Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/fsi/fsi-core.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* FSI core driver
4
*
5
* Copyright (C) IBM Corporation 2016
6
*
7
* TODO:
8
* - Rework topology
9
* - s/chip_id/chip_loc
10
* - s/cfam/chip (cfam_id -> chip_id etc...)
11
*/
12
13
#include <linux/crc4.h>
14
#include <linux/device.h>
15
#include <linux/fsi.h>
16
#include <linux/idr.h>
17
#include <linux/module.h>
18
#include <linux/of.h>
19
#include <linux/of_address.h>
20
#include <linux/of_device.h>
21
#include <linux/slab.h>
22
#include <linux/bitops.h>
23
#include <linux/cdev.h>
24
#include <linux/fs.h>
25
#include <linux/uaccess.h>
26
27
#include "fsi-master.h"
28
#include "fsi-slave.h"
29
30
#define CREATE_TRACE_POINTS
31
#include <trace/events/fsi.h>
32
33
#define FSI_SLAVE_CONF_NEXT_MASK GENMASK(31, 31)
34
#define FSI_SLAVE_CONF_SLOTS_MASK GENMASK(23, 16)
35
#define FSI_SLAVE_CONF_SLOTS_SHIFT 16
36
#define FSI_SLAVE_CONF_VERSION_MASK GENMASK(15, 12)
37
#define FSI_SLAVE_CONF_VERSION_SHIFT 12
38
#define FSI_SLAVE_CONF_TYPE_MASK GENMASK(11, 4)
39
#define FSI_SLAVE_CONF_TYPE_SHIFT 4
40
#define FSI_SLAVE_CONF_CRC_SHIFT 4
41
#define FSI_SLAVE_CONF_CRC_MASK GENMASK(3, 0)
42
#define FSI_SLAVE_CONF_DATA_BITS 28
43
44
#define FSI_PEEK_BASE 0x410
45
46
static const int engine_page_size = 0x400;
47
48
#define FSI_SLAVE_BASE 0x800
49
50
/*
51
* FSI slave engine control register offsets
52
*/
53
#define FSI_SMODE 0x0 /* R/W: Mode register */
54
#define FSI_SISC 0x8 /* R/W: Interrupt condition */
55
#define FSI_SSTAT 0x14 /* R : Slave status */
56
#define FSI_SLBUS 0x30 /* W : LBUS Ownership */
57
#define FSI_LLMODE 0x100 /* R/W: Link layer mode register */
58
59
/*
60
* SMODE fields
61
*/
62
#define FSI_SMODE_WSC 0x80000000 /* Warm start done */
63
#define FSI_SMODE_ECRC 0x20000000 /* Hw CRC check */
64
#define FSI_SMODE_SID_SHIFT 24 /* ID shift */
65
#define FSI_SMODE_SID_MASK 3 /* ID Mask */
66
#define FSI_SMODE_ED_SHIFT 20 /* Echo delay shift */
67
#define FSI_SMODE_ED_MASK 0xf /* Echo delay mask */
68
#define FSI_SMODE_SD_SHIFT 16 /* Send delay shift */
69
#define FSI_SMODE_SD_MASK 0xf /* Send delay mask */
70
#define FSI_SMODE_LBCRR_SHIFT 8 /* Clk ratio shift */
71
#define FSI_SMODE_LBCRR_MASK 0xf /* Clk ratio mask */
72
73
/*
74
* SLBUS fields
75
*/
76
#define FSI_SLBUS_FORCE 0x80000000 /* Force LBUS ownership */
77
78
/*
79
* LLMODE fields
80
*/
81
#define FSI_LLMODE_ASYNC 0x1
82
83
#define FSI_SLAVE_SIZE_23b 0x800000
84
85
static DEFINE_IDA(master_ida);
86
87
static const int slave_retries = 2;
88
static int discard_errors;
89
90
static dev_t fsi_base_dev;
91
static DEFINE_IDA(fsi_minor_ida);
92
#define FSI_CHAR_MAX_DEVICES 0x1000
93
94
/* Legacy /dev numbering: 4 devices per chip, 16 chips */
95
#define FSI_CHAR_LEGACY_TOP 64
96
97
static int fsi_master_read(struct fsi_master *master, int link,
98
uint8_t slave_id, uint32_t addr, void *val, size_t size);
99
static int fsi_master_write(struct fsi_master *master, int link,
100
uint8_t slave_id, uint32_t addr, const void *val, size_t size);
101
static int fsi_master_break(struct fsi_master *master, int link);
102
103
/*
104
* fsi_device_read() / fsi_device_write() / fsi_device_peek()
105
*
106
* FSI endpoint-device support
107
*
108
* Read / write / peek accessors for a client
109
*
110
* Parameters:
111
* dev: Structure passed to FSI client device drivers on probe().
112
* addr: FSI address of given device. Client should pass in its base address
113
* plus desired offset to access its register space.
114
* val: For read/peek this is the value read at the specified address. For
115
* write this is value to write to the specified address.
116
* The data in val must be FSI bus endian (big endian).
117
* size: Size in bytes of the operation. Sizes supported are 1, 2 and 4 bytes.
118
* Addresses must be aligned on size boundaries or an error will result.
