Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gpuvm.c
49830 views
1
// SPDX-License-Identifier: MIT
2
/*
3
* Copyright 2014-2018 Advanced Micro Devices, Inc.
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
* and/or sell copies of the Software, and to permit persons to whom the
10
* Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be included in
13
* all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21
* OTHER DEALINGS IN THE SOFTWARE.
22
*/
23
#include <linux/dma-buf.h>
24
#include <linux/list.h>
25
#include <linux/pagemap.h>
26
#include <linux/sched/mm.h>
27
#include <linux/sched/task.h>
28
#include <drm/ttm/ttm_tt.h>
29
30
#include <drm/drm_exec.h>
31
32
#include "amdgpu_object.h"
33
#include "amdgpu_gem.h"
34
#include "amdgpu_vm.h"
35
#include "amdgpu_hmm.h"
36
#include "amdgpu_amdkfd.h"
37
#include "amdgpu_dma_buf.h"
38
#include <uapi/linux/kfd_ioctl.h>
39
#include "amdgpu_xgmi.h"
40
#include "kfd_priv.h"
41
#include "kfd_smi_events.h"
42
43
/* Userptr restore delay, just long enough to allow consecutive VM
44
* changes to accumulate
45
*/
46
#define AMDGPU_USERPTR_RESTORE_DELAY_MS 1
47
#define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29)
48
49
/*
50
* Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB
51
* BO chunk
52
*/
53
#define VRAM_AVAILABLITY_ALIGN (1 << 21)
54
55
/* Impose limit on how much memory KFD can use */
56
static struct {
57
uint64_t max_system_mem_limit;
58
uint64_t max_ttm_mem_limit;
59
int64_t system_mem_used;
60
int64_t ttm_mem_used;
61
spinlock_t mem_limit_lock;
62
} kfd_mem_limit;
63
64
static const char * const domain_bit_to_string[] = {
65
"CPU",
66
"GTT",
67
"VRAM",
68
"GDS",
69
"GWS",
70
"OA"
71
};
72
73
#define domain_string(domain) domain_bit_to_string[ffs(domain)-1]
74
75
static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work);
76
77
static bool kfd_mem_is_attached(struct amdgpu_vm *avm,
78
struct kgd_mem *mem)
79
{
80
struct kfd_mem_attachment *entry;
81
82
list_for_each_entry(entry, &mem->attachments, list)
83
if (entry->bo_va->base.vm == avm)
84
return true;
85
86
return false;
87
}
88
89
/**
90
* reuse_dmamap() - Check whether adev can share the original
91
* userptr BO
92
*
93
* If both adev and bo_adev are in direct mapping or
94
* in the same iommu group, they can share the original BO.
95
*
96
* @adev: Device to which can or cannot share the original BO
97
* @bo_adev: Device to which allocated BO belongs to
98
*
99
* Return: returns true if adev can share original userptr BO,
100
* false otherwise.
101
*/
102
static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev)
103
{
104
return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) ||
105
(adev->dev->iommu_group == bo_adev->dev->iommu_group);
106
}
107
108
/* Set memory usage limits. Current, limits are
109
* System (TTM + userptr) memory - 15/16th System RAM
110
* TTM memory - 3/8th System RAM
111
*/
112
void amdgpu_amdkfd_gpuvm_init_mem_limits(void)
113
{
114
struct sysinfo si;
115
uint64_t mem;
116
117
if (kfd_mem_limit.max_system_mem_limit)
118
return;
119
120
si_meminfo(&si);
121
mem = si.totalram - si.totalhigh;
122
mem *= si.mem_unit;
123
124
spin_lock_init(&kfd_mem_limit.mem_limit_lock);
125
kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6);
126
if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT)
127
kfd_mem_limit.max_system_mem_limit >>= 1;
128
else
129
kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT;
130
131
kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT;
132
pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n",
133
(kfd_mem_limit.max_system_mem_limit >> 20),
134
(kfd_mem_limit.max_ttm_mem_limit >> 20));
135
}
136
137
void amdgpu_amdkfd_reserve_system_mem(uint64_t size)
138
{
139
kfd_mem_limit.system_mem_used += size;
140
}
141
142
/* Estimate page table size needed to represent a given memory size
143
*
144
* With 4KB pages, we need one 8 byte PTE for each 4KB of memory
145
* (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB
146
* of memory (factor 256K, >> 18). ROCm user mode tries to optimize
147
* for 2MB pages for TLB efficiency. However, small allocations and
148
* fragmented system memory still need some 4KB pages. We choose a
149
* compromise that should work in most cases without reserving too
150
* much memory for page tables unnecessarily (factor 16K, >> 14).
