Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/fpga/dfl-fme-main.c
26378 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Driver for FPGA Management Engine (FME)
4
*
5
* Copyright (C) 2017-2018 Intel Corporation, Inc.
6
*
7
* Authors:
8
* Kang Luwei <[email protected]>
9
* Xiao Guangrong <[email protected]>
10
* Joseph Grecco <[email protected]>
11
* Enno Luebbers <[email protected]>
12
* Tim Whisonant <[email protected]>
13
* Ananda Ravuri <[email protected]>
14
* Henry Mitchel <[email protected]>
15
*/
16
17
#include <linux/hwmon.h>
18
#include <linux/hwmon-sysfs.h>
19
#include <linux/kernel.h>
20
#include <linux/module.h>
21
#include <linux/uaccess.h>
22
#include <linux/units.h>
23
#include <linux/fpga-dfl.h>
24
25
#include "dfl.h"
26
#include "dfl-fme.h"
27
28
static ssize_t ports_num_show(struct device *dev,
29
struct device_attribute *attr, char *buf)
30
{
31
struct dfl_feature_dev_data *fdata = to_dfl_feature_dev_data(dev);
32
void __iomem *base;
33
u64 v;
34
35
base = dfl_get_feature_ioaddr_by_id(fdata, FME_FEATURE_ID_HEADER);
36
37
v = readq(base + FME_HDR_CAP);
38
39
return scnprintf(buf, PAGE_SIZE, "%u\n",
40
(unsigned int)FIELD_GET(FME_CAP_NUM_PORTS, v));
41
}
42
static DEVICE_ATTR_RO(ports_num);
43
44
/*
45
* Bitstream (static FPGA region) identifier number. It contains the
46
* detailed version and other information of this static FPGA region.
47
*/
48
static ssize_t bitstream_id_show(struct device *dev,
49
struct device_attribute *attr, char *buf)
50
{
51
struct dfl_feature_dev_data *fdata = to_dfl_feature_dev_data(dev);
52
void __iomem *base;
53
u64 v;
54
55
base = dfl_get_feature_ioaddr_by_id(fdata, FME_FEATURE_ID_HEADER);
56
57
v = readq(base + FME_HDR_BITSTREAM_ID);
58
59
return scnprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)v);
60
}
61
static DEVICE_ATTR_RO(bitstream_id);
62
63
/*
64
* Bitstream (static FPGA region) meta data. It contains the synthesis
65
* date, seed and other information of this static FPGA region.
66
*/
67
static ssize_t bitstream_metadata_show(struct device *dev,
68
struct device_attribute *attr, char *buf)
69
{
70
struct dfl_feature_dev_data *fdata = to_dfl_feature_dev_data(dev);
71
void __iomem *base;
72
u64 v;
73
74
base = dfl_get_feature_ioaddr_by_id(fdata, FME_FEATURE_ID_HEADER);
75
76
v = readq(base + FME_HDR_BITSTREAM_MD);
77
78
return scnprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)v);
79
}
80
static DEVICE_ATTR_RO(bitstream_metadata);
81
82
static ssize_t cache_size_show(struct device *dev,
83
struct device_attribute *attr, char *buf)
84
{
85
struct dfl_feature_dev_data *fdata = to_dfl_feature_dev_data(dev);
86
void __iomem *base;
87
u64 v;
88
89
base = dfl_get_feature_ioaddr_by_id(fdata, FME_FEATURE_ID_HEADER);
90
91
v = readq(base + FME_HDR_CAP);
92
93
return sprintf(buf, "%u\n",
94
(unsigned int)FIELD_GET(FME_CAP_CACHE_SIZE, v));
95
}
96
static DEVICE_ATTR_RO(cache_size);
97
98
static ssize_t fabric_version_show(struct device *dev,
99
struct device_attribute *attr, char *buf)
100
{
101
struct dfl_feature_dev_data *fdata = to_dfl_feature_dev_data(dev);
102
void __iomem *base;
103
u64 v;
104
105
base = dfl_get_feature_ioaddr_by_id(fdata, FME_FEATURE_ID_HEADER);
106
107
v = readq(base + FME_HDR_CAP);
108
109
return sprintf(buf, "%u\n",
