Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firmware/arm_ffa/driver.c
26428 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* Arm Firmware Framework for ARMv8-A(FFA) interface driver
4
*
5
* The Arm FFA specification[1] describes a software architecture to
6
* leverages the virtualization extension to isolate software images
7
* provided by an ecosystem of vendors from each other and describes
8
* interfaces that standardize communication between the various software
9
* images including communication between images in the Secure world and
10
* Normal world. Any Hypervisor could use the FFA interfaces to enable
11
* communication between VMs it manages.
12
*
13
* The Hypervisor a.k.a Partition managers in FFA terminology can assign
14
* system resources(Memory regions, Devices, CPU cycles) to the partitions
15
* and manage isolation amongst them.
16
*
17
* [1] https://developer.arm.com/docs/den0077/latest
18
*
19
* Copyright (C) 2021 ARM Ltd.
20
*/
21
22
#define DRIVER_NAME "ARM FF-A"
23
#define pr_fmt(fmt) DRIVER_NAME ": " fmt
24
25
#include <linux/acpi.h>
26
#include <linux/arm_ffa.h>
27
#include <linux/bitfield.h>
28
#include <linux/cpuhotplug.h>
29
#include <linux/delay.h>
30
#include <linux/device.h>
31
#include <linux/hashtable.h>
32
#include <linux/interrupt.h>
33
#include <linux/io.h>
34
#include <linux/kernel.h>
35
#include <linux/module.h>
36
#include <linux/mm.h>
37
#include <linux/mutex.h>
38
#include <linux/of_irq.h>
39
#include <linux/scatterlist.h>
40
#include <linux/slab.h>
41
#include <linux/smp.h>
42
#include <linux/uuid.h>
43
#include <linux/xarray.h>
44
45
#include "common.h"
46
47
#define FFA_DRIVER_VERSION FFA_VERSION_1_2
48
#define FFA_MIN_VERSION FFA_VERSION_1_0
49
50
#define SENDER_ID_MASK GENMASK(31, 16)
51
#define RECEIVER_ID_MASK GENMASK(15, 0)
52
#define SENDER_ID(x) ((u16)(FIELD_GET(SENDER_ID_MASK, (x))))
53
#define RECEIVER_ID(x) ((u16)(FIELD_GET(RECEIVER_ID_MASK, (x))))
54
#define PACK_TARGET_INFO(s, r) \
55
(FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r)))
56
57
#define RXTX_MAP_MIN_BUFSZ_MASK GENMASK(1, 0)
58
#define RXTX_MAP_MIN_BUFSZ(x) ((x) & RXTX_MAP_MIN_BUFSZ_MASK)
59
60
#define FFA_MAX_NOTIFICATIONS 64
61
62
static ffa_fn *invoke_ffa_fn;
63
64
static const int ffa_linux_errmap[] = {
65
/* better than switch case as long as return value is continuous */
66
0, /* FFA_RET_SUCCESS */
67
-EOPNOTSUPP, /* FFA_RET_NOT_SUPPORTED */
68
-EINVAL, /* FFA_RET_INVALID_PARAMETERS */
69
-ENOMEM, /* FFA_RET_NO_MEMORY */
70
-EBUSY, /* FFA_RET_BUSY */
71
-EINTR, /* FFA_RET_INTERRUPTED */
72
-EACCES, /* FFA_RET_DENIED */
73
-EAGAIN, /* FFA_RET_RETRY */
74
-ECANCELED, /* FFA_RET_ABORTED */
75
-ENODATA, /* FFA_RET_NO_DATA */
76
-EAGAIN, /* FFA_RET_NOT_READY */
77
};
78
79
static inline int ffa_to_linux_errno(int errno)
80
{
81
int err_idx = -errno;
82
83
if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap))
84
return ffa_linux_errmap[err_idx];
85
return -EINVAL;
86
}
87
88
struct ffa_pcpu_irq {
89
struct ffa_drv_info *info;
90
};
91
92
struct ffa_drv_info {
93
u32 version;
94
u16 vm_id;
95
struct mutex rx_lock; /* lock to protect Rx buffer */
96
struct mutex tx_lock; /* lock to protect Tx buffer */
97
void *rx_buffer;
98
void *tx_buffer;
99
size_t rxtx_bufsz;
100
bool mem_ops_native;
101
bool msg_direct_req2_supp;
102
bool bitmap_created;
103
bool notif_enabled;
104
unsigned int sched_recv_irq;
105
unsigned int notif_pend_irq;
106
unsigned int cpuhp_state;
107
struct ffa_pcpu_irq __percpu *irq_pcpu;
108
struct workqueue_struct *notif_pcpu_wq;
109
struct work_struct notif_pcpu_work;
110
struct work_struct sched_recv_irq_work;
111
struct xarray partition_info;
112
DECLARE_HASHTABLE(notifier_hash, ilog2(FFA_MAX_NOTIFICATIONS));
113
rwlock_t notify_lock; /* lock to protect notifier hashtable */
114
};
115
116
static struct ffa_drv_info *drv_info;
117
118
/*
119
* The driver must be able to support all the versions from the earliest
120
* supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION.
121
* The specification states that if firmware supports a FFA implementation
122
* that is incompatible with and at a greater version number than specified
123
* by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION),
124
* it must return the NOT_SUPPORTED error code.
125
*/
126
static u32 ffa_compatible_version_find(u32 version)
127
{
128
u16 major = FFA_MAJOR_VERSION(version), minor = FFA_MINOR_VERSION(version);
129
u16 drv_major = FFA_MAJOR_VERSION(FFA_DRIVER_VERSION);
130
u16 drv_minor = FFA_MINOR_VERSION(FFA_DRIVER_VERSION);
131
132
if ((major < drv_major) || (major == drv_major && minor <= drv_minor))
133
return version;
134
135
pr_info("Firmware version higher than driver version, downgrading\n");
136
return FFA_DRIVER_VERSION;
137
}
138
139
static int ffa_version_check(u32 *version)
140
{
141
ffa_value_t ver;
142
143
invoke_ffa_fn((ffa_value_t){
144
.a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION,
145
}, &ver);
146
147
if ((s32)ver.a0 == FFA_RET_NOT_SUPPORTED) {
148
pr_info("FFA_VERSION returned not supported\n");
149
return -EOPNOTSUPP;
150
}
151
152
if (FFA_MAJOR_VERSION(ver.a0) > FFA_MAJOR_VERSION(FFA_DRIVER_VERSION)) {
153
pr_err("Incompatible v%d.%d! Latest supported v%d.%d\n",
154
FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0),
155
FFA_MAJOR_VERSION(FFA_DRIVER_VERSION),
156
FFA_MINOR_VERSION(FFA_DRIVER_VERSION));
157
return -EINVAL;
158
}
159
160
if (ver.a0 < FFA_MIN_VERSION) {
161
pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n",
162
FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0),
163
FFA_MAJOR_VERSION(FFA_MIN_VERSION),
164
FFA_MINOR_VERSION(FFA_MIN_VERSION));
165
return -EINVAL;
166
}
167
168
pr_info("Driver version %d.%d\n", FFA_MAJOR_VERSION(FFA_DRIVER_VERSION),
169
FFA_MINOR_VERSION(FFA_DRIVER_VERSION));
170
pr_info("Firmware version %d.%d found\n", FFA_MAJOR_VERSION(ver.a0),
171
FFA_MINOR_VERSION(ver.a0));
172
*version = ffa_compatible_version_find(ver.a0);
173
174
return 0;
175
}
176
177
static int ffa_rx_release(void)
178
{
179
ffa_value_t ret;
180
181
invoke_ffa_fn((ffa_value_t){
182
.a0 = FFA_RX_RELEASE,
183
}, &ret);
184
185
if (ret.a0 == FFA_ERROR)
186
return ffa_to_linux_errno((int)ret.a2);
187
188
/* check for ret.a0 == FFA_RX_RELEASE ? */
189
190
return 0;
191
}
192
193
static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt)
194
{
195
ffa_value_t ret;
196
197
invoke_ffa_fn((ffa_value_t){
198
.a0 = FFA_FN_NATIVE(RXTX_MAP),
199
.a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt,
200
}, &ret);
201
202
if (ret.a0 == FFA_ERROR)
203
return ffa_to_linux_errno((int)ret.a2);
204
205
return 0;
206
}
207
208
static int ffa_rxtx_unmap(u16 vm_id)
209
{
210
ffa_value_t ret;
211
212
invoke_ffa_fn((ffa_value_t){
213
.a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0),
214
}, &ret);
215
216
if (ret.a0 == FFA_ERROR)
217
return ffa_to_linux_errno((int)ret.a2);
218
219
return 0;
220
}
221
222
static int ffa_features(u32 func_feat_id, u32 input_props,
223
u32 *if_props_1, u32 *if_props_2)
224
{
225
ffa_value_t id;
226
227
if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) {
228
pr_err("%s: Invalid Parameters: %x, %x", __func__,
229
func_feat_id, input_props);
230
return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS);
231
}
232
233
invoke_ffa_fn((ffa_value_t){
234
.a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props,
235
}, &id);
236
237
if (id.a0 == FFA_ERROR)
238
return ffa_to_linux_errno((int)id.a2);
239
240
if (if_props_1)
241
*if_props_1 = id.a2;
242
if (if_props_2)
243
*if_props_2 = id.a3;
244
245
return 0;
246
}
247
