Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/firmware/psci/psci_checker.c
26388 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
*
4
* Copyright (C) 2016 ARM Limited
5
*/
6
7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9
#include <linux/atomic.h>
10
#include <linux/completion.h>
11
#include <linux/cpu.h>
12
#include <linux/cpuidle.h>
13
#include <linux/cpu_pm.h>
14
#include <linux/kernel.h>
15
#include <linux/kthread.h>
16
#include <uapi/linux/sched/types.h>
17
#include <linux/module.h>
18
#include <linux/preempt.h>
19
#include <linux/psci.h>
20
#include <linux/slab.h>
21
#include <linux/tick.h>
22
#include <linux/topology.h>
23
24
#include <asm/cpuidle.h>
25
26
#include <uapi/linux/psci.h>
27
28
#define NUM_SUSPEND_CYCLE (10)
29
30
static unsigned int nb_available_cpus;
31
static int tos_resident_cpu = -1;
32
33
static atomic_t nb_active_threads;
34
static struct completion suspend_threads_started =
35
COMPLETION_INITIALIZER(suspend_threads_started);
36
static struct completion suspend_threads_done =
37
COMPLETION_INITIALIZER(suspend_threads_done);
38
39
/*
40
* We assume that PSCI operations are used if they are available. This is not
41
* necessarily true on arm64, since the decision is based on the
42
* "enable-method" property of each CPU in the DT, but given that there is no
43
* arch-specific way to check this, we assume that the DT is sensible.
44
*/
45
static int psci_ops_check(void)
46
{
47
int migrate_type = -1;
48
int cpu;
49
50
if (!(psci_ops.cpu_off && psci_ops.cpu_on && psci_ops.cpu_suspend)) {
51
pr_warn("Missing PSCI operations, aborting tests\n");
52
return -EOPNOTSUPP;
53
}
54
55
if (psci_ops.migrate_info_type)
56
migrate_type = psci_ops.migrate_info_type();
57
58
if (migrate_type == PSCI_0_2_TOS_UP_MIGRATE ||
59
migrate_type == PSCI_0_2_TOS_UP_NO_MIGRATE) {
60
/* There is a UP Trusted OS, find on which core it resides. */
61
for_each_online_cpu(cpu)
62
if (psci_tos_resident_on(cpu)) {
63
tos_resident_cpu = cpu;
64
break;
65
}
66
if (tos_resident_cpu == -1)
67
pr_warn("UP Trusted OS resides on no online CPU\n");
68
}
69
70
return 0;
71
}
72
73
/*
74
* offlined_cpus is a temporary array but passing it as an argument avoids
75
* multiple allocations.
76
*/
77
static unsigned int down_and_up_cpus(const struct cpumask *cpus,
78
struct cpumask *offlined_cpus)
79
{
80
int cpu;
81
int err = 0;
82
83
cpumask_clear(offlined_cpus);
84
85
/* Try to power down all CPUs in the mask. */
86
for_each_cpu(cpu, cpus) {
87
int ret = remove_cpu(cpu);
88
89
/*
90
* cpu_down() checks the number of online CPUs before the TOS
91
* resident CPU.
92
*/
93
if (cpumask_weight(offlined_cpus) + 1 == nb_available_cpus) {
94
if (ret != -EBUSY) {
95
pr_err("Unexpected return code %d while trying "
96
"to power down last online CPU %d\n",
97
ret, cpu);
98
++err;
99
}
100
} else if (cpu == tos_resident_cpu) {
101
if (ret != -EPERM) {
102
pr_err("Unexpected return code %d while trying "
103
"to power down TOS resident CPU %d\n",
104
ret, cpu);
105
++err;
106
}
107
} else if (ret != 0) {
108
pr_err("Error occurred (%d) while trying "
109
"to power down CPU %d\n", ret, cpu);
110
++err;
111
}
112
113
if (ret == 0)
114
cpumask_set_cpu(cpu, offlined_cpus);
115
}
116
117
/* Try to power up all the CPUs that have been offlined. */
118
for_each_cpu(cpu, offlined_cpus) {
119
int ret = add_cpu(cpu);
120
121
if (ret != 0) {
122
pr_err("Error occurred (%d) while trying "
123
"to power up CPU %d\n", ret, cpu);
124
++err;
125
} else {
126
cpumask_clear_cpu(cpu, offlined_cpus);
127
}
128
}
129
130
/*
131
* Something went bad at some point and some CPUs could not be turned
132
* back on.