119
*/
120
int fsi_device_read(struct fsi_device *dev, uint32_t addr, void *val,
121
size_t size)
122
{
123
if (addr > dev->size || size > dev->size || addr > dev->size - size)
124
return -EINVAL;
125
126
return fsi_slave_read(dev->slave, dev->addr + addr, val, size);
127
}
128
EXPORT_SYMBOL_GPL(fsi_device_read);
129
130
int fsi_device_write(struct fsi_device *dev, uint32_t addr, const void *val,
131
size_t size)
132
{
133
if (addr > dev->size || size > dev->size || addr > dev->size - size)
134
return -EINVAL;
135
136
return fsi_slave_write(dev->slave, dev->addr + addr, val, size);
137
}
138
EXPORT_SYMBOL_GPL(fsi_device_write);
139
140
int fsi_device_peek(struct fsi_device *dev, void *val)
141
{
142
uint32_t addr = FSI_PEEK_BASE + ((dev->unit - 2) * sizeof(uint32_t));
143
144
return fsi_slave_read(dev->slave, addr, val, sizeof(uint32_t));
145
}
146
147
static void fsi_device_release(struct device *_device)
148
{
149
struct fsi_device *device = to_fsi_dev(_device);
150
151
of_node_put(device->dev.of_node);
152
kfree(device);
153
}
154
155
static struct fsi_device *fsi_create_device(struct fsi_slave *slave)
156
{
157
struct fsi_device *dev;
158
159
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
160
if (!dev)
161
return NULL;
162
163
dev->dev.parent = &slave->dev;
164
dev->dev.bus = &fsi_bus_type;
165
dev->dev.release = fsi_device_release;
166
167
return dev;
168
}
169
170
/* FSI slave support */
171
static int fsi_slave_calc_addr(struct fsi_slave *slave, uint32_t *addrp,
172
uint8_t *idp)
173
{
174
uint32_t addr = *addrp;
175
uint8_t id = *idp;
176
177
if (addr > slave->size)
178
return -EINVAL;
179
180
/* For 23 bit addressing, we encode the extra two bits in the slave
181
* id (and the slave's actual ID needs to be 0).
182
*/
183
if (addr > 0x1fffff) {
184
if (slave->id != 0)
185
return -EINVAL;
186
id = (addr >> 21) & 0x3;
187
addr &= 0x1fffff;
188
}
189
190
*addrp = addr;
191
*idp = id;
192
return 0;
193
}
194
195
static int fsi_slave_report_and_clear_errors(struct fsi_slave *slave)
196
{
197
struct fsi_master *master = slave->master;
198
__be32 irq, stat;
199
int rc, link;
200
uint8_t id;
201
202
link = slave->link;
203
id = slave->id;
204
205
rc = fsi_master_read(master, link, id, FSI_SLAVE_BASE + FSI_SISC,
206
&irq, sizeof(irq));
207
if (rc)
208
return rc;
209
210
rc = fsi_master_read(master, link, id, FSI_SLAVE_BASE + FSI_SSTAT,
211
&stat, sizeof(stat));
212
if (rc)
213
return rc;
214
215
dev_dbg(&slave->dev, "status: 0x%08x, sisc: 0x%08x\n",
216
be32_to_cpu(stat), be32_to_cpu(irq));
217
218
/* clear interrupts */
219
return fsi_master_write(master, link, id, FSI_SLAVE_BASE + FSI_SISC,
220
&irq, sizeof(irq));
221
}
222
223
/* Encode slave local bus echo delay */
224
static inline uint32_t fsi_smode_echodly(int x)
225
{
226
return (x & FSI_SMODE_ED_MASK) << FSI_SMODE_ED_SHIFT;
227
}
228
229
/* Encode slave local bus send delay */
230
static inline uint32_t fsi_smode_senddly(int x)
231
{
232
return (x & FSI_SMODE_SD_MASK) << FSI_SMODE_SD_SHIFT;
233
}
234
235
/* Encode slave local bus clock rate ratio */
236
static inline uint32_t fsi_smode_lbcrr(int x)
237
{
238
return (x & FSI_SMODE_LBCRR_MASK) << FSI_SMODE_LBCRR_SHIFT;
239
}
240
241
/* Encode slave ID */
242
static inline uint32_t fsi_smode_sid(int x)
243
{
244
return (x & FSI_SMODE_SID_MASK) << FSI_SMODE_SID_SHIFT;
245
}
246
247
static uint32_t fsi_slave_smode(int id, u8 t_senddly, u8 t_echodly)
248
{
249
return FSI_SMODE_WSC | FSI_SMODE_ECRC
250
| fsi_smode_sid(id)
251
| fsi_smode_echodly(t_echodly - 1) | fsi_smode_senddly(t_senddly - 1)
252
| fsi_smode_lbcrr(0x8);
253
}
254
255
static int fsi_slave_set_smode(struct fsi_slave *slave)
256
{
257
uint32_t smode;
258
__be32 data;
259
260
/* set our smode register with the slave ID field to 0; this enables
261
* extended slave addressing
262
*/
263
smode = fsi_slave_smode(slave->id, slave->t_send_delay, slave->t_echo_delay);
264
data = cpu_to_be32(smode);
265
266
return fsi_master_write(slave->master, slave->link, slave->id,
267
FSI_SLAVE_BASE + FSI_SMODE,
268
&data, sizeof(data));
269
}
270
271
static int fsi_slave_handle_error(struct fsi_slave *slave, bool write,
272
uint32_t addr, size_t size)
273
{
274
struct fsi_master *master = slave->master;
275
int rc, link;
276
uint32_t reg;
277
uint8_t id, send_delay, echo_delay;
278
279
if (discard_errors)
280
return -1;
281
282
link = slave->link;
283
id = slave->id;
284
285
dev_dbg(&slave->dev, "handling error on %s to 0x%08x[%zd]",
286
write ? "write" : "read", addr, size);
287
288
/* try a simple clear of error conditions, which may fail if we've lost
289
* communication with the slave
290
*/
291
rc = fsi_slave_report_and_clear_errors(slave);
292
if (!rc)
293
return 0;
294
295
/* send a TERM and retry */
296
if (master->term) {
297
rc = master->term(master, link, id);
298
if (!rc) {
299
rc = fsi_master_read(master, link, id, 0,
300
&reg, sizeof(reg));
301
if (!rc)
302
rc = fsi_slave_report_and_clear_errors(slave);
303
if (!rc)
304
return 0;
305
}
306
}
307
308
send_delay = slave->t_send_delay;
309
echo_delay = slave->t_echo_delay;
310
311
/* getting serious, reset the slave via BREAK */
312
rc = fsi_master_break(master, link);
313
if (rc)
314
return rc;
315
316
slave->t_send_delay = send_delay;
317
slave->t_echo_delay = echo_delay;
318
319
rc = fsi_slave_set_smode(slave);
320
if (rc)
321
return rc;
322
323
if (master->link_config)
324
master->link_config(master, link,
325