248
#define PARTITION_INFO_GET_RETURN_COUNT_ONLY BIT(0)
249
250
/* buffer must be sizeof(struct ffa_partition_info) * num_partitions */
251
static int
252
__ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3,
253
struct ffa_partition_info *buffer, int num_partitions)
254
{
255
int idx, count, flags = 0, sz, buf_sz;
256
ffa_value_t partition_info;
257
258
if (drv_info->version > FFA_VERSION_1_0 &&
259
(!buffer || !num_partitions)) /* Just get the count for now */
260
flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY;
261
262
mutex_lock(&drv_info->rx_lock);
263
invoke_ffa_fn((ffa_value_t){
264
.a0 = FFA_PARTITION_INFO_GET,
265
.a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3,
266
.a5 = flags,
267
}, &partition_info);
268
269
if (partition_info.a0 == FFA_ERROR) {
270
mutex_unlock(&drv_info->rx_lock);
271
return ffa_to_linux_errno((int)partition_info.a2);
272
}
273
274
count = partition_info.a2;
275
276
if (drv_info->version > FFA_VERSION_1_0) {
277
buf_sz = sz = partition_info.a3;
278
if (sz > sizeof(*buffer))
279
buf_sz = sizeof(*buffer);
280
} else {
281
/* FFA_VERSION_1_0 lacks size in the response */
282
buf_sz = sz = 8;
283
}
284
285
if (buffer && count <= num_partitions)
286
for (idx = 0; idx < count; idx++) {
287
struct ffa_partition_info_le {
288
__le16 id;
289
__le16 exec_ctxt;
290
__le32 properties;
291
uuid_t uuid;
292
} *rx_buf = drv_info->rx_buffer + idx * sz;
293
struct ffa_partition_info *buf = buffer + idx;
294
295
buf->id = le16_to_cpu(rx_buf->id);
296
buf->exec_ctxt = le16_to_cpu(rx_buf->exec_ctxt);
297
buf->properties = le32_to_cpu(rx_buf->properties);
298
if (buf_sz > 8)
299
import_uuid(&buf->uuid, (u8 *)&rx_buf->uuid);
300
}
301
302
if (!(flags & PARTITION_INFO_GET_RETURN_COUNT_ONLY))
303
ffa_rx_release();
304
305
mutex_unlock(&drv_info->rx_lock);
306
307
return count;
308
}
309
310
#define LAST_INDEX_MASK GENMASK(15, 0)
311
#define CURRENT_INDEX_MASK GENMASK(31, 16)
312
#define UUID_INFO_TAG_MASK GENMASK(47, 32)
313
#define PARTITION_INFO_SZ_MASK GENMASK(63, 48)
314
#define PARTITION_COUNT(x) ((u16)(FIELD_GET(LAST_INDEX_MASK, (x))) + 1)
315
#define CURRENT_INDEX(x) ((u16)(FIELD_GET(CURRENT_INDEX_MASK, (x))))
316
#define UUID_INFO_TAG(x) ((u16)(FIELD_GET(UUID_INFO_TAG_MASK, (x))))
317
#define PARTITION_INFO_SZ(x) ((u16)(FIELD_GET(PARTITION_INFO_SZ_MASK, (x))))
318
#define PART_INFO_ID_MASK GENMASK(15, 0)
319
#define PART_INFO_EXEC_CXT_MASK GENMASK(31, 16)
320
#define PART_INFO_PROPS_MASK GENMASK(63, 32)
321
#define PART_INFO_ID(x) ((u16)(FIELD_GET(PART_INFO_ID_MASK, (x))))
322
#define PART_INFO_EXEC_CXT(x) ((u16)(FIELD_GET(PART_INFO_EXEC_CXT_MASK, (x))))
323
#define PART_INFO_PROPERTIES(x) ((u32)(FIELD_GET(PART_INFO_PROPS_MASK, (x))))
324
static int
325
__ffa_partition_info_get_regs(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3,
326
struct ffa_partition_info *buffer, int num_parts)
327
{
328
u16 buf_sz, start_idx, cur_idx, count = 0, prev_idx = 0, tag = 0;
329
struct ffa_partition_info *buf = buffer;
330
ffa_value_t partition_info;
331
332
do {
333
__le64 *regs;
334
int idx;
335
336
start_idx = prev_idx ? prev_idx + 1 : 0;
337
338
invoke_ffa_fn((ffa_value_t){
339
.a0 = FFA_PARTITION_INFO_GET_REGS,
340
.a1 = (u64)uuid1 << 32 | uuid0,
341
.a2 = (u64)uuid3 << 32 | uuid2,
342
.a3 = start_idx | tag << 16,
343
}, &partition_info);
344
345
if (partition_info.a0 == FFA_ERROR)
346
return ffa_to_linux_errno((int)partition_info.a2);
347
348
if (!count)
349
count = PARTITION_COUNT(partition_info.a2);
350
if (!buffer || !num_parts) /* count only */
351
return count;
352
353
cur_idx = CURRENT_INDEX(partition_info.a2);
354
tag = UUID_INFO_TAG(partition_info.a2);
355
buf_sz = PARTITION_INFO_SZ(partition_info.a2);
356
if (buf_sz > sizeof(*buffer))
357
buf_sz = sizeof(*buffer);
358
359
regs = (void *)&partition_info.a3;
360
for (idx = 0; idx < cur_idx - start_idx + 1; idx++, buf++) {
361
union {
362
uuid_t uuid;
363
u64 regs[2];
364
} uuid_regs = {
365
.regs = {
366
le64_to_cpu(*(regs + 1)),
367
le64_to_cpu(*(regs + 2)),
368
}
369
};
370
u64 val = *(u64 *)regs;
371
372
buf->id = PART_INFO_ID(val);
373
buf->exec_ctxt = PART_INFO_EXEC_CXT(val);
374
buf->properties = PART_INFO_PROPERTIES(val);
375
uuid_copy(&buf->uuid, &uuid_regs.uuid);
376
regs += 3;
377
}
378
prev_idx = cur_idx;
379
380
} while (cur_idx < (count - 1));
381
382
return count;
383
}
384
385
/* buffer is allocated and caller must free the same if returned count > 0 */
386
static int
387
ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer)
388
{
389
int count;
390
u32 uuid0_4[4];
391
bool reg_mode = false;
392
struct ffa_partition_info *pbuf;
393
394
if (!ffa_features(FFA_PARTITION_INFO_GET_REGS, 0, NULL, NULL))
395
reg_mode = true;
396
397
export_uuid((u8 *)uuid0_4, uuid);
398
if (reg_mode)
399
count = __ffa_partition_info_get_regs(uuid0_4[0], uuid0_4[1],
400
uuid0_4[2], uuid0_4[3],
401
NULL, 0);
402
else
403
count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1],
404
uuid0_4[2], uuid0_4[3],
405
NULL, 0);
406
if (count <= 0)
407
return count;
408
409
pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL);
410
if (!pbuf)
411
return -ENOMEM;
412
413
if (reg_mode)
414
count = __ffa_partition_info_get_regs(uuid0_4[0], uuid0_4[1],
415
uuid0_4[2], uuid0_4[3],
416
pbuf, count);
417
else
418
count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1],
419
uuid0_4[2], uuid0_4[3],
420
pbuf, count);
421
if (count <= 0)
422
kfree(pbuf);
423
else
424
*buffer = pbuf;
425
426
return count;
427
}
428
429
#define VM_ID_MASK GENMASK(15, 0)
430
static int ffa_id_get(u16 *vm_id)
431
{
432
ffa_value_t id;
433
434
invoke_ffa_fn((ffa_value_t){
435
.a0 = FFA_ID_GET,
436
}, &id);
437
438
if (id.a0 == FFA_ERROR)
439
return ffa_to_linux_errno((int)id.a2);
440
441
*vm_id = FIELD_GET(VM_ID_MASK, (id.a2));
442
443
return 0;
444
}
445
446
static inline void ffa_msg_send_wait_for_completion(ffa_value_t *ret)
447
{
448
while (ret->a0 == FFA_INTERRUPT || ret->a0 == FFA_YIELD) {
449
if (ret->a0 == FFA_YIELD)
450
fsleep(1000);
451
452
invoke_ffa_fn((ffa_value_t){
453
.a0 = FFA_RUN, .a1 = ret->a1,
454
}, ret);
455
}
456
}
457
458
static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit,
459
struct ffa_send_direct_data *data)
460
{
461
u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id);
462
ffa_value_t ret;
463
464
if (mode_32bit) {
465
req_id = FFA_MSG_SEND_DIRECT_REQ;
466
resp_id = FFA_MSG_SEND_DIRECT_RESP;
467
} else {
468
req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ);
469
resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP);
470
}
471
472
invoke_ffa_fn((ffa_value_t){
473
.a0 = req_id, .a1 = src_dst_ids, .a2 = 0,
474
.a3 = data->data0, .a4 = data->data1, .a5 = data->data2,
475
.a6 = data->data3, .a7 = data->data4,
476
}, &ret);
477
478
ffa_msg_send_wait_for_completion(&ret);
479
480
if (ret.a0 == FFA_ERROR)
481
return ffa_to_linux_errno((int)ret.a2);
482
483
if (ret.a0 == resp_id) {
484
data->data0 = ret.a3;
485
data->data1 = ret.a4;
486
data->data2 = ret.a5;
487
data->data3 = ret.a6;
488
data->data4 = ret.a7;
489
return 0;
490
}
491
492
return -EINVAL;
493
}
494
495
static int ffa_msg_send2(struct ffa_device *dev, u16 src_id, void *buf, size_t sz)
496
{
497
u32 src_dst_ids = PACK_TARGET_INFO(src_id, dev->vm_id);
498
struct ffa_indirect_msg_hdr *msg;
499
ffa_value_t ret;
500
int retval = 0;
501
502
if (sz > (drv_info->rxtx_bufsz - sizeof(*msg)))
503
return -ERANGE;
504
505
mutex_lock(&drv_info->tx_lock);
506
507
msg = drv_info->tx_buffer;
508
msg->flags = 0;
509
msg->res0 = 0;
510
msg->offset = sizeof(*msg);
511
msg->send_recv_id = src_dst_ids;
512
