
2816
dma_sync_single_range_for_cpu(context->ohci->card.device,
2817
buffer_dma & PAGE_MASK,
2818
buffer_dma & ~PAGE_MASK,
2819
completed, DMA_FROM_DEVICE);
2820
2821
if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2822
trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2823
FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2824
2825
ctx->base.callback.mc(&ctx->base,
2826
buffer_dma + completed,
2827
ctx->base.callback_data);
2828
ctx->mc_completed = 0;
2829
}
2830
2831
return 1;
2832
}
2833
2834
static void flush_ir_buffer_fill(struct iso_context *ctx)
2835
{
2836
dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2837
ctx->mc_buffer_bus & PAGE_MASK,
2838
ctx->mc_buffer_bus & ~PAGE_MASK,
2839
ctx->mc_completed, DMA_FROM_DEVICE);
2840
2841
trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed,
2842
FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2843
2844
ctx->base.callback.mc(&ctx->base,
2845
ctx->mc_buffer_bus + ctx->mc_completed,
2846
ctx->base.callback_data);
2847
ctx->mc_completed = 0;
2848
}
2849
2850
static inline void sync_it_packet_for_cpu(struct context *context,
2851
struct descriptor *pd)
2852
{
2853
__le16 control;
2854
u32 buffer_dma;
2855
2856
/* only packets beginning with OUTPUT_MORE* have data buffers */
2857
if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2858
return;
2859
2860
/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2861
pd += 2;
2862
2863
/*
2864
* If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2865
* data buffer is in the context program's coherent page and must not
2866
* be synced.
2867
*/
2868
if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2869
(context->current_bus & PAGE_MASK)) {
2870
if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2871
return;
2872
pd++;
2873
}
2874
2875
do {
2876
buffer_dma = le32_to_cpu(pd->data_address);
2877
dma_sync_single_range_for_cpu(context->ohci->card.device,
2878
buffer_dma & PAGE_MASK,
2879
buffer_dma & ~PAGE_MASK,
2880
le16_to_cpu(pd->req_count),
2881
DMA_TO_DEVICE);
2882
control = pd->control;
2883
pd++;
2884
} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2885
}
2886
2887
static int handle_it_packet(struct context *context,
2888
struct descriptor *d,
2889
struct descriptor *last)
2890
{
2891
struct iso_context *ctx =
2892
container_of(context, struct iso_context, context);
2893
struct descriptor *pd;
2894
__be32 *ctx_hdr;
2895
2896
for (pd = d; pd <= last; pd++)
2897
if (pd->transfer_status)
2898
break;
2899
if (pd > last)
2900
/* Descriptor(s) not done yet, stop iteration */
2901
return 0;
2902
2903
sync_it_packet_for_cpu(context, d);
2904
2905
if (ctx->header_length + 4 > PAGE_SIZE) {
2906
if (ctx->base.drop_overflow_headers)
2907
return 1;
2908
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2909
}
2910
2911
ctx_hdr = ctx->header + ctx->header_length;
2912
ctx->last_timestamp = le16_to_cpu(last->res_count);
2913
/* Present this value as big-endian to match the receive code */
2914
*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2915
le16_to_cpu(pd->res_count));
2916
ctx->header_length += 4;
2917
2918
if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2919
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2920
2921
return 1;
2922
}
2923
2924
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2925
{
2926
u32 hi = channels >> 32, lo = channels;
2927
2928
reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2929
reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2930
reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2931
reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2932
ohci->mc_channels = channels;
2933
}
2934
2935
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2936
int type, int channel, size_t header_size)
2937
{
2938
struct fw_ohci *ohci = fw_ohci(card);
2939
struct iso_context *ctx;
2940
descriptor_callback_t callback;
2941
u64 *channels;
2942
u32 *mask, regs;
2943
int index, ret = -EBUSY;
2944
2945
scoped_guard(spinlock_irq, &ohci->lock) {
2946
switch (type) {
2947
