Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firmware/dmi_scan.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include <linux/types.h>
3
#include <linux/string.h>
4
#include <linux/init.h>
5
#include <linux/module.h>
6
#include <linux/ctype.h>
7
#include <linux/dmi.h>
8
#include <linux/efi.h>
9
#include <linux/memblock.h>
10
#include <linux/random.h>
11
#include <asm/dmi.h>
12
#include <linux/unaligned.h>
13
14
#ifndef SMBIOS_ENTRY_POINT_SCAN_START
15
#define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
16
#endif
17
18
struct kobject *dmi_kobj;
19
EXPORT_SYMBOL_GPL(dmi_kobj);
20
21
/*
22
* DMI stands for "Desktop Management Interface". It is part
23
* of and an antecedent to, SMBIOS, which stands for System
24
* Management BIOS. See further: https://www.dmtf.org/standards
25
*/
26
static const char dmi_empty_string[] = "";
27
28
static u32 dmi_ver __initdata;
29
static u32 dmi_len;
30
static u16 dmi_num;
31
static u8 smbios_entry_point[32];
32
static int smbios_entry_point_size;
33
34
/* DMI system identification string used during boot */
35
static char dmi_ids_string[128] __initdata;
36
37
static struct dmi_memdev_info {
38
const char *device;
39
const char *bank;
40
u64 size; /* bytes */
41
u16 handle;
42
u8 type; /* DDR2, DDR3, DDR4 etc */
43
} *dmi_memdev;
44
static int dmi_memdev_nr;
45
static int dmi_memdev_populated_nr __initdata;
46
47
static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
48
{
49
const u8 *bp = ((u8 *) dm) + dm->length;
50
const u8 *nsp;
51
52
if (s) {
53
while (--s > 0 && *bp)
54
bp += strlen(bp) + 1;
55
56
/* Strings containing only spaces are considered empty */
57
nsp = bp;
58
while (*nsp == ' ')
59
nsp++;
60
if (*nsp != '\0')
61
return bp;
62
}
63
64
return dmi_empty_string;
65
}
66
67
static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
68
{
69
const char *bp = dmi_string_nosave(dm, s);
70
char *str;
71
size_t len;
72
73
if (bp == dmi_empty_string)
74
return dmi_empty_string;
75
76
len = strlen(bp) + 1;
77
str = dmi_alloc(len);
78
if (str != NULL)
79
strcpy(str, bp);
80
81
return str;
82
}
83
84
/*
85
* We have to be cautious here. We have seen BIOSes with DMI pointers
86
* pointing to completely the wrong place for example
87
*/
88
static void dmi_decode_table(u8 *buf,
89
void (*decode)(const struct dmi_header *, void *),
90
void *private_data)
91
{
92
u8 *data = buf;
93
int i = 0;
94
95
/*
96
* Stop when we have seen all the items the table claimed to have
97
* (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
98
* >= 3.0 only) OR we run off the end of the table (should never
99
* happen but sometimes does on bogus implementations.)
100
*/
101
while ((!dmi_num || i < dmi_num) &&
102
(data - buf + sizeof(struct dmi_header)) <= dmi_len) {
103
const struct dmi_header *dm = (const struct dmi_header *)data;
104
105
/*
106
* If a short entry is found (less than 4 bytes), not only it
107
* is invalid, but we cannot reliably locate the next entry.
108
*/
109
if (dm->length < sizeof(struct dmi_header)) {
110
pr_warn(FW_BUG
111
"Corrupted DMI table, offset %zd (only %d entries processed)\n",
112
data - buf, i);
113
break;
114
}
115
116
/*
117
* We want to know the total length (formatted area and
118
* strings) before decoding to make sure we won't run off the
119
* table in dmi_decode or dmi_string
120
*/
121
data += dm->length;
122
while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
123
data++;
124
if (data - buf < dmi_len - 1)
125
decode(dm, private_data);
126
127
data += 2;
128
i++;
129
130
/*
131
* 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
132
* For tables behind a 64-bit entry point, we have no item
133
* count and no exact table length, so stop on end-of-table
134
* marker. For tables behind a 32-bit entry point, we have
135
* seen OEM structures behind the end-of-table marker on
136
* some systems, so don't trust it.