msg->size = sz;
513
uuid_copy(&msg->uuid, &dev->uuid);
514
memcpy((u8 *)msg + msg->offset, buf, sz);
515
516
/* flags = 0, sender VMID = 0 works for both physical/virtual NS */
517
invoke_ffa_fn((ffa_value_t){
518
.a0 = FFA_MSG_SEND2, .a1 = 0, .a2 = 0
519
}, &ret);
520
521
if (ret.a0 == FFA_ERROR)
522
retval = ffa_to_linux_errno((int)ret.a2);
523
524
mutex_unlock(&drv_info->tx_lock);
525
return retval;
526
}
527
528
static int ffa_msg_send_direct_req2(u16 src_id, u16 dst_id, const uuid_t *uuid,
529
struct ffa_send_direct_data2 *data)
530
{
531
u32 src_dst_ids = PACK_TARGET_INFO(src_id, dst_id);
532
union {
533
uuid_t uuid;
534
__le64 regs[2];
535
} uuid_regs = { .uuid = *uuid };
536
ffa_value_t ret, args = {
537
.a0 = FFA_MSG_SEND_DIRECT_REQ2,
538
.a1 = src_dst_ids,
539
.a2 = le64_to_cpu(uuid_regs.regs[0]),
540
.a3 = le64_to_cpu(uuid_regs.regs[1]),
541
};
542
memcpy((void *)&args + offsetof(ffa_value_t, a4), data, sizeof(*data));
543
544
invoke_ffa_fn(args, &ret);
545
546
ffa_msg_send_wait_for_completion(&ret);
547
548
if (ret.a0 == FFA_ERROR)
549
return ffa_to_linux_errno((int)ret.a2);
550
551
if (ret.a0 == FFA_MSG_SEND_DIRECT_RESP2) {
552
memcpy(data, (void *)&ret + offsetof(ffa_value_t, a4), sizeof(*data));
553
return 0;
554
}
555
556
return -EINVAL;
557
}
558
559
static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz,
560
u32 frag_len, u32 len, u64 *handle)
561
{
562
ffa_value_t ret;
563
564
invoke_ffa_fn((ffa_value_t){
565
.a0 = func_id, .a1 = len, .a2 = frag_len,
566
.a3 = buf, .a4 = buf_sz,
567
}, &ret);
568
569
while (ret.a0 == FFA_MEM_OP_PAUSE)
570
invoke_ffa_fn((ffa_value_t){
571
.a0 = FFA_MEM_OP_RESUME,
572
.a1 = ret.a1, .a2 = ret.a2,
573
}, &ret);
574
575
if (ret.a0 == FFA_ERROR)
576
return ffa_to_linux_errno((int)ret.a2);
577
578
if (ret.a0 == FFA_SUCCESS) {
579
if (handle)
580
*handle = PACK_HANDLE(ret.a2, ret.a3);
581
} else if (ret.a0 == FFA_MEM_FRAG_RX) {
582
if (handle)
583
*handle = PACK_HANDLE(ret.a1, ret.a2);
584
} else {
585
return -EOPNOTSUPP;
586
}
587
588
return frag_len;
589
}
590
591
static int ffa_mem_next_frag(u64 handle, u32 frag_len)
592
{
593
ffa_value_t ret;
594
595
invoke_ffa_fn((ffa_value_t){
596
.a0 = FFA_MEM_FRAG_TX,
597
.a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle),
598
.a3 = frag_len,
599
}, &ret);
600
601
while (ret.a0 == FFA_MEM_OP_PAUSE)
602
invoke_ffa_fn((ffa_value_t){
603
.a0 = FFA_MEM_OP_RESUME,
604
.a1 = ret.a1, .a2 = ret.a2,
605
}, &ret);
606
607
if (ret.a0 == FFA_ERROR)
608
return ffa_to_linux_errno((int)ret.a2);
609
610
if (ret.a0 == FFA_MEM_FRAG_RX)
611
return ret.a3;
612
else if (ret.a0 == FFA_SUCCESS)
613
return 0;
614
615
return -EOPNOTSUPP;
616
}
617
618
static int
619
ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len,
620
u32 len, u64 *handle, bool first)
621
{
622
if (!first)
623
return ffa_mem_next_frag(*handle, frag_len);
624
625
return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle);
626
}
627
628
static u32 ffa_get_num_pages_sg(struct scatterlist *sg)
629
{
630
u32 num_pages = 0;
631
632
do {
633
num_pages += sg->length / FFA_PAGE_SIZE;
634
} while ((sg = sg_next(sg)));
635
636
return num_pages;
637
}
638
639
static u16 ffa_memory_attributes_get(u32 func_id)
640
{
641
/*
642
* For the memory lend or donate operation, if the receiver is a PE or
643
* a proxy endpoint, the owner/sender must not specify the attributes
644
*/
645
if (func_id == FFA_FN_NATIVE(MEM_LEND) ||
646
func_id == FFA_MEM_LEND)
647
return 0;
648
649
return FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK | FFA_MEM_INNER_SHAREABLE;
650
}
651
652
static int
653
ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize,
654
struct ffa_mem_ops_args *args)
655
{
656
int rc = 0;
657
bool first = true;
658
u32 composite_offset;
659
phys_addr_t addr = 0;
660
struct ffa_mem_region *mem_region = buffer;
661
struct ffa_composite_mem_region *composite;
662
struct ffa_mem_region_addr_range *constituents;
663
struct ffa_mem_region_attributes *ep_mem_access;
664
u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg);
665
666
mem_region->tag = args->tag;
667
mem_region->flags = args->flags;
668
mem_region->sender_id = drv_info->vm_id;
669
mem_region->attributes = ffa_memory_attributes_get(func_id);
670
ep_mem_access = buffer +
671
ffa_mem_desc_offset(buffer, 0, drv_info->version);
672
composite_offset = ffa_mem_desc_offset(buffer, args->nattrs,
673
drv_info->version);
674
675
for (idx = 0; idx < args->nattrs; idx++, ep_mem_access++) {
676
ep_mem_access->receiver = args->attrs[idx].receiver;
677
ep_mem_access->attrs = args->attrs[idx].attrs;
678
ep_mem_access->composite_off = composite_offset;
679
ep_mem_access->flag = 0;
680
ep_mem_access->reserved = 0;
681
}
682
mem_region->handle = 0;
683
mem_region->ep_count = args->nattrs;
684
if (drv_info->version <= FFA_VERSION_1_0) {
685
mem_region->ep_mem_size = 0;
686
} else {
687
mem_region->ep_mem_size = sizeof(*ep_mem_access);
688
mem_region->ep_mem_offset = sizeof(*mem_region);
689
memset(mem_region->reserved, 0, 12);
690
}
691
692
composite = buffer + composite_offset;
693
composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg);
694
composite->addr_range_cnt = num_entries;
695
composite->reserved = 0;
696
697
length = composite_offset + CONSTITUENTS_OFFSET(num_entries);
698
frag_len = composite_offset + CONSTITUENTS_OFFSET(0);
699
if (frag_len > max_fragsize)
700
return -ENXIO;
701
702
if (!args->use_txbuf) {
703
addr = virt_to_phys(buffer);
704
buf_sz = max_fragsize / FFA_PAGE_SIZE;
705
}
706
707
constituents = buffer + frag_len;
708
idx = 0;
709
do {
710
if (frag_len == max_fragsize) {
711
rc = ffa_transmit_fragment(func_id, addr, buf_sz,
712
frag_len, length,
713
&args->g_handle, first);
714
if (rc < 0)
715
return -ENXIO;
716
717
first = false;
718
idx = 0;
719
frag_len = 0;
720
constituents = buffer;
721
}
722
723
if ((void *)constituents - buffer > max_fragsize) {
724
pr_err("Memory Region Fragment > Tx Buffer size\n");
725
return -EFAULT;
726
}
727
728
constituents->address = sg_phys(args->sg);
729
constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE;
730
constituents->reserved = 0;
731
constituents++;
732
frag_len += sizeof(struct ffa_mem_region_addr_range);
733
} while ((args->sg = sg_next(args->sg)));
734
735
return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len,
736
length, &args->g_handle, first);
737
}
738
739
static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args)
740
{
741
int ret;
742
void *buffer;
743
size_t rxtx_bufsz = drv_info->rxtx_bufsz;
744
745
if (!args->use_txbuf) {
746
buffer = alloc_pages_exact(rxtx_bufsz, GFP_KERNEL);
747
if (!buffer)
748
return -ENOMEM;
749
} else {
750
buffer = drv_info->tx_buffer;
751
mutex_lock(&drv_info->tx_lock);
752
}
753
754
ret = ffa_setup_and_transmit(func_id, buffer, rxtx_bufsz, args);
755
756
if (args->use_txbuf)
757
mutex_unlock(&drv_info->tx_lock);
758
else
759
free_pages_exact(buffer, rxtx_bufsz);
760
761
return ret < 0 ? ret : 0;
762
}
763
764
static int ffa_memory_reclaim(u64 g_handle, u32 flags)
765
{
766
ffa_value_t ret;
767
768
invoke_ffa_fn((ffa_value_t){
769
.a0 = FFA_MEM_RECLAIM,
770
.a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle),
771
.a3 = flags,
772
}, &ret);
773
774
if (ret.a0 == FFA_ERROR)
775
return ffa_to_linux_errno((int)ret.a2);
776
777
return 0;
778
}
779
780
static int ffa_notification_bitmap_create(void)
781
{
782
ffa_value_t ret;
783
u16 vcpu_count = nr_cpu_ids;
784
785
invoke_ffa_fn((ffa_value_t){
786
.a0 = FFA_NOTIFICATION_BITMAP_CREATE,
787
.a1 = drv_info->vm_id, .a2 = vcpu_count,
788
}, &ret);
789
790
if (ret.a0 == FFA_ERROR)
791