slave->t_send_delay,
326
slave->t_echo_delay);
327
328
return fsi_slave_report_and_clear_errors(slave);
329
}
330
331
int fsi_slave_read(struct fsi_slave *slave, uint32_t addr,
332
void *val, size_t size)
333
{
334
uint8_t id = slave->id;
335
int rc, err_rc, i;
336
337
rc = fsi_slave_calc_addr(slave, &addr, &id);
338
if (rc)
339
return rc;
340
341
for (i = 0; i < slave_retries; i++) {
342
rc = fsi_master_read(slave->master, slave->link,
343
id, addr, val, size);
344
if (!rc)
345
break;
346
347
err_rc = fsi_slave_handle_error(slave, false, addr, size);
348
if (err_rc)
349
break;
350
}
351
352
return rc;
353
}
354
EXPORT_SYMBOL_GPL(fsi_slave_read);
355
356
int fsi_slave_write(struct fsi_slave *slave, uint32_t addr,
357
const void *val, size_t size)
358
{
359
uint8_t id = slave->id;
360
int rc, err_rc, i;
361
362
rc = fsi_slave_calc_addr(slave, &addr, &id);
363
if (rc)
364
return rc;
365
366
for (i = 0; i < slave_retries; i++) {
367
rc = fsi_master_write(slave->master, slave->link,
368
id, addr, val, size);
369
if (!rc)
370
break;
371
372
err_rc = fsi_slave_handle_error(slave, true, addr, size);
373
if (err_rc)
374
break;
375
}
376
377
return rc;
378
}
379
EXPORT_SYMBOL_GPL(fsi_slave_write);
380
381
int fsi_slave_claim_range(struct fsi_slave *slave,
382
uint32_t addr, uint32_t size)
383
{
384
if (addr + size < addr)
385
return -EINVAL;
386
387
if (addr + size > slave->size)
388
return -EINVAL;
389
390
/* todo: check for overlapping claims */
391
return 0;
392
}
393
EXPORT_SYMBOL_GPL(fsi_slave_claim_range);
394
395
void fsi_slave_release_range(struct fsi_slave *slave,
396
uint32_t addr, uint32_t size)
397
{
398
}
399
EXPORT_SYMBOL_GPL(fsi_slave_release_range);
400
401
static bool fsi_device_node_matches(struct device *dev, struct device_node *np,
402
uint32_t addr, uint32_t size)
403
{
404
u64 paddr, psize;
405
406
if (of_property_read_reg(np, 0, &paddr, &psize))
407
return false;
408
409
if (paddr != addr)
410
return false;
411
412
if (psize != size) {
413
dev_warn(dev,
414
"node %pOF matches probed address, but not size (got 0x%llx, expected 0x%x)",
415
np, psize, size);
416
}
417
418
return true;
419
}
420
421
/* Find a matching node for the slave engine at @address, using @size bytes
422
* of space. Returns NULL if not found, or a matching node with refcount
423
* already incremented.
424
*/
425
static struct device_node *fsi_device_find_of_node(struct fsi_device *dev)
426
{
427
struct device_node *parent, *np;
428
429
parent = dev_of_node(&dev->slave->dev);
430
if (!parent)
431
return NULL;
432
433
for_each_child_of_node(parent, np) {
434
if (fsi_device_node_matches(&dev->dev, np,
435
dev->addr, dev->size))
436
return np;
437
}
438
439
return NULL;
440
}
441
442
static int fsi_slave_scan(struct fsi_slave *slave)
443
{
444
uint32_t engine_addr;
445
int rc, i;
446
447
/*
448
* scan engines
449
*
450
* We keep the peek mode and slave engines for the core; so start
451
* at the third slot in the configuration table. We also need to
452
* skip the chip ID entry at the start of the address space.
453
*/
454
engine_addr = engine_page_size * 3;
455
for (i = 2; i < engine_page_size / sizeof(uint32_t); i++) {
456
uint8_t slots, version, type, crc;
457
struct fsi_device *dev;
458
uint32_t conf;
459
__be32 data;
460
461
rc = fsi_slave_read(slave, (i + 1) * sizeof(data),
462
&data, sizeof(data));
463
if (rc) {
464
dev_warn(&slave->dev,
465
"error reading slave registers\n");
466
return -1;
467
}
468
conf = be32_to_cpu(data);
469
470
crc = crc4(0, conf, 32);
471
if (crc) {
472
dev_warn(&slave->dev,
473
"crc error in slave register at 0x%04x\n",
474
i);
475
return -1;
476
}
477
478
slots = (conf & FSI_SLAVE_CONF_SLOTS_MASK)
479
>> FSI_SLAVE_CONF_SLOTS_SHIFT;
480
version = (conf & FSI_SLAVE_CONF_VERSION_MASK)
481
>> FSI_SLAVE_CONF_VERSION_SHIFT;
482
type = (conf & FSI_SLAVE_CONF_TYPE_MASK)
483
>> FSI_SLAVE_CONF_TYPE_SHIFT;
484
485
/*
486
* Unused address areas are marked by a zero type value; this
487
* skips the defined address areas
488
*/
489
if (type != 0 && slots != 0) {
490
491
/* create device */
492
dev = fsi_create_device(slave);
493
if (!dev)
494
return -ENOMEM;
495
496
dev->slave = slave;
497
dev->engine_type = type;
498
dev->version = version;
499
dev->unit = i;
500
dev->addr = engine_addr;
501
dev->size = slots * engine_page_size;
502
503
trace_fsi_dev_init(dev);
504
505
dev_dbg(&slave->dev,
506
"engine[%i]: type %x, version %x, addr %x size %x\n",
507
dev->unit, dev->engine_type, version,
508
dev->addr, dev->size);
509
510
dev_set_name(&dev->dev, "%02x:%02x:%02x:%02x",
511
slave->master->idx, slave->link,
512
slave->id, i - 2);
513
dev->dev.of_node = fsi_device_find_of_node(dev);
514
515
rc = device_register(&dev->dev);
516
if (rc) {
517
dev_warn(&slave->dev, "add failed: %d\n", rc);
518
put_device(&dev->dev);
519
}
520
}
521
522
engine_addr += slots * engine_page_size;
523
524
if (!(conf & FSI_SLAVE_CONF_NEXT_MASK))
525
break;
526
}
527
528
return 0;
529
}
530
531
static unsigned long aligned_access_size(size_t offset, size_t count)
532
{
533
unsigned long offset_unit, count_unit;
534
535
/* Criteria:
536
*
537
* 1. Access size must be less than or equal to the maximum access
538
* width or the highest power-of-two factor of offset
539
* 2. Access size must be less than or equal to the amount specified by
540
* count
541
*
542
* The access width is optimal if we can calculate 1 to be strictly
543
* equal while still satisfying 2.