151
*/
152
153
#define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM)
154
155
/**
156
* amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size
157
* of buffer.
158
*
159
* @adev: Device to which allocated BO belongs to
160
* @size: Size of buffer, in bytes, encapsulated by B0. This should be
161
* equivalent to amdgpu_bo_size(BO)
162
* @alloc_flag: Flag used in allocating a BO as noted above
163
* @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is
164
* managed as one compute node in driver for app
165
*
166
* Return:
167
* returns -ENOMEM in case of error, ZERO otherwise
168
*/
169
int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev,
170
uint64_t size, u32 alloc_flag, int8_t xcp_id)
171
{
172
uint64_t reserved_for_pt =
173
ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
174
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
175
uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0);
176
size_t system_mem_needed, ttm_mem_needed, vram_needed;
177
int ret = 0;
178
uint64_t vram_size = 0;
179
180
system_mem_needed = 0;
181
ttm_mem_needed = 0;
182
vram_needed = 0;
183
if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
184
system_mem_needed = size;
185
ttm_mem_needed = size;
186
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
187
/*
188
* Conservatively round up the allocation requirement to 2 MB
189
* to avoid fragmentation caused by 4K allocations in the tail
190
* 2M BO chunk.
191
*/
192
vram_needed = size;
193
/*
194
* For GFX 9.4.3, get the VRAM size from XCP structs
195
*/
196
if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id))
197
return -EINVAL;
198
199
vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id);
200
if (adev->apu_prefer_gtt) {
201
system_mem_needed = size;
202
ttm_mem_needed = size;
203
}
204
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
205
system_mem_needed = size;
206
} else if (!(alloc_flag &
207
(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
208
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
209
pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
210
return -ENOMEM;
211
}
212
213
spin_lock(&kfd_mem_limit.mem_limit_lock);
214
215
if (kfd_mem_limit.system_mem_used + system_mem_needed >
216
kfd_mem_limit.max_system_mem_limit) {
217
pr_debug("Set no_system_mem_limit=1 if using shared memory\n");
218
if (!no_system_mem_limit) {
219
ret = -ENOMEM;
220
goto release;
221
}
222
}
223
224
if (kfd_mem_limit.ttm_mem_used + ttm_mem_needed >
225
kfd_mem_limit.max_ttm_mem_limit) {
226
ret = -ENOMEM;
227
goto release;
228
}
229
230
/*if is_app_apu is false and apu_prefer_gtt is true, it is an APU with
231
* carve out < gtt. In that case, VRAM allocation will go to gtt domain, skip
232
* VRAM check since ttm_mem_limit check already cover this allocation
233
*/
234
235
if (adev && xcp_id >= 0 && (!adev->apu_prefer_gtt || adev->gmc.is_app_apu)) {
236
uint64_t vram_available =
237
vram_size - reserved_for_pt - reserved_for_ras -
238
atomic64_read(&adev->vram_pin_size);
239
if (adev->kfd.vram_used[xcp_id] + vram_needed > vram_available) {
240
ret = -ENOMEM;
241
goto release;
242
}
243
}
244
245
/* Update memory accounting by decreasing available system
246
* memory, TTM memory and GPU memory as computed above
247
*/
248
WARN_ONCE(vram_needed && !adev,
249
"adev reference can't be null when vram is used");
250
if (adev && xcp_id >= 0) {
251
adev->kfd.vram_used[xcp_id] += vram_needed;
252
adev->kfd.vram_used_aligned[xcp_id] +=
253
adev->apu_prefer_gtt ?