return ffa_to_linux_errno((int)ret.a2);
792
793
return 0;
794
}
795
796
static int ffa_notification_bitmap_destroy(void)
797
{
798
ffa_value_t ret;
799
800
invoke_ffa_fn((ffa_value_t){
801
.a0 = FFA_NOTIFICATION_BITMAP_DESTROY,
802
.a1 = drv_info->vm_id,
803
}, &ret);
804
805
if (ret.a0 == FFA_ERROR)
806
return ffa_to_linux_errno((int)ret.a2);
807
808
return 0;
809
}
810
811
enum notify_type {
812
SECURE_PARTITION,
813
NON_SECURE_VM,
814
SPM_FRAMEWORK,
815
NS_HYP_FRAMEWORK,
816
};
817
818
#define NOTIFICATION_LOW_MASK GENMASK(31, 0)
819
#define NOTIFICATION_HIGH_MASK GENMASK(63, 32)
820
#define NOTIFICATION_BITMAP_HIGH(x) \
821
((u32)(FIELD_GET(NOTIFICATION_HIGH_MASK, (x))))
822
#define NOTIFICATION_BITMAP_LOW(x) \
823
((u32)(FIELD_GET(NOTIFICATION_LOW_MASK, (x))))
824
#define PACK_NOTIFICATION_BITMAP(low, high) \
825
(FIELD_PREP(NOTIFICATION_LOW_MASK, (low)) | \
826
FIELD_PREP(NOTIFICATION_HIGH_MASK, (high)))
827
828
#define RECEIVER_VCPU_MASK GENMASK(31, 16)
829
#define PACK_NOTIFICATION_GET_RECEIVER_INFO(vcpu_r, r) \
830
(FIELD_PREP(RECEIVER_VCPU_MASK, (vcpu_r)) | \
831
FIELD_PREP(RECEIVER_ID_MASK, (r)))
832
833
#define NOTIFICATION_INFO_GET_MORE_PEND_MASK BIT(0)
834
#define NOTIFICATION_INFO_GET_ID_COUNT GENMASK(11, 7)
835
#define ID_LIST_MASK_64 GENMASK(51, 12)
836
#define ID_LIST_MASK_32 GENMASK(31, 12)
837
#define MAX_IDS_64 20
838
#define MAX_IDS_32 10
839
840
#define PER_VCPU_NOTIFICATION_FLAG BIT(0)
841
#define SECURE_PARTITION_BITMAP_ENABLE BIT(SECURE_PARTITION)
842
#define NON_SECURE_VM_BITMAP_ENABLE BIT(NON_SECURE_VM)
843
#define SPM_FRAMEWORK_BITMAP_ENABLE BIT(SPM_FRAMEWORK)
844
#define NS_HYP_FRAMEWORK_BITMAP_ENABLE BIT(NS_HYP_FRAMEWORK)
845
#define FFA_BITMAP_SECURE_ENABLE_MASK \
846
(SECURE_PARTITION_BITMAP_ENABLE | SPM_FRAMEWORK_BITMAP_ENABLE)
847
#define FFA_BITMAP_NS_ENABLE_MASK \
848
(NON_SECURE_VM_BITMAP_ENABLE | NS_HYP_FRAMEWORK_BITMAP_ENABLE)
849
#define FFA_BITMAP_ALL_ENABLE_MASK \
850
(FFA_BITMAP_SECURE_ENABLE_MASK | FFA_BITMAP_NS_ENABLE_MASK)
851
852
#define FFA_SECURE_PARTITION_ID_FLAG BIT(15)
853
854
#define SPM_FRAMEWORK_BITMAP(x) NOTIFICATION_BITMAP_LOW(x)
855
#define NS_HYP_FRAMEWORK_BITMAP(x) NOTIFICATION_BITMAP_HIGH(x)
856
#define FRAMEWORK_NOTIFY_RX_BUFFER_FULL BIT(0)
857
858
static int ffa_notification_bind_common(u16 dst_id, u64 bitmap,
859
u32 flags, bool is_bind)
860
{
861
ffa_value_t ret;
862
u32 func, src_dst_ids = PACK_TARGET_INFO(dst_id, drv_info->vm_id);
863
864
func = is_bind ? FFA_NOTIFICATION_BIND : FFA_NOTIFICATION_UNBIND;
865
866
invoke_ffa_fn((ffa_value_t){
867
.a0 = func, .a1 = src_dst_ids, .a2 = flags,
868
.a3 = NOTIFICATION_BITMAP_LOW(bitmap),
869
.a4 = NOTIFICATION_BITMAP_HIGH(bitmap),
870
}, &ret);
871
872
if (ret.a0 == FFA_ERROR)
873
return ffa_to_linux_errno((int)ret.a2);
874
else if (ret.a0 != FFA_SUCCESS)
875
return -EINVAL;
876
877
return 0;
878
}
879
880
static
881
int ffa_notification_set(u16 src_id, u16 dst_id, u32 flags, u64 bitmap)
882
{
883
ffa_value_t ret;
884
u32 src_dst_ids = PACK_TARGET_INFO(dst_id, src_id);
885
886
invoke_ffa_fn((ffa_value_t) {
887
.a0 = FFA_NOTIFICATION_SET, .a1 = src_dst_ids, .a2 = flags,
888
.a3 = NOTIFICATION_BITMAP_LOW(bitmap),
889
.a4 = NOTIFICATION_BITMAP_HIGH(bitmap),
890
}, &ret);
891
892
if (ret.a0 == FFA_ERROR)
893
return ffa_to_linux_errno((int)ret.a2);
894
else if (ret.a0 != FFA_SUCCESS)
895
return -EINVAL;
896
897
return 0;
898
}
899
900
struct ffa_notify_bitmaps {
901
u64 sp_map;
902
u64 vm_map;
903
u64 arch_map;
904
};
905
906
static int ffa_notification_get(u32 flags, struct ffa_notify_bitmaps *notify)
907
{
908
ffa_value_t ret;
909
u16 src_id = drv_info->vm_id;
910
u16 cpu_id = smp_processor_id();
911
u32 rec_vcpu_ids = PACK_NOTIFICATION_GET_RECEIVER_INFO(cpu_id, src_id);
912
913
invoke_ffa_fn((ffa_value_t){
914
.a0 = FFA_NOTIFICATION_GET, .a1 = rec_vcpu_ids, .a2 = flags,
915
}, &ret);
916
917
if (ret.a0 == FFA_ERROR)
918
return ffa_to_linux_errno((int)ret.a2);
919
else if (ret.a0 != FFA_SUCCESS)
920
return -EINVAL; /* Something else went wrong. */
921
922
if (flags & SECURE_PARTITION_BITMAP_ENABLE)
923
notify->sp_map = PACK_NOTIFICATION_BITMAP(ret.a2, ret.a3);
924
if (flags & NON_SECURE_VM_BITMAP_ENABLE)
925
notify->vm_map = PACK_NOTIFICATION_BITMAP(ret.a4, ret.a5);
926
if (flags & SPM_FRAMEWORK_BITMAP_ENABLE)
927
notify->arch_map = SPM_FRAMEWORK_BITMAP(ret.a6);
928
if (flags & NS_HYP_FRAMEWORK_BITMAP_ENABLE)
929
notify->arch_map = PACK_NOTIFICATION_BITMAP(notify->arch_map,
930
ret.a7);
931
932
return 0;
933
}
934
935
struct ffa_dev_part_info {
936
ffa_sched_recv_cb callback;
937
void *cb_data;
938
rwlock_t rw_lock;
939
struct ffa_device *dev;
940
struct list_head node;
941
};
942
943
static void __do_sched_recv_cb(u16 part_id, u16 vcpu, bool is_per_vcpu)
944
{
945
struct ffa_dev_part_info *partition = NULL, *tmp;
946
ffa_sched_recv_cb callback;
947
struct list_head *phead;
948
void *cb_data;
949
950
phead = xa_load(&drv_info->partition_info, part_id);
951
if (!phead) {
952
pr_err("%s: Invalid partition ID 0x%x\n", __func__, part_id);
953
return;
954
}
955
956
list_for_each_entry_safe(partition, tmp, phead, node) {
957
read_lock(&partition->rw_lock);
958
callback = partition->callback;
959
cb_data = partition->cb_data;
960
read_unlock(&partition->rw_lock);
961
962
if (callback)
963
callback(vcpu, is_per_vcpu, cb_data);
964
}
965
}
966
967
static void ffa_notification_info_get(void)
968
{
969
int idx, list, max_ids, lists_cnt, ids_processed, ids_count[MAX_IDS_64];
970
bool is_64b_resp;
971
ffa_value_t ret;
972
u64 id_list;
973
974
do {
975
invoke_ffa_fn((ffa_value_t){
976
.a0 = FFA_FN_NATIVE(NOTIFICATION_INFO_GET),
977
}, &ret);
978
979
if (ret.a0 != FFA_FN_NATIVE(SUCCESS) && ret.a0 != FFA_SUCCESS) {
980
if ((s32)ret.a2 != FFA_RET_NO_DATA)
981
pr_err("Notification Info fetch failed: 0x%lx (0x%lx)",
982
ret.a0, ret.a2);
983
return;
984
}
985
986
is_64b_resp = (ret.a0 == FFA_FN64_SUCCESS);
987
988
ids_processed = 0;
989
lists_cnt = FIELD_GET(NOTIFICATION_INFO_GET_ID_COUNT, ret.a2);
990
if (is_64b_resp) {
991
max_ids = MAX_IDS_64;
992
id_list = FIELD_GET(ID_LIST_MASK_64, ret.a2);
993
} else {
994
max_ids = MAX_IDS_32;
995
id_list = FIELD_GET(ID_LIST_MASK_32, ret.a2);
996
}
997
998
for (idx = 0; idx < lists_cnt; idx++, id_list >>= 2)
999
ids_count[idx] = (id_list & 0x3) + 1;
1000
1001
/* Process IDs */
1002
for (list = 0; list < lists_cnt; list++) {
1003
u16 vcpu_id, part_id, *packed_id_list = (u16 *)&ret.a3;
1004
1005
if (ids_processed >= max_ids - 1)
1006
break;
1007
1008
part_id = packed_id_list[ids_processed++];
1009
1010
if (ids_count[list] == 1) { /* Global Notification */
1011
__do_sched_recv_cb(part_id, 0, false);
1012
continue;
1013
}
1014
1015
/* Per vCPU Notification */
1016
for (idx = 1; idx < ids_count[list]; idx++) {
1017
if (ids_processed >= max_ids - 1)
1018
break;
1019
1020
vcpu_id = packed_id_list[ids_processed++];
1021
1022
__do_sched_recv_cb(part_id, vcpu_id, true);
1023
}
1024
}
1025
} while (ret.a2 & NOTIFICATION_INFO_GET_MORE_PEND_MASK);
1026
}
1027
1028
static int ffa_run(struct ffa_device *dev, u16 vcpu)
1029
{
1030
ffa_value_t ret;
1031
u32 target = dev->vm_id << 16 | vcpu;
1032
1033
invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = target, }, &ret);
1034
1035
while (ret.a0 == FFA_INTERRUPT)
1036
invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = ret.a1, },
1037
&ret);
1038
1039
if (ret.a0 == FFA_ERROR)
1040
return ffa_to_linux_errno((int)ret.a2);
1041
1042
return 0;
1043
}
1044
1045
static void ffa_drvinfo_flags_init(void)
1046
{
1047
if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) ||
1048
!ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL))
1049
drv_info->mem_ops_native = true;
1050
1051
if (!ffa_features(FFA_MSG_SEND_DIRECT_REQ2, 0, NULL, NULL) ||
1052
!ffa_features(FFA_MSG_SEND_DIRECT_RESP2, 0, NULL, NULL))
1053
drv_info->msg_direct_req2_supp = true;
1054
}
1055
1056
static u32 ffa_api_version_get(void)
1057
{
1058
return drv_info->version;
1059
}
1060
1061
static int ffa_partition_info_get(const char *uuid_str,
1062
struct ffa_partition_info *buffer)
1063
{
1064
int count;
1065
uuid_t uuid;
1066
struct ffa_partition_info *pbuf;
1067
1068
if (uuid_parse(uuid_str, &uuid)) {
1069
pr_err("invalid uuid (%s)\n", uuid_str);
1070
return -ENODEV;
1071
}
1072
1073
count = ffa_partition_probe(&uuid, &pbuf);
1074
if (count <= 0)
1075
return -ENOENT;
1076
1077
memcpy(buffer, pbuf, sizeof(*pbuf) * count);
1078
kfree(pbuf);
1079
return 0;
1080
}
1081
1082
static void ffa_mode_32bit_set(struct ffa_device *dev)
1083
{
1084
dev->mode_32bit = true;
1085
}
1086
1087
static int ffa_sync_send_receive(struct ffa_device *dev,
1088
struct ffa_send_direct_data *data)
1089
{
1090
return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id,
1091
dev->mode_32bit, data);
1092
}
1093
1094
static int ffa_indirect_msg_send(struct ffa_device *dev, void *buf, size_t sz)
1095
{
1096
return ffa_msg_send2(dev, drv_info->vm_id, buf, sz);
1097
}
1098
1099
static int ffa_sync_send_receive2(struct ffa_device *dev,
1100
struct ffa_send_direct_data2 *data)
1101
{
1102
if (!drv_info->msg_direct_req2_supp)
1103
return -EOPNOTSUPP;
1104
1105
return ffa_msg_send_direct_req2(drv_info->vm_id, dev->vm_id,
1106
&dev->uuid, data);
1107
}
1108
1109
static int ffa_memory_share(struct ffa_mem_ops_args *args)
1110
{
1111
if (drv_info->mem_ops_native)
1112
return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args);
1113
1114
return ffa_memory_ops(FFA_MEM_SHARE, args);
1115
}
1116
1117
static int ffa_memory_lend(struct ffa_mem_ops_args *args)
1118
{
1119
/* Note that upon a successful MEM_LEND request the caller
1120
* must ensure that the memory region specified is not accessed
1121
* until a successful MEM_RECALIM call has been made.
1122
* On systems with a hypervisor present this will been enforced,
1123
* however on systems without a hypervisor the responsibility
1124
* falls to the calling kernel driver to prevent access.
1125
*/
1126
if (drv_info->mem_ops_native)
1127
return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args);
1128
1129
return ffa_memory_ops(FFA_MEM_LEND, args);
1130
}
1131
1132
#define ffa_notifications_disabled() (!drv_info->notif_enabled)
1133
1134
struct notifier_cb_info {
1135
struct hlist_node hnode;
1136
struct ffa_device *dev;
1137
ffa_fwk_notifier_cb fwk_cb;
1138
ffa_notifier_cb cb;
1139
void *cb_data;
1140
};
1141
1142
static int
1143
ffa_sched_recv_cb_update(struct ffa_device *dev, ffa_sched_recv_cb callback,
1144
void *cb_data, bool is_registration)
1145
{
1146
struct ffa_dev_part_info *partition = NULL, *tmp;
1147
struct list_head *phead;
1148
bool cb_valid;
1149
1150
if (ffa_notifications_disabled())
1151
return -EOPNOTSUPP;
1152
1153
phead = xa_load(&drv_info->partition_info, dev->vm_id);
1154
if (!phead) {
1155
pr_err("%s: Invalid partition ID 0x%x\n", __func__, dev->vm_id);
1156
return -EINVAL;
1157
}
1158
1159
list_for_each_entry_safe(partition, tmp, phead, node)
1160
if (partition->dev == dev)
1161
break;
1162
1163
if (!partition) {
1164
pr_err("%s: No such partition ID 0x%x\n", __func__, dev->vm_id);
1165
return -EINVAL;
1166
}
1167
1168
write_lock(&partition->rw_lock);
1169
1170
cb_valid = !!partition->callback;
1171
if (!(is_registration ^ cb_valid)) {
1172
write_unlock(&partition->rw_lock);
1173
return -EINVAL;
1174
}
1175
1176
partition->callback = callback;
1177
partition->cb_data = cb_data;
1178
1179
write_unlock(&partition->rw_lock);
1180
return 0;
1181
}
1182
1183
static int ffa_sched_recv_cb_register(struct ffa_device *dev,
1184
ffa_sched_recv_cb cb, void *cb_data)
1185
{
1186
return ffa_sched_recv_cb_update(dev, cb, cb_data, true);
1187
}
1188
1189
static int ffa_sched_recv_cb_unregister(struct ffa_device *dev)
1190
{
1191
return ffa_sched_recv_cb_update(dev, NULL, NULL, false);
1192
}
1193
1194
static int ffa_notification_bind(u16 dst_id, u64 bitmap, u32 flags)
1195
{
1196
return ffa_notification_bind_common(dst_id, bitmap, flags, true);
1197
}
1198
1199
static int ffa_notification_unbind(u16 dst_id, u64 bitmap)
1200
{
1201
return ffa_notification_bind_common(dst_id, bitmap, 0, false);
1202
}
1203
1204
static enum notify_type ffa_notify_type_get(u16 vm_id)
1205
{
1206
if (vm_id & FFA_SECURE_PARTITION_ID_FLAG)
1207
return SECURE_PARTITION;
1208
else
1209
return NON_SECURE_VM;
1210
}
1211
1212
/* notifier_hnode_get* should be called with notify_lock held */
1213
static struct notifier_cb_info *
1214
notifier_hnode_get_by_vmid(u16 notify_id, int vmid)
1215
{
1216
struct notifier_cb_info *node;
1217
1218
hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id)
1219
if (node->fwk_cb && vmid == node->dev->vm_id)
1220
return node;
1221
1222
return NULL;
1223
}
1224
1225
static struct notifier_cb_info *
1226
notifier_hnode_get_by_vmid_uuid(u16 notify_id, int vmid, const uuid_t *uuid)
1227
{
1228
struct notifier_cb_info *node;
1229
1230
if (uuid_is_null(uuid))
1231
return notifier_hnode_get_by_vmid(notify_id, vmid);
1232
1233
hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id)
1234
if (node->fwk_cb && vmid == node->dev->vm_id &&
1235
uuid_equal(&node->dev->uuid, uuid))
1236
return node;
1237
1238
return NULL;
1239
}
1240
1241
static struct notifier_cb_info *
1242
notifier_hnode_get_by_type(u16 notify_id, enum notify_type type)
1243
{
1244
struct notifier_cb_info *node;
1245
1246
hash_for_each_possible(drv_info->notifier_hash, node, hnode, notify_id)
1247
if (node->cb && type == ffa_notify_type_get(node->dev->vm_id))
1248
return node;
1249
1250
return NULL;
1251
}
1252
1253
static int update_notifier_cb(struct ffa_device *dev, int notify_id,
1254
struct notifier_cb_info *cb, bool is_framework)
1255
{
1256
struct notifier_cb_info *cb_info = NULL;
1257
enum notify_type type = ffa_notify_type_get(dev->vm_id);
1258
bool cb_found, is_registration = !!cb;
1259
1260
if (is_framework)
1261
cb_info = notifier_hnode_get_by_vmid_uuid(notify_id, dev->vm_id,
1262
&dev->uuid);
1263
else
1264
cb_info = notifier_hnode_get_by_type(notify_id, type);
1265
1266
cb_found = !!cb_info;
1267
1268
if (!(is_registration ^ cb_found))
1269
return -EINVAL;
1270
1271
if (is_registration) {
1272
hash_add(drv_info->notifier_hash, &cb->hnode, notify_id);
1273
} else {
1274
hash_del(&cb_info->hnode);
1275
kfree(cb_info);
1276
}
1277
1278
return 0;
1279
}
1280
1281
static int __ffa_notify_relinquish(struct ffa_device *dev, int notify_id,
1282
bool is_framework)
1283
{
1284
int rc;
1285
1286
if (ffa_notifications_disabled())
1287
return -EOPNOTSUPP;
1288
1289
if (notify_id >= FFA_MAX_NOTIFICATIONS)
1290
return -EINVAL;
1291
1292
write_lock(&drv_info->notify_lock);
1293
1294
rc = update_notifier_cb(dev, notify_id, NULL, is_framework);
1295
if (rc) {
1296
pr_err("Could not unregister notification callback\n");
1297
write_unlock(&drv_info->notify_lock);
1298
return rc;
1299
}
1300
1301
if (!is_framework)
1302
rc = ffa_notification_unbind(dev->vm_id, BIT(notify_id));
1303
1304
write_unlock(&drv_info->notify_lock);
1305
1306
return rc;
1307
}
1308
1309
static int ffa_notify_relinquish(struct ffa_device *dev, int notify_id)
1310
{
1311
return __ffa_notify_relinquish(dev, notify_id, false);
1312
}
1313
1314
static int ffa_fwk_notify_relinquish(struct ffa_device *dev, int notify_id)