case FW_ISO_CONTEXT_TRANSMIT:
2948
mask = &ohci->it_context_mask;
2949
callback = handle_it_packet;
2950
index = ffs(*mask) - 1;
2951
if (index >= 0) {
2952
*mask &= ~(1 << index);
2953
regs = OHCI1394_IsoXmitContextBase(index);
2954
ctx = &ohci->it_context_list[index];
2955
}
2956
break;
2957
2958
case FW_ISO_CONTEXT_RECEIVE:
2959
channels = &ohci->ir_context_channels;
2960
mask = &ohci->ir_context_mask;
2961
callback = handle_ir_packet_per_buffer;
2962
index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2963
if (index >= 0) {
2964
*channels &= ~(1ULL << channel);
2965
*mask &= ~(1 << index);
2966
regs = OHCI1394_IsoRcvContextBase(index);
2967
ctx = &ohci->ir_context_list[index];
2968
}
2969
break;
2970
2971
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2972
mask = &ohci->ir_context_mask;
2973
callback = handle_ir_buffer_fill;
2974
index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2975
if (index >= 0) {
2976
ohci->mc_allocated = true;
2977
*mask &= ~(1 << index);
2978
regs = OHCI1394_IsoRcvContextBase(index);
2979
ctx = &ohci->ir_context_list[index];
2980
}
2981
break;
2982
2983
default:
2984
index = -1;
2985
ret = -ENOSYS;
2986
}
2987
2988
if (index < 0)
2989
return ERR_PTR(ret);
2990
}
2991
2992
memset(ctx, 0, sizeof(*ctx));
2993
ctx->header_length = 0;
2994
ctx->header = (void *) __get_free_page(GFP_KERNEL);
2995
if (ctx->header == NULL) {
2996
ret = -ENOMEM;
2997
goto out;
2998
}
2999
ret = context_init(&ctx->context, ohci, regs, callback);
3000
if (ret < 0)
3001
goto out_with_header;
3002
fw_iso_context_init_work(&ctx->base, ohci_isoc_context_work);
3003
3004
if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3005
set_multichannel_mask(ohci, 0);
3006
ctx->mc_completed = 0;
3007
}
3008
3009
return &ctx->base;
3010
3011
out_with_header:
3012
free_page((unsigned long)ctx->header);
3013
out:
3014
scoped_guard(spinlock_irq, &ohci->lock) {
3015
switch (type) {
3016
case FW_ISO_CONTEXT_RECEIVE:
3017
*channels |= 1ULL << channel;
3018
break;
3019
3020
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3021
ohci->mc_allocated = false;
3022
break;
3023
}
3024
*mask |= 1 << index;
3025
}
3026
3027
return ERR_PTR(ret);
3028
}
3029
3030
static int ohci_start_iso(struct fw_iso_context *base,
3031
s32 cycle, u32 sync, u32 tags)
3032
{
3033
struct iso_context *ctx = container_of(base, struct iso_context, base);
3034
struct fw_ohci *ohci = ctx->context.ohci;
3035
u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3036
int index;
3037
3038
/* the controller cannot start without any queued packets */
3039
if (ctx->context.last->branch_address == 0)
3040
return -ENODATA;
3041
3042
switch (ctx->base.type) {
3043
case FW_ISO_CONTEXT_TRANSMIT:
3044
index = ctx - ohci->it_context_list;
3045
match = 0;
3046
if (cycle >= 0)
3047
match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3048
(cycle & 0x7fff) << 16;
3049
3050
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3051
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3052
context_run(&ctx->context, match);
3053
break;
3054
3055
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3056
control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3057
fallthrough;
3058
case FW_ISO_CONTEXT_RECEIVE:
3059
index = ctx - ohci->ir_context_list;
3060
match = (tags << 28) | (sync << 8) | ctx->base.channel;
3061
if (cycle >= 0) {
3062
match |= (cycle & 0x07fff) << 12;
3063
control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3064
}
3065
3066
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3067
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3068
reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3069
context_run(&ctx->context, control);
3070
3071
ctx->sync = sync;
3072
ctx->tags = tags;
3073
3074
break;
3075
}
3076
3077
return 0;
3078
}
3079
3080
static int ohci_stop_iso(struct fw_iso_context *base)
3081
{
3082
struct fw_ohci *ohci = fw_ohci(base->card);
3083
struct iso_context *ctx = container_of(base, struct iso_context, base);
3084
int index;
3085
3086
switch (ctx->base.type) {
3087