110
(unsigned int)FIELD_GET(FME_CAP_FABRIC_VERID, v));
111
}
112
static DEVICE_ATTR_RO(fabric_version);
113
114
static ssize_t socket_id_show(struct device *dev,
115
struct device_attribute *attr, char *buf)
116
{
117
struct dfl_feature_dev_data *fdata = to_dfl_feature_dev_data(dev);
118
void __iomem *base;
119
u64 v;
120
121
base = dfl_get_feature_ioaddr_by_id(fdata, FME_FEATURE_ID_HEADER);
122
123
v = readq(base + FME_HDR_CAP);
124
125
return sprintf(buf, "%u\n",
126
(unsigned int)FIELD_GET(FME_CAP_SOCKET_ID, v));
127
}
128
static DEVICE_ATTR_RO(socket_id);
129
130
static struct attribute *fme_hdr_attrs[] = {
131
&dev_attr_ports_num.attr,
132
&dev_attr_bitstream_id.attr,
133
&dev_attr_bitstream_metadata.attr,
134
&dev_attr_cache_size.attr,
135
&dev_attr_fabric_version.attr,
136
&dev_attr_socket_id.attr,
137
NULL,
138
};
139
140
static const struct attribute_group fme_hdr_group = {
141
.attrs = fme_hdr_attrs,
142
};
143
144
static long fme_hdr_ioctl_release_port(struct dfl_feature_dev_data *fdata,
145
unsigned long arg)
146
{
147
struct dfl_fpga_cdev *cdev = fdata->dfl_cdev;
148
int port_id;
149
150
if (get_user(port_id, (int __user *)arg))
151
return -EFAULT;
152
153
return dfl_fpga_cdev_release_port(cdev, port_id);
154
}
155
156
static long fme_hdr_ioctl_assign_port(struct dfl_feature_dev_data *fdata,
157
unsigned long arg)
158
{
159
struct dfl_fpga_cdev *cdev = fdata->dfl_cdev;
160
int port_id;
161
162
if (get_user(port_id, (int __user *)arg))
163
return -EFAULT;
164
165
return dfl_fpga_cdev_assign_port(cdev, port_id);
166
}
167
168
static long fme_hdr_ioctl(struct platform_device *pdev,
169
struct dfl_feature *feature,
170
unsigned int cmd, unsigned long arg)
171
{
172
struct dfl_feature_dev_data *fdata = to_dfl_feature_dev_data(&pdev->dev);
173
174
switch (cmd) {
175
case DFL_FPGA_FME_PORT_RELEASE:
176
return fme_hdr_ioctl_release_port(fdata, arg);
177
case DFL_FPGA_FME_PORT_ASSIGN:
178
return fme_hdr_ioctl_assign_port(fdata, arg);
179
}
180
181
return -ENODEV;
182
}
183
184
static const struct dfl_feature_id fme_hdr_id_table[] = {
185
{.id = FME_FEATURE_ID_HEADER,},
186
{0,}
187
};
188
189
static const struct dfl_feature_ops fme_hdr_ops = {
190
.ioctl = fme_hdr_ioctl,
191
};
192
193
#define FME_THERM_THRESHOLD 0x8
194
#define TEMP_THRESHOLD1 GENMASK_ULL(6, 0)
195
#define TEMP_THRESHOLD1_EN BIT_ULL(7)
196
#define TEMP_THRESHOLD2 GENMASK_ULL(14, 8)
197
#define TEMP_THRESHOLD2_EN BIT_ULL(15)
198
#define TRIP_THRESHOLD GENMASK_ULL(30, 24)
199
#define TEMP_THRESHOLD1_STATUS BIT_ULL(32) /* threshold1 reached */
200
#define TEMP_THRESHOLD2_STATUS BIT_ULL(33) /* threshold2 reached */
201
/* threshold1 policy: 0 - AP2 (90% throttle) / 1 - AP1 (50% throttle) */
202
#define TEMP_THRESHOLD1_POLICY BIT_ULL(44)
203
204
#define FME_THERM_RDSENSOR_FMT1 0x10
205
#define FPGA_TEMPERATURE GENMASK_ULL(6, 0)
206
207
#define FME_THERM_CAP 0x20
208
#define THERM_NO_THROTTLE BIT_ULL(0)
209
210
#define MD_PRE_DEG
211
212
static bool fme_thermal_throttle_support(void __iomem *base)
213
{
214
u64 v = readq(base + FME_THERM_CAP);
215
216
return FIELD_GET(THERM_NO_THROTTLE, v) ? false : true;
217
}
218
219
static umode_t thermal_hwmon_attrs_visible(const void *drvdata,
220
enum hwmon_sensor_types type,
221
u32 attr, int channel)