1315
{
1316
return __ffa_notify_relinquish(dev, notify_id, true);
1317
}
1318
1319
static int __ffa_notify_request(struct ffa_device *dev, bool is_per_vcpu,
1320
void *cb, void *cb_data,
1321
int notify_id, bool is_framework)
1322
{
1323
int rc;
1324
u32 flags = 0;
1325
struct notifier_cb_info *cb_info = NULL;
1326
1327
if (ffa_notifications_disabled())
1328
return -EOPNOTSUPP;
1329
1330
if (notify_id >= FFA_MAX_NOTIFICATIONS)
1331
return -EINVAL;
1332
1333
cb_info = kzalloc(sizeof(*cb_info), GFP_KERNEL);
1334
if (!cb_info)
1335
return -ENOMEM;
1336
1337
cb_info->dev = dev;
1338
cb_info->cb_data = cb_data;
1339
if (is_framework)
1340
cb_info->fwk_cb = cb;
1341
else
1342
cb_info->cb = cb;
1343
1344
write_lock(&drv_info->notify_lock);
1345
1346
if (!is_framework) {
1347
if (is_per_vcpu)
1348
flags = PER_VCPU_NOTIFICATION_FLAG;
1349
1350
rc = ffa_notification_bind(dev->vm_id, BIT(notify_id), flags);
1351
if (rc)
1352
goto out_unlock_free;
1353
}
1354
1355
rc = update_notifier_cb(dev, notify_id, cb_info, is_framework);
1356
if (rc) {
1357
pr_err("Failed to register callback for %d - %d\n",
1358
notify_id, rc);
1359
if (!is_framework)
1360
ffa_notification_unbind(dev->vm_id, BIT(notify_id));
1361
}
1362
1363
out_unlock_free:
1364
write_unlock(&drv_info->notify_lock);
1365
if (rc)
1366
kfree(cb_info);
1367
1368
return rc;
1369
}
1370
1371
static int ffa_notify_request(struct ffa_device *dev, bool is_per_vcpu,
1372
ffa_notifier_cb cb, void *cb_data, int notify_id)
1373
{
1374
return __ffa_notify_request(dev, is_per_vcpu, cb, cb_data, notify_id,
1375
false);
1376
}
1377
1378
static int
1379
ffa_fwk_notify_request(struct ffa_device *dev, ffa_fwk_notifier_cb cb,
1380
void *cb_data, int notify_id)
1381
{
1382
return __ffa_notify_request(dev, false, cb, cb_data, notify_id, true);
1383
}
1384
1385
static int ffa_notify_send(struct ffa_device *dev, int notify_id,
1386
bool is_per_vcpu, u16 vcpu)
1387
{
1388
u32 flags = 0;
1389
1390
if (ffa_notifications_disabled())
1391
return -EOPNOTSUPP;
1392
1393
if (is_per_vcpu)
1394
flags |= (PER_VCPU_NOTIFICATION_FLAG | vcpu << 16);
1395
1396
return ffa_notification_set(dev->vm_id, drv_info->vm_id, flags,
1397
BIT(notify_id));
1398
}
1399
1400
static void handle_notif_callbacks(u64 bitmap, enum notify_type type)
1401
{
1402
int notify_id;
1403
struct notifier_cb_info *cb_info = NULL;
1404
1405
for (notify_id = 0; notify_id <= FFA_MAX_NOTIFICATIONS && bitmap;
1406
notify_id++, bitmap >>= 1) {
1407
if (!(bitmap & 1))
1408
continue;
1409
1410
read_lock(&drv_info->notify_lock);
1411
cb_info = notifier_hnode_get_by_type(notify_id, type);
1412
read_unlock(&drv_info->notify_lock);
1413
1414
if (cb_info && cb_info->cb)
1415
cb_info->cb(notify_id, cb_info->cb_data);
1416
}
1417
}
1418
1419
static void handle_fwk_notif_callbacks(u32 bitmap)
1420
{
1421
void *buf;
1422
uuid_t uuid;
1423
int notify_id = 0, target;
1424
struct ffa_indirect_msg_hdr *msg;
1425
struct notifier_cb_info *cb_info = NULL;
1426
1427
/* Only one framework notification defined and supported for now */
1428
if (!(bitmap & FRAMEWORK_NOTIFY_RX_BUFFER_FULL))
1429
return;
1430
1431
mutex_lock(&drv_info->rx_lock);
1432
1433
msg = drv_info->rx_buffer;
1434
buf = kmemdup((void *)msg + msg->offset, msg->size, GFP_KERNEL);
1435
if (!buf) {
1436
mutex_unlock(&drv_info->rx_lock);
1437
return;
1438
}
1439
1440
target = SENDER_ID(msg->send_recv_id);
1441
if (msg->offset >= sizeof(*msg))
1442
uuid_copy(&uuid, &msg->uuid);
1443
else
1444
uuid_copy(&uuid, &uuid_null);
1445
1446
mutex_unlock(&drv_info->rx_lock);
1447
1448
ffa_rx_release();
1449
1450
read_lock(&drv_info->notify_lock);
1451
cb_info = notifier_hnode_get_by_vmid_uuid(notify_id, target, &uuid);
1452
read_unlock(&drv_info->notify_lock);
1453
1454
if (cb_info && cb_info->fwk_cb)
1455
cb_info->fwk_cb(notify_id, cb_info->cb_data, buf);
1456
kfree(buf);
1457
}
1458
1459
static void notif_get_and_handle(void *cb_data)
1460
{
1461
int rc;
1462
u32 flags;
1463
struct ffa_drv_info *info = cb_data;
1464
struct ffa_notify_bitmaps bitmaps = { 0 };
1465
1466
if (info->vm_id == 0) /* Non secure physical instance */
1467
flags = FFA_BITMAP_SECURE_ENABLE_MASK;
1468
else
1469
flags = FFA_BITMAP_ALL_ENABLE_MASK;
1470
1471
rc = ffa_notification_get(flags, &bitmaps);
1472
if (rc) {
1473
pr_err("Failed to retrieve notifications with %d!\n", rc);
1474
return;
1475
}
1476
1477
handle_fwk_notif_callbacks(SPM_FRAMEWORK_BITMAP(bitmaps.arch_map));
1478
handle_fwk_notif_callbacks(NS_HYP_FRAMEWORK_BITMAP(bitmaps.arch_map));
1479
handle_notif_callbacks(bitmaps.vm_map, NON_SECURE_VM);
1480
handle_notif_callbacks(bitmaps.sp_map, SECURE_PARTITION);
1481
}
1482
1483
static void
1484
ffa_self_notif_handle(u16 vcpu, bool is_per_vcpu, void *cb_data)
1485
{
1486
struct ffa_drv_info *info = cb_data;
1487
1488
if (!is_per_vcpu)
1489
notif_get_and_handle(info);
1490
else
1491
smp_call_function_single(vcpu, notif_get_and_handle, info, 0);
1492
}
1493
1494
static void notif_pcpu_irq_work_fn(struct work_struct *work)
1495
{
1496
struct ffa_drv_info *info = container_of(work, struct ffa_drv_info,
1497
notif_pcpu_work);
1498
1499
ffa_self_notif_handle(smp_processor_id(), true, info);
1500
}
1501
1502
static const struct ffa_info_ops ffa_drv_info_ops = {
1503
.api_version_get = ffa_api_version_get,
1504
.partition_info_get = ffa_partition_info_get,
1505
};
1506
1507
static const struct ffa_msg_ops ffa_drv_msg_ops = {
1508
.mode_32bit_set = ffa_mode_32bit_set,
1509
.sync_send_receive = ffa_sync_send_receive,
1510
.indirect_send = ffa_indirect_msg_send,
1511
.sync_send_receive2 = ffa_sync_send_receive2,
1512
};
1513
1514
static const struct ffa_mem_ops ffa_drv_mem_ops = {
1515
.memory_reclaim = ffa_memory_reclaim,
1516
.memory_share = ffa_memory_share,
1517
.memory_lend = ffa_memory_lend,
1518
};
1519
1520
static const struct ffa_cpu_ops ffa_drv_cpu_ops = {
1521
.run = ffa_run,
1522
};
1523
1524
static const struct ffa_notifier_ops ffa_drv_notifier_ops = {
1525
.sched_recv_cb_register = ffa_sched_recv_cb_register,
1526
.sched_recv_cb_unregister = ffa_sched_recv_cb_unregister,
1527
.notify_request = ffa_notify_request,
1528
.notify_relinquish = ffa_notify_relinquish,
1529
.fwk_notify_request = ffa_fwk_notify_request,
1530
.fwk_notify_relinquish = ffa_fwk_notify_relinquish,
1531
.notify_send = ffa_notify_send,
1532
};
1533
1534
static const struct ffa_ops ffa_drv_ops = {
1535
.info_ops = &ffa_drv_info_ops,
1536
.msg_ops = &ffa_drv_msg_ops,
1537
.mem_ops = &ffa_drv_mem_ops,
1538
.cpu_ops = &ffa_drv_cpu_ops,
1539
.notifier_ops = &ffa_drv_notifier_ops,
1540
};
1541
1542
void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid)
1543
{
1544
int count, idx;
1545
struct ffa_partition_info *pbuf, *tpbuf;
1546
1547
count = ffa_partition_probe(uuid, &pbuf);
1548
if (count <= 0)
1549
return;
1550
1551
for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++)
1552
if (tpbuf->id == ffa_dev->vm_id)
1553
uuid_copy(&ffa_dev->uuid, uuid);
1554
kfree(pbuf);
1555
}
1556
1557
static int
1558
ffa_bus_notifier(struct notifier_block *nb, unsigned long action, void *data)
1559
{
1560
struct device *dev = data;
1561
struct ffa_device *fdev = to_ffa_dev(dev);
1562
1563
if (action == BUS_NOTIFY_BIND_DRIVER) {
1564
struct ffa_driver *ffa_drv = to_ffa_driver(dev->driver);
1565
const struct ffa_device_id *id_table = ffa_drv->id_table;
1566
1567
/*
1568
* FF-A v1.1 provides UUID for each partition as part of the
1569
* discovery API, the discovered UUID must be populated in the
1570
* device's UUID and there is no need to workaround by copying
1571
* the same from the driver table.