case FW_ISO_CONTEXT_TRANSMIT:
3088
index = ctx - ohci->it_context_list;
3089
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3090
break;
3091
3092
case FW_ISO_CONTEXT_RECEIVE:
3093
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3094
index = ctx - ohci->ir_context_list;
3095
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3096
break;
3097
}
3098
flush_writes(ohci);
3099
context_stop(&ctx->context);
3100
3101
return 0;
3102
}
3103
3104
static void ohci_free_iso_context(struct fw_iso_context *base)
3105
{
3106
struct fw_ohci *ohci = fw_ohci(base->card);
3107
struct iso_context *ctx = container_of(base, struct iso_context, base);
3108
int index;
3109
3110
ohci_stop_iso(base);
3111
context_release(&ctx->context);
3112
free_page((unsigned long)ctx->header);
3113
3114
guard(spinlock_irqsave)(&ohci->lock);
3115
3116
switch (base->type) {
3117
case FW_ISO_CONTEXT_TRANSMIT:
3118
index = ctx - ohci->it_context_list;
3119
ohci->it_context_mask |= 1 << index;
3120
break;
3121
3122
case FW_ISO_CONTEXT_RECEIVE:
3123
index = ctx - ohci->ir_context_list;
3124
ohci->ir_context_mask |= 1 << index;
3125
ohci->ir_context_channels |= 1ULL << base->channel;
3126
break;
3127
3128
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3129
index = ctx - ohci->ir_context_list;
3130
ohci->ir_context_mask |= 1 << index;
3131
ohci->ir_context_channels |= ohci->mc_channels;
3132
ohci->mc_channels = 0;
3133
ohci->mc_allocated = false;
3134
break;
3135
}
3136
}
3137
3138
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3139
{
3140
struct fw_ohci *ohci = fw_ohci(base->card);
3141
3142
switch (base->type) {
3143
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3144
{
3145
guard(spinlock_irqsave)(&ohci->lock);
3146
3147
// Don't allow multichannel to grab other contexts' channels.
3148
if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3149
*channels = ohci->ir_context_channels;
3150
return -EBUSY;
3151
} else {
3152
set_multichannel_mask(ohci, *channels);
3153
return 0;
3154
}
3155
}
3156
default:
3157
return -EINVAL;
3158
}
3159
}
3160
3161
static void __maybe_unused ohci_resume_iso_dma(struct fw_ohci *ohci)
3162
{
3163
int i;
3164
struct iso_context *ctx;
3165
3166
for (i = 0 ; i < ohci->n_ir ; i++) {
3167
ctx = &ohci->ir_context_list[i];
3168
if (ctx->context.running)
3169
ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3170
}
3171
3172
for (i = 0 ; i < ohci->n_it ; i++) {
3173
ctx = &ohci->it_context_list[i];
3174
if (ctx->context.running)
3175
ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3176
}
3177
}
3178
3179
static int queue_iso_transmit(struct iso_context *ctx,
3180
struct fw_iso_packet *packet,
3181
struct fw_iso_buffer *buffer,
3182
unsigned long payload)
3183
{
3184
struct descriptor *d, *last, *pd;
3185
struct fw_iso_packet *p;
3186
__le32 *header;
3187
dma_addr_t d_bus, page_bus;
3188
u32 z, header_z, payload_z, irq;
3189
u32 payload_index, payload_end_index, next_page_index;
3190
int page, end_page, i, length, offset;
3191
3192
p = packet;
3193
payload_index = payload;
3194
3195
if (p->skip)
3196
z = 1;
3197
else
3198
z = 2;
3199
if (p->header_length > 0)
3200
z++;
3201
3202
/* Determine the first page the payload isn't contained in. */
3203
end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3204
if (p->payload_length > 0)
3205
payload_z = end_page - (payload_index >> PAGE_SHIFT);
3206
else
3207
payload_z = 0;
3208
3209
z += payload_z;
3210
3211
/* Get header size in number of descriptors. */
3212
header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3213
3214
d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3215
if (d == NULL)
3216
return -ENOMEM;
3217
3218
if (!p->skip) {
3219
d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3220
d[0].req_count = cpu_to_le16(8);
3221
/*
3222
* Link the skip address to this descriptor itself. This causes
3223
* a context to skip a cycle whenever lost cycles or FIFO
3224
* overruns occur, without dropping the data. The application
3225
* should then decide whether this is an error condition or not.