133
*/
134
WARN_ON(!cpumask_empty(offlined_cpus) ||
135
num_online_cpus() != nb_available_cpus);
136
137
return err;
138
}
139
140
static void free_cpu_groups(int num, cpumask_var_t **pcpu_groups)
141
{
142
int i;
143
cpumask_var_t *cpu_groups = *pcpu_groups;
144
145
for (i = 0; i < num; ++i)
146
free_cpumask_var(cpu_groups[i]);
147
kfree(cpu_groups);
148
}
149
150
static int alloc_init_cpu_groups(cpumask_var_t **pcpu_groups)
151
{
152
int num_groups = 0;
153
cpumask_var_t tmp, *cpu_groups;
154
155
if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
156
return -ENOMEM;
157
158
cpu_groups = kcalloc(nb_available_cpus, sizeof(*cpu_groups),
159
GFP_KERNEL);
160
if (!cpu_groups) {
161
free_cpumask_var(tmp);
162
return -ENOMEM;
163
}
164
165
cpumask_copy(tmp, cpu_online_mask);
166
167
while (!cpumask_empty(tmp)) {
168
const struct cpumask *cpu_group =
169
topology_core_cpumask(cpumask_any(tmp));
170
171
if (!alloc_cpumask_var(&cpu_groups[num_groups], GFP_KERNEL)) {
172
free_cpumask_var(tmp);
173
free_cpu_groups(num_groups, &cpu_groups);
174
return -ENOMEM;
175
}
176
cpumask_copy(cpu_groups[num_groups++], cpu_group);
177
cpumask_andnot(tmp, tmp, cpu_group);
178
}
179
180
free_cpumask_var(tmp);
181
*pcpu_groups = cpu_groups;
182
183
return num_groups;
184
}
185
186
static int hotplug_tests(void)
187
{
188
int i, nb_cpu_group, err = -ENOMEM;
189
cpumask_var_t offlined_cpus, *cpu_groups;
190
char *page_buf;
191
192
if (!alloc_cpumask_var(&offlined_cpus, GFP_KERNEL))
193
return err;
194
195
nb_cpu_group = alloc_init_cpu_groups(&cpu_groups);
196
if (nb_cpu_group < 0)
197
goto out_free_cpus;
198
page_buf = (char *)__get_free_page(GFP_KERNEL);
199
if (!page_buf)
200
goto out_free_cpu_groups;
201
202
/*
203
* Of course the last CPU cannot be powered down and cpu_down() should
204
* refuse doing that.
205
*/
206
pr_info("Trying to turn off and on again all CPUs\n");
207
err = down_and_up_cpus(cpu_online_mask, offlined_cpus);
208
209
/*
210
* Take down CPUs by cpu group this time. When the last CPU is turned
211
* off, the cpu group itself should shut down.
212
*/
213
for (i = 0; i < nb_cpu_group; ++i) {
214
ssize_t len = cpumap_print_to_pagebuf(true, page_buf,
215
cpu_groups[i]);
216
/* Remove trailing newline. */
217
page_buf[len - 1] = '\0';
218
pr_info("Trying to turn off and on again group %d (CPUs %s)\n",
219
i, page_buf);
220
err += down_and_up_cpus(cpu_groups[i], offlined_cpus);
221
}
222
223
free_page((unsigned long)page_buf);
224
out_free_cpu_groups:
225
free_cpu_groups(nb_cpu_group, &cpu_groups);
226
out_free_cpus:
227
free_cpumask_var(offlined_cpus);
228
return err;
229
}
230
231
static void dummy_callback(struct timer_list *unused) {}
232
233
static int suspend_cpu(struct cpuidle_device *dev,
234
struct cpuidle_driver *drv, int index)
235
{
236
struct cpuidle_state *state = &drv->states[index];
237
bool broadcast = state->flags & CPUIDLE_FLAG_TIMER_STOP;
238
int ret;
239
240
arch_cpu_idle_enter();
241
242
if (broadcast) {
243
/*
244
* The local timer will be shut down, we need to enter tick
245
* broadcast.
