Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firewire/sbp2.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* SBP2 driver (SCSI over IEEE1394)
4
*
5
* Copyright (C) 2005-2007 Kristian Hoegsberg <[email protected]>
6
*/
7
8
/*
9
* The basic structure of this driver is based on the old storage driver,
10
* drivers/ieee1394/sbp2.c, originally written by
11
* James Goodwin <[email protected]>
12
* with later contributions and ongoing maintenance from
13
* Ben Collins <[email protected]>,
14
* Stefan Richter <[email protected]>
15
* and many others.
16
*/
17
18
#include <linux/blkdev.h>
19
#include <linux/bug.h>
20
#include <linux/completion.h>
21
#include <linux/delay.h>
22
#include <linux/device.h>
23
#include <linux/dma-mapping.h>
24
#include <linux/firewire.h>
25
#include <linux/firewire-constants.h>
26
#include <linux/init.h>
27
#include <linux/jiffies.h>
28
#include <linux/kernel.h>
29
#include <linux/kref.h>
30
#include <linux/list.h>
31
#include <linux/mod_devicetable.h>
32
#include <linux/module.h>
33
#include <linux/moduleparam.h>
34
#include <linux/scatterlist.h>
35
#include <linux/slab.h>
36
#include <linux/spinlock.h>
37
#include <linux/string.h>
38
#include <linux/stringify.h>
39
#include <linux/workqueue.h>
40
41
#include <asm/byteorder.h>
42
43
#include <scsi/scsi.h>
44
#include <scsi/scsi_cmnd.h>
45
#include <scsi/scsi_device.h>
46
#include <scsi/scsi_host.h>
47
48
/*
49
* So far only bridges from Oxford Semiconductor are known to support
50
* concurrent logins. Depending on firmware, four or two concurrent logins
51
* are possible on OXFW911 and newer Oxsemi bridges.
52
*
53
* Concurrent logins are useful together with cluster filesystems.
54
*/
55
static bool sbp2_param_exclusive_login = 1;
56
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
57
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
58
"(default = Y, use N for concurrent initiators)");
59
60
/*
61
* Flags for firmware oddities
62
*
63
* - 128kB max transfer
64
* Limit transfer size. Necessary for some old bridges.
65
*
66
* - 36 byte inquiry
67
* When scsi_mod probes the device, let the inquiry command look like that
68
* from MS Windows.
69
*
70
* - skip mode page 8
71
* Suppress sending of mode_sense for mode page 8 if the device pretends to
72
* support the SCSI Primary Block commands instead of Reduced Block Commands.
73
*
74
* - fix capacity
75
* Tell sd_mod to correct the last sector number reported by read_capacity.
76
* Avoids access beyond actual disk limits on devices with an off-by-one bug.
77
* Don't use this with devices which don't have this bug.
78
*
79
* - delay inquiry
80
* Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
81
*
82
* - power condition
83
* Set the power condition field in the START STOP UNIT commands sent by
84
* sd_mod on suspend, resume, and shutdown (if manage_system_start_stop or
85
* manage_runtime_start_stop is on).
86
* Some disks need this to spin down or to resume properly.
87
*
88
* - override internal blacklist
89
* Instead of adding to the built-in blacklist, use only the workarounds
90
* specified in the module load parameter.
91
* Useful if a blacklist entry interfered with a non-broken device.
92
*/
93
#define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
94
#define SBP2_WORKAROUND_INQUIRY_36 0x2
95
#define SBP2_WORKAROUND_MODE_SENSE_8 0x4
96
#define SBP2_WORKAROUND_FIX_CAPACITY 0x8
97
#define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
98
#define SBP2_INQUIRY_DELAY 12
99
#define SBP2_WORKAROUND_POWER_CONDITION 0x20
100
#define SBP2_WORKAROUND_OVERRIDE 0x100
101
102
static int sbp2_param_workarounds;
103
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
104
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
105
", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
106
", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
107
", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
108
", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109
", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110
", set power condition in start stop unit = "
111
__stringify(SBP2_WORKAROUND_POWER_CONDITION)
112
", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
113
", or a combination)");
114
115
/*
116
* We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
117
* and one struct scsi_device per sbp2_logical_unit.
118
*/
119
struct sbp2_logical_unit {
120
struct sbp2_target *tgt;
121
struct list_head link;
122
struct fw_address_handler address_handler;
123
struct list_head orb_list;
124
125
u64 command_block_agent_address;
126
u16 lun;
127
int login_id;
128
129
/*
130
* The generation is updated once we've logged in or reconnected
131
* to the logical unit. Thus, I/O to the device will automatically
132
* fail and get retried if it happens in a window where the device
133
* is not ready, e.g. after a bus reset but before we reconnect.
134
*/
135
int generation;
136
int retries;
137
work_func_t workfn;
138
struct delayed_work work;
139
bool has_sdev;
140
bool blocked;
141
};
142
143
static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
144
{
145
queue_delayed_work(fw_workqueue, &lu->work, delay);
146
}
147
148
/*
149
* We create one struct sbp2_target per IEEE 1212 Unit Directory
150
* and one struct Scsi_Host per sbp2_target.
151
*/
152
struct sbp2_target {
153
struct fw_unit *unit;
154
struct list_head lu_list;
155
156
u64 management_agent_address;
157
u64 guid;
158
int directory_id;
159
int node_id;
160
int address_high;
161
unsigned int workarounds;
162
unsigned int mgt_orb_timeout;
163
unsigned int max_payload;
164
165
spinlock_t lock;
166
int dont_block; /* counter for each logical unit */
167
int blocked; /* ditto */
168
};
169
170
static struct fw_device *target_parent_device(struct sbp2_target *tgt)
171
{
172
return fw_parent_device(tgt->unit);
173
}
174
175
static const struct device *tgt_dev(const struct sbp2_target *tgt)
176
{
177
return &tgt->unit->device;
178
}
179
180
static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
181
{
182
return &lu->tgt->unit->device;
183
}
184
185
/* Impossible login_id, to detect logout attempt before successful login */
186
#define INVALID_LOGIN_ID 0x10000
187
188
#define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
189
#define SBP2_ORB_NULL 0x80000000
190
#define SBP2_RETRY_LIMIT 0xf /* 15 retries */
191
#define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
192
193
/*
194
* There is no transport protocol limit to the CDB length, but we implement
195
* a fixed length only. 16 bytes is enough for disks larger than 2 TB.
196
*/
197
#define SBP2_MAX_CDB_SIZE 16
198
199
/*
200
* The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this
201
* for compatibility with earlier versions of this driver.