1572
*/
1573
if (uuid_is_null(&fdev->uuid))
1574
ffa_device_match_uuid(fdev, &id_table->uuid);
1575
1576
return NOTIFY_OK;
1577
}
1578
1579
return NOTIFY_DONE;
1580
}
1581
1582
static struct notifier_block ffa_bus_nb = {
1583
.notifier_call = ffa_bus_notifier,
1584
};
1585
1586
static int ffa_xa_add_partition_info(struct ffa_device *dev)
1587
{
1588
struct ffa_dev_part_info *info;
1589
struct list_head *head, *phead;
1590
int ret = -ENOMEM;
1591
1592
phead = xa_load(&drv_info->partition_info, dev->vm_id);
1593
if (phead) {
1594
head = phead;
1595
list_for_each_entry(info, head, node) {
1596
if (info->dev == dev) {
1597
pr_err("%s: duplicate dev %p part ID 0x%x\n",
1598
__func__, dev, dev->vm_id);
1599
return -EEXIST;
1600
}
1601
}
1602
}
1603
1604
info = kzalloc(sizeof(*info), GFP_KERNEL);
1605
if (!info)
1606
return ret;
1607
1608
rwlock_init(&info->rw_lock);
1609
info->dev = dev;
1610
1611
if (!phead) {
1612
phead = kzalloc(sizeof(*phead), GFP_KERNEL);
1613
if (!phead)
1614
goto free_out;
1615
1616
INIT_LIST_HEAD(phead);
1617
1618
ret = xa_insert(&drv_info->partition_info, dev->vm_id, phead,
1619
GFP_KERNEL);
1620
if (ret) {
1621
pr_err("%s: failed to save part ID 0x%x Ret:%d\n",
1622
__func__, dev->vm_id, ret);
1623
goto free_out;
1624
}
1625
}
1626
list_add(&info->node, phead);
1627
return 0;
1628
1629
free_out:
1630
kfree(phead);
1631
kfree(info);
1632
return ret;
1633
}
1634
1635
static int ffa_setup_host_partition(int vm_id)
1636
{
1637
struct ffa_partition_info buf = { 0 };
1638
struct ffa_device *ffa_dev;
1639
int ret;
1640
1641
buf.id = vm_id;
1642
ffa_dev = ffa_device_register(&buf, &ffa_drv_ops);
1643
if (!ffa_dev) {
1644
pr_err("%s: failed to register host partition ID 0x%x\n",
1645
__func__, vm_id);
1646
return -EINVAL;
1647
}
1648
1649
ret = ffa_xa_add_partition_info(ffa_dev);
1650
if (ret)
1651
return ret;
1652
1653
if (ffa_notifications_disabled())
1654
return 0;
1655
1656
ret = ffa_sched_recv_cb_update(ffa_dev, ffa_self_notif_handle,
1657
drv_info, true);
1658
if (ret)
1659
pr_info("Failed to register driver sched callback %d\n", ret);
1660
1661
return ret;
1662
}
1663
1664
static void ffa_partitions_cleanup(void)
1665
{
1666
struct list_head *phead;
1667
unsigned long idx;
1668
1669
/* Clean up/free all registered devices */
1670
ffa_devices_unregister();
1671
1672
xa_for_each(&drv_info->partition_info, idx, phead) {
1673
struct ffa_dev_part_info *info, *tmp;
1674
1675
xa_erase(&drv_info->partition_info, idx);
1676
list_for_each_entry_safe(info, tmp, phead, node) {
1677
list_del(&info->node);
1678
kfree(info);
1679
}
1680
kfree(phead);
1681
}
1682
1683
xa_destroy(&drv_info->partition_info);
1684
}
1685
1686
static int ffa_setup_partitions(void)
1687
{
1688
int count, idx, ret;
1689
struct ffa_device *ffa_dev;
1690
struct ffa_partition_info *pbuf, *tpbuf;
1691
1692
if (drv_info->version == FFA_VERSION_1_0) {
1693
ret = bus_register_notifier(&ffa_bus_type, &ffa_bus_nb);
1694
if (ret)
1695
pr_err("Failed to register FF-A bus notifiers\n");
1696
}
1697
1698
count = ffa_partition_probe(&uuid_null, &pbuf);
1699
if (count <= 0) {
1700
pr_info("%s: No partitions found, error %d\n", __func__, count);
1701
return -EINVAL;
1702
}
1703
1704
xa_init(&drv_info->partition_info);
1705
for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) {
1706
/* Note that if the UUID will be uuid_null, that will require
1707
* ffa_bus_notifier() to find the UUID of this partition id
1708
* with help of ffa_device_match_uuid(). FF-A v1.1 and above
1709
* provides UUID here for each partition as part of the
1710
* discovery API and the same is passed.
1711
*/
1712
ffa_dev = ffa_device_register(tpbuf, &ffa_drv_ops);
1713
if (!ffa_dev) {
1714
pr_err("%s: failed to register partition ID 0x%x\n",
1715
__func__, tpbuf->id);
1716
continue;
1717
}
1718
1719
if (drv_info->version > FFA_VERSION_1_0 &&
1720
!(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC))
1721
ffa_mode_32bit_set(ffa_dev);
1722
1723
if (ffa_xa_add_partition_info(ffa_dev)) {
1724
ffa_device_unregister(ffa_dev);
1725
continue;
1726
}
1727
}
1728
1729
kfree(pbuf);
1730
1731
/*
1732
* Check if the host is already added as part of partition info
1733
* No multiple UUID possible for the host, so just checking if
1734
* there is an entry will suffice
1735
*/
1736
if (xa_load(&drv_info->partition_info, drv_info->vm_id))
1737
return 0;
1738
1739
/* Allocate for the host */
1740
ret = ffa_setup_host_partition(drv_info->vm_id);
1741
if (ret)
1742
ffa_partitions_cleanup();
1743
1744
return ret;
1745
}
1746
1747
/* FFA FEATURE IDs */
1748
#define FFA_FEAT_NOTIFICATION_PENDING_INT (1)
1749
#define FFA_FEAT_SCHEDULE_RECEIVER_INT (2)
1750
#define FFA_FEAT_MANAGED_EXIT_INT (3)
1751
1752
static irqreturn_t ffa_sched_recv_irq_handler(int irq, void *irq_data)
1753
{
1754
struct ffa_pcpu_irq *pcpu = irq_data;
1755
struct ffa_drv_info *info = pcpu->info;
1756
1757
queue_work(info->notif_pcpu_wq, &info->sched_recv_irq_work);
1758
1759
return IRQ_HANDLED;
1760
}
1761
1762
static irqreturn_t notif_pend_irq_handler(int irq, void *irq_data)
1763
{
1764
struct ffa_pcpu_irq *pcpu = irq_data;
1765
struct ffa_drv_info *info = pcpu->info;
1766
1767
queue_work_on(smp_processor_id(), info->notif_pcpu_wq,
1768
&info->notif_pcpu_work);
1769
1770
return IRQ_HANDLED;
1771
}
1772
1773
static void ffa_sched_recv_irq_work_fn(struct work_struct *work)
1774
{
1775
ffa_notification_info_get();
1776
}
1777
1778
static int ffa_irq_map(u32 id)
1779
{
1780
char *err_str;
1781
int ret, irq, intid;
1782
1783
if (id == FFA_FEAT_NOTIFICATION_PENDING_INT)
1784
err_str = "Notification Pending Interrupt";
1785
else if (id == FFA_FEAT_SCHEDULE_RECEIVER_INT)
1786
err_str = "Schedule Receiver Interrupt";
1787
else
1788
err_str = "Unknown ID";
1789
1790
/* The returned intid is assumed to be SGI donated to NS world */
1791
ret = ffa_features(id, 0, &intid, NULL);
1792
if (ret < 0) {
1793
if (ret != -EOPNOTSUPP)
1794
pr_err("Failed to retrieve FF-A %s %u\n", err_str, id);
1795
return ret;
1796
}
1797
1798
if (acpi_disabled) {
1799
struct of_phandle_args oirq = {};
1800
struct device_node *gic;
1801
1802
/* Only GICv3 supported currently with the device tree */
1803
gic = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1804
if (!gic)
1805
return -ENXIO;
1806
1807
oirq.np = gic;
1808
oirq.args_count = 1;
1809
oirq.args[0] = intid;
1810
irq = irq_create_of_mapping(&oirq);
1811
of_node_put(gic);
1812
#ifdef CONFIG_ACPI
1813
} else {
1814
irq = acpi_register_gsi(NULL, intid, ACPI_EDGE_SENSITIVE,
1815
ACPI_ACTIVE_HIGH);
1816
#endif
1817
}
1818
1819
if (irq <= 0) {
1820
pr_err("Failed to create IRQ mapping!\n");
1821
return -ENODATA;
1822
}
1823
1824
return irq;
1825
}
1826
1827
static void ffa_irq_unmap(unsigned int irq)
1828
{
1829
if (!irq)