246
*/
247
ret = tick_broadcast_enter();
248
if (ret) {
249
/*
250
* In the absence of hardware broadcast mechanism,
251
* this CPU might be used to broadcast wakeups, which
252
* may be why entering tick broadcast has failed.
253
* There is little the kernel can do to work around
254
* that, so enter WFI instead (idle state 0).
255
*/
256
cpu_do_idle();
257
ret = 0;
258
goto out_arch_exit;
259
}
260
}
261
262
ret = state->enter(dev, drv, index);
263
264
if (broadcast)
265
tick_broadcast_exit();
266
267
out_arch_exit:
268
arch_cpu_idle_exit();
269
270
return ret;
271
}
272
273
static int suspend_test_thread(void *arg)
274
{
275
int cpu = (long)arg;
276
int i, nb_suspend = 0, nb_shallow_sleep = 0, nb_err = 0;
277
struct cpuidle_device *dev;
278
struct cpuidle_driver *drv;
279
/* No need for an actual callback, we just want to wake up the CPU. */
280
struct timer_list wakeup_timer;
281
282
/* Wait for the main thread to give the start signal. */
283
wait_for_completion(&suspend_threads_started);
284
285
/* Set maximum priority to preempt all other threads on this CPU. */
286
sched_set_fifo(current);
287
288
dev = this_cpu_read(cpuidle_devices);
289
drv = cpuidle_get_cpu_driver(dev);
290
291
pr_info("CPU %d entering suspend cycles, states 1 through %d\n",
292
cpu, drv->state_count - 1);
293
294
timer_setup_on_stack(&wakeup_timer, dummy_callback, 0);
295
for (i = 0; i < NUM_SUSPEND_CYCLE; ++i) {
296
int index;
297
/*
298
* Test all possible states, except 0 (which is usually WFI and
299
* doesn't use PSCI).
300
*/
301
for (index = 1; index < drv->state_count; ++index) {
302
int ret;
303
struct cpuidle_state *state = &drv->states[index];
304
305
/*
306
* Set the timer to wake this CPU up in some time (which
307
* should be largely sufficient for entering suspend).
308
* If the local tick is disabled when entering suspend,
309
* suspend_cpu() takes care of switching to a broadcast
310
* tick, so the timer will still wake us up.
311
*/
312
mod_timer(&wakeup_timer, jiffies +
313
usecs_to_jiffies(state->target_residency));
314
315
/* IRQs must be disabled during suspend operations. */
316
local_irq_disable();
317
318
ret = suspend_cpu(dev, drv, index);
319
320
/*
321
* We have woken up. Re-enable IRQs to handle any
322
* pending interrupt, do not wait until the end of the
323
* loop.
324
*/
325
local_irq_enable();
326
327
if (ret == index) {
328
++nb_suspend;
329
} else if (ret >= 0) {
330
/* We did not enter the expected state. */
331
++nb_shallow_sleep;
332
} else {
333
pr_err("Failed to suspend CPU %d: error %d "
334
"(requested state %d, cycle %d)\n",
335
cpu, ret, index, i);
336
++nb_err;
337
}
338
}
339
}
340
341
/*
342
* Disable the timer to make sure that the timer will not trigger
343
* later.
344
*/
345
timer_delete(&wakeup_timer);
346
timer_destroy_on_stack(&wakeup_timer);
347
348
if (atomic_dec_return_relaxed(&nb_active_threads) == 0)
349
complete(&suspend_threads_done);
350
351
for (;;) {
352
/* Needs to be set first to avoid missing a wakeup. */
353
set_current_state(TASK_INTERRUPTIBLE);
354
if (kthread_should_park())
355
break;
356
schedule();
357
}
358
359
pr_info("CPU %d suspend test results: success %d, shallow states %d, errors %d\n",
360
cpu, nb_suspend, nb_shallow_sleep, nb_err);
361
362
kthread_parkme();
363
364
return nb_err;
365
}
366
367
static int suspend_tests(void)
368
{
369
int i, cpu, err = 0;
370
struct task_struct **threads;
371
int nb_threads = 0;
372
373
threads = kmalloc_array(nb_available_cpus, sizeof(*threads),
374
GFP_KERNEL);
375
if (!threads)
376
return -ENOMEM;
377
378
/*
379
* Stop cpuidle to prevent the idle tasks from entering a deep sleep
380
* mode, as it might interfere with the suspend threads on other CPUs.