202
*/
203
#define SBP2_MAX_SEG_SIZE 0xfffc
204
205
/* Unit directory keys */
206
#define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
207
#define SBP2_CSR_FIRMWARE_REVISION 0x3c
208
#define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
209
#define SBP2_CSR_UNIT_UNIQUE_ID 0x8d
210
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
211
212
/* Management orb opcodes */
213
#define SBP2_LOGIN_REQUEST 0x0
214
#define SBP2_QUERY_LOGINS_REQUEST 0x1
215
#define SBP2_RECONNECT_REQUEST 0x3
216
#define SBP2_SET_PASSWORD_REQUEST 0x4
217
#define SBP2_LOGOUT_REQUEST 0x7
218
#define SBP2_ABORT_TASK_REQUEST 0xb
219
#define SBP2_ABORT_TASK_SET 0xc
220
#define SBP2_LOGICAL_UNIT_RESET 0xe
221
#define SBP2_TARGET_RESET_REQUEST 0xf
222
223
/* Offsets for command block agent registers */
224
#define SBP2_AGENT_STATE 0x00
225
#define SBP2_AGENT_RESET 0x04
226
#define SBP2_ORB_POINTER 0x08
227
#define SBP2_DOORBELL 0x10
228
#define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
229
230
/* Status write response codes */
231
#define SBP2_STATUS_REQUEST_COMPLETE 0x0
232
#define SBP2_STATUS_TRANSPORT_FAILURE 0x1
233
#define SBP2_STATUS_ILLEGAL_REQUEST 0x2
234
#define SBP2_STATUS_VENDOR_DEPENDENT 0x3
235
236
#define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
237
#define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
238
#define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
239
#define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
240
#define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
241
#define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
242
#define STATUS_GET_ORB_LOW(v) ((v).orb_low)
243
#define STATUS_GET_DATA(v) ((v).data)
244
245
struct sbp2_status {
246
u32 status;
247
u32 orb_low;
248
u8 data[24];
249
};
250
251
struct sbp2_pointer {
252
__be32 high;
253
__be32 low;
254
};
255
256
struct sbp2_orb {
257
struct fw_transaction t;
258
struct kref kref;
259
dma_addr_t request_bus;
260
int rcode;
261
void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
262
struct sbp2_logical_unit *lu;
263
struct list_head link;
264
};
265
266
#define MANAGEMENT_ORB_LUN(v) ((v))
267
#define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
268
#define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
269
#define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
270
#define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
271
#define MANAGEMENT_ORB_NOTIFY ((1) << 31)
272
273
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
274
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
275
276
struct sbp2_management_orb {
277
struct sbp2_orb base;
278
struct {
279
struct sbp2_pointer password;
280
struct sbp2_pointer response;
281
__be32 misc;
282
__be32 length;
283
struct sbp2_pointer status_fifo;
284
} request;
285
__be32 response[4];
286
dma_addr_t response_bus;
287
struct completion done;
288
struct sbp2_status status;
289
};
290
291
struct sbp2_login_response {
292
__be32 misc;
293
struct sbp2_pointer command_block_agent;
294
__be32 reconnect_hold;
295
};
296
#define COMMAND_ORB_DATA_SIZE(v) ((v))
297
#define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
298
#define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
299
#define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
300
#define COMMAND_ORB_SPEED(v) ((v) << 24)
301
#define COMMAND_ORB_DIRECTION ((1) << 27)
302
#define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
303
#define COMMAND_ORB_NOTIFY ((1) << 31)
304
305
struct sbp2_command_orb {
306
struct sbp2_orb base;
307
struct {
308
struct sbp2_pointer next;
309
struct sbp2_pointer data_descriptor;
310
__be32 misc;
311
u8 command_block[SBP2_MAX_CDB_SIZE];
312
} request;
313
struct scsi_cmnd *cmd;
314
315
struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
316
dma_addr_t page_table_bus;
317
};
318
319
#define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
320
#define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
321
322
/*
323
* List of devices with known bugs.
324
*
325
* The firmware_revision field, masked with 0xffff00, is the best
326
* indicator for the type of bridge chip of a device. It yields a few
327
* false positives but this did not break correctly behaving devices
328
* so far.
329
*/
330
static const struct {
331
u32 firmware_revision;
332
u32 model;
333
unsigned int workarounds;
334
} sbp2_workarounds_table[] = {
335
/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
336
.firmware_revision = 0x002800,
337
.model = 0x001010,
338
.workarounds = SBP2_WORKAROUND_INQUIRY_36 |
339
SBP2_WORKAROUND_MODE_SENSE_8 |
340
SBP2_WORKAROUND_POWER_CONDITION,
341
},
342
/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
343
.firmware_revision = 0x002800,
344
.model = 0x000000,
345
.workarounds = SBP2_WORKAROUND_POWER_CONDITION,
346
},
347
/* Initio bridges, actually only needed for some older ones */ {
348
.firmware_revision = 0x000200,
349
.model = SBP2_ROM_VALUE_WILDCARD,
350
.workarounds = SBP2_WORKAROUND_INQUIRY_36,
351
},
352
/* PL-3507 bridge with Prolific firmware */ {
353
.firmware_revision = 0x012800,
354
.model = SBP2_ROM_VALUE_WILDCARD,
355
.workarounds = SBP2_WORKAROUND_POWER_CONDITION,
356
},
357
/* Symbios bridge */ {
358
.firmware_revision = 0xa0b800,
359
.model = SBP2_ROM_VALUE_WILDCARD,
360
.workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
361
},
362
/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
363
.firmware_revision = 0x002600,
364
.model = SBP2_ROM_VALUE_WILDCARD,
365
.workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
366
},
367
/*
368
* iPod 2nd generation: needs 128k max transfer size workaround
369
* iPod 3rd generation: needs fix capacity workaround
370
*/
371
{
372
.firmware_revision = 0x0a2700,
373
.model = 0x000000,
374
.workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
375
SBP2_WORKAROUND_FIX_CAPACITY,
376
},
377
/* iPod 4th generation */ {
378
.firmware_revision = 0x0a2700,
379
.model = 0x000021,
380
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
381
},
382
/* iPod mini */ {
383
.firmware_revision = 0x0a2700,
384
.model = 0x000022,
385
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
386
},
387
/* iPod mini */ {
388
.firmware_revision = 0x0a2700,
389
.model = 0x000023,
390
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
391
},
392
/* iPod Photo */ {
393