254
vram_needed :
255
ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN);
256
}
257
kfd_mem_limit.system_mem_used += system_mem_needed;
258
kfd_mem_limit.ttm_mem_used += ttm_mem_needed;
259
260
release:
261
spin_unlock(&kfd_mem_limit.mem_limit_lock);
262
return ret;
263
}
264
265
void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev,
266
uint64_t size, u32 alloc_flag, int8_t xcp_id)
267
{
268
spin_lock(&kfd_mem_limit.mem_limit_lock);
269
270
if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
271
kfd_mem_limit.system_mem_used -= size;
272
kfd_mem_limit.ttm_mem_used -= size;
273
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
274
WARN_ONCE(!adev,
275
"adev reference can't be null when alloc mem flags vram is set");
276
if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id))
277
goto release;
278
279
if (adev) {
280
adev->kfd.vram_used[xcp_id] -= size;
281
if (adev->apu_prefer_gtt) {
282
adev->kfd.vram_used_aligned[xcp_id] -= size;
283
kfd_mem_limit.system_mem_used -= size;
284
kfd_mem_limit.ttm_mem_used -= size;
285
} else {
286
adev->kfd.vram_used_aligned[xcp_id] -=
287
ALIGN(size, VRAM_AVAILABLITY_ALIGN);
288
}
289
}
290
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
291
kfd_mem_limit.system_mem_used -= size;
292
} else if (!(alloc_flag &
293
(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
294
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
295
pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
296
goto release;
297
}
298
WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0,
299
"KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id);
300
WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0,
301
"KFD TTM memory accounting unbalanced");
302
WARN_ONCE(kfd_mem_limit.system_mem_used < 0,
303
"KFD system memory accounting unbalanced");
304
305
release:
306
spin_unlock(&kfd_mem_limit.mem_limit_lock);
307
}
308
309
void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo)
310
{
311
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
312
u32 alloc_flags = bo->kfd_bo->alloc_flags;
313
u64 size = amdgpu_bo_size(bo);
314
315
amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags,
316
bo->xcp_id);
317
318
kfree(bo->kfd_bo);
319
}
320
321
/**
322
* create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information
323
* about USERPTR or DOOREBELL or MMIO BO.
324
*
325
* @adev: Device for which dmamap BO is being created
326
* @mem: BO of peer device that is being DMA mapped. Provides parameters
327
* in building the dmamap BO
328
* @bo_out: Output parameter updated with handle of dmamap BO
329
*/
330
static int
331
create_dmamap_sg_bo(struct amdgpu_device *adev,
332
struct kgd_mem *mem, struct amdgpu_bo **bo_out)
333
{
334
struct drm_gem_object *gem_obj;
335
int ret;
336
uint64_t flags = 0;
337
338
ret = amdgpu_bo_reserve(mem->bo, false);
339
if (ret)
340
return ret;
341
342
if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR)
343
flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT |
344
AMDGPU_GEM_CREATE_UNCACHED);
345
346
ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1,
347
AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags,
348
ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0);
349
350
amdgpu_bo_unreserve(mem->bo);
351
352
if (ret) {
353
pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret);
354
return -EINVAL;
355
}
356
357
*bo_out = gem_to_amdgpu_bo(gem_obj);
358
(*bo_out)->parent = amdgpu_bo_ref(mem->bo);
359
return ret;
360
}
361
362
/* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's
363
* reservation object.
364
*
365
* @bo: [IN] Remove eviction fence(s) from this BO
366
* @ef: [IN] This eviction fence is removed if it
367
* is present in the shared list.
368
*
369
* NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held.
370
*/
371
static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo,
372
struct amdgpu_amdkfd_fence *ef)
373
{
374
struct dma_fence *replacement;
375
376
if (!ef)
377
return -EINVAL;
378
379
/* TODO: Instead of block before we should use the fence of the page
380
* table update and TLB flush here directly.