222
{
223
const struct dfl_feature *feature = drvdata;
224
225
/* temperature is always supported, and check hardware cap for others */
226
if (attr == hwmon_temp_input)
227
return 0444;
228
229
return fme_thermal_throttle_support(feature->ioaddr) ? 0444 : 0;
230
}
231
232
static int thermal_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
233
u32 attr, int channel, long *val)
234
{
235
struct dfl_feature *feature = dev_get_drvdata(dev);
236
u64 v;
237
238
switch (attr) {
239
case hwmon_temp_input:
240
v = readq(feature->ioaddr + FME_THERM_RDSENSOR_FMT1);
241
*val = (long)(FIELD_GET(FPGA_TEMPERATURE, v) * MILLI);
242
break;
243
case hwmon_temp_max:
244
v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
245
*val = (long)(FIELD_GET(TEMP_THRESHOLD1, v) * MILLI);
246
break;
247
case hwmon_temp_crit:
248
v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
249
*val = (long)(FIELD_GET(TEMP_THRESHOLD2, v) * MILLI);
250
break;
251
case hwmon_temp_emergency:
252
v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
253
*val = (long)(FIELD_GET(TRIP_THRESHOLD, v) * MILLI);
254
break;
255
case hwmon_temp_max_alarm:
256
v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
257
*val = (long)FIELD_GET(TEMP_THRESHOLD1_STATUS, v);
258
break;
259
case hwmon_temp_crit_alarm:
260
v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
261
*val = (long)FIELD_GET(TEMP_THRESHOLD2_STATUS, v);
262
break;
263
default:
264
return -EOPNOTSUPP;
265
}
266
267
return 0;
268
}
269
270
static const struct hwmon_ops thermal_hwmon_ops = {
271
.is_visible = thermal_hwmon_attrs_visible,
272
.read = thermal_hwmon_read,
273
};
274
275
static const struct hwmon_channel_info * const thermal_hwmon_info[] = {
276
HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_EMERGENCY |
277
HWMON_T_MAX | HWMON_T_MAX_ALARM |
278
HWMON_T_CRIT | HWMON_T_CRIT_ALARM),
279
NULL
280
};
281
282
static const struct hwmon_chip_info thermal_hwmon_chip_info = {
283
.ops = &thermal_hwmon_ops,
284
.info = thermal_hwmon_info,
285
};
286
287
static ssize_t temp1_max_policy_show(struct device *dev,
288
struct device_attribute *attr, char *buf)
289
{
290
struct dfl_feature *feature = dev_get_drvdata(dev);
291
u64 v;
292
293
v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
294
295
return sprintf(buf, "%u\n",
296
(unsigned int)FIELD_GET(TEMP_THRESHOLD1_POLICY, v));
297
}
298
299
static DEVICE_ATTR_RO(temp1_max_policy);
300
301
static struct attribute *thermal_extra_attrs[] = {
302
&dev_attr_temp1_max_policy.attr,
303
NULL,
304
};
305
306
static umode_t thermal_extra_attrs_visible(struct kobject *kobj,
307
struct attribute *attr, int index)
308
{
309
struct device *dev = kobj_to_dev(kobj);
310
struct dfl_feature *feature = dev_get_drvdata(dev);
311
312
return fme_thermal_throttle_support(feature->ioaddr) ? attr->mode : 0;
313
}
314
315
static const struct attribute_group thermal_extra_group = {
316
.attrs = thermal_extra_attrs,
317
.is_visible = thermal_extra_attrs_visible,
318
};
319
__ATTRIBUTE_GROUPS(thermal_extra);
320
321
static int fme_thermal_mgmt_init(struct platform_device *pdev,
322
struct dfl_feature *feature)
323
{
324
struct device *hwmon;
325
326
/*
327
* create hwmon to allow userspace monitoring temperature and other
328
* threshold information.