3226
* FIXME: Make the context's cycle-lost behaviour configurable?
3227
*/
3228
d[0].branch_address = cpu_to_le32(d_bus | z);
3229
3230
header = (__le32 *) &d[1];
3231
3232
ohci1394_it_data_set_speed(header, ctx->base.speed);
3233
ohci1394_it_data_set_tag(header, p->tag);
3234
ohci1394_it_data_set_channel(header, ctx->base.channel);
3235
ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
3236
ohci1394_it_data_set_sync(header, p->sy);
3237
3238
ohci1394_it_data_set_data_length(header, p->header_length + p->payload_length);
3239
}
3240
3241
if (p->header_length > 0) {
3242
d[2].req_count = cpu_to_le16(p->header_length);
3243
d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3244
memcpy(&d[z], p->header, p->header_length);
3245
}
3246
3247
pd = d + z - payload_z;
3248
payload_end_index = payload_index + p->payload_length;
3249
for (i = 0; i < payload_z; i++) {
3250
page = payload_index >> PAGE_SHIFT;
3251
offset = payload_index & ~PAGE_MASK;
3252
next_page_index = (page + 1) << PAGE_SHIFT;
3253
length =
3254
min(next_page_index, payload_end_index) - payload_index;
3255
pd[i].req_count = cpu_to_le16(length);
3256
3257
page_bus = page_private(buffer->pages[page]);
3258
pd[i].data_address = cpu_to_le32(page_bus + offset);
3259
3260
dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3261
page_bus, offset, length,
3262
DMA_TO_DEVICE);
3263
3264
payload_index += length;
3265
}
3266
3267
if (p->interrupt)
3268
irq = DESCRIPTOR_IRQ_ALWAYS;
3269
else
3270
irq = DESCRIPTOR_NO_IRQ;
3271
3272
last = z == 2 ? d : d + z - 1;
3273
last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3274
DESCRIPTOR_STATUS |
3275
DESCRIPTOR_BRANCH_ALWAYS |
3276
irq);
3277
3278
context_append(&ctx->context, d, z, header_z);
3279
3280
return 0;
3281
}
3282
3283
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3284
struct fw_iso_packet *packet,
3285
struct fw_iso_buffer *buffer,
3286
unsigned long payload)
3287
{
3288
struct device *device = ctx->context.ohci->card.device;
3289
struct descriptor *d, *pd;
3290
dma_addr_t d_bus, page_bus;
3291
u32 z, header_z, rest;
3292
int i, j, length;
3293
int page, offset, packet_count, header_size, payload_per_buffer;
3294
3295
/*
3296
* The OHCI controller puts the isochronous header and trailer in the
3297
* buffer, so we need at least 8 bytes.