.firmware_revision = 0x0a2700,
394
.model = 0x00007e,
395
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
396
}
397
};
398
399
static void free_orb(struct kref *kref)
400
{
401
struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
402
403
kfree(orb);
404
}
405
406
static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
407
int tcode, int destination, int source,
408
int generation, unsigned long long offset,
409
void *payload, size_t length, void *callback_data)
410
{
411
struct sbp2_logical_unit *lu = callback_data;
412
struct sbp2_orb *orb = NULL, *iter;
413
struct sbp2_status status;
414
unsigned long flags;
415
416
if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
417
length < 8 || length > sizeof(status)) {
418
fw_send_response(card, request, RCODE_TYPE_ERROR);
419
return;
420
}
421
422
status.status = be32_to_cpup(payload);
423
status.orb_low = be32_to_cpup(payload + 4);
424
memset(status.data, 0, sizeof(status.data));
425
if (length > 8)
426
memcpy(status.data, payload + 8, length - 8);
427
428
if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
429
dev_notice(lu_dev(lu),
430
"non-ORB related status write, not handled\n");
431
fw_send_response(card, request, RCODE_COMPLETE);
432
return;
433
}
434
435
/* Lookup the orb corresponding to this status write. */
436
spin_lock_irqsave(&lu->tgt->lock, flags);
437
list_for_each_entry(iter, &lu->orb_list, link) {
438
if (STATUS_GET_ORB_HIGH(status) == 0 &&
439
STATUS_GET_ORB_LOW(status) == iter->request_bus) {
440
iter->rcode = RCODE_COMPLETE;
441
list_del(&iter->link);
442
orb = iter;
443
break;
444
}
445
}
446
spin_unlock_irqrestore(&lu->tgt->lock, flags);
447
448
if (orb) {
449
orb->callback(orb, &status);
450
kref_put(&orb->kref, free_orb); /* orb callback reference */
451
} else {
452
dev_err(lu_dev(lu), "status write for unknown ORB\n");
453
}
454
455
fw_send_response(card, request, RCODE_COMPLETE);
456
}
457
458
static void complete_transaction(struct fw_card *card, int rcode,
459
void *payload, size_t length, void *data)
460
{
461
struct sbp2_orb *orb = data;
462
unsigned long flags;
463
464
/*
465
* This is a little tricky. We can get the status write for
466
* the orb before we get this callback. The status write
467
* handler above will assume the orb pointer transaction was
468
* successful and set the rcode to RCODE_COMPLETE for the orb.
469
* So this callback only sets the rcode if it hasn't already
470
* been set and only does the cleanup if the transaction
471
* failed and we didn't already get a status write.
472
*/
473
spin_lock_irqsave(&orb->lu->tgt->lock, flags);
474
475
if (orb->rcode == -1)
476
orb->rcode = rcode;
477
if (orb->rcode != RCODE_COMPLETE) {
478
list_del(&orb->link);
479
spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
480
481
orb->callback(orb, NULL);
482
kref_put(&orb->kref, free_orb); /* orb callback reference */
483
} else {
484
spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
485
}
486
487
kref_put(&orb->kref, free_orb); /* transaction callback reference */
488
}
489
490
static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
491
int node_id, int generation, u64 offset)
492
{
493
struct fw_device *device = target_parent_device(lu->tgt);
494
struct sbp2_pointer orb_pointer;
495
unsigned long flags;
496
497
orb_pointer.high = 0;
498
orb_pointer.low = cpu_to_be32(orb->request_bus);
499
500
orb->lu = lu;
501
spin_lock_irqsave(&lu->tgt->lock, flags);
502
list_add_tail(&orb->link, &lu->orb_list);
503
spin_unlock_irqrestore(&lu->tgt->lock, flags);
504
505
kref_get(&orb->kref); /* transaction callback reference */
506
kref_get(&orb->kref); /* orb callback reference */
507
508
fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
509
node_id, generation, device->max_speed, offset,
510
&orb_pointer, 8, complete_transaction, orb);
511
}
512
513
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
514
{
515
struct fw_device *device = target_parent_device(lu->tgt);
516
struct sbp2_orb *orb, *next;
517
struct list_head list;
518
int retval = -ENOENT;
519
520
INIT_LIST_HEAD(&list);
521
spin_lock_irq(&lu->tgt->lock);
522
list_splice_init(&lu->orb_list, &list);
523
spin_unlock_irq(&lu->tgt->lock);
524
525
list_for_each_entry_safe(orb, next, &list, link) {
526
retval = 0;
527
if (fw_cancel_transaction(device->card, &orb->t) == 0)
528
continue;
529
530
orb->rcode = RCODE_CANCELLED;
531
orb->callback(orb, NULL);
532
kref_put(&orb->kref, free_orb); /* orb callback reference */
533
}
534
535
return retval;
536
}
537
538
static void complete_management_orb(struct sbp2_orb *base_orb,
539
struct sbp2_status *status)
540
{
541
struct sbp2_management_orb *orb =
542
container_of(base_orb, struct sbp2_management_orb, base);
543
544
if (status)
545
memcpy(&orb->status, status, sizeof(*status));
546
complete(&orb->done);
547
}
548
549
static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
550
int generation, int function,
551
int lun_or_login_id, void *response)
552
{
553
struct fw_device *device = target_parent_device(lu->tgt);
554
struct sbp2_management_orb *orb;
555
unsigned int timeout;
556
int retval = -ENOMEM;
557
558
if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
559
return 0;
560
561
orb = kzalloc(sizeof(*orb), GFP_NOIO);
562
if (orb == NULL)
563
return -ENOMEM;
564
565
kref_init(&orb->base.kref);
566
orb->response_bus =
567
dma_map_single(device->card->device, &orb->response,
568
sizeof(orb->response), DMA_FROM_DEVICE);
569
if (dma_mapping_error(device->card->device, orb->response_bus))
570
goto fail_mapping_response;
571
572
orb->request.response.high = 0;
573
orb->request.response.low = cpu_to_be32(orb->response_bus);
574
575
orb->request.misc = cpu_to_be32(
576
MANAGEMENT_ORB_NOTIFY |
577
MANAGEMENT_ORB_FUNCTION(function) |
578
MANAGEMENT_ORB_LUN(lun_or_login_id));
579
orb->request.length = cpu_to_be32(
580
MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
581
582
orb->request.status_fifo.high =
583
cpu_to_be32(lu->address_handler.offset >> 32);
584
orb->request.status_fifo.low =
585
cpu_to_be32(lu->address_handler.offset);
586
587
if (function == SBP2_LOGIN_REQUEST) {
588
/* Ask for 2^2 == 4 seconds reconnect grace period */
589
orb->request.misc |= cpu_to_be32(
590
MANAGEMENT_ORB_RECONNECT(2) |
591
MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
592
timeout = lu->tgt->mgt_orb_timeout;
593
} else {