329
*
330
* temp1_input -> FPGA device temperature
331
* temp1_max -> hardware threshold 1 -> 50% or 90% throttling
332
* temp1_crit -> hardware threshold 2 -> 100% throttling
333
* temp1_emergency -> hardware trip_threshold to shutdown FPGA
334
* temp1_max_alarm -> hardware threshold 1 alarm
335
* temp1_crit_alarm -> hardware threshold 2 alarm
336
*
337
* create device specific sysfs interfaces, e.g. read temp1_max_policy
338
* to understand the actual hardware throttling action (50% vs 90%).
339
*
340
* If hardware doesn't support automatic throttling per thresholds,
341
* then all above sysfs interfaces are not visible except temp1_input
342
* for temperature.
343
*/
344
hwmon = devm_hwmon_device_register_with_info(&pdev->dev,
345
"dfl_fme_thermal", feature,
346
&thermal_hwmon_chip_info,
347
thermal_extra_groups);
348
if (IS_ERR(hwmon)) {
349
dev_err(&pdev->dev, "Fail to register thermal hwmon\n");
350
return PTR_ERR(hwmon);
351
}
352
353
return 0;
354
}
355
356
static const struct dfl_feature_id fme_thermal_mgmt_id_table[] = {
357
{.id = FME_FEATURE_ID_THERMAL_MGMT,},
358
{0,}
359
};
360
361
static const struct dfl_feature_ops fme_thermal_mgmt_ops = {
362
.init = fme_thermal_mgmt_init,
363
};
364
365
#define FME_PWR_STATUS 0x8
366
#define FME_LATENCY_TOLERANCE BIT_ULL(18)
367
#define PWR_CONSUMED GENMASK_ULL(17, 0)
368
369
#define FME_PWR_THRESHOLD 0x10
370
#define PWR_THRESHOLD1 GENMASK_ULL(6, 0) /* in Watts */
371
#define PWR_THRESHOLD2 GENMASK_ULL(14, 8) /* in Watts */
372
#define PWR_THRESHOLD_MAX 0x7f /* in Watts */
373
#define PWR_THRESHOLD1_STATUS BIT_ULL(16)
374
#define PWR_THRESHOLD2_STATUS BIT_ULL(17)
375
376
#define FME_PWR_XEON_LIMIT 0x18
377
#define XEON_PWR_LIMIT GENMASK_ULL(14, 0) /* in 0.1 Watts */
378
#define XEON_PWR_EN BIT_ULL(15)
379
#define FME_PWR_FPGA_LIMIT 0x20
380
#define FPGA_PWR_LIMIT GENMASK_ULL(14, 0) /* in 0.1 Watts */
381
#define FPGA_PWR_EN BIT_ULL(15)
382
383
static int power_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
384
u32 attr, int channel, long *val)
385
{
386
struct dfl_feature *feature = dev_get_drvdata(dev);
387
u64 v;
388
389
switch (attr) {
390
case hwmon_power_input:
391
v = readq(feature->ioaddr + FME_PWR_STATUS);
392
*val = (long)(FIELD_GET(PWR_CONSUMED, v) * MICRO);
393
break;
394
case hwmon_power_max:
395
v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
396
*val = (long)(FIELD_GET(PWR_THRESHOLD1, v) * MICRO);
397
break;
398
case hwmon_power_crit:
399
v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
400
*val = (long)(FIELD_GET(PWR_THRESHOLD2, v) * MICRO);
401
break;
402
case hwmon_power_max_alarm:
403
v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
404
*val = (long)FIELD_GET(PWR_THRESHOLD1_STATUS, v);
405
break;
406
case hwmon_power_crit_alarm:
407
v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
408
*val = (long)FIELD_GET(PWR_THRESHOLD2_STATUS, v);
409
break;
410
default:
411
return -EOPNOTSUPP;
412
}
413
414
return 0;
415
}
416
417
static int power_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
418
u32 attr, int channel, long val)
419
{
420