544
*/
545
546
/* Find 1 by the bottom bit of offset (with a 4 byte access cap) */
547
offset_unit = BIT(__builtin_ctzl(offset | 4));
548
549
/* Find 2 by the top bit of count */
550
count_unit = BIT(8 * sizeof(unsigned long) - 1 - __builtin_clzl(count));
551
552
/* Constrain the maximum access width to the minimum of both criteria */
553
return BIT(__builtin_ctzl(offset_unit | count_unit));
554
}
555
556
static ssize_t fsi_slave_sysfs_raw_read(struct file *file,
557
struct kobject *kobj, const struct bin_attribute *attr, char *buf,
558
loff_t off, size_t count)
559
{
560
struct fsi_slave *slave = to_fsi_slave(kobj_to_dev(kobj));
561
size_t total_len, read_len;
562
int rc;
563
564
if (off < 0)
565
return -EINVAL;
566
567
if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
568
return -EINVAL;
569
570
for (total_len = 0; total_len < count; total_len += read_len) {
571
read_len = aligned_access_size(off, count - total_len);
572
573
rc = fsi_slave_read(slave, off, buf + total_len, read_len);
574
if (rc)
575
return rc;
576
577
off += read_len;
578
}
579
580
return count;
581
}
582
583
static ssize_t fsi_slave_sysfs_raw_write(struct file *file,
584
struct kobject *kobj, const struct bin_attribute *attr,
585
char *buf, loff_t off, size_t count)
586
{
587
struct fsi_slave *slave = to_fsi_slave(kobj_to_dev(kobj));
588
size_t total_len, write_len;
589
int rc;
590
591
if (off < 0)
592
return -EINVAL;
593
594
if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
595
return -EINVAL;
596
597
for (total_len = 0; total_len < count; total_len += write_len) {
598
write_len = aligned_access_size(off, count - total_len);
599
600
rc = fsi_slave_write(slave, off, buf + total_len, write_len);
601
if (rc)
602
return rc;
603
604
off += write_len;
605
}
606
607
return count;
608
}
609
610
static const struct bin_attribute fsi_slave_raw_attr = {
611
.attr = {
612
.name = "raw",
613
.mode = 0600,
614
},
615
.size = 0,
616
.read = fsi_slave_sysfs_raw_read,
617
.write = fsi_slave_sysfs_raw_write,
618
};
619
620
static void fsi_slave_release(struct device *dev)
621
{
622
struct fsi_slave *slave = to_fsi_slave(dev);
623
624
fsi_free_minor(slave->dev.devt);
625
of_node_put(dev->of_node);
626
kfree(slave);
627
}
628
629
static bool fsi_slave_node_matches(struct device_node *np,
630
int link, uint8_t id)
631
{
632
u64 addr;
633
634
if (of_property_read_reg(np, 0, &addr, NULL))
635
return false;
636
637
return addr == (((u64)link << 32) | id);
638
}
639
640
/* Find a matching node for the slave at (link, id). Returns NULL if none
641
* found, or a matching node with refcount already incremented.
642
*/
643
static struct device_node *fsi_slave_find_of_node(struct fsi_master *master,
644
int link, uint8_t id)
645
{
646
struct device_node *parent, *np;
647
648
parent = dev_of_node(&master->dev);
649
if (!parent)
650
return NULL;
651
652
for_each_child_of_node(parent, np) {
653
if (fsi_slave_node_matches(np, link, id))
654
return np;
655
}
656
657
return NULL;
658
}
659
660
static ssize_t cfam_read(struct file *filep, char __user *buf, size_t count,
661
loff_t *offset)
662
{
663
struct fsi_slave *slave = filep->private_data;
664
size_t total_len, read_len;
665
loff_t off = *offset;
666
ssize_t rc;
667
668
if (off < 0)
669
return -EINVAL;
670
671
if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
672
return -EINVAL;
673
674
for (total_len = 0; total_len < count; total_len += read_len) {
675
__be32 data;
676
677
read_len = min_t(size_t, count, 4);
678
read_len -= off & 0x3;
679
680
rc = fsi_slave_read(slave, off, &data, read_len);
681
if (rc)
682
goto fail;
683
rc = copy_to_user(buf + total_len, &data, read_len);
684
if (rc) {
685
rc = -EFAULT;
686
goto fail;
687
}
688
off += read_len;
689
}
690
rc = count;
691
fail:
692
*offset = off;
693
return rc;
694
}
695
696
static ssize_t cfam_write(struct file *filep, const char __user *buf,
697
size_t count, loff_t *offset)
698
{
699
struct fsi_slave *slave = filep->private_data;
700
size_t total_len, write_len;
701
loff_t off = *offset;
702
ssize_t rc;
703
704
705
if (off < 0)
706
return -EINVAL;
707
708
if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
709
return -EINVAL;
710
711
for (total_len = 0; total_len < count; total_len += write_len) {
712
__be32 data;
713
714
write_len = min_t(size_t, count, 4);
715
write_len -= off & 0x3;
716
717
rc = copy_from_user(&data, buf + total_len, write_len);
718
if (rc) {
719
rc = -EFAULT;
720
goto fail;
721
}
722
rc = fsi_slave_write(slave, off, &data, write_len);
723
if (rc)
724
goto fail;
725
off += write_len;
726
}
727
rc = count;
728
fail:
729
*offset = off;
730
return rc;
731
}
732
733
static loff_t cfam_llseek(struct file *file, loff_t offset, int whence)