137
*/
138
if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
139
break;
140
}
141
142
/* Trim DMI table length if needed */
143
if (dmi_len > data - buf)
144
dmi_len = data - buf;
145
}
146
147
static phys_addr_t dmi_base;
148
149
static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
150
void *))
151
{
152
u8 *buf;
153
u32 orig_dmi_len = dmi_len;
154
155
buf = dmi_early_remap(dmi_base, orig_dmi_len);
156
if (buf == NULL)
157
return -ENOMEM;
158
159
dmi_decode_table(buf, decode, NULL);
160
161
add_device_randomness(buf, dmi_len);
162
163
dmi_early_unmap(buf, orig_dmi_len);
164
return 0;
165
}
166
167
static int __init dmi_checksum(const u8 *buf, u8 len)
168
{
169
u8 sum = 0;
170
int a;
171
172
for (a = 0; a < len; a++)
173
sum += buf[a];
174
175
return sum == 0;
176
}
177
178
static const char *dmi_ident[DMI_STRING_MAX];
179
static LIST_HEAD(dmi_devices);
180
int dmi_available;
181
EXPORT_SYMBOL_GPL(dmi_available);
182
183
/*
184
* Save a DMI string
185
*/
186
static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
187
int string)
188
{
189
const char *d = (const char *) dm;
190
const char *p;
191
192
if (dmi_ident[slot] || dm->length <= string)
193
return;
194
195
p = dmi_string(dm, d[string]);
196
if (p == NULL)
197
return;
198
199
dmi_ident[slot] = p;
200
}
201
202
static void __init dmi_save_release(const struct dmi_header *dm, int slot,
203
int index)
204
{
205
const u8 *minor, *major;
206
char *s;
207
208
/* If the table doesn't have the field, let's return */
209
if (dmi_ident[slot] || dm->length < index)
210
return;
211
212
minor = (u8 *) dm + index;
213
major = (u8 *) dm + index - 1;
214
215
/* As per the spec, if the system doesn't support this field,
216
* the value is FF
217
*/
218
if (*major == 0xFF && *minor == 0xFF)
219
return;
220
221
s = dmi_alloc(8);
222
if (!s)
223
return;
224
225
sprintf(s, "%u.%u", *major, *minor);
226
227
dmi_ident[slot] = s;
228
}
229
230
static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
231
int index)
232
{
233
const u8 *d;
234
char *s;
235
int is_ff = 1, is_00 = 1, i;
236
237
if (dmi_ident[slot] || dm->length < index + 16)
238
return;
239
240
d = (u8 *) dm + index;
241
for (i = 0; i < 16 && (is_ff || is_00); i++) {
242
if (d[i] != 0x00)
243
is_00 = 0;
244
if (d[i] != 0xFF)
245
is_ff = 0;
246
}
247
248
if (is_ff || is_00)
249
return;
250
251
s = dmi_alloc(16*2+4+1);
252
if (!s)
253
return;
254
255
/*
256
* As of version 2.6 of the SMBIOS specification, the first 3 fields of
257
* the UUID are supposed to be little-endian encoded. The specification
258
* says that this is the defacto standard.
259
*/
260
if (dmi_ver >= 0x020600)
261
sprintf(s, "%pUl", d);
262
else
263
sprintf(s, "%pUb", d);
264
265
dmi_ident[slot] = s;
266
}
267
268
static void __init dmi_save_type(const struct dmi_header *dm, int slot,
269
int index)
270
{
271
const u8 *d;
272
char *s;
273
274
if (dmi_ident[slot] || dm->length <= index)
275
return;
276
277
s = dmi_alloc(4);
278
if (!s)
279
return;
280
281
d = (u8 *) dm + index;
282
sprintf(s, "%u", *d & 0x7F);
283
dmi_ident[slot] = s;
284
}
285
286
static void __init dmi_save_one_device(int type, const char *name)
287
{
288
struct dmi_device *dev;
289
290
/* No duplicate device */
291
if (dmi_find_device(type, name, NULL))
292
return;
293
294
dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
295
if (!dev)
296
return;
297
298
dev->type = type;
299
strcpy((char *)(dev + 1), name);
300
dev->name = (char *)(dev + 1);
301
dev->device_data = NULL;
302
list_add(&dev->list, &dmi_devices);
303
}
304
305
static void __init dmi_save_devices(const struct dmi_header *dm)
306
{
307
int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
308
309
for (i = 0; i < count; i++) {
310
const char *d = (char *)(dm + 1) + (i * 2);
311
312
/* Skip disabled device */
313
if ((*d & 0x80) == 0)
314
continue;
315
316
dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
317
}
318
}
319
320
static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
321
{