3298
*/
3299
packet_count = packet->header_length / ctx->base.header_size;
3300
header_size = max(ctx->base.header_size, (size_t)8);
3301
3302
/* Get header size in number of descriptors. */
3303
header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3304
page = payload >> PAGE_SHIFT;
3305
offset = payload & ~PAGE_MASK;
3306
payload_per_buffer = packet->payload_length / packet_count;
3307
3308
for (i = 0; i < packet_count; i++) {
3309
/* d points to the header descriptor */
3310
z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3311
d = context_get_descriptors(&ctx->context,
3312
z + header_z, &d_bus);
3313
if (d == NULL)
3314
return -ENOMEM;
3315
3316
d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3317
DESCRIPTOR_INPUT_MORE);
3318
if (packet->skip && i == 0)
3319
d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3320
d->req_count = cpu_to_le16(header_size);
3321
d->res_count = d->req_count;
3322
d->transfer_status = 0;
3323
d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3324
3325
rest = payload_per_buffer;
3326
pd = d;
3327
for (j = 1; j < z; j++) {
3328
pd++;
3329
pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3330
DESCRIPTOR_INPUT_MORE);
3331
3332
if (offset + rest < PAGE_SIZE)
3333
length = rest;
3334
else
3335
length = PAGE_SIZE - offset;
3336
pd->req_count = cpu_to_le16(length);
3337
pd->res_count = pd->req_count;
3338
pd->transfer_status = 0;
3339
3340
page_bus = page_private(buffer->pages[page]);
3341
pd->data_address = cpu_to_le32(page_bus + offset);
3342
3343
dma_sync_single_range_for_device(device, page_bus,
3344
offset, length,
3345
DMA_FROM_DEVICE);
3346
3347
offset = (offset + length) & ~PAGE_MASK;
3348
rest -= length;
3349
if (offset == 0)
3350
page++;
3351
}
3352
pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3353
DESCRIPTOR_INPUT_LAST |
3354
DESCRIPTOR_BRANCH_ALWAYS);
3355
if (packet->interrupt && i == packet_count - 1)
3356
pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3357
3358
context_append(&ctx->context, d, z, header_z);
3359
}
3360
3361
return 0;
3362
}
3363
3364
static int queue_iso_buffer_fill(struct iso_context *ctx,
3365
struct fw_iso_packet *packet,
3366
struct fw_iso_buffer *buffer,
3367
unsigned long payload)
3368
{
3369
struct descriptor *d;
3370
dma_addr_t d_bus, page_bus;
3371
int page, offset, rest, z, i, length;
3372
3373
page = payload >> PAGE_SHIFT;
3374
offset = payload & ~PAGE_MASK;
3375
rest = packet->payload_length;
3376
3377
/* We need one descriptor for each page in the buffer. */
3378
z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3379
3380
if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3381
return -EFAULT;
3382
3383
for (i = 0; i < z; i++) {
3384
d = context_get_descriptors(&ctx->context, 1, &d_bus);
3385
if (d == NULL)
3386
return -ENOMEM;
3387
3388
d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3389
DESCRIPTOR_BRANCH_ALWAYS);
3390
if (packet->skip && i == 0)
3391
d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3392
if (packet->interrupt && i == z - 1)
3393
d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3394
3395
if (offset + rest < PAGE_SIZE)
3396
length = rest;
3397
else
3398
length = PAGE_SIZE - offset;
3399
d->req_count = cpu_to_le16(length);
3400
d->res_count = d->req_count;
3401
d->transfer_status = 0;
3402
3403
page_bus = page_private(buffer->pages[page]);
3404
d->data_address = cpu_to_le32(page_bus + offset);
3405
3406
dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3407
page_bus, offset, length,
3408
DMA_FROM_DEVICE);
3409
3410
rest -= length;
3411
offset = 0;
3412
page++;
3413
3414
context_append(&ctx->context, d, 1, 0);
3415
}
3416
3417
return 0;
3418
}
3419
3420
static int ohci_queue_iso(struct fw_iso_context *base,
3421
struct fw_iso_packet *packet,
3422
struct fw_iso_buffer *buffer,
3423
unsigned long payload)
3424
{
3425
struct iso_context *ctx = container_of(base, struct iso_context, base);
3426
3427
guard(spinlock_irqsave)(&ctx->context.ohci->lock);
3428
3429
switch (base->type) {
3430
case FW_ISO_CONTEXT_TRANSMIT:
3431
return queue_iso_transmit(ctx, packet, buffer, payload);
3432
case FW_ISO_CONTEXT_RECEIVE:
3433
return queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3434