struct dfl_feature_dev_data *fdata = to_dfl_feature_dev_data(dev->parent);
421
struct dfl_feature *feature = dev_get_drvdata(dev);
422
int ret = 0;
423
u64 v;
424
425
val = clamp_val(val / MICRO, 0, PWR_THRESHOLD_MAX);
426
427
mutex_lock(&fdata->lock);
428
429
switch (attr) {
430
case hwmon_power_max:
431
v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
432
v &= ~PWR_THRESHOLD1;
433
v |= FIELD_PREP(PWR_THRESHOLD1, val);
434
writeq(v, feature->ioaddr + FME_PWR_THRESHOLD);
435
break;
436
case hwmon_power_crit:
437
v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
438
v &= ~PWR_THRESHOLD2;
439
v |= FIELD_PREP(PWR_THRESHOLD2, val);
440
writeq(v, feature->ioaddr + FME_PWR_THRESHOLD);
441
break;
442
default:
443
ret = -EOPNOTSUPP;
444
break;
445
}
446
447
mutex_unlock(&fdata->lock);
448
449
return ret;
450
}
451
452
static umode_t power_hwmon_attrs_visible(const void *drvdata,
453
enum hwmon_sensor_types type,
454
u32 attr, int channel)
455
{
456
switch (attr) {
457
case hwmon_power_input:
458
case hwmon_power_max_alarm:
459
case hwmon_power_crit_alarm:
460
return 0444;
461
case hwmon_power_max:
462
case hwmon_power_crit:
463
return 0644;
464
}
465
466
return 0;
467
}
468
469
static const struct hwmon_ops power_hwmon_ops = {
470
.is_visible = power_hwmon_attrs_visible,
471
.read = power_hwmon_read,
472
.write = power_hwmon_write,
473
};
474
475
static const struct hwmon_channel_info * const power_hwmon_info[] = {
476
HWMON_CHANNEL_INFO(power, HWMON_P_INPUT |
477
HWMON_P_MAX | HWMON_P_MAX_ALARM |
478
HWMON_P_CRIT | HWMON_P_CRIT_ALARM),
479
NULL
480
};
481
482
static const struct hwmon_chip_info power_hwmon_chip_info = {
483
.ops = &power_hwmon_ops,
484
.info = power_hwmon_info,
485
};
486
487
static ssize_t power1_xeon_limit_show(struct device *dev,
488
struct device_attribute *attr, char *buf)
489
{
490
struct dfl_feature *feature = dev_get_drvdata(dev);
491
u16 xeon_limit = 0;
492
u64 v;
493
494
v = readq(feature->ioaddr + FME_PWR_XEON_LIMIT);
495
496
if (FIELD_GET(XEON_PWR_EN, v))
497
xeon_limit = FIELD_GET(XEON_PWR_LIMIT, v);
498
499
return sprintf(buf, "%u\n", xeon_limit * 100000);
500
}
501
502
static ssize_t power1_fpga_limit_show(struct device *dev,
503
struct device_attribute *attr, char *buf)
504
{
505
struct dfl_feature *feature = dev_get_drvdata(dev);
506
u16 fpga_limit = 0;
507
u64 v;
508
509
v = readq(feature->ioaddr + FME_PWR_FPGA_LIMIT);
510
511
if (FIELD_GET(FPGA_PWR_EN, v))
512
fpga_limit = FIELD_GET(FPGA_PWR_LIMIT, v);
513
514
return sprintf(buf, "%u\n", fpga_limit * 100000);
515
}
516
517
static ssize_t power1_ltr_show(struct device *dev,
518
struct device_attribute *attr, char *buf)
519
{
520
struct dfl_feature *feature = dev_get_drvdata(dev);
521
u64 v;
522
523
v = readq(feature->ioaddr + FME_PWR_STATUS);
524
525
return sprintf(buf, "%u\n",
526
(unsigned int)FIELD_GET(FME_LATENCY_TOLERANCE, v));
527
}
528
529
static DEVICE_ATTR_RO(power1_xeon_limit);
530
static DEVICE_ATTR_RO(power1_fpga_limit);
531
static DEVICE_ATTR_RO(power1_ltr);
532
533
static struct attribute *power_extra_attrs[] = {
534
&dev_attr_power1_xeon_limit.attr,
535
&dev_attr_power1_fpga_limit.attr,
536
&dev_attr_power1_ltr.attr,