322
int i, count;
323
struct dmi_device *dev;
324
325
if (dm->length < 0x05)
326
return;
327
328
count = *(u8 *)(dm + 1);
329
for (i = 1; i <= count; i++) {
330
const char *devname = dmi_string(dm, i);
331
332
if (devname == dmi_empty_string)
333
continue;
334
335
dev = dmi_alloc(sizeof(*dev));
336
if (!dev)
337
break;
338
339
dev->type = DMI_DEV_TYPE_OEM_STRING;
340
dev->name = devname;
341
dev->device_data = NULL;
342
343
list_add(&dev->list, &dmi_devices);
344
}
345
}
346
347
static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
348
{
349
struct dmi_device *dev;
350
void *data;
351
352
data = dmi_alloc(dm->length);
353
if (data == NULL)
354
return;
355
356
memcpy(data, dm, dm->length);
357
358
dev = dmi_alloc(sizeof(*dev));
359
if (!dev)
360
return;
361
362
dev->type = DMI_DEV_TYPE_IPMI;
363
dev->name = "IPMI controller";
364
dev->device_data = data;
365
366
list_add_tail(&dev->list, &dmi_devices);
367
}
368
369
static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
370
int devfn, const char *name, int type)
371
{
372
struct dmi_dev_onboard *dev;
373
374
/* Ignore invalid values */
375
if (type == DMI_DEV_TYPE_DEV_SLOT &&
376
segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
377
return;
378
379
dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
380
if (!dev)
381
return;
382
383
dev->instance = instance;
384
dev->segment = segment;
385
dev->bus = bus;
386
dev->devfn = devfn;
387
388
strcpy((char *)&dev[1], name);
389
dev->dev.type = type;
390
dev->dev.name = (char *)&dev[1];
391
dev->dev.device_data = dev;
392
393
list_add(&dev->dev.list, &dmi_devices);
394
}
395
396
static void __init dmi_save_extended_devices(const struct dmi_header *dm)
397
{
398
const char *name;
399
const u8 *d = (u8 *)dm;
400
401
if (dm->length < 0x0B)
402
return;
403
404
/* Skip disabled device */
405
if ((d[0x5] & 0x80) == 0)
406
return;
407
408
name = dmi_string_nosave(dm, d[0x4]);
409
dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
410
DMI_DEV_TYPE_DEV_ONBOARD);
411
dmi_save_one_device(d[0x5] & 0x7f, name);
412
}
413
414
static void __init dmi_save_system_slot(const struct dmi_header *dm)
415
{
416
const u8 *d = (u8 *)dm;
417
418
/* Need SMBIOS 2.6+ structure */
419
if (dm->length < 0x11)
420
return;
421
dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
422
d[0x10], dmi_string_nosave(dm, d[0x4]),
423
DMI_DEV_TYPE_DEV_SLOT);
424
}
425
426
static void __init count_mem_devices(const struct dmi_header *dm, void *v)
427
{
428
if (dm->type != DMI_ENTRY_MEM_DEVICE)
429
return;
430
dmi_memdev_nr++;
431
}
432
433
static void __init save_mem_devices(const struct dmi_header *dm, void *v)
434
{
435
const char *d = (const char *)dm;
436
static int nr;
437
u64 bytes;
438
u16 size;
439
440
if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
441
return;
442
if (nr >= dmi_memdev_nr) {
443
pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
444
return;
445
}
446
dmi_memdev[nr].handle = get_unaligned(&dm->handle);
447
dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
448
dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
449
dmi_memdev[nr].type = d[0x12];
450
451
size = get_unaligned((u16 *)&d[0xC]);
452
if (size == 0)
453
bytes = 0;
454
else if (size == 0xffff)
455
bytes = ~0ull;
456
else if (size & 0x8000)
457
bytes = (u64)(size & 0x7fff) << 10;
458
else if (size != 0x7fff || dm->length < 0x20)
459
bytes = (u64)size << 20;
460
else
461
bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
462
463
if (bytes)
464
dmi_memdev_populated_nr++;
465
466
dmi_memdev[nr].size = bytes;
467
nr++;
468
}
469
470
static void __init dmi_memdev_walk(void)
471
{
472
if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
473
dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
474
if (dmi_memdev)
475
dmi_walk_early(save_mem_devices);
476
}
477
}
478
479
/*
480
* Process a DMI table entry. Right now all we care about are the BIOS
481
* and machine entries. For 2.5 we should pull the smbus controller info
482
* out of here.