381
* This does not prevent the suspend threads from using cpuidle (only
382
* the idle tasks check this status). Take the idle lock so that
383
* the cpuidle driver and device look-up can be carried out safely.
384
*/
385
cpuidle_pause_and_lock();
386
387
for_each_online_cpu(cpu) {
388
struct task_struct *thread;
389
/* Check that cpuidle is available on that CPU. */
390
struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
391
struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
392
393
if (!dev || !drv) {
394
pr_warn("cpuidle not available on CPU %d, ignoring\n",
395
cpu);
396
continue;
397
}
398
399
thread = kthread_create_on_cpu(suspend_test_thread,
400
(void *)(long)cpu, cpu,
401
"psci_suspend_test");
402
if (IS_ERR(thread))
403
pr_err("Failed to create kthread on CPU %d\n", cpu);
404
else
405
threads[nb_threads++] = thread;
406
}
407
408
if (nb_threads < 1) {
409
err = -ENODEV;
410
goto out;
411
}
412
413
atomic_set(&nb_active_threads, nb_threads);
414
415
/*
416
* Wake up the suspend threads. To avoid the main thread being preempted
417
* before all the threads have been unparked, the suspend threads will
418
* wait for the completion of suspend_threads_started.
419
*/
420
for (i = 0; i < nb_threads; ++i)
421
wake_up_process(threads[i]);
422
complete_all(&suspend_threads_started);
423
424
wait_for_completion(&suspend_threads_done);
425
426
427
/* Stop and destroy all threads, get return status. */
428
for (i = 0; i < nb_threads; ++i) {
429
err += kthread_park(threads[i]);
430
err += kthread_stop(threads[i]);
431
}
432
out:
433
cpuidle_resume_and_unlock();
434
kfree(threads);
435
return err;
436
}
437
438
static int __init psci_checker(void)
439
{
440
int ret;
441
442
/*
443
* Since we're in an initcall, we assume that all the CPUs that all
444
* CPUs that can be onlined have been onlined.
445
*
446
* The tests assume that hotplug is enabled but nobody else is using it,
447
* otherwise the results will be unpredictable. However, since there
448
* is no userspace yet in initcalls, that should be fine, as long as
449
* no torture test is running at the same time (see Kconfig).
450
*/
451
nb_available_cpus = num_online_cpus();
452
453
/* Check PSCI operations are set up and working. */
454
ret = psci_ops_check();
455
if (ret)
456
return ret;
457
458
pr_info("PSCI checker started using %u CPUs\n", nb_available_cpus);
459
460
pr_info("Starting hotplug tests\n");
461
ret = hotplug_tests();
462
if (ret == 0)
463
pr_info("Hotplug tests passed OK\n");
464
else if (ret > 0)
465
pr_err("%d error(s) encountered in hotplug tests\n", ret);
466
else {
467
pr_err("Out of memory\n");
468
return ret;
469
}
470
471
pr_info("Starting suspend tests (%d cycles per state)\n",
472
NUM_SUSPEND_CYCLE);
473
ret = suspend_tests();
474
if (ret == 0)
475
pr_info("Suspend tests passed OK\n");
476
else if (ret > 0)
477
pr_err("%d error(s) encountered in suspend tests\n", ret);
478
else {
479
switch (ret) {
480
case -ENOMEM:
481
pr_err("Out of memory\n");
482
break;
483
case -ENODEV:
484
pr_warn("Could not start suspend tests on any CPU\n");
485
break;
486
}
487
}
488
489
pr_info("PSCI checker completed\n");
490
return ret < 0 ? ret : 0;
491
}
492
late_initcall(psci_checker);
493
494