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3435
return queue_iso_buffer_fill(ctx, packet, buffer, payload);
3436
default:
3437
return -ENOSYS;
3438
}
3439
}
3440
3441
static void ohci_flush_queue_iso(struct fw_iso_context *base)
3442
{
3443
struct context *ctx =
3444
&container_of(base, struct iso_context, base)->context;
3445
3446
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3447
}
3448
3449
static int ohci_flush_iso_completions(struct fw_iso_context *base)
3450
{
3451
struct iso_context *ctx = container_of(base, struct iso_context, base);
3452
int ret = 0;
3453
3454
if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3455
ohci_isoc_context_work(&base->work);
3456
3457
switch (base->type) {
3458
case FW_ISO_CONTEXT_TRANSMIT:
3459
case FW_ISO_CONTEXT_RECEIVE:
3460
if (ctx->header_length != 0)
3461
flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3462
break;
3463
case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3464
if (ctx->mc_completed != 0)
3465
flush_ir_buffer_fill(ctx);
3466
break;
3467
default:
3468
ret = -ENOSYS;
3469
}
3470
3471
clear_bit_unlock(0, &ctx->flushing_completions);
3472
smp_mb__after_atomic();
3473
}
3474
3475
return ret;
3476
}
3477
3478
static const struct fw_card_driver ohci_driver = {
3479
.enable = ohci_enable,
3480
.disable = ohci_disable,
3481
.read_phy_reg = ohci_read_phy_reg,
3482
.update_phy_reg = ohci_update_phy_reg,
3483
.set_config_rom = ohci_set_config_rom,
3484
.send_request = ohci_send_request,
3485
.send_response = ohci_send_response,
3486
.cancel_packet = ohci_cancel_packet,
3487
.enable_phys_dma = ohci_enable_phys_dma,
3488
.read_csr = ohci_read_csr,
3489
.write_csr = ohci_write_csr,
3490
3491
.allocate_iso_context = ohci_allocate_iso_context,
3492
.free_iso_context = ohci_free_iso_context,
3493
.set_iso_channels = ohci_set_iso_channels,
3494
.queue_iso = ohci_queue_iso,
3495
.flush_queue_iso = ohci_flush_queue_iso,
3496
.flush_iso_completions = ohci_flush_iso_completions,
3497
.start_iso = ohci_start_iso,
3498
.stop_iso = ohci_stop_iso,
3499
};
3500
3501
#ifdef CONFIG_PPC_PMAC
3502
static void pmac_ohci_on(struct pci_dev *dev)
3503
{
3504
if (machine_is(powermac)) {
3505
struct device_node *ofn = pci_device_to_OF_node(dev);
3506
3507
if (ofn) {
3508
pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3509
pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3510
}
3511
}
3512
}
3513
3514
static void pmac_ohci_off(struct pci_dev *dev)
3515
{
3516
if (machine_is(powermac)) {
3517
struct device_node *ofn = pci_device_to_OF_node(dev);
3518
3519
if (ofn) {
3520
pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3521
pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3522
}
3523
}
3524
}
3525
#else
3526
static inline void pmac_ohci_on(struct pci_dev *dev) {}
3527
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3528
#endif /* CONFIG_PPC_PMAC */
3529
3530
static void release_ohci(struct device *dev, void *data)
3531
{
3532
struct pci_dev *pdev = to_pci_dev(dev);
3533
struct fw_ohci *ohci = pci_get_drvdata(pdev);
3534
3535
pmac_ohci_off(pdev);
3536
3537
ar_context_release(&ohci->ar_response_ctx);
3538
ar_context_release(&ohci->ar_request_ctx);
3539
3540
dev_notice(dev, "removed fw-ohci device\n");
3541
}
3542
3543
static int pci_probe(struct pci_dev *dev,
3544
const struct pci_device_id *ent)
3545
{
3546
struct fw_ohci *ohci;
3547
u32 bus_options, max_receive, link_speed, version;
3548
u64 guid;
3549
int i, flags, irq, err;
3550
3551
if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3552
dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3553
return -ENOSYS;
3554
}
3555
3556
ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3557
if (ohci == NULL)
3558
return -ENOMEM;
3559
fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3560
pci_set_drvdata(dev, ohci);
3561
pmac_ohci_on(dev);
3562
devres_add(&dev->dev, ohci);
3563
3564
err = pcim_enable_device(dev);
3565
if (err) {
3566
dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3567
return err;
3568
}
3569
3570
pci_set_master(dev);
3571
pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3572
3573
spin_lock_init(&ohci->lock);