537
NULL
538
};
539
540
ATTRIBUTE_GROUPS(power_extra);
541
542
static int fme_power_mgmt_init(struct platform_device *pdev,
543
struct dfl_feature *feature)
544
{
545
struct device *hwmon;
546
547
hwmon = devm_hwmon_device_register_with_info(&pdev->dev,
548
"dfl_fme_power", feature,
549
&power_hwmon_chip_info,
550
power_extra_groups);
551
if (IS_ERR(hwmon)) {
552
dev_err(&pdev->dev, "Fail to register power hwmon\n");
553
return PTR_ERR(hwmon);
554
}
555
556
return 0;
557
}
558
559
static const struct dfl_feature_id fme_power_mgmt_id_table[] = {
560
{.id = FME_FEATURE_ID_POWER_MGMT,},
561
{0,}
562
};
563
564
static const struct dfl_feature_ops fme_power_mgmt_ops = {
565
.init = fme_power_mgmt_init,
566
};
567
568
static struct dfl_feature_driver fme_feature_drvs[] = {
569
{
570
.id_table = fme_hdr_id_table,
571
.ops = &fme_hdr_ops,
572
},
573
{
574
.id_table = fme_pr_mgmt_id_table,
575
.ops = &fme_pr_mgmt_ops,
576
},
577
{
578
.id_table = fme_global_err_id_table,
579
.ops = &fme_global_err_ops,
580
},
581
{
582
.id_table = fme_thermal_mgmt_id_table,
583
.ops = &fme_thermal_mgmt_ops,
584
},
585
{
586
.id_table = fme_power_mgmt_id_table,
587
.ops = &fme_power_mgmt_ops,
588
},
589
{
590
.id_table = fme_perf_id_table,
591
.ops = &fme_perf_ops,
592
},
593
{
594
.ops = NULL,
595
},
596
};
597
598
static long fme_ioctl_check_extension(struct dfl_feature_dev_data *fdata,
599
unsigned long arg)
600
{
601
/* No extension support for now */
602
return 0;
603
}
604
605
static int fme_open(struct inode *inode, struct file *filp)
606
{
607
struct dfl_feature_dev_data *fdata = dfl_fpga_inode_to_feature_dev_data(inode);
608
struct platform_device *fdev = fdata->dev;
609
int ret;
610
611
mutex_lock(&fdata->lock);
612
ret = dfl_feature_dev_use_begin(fdata, filp->f_flags & O_EXCL);
613
if (!ret) {
614
dev_dbg(&fdev->dev, "Device File Opened %d Times\n",
615
dfl_feature_dev_use_count(fdata));
616
filp->private_data = fdata;
617
}
618
mutex_unlock(&fdata->lock);
619
620
return ret;
621
}
622
623
static int fme_release(struct inode *inode, struct file *filp)
624
{
625
struct dfl_feature_dev_data *fdata = filp->private_data;
626
struct platform_device *pdev = fdata->dev;
627
struct dfl_feature *feature;
628
629
dev_dbg(&pdev->dev, "Device File Release\n");
630
631
mutex_lock(&fdata->lock);
632
dfl_feature_dev_use_end(fdata);
633
634
if (!dfl_feature_dev_use_count(fdata))
635
dfl_fpga_dev_for_each_feature(fdata, feature)
636
dfl_fpga_set_irq_triggers(feature, 0,
637
feature->nr_irqs, NULL);
638
mutex_unlock(&fdata->lock);
639
640
return 0;
641
}
642
643
static long fme_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
644
{
645
struct dfl_feature_dev_data *fdata = filp->private_data;
646
struct platform_device *pdev = fdata->dev;
647
struct dfl_feature *f;
648
long ret;
649
650
dev_dbg(&pdev->dev, "%s cmd 0x%x\n", __func__, cmd);
651
652
switch (cmd) {
653
case DFL_FPGA_GET_API_VERSION:
654
return DFL_FPGA_API_VERSION;
655
case DFL_FPGA_CHECK_EXTENSION:
656
return fme_ioctl_check_extension(fdata, arg);
657
default:
658
/*
659
* Let sub-feature's ioctl function to handle the cmd.