594
timeout = SBP2_ORB_TIMEOUT;
595
}
596
597
init_completion(&orb->done);
598
orb->base.callback = complete_management_orb;
599
600
orb->base.request_bus =
601
dma_map_single(device->card->device, &orb->request,
602
sizeof(orb->request), DMA_TO_DEVICE);
603
if (dma_mapping_error(device->card->device, orb->base.request_bus))
604
goto fail_mapping_request;
605
606
sbp2_send_orb(&orb->base, lu, node_id, generation,
607
lu->tgt->management_agent_address);
608
609
wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
610
611
retval = -EIO;
612
if (sbp2_cancel_orbs(lu) == 0) {
613
dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
614
orb->base.rcode);
615
goto out;
616
}
617
618
if (orb->base.rcode != RCODE_COMPLETE) {
619
dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
620
orb->base.rcode);
621
goto out;
622
}
623
624
if (STATUS_GET_RESPONSE(orb->status) != 0 ||
625
STATUS_GET_SBP_STATUS(orb->status) != 0) {
626
dev_err(lu_dev(lu), "error status: %d:%d\n",
627
STATUS_GET_RESPONSE(orb->status),
628
STATUS_GET_SBP_STATUS(orb->status));
629
goto out;
630
}
631
632
retval = 0;
633
out:
634
dma_unmap_single(device->card->device, orb->base.request_bus,
635
sizeof(orb->request), DMA_TO_DEVICE);
636
fail_mapping_request:
637
dma_unmap_single(device->card->device, orb->response_bus,
638
sizeof(orb->response), DMA_FROM_DEVICE);
639
fail_mapping_response:
640
if (response)
641
memcpy(response, orb->response, sizeof(orb->response));
642
kref_put(&orb->base.kref, free_orb);
643
644
return retval;
645
}
646
647
static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
648
{
649
struct fw_device *device = target_parent_device(lu->tgt);
650
__be32 d = 0;
651
652
fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
653
lu->tgt->node_id, lu->generation, device->max_speed,
654
lu->command_block_agent_address + SBP2_AGENT_RESET,
655
&d, 4);
656
}
657
658
static void complete_agent_reset_write_no_wait(struct fw_card *card,
659
int rcode, void *payload, size_t length, void *data)
660
{
661
kfree(data);
662
}
663
664
static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
665
{
666
struct fw_device *device = target_parent_device(lu->tgt);
667
struct fw_transaction *t;
668
static __be32 d;
669
670
t = kmalloc(sizeof(*t), GFP_ATOMIC);
671
if (t == NULL)
672
return;
673
674
fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
675
lu->tgt->node_id, lu->generation, device->max_speed,
676
lu->command_block_agent_address + SBP2_AGENT_RESET,
677
&d, 4, complete_agent_reset_write_no_wait, t);
678
}
679
680
static inline void sbp2_allow_block(struct sbp2_target *tgt)
681
{
682
spin_lock_irq(&tgt->lock);
683
--tgt->dont_block;
684
spin_unlock_irq(&tgt->lock);
685
}
686
687
/*
688
* Blocks lu->tgt if all of the following conditions are met:
689
* - Login, INQUIRY, and high-level SCSI setup of all of the target's
690
* logical units have been finished (indicated by dont_block == 0).
691
* - lu->generation is stale.
692
*
693
* Note, scsi_block_requests() must be called while holding tgt->lock,
694
* otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
695
* unblock the target.
696
*/
697
static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
698
{
699
struct sbp2_target *tgt = lu->tgt;
700
struct fw_card *card = target_parent_device(tgt)->card;
701
struct Scsi_Host *shost =
702
container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
703
unsigned long flags;
704
705
spin_lock_irqsave(&tgt->lock, flags);
706
if (!tgt->dont_block && !lu->blocked &&
707
lu->generation != card->generation) {
708
lu->blocked = true;
709
if (++tgt->blocked == 1)
710
scsi_block_requests(shost);
711
}
712
spin_unlock_irqrestore(&tgt->lock, flags);
713
}
714
715
/*
716
* Unblocks lu->tgt as soon as all its logical units can be unblocked.
717
* Note, it is harmless to run scsi_unblock_requests() outside the
718
* tgt->lock protected section. On the other hand, running it inside
719
* the section might clash with shost->host_lock.
720
*/
721
static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
722
{
723
struct sbp2_target *tgt = lu->tgt;
724
struct fw_card *card = target_parent_device(tgt)->card;
725
struct Scsi_Host *shost =
726
container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
727
bool unblock = false;
728
729
spin_lock_irq(&tgt->lock);
730
if (lu->blocked && lu->generation == card->generation) {
731
lu->blocked = false;
732
unblock = --tgt->blocked == 0;
733
}
734
spin_unlock_irq(&tgt->lock);
735
736
if (unblock)
737
scsi_unblock_requests(shost);
738
}
739
740
/*
741
* Prevents future blocking of tgt and unblocks it.
742
* Note, it is harmless to run scsi_unblock_requests() outside the
743
* tgt->lock protected section. On the other hand, running it inside
744
* the section might clash with shost->host_lock.
745
*/
746
static void sbp2_unblock(struct sbp2_target *tgt)
747
{
748
struct Scsi_Host *shost =
749
container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
750
751
spin_lock_irq(&tgt->lock);
752
++tgt->dont_block;
753
spin_unlock_irq(&tgt->lock);
754
755
scsi_unblock_requests(shost);
756
}
757
758
static int sbp2_lun2int(u16 lun)
759
{
760
struct scsi_lun eight_bytes_lun;
761
762
memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
763
eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
764
eight_bytes_lun.scsi_lun[1] = lun & 0xff;
765
766
return scsilun_to_int(&eight_bytes_lun);
767
}
768
769
/*
770
* Write retransmit retry values into the BUSY_TIMEOUT register.
771
* - The single-phase retry protocol is supported by all SBP-2 devices, but the
772
* default retry_limit value is 0 (i.e. never retry transmission). We write a
773
* saner value after logging into the device.
774
* - The dual-phase retry protocol is optional to implement, and if not
775
* supported, writes to the dual-phase portion of the register will be
776
* ignored. We try to write the original 1394-1995 default here.
777
* - In the case of devices that are also SBP-3-compliant, all writes are
778
* ignored, as the register is read-only, but contains single-phase retry of
779
* 15, which is what we're trying to set for all SBP-2 device anyway, so this
780
* write attempt is safe and yields more consistent behavior for all devices.
781
*
782
* See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
783
* and section 6.4 of the SBP-3 spec for further details.