734
{
735
switch (whence) {
736
case SEEK_CUR:
737
break;
738
case SEEK_SET:
739
file->f_pos = offset;
740
break;
741
default:
742
return -EINVAL;
743
}
744
745
return offset;
746
}
747
748
static int cfam_open(struct inode *inode, struct file *file)
749
{
750
struct fsi_slave *slave = container_of(inode->i_cdev, struct fsi_slave, cdev);
751
752
file->private_data = slave;
753
754
return 0;
755
}
756
757
static const struct file_operations cfam_fops = {
758
.owner = THIS_MODULE,
759
.open = cfam_open,
760
.llseek = cfam_llseek,
761
.read = cfam_read,
762
.write = cfam_write,
763
};
764
765
static ssize_t send_term_store(struct device *dev,
766
struct device_attribute *attr,
767
const char *buf, size_t count)
768
{
769
struct fsi_slave *slave = to_fsi_slave(dev);
770
struct fsi_master *master = slave->master;
771
772
if (!master->term)
773
return -ENODEV;
774
775
master->term(master, slave->link, slave->id);
776
return count;
777
}
778
779
static DEVICE_ATTR_WO(send_term);
780
781
static ssize_t slave_send_echo_show(struct device *dev,
782
struct device_attribute *attr,
783
char *buf)
784
{
785
struct fsi_slave *slave = to_fsi_slave(dev);
786
787
return sprintf(buf, "%u\n", slave->t_send_delay);
788
}
789
790
static ssize_t slave_send_echo_store(struct device *dev,
791
struct device_attribute *attr, const char *buf, size_t count)
792
{
793
struct fsi_slave *slave = to_fsi_slave(dev);
794
struct fsi_master *master = slave->master;
795
unsigned long val;
796
int rc;
797
798
if (kstrtoul(buf, 0, &val) < 0)
799
return -EINVAL;
800
801
if (val < 1 || val > 16)
802
return -EINVAL;
803
804
if (!master->link_config)
805
return -ENXIO;
806
807
/* Current HW mandates that send and echo delay are identical */
808
slave->t_send_delay = val;
809
slave->t_echo_delay = val;
810
811
rc = fsi_slave_set_smode(slave);
812
if (rc < 0)
813
return rc;
814
if (master->link_config)
815
master->link_config(master, slave->link,
816
slave->t_send_delay,
817
slave->t_echo_delay);
818
819
return count;
820
}
821
822
static DEVICE_ATTR(send_echo_delays, 0600,
823
slave_send_echo_show, slave_send_echo_store);
824
825
static ssize_t chip_id_show(struct device *dev,
826
struct device_attribute *attr,
827
char *buf)
828
{
829
struct fsi_slave *slave = to_fsi_slave(dev);
830
831
return sprintf(buf, "%d\n", slave->chip_id);
832
}
833
834
static DEVICE_ATTR_RO(chip_id);
835
836
static ssize_t cfam_id_show(struct device *dev,
837
struct device_attribute *attr,
838
char *buf)
839
{
840
struct fsi_slave *slave = to_fsi_slave(dev);
841
842
return sprintf(buf, "0x%x\n", slave->cfam_id);
843
}
844
845
static DEVICE_ATTR_RO(cfam_id);
846
847
static struct attribute *cfam_attr[] = {
848
&dev_attr_send_echo_delays.attr,
849
&dev_attr_chip_id.attr,
850
&dev_attr_cfam_id.attr,
851
&dev_attr_send_term.attr,
852
NULL,
853
};
854
855
static const struct attribute_group cfam_attr_group = {
856
.attrs = cfam_attr,
857
};
858
859
static const struct attribute_group *cfam_attr_groups[] = {
860
&cfam_attr_group,
861
NULL,
862
};
863
864
static char *cfam_devnode(const struct device *dev, umode_t *mode,
865
kuid_t *uid, kgid_t *gid)
866
{
867
const struct fsi_slave *slave = to_fsi_slave(dev);
868
869
#ifdef CONFIG_FSI_NEW_DEV_NODE
870
return kasprintf(GFP_KERNEL, "fsi/cfam%d", slave->cdev_idx);
871
#else
872
return kasprintf(GFP_KERNEL, "cfam%d", slave->cdev_idx);
873
#endif
874
}
875
876
static const struct device_type cfam_type = {
877
.name = "cfam",
878
.devnode = cfam_devnode,
879
.groups = cfam_attr_groups
880
};
881
882
static char *fsi_cdev_devnode(const struct device *dev, umode_t *mode,
883
kuid_t *uid, kgid_t *gid)
884
{
885
#ifdef CONFIG_FSI_NEW_DEV_NODE
886
return kasprintf(GFP_KERNEL, "fsi/%s", dev_name(dev));
887
#else
888
return kasprintf(GFP_KERNEL, "%s", dev_name(dev));
889
#endif
890
}
891
892
const struct device_type fsi_cdev_type = {
893
.name = "fsi-cdev",
894
.devnode = fsi_cdev_devnode,
895
};
896
EXPORT_SYMBOL_GPL(fsi_cdev_type);
897
898
/* Backward compatible /dev/ numbering in "old style" mode */
899
static int fsi_adjust_index(int index)
900
{
901
#ifdef CONFIG_FSI_NEW_DEV_NODE
902
return index;
903
#else
904
return index + 1;
905
#endif
906
}
907
908
static int __fsi_get_new_minor(struct fsi_slave *slave, enum fsi_dev_type type,
909
dev_t *out_dev, int *out_index)
910
{
911
int cid = slave->chip_id;
912
int id;
913
914
/* Check if we qualify for legacy numbering */
915
if (cid >= 0 && cid < 16 && type < 4) {
916
/*
917
* Try reserving the legacy number, which has 0 - 0x3f reserved
918
* in the ida range. cid goes up to 0xf and type contains two
919
* bits, so construct the id with the below two bit shift.