381
*/
382
replacement = dma_fence_get_stub();
383
dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context,
384
replacement, DMA_RESV_USAGE_BOOKKEEP);
385
dma_fence_put(replacement);
386
return 0;
387
}
388
389
/**
390
* amdgpu_amdkfd_remove_all_eviction_fences - Remove all eviction fences
391
* @bo: the BO where to remove the evictions fences from.
392
*
393
* This functions should only be used on release when all references to the BO
394
* are already dropped. We remove the eviction fence from the private copy of
395
* the dma_resv object here since that is what is used during release to
396
* determine of the BO is idle or not.
397
*/
398
void amdgpu_amdkfd_remove_all_eviction_fences(struct amdgpu_bo *bo)
399
{
400
struct dma_resv *resv = &bo->tbo.base._resv;
401
struct dma_fence *fence, *stub;
402
struct dma_resv_iter cursor;
403
404
dma_resv_assert_held(resv);
405
406
stub = dma_fence_get_stub();
407
dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) {
408
if (!to_amdgpu_amdkfd_fence(fence))
409
continue;
410
411
dma_resv_replace_fences(resv, fence->context, stub,
412
DMA_RESV_USAGE_BOOKKEEP);
413
}
414
dma_fence_put(stub);
415
}
416
417
static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain,
418
bool wait)
419
{
420
struct ttm_operation_ctx ctx = { false, false };
421
int ret;
422
423
if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm),
424
"Called with userptr BO"))
425
return -EINVAL;
426
427
/* bo has been pinned, not need validate it */
428
if (bo->tbo.pin_count)
429
return 0;
430
431
amdgpu_bo_placement_from_domain(bo, domain);
432
433
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
434
if (ret)
435
goto validate_fail;
436
if (wait)
437
amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
438
439
validate_fail:
440
return ret;
441
}
442
443
int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo,
444
uint32_t domain,
445
struct dma_fence *fence)
446
{
447
int ret = amdgpu_bo_reserve(bo, false);
448
449
if (ret)
450
return ret;
451
452
ret = amdgpu_amdkfd_bo_validate(bo, domain, true);
453
if (ret)
454
goto unreserve_out;
455
456
ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
457
if (ret)
458
goto unreserve_out;
459
460
dma_resv_add_fence(bo->tbo.base.resv, fence,
461
DMA_RESV_USAGE_BOOKKEEP);
462
463
unreserve_out:
464
amdgpu_bo_unreserve(bo);
465
466
return ret;
467
}
468
469
static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo)
470
{
471
return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false);
472
}
473
474
/* vm_validate_pt_pd_bos - Validate page table and directory BOs
475
*
476
* Page directories are not updated here because huge page handling
477
* during page table updates can invalidate page directory entries
478
* again. Page directories are only updated after updating page
479
* tables.
480
*/
481
static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm,
482
struct ww_acquire_ctx *ticket)
483
{
484
struct amdgpu_bo *pd = vm->root.bo;
485
struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
486
int ret;
487
488
ret = amdgpu_vm_validate(adev, vm, ticket,
489
amdgpu_amdkfd_validate_vm_bo, NULL);
490
if (ret) {
491
pr_err("failed to validate PT BOs\n");
492
return ret;
493
}
494
495
vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo);
496
497
return 0;
498
}
499
500
static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync)
501
{
502
struct amdgpu_bo *pd = vm->root.bo;
503
struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
504
int ret;
505
506
ret = amdgpu_vm_update_pdes(adev, vm, false);
507
if (ret)
508
return ret;
509
510
return amdgpu_sync_fence(sync, vm->last_update, GFP_KERNEL);
511
}
512
513
static uint64_t get_pte_flags(struct amdgpu_device *adev, struct amdgpu_vm *vm,
514
struct kgd_mem *mem)
515
{
516
uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE |
517
AMDGPU_VM_MTYPE_DEFAULT;
518
519
if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE)
520
mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE;
521
if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE)
522
mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
523
524
return mapping_flags;
525
}
526
527
/**
528
* create_sg_table() - Create an sg_table for a contiguous DMA addr range
529
* @addr: The starting address to point to
530
* @size: Size of memory area in bytes being pointed to
531
*
532
* Allocates an instance of sg_table and initializes it to point to memory
533
* area specified by input parameters. The address used to build is assumed
534
* to be DMA mapped, if needed.