483
*/
484
static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
485
{
486
switch (dm->type) {
487
case 0: /* BIOS Information */
488
dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
489
dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
490
dmi_save_ident(dm, DMI_BIOS_DATE, 8);
491
dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
492
dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
493
break;
494
case 1: /* System Information */
495
dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
496
dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
497
dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
498
dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
499
dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
500
dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
501
dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
502
break;
503
case 2: /* Base Board Information */
504
dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
505
dmi_save_ident(dm, DMI_BOARD_NAME, 5);
506
dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
507
dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
508
dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
509
break;
510
case 3: /* Chassis Information */
511
dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
512
dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
513
dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
514
dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
515
dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
516
break;
517
case 9: /* System Slots */
518
dmi_save_system_slot(dm);
519
break;
520
case 10: /* Onboard Devices Information */
521
dmi_save_devices(dm);
522
break;
523
case 11: /* OEM Strings */
524
dmi_save_oem_strings_devices(dm);
525
break;
526
case 38: /* IPMI Device Information */
527
dmi_save_ipmi_device(dm);
528
break;
529
case 41: /* Onboard Devices Extended Information */
530
dmi_save_extended_devices(dm);
531
}
532
}
533
534
static int __init print_filtered(char *buf, size_t len, const char *info)
535
{
536
int c = 0;
537
const char *p;
538
539
if (!info)
540
return c;
541
542
for (p = info; *p; p++)
543
if (isprint(*p))
544
c += scnprintf(buf + c, len - c, "%c", *p);
545
else
546
c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
547
return c;
548
}
549
550
static void __init dmi_format_ids(char *buf, size_t len)
551
{
552
int c = 0;
553
const char *board; /* Board Name is optional */
554
555
c += print_filtered(buf + c, len - c,
556
dmi_get_system_info(DMI_SYS_VENDOR));
557
c += scnprintf(buf + c, len - c, " ");
558
c += print_filtered(buf + c, len - c,
559
dmi_get_system_info(DMI_PRODUCT_NAME));
560
561
board = dmi_get_system_info(DMI_BOARD_NAME);
562
if (board) {
563
c += scnprintf(buf + c, len - c, "/");
564
c += print_filtered(buf + c, len - c, board);
565
}
566
c += scnprintf(buf + c, len - c, ", BIOS ");
567
c += print_filtered(buf + c, len - c,
568
dmi_get_system_info(DMI_BIOS_VERSION));
569
c += scnprintf(buf + c, len - c, " ");
570
c += print_filtered(buf + c, len - c,
571
dmi_get_system_info(DMI_BIOS_DATE));
572
}
573
574
/*
575
* Check for DMI/SMBIOS headers in the system firmware image. Any
576
* SMBIOS header must start 16 bytes before the DMI header, so take a
577
* 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
578
* 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
579
* takes precedence) and return 0. Otherwise return 1.
580
*/
581
static int __init dmi_present(const u8 *buf)
582
{
583
u32 smbios_ver;
584
585
/*
586
* The size of this structure is 31 bytes, but we also accept value
587
* 30 due to a mistake in SMBIOS specification version 2.1.
588
*/
589
if (memcmp(buf, "_SM_", 4) == 0 &&
590
buf[5] >= 30 && buf[5] <= 32 &&
591
dmi_checksum(buf, buf[5])) {
592
smbios_ver = get_unaligned_be16(buf + 6);
593
smbios_entry_point_size = buf[5];
594
memcpy(smbios_entry_point, buf, smbios_entry_point_size);
595
596
/* Some BIOS report weird SMBIOS version, fix that up */
597
switch (smbios_ver) {
598
case 0x021F:
599
case 0x0221:
600
pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
601
smbios_ver & 0xFF, 3);
602
smbios_ver = 0x0203;
603
break;
604
case 0x0233:
605
pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
606
smbios_ver = 0x0206;
607
break;
608
}
609
} else {
610
smbios_ver = 0;
611
}
612
613
buf += 16;
614
615
if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
616
if (smbios_ver)
617
dmi_ver = smbios_ver;
618
else
619
dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
620
dmi_ver <<= 8;
621
dmi_num = get_unaligned_le16(buf + 12);
622
dmi_len = get_unaligned_le16(buf + 6);
623