920
*/
921
id = (cid << 2) | type;
922
id = ida_alloc_range(&fsi_minor_ida, id, id, GFP_KERNEL);
923
if (id >= 0) {
924
*out_index = fsi_adjust_index(cid);
925
*out_dev = fsi_base_dev + id;
926
return 0;
927
}
928
/* Other failure */
929
if (id != -ENOSPC)
930
return id;
931
/* Fallback to non-legacy allocation */
932
}
933
id = ida_alloc_range(&fsi_minor_ida, FSI_CHAR_LEGACY_TOP,
934
FSI_CHAR_MAX_DEVICES - 1, GFP_KERNEL);
935
if (id < 0)
936
return id;
937
*out_index = fsi_adjust_index(id);
938
*out_dev = fsi_base_dev + id;
939
return 0;
940
}
941
942
static const char *const fsi_dev_type_names[] = {
943
"cfam",
944
"sbefifo",
945
"scom",
946
"occ",
947
};
948
949
int fsi_get_new_minor(struct fsi_device *fdev, enum fsi_dev_type type,
950
dev_t *out_dev, int *out_index)
951
{
952
if (fdev->dev.of_node) {
953
int aid = of_alias_get_id(fdev->dev.of_node, fsi_dev_type_names[type]);
954
955
if (aid >= 0) {
956
/* Use the same scheme as the legacy numbers. */
957
int id = (aid << 2) | type;
958
959
id = ida_alloc_range(&fsi_minor_ida, id, id, GFP_KERNEL);
960
if (id >= 0) {
961
*out_index = aid;
962
*out_dev = fsi_base_dev + id;
963
return 0;
964
}
965
966
if (id != -ENOSPC)
967
return id;
968
}
969
}
970
971
return __fsi_get_new_minor(fdev->slave, type, out_dev, out_index);
972
}
973
EXPORT_SYMBOL_GPL(fsi_get_new_minor);
974
975
void fsi_free_minor(dev_t dev)
976
{
977
ida_free(&fsi_minor_ida, MINOR(dev));
978
}
979
EXPORT_SYMBOL_GPL(fsi_free_minor);
980
981
static int fsi_slave_init(struct fsi_master *master, int link, uint8_t id)
982
{
983
uint32_t cfam_id;
984
struct fsi_slave *slave;
985
uint8_t crc;
986
__be32 data, llmode, slbus;
987
int rc;
988
989
/* Currently, we only support single slaves on a link, and use the
990
* full 23-bit address range
991
*/
992
if (id != 0)
993
return -EINVAL;
994
995
rc = fsi_master_read(master, link, id, 0, &data, sizeof(data));
996
if (rc) {
997
dev_dbg(&master->dev, "can't read slave %02x:%02x %d\n",
998
link, id, rc);
999
return -ENODEV;
1000
}
1001
cfam_id = be32_to_cpu(data);
1002
1003
crc = crc4(0, cfam_id, 32);
1004
if (crc) {
1005
trace_fsi_slave_invalid_cfam(master, link, cfam_id);
1006
dev_warn(&master->dev, "slave %02x:%02x invalid cfam id CRC!\n",
1007
link, id);
1008
return -EIO;
1009
}
1010
1011
dev_dbg(&master->dev, "fsi: found chip %08x at %02x:%02x:%02x\n",
1012
cfam_id, master->idx, link, id);
1013
1014
/* If we're behind a master that doesn't provide a self-running bus
1015
* clock, put the slave into async mode
1016
*/
1017
if (master->flags & FSI_MASTER_FLAG_SWCLOCK) {
1018
llmode = cpu_to_be32(FSI_LLMODE_ASYNC);
1019
rc = fsi_master_write(master, link, id,
1020
FSI_SLAVE_BASE + FSI_LLMODE,
1021
&llmode, sizeof(llmode));
1022
if (rc)
1023
dev_warn(&master->dev,
1024
"can't set llmode on slave:%02x:%02x %d\n",
1025
link, id, rc);
1026
}
1027
1028
/* We can communicate with a slave; create the slave device and
1029
* register.
1030
*/
1031
slave = kzalloc(sizeof(*slave), GFP_KERNEL);
1032
if (!slave)
1033
return -ENOMEM;
1034
1035
dev_set_name(&slave->dev, "slave@%02x:%02x", link, id);
1036
slave->dev.type = &cfam_type;
1037
slave->dev.parent = &master->dev;
1038
slave->dev.of_node = fsi_slave_find_of_node(master, link, id);
1039
slave->dev.release = fsi_slave_release;
1040
device_initialize(&slave->dev);
1041
slave->cfam_id = cfam_id;
1042
slave->master = master;
1043
slave->link = link;
1044
slave->id = id;
1045
slave->size = FSI_SLAVE_SIZE_23b;
1046
slave->t_send_delay = 16;
1047
slave->t_echo_delay = 16;
1048
1049
/* Get chip ID if any */
1050
slave->chip_id = -1;
1051
if (slave->dev.of_node) {
1052
uint32_t prop;
1053
if (!of_property_read_u32(slave->dev.of_node, "chip-id", &prop))
1054
slave->chip_id = prop;
1055
1056
}
1057
1058
slbus = cpu_to_be32(FSI_SLBUS_FORCE);
1059
rc = fsi_master_write(master, link, id, FSI_SLAVE_BASE + FSI_SLBUS,
1060
&slbus, sizeof(slbus));
1061
if (rc)
1062
dev_warn(&master->dev,
1063
"can't set slbus on slave:%02x:%02x %d\n", link, id,
1064
rc);
1065
1066
rc = fsi_slave_set_smode(slave);
1067
if (rc) {
1068
dev_warn(&master->dev,
1069
"can't set smode on slave:%02x:%02x %d\n",
1070
link, id, rc);
1071
goto err_free;
1072
}
1073
1074
/* Allocate a minor in the FSI space */
1075
rc = __fsi_get_new_minor(slave, fsi_dev_cfam, &slave->dev.devt,
1076
&slave->cdev_idx);
1077
if (rc)
1078
goto err_free;
1079
1080
trace_fsi_slave_init(slave);
1081
1082
/* Create chardev for userspace access */
1083
cdev_init(&slave->cdev, &cfam_fops);
1084
rc = cdev_device_add(&slave->cdev, &slave->dev);
1085
if (rc) {
1086
dev_err(&slave->dev, "Error %d creating slave device\n", rc);
1087
goto err_free_ida;
1088
}
1089
1090
/* Now that we have the cdev registered with the core, any fatal
1091
* failures beyond this point will need to clean up through
1092
* cdev_device_del(). Fortunately though, nothing past here is fatal.