784
*/
785
static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
786
{
787
struct fw_device *device = target_parent_device(lu->tgt);
788
__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
789
790
fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
791
lu->tgt->node_id, lu->generation, device->max_speed,
792
CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
793
}
794
795
static void sbp2_reconnect(struct work_struct *work);
796
797
static void sbp2_login(struct work_struct *work)
798
{
799
struct sbp2_logical_unit *lu =
800
container_of(work, struct sbp2_logical_unit, work.work);
801
struct sbp2_target *tgt = lu->tgt;
802
struct fw_device *device = target_parent_device(tgt);
803
struct Scsi_Host *shost;
804
struct scsi_device *sdev;
805
struct sbp2_login_response response;
806
int generation, node_id, local_node_id;
807
808
if (fw_device_is_shutdown(device))
809
return;
810
811
generation = device->generation;
812
smp_rmb(); /* node IDs must not be older than generation */
813
node_id = device->node_id;
814
local_node_id = device->card->node_id;
815
816
/* If this is a re-login attempt, log out, or we might be rejected. */
817
if (lu->has_sdev)
818
sbp2_send_management_orb(lu, device->node_id, generation,
819
SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
820
821
if (sbp2_send_management_orb(lu, node_id, generation,
822
SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
823
if (lu->retries++ < 5) {
824
sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
825
} else {
826
dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
827
lu->lun);
828
/* Let any waiting I/O fail from now on. */
829
sbp2_unblock(lu->tgt);
830
}
831
return;
832
}
833
834
tgt->node_id = node_id;
835
tgt->address_high = local_node_id << 16;
836
smp_wmb(); /* node IDs must not be older than generation */
837
lu->generation = generation;
838
839
lu->command_block_agent_address =
840
((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
841
<< 32) | be32_to_cpu(response.command_block_agent.low);
842
lu->login_id = be32_to_cpu(response.misc) & 0xffff;
843
844
dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
845
lu->lun, lu->retries);
846
847
/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
848
sbp2_set_busy_timeout(lu);
849
850
lu->workfn = sbp2_reconnect;
851
sbp2_agent_reset(lu);
852
853
/* This was a re-login. */
854
if (lu->has_sdev) {
855
sbp2_cancel_orbs(lu);
856
sbp2_conditionally_unblock(lu);
857
858
return;
859
}
860
861
if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
862
ssleep(SBP2_INQUIRY_DELAY);
863
864
shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
865
sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
866
/*
867
* FIXME: We are unable to perform reconnects while in sbp2_login().
868
* Therefore __scsi_add_device() will get into trouble if a bus reset
869
* happens in parallel. It will either fail or leave us with an
870
* unusable sdev. As a workaround we check for this and retry the
871
* whole login and SCSI probing.
872
*/
873
874
/* Reported error during __scsi_add_device() */
875
if (IS_ERR(sdev))
876
goto out_logout_login;
877
878
/* Unreported error during __scsi_add_device() */
879
smp_rmb(); /* get current card generation */
880
if (generation != device->card->generation) {
881
scsi_remove_device(sdev);
882
scsi_device_put(sdev);
883
goto out_logout_login;
884
}
885
886
/* No error during __scsi_add_device() */
887
lu->has_sdev = true;
888
scsi_device_put(sdev);
889
sbp2_allow_block(tgt);
890
891
return;
892
893
out_logout_login:
894
smp_rmb(); /* generation may have changed */
895
generation = device->generation;
896
smp_rmb(); /* node_id must not be older than generation */
897
898
sbp2_send_management_orb(lu, device->node_id, generation,
899
SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
900
/*
901
* If a bus reset happened, sbp2_update will have requeued
902
* lu->work already. Reset the work from reconnect to login.
903
*/
904
lu->workfn = sbp2_login;
905
}
906
907
static void sbp2_reconnect(struct work_struct *work)
908
{
909
struct sbp2_logical_unit *lu =
910
container_of(work, struct sbp2_logical_unit, work.work);
911
struct sbp2_target *tgt = lu->tgt;
912
struct fw_device *device = target_parent_device(tgt);
913
int generation, node_id, local_node_id;
914
915
if (fw_device_is_shutdown(device))
916
return;
917
918
generation = device->generation;
919
smp_rmb(); /* node IDs must not be older than generation */
920
node_id = device->node_id;
921
local_node_id = device->card->node_id;
922
923
if (sbp2_send_management_orb(lu, node_id, generation,
924
SBP2_RECONNECT_REQUEST,
925
lu->login_id, NULL) < 0) {
926
/*
927
* If reconnect was impossible even though we are in the
928
* current generation, fall back and try to log in again.
929
*
930
* We could check for "Function rejected" status, but
931
* looking at the bus generation as simpler and more general.
932
*/
933
smp_rmb(); /* get current card generation */
934
if (generation == device->card->generation ||
935
lu->retries++ >= 5) {
936
dev_err(tgt_dev(tgt), "failed to reconnect\n");
937
lu->retries = 0;
938
lu->workfn = sbp2_login;
939
}
940
sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
941
942
return;
943
}
944
945
tgt->node_id = node_id;
946
tgt->address_high = local_node_id << 16;
947
smp_wmb(); /* node IDs must not be older than generation */
948
lu->generation = generation;
949
950
dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
951
lu->lun, lu->retries);
952
953
sbp2_agent_reset(lu);
954
sbp2_cancel_orbs(lu);
955
sbp2_conditionally_unblock(lu);
956
}
957
958
static void sbp2_lu_workfn(struct work_struct *work)
959
{
960
struct sbp2_logical_unit *lu = container_of(to_delayed_work(work),
961
struct sbp2_logical_unit, work);
962
lu->workfn(work);
963
}
964
965
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
966
{
967
struct sbp2_logical_unit *lu;
968
969
lu = kmalloc(sizeof(*lu), GFP_KERNEL);
970
if (!lu)
971
return -ENOMEM;
972
973
lu->address_handler.length = 0x100;
974
lu->address_handler.address_callback = sbp2_status_write;
975
lu->address_handler.callback_data = lu;
976
977
if (fw_core_add_address_handler(&lu->address_handler,
978
&fw_high_memory_region) < 0) {
979
kfree(lu);
980
return -ENOMEM;
981
}
982
983
lu->tgt = tgt;
984
lu->lun = lun_entry & 0xffff;
985
lu->login_id = INVALID_LOGIN_ID;
986
lu->retries = 0;
987
lu->has_sdev = false;
988
lu->blocked = false;
989
++tgt->dont_block;
990
INIT_LIST_HEAD(&lu->orb_list);
991
lu->workfn = sbp2_login;
992
INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn);
993
994
list_add_tail(&lu->link, &tgt->lu_list);
995
return 0;
996
}
997
998
static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
999
const u32 *leaf)
1000
{
1001
if ((leaf[0] & 0xffff0000) == 0x00020000)
1002
tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1003
}
1004
1005
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1006
const u32 *directory)
1007
{
1008
struct fw_csr_iterator ci;
1009
int key, value;
1010
1011
fw_csr_iterator_init(&ci, directory);
1012
while (fw_csr_iterator_next(&ci, &key, &value))
1013
if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1014
sbp2_add_logical_unit(tgt, value) < 0)
1015
return -ENOMEM;
1016
return 0;
1017
}
1018
1019
static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1020
u32 *model, u32 *firmware_revision)
1021
{
1022
struct fw_csr_iterator ci;
1023
int key, value;
1024
1025
fw_csr_iterator_init(&ci, directory);
1026
while (fw_csr_iterator_next(&ci, &key, &value)) {
1027
switch (key) {
1028
1029
case CSR_DEPENDENT_INFO | CSR_OFFSET:
1030
tgt->management_agent_address =
1031
CSR_REGISTER_BASE + 4 * value;
1032
break;
1033
1034
case CSR_DIRECTORY_ID:
1035
tgt->directory_id = value;
1036
break;
1037
1038
case CSR_MODEL:
1039
*model = value;
1040
break;
1041
1042
case SBP2_CSR_FIRMWARE_REVISION:
1043
*firmware_revision = value;
1044
break;
1045
1046
case SBP2_CSR_UNIT_CHARACTERISTICS:
1047
/* the timeout value is stored in 500ms units */
1048
tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1049
break;
1050
1051
case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1052
if (sbp2_add_logical_unit(tgt, value) < 0)
1053
return -ENOMEM;
1054
break;
1055
1056
case SBP2_CSR_UNIT_UNIQUE_ID:
1057
sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1058
break;
1059
1060
case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1061
/* Adjust for the increment in the iterator */
1062
if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1063
return -ENOMEM;
1064
break;
1065
}
1066
}
1067
return 0;
1068
}
1069
1070
/*
1071
* Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1072
* provided in the config rom. Most devices do provide a value, which
1073
* we'll use for login management orbs, but with some sane limits.