535
*
536
* DOORBELL or MMIO BOs use only one scatterlist node in their sg_table
537
* because they are physically contiguous.
538
*
539
* Return: Initialized instance of SG Table or NULL
540
*/
541
static struct sg_table *create_sg_table(uint64_t addr, uint32_t size)
542
{
543
struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL);
544
545
if (!sg)
546
return NULL;
547
if (sg_alloc_table(sg, 1, GFP_KERNEL)) {
548
kfree(sg);
549
return NULL;
550
}
551
sg_dma_address(sg->sgl) = addr;
552
sg->sgl->length = size;
553
#ifdef CONFIG_NEED_SG_DMA_LENGTH
554
sg->sgl->dma_length = size;
555
#endif
556
return sg;
557
}
558
559
static int
560
kfd_mem_dmamap_userptr(struct kgd_mem *mem,
561
struct kfd_mem_attachment *attachment)
562
{
563
enum dma_data_direction direction =
564
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
565
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
566
struct ttm_operation_ctx ctx = {.interruptible = true};
567
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
568
struct amdgpu_device *adev = attachment->adev;
569
struct ttm_tt *src_ttm = mem->bo->tbo.ttm;
570
struct ttm_tt *ttm = bo->tbo.ttm;
571
int ret;
572
573
if (WARN_ON(ttm->num_pages != src_ttm->num_pages))
574
return -EINVAL;
575
576
ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL);
577
if (unlikely(!ttm->sg))
578
return -ENOMEM;
579
580
/* Same sequence as in amdgpu_ttm_tt_pin_userptr */
581
ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages,
582
ttm->num_pages, 0,
583
(u64)ttm->num_pages << PAGE_SHIFT,
584
GFP_KERNEL);
585
if (unlikely(ret))
586
goto free_sg;
587
588
ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
589
if (unlikely(ret))
590
goto release_sg;
591
592
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
593
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
594
if (ret)
595
goto unmap_sg;
596
597
return 0;
598
599
unmap_sg:
600
dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
601
release_sg:
602
pr_err("DMA map userptr failed: %d\n", ret);
603
sg_free_table(ttm->sg);
604
free_sg:
605
kfree(ttm->sg);
606
ttm->sg = NULL;
607
return ret;
608
}
609
610
static int
611
kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment)
612
{
613
struct ttm_operation_ctx ctx = {.interruptible = true};
614
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
615
616
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
617
return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
618
}
619
620
/**
621
* kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO
622
* @mem: SG BO of the DOORBELL or MMIO resource on the owning device
623
* @attachment: Virtual address attachment of the BO on accessing device
624
*
625
* An access request from the device that owns DOORBELL does not require DMA mapping.
626
* This is because the request doesn't go through PCIe root complex i.e. it instead
627
* loops back. The need to DMA map arises only when accessing peer device's DOORBELL
628
*
629
* In contrast, all access requests for MMIO need to be DMA mapped without regard to
630
* device ownership. This is because access requests for MMIO go through PCIe root
631
* complex.