dmi_base = get_unaligned_le32(buf + 8);
624
625
if (dmi_walk_early(dmi_decode) == 0) {
626
if (smbios_ver) {
627
pr_info("SMBIOS %d.%d present.\n",
628
dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
629
} else {
630
smbios_entry_point_size = 15;
631
memcpy(smbios_entry_point, buf,
632
smbios_entry_point_size);
633
pr_info("Legacy DMI %d.%d present.\n",
634
dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
635
}
636
dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
637
pr_info("DMI: %s\n", dmi_ids_string);
638
return 0;
639
}
640
}
641
642
return 1;
643
}
644
645
/*
646
* Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
647
* 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
648
*/
649
static int __init dmi_smbios3_present(const u8 *buf)
650
{
651
if (memcmp(buf, "_SM3_", 5) == 0 &&
652
buf[6] >= 24 && buf[6] <= 32 &&
653
dmi_checksum(buf, buf[6])) {
654
dmi_ver = get_unaligned_be24(buf + 7);
655
dmi_num = 0; /* No longer specified */
656
dmi_len = get_unaligned_le32(buf + 12);
657
dmi_base = get_unaligned_le64(buf + 16);
658
smbios_entry_point_size = buf[6];
659
memcpy(smbios_entry_point, buf, smbios_entry_point_size);
660
661
if (dmi_walk_early(dmi_decode) == 0) {
662
pr_info("SMBIOS %d.%d.%d present.\n",
663
dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
664
dmi_ver & 0xFF);
665
dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
666
pr_info("DMI: %s\n", dmi_ids_string);
667
return 0;
668
}
669
}
670
return 1;
671
}
672
673
static void __init dmi_scan_machine(void)
674
{
675
char __iomem *p, *q;
676
char buf[32];
677
678
if (efi_enabled(EFI_CONFIG_TABLES)) {
679
/*
680
* According to the DMTF SMBIOS reference spec v3.0.0, it is
681
* allowed to define both the 64-bit entry point (smbios3) and
682
* the 32-bit entry point (smbios), in which case they should
683
* either both point to the same SMBIOS structure table, or the
684
* table pointed to by the 64-bit entry point should contain a
685
* superset of the table contents pointed to by the 32-bit entry
686
* point (section 5.2)
687
* This implies that the 64-bit entry point should have
688
* precedence if it is defined and supported by the OS. If we
689
* have the 64-bit entry point, but fail to decode it, fall
690
* back to the legacy one (if available)
691
*/
692
if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
693
p = dmi_early_remap(efi.smbios3, 32);
694
if (p == NULL)
695
goto error;
696
memcpy_fromio(buf, p, 32);
697
dmi_early_unmap(p, 32);
698
699
if (!dmi_smbios3_present(buf)) {
700
dmi_available = 1;
701
return;
702
}
703
}
704
if (efi.smbios == EFI_INVALID_TABLE_ADDR)
705
goto error;
706
707
/* This is called as a core_initcall() because it isn't
708
* needed during early boot. This also means we can
709
* iounmap the space when we're done with it.
710
*/
711
p = dmi_early_remap(efi.smbios, 32);
712
if (p == NULL)
713
goto error;
714
memcpy_fromio(buf, p, 32);
715
dmi_early_unmap(p, 32);
716
717
if (!dmi_present(buf)) {
718
dmi_available = 1;
719
return;
720
}
721
} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
722
p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
723
if (p == NULL)
724
goto error;
725
726
/*
727
* Same logic as above, look for a 64-bit entry point
728
* first, and if not found, fall back to 32-bit entry point.
729
*/
730
memcpy_fromio(buf, p, 16);
731
for (q = p + 16; q < p + 0x10000; q += 16) {
732
memcpy_fromio(buf + 16, q, 16);
733
if (!dmi_smbios3_present(buf)) {
734
dmi_available = 1;
735
dmi_early_unmap(p, 0x10000);
736
return;
737
}
738
memcpy(buf, buf + 16, 16);
739
}
740
741
/*
742
* Iterate over all possible DMI header addresses q.
743
* Maintain the 32 bytes around q in buf. On the
744
* first iteration, substitute zero for the
745
* out-of-range bytes so there is no chance of falsely
746
* detecting an SMBIOS header.
747
*/
748
memset(buf, 0, 16);
749
for (q = p; q < p + 0x10000; q += 16) {
750
memcpy_fromio(buf + 16, q, 16);
751
if (!dmi_present(buf)) {
752
dmi_available = 1;
753
dmi_early_unmap(p, 0x10000);
754
return;
755
}
756
memcpy(buf, buf + 16, 16);
757
}
758
dmi_early_unmap(p, 0x10000);
759
}
760
error:
761
pr_info("DMI not present or invalid.\n");
762
}
763
764
static __ro_after_init BIN_ATTR_SIMPLE_ADMIN_RO(smbios_entry_point);
765
static __ro_after_init BIN_ATTR_SIMPLE_ADMIN_RO(DMI);
766
767
static int __init dmi_init(void)
768
{
769
struct kobject *tables_kobj;
770
u8 *dmi_table;
771
int ret = -ENOMEM;
772
773
if (!dmi_available)
774
return 0;
775
776
/*
777
* Set up dmi directory at /sys/firmware/dmi. This entry should stay
778
* even after farther error, as it can be used by other modules like
779
* dmi-sysfs.