1074
*/
1075
static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1076
{
1077
unsigned int timeout = tgt->mgt_orb_timeout;
1078
1079
if (timeout > 40000)
1080
dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1081
timeout / 1000);
1082
1083
tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1084
}
1085
1086
static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1087
u32 firmware_revision)
1088
{
1089
int i;
1090
unsigned int w = sbp2_param_workarounds;
1091
1092
if (w)
1093
dev_notice(tgt_dev(tgt),
1094
"Please notify [email protected] "
1095
"if you need the workarounds parameter\n");
1096
1097
if (w & SBP2_WORKAROUND_OVERRIDE)
1098
goto out;
1099
1100
for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1101
1102
if (sbp2_workarounds_table[i].firmware_revision !=
1103
(firmware_revision & 0xffffff00))
1104
continue;
1105
1106
if (sbp2_workarounds_table[i].model != model &&
1107
sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1108
continue;
1109
1110
w |= sbp2_workarounds_table[i].workarounds;
1111
break;
1112
}
1113
out:
1114
if (w)
1115
dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1116
"(firmware_revision 0x%06x, model_id 0x%06x)\n",
1117
w, firmware_revision, model);
1118
tgt->workarounds = w;
1119
}
1120
1121
static const struct scsi_host_template scsi_driver_template;
1122
static void sbp2_remove(struct fw_unit *unit);
1123
1124
static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1125
{
1126
struct fw_device *device = fw_parent_device(unit);
1127
struct sbp2_target *tgt;
1128
struct sbp2_logical_unit *lu;
1129
struct Scsi_Host *shost;
1130
u32 model, firmware_revision;
1131
1132
/* cannot (or should not) handle targets on the local node */
1133
if (device->is_local)
1134
return -ENODEV;
1135
1136
shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1137
if (shost == NULL)
1138
return -ENOMEM;
1139
1140
tgt = (struct sbp2_target *)shost->hostdata;
1141
dev_set_drvdata(&unit->device, tgt);
1142
tgt->unit = unit;
1143
INIT_LIST_HEAD(&tgt->lu_list);
1144
spin_lock_init(&tgt->lock);
1145
tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1146
1147
if (fw_device_enable_phys_dma(device) < 0)
1148
goto fail_shost_put;
1149
1150
shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1151
1152
if (scsi_add_host_with_dma(shost, &unit->device,
1153
device->card->device) < 0)
1154
goto fail_shost_put;
1155
1156
/* implicit directory ID */
1157
tgt->directory_id = ((unit->directory - device->config_rom) * 4
1158
+ CSR_CONFIG_ROM) & 0xffffff;
1159
1160
firmware_revision = SBP2_ROM_VALUE_MISSING;
1161
model = SBP2_ROM_VALUE_MISSING;
1162
1163
if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1164
&firmware_revision) < 0)
1165
goto fail_remove;
1166
1167
sbp2_clamp_management_orb_timeout(tgt);
1168
sbp2_init_workarounds(tgt, model, firmware_revision);
1169
1170
/*
1171
* At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1172
* and so on up to 4096 bytes. The SBP-2 max_payload field
1173
* specifies the max payload size as 2 ^ (max_payload + 2), so
1174
* if we set this to max_speed + 7, we get the right value.
1175
*/
1176
tgt->max_payload = min3(device->max_speed + 7, 10U,
1177
device->card->max_receive - 1);
1178
1179
/* Do the login in a workqueue so we can easily reschedule retries. */
1180
list_for_each_entry(lu, &tgt->lu_list, link)
1181
sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1182
1183
return 0;
1184
1185
fail_remove:
1186
sbp2_remove(unit);
1187
return -ENOMEM;
1188
1189
fail_shost_put:
1190
scsi_host_put(shost);
1191
return -ENOMEM;
1192
}
1193
1194
static void sbp2_update(struct fw_unit *unit)
1195
{
1196
struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1197
struct sbp2_logical_unit *lu;
1198
1199
fw_device_enable_phys_dma(fw_parent_device(unit));
1200
1201
/*
1202
* Fw-core serializes sbp2_update() against sbp2_remove().
1203
* Iteration over tgt->lu_list is therefore safe here.
1204
*/
1205
list_for_each_entry(lu, &tgt->lu_list, link) {
1206
sbp2_conditionally_block(lu);
1207
lu->retries = 0;
1208
sbp2_queue_work(lu, 0);
1209
}
1210
}
1211
1212
static void sbp2_remove(struct fw_unit *unit)
1213
{
1214
struct fw_device *device = fw_parent_device(unit);
1215
struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1216
struct sbp2_logical_unit *lu, *next;
1217
struct Scsi_Host *shost =
1218
container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1219
struct scsi_device *sdev;
1220
1221
/* prevent deadlocks */
1222
sbp2_unblock(tgt);
1223
1224
list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1225
cancel_delayed_work_sync(&lu->work);
1226
sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1227
if (sdev) {
1228
scsi_remove_device(sdev);
1229
scsi_device_put(sdev);
1230
}
1231
if (lu->login_id != INVALID_LOGIN_ID) {
1232
int generation, node_id;
1233
/*
1234
* tgt->node_id may be obsolete here if we failed
1235
* during initial login or after a bus reset where
1236
* the topology changed.