632
*
633
* This is accomplished in two steps:
634
* - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used
635
* in updating requesting device's page table
636
* - Signal TTM to mark memory pointed to by requesting device's BO as GPU
637
* accessible. This allows an update of requesting device's page table
638
* with entries associated with DOOREBELL or MMIO memory
639
*
640
* This method is invoked in the following contexts:
641
* - Mapping of DOORBELL or MMIO BO of same or peer device
642
* - Validating an evicted DOOREBELL or MMIO BO on device seeking access
643
*
644
* Return: ZERO if successful, NON-ZERO otherwise
645
*/
646
static int
647
kfd_mem_dmamap_sg_bo(struct kgd_mem *mem,
648
struct kfd_mem_attachment *attachment)
649
{
650
struct ttm_operation_ctx ctx = {.interruptible = true};
651
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
652
struct amdgpu_device *adev = attachment->adev;
653
struct ttm_tt *ttm = bo->tbo.ttm;
654
enum dma_data_direction dir;
655
dma_addr_t dma_addr;
656
bool mmio;
657
int ret;
658
659
/* Expect SG Table of dmapmap BO to be NULL */
660
mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP);
661
if (unlikely(ttm->sg)) {
662
pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio);
663
return -EINVAL;
664
}
665
666
dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
667
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
668
dma_addr = mem->bo->tbo.sg->sgl->dma_address;
669
pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length);
670
pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr);
671
dma_addr = dma_map_resource(adev->dev, dma_addr,
672
mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
673
ret = dma_mapping_error(adev->dev, dma_addr);
674
if (unlikely(ret))
675
return ret;
676
pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr);
677
678
ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length);
679
if (unlikely(!ttm->sg)) {
680
ret = -ENOMEM;
681
goto unmap_sg;
682
}
683
684
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
685
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
686
if (unlikely(ret))
687
goto free_sg;
688
689
return ret;
690
691
free_sg:
692
sg_free_table(ttm->sg);
693
kfree(ttm->sg);
694
ttm->sg = NULL;
695
unmap_sg:
696
dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length,
697
dir, DMA_ATTR_SKIP_CPU_SYNC);
698
return ret;
699
}
700
701
static int
702
kfd_mem_dmamap_attachment(struct kgd_mem *mem,
703
struct kfd_mem_attachment *attachment)
704
{
705
switch (attachment->type) {
706
case KFD_MEM_ATT_SHARED:
707
return 0;
708
case KFD_MEM_ATT_USERPTR:
709
return kfd_mem_dmamap_userptr(mem, attachment);
710
case KFD_MEM_ATT_DMABUF:
711
return kfd_mem_dmamap_dmabuf(attachment);
712
case KFD_MEM_ATT_SG:
713
return kfd_mem_dmamap_sg_bo(mem, attachment);
714
default:
715
WARN_ON_ONCE(1);
716
}
717
return -EINVAL;
718
}
719
720
static void
721
kfd_mem_dmaunmap_userptr(struct kgd_mem *mem,
722
struct kfd_mem_attachment *attachment)
723
{
724
enum dma_data_direction direction =
725
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
726
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
727
struct ttm_operation_ctx ctx = {.interruptible = false};
728
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
729
struct amdgpu_device *adev = attachment->adev;
730
struct ttm_tt *ttm = bo->tbo.ttm;
731
732
if (unlikely(!ttm->sg))
733
return;
734
735
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
736
(void)ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
737
738
dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
739
sg_free_table(ttm->sg);
740
kfree(ttm->sg);
741
ttm->sg = NULL;
742
}
743
744
static void
745
kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment)
746
{
747
/* This is a no-op. We don't want to trigger eviction fences when
748
* unmapping DMABufs. Therefore the invalidation (moving to system
749
* domain) is done in kfd_mem_dmamap_dmabuf.