780
*/
781
dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
782
if (!dmi_kobj)
783
goto err;
784
785
tables_kobj = kobject_create_and_add("tables", dmi_kobj);
786
if (!tables_kobj)
787
goto err;
788
789
dmi_table = dmi_remap(dmi_base, dmi_len);
790
if (!dmi_table)
791
goto err_tables;
792
793
bin_attr_smbios_entry_point.size = smbios_entry_point_size;
794
bin_attr_smbios_entry_point.private = smbios_entry_point;
795
ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
796
if (ret)
797
goto err_unmap;
798
799
bin_attr_DMI.size = dmi_len;
800
bin_attr_DMI.private = dmi_table;
801
ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
802
if (!ret)
803
return 0;
804
805
sysfs_remove_bin_file(tables_kobj,
806
&bin_attr_smbios_entry_point);
807
err_unmap:
808
dmi_unmap(dmi_table);
809
err_tables:
810
kobject_del(tables_kobj);
811
kobject_put(tables_kobj);
812
err:
813
pr_err("dmi: Firmware registration failed.\n");
814
815
return ret;
816
}
817
subsys_initcall(dmi_init);
818
819
/**
820
* dmi_setup - scan and setup DMI system information
821
*
822
* Scan the DMI system information. This setups DMI identifiers
823
* (dmi_system_id) for printing it out on task dumps and prepares
824
* DIMM entry information (dmi_memdev_info) from the SMBIOS table
825
* for using this when reporting memory errors.
826
*/
827
void __init dmi_setup(void)
828
{
829
dmi_scan_machine();
830
if (!dmi_available)
831
return;
832
833
dmi_memdev_walk();
834
pr_info("DMI: Memory slots populated: %d/%d\n",
835
dmi_memdev_populated_nr, dmi_memdev_nr);
836
dump_stack_set_arch_desc("%s", dmi_ids_string);
837
}
838
839
/**
840
* dmi_matches - check if dmi_system_id structure matches system DMI data
841
* @dmi: pointer to the dmi_system_id structure to check
842
*/
843
static bool dmi_matches(const struct dmi_system_id *dmi)
844
{
845
int i;
846
847
for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
848
int s = dmi->matches[i].slot;
849
if (s == DMI_NONE)
850
break;
851
if (s == DMI_OEM_STRING) {
852
/* DMI_OEM_STRING must be exact match */
853
const struct dmi_device *valid;
854
855
valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
856
dmi->matches[i].substr, NULL);
857
if (valid)
858
continue;
859
} else if (dmi_ident[s]) {
860
if (dmi->matches[i].exact_match) {
861
if (!strcmp(dmi_ident[s],
862
dmi->matches[i].substr))
863
continue;
864
} else {
865
if (strstr(dmi_ident[s],
866
dmi->matches[i].substr))
867
continue;
868
}
869
}
870
871
/* No match */
872
return false;
873
}
874
return true;
875
}
876
877
/**
878
* dmi_is_end_of_table - check for end-of-table marker
879
* @dmi: pointer to the dmi_system_id structure to check
880
*/
881
static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
882
{
883
return dmi->matches[0].slot == DMI_NONE;
884
}
885
886
/**
887
* dmi_check_system - check system DMI data
888
* @list: array of dmi_system_id structures to match against
889
* All non-null elements of the list must match
890
* their slot's (field index's) data (i.e., each
891
* list string must be a substring of the specified
892
* DMI slot's string data) to be considered a
893
* successful match.
894
*
895
* Walk the blacklist table running matching functions until someone
896
* returns non zero or we hit the end. Callback function is called for
897
* each successful match. Returns the number of matches.
898
*
899
* dmi_setup must be called before this function is called.
900
*/
901
int dmi_check_system(const struct dmi_system_id *list)
902
{
903
int count = 0;
904
const struct dmi_system_id *d;
905
906
for (d = list; !dmi_is_end_of_table(d); d++)
907
if (dmi_matches(d)) {
908
count++;
909
if (d->callback && d->callback(d))
910
break;
911
}
912
913
return count;
914
}
915
EXPORT_SYMBOL(dmi_check_system);
916
917
/**
918
* dmi_first_match - find dmi_system_id structure matching system DMI data
919
* @list: array of dmi_system_id structures to match against
920
* All non-null elements of the list must match
921
* their slot's (field index's) data (i.e., each
922
* list string must be a substring of the specified
923
* DMI slot's string data) to be considered a
924
* successful match.
925
*
926
* Walk the blacklist table until the first match is found. Return the
927
* pointer to the matching entry or NULL if there's no match.
928
*
929
* dmi_setup must be called before this function is called.