1237
*/
1238
generation = device->generation;
1239
smp_rmb(); /* node_id vs. generation */
1240
node_id = device->node_id;
1241
sbp2_send_management_orb(lu, node_id, generation,
1242
SBP2_LOGOUT_REQUEST,
1243
lu->login_id, NULL);
1244
}
1245
fw_core_remove_address_handler(&lu->address_handler);
1246
list_del(&lu->link);
1247
kfree(lu);
1248
}
1249
scsi_remove_host(shost);
1250
dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1251
1252
scsi_host_put(shost);
1253
}
1254
1255
#define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1256
#define SBP2_SW_VERSION_ENTRY 0x00010483
1257
1258
static const struct ieee1394_device_id sbp2_id_table[] = {
1259
{
1260
.match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1261
IEEE1394_MATCH_VERSION,
1262
.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1263
.version = SBP2_SW_VERSION_ENTRY,
1264
},
1265
{ }
1266
};
1267
1268
static struct fw_driver sbp2_driver = {
1269
.driver = {
1270
.owner = THIS_MODULE,
1271
.name = KBUILD_MODNAME,
1272
.bus = &fw_bus_type,
1273
},
1274
.probe = sbp2_probe,
1275
.update = sbp2_update,
1276
.remove = sbp2_remove,
1277
.id_table = sbp2_id_table,
1278
};
1279
1280
static void sbp2_unmap_scatterlist(struct device *card_device,
1281
struct sbp2_command_orb *orb)
1282
{
1283
scsi_dma_unmap(orb->cmd);
1284
1285
if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1286
dma_unmap_single(card_device, orb->page_table_bus,
1287
sizeof(orb->page_table), DMA_TO_DEVICE);
1288
}
1289
1290
static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1291
{
1292
int sam_status;
1293
int sfmt = (sbp2_status[0] >> 6) & 0x03;
1294
1295
if (sfmt == 2 || sfmt == 3) {
1296
/*
1297
* Reserved for future standardization (2) or
1298
* Status block format vendor-dependent (3)
1299
*/
1300
return DID_ERROR << 16;
1301
}
1302
1303
sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1304
sense_data[1] = 0x0;
1305
sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1306
sense_data[3] = sbp2_status[4];
1307
sense_data[4] = sbp2_status[5];
1308
sense_data[5] = sbp2_status[6];
1309
sense_data[6] = sbp2_status[7];
1310
sense_data[7] = 10;
1311
sense_data[8] = sbp2_status[8];
1312
sense_data[9] = sbp2_status[9];
1313
sense_data[10] = sbp2_status[10];
1314
sense_data[11] = sbp2_status[11];
1315
sense_data[12] = sbp2_status[2];
1316
sense_data[13] = sbp2_status[3];
1317
sense_data[14] = sbp2_status[12];
1318
sense_data[15] = sbp2_status[13];
1319
1320
sam_status = sbp2_status[0] & 0x3f;
1321
1322
switch (sam_status) {
1323
case SAM_STAT_GOOD:
1324
case SAM_STAT_CHECK_CONDITION:
1325
case SAM_STAT_CONDITION_MET:
1326
case SAM_STAT_BUSY:
1327
case SAM_STAT_RESERVATION_CONFLICT:
1328
case SAM_STAT_COMMAND_TERMINATED:
1329
return DID_OK << 16 | sam_status;
1330
1331
default:
1332
return DID_ERROR << 16;
1333
}
1334
}
1335
1336
static void complete_command_orb(struct sbp2_orb *base_orb,
1337
struct sbp2_status *status)
1338
{
1339
struct sbp2_command_orb *orb =
1340
container_of(base_orb, struct sbp2_command_orb, base);
1341
struct fw_device *device = target_parent_device(base_orb->lu->tgt);
1342
int result;
1343
1344
if (status != NULL) {
1345
if (STATUS_GET_DEAD(*status))
1346
sbp2_agent_reset_no_wait(base_orb->lu);
1347
1348
switch (STATUS_GET_RESPONSE(*status)) {
1349
case SBP2_STATUS_REQUEST_COMPLETE:
1350
result = DID_OK << 16;
1351
break;
1352
case SBP2_STATUS_TRANSPORT_FAILURE:
1353
result = DID_BUS_BUSY << 16;
1354
break;
1355
case SBP2_STATUS_ILLEGAL_REQUEST:
1356
case SBP2_STATUS_VENDOR_DEPENDENT:
1357
default:
1358
result = DID_ERROR << 16;
1359
break;
1360
}
1361
1362
if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1363
result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1364
orb->cmd->sense_buffer);
1365
} else {
1366
/*
1367
* If the orb completes with status == NULL, something
1368
* went wrong, typically a bus reset happened mid-orb
1369
* or when sending the write (less likely).
1370
*/
1371
result = DID_BUS_BUSY << 16;
1372
sbp2_conditionally_block(base_orb->lu);
1373
}
1374
1375
dma_unmap_single(device->card->device, orb->base.request_bus,
1376
sizeof(orb->request), DMA_TO_DEVICE);
1377
sbp2_unmap_scatterlist(device->card->device, orb);
1378
1379
orb->cmd->result = result;
1380
scsi_done(orb->cmd);
1381
}
1382
1383
static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1384
struct fw_device *device, struct sbp2_logical_unit *lu)
1385
{
1386
struct scatterlist *sg = scsi_sglist(orb->cmd);
1387
int i, n;
1388
1389
n = scsi_dma_map(orb->cmd);
1390
if (n <= 0)
1391
goto fail;
1392
1393
/*
1394
* Handle the special case where there is only one element in
1395
* the scatter list by converting it to an immediate block
1396
* request. This is also a workaround for broken devices such
1397
* as the second generation iPod which doesn't support page
1398
* tables.
1399
*/
1400
if (n == 1) {
1401
orb->request.data_descriptor.high =
1402
cpu_to_be32(lu->tgt->address_high);
1403
orb->request.data_descriptor.low =
1404
cpu_to_be32(sg_dma_address(sg));
1405
orb->request.misc |=
1406
cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1407
return 0;
1408
}
1409
1410
for_each_sg(sg, sg, n, i) {
1411
orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1412
orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1413
}
1414
1415
orb->page_table_bus =
1416
dma_map_single(device->card->device, orb->page_table,
1417
sizeof(orb->page_table), DMA_TO_DEVICE);
1418
if (dma_mapping_error(device->card->device, orb->page_table_bus))
1419
goto fail_page_table;
1420
1421
/*
1422
* The data_descriptor pointer is the one case where we need
1423
* to fill in the node ID part of the address. All other
1424
* pointers assume that the data referenced reside on the
1425
* initiator (i.e. us), but data_descriptor can refer to data
1426
* on other nodes so we need to put our ID in descriptor.high.