3574
mutex_init(&ohci->phy_reg_mutex);
3575
3576
if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3577
pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3578
ohci_err(ohci, "invalid MMIO resource\n");
3579
return -ENXIO;
3580
}
3581
3582
ohci->registers = pcim_iomap_region(dev, 0, ohci_driver_name);
3583
if (IS_ERR(ohci->registers)) {
3584
ohci_err(ohci, "request and map MMIO resource unavailable\n");
3585
return -ENXIO;
3586
}
3587
3588
for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3589
if ((ohci_quirks[i].vendor == dev->vendor) &&
3590
(ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3591
ohci_quirks[i].device == dev->device) &&
3592
(ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3593
ohci_quirks[i].revision >= dev->revision)) {
3594
ohci->quirks = ohci_quirks[i].flags;
3595
break;
3596
}
3597
if (param_quirks)
3598
ohci->quirks = param_quirks;
3599
3600
if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3601
ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3602
3603
/*
3604
* Because dma_alloc_coherent() allocates at least one page,
3605
* we save space by using a common buffer for the AR request/
3606
* response descriptors and the self IDs buffer.
3607
*/
3608
BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3609
BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3610
ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3611
GFP_KERNEL);
3612
if (!ohci->misc_buffer)
3613
return -ENOMEM;
3614
3615
err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3616
OHCI1394_AsReqRcvContextControlSet);
3617
if (err < 0)
3618
return err;
3619
3620
err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3621
OHCI1394_AsRspRcvContextControlSet);
3622
if (err < 0)
3623
return err;
3624
3625
err = context_init(&ohci->at_request_ctx.context, ohci,
3626
OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3627
if (err < 0)
3628
return err;
3629
INIT_WORK(&ohci->at_request_ctx.work, ohci_at_context_work);
3630
3631
err = context_init(&ohci->at_response_ctx.context, ohci,
3632
OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3633
if (err < 0)
3634
return err;
3635
INIT_WORK(&ohci->at_response_ctx.work, ohci_at_context_work);
3636
3637
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3638
ohci->ir_context_channels = ~0ULL;
3639
ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3640
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3641
ohci->ir_context_mask = ohci->ir_context_support;
3642
ohci->n_ir = hweight32(ohci->ir_context_mask);
3643
ohci->ir_context_list = devm_kcalloc(&dev->dev, ohci->n_ir, sizeof(struct iso_context), GFP_KERNEL);
3644
if (!ohci->ir_context_list)
3645
return -ENOMEM;
3646
3647
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3648
ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3649
/* JMicron JMB38x often shows 0 at first read, just ignore it */
3650
if (!ohci->it_context_support) {
3651
ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3652
ohci->it_context_support = 0xf;
3653
}
3654
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3655
ohci->it_context_mask = ohci->it_context_support;
3656
ohci->n_it = hweight32(ohci->it_context_mask);
3657
ohci->it_context_list = devm_kcalloc(&dev->dev, ohci->n_it, sizeof(struct iso_context), GFP_KERNEL);
3658
if (!ohci->it_context_list)
3659
return -ENOMEM;
3660
3661
ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2;
3662
ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3663
3664
bus_options = reg_read(ohci, OHCI1394_BusOptions);
3665
max_receive = (bus_options >> 12) & 0xf;
3666
link_speed = bus_options & 0x7;
3667
guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3668
reg_read(ohci, OHCI1394_GUIDLo);
3669
3670
flags = PCI_IRQ_INTX;
3671
if (!(ohci->quirks & QUIRK_NO_MSI))
3672
flags |= PCI_IRQ_MSI;
3673
err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3674
if (err < 0)
3675
return err;
3676
irq = pci_irq_vector(dev, 0);
3677
if (irq < 0) {
3678
err = irq;
3679
goto fail_msi;
3680
}
3681
3682
// IRQF_ONESHOT is not applied so that any events are handled in the hardIRQ handler during
3683
// invoking the threaded IRQ handler for SelfIDComplete event.