1830
return;
1831
irq_dispose_mapping(irq);
1832
}
1833
1834
static int ffa_cpuhp_pcpu_irq_enable(unsigned int cpu)
1835
{
1836
if (drv_info->sched_recv_irq)
1837
enable_percpu_irq(drv_info->sched_recv_irq, IRQ_TYPE_NONE);
1838
if (drv_info->notif_pend_irq)
1839
enable_percpu_irq(drv_info->notif_pend_irq, IRQ_TYPE_NONE);
1840
return 0;
1841
}
1842
1843
static int ffa_cpuhp_pcpu_irq_disable(unsigned int cpu)
1844
{
1845
if (drv_info->sched_recv_irq)
1846
disable_percpu_irq(drv_info->sched_recv_irq);
1847
if (drv_info->notif_pend_irq)
1848
disable_percpu_irq(drv_info->notif_pend_irq);
1849
return 0;
1850
}
1851
1852
static void ffa_uninit_pcpu_irq(void)
1853
{
1854
if (drv_info->cpuhp_state) {
1855
cpuhp_remove_state(drv_info->cpuhp_state);
1856
drv_info->cpuhp_state = 0;
1857
}
1858
1859
if (drv_info->notif_pcpu_wq) {
1860
destroy_workqueue(drv_info->notif_pcpu_wq);
1861
drv_info->notif_pcpu_wq = NULL;
1862
}
1863
1864
if (drv_info->sched_recv_irq)
1865
free_percpu_irq(drv_info->sched_recv_irq, drv_info->irq_pcpu);
1866
1867
if (drv_info->notif_pend_irq)
1868
free_percpu_irq(drv_info->notif_pend_irq, drv_info->irq_pcpu);
1869
1870
if (drv_info->irq_pcpu) {
1871
free_percpu(drv_info->irq_pcpu);
1872
drv_info->irq_pcpu = NULL;
1873
}
1874
}
1875
1876
static int ffa_init_pcpu_irq(void)
1877
{
1878
struct ffa_pcpu_irq __percpu *irq_pcpu;
1879
int ret, cpu;
1880
1881
irq_pcpu = alloc_percpu(struct ffa_pcpu_irq);
1882
if (!irq_pcpu)
1883
return -ENOMEM;
1884
1885
for_each_present_cpu(cpu)
1886
per_cpu_ptr(irq_pcpu, cpu)->info = drv_info;
1887
1888
drv_info->irq_pcpu = irq_pcpu;
1889
1890
if (drv_info->sched_recv_irq) {
1891
ret = request_percpu_irq(drv_info->sched_recv_irq,
1892
ffa_sched_recv_irq_handler,
1893
"ARM-FFA-SRI", irq_pcpu);
1894
if (ret) {
1895
pr_err("Error registering percpu SRI nIRQ %d : %d\n",
1896
drv_info->sched_recv_irq, ret);
1897
drv_info->sched_recv_irq = 0;
1898
return ret;
1899
}
1900
}
1901
1902
if (drv_info->notif_pend_irq) {
1903
ret = request_percpu_irq(drv_info->notif_pend_irq,
1904
notif_pend_irq_handler,
1905
"ARM-FFA-NPI", irq_pcpu);
1906
if (ret) {
1907
pr_err("Error registering percpu NPI nIRQ %d : %d\n",
1908
drv_info->notif_pend_irq, ret);
1909
drv_info->notif_pend_irq = 0;
1910
return ret;
1911
}
1912
}
1913
1914
INIT_WORK(&drv_info->sched_recv_irq_work, ffa_sched_recv_irq_work_fn);
1915
INIT_WORK(&drv_info->notif_pcpu_work, notif_pcpu_irq_work_fn);
1916
drv_info->notif_pcpu_wq = create_workqueue("ffa_pcpu_irq_notification");
1917
if (!drv_info->notif_pcpu_wq)
1918
return -EINVAL;
1919
1920
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ffa/pcpu-irq:starting",
1921
ffa_cpuhp_pcpu_irq_enable,
1922
ffa_cpuhp_pcpu_irq_disable);
1923
1924
if (ret < 0)
1925
return ret;
1926
1927
drv_info->cpuhp_state = ret;
1928
return 0;
1929
}
1930
1931
static void ffa_notifications_cleanup(void)
1932
{
1933
ffa_uninit_pcpu_irq();
1934
ffa_irq_unmap(drv_info->sched_recv_irq);
1935
drv_info->sched_recv_irq = 0;
1936
ffa_irq_unmap(drv_info->notif_pend_irq);
1937
drv_info->notif_pend_irq = 0;
1938
1939
if (drv_info->bitmap_created) {
1940
ffa_notification_bitmap_destroy();
1941
drv_info->bitmap_created = false;
1942
}
1943
drv_info->notif_enabled = false;
1944
}
1945
1946
static void ffa_notifications_setup(void)
1947
{
1948
int ret;
1949
1950
ret = ffa_features(FFA_NOTIFICATION_BITMAP_CREATE, 0, NULL, NULL);
1951
if (!ret) {
1952
ret = ffa_notification_bitmap_create();
1953
if (ret) {
1954
pr_err("Notification bitmap create error %d\n", ret);
1955
return;
1956
}
1957
1958
drv_info->bitmap_created = true;
1959
}
1960
1961
ret = ffa_irq_map(FFA_FEAT_SCHEDULE_RECEIVER_INT);
1962
if (ret > 0)
1963
drv_info->sched_recv_irq = ret;
1964
1965
ret = ffa_irq_map(FFA_FEAT_NOTIFICATION_PENDING_INT);
1966
if (ret > 0)
1967
drv_info->notif_pend_irq = ret;
1968
1969
if (!drv_info->sched_recv_irq && !drv_info->notif_pend_irq)
1970
goto cleanup;
1971
1972
ret = ffa_init_pcpu_irq();
1973
if (ret)
1974
goto cleanup;
1975
1976
hash_init(drv_info->notifier_hash);
1977
rwlock_init(&drv_info->notify_lock);
1978
1979
drv_info->notif_enabled = true;
1980
return;
1981
cleanup:
1982
pr_info("Notification setup failed %d, not enabled\n", ret);
1983
ffa_notifications_cleanup();
1984
}
1985
1986
static int __init ffa_init(void)
1987
{
1988
int ret;
1989
u32 buf_sz;
1990
size_t rxtx_bufsz = SZ_4K;
1991
1992
ret = ffa_transport_init(&invoke_ffa_fn);
1993
if (ret)
1994
return ret;
1995
1996
drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL);
1997
if (!drv_info)
1998
return -ENOMEM;
1999
2000
ret = ffa_version_check(&drv_info->version);
2001
if (ret)
2002
goto free_drv_info;
2003
2004
if (ffa_id_get(&drv_info->vm_id)) {
2005
pr_err("failed to obtain VM id for self\n");
2006
ret = -ENODEV;
2007
goto free_drv_info;
2008
}
2009
2010
ret = ffa_features(FFA_FN_NATIVE(RXTX_MAP), 0, &buf_sz, NULL);
2011
if (!ret) {
2012
if (RXTX_MAP_MIN_BUFSZ(buf_sz) == 1)
2013
rxtx_bufsz = SZ_64K;
2014
else if (RXTX_MAP_MIN_BUFSZ(buf_sz) == 2)
2015
rxtx_bufsz = SZ_16K;
2016
else
2017
rxtx_bufsz = SZ_4K;
2018
}
2019
2020
drv_info->rxtx_bufsz = rxtx_bufsz;
2021
drv_info->rx_buffer = alloc_pages_exact(rxtx_bufsz, GFP_KERNEL);
2022
if (!drv_info->rx_buffer) {
2023
ret = -ENOMEM;
2024
goto free_pages;
2025
}
2026
2027
drv_info->tx_buffer = alloc_pages_exact(rxtx_bufsz, GFP_KERNEL);
2028
if (!drv_info->tx_buffer) {
2029
ret = -ENOMEM;
2030
goto free_pages;
2031
}
2032
2033
ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer),
2034
virt_to_phys(drv_info->rx_buffer),
2035
rxtx_bufsz / FFA_PAGE_SIZE);
2036
if (ret) {
2037
pr_err("failed to register FFA RxTx buffers\n");
2038
goto free_pages;
2039
}
2040
2041
mutex_init(&drv_info->rx_lock);
2042
mutex_init(&drv_info->tx_lock);
2043
2044
ffa_drvinfo_flags_init();
2045
2046
ffa_notifications_setup();
2047
2048
ret = ffa_setup_partitions();
2049
if (!ret)
2050
return ret;
2051
2052
pr_err("failed to setup partitions\n");
2053
ffa_notifications_cleanup();
2054
free_pages:
2055
if (drv_info->tx_buffer)
2056
free_pages_exact(drv_info->tx_buffer, rxtx_bufsz);
2057
free_pages_exact(drv_info->rx_buffer, rxtx_bufsz);
2058
free_drv_info:
2059
kfree(drv_info);
2060
return ret;
2061
}
2062
rootfs_initcall(ffa_init);
2063
2064
static void __exit ffa_exit(void)
2065
{
2066
ffa_notifications_cleanup();
2067
ffa_partitions_cleanup();
2068
ffa_rxtx_unmap(drv_info->vm_id);
2069
free_pages_exact(drv_info->tx_buffer, drv_info->rxtx_bufsz);
2070
free_pages_exact(drv_info->rx_buffer, drv_info->rxtx_bufsz);
2071
kfree(drv_info);
2072
}
2073
module_exit(ffa_exit);
2074
2075
MODULE_ALIAS("arm-ffa");
2076
MODULE_AUTHOR("Sudeep Holla <[email protected]>");
2077
MODULE_DESCRIPTION("Arm FF-A interface driver");
2078
MODULE_LICENSE("GPL v2");
2079
2080