930
*/
931
const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
932
{
933
const struct dmi_system_id *d;
934
935
for (d = list; !dmi_is_end_of_table(d); d++)
936
if (dmi_matches(d))
937
return d;
938
939
return NULL;
940
}
941
EXPORT_SYMBOL(dmi_first_match);
942
943
/**
944
* dmi_get_system_info - return DMI data value
945
* @field: data index (see enum dmi_field)
946
*
947
* Returns one DMI data value, can be used to perform
948
* complex DMI data checks.
949
*/
950
const char *dmi_get_system_info(int field)
951
{
952
return dmi_ident[field];
953
}
954
EXPORT_SYMBOL(dmi_get_system_info);
955
956
/**
957
* dmi_name_in_serial - Check if string is in the DMI product serial information
958
* @str: string to check for
959
*/
960
int dmi_name_in_serial(const char *str)
961
{
962
int f = DMI_PRODUCT_SERIAL;
963
if (dmi_ident[f] && strstr(dmi_ident[f], str))
964
return 1;
965
return 0;
966
}
967
968
/**
969
* dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
970
* @str: Case sensitive Name
971
*/
972
int dmi_name_in_vendors(const char *str)
973
{
974
static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
975
int i;
976
for (i = 0; fields[i] != DMI_NONE; i++) {
977
int f = fields[i];
978
if (dmi_ident[f] && strstr(dmi_ident[f], str))
979
return 1;
980
}
981
return 0;
982
}
983
EXPORT_SYMBOL(dmi_name_in_vendors);
984
985
/**
986
* dmi_find_device - find onboard device by type/name
987
* @type: device type or %DMI_DEV_TYPE_ANY to match all device types
988
* @name: device name string or %NULL to match all
989
* @from: previous device found in search, or %NULL for new search.
990
*
991
* Iterates through the list of known onboard devices. If a device is
992
* found with a matching @type and @name, a pointer to its device
993
* structure is returned. Otherwise, %NULL is returned.
994
* A new search is initiated by passing %NULL as the @from argument.
995
* If @from is not %NULL, searches continue from next device.
996
*/
997
const struct dmi_device *dmi_find_device(int type, const char *name,
998
const struct dmi_device *from)
999
{
1000
const struct list_head *head = from ? &from->list : &dmi_devices;
1001
struct list_head *d;
1002
1003
for (d = head->next; d != &dmi_devices; d = d->next) {
1004
const struct dmi_device *dev =
1005
list_entry(d, struct dmi_device, list);
1006
1007
if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
1008
((name == NULL) || (strcmp(dev->name, name) == 0)))
1009
return dev;
1010
}
1011
1012
return NULL;
1013
}
1014
EXPORT_SYMBOL(dmi_find_device);
1015
1016
/**
1017
* dmi_get_date - parse a DMI date
1018
* @field: data index (see enum dmi_field)
1019
* @yearp: optional out parameter for the year
1020
* @monthp: optional out parameter for the month
1021
* @dayp: optional out parameter for the day
1022
*
1023
* The date field is assumed to be in the form resembling
1024
* [mm[/dd]]/yy[yy] and the result is stored in the out
1025
* parameters any or all of which can be omitted.
1026
*
1027
* If the field doesn't exist, all out parameters are set to zero
1028
* and false is returned. Otherwise, true is returned with any
1029
* invalid part of date set to zero.
1030
*
1031
* On return, year, month and day are guaranteed to be in the
1032
* range of [0,9999], [0,12] and [0,31] respectively.
1033
*/
1034
bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
1035
{
1036
int year = 0, month = 0, day = 0;
1037
bool exists;
1038
const char *s, *y;
1039
char *e;
1040
1041
s = dmi_get_system_info(field);
1042
exists = s;
1043
if (!exists)
1044
goto out;
1045
1046
/*
1047
* Determine year first. We assume the date string resembles
1048
* mm/dd/yy[yy] but the original code extracted only the year
1049
* from the end. Keep the behavior in the spirit of no
1050
* surprises.
1051
*/
1052
y = strrchr(s, '/');
1053
if (!y)
1054
goto out;
1055
1056
y++;
1057
year = simple_strtoul(y, &e, 10);
1058
if (y != e && year < 100) { /* 2-digit year */
1059
year += 1900;
1060
if (year < 1996) /* no dates < spec 1.0 */
1061
year += 100;
1062
}
1063
if (year > 9999) /* year should fit in %04d */
1064
year = 0;
1065
1066
/* parse the mm and dd */
1067
month = simple_strtoul(s, &e, 10);
1068
if (s == e || *e != '/' || !month || month > 12) {
1069
month = 0;
1070
goto out;
1071
}
1072
1073
s = e + 1;
1074
day = simple_strtoul(s, &e, 10);
1075
if (s == y || s == e || *e != '/' || day > 31)
1076
day = 0;
1077
out:
1078
if (yearp)
1079
*yearp = year;
1080
if (monthp)
1081
*monthp = month;
1082
if (dayp)
1083
*dayp = day;
1084
return exists;
1085
}
1086
EXPORT_SYMBOL(dmi_get_date);
1087
1088
/**
1089
* dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1090
*
1091
* Returns year on success, -ENXIO if DMI is not selected,
1092
* or a different negative error code if DMI field is not present
1093
* or not parseable.