750
*/
751
}
752
753
/**
754
* kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO
755
* @mem: SG BO of the DOORBELL or MMIO resource on the owning device
756
* @attachment: Virtual address attachment of the BO on accessing device
757
*
758
* The method performs following steps:
759
* - Signal TTM to mark memory pointed to by BO as GPU inaccessible
760
* - Free SG Table that is used to encapsulate DMA mapped memory of
761
* peer device's DOORBELL or MMIO memory
762
*
763
* This method is invoked in the following contexts:
764
* UNMapping of DOORBELL or MMIO BO on a device having access to its memory
765
* Eviction of DOOREBELL or MMIO BO on device having access to its memory
766
*
767
* Return: void
768
*/
769
static void
770
kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem,
771
struct kfd_mem_attachment *attachment)
772
{
773
struct ttm_operation_ctx ctx = {.interruptible = true};
774
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
775
struct amdgpu_device *adev = attachment->adev;
776
struct ttm_tt *ttm = bo->tbo.ttm;
777
enum dma_data_direction dir;
778
779
if (unlikely(!ttm->sg)) {
780
pr_debug("SG Table of BO is NULL");
781
return;
782
}
783
784
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
785
(void)ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
786
787
dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
788
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
789
dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address,
790
ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
791
sg_free_table(ttm->sg);
792
kfree(ttm->sg);
793
ttm->sg = NULL;
794
bo->tbo.sg = NULL;
795
}
796
797
static void
798
kfd_mem_dmaunmap_attachment(struct kgd_mem *mem,
799
struct kfd_mem_attachment *attachment)
800
{
801
switch (attachment->type) {
802
case KFD_MEM_ATT_SHARED:
803
break;
804
case KFD_MEM_ATT_USERPTR:
805
kfd_mem_dmaunmap_userptr(mem, attachment);
806
break;
807
case KFD_MEM_ATT_DMABUF:
808
kfd_mem_dmaunmap_dmabuf(attachment);
809
break;
810
case KFD_MEM_ATT_SG:
811
kfd_mem_dmaunmap_sg_bo(mem, attachment);
812
break;
813
default:
814
WARN_ON_ONCE(1);
815
}
816
}
817
818
static int kfd_mem_export_dmabuf(struct kgd_mem *mem)
819
{
820
if (!mem->dmabuf) {
821
struct amdgpu_device *bo_adev;
822
struct dma_buf *dmabuf;
823
824
bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
825
dmabuf = drm_gem_prime_handle_to_dmabuf(&bo_adev->ddev, bo_adev->kfd.client.file,
826
mem->gem_handle,
827
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
828
DRM_RDWR : 0);
829
if (IS_ERR(dmabuf))
830
return PTR_ERR(dmabuf);
831
mem->dmabuf = dmabuf;
832
}
833
834
return 0;
835
}
836
837
static int
838
kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem,
839
struct amdgpu_bo **bo)
840
{
841
struct drm_gem_object *gobj;
842
int ret;
843
844
ret = kfd_mem_export_dmabuf(mem);
845
if (ret)
846
return ret;
847
848
gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf);
849
if (IS_ERR(gobj))
850
return PTR_ERR(gobj);
851
852
*bo = gem_to_amdgpu_bo(gobj);
853
(*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE;
854
855
return 0;
856
}
857
858
/* kfd_mem_attach - Add a BO to a VM
859
*
860
* Everything that needs to bo done only once when a BO is first added
861
* to a VM. It can later be mapped and unmapped many times without
862
* repeating these steps.
863
*
864
* 0. Create BO for DMA mapping, if needed
865
* 1. Allocate and initialize BO VA entry data structure
866
* 2. Add BO to the VM
867
* 3. Determine ASIC-specific PTE flags
868
* 4. Alloc page tables and directories if needed
869
* 4a. Validate new page tables and directories
870
*/
871
static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem,
872
struct amdgpu_vm *vm, bool is_aql)
873
{
874
struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
875
unsigned long bo_size = mem->bo->tbo.base.size;
876
uint64_t va = mem->va;
877
struct kfd_mem_attachment *attachment[2] = {NULL, NULL};
878
struct amdgpu_bo *bo[2] = {NULL, NULL};
879
struct amdgpu_bo_va *bo_va;
880
bool same_hive = false;
881
int i, ret;
882
883
if (!va) {
884
pr_err("Invalid VA when adding BO to VM\n");
885
return -EINVAL;
886
}
887
888
/* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices
889
*
890
* The access path of MMIO and DOORBELL BOs of is always over PCIe.