1093
*/
1094
1095
if (master->link_config)
1096
master->link_config(master, link,
1097
slave->t_send_delay,
1098
slave->t_echo_delay);
1099
1100
/* Legacy raw file -> to be removed */
1101
rc = device_create_bin_file(&slave->dev, &fsi_slave_raw_attr);
1102
if (rc)
1103
dev_warn(&slave->dev, "failed to create raw attr: %d\n", rc);
1104
1105
1106
rc = fsi_slave_scan(slave);
1107
if (rc)
1108
dev_dbg(&master->dev, "failed during slave scan with: %d\n",
1109
rc);
1110
1111
return 0;
1112
1113
err_free_ida:
1114
fsi_free_minor(slave->dev.devt);
1115
err_free:
1116
of_node_put(slave->dev.of_node);
1117
kfree(slave);
1118
return rc;
1119
}
1120
1121
/* FSI master support */
1122
static int fsi_check_access(uint32_t addr, size_t size)
1123
{
1124
if (size == 4) {
1125
if (addr & 0x3)
1126
return -EINVAL;
1127
} else if (size == 2) {
1128
if (addr & 0x1)
1129
return -EINVAL;
1130
} else if (size != 1)
1131
return -EINVAL;
1132
1133
return 0;
1134
}
1135
1136
static int fsi_master_read(struct fsi_master *master, int link,
1137
uint8_t slave_id, uint32_t addr, void *val, size_t size)
1138
{
1139
int rc;
1140
1141
trace_fsi_master_read(master, link, slave_id, addr, size);
1142
1143
rc = fsi_check_access(addr, size);
1144
if (!rc)
1145
rc = master->read(master, link, slave_id, addr, val, size);
1146
1147
trace_fsi_master_rw_result(master, link, slave_id, addr, size,
1148
false, val, rc);
1149
1150
return rc;
1151
}
1152
1153
static int fsi_master_write(struct fsi_master *master, int link,
1154
uint8_t slave_id, uint32_t addr, const void *val, size_t size)
1155
{
1156
int rc;
1157
1158
trace_fsi_master_write(master, link, slave_id, addr, size, val);
1159
1160
rc = fsi_check_access(addr, size);
1161
if (!rc)
1162
rc = master->write(master, link, slave_id, addr, val, size);
1163
1164
trace_fsi_master_rw_result(master, link, slave_id, addr, size,
1165
true, val, rc);
1166
1167
return rc;
1168
}
1169
1170
static int fsi_master_link_disable(struct fsi_master *master, int link)
1171
{
1172
if (master->link_enable)
1173
return master->link_enable(master, link, false);
1174
1175
return 0;
1176
}
1177
1178
static int fsi_master_link_enable(struct fsi_master *master, int link)
1179
{
1180
if (master->link_enable)
1181
return master->link_enable(master, link, true);
1182
1183
return 0;
1184
}
1185
1186
/*
1187
* Issue a break command on this link
1188
*/
1189
static int fsi_master_break(struct fsi_master *master, int link)
1190
{
1191
int rc = 0;
1192
1193
trace_fsi_master_break(master, link);
1194
1195
if (master->send_break)
1196
rc = master->send_break(master, link);
1197
if (master->link_config)
1198
master->link_config(master, link, 16, 16);
1199
1200
return rc;
1201
}
1202
1203
static int fsi_master_scan(struct fsi_master *master)
1204
{
1205
int link, rc;
1206
1207
trace_fsi_master_scan(master, true);
1208
for (link = 0; link < master->n_links; link++) {
1209
rc = fsi_master_link_enable(master, link);
1210
if (rc) {
1211
dev_dbg(&master->dev,
1212
"enable link %d failed: %d\n", link, rc);
1213
continue;
1214
}
1215
rc = fsi_master_break(master, link);
1216
if (rc) {
1217
fsi_master_link_disable(master, link);
1218
dev_dbg(&master->dev,
1219
"break to link %d failed: %d\n", link, rc);
1220
continue;
1221
}
1222
1223
rc = fsi_slave_init(master, link, 0);
1224
if (rc)
1225
fsi_master_link_disable(master, link);
1226
}
1227
1228
return 0;
1229
}
1230
1231
static int fsi_slave_remove_device(struct device *dev, void *arg)
1232
{
1233
device_unregister(dev);
1234
return 0;
1235
}
1236
1237
static int fsi_master_remove_slave(struct device *dev, void *arg)
1238
{
1239
struct fsi_slave *slave = to_fsi_slave(dev);
1240
1241
device_for_each_child(dev, NULL, fsi_slave_remove_device);
1242
cdev_device_del(&slave->cdev, &slave->dev);
1243
put_device(dev);
1244
return 0;
1245
}
1246
1247
static void fsi_master_unscan(struct fsi_master *master)
1248
{
1249
trace_fsi_master_scan(master, false);
1250
device_for_each_child(&master->dev, NULL, fsi_master_remove_slave);
1251
}
1252
1253
int fsi_master_rescan(struct fsi_master *master)
1254
{
1255
int rc;
1256
1257
mutex_lock(&master->scan_lock);
1258
fsi_master_unscan(master);
1259
rc = fsi_master_scan(master);
1260
mutex_unlock(&master->scan_lock);
1261
1262
return rc;
1263
}
1264
EXPORT_SYMBOL_GPL(fsi_master_rescan);
1265
1266
static ssize_t master_rescan_store(struct device *dev,
1267
struct device_attribute *attr, const char *buf, size_t count)
1268
{
1269
struct fsi_master *master = to_fsi_master(dev);
1270
int rc;
1271
1272