660
* Sub-feature's ioctl returns -ENODEV when cmd is not
661
* handled in this sub feature, and returns 0 or other
662
* error code if cmd is handled.
663
*/
664
dfl_fpga_dev_for_each_feature(fdata, f) {
665
if (f->ops && f->ops->ioctl) {
666
ret = f->ops->ioctl(pdev, f, cmd, arg);
667
if (ret != -ENODEV)
668
return ret;
669
}
670
}
671
}
672
673
return -EINVAL;
674
}
675
676
static int fme_dev_init(struct platform_device *pdev)
677
{
678
struct dfl_feature_dev_data *fdata = to_dfl_feature_dev_data(&pdev->dev);
679
struct dfl_fme *fme;
680
681
fme = devm_kzalloc(&pdev->dev, sizeof(*fme), GFP_KERNEL);
682
if (!fme)
683
return -ENOMEM;
684
685
mutex_lock(&fdata->lock);
686
dfl_fpga_fdata_set_private(fdata, fme);
687
mutex_unlock(&fdata->lock);
688
689
return 0;
690
}
691
692
static void fme_dev_destroy(struct platform_device *pdev)
693
{
694
struct dfl_feature_dev_data *fdata = to_dfl_feature_dev_data(&pdev->dev);
695
696
mutex_lock(&fdata->lock);
697
dfl_fpga_fdata_set_private(fdata, NULL);
698
mutex_unlock(&fdata->lock);
699
}
700
701
static const struct file_operations fme_fops = {
702
.owner = THIS_MODULE,
703
.open = fme_open,
704
.release = fme_release,
705
.unlocked_ioctl = fme_ioctl,
706
};
707
708
static int fme_probe(struct platform_device *pdev)
709
{
710
int ret;
711
712
ret = fme_dev_init(pdev);
713
if (ret)
714
goto exit;
715
716
ret = dfl_fpga_dev_feature_init(pdev, fme_feature_drvs);
717
if (ret)
718
goto dev_destroy;
719
720
ret = dfl_fpga_dev_ops_register(pdev, &fme_fops, THIS_MODULE);
721
if (ret)
722
goto feature_uinit;
723
724
return 0;
725
726
feature_uinit:
727
dfl_fpga_dev_feature_uinit(pdev);
728
dev_destroy:
729
fme_dev_destroy(pdev);
730
exit:
731
return ret;
732
}
733
734
static void fme_remove(struct platform_device *pdev)
735
{
736
dfl_fpga_dev_ops_unregister(pdev);
737
dfl_fpga_dev_feature_uinit(pdev);
738
fme_dev_destroy(pdev);
739
}
740
741
static const struct attribute_group *fme_dev_groups[] = {
742
&fme_hdr_group,
743
&fme_global_err_group,
744
NULL
745
};
746
747
static struct platform_driver fme_driver = {
748
.driver = {
749
.name = DFL_FPGA_FEATURE_DEV_FME,
750
.dev_groups = fme_dev_groups,
751
},
752
.probe = fme_probe,
753
.remove = fme_remove,
754
};
755
756
module_platform_driver(fme_driver);
757
758
MODULE_DESCRIPTION("FPGA Management Engine driver");
759
MODULE_AUTHOR("Intel Corporation");
760
MODULE_LICENSE("GPL v2");
761
MODULE_ALIAS("platform:dfl-fme");
762
763