1094
*/
1095
int dmi_get_bios_year(void)
1096
{
1097
bool exists;
1098
int year;
1099
1100
exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1101
if (!exists)
1102
return -ENODATA;
1103
1104
return year ? year : -ERANGE;
1105
}
1106
EXPORT_SYMBOL(dmi_get_bios_year);
1107
1108
/**
1109
* dmi_walk - Walk the DMI table and get called back for every record
1110
* @decode: Callback function
1111
* @private_data: Private data to be passed to the callback function
1112
*
1113
* Returns 0 on success, -ENXIO if DMI is not selected or not present,
1114
* or a different negative error code if DMI walking fails.
1115
*/
1116
int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1117
void *private_data)
1118
{
1119
u8 *buf;
1120
1121
if (!dmi_available)
1122
return -ENXIO;
1123
1124
buf = dmi_remap(dmi_base, dmi_len);
1125
if (buf == NULL)
1126
return -ENOMEM;
1127
1128
dmi_decode_table(buf, decode, private_data);
1129
1130
dmi_unmap(buf);
1131
return 0;
1132
}
1133
EXPORT_SYMBOL_GPL(dmi_walk);
1134
1135
/**
1136
* dmi_match - compare a string to the dmi field (if exists)
1137
* @f: DMI field identifier
1138
* @str: string to compare the DMI field to
1139
*
1140
* Returns true if the requested field equals to the str (including NULL).
1141
*/
1142
bool dmi_match(enum dmi_field f, const char *str)
1143
{
1144
const char *info = dmi_get_system_info(f);
1145
1146
if (info == NULL || str == NULL)
1147
return info == str;
1148
1149
return !strcmp(info, str);
1150
}
1151
EXPORT_SYMBOL_GPL(dmi_match);
1152
1153
void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1154
{
1155
int n;
1156
1157
if (dmi_memdev == NULL)
1158
return;
1159
1160
for (n = 0; n < dmi_memdev_nr; n++) {
1161
if (handle == dmi_memdev[n].handle) {
1162
*bank = dmi_memdev[n].bank;
1163
*device = dmi_memdev[n].device;
1164
break;
1165
}
1166
}
1167
}
1168
EXPORT_SYMBOL_GPL(dmi_memdev_name);
1169
1170
u64 dmi_memdev_size(u16 handle)
1171
{
1172
int n;
1173
1174
if (dmi_memdev) {
1175
for (n = 0; n < dmi_memdev_nr; n++) {
1176
if (handle == dmi_memdev[n].handle)
1177
return dmi_memdev[n].size;
1178
}
1179
}
1180
return ~0ull;
1181
}
1182
EXPORT_SYMBOL_GPL(dmi_memdev_size);
1183
1184
/**
1185
* dmi_memdev_type - get the memory type
1186
* @handle: DMI structure handle
1187
*
1188
* Return the DMI memory type of the module in the slot associated with the
1189
* given DMI handle, or 0x0 if no such DMI handle exists.
1190
*/
1191
u8 dmi_memdev_type(u16 handle)
1192
{
1193
int n;
1194
1195
if (dmi_memdev) {
1196
for (n = 0; n < dmi_memdev_nr; n++) {
1197
if (handle == dmi_memdev[n].handle)
1198
return dmi_memdev[n].type;
1199
}
1200
}
1201
return 0x0; /* Not a valid value */
1202
}
1203
EXPORT_SYMBOL_GPL(dmi_memdev_type);
1204
1205
/**
1206
* dmi_memdev_handle - get the DMI handle of a memory slot
1207
* @slot: slot number
1208
*
1209
* Return the DMI handle associated with a given memory slot, or %0xFFFF
1210
* if there is no such slot.
1211
*/
1212
u16 dmi_memdev_handle(int slot)
1213
{
1214
if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1215
return dmi_memdev[slot].handle;
1216
1217
return 0xffff; /* Not a valid value */
1218
}
1219
EXPORT_SYMBOL_GPL(dmi_memdev_handle);
1220
1221