rc = fsi_master_rescan(master);
1273
if (rc < 0)
1274
return rc;
1275
1276
return count;
1277
}
1278
1279
static DEVICE_ATTR(rescan, 0200, NULL, master_rescan_store);
1280
1281
static ssize_t master_break_store(struct device *dev,
1282
struct device_attribute *attr, const char *buf, size_t count)
1283
{
1284
struct fsi_master *master = to_fsi_master(dev);
1285
1286
fsi_master_break(master, 0);
1287
1288
return count;
1289
}
1290
1291
static DEVICE_ATTR(break, 0200, NULL, master_break_store);
1292
1293
static struct attribute *master_attrs[] = {
1294
&dev_attr_break.attr,
1295
&dev_attr_rescan.attr,
1296
NULL
1297
};
1298
1299
ATTRIBUTE_GROUPS(master);
1300
1301
static struct class fsi_master_class = {
1302
.name = "fsi-master",
1303
.dev_groups = master_groups,
1304
};
1305
1306
int fsi_master_register(struct fsi_master *master)
1307
{
1308
int rc;
1309
struct device_node *np;
1310
1311
mutex_init(&master->scan_lock);
1312
1313
/* Alloc the requested index if it's non-zero */
1314
if (master->idx) {
1315
master->idx = ida_alloc_range(&master_ida, master->idx,
1316
master->idx, GFP_KERNEL);
1317
} else {
1318
master->idx = ida_alloc(&master_ida, GFP_KERNEL);
1319
}
1320
1321
if (master->idx < 0)
1322
return master->idx;
1323
1324
if (!dev_name(&master->dev))
1325
dev_set_name(&master->dev, "fsi%d", master->idx);
1326
1327
master->dev.class = &fsi_master_class;
1328
1329
mutex_lock(&master->scan_lock);
1330
rc = device_register(&master->dev);
1331
if (rc) {
1332
ida_free(&master_ida, master->idx);
1333
goto out;
1334
}
1335
1336
np = dev_of_node(&master->dev);
1337
if (!of_property_read_bool(np, "no-scan-on-init")) {
1338
fsi_master_scan(master);
1339
}
1340
out:
1341
mutex_unlock(&master->scan_lock);
1342
return rc;
1343
}
1344
EXPORT_SYMBOL_GPL(fsi_master_register);
1345
1346
void fsi_master_unregister(struct fsi_master *master)
1347
{
1348
int idx = master->idx;
1349
1350
trace_fsi_master_unregister(master);
1351
1352
mutex_lock(&master->scan_lock);
1353
fsi_master_unscan(master);
1354
master->n_links = 0;
1355
mutex_unlock(&master->scan_lock);
1356
1357
device_unregister(&master->dev);
1358
ida_free(&master_ida, idx);
1359
}
1360
EXPORT_SYMBOL_GPL(fsi_master_unregister);
1361
1362
/* FSI core & Linux bus type definitions */
1363
1364
static int fsi_bus_match(struct device *dev, const struct device_driver *drv)
1365
{
1366
struct fsi_device *fsi_dev = to_fsi_dev(dev);
1367
const struct fsi_driver *fsi_drv = to_fsi_drv(drv);
1368
const struct fsi_device_id *id;
1369
1370
if (!fsi_drv->id_table)
1371
return 0;
1372
1373
for (id = fsi_drv->id_table; id->engine_type; id++) {
1374
if (id->engine_type != fsi_dev->engine_type)
1375
continue;
1376
if (id->version == FSI_VERSION_ANY ||
1377
id->version == fsi_dev->version) {
1378
if (drv->of_match_table) {
1379
if (of_driver_match_device(dev, drv))
1380
return 1;
1381
} else {
1382
return 1;
1383
}
1384
}
1385
}
1386
1387
return 0;
1388
}
1389
1390
int fsi_driver_register(struct fsi_driver *fsi_drv)
1391
{
1392
if (!fsi_drv)
1393
return -EINVAL;
1394
if (!fsi_drv->id_table)
1395
return -EINVAL;
1396
1397
return driver_register(&fsi_drv->drv);
1398
}
1399
EXPORT_SYMBOL_GPL(fsi_driver_register);
1400
1401
void fsi_driver_unregister(struct fsi_driver *fsi_drv)
1402
{
1403
driver_unregister(&fsi_drv->drv);
1404
}
1405
EXPORT_SYMBOL_GPL(fsi_driver_unregister);
1406
1407
const struct bus_type fsi_bus_type = {
1408
.name = "fsi",
1409
.match = fsi_bus_match,
1410
};
1411
EXPORT_SYMBOL_GPL(fsi_bus_type);
1412
1413
static int __init fsi_init(void)
1414
{
1415
int rc;
1416
1417
rc = alloc_chrdev_region(&fsi_base_dev, 0, FSI_CHAR_MAX_DEVICES, "fsi");
1418
if (rc)
1419
return rc;
1420
rc = bus_register(&fsi_bus_type);
1421
if (rc)
1422
goto fail_bus;
1423
1424
rc = class_register(&fsi_master_class);
1425
if (rc)
1426
goto fail_class;
1427
1428
return 0;
1429
1430
fail_class:
1431
bus_unregister(&fsi_bus_type);
1432
fail_bus:
1433
unregister_chrdev_region(fsi_base_dev, FSI_CHAR_MAX_DEVICES);
1434
return rc;
1435
}
1436
postcore_initcall(fsi_init);
1437
1438
static void fsi_exit(void)
1439
{
1440
class_unregister(&fsi_master_class);
1441
bus_unregister(&fsi_bus_type);
1442
unregister_chrdev_region(fsi_base_dev, FSI_CHAR_MAX_DEVICES);
1443
ida_destroy(&fsi_minor_ida);
1444
}
1445
module_exit(fsi_exit);
1446
module_param(discard_errors, int, 0664);
1447
MODULE_DESCRIPTION("FSI core driver");
1448
MODULE_LICENSE("GPL");
1449
MODULE_PARM_DESC(discard_errors, "Don't invoke error handling on bus accesses");
1450
1451