3684
err = request_threaded_irq(irq, irq_handler, handle_selfid_complete_event,
3685
pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3686
ohci);
3687
if (err < 0) {
3688
ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3689
goto fail_msi;
3690
}
3691
3692
err = fw_card_add(&ohci->card, max_receive, link_speed, guid, ohci->n_it + ohci->n_ir);
3693
if (err)
3694
goto fail_irq;
3695
3696
version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3697
ohci_notice(ohci,
3698
"added OHCI v%x.%x device as card %d, "
3699
"%d IR + %d IT contexts, quirks 0x%x%s\n",
3700
version >> 16, version & 0xff, ohci->card.index,
3701
ohci->n_ir, ohci->n_it, ohci->quirks,
3702
reg_read(ohci, OHCI1394_PhyUpperBound) ?
3703
", physUB" : "");
3704
3705
return 0;
3706
3707
fail_irq:
3708
free_irq(irq, ohci);
3709
fail_msi:
3710
pci_free_irq_vectors(dev);
3711
3712
return err;
3713
}
3714
3715
static void pci_remove(struct pci_dev *dev)
3716
{
3717
struct fw_ohci *ohci = pci_get_drvdata(dev);
3718
int irq;
3719
3720
fw_core_remove_card(&ohci->card);
3721
3722
software_reset(ohci);
3723
3724
irq = pci_irq_vector(dev, 0);
3725
if (irq >= 0)
3726
free_irq(irq, ohci);
3727
pci_free_irq_vectors(dev);
3728
3729
dev_notice(&dev->dev, "removing fw-ohci device\n");
3730
}
3731
3732
static int __maybe_unused pci_suspend(struct device *dev)
3733
{
3734
struct pci_dev *pdev = to_pci_dev(dev);
3735
struct fw_ohci *ohci = pci_get_drvdata(pdev);
3736
3737
software_reset(ohci);
3738
pmac_ohci_off(pdev);
3739
3740
return 0;
3741
}
3742
3743
3744
static int __maybe_unused pci_resume(struct device *dev)
3745
{
3746
struct pci_dev *pdev = to_pci_dev(dev);
3747
struct fw_ohci *ohci = pci_get_drvdata(pdev);
3748
int err;
3749
3750
pmac_ohci_on(pdev);
3751
3752
/* Some systems don't setup GUID register on resume from ram */
3753
if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3754
!reg_read(ohci, OHCI1394_GUIDHi)) {
3755
reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3756
reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3757
}
3758
3759
err = ohci_enable(&ohci->card, NULL, 0);
3760
if (err)
3761
return err;
3762
3763
ohci_resume_iso_dma(ohci);
3764
3765
return 0;
3766
}
3767
3768
static const struct pci_device_id pci_table[] = {
3769
{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3770
{ }
3771
};
3772
3773
MODULE_DEVICE_TABLE(pci, pci_table);
3774
3775
static SIMPLE_DEV_PM_OPS(pci_pm_ops, pci_suspend, pci_resume);
3776
3777
static struct pci_driver fw_ohci_pci_driver = {
3778
.name = ohci_driver_name,
3779
.id_table = pci_table,
3780
.probe = pci_probe,
3781
.remove = pci_remove,
3782
.driver.pm = &pci_pm_ops,
3783
};
3784
3785
static int __init fw_ohci_init(void)
3786
{
3787
return pci_register_driver(&fw_ohci_pci_driver);
3788
}
3789
3790
static void __exit fw_ohci_cleanup(void)
3791
{
3792
pci_unregister_driver(&fw_ohci_pci_driver);
3793
}
3794
3795
module_init(fw_ohci_init);
3796
module_exit(fw_ohci_cleanup);
3797
3798
MODULE_AUTHOR("Kristian Hoegsberg <[email protected]>");
3799
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3800
MODULE_LICENSE("GPL");
3801
3802
/* Provide a module alias so root-on-sbp2 initrds don't break. */
3803
MODULE_ALIAS("ohci1394");
3804
3805