1427
*/
1428
orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1429
orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1430
orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1431
COMMAND_ORB_DATA_SIZE(n));
1432
1433
return 0;
1434
1435
fail_page_table:
1436
scsi_dma_unmap(orb->cmd);
1437
fail:
1438
return -ENOMEM;
1439
}
1440
1441
/* SCSI stack integration */
1442
1443
static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1444
struct scsi_cmnd *cmd)
1445
{
1446
struct sbp2_logical_unit *lu = cmd->device->hostdata;
1447
struct fw_device *device = target_parent_device(lu->tgt);
1448
struct sbp2_command_orb *orb;
1449
int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1450
1451
orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1452
if (orb == NULL)
1453
return SCSI_MLQUEUE_HOST_BUSY;
1454
1455
/* Initialize rcode to something not RCODE_COMPLETE. */
1456
orb->base.rcode = -1;
1457
kref_init(&orb->base.kref);
1458
orb->cmd = cmd;
1459
orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1460
orb->request.misc = cpu_to_be32(
1461
COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1462
COMMAND_ORB_SPEED(device->max_speed) |
1463
COMMAND_ORB_NOTIFY);
1464
1465
if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1466
orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1467
1468
generation = device->generation;
1469
smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1470
1471
if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1472
goto out;
1473
1474
memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1475
1476
orb->base.callback = complete_command_orb;
1477
orb->base.request_bus =
1478
dma_map_single(device->card->device, &orb->request,
1479
sizeof(orb->request), DMA_TO_DEVICE);
1480
if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1481
sbp2_unmap_scatterlist(device->card->device, orb);
1482
goto out;
1483
}
1484
1485
sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1486
lu->command_block_agent_address + SBP2_ORB_POINTER);
1487
retval = 0;
1488
out:
1489
kref_put(&orb->base.kref, free_orb);
1490
return retval;
1491
}
1492
1493
static int sbp2_scsi_sdev_init(struct scsi_device *sdev)
1494
{
1495
struct sbp2_logical_unit *lu = sdev->hostdata;
1496
1497
/* (Re-)Adding logical units via the SCSI stack is not supported. */
1498
if (!lu)
1499
return -ENOSYS;
1500
1501
sdev->allow_restart = 1;
1502
1503
if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1504
sdev->inquiry_len = 36;
1505
1506
return 0;
1507
}
1508
1509
static int sbp2_scsi_sdev_configure(struct scsi_device *sdev,
1510
struct queue_limits *lim)
1511
{
1512
struct sbp2_logical_unit *lu = sdev->hostdata;
1513
1514
sdev->use_10_for_rw = 1;
1515
1516
if (sbp2_param_exclusive_login) {
1517
sdev->manage_system_start_stop = 1;
1518
sdev->manage_runtime_start_stop = 1;
1519
sdev->manage_shutdown = 1;
1520
}
1521
1522
if (sdev->type == TYPE_ROM)
1523
sdev->use_10_for_ms = 1;
1524
1525
if (sdev->type == TYPE_DISK &&
1526
lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1527
sdev->skip_ms_page_8 = 1;
1528
1529
if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1530
sdev->fix_capacity = 1;
1531
1532
if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1533
sdev->start_stop_pwr_cond = 1;
1534
1535
if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1536
lim->max_hw_sectors = 128 * 1024 / 512;
1537
1538
return 0;
1539
}
1540
1541
/*
1542
* Called by scsi stack when something has really gone wrong. Usually
1543
* called when a command has timed-out for some reason.
1544
*/
1545
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1546
{
1547
struct sbp2_logical_unit *lu = cmd->device->hostdata;
1548
1549
dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1550
sbp2_agent_reset(lu);
1551
sbp2_cancel_orbs(lu);
1552
1553
return SUCCESS;
1554
}
1555
1556
/*
1557
* Format of /sys/bus/scsi/devices/.../ieee1394_id:
1558
* u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1559
*
1560
* This is the concatenation of target port identifier and logical unit
1561
* identifier as per SAM-2...SAM-4 annex A.
1562
*/
1563
static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1564
struct device_attribute *attr, char *buf)
1565
{
1566
struct scsi_device *sdev = to_scsi_device(dev);
1567
struct sbp2_logical_unit *lu;
1568
1569
if (!sdev)
1570
return 0;
1571
1572
lu = sdev->hostdata;
1573
1574
return sprintf(buf, "%016llx:%06x:%04x\n",
1575
(unsigned long long)lu->tgt->guid,
1576
lu->tgt->directory_id, lu->lun);
1577
}
1578
1579
static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1580
1581
static struct attribute *sbp2_scsi_sysfs_attrs[] = {
1582
&dev_attr_ieee1394_id.attr,
1583
NULL
1584
};
1585
1586
ATTRIBUTE_GROUPS(sbp2_scsi_sysfs);
1587
1588
static const struct scsi_host_template scsi_driver_template = {
1589
.module = THIS_MODULE,
1590
.name = "SBP-2 IEEE-1394",
1591
.proc_name = "sbp2",
1592
.queuecommand = sbp2_scsi_queuecommand,
1593
.sdev_init = sbp2_scsi_sdev_init,
1594
.sdev_configure = sbp2_scsi_sdev_configure,
1595
.eh_abort_handler = sbp2_scsi_abort,
1596
.this_id = -1,
1597
.sg_tablesize = SG_ALL,
1598
.max_segment_size = SBP2_MAX_SEG_SIZE,
1599
.can_queue = 1,
1600
.sdev_groups = sbp2_scsi_sysfs_groups,
1601
};
1602
1603
MODULE_AUTHOR("Kristian Hoegsberg <[email protected]>");
1604
MODULE_DESCRIPTION("SCSI over IEEE1394");
1605
MODULE_LICENSE("GPL");
1606
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1607
1608
/* Provide a module alias so root-on-sbp2 initrds don't break. */
1609
MODULE_ALIAS("sbp2");
1610
1611
static int __init sbp2_init(void)
1612
{
1613
return driver_register(&sbp2_driver.driver);
1614
}
1615
1616
static void __exit sbp2_cleanup(void)
1617
{
1618
driver_unregister(&sbp2_driver.driver);
1619
}
1620
1621
module_init(sbp2_init);
1622
module_exit(sbp2_cleanup);
1623
1624