891
* In contrast the access path of VRAM BOs depens upon the type of
892
* link that connects the peer device. Access over PCIe is allowed
893
* if peer device has large BAR. In contrast, access over xGMI is
894
* allowed for both small and large BAR configurations of peer device
895
*/
896
if ((adev != bo_adev && !adev->apu_prefer_gtt) &&
897
((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) ||
898
(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) ||
899
(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
900
if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM)
901
same_hive = amdgpu_xgmi_same_hive(adev, bo_adev);
902
if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev))
903
return -EINVAL;
904
}
905
906
for (i = 0; i <= is_aql; i++) {
907
attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL);
908
if (unlikely(!attachment[i])) {
909
ret = -ENOMEM;
910
goto unwind;
911
}
912
913
pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va,
914
va + bo_size, vm);
915
916
if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) ||
917
(amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) ||
918
(mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) ||
919
same_hive) {
920
/* Mappings on the local GPU, or VRAM mappings in the
921
* local hive, or userptr, or GTT mapping can reuse dma map
922
* address space share the original BO
923
*/
924
attachment[i]->type = KFD_MEM_ATT_SHARED;
925
bo[i] = mem->bo;
926
drm_gem_object_get(&bo[i]->tbo.base);
927
} else if (i > 0) {
928
/* Multiple mappings on the same GPU share the BO */
929
attachment[i]->type = KFD_MEM_ATT_SHARED;
930
bo[i] = bo[0];
931
drm_gem_object_get(&bo[i]->tbo.base);
932
} else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
933
/* Create an SG BO to DMA-map userptrs on other GPUs */
934
attachment[i]->type = KFD_MEM_ATT_USERPTR;
935
ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
936
if (ret)
937
goto unwind;
938
/* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */
939
} else if (mem->bo->tbo.type == ttm_bo_type_sg) {
940
WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL ||
941
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP),
942
"Handing invalid SG BO in ATTACH request");
943
attachment[i]->type = KFD_MEM_ATT_SG;
944
ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
945
if (ret)
946
goto unwind;
947
/* Enable acces to GTT and VRAM BOs of peer devices */
948
} else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT ||
949
mem->domain == AMDGPU_GEM_DOMAIN_VRAM) {
950
attachment[i]->type = KFD_MEM_ATT_DMABUF;
951
ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]);
952
if (ret)
953
goto unwind;
954
pr_debug("Employ DMABUF mechanism to enable peer GPU access\n");
955
} else {
956
WARN_ONCE(true, "Handling invalid ATTACH request");
957
ret = -EINVAL;
958
goto unwind;
959
}
960
961
/* Add BO to VM internal data structures */
962
ret = amdgpu_bo_reserve(bo[i], false);
963
if (ret) {
964
pr_debug("Unable to reserve BO during memory attach");
965
goto unwind;
966
}
967
bo_va = amdgpu_vm_bo_find(vm, bo[i]);
968
if (!bo_va)
969
bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]);
970
else
971
++bo_va->ref_count;
972
attachment[i]->bo_va = bo_va;
973
amdgpu_bo_unreserve(bo[i]);
974
if (unlikely(!attachment[i]->bo_va)) {
975
ret = -ENOMEM;
976
pr_err("Failed to add BO object to VM. ret == %d\n",
977
ret);
978
goto unwind;
979
}
980
attachment[i]->va = va;
981
attachment[i]->pte_flags = get_pte_flags(adev, vm, mem);
982
attachment[i]->adev = adev;
983
list_add(&attachment[i]->list, &mem->attachments);
984
985
va += bo_size;
986
}
987
988
return 0;
989
990
unwind:
991
for (; i >= 0; i--) {
992
if (!attachment[i])
993
continue;
994
if (attachment[i]->bo_va) {
995
(void)amdgpu_bo_reserve(bo[i], true);
996
if (--attachment[i]->bo_va->ref_count == 0)
997
amdgpu_vm_bo_del(adev, attachment[i]->bo_va);
998
amdgpu_bo_unreserve(bo[i]);
999
list_del(&attachment[i]->list);
1000
}
1001
if (bo[i])
1002
drm_gem_object_put(&bo[i]->tbo.base);
1003
kfree(attachment[i]);
1004
}
1005
return ret;
1006
}
1007
1008
static void kfd_mem_detach(struct kfd_mem_attachment *attachment)
1009
{
1010
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
1011
1012
pr_debug("\t remove VA 0x%llx in entry %p\n",
1013
attachment->va, attachment);
1014
if (--attachment->bo_va->ref_count == 0)
1015
amdgpu_vm_bo_del(attachment->adev, attachment->bo_va);
1016
drm_gem_object_put(&bo->tbo.base);
1017
list_del(&attachment->list);
1018
kfree(attachment);
1019
}
1020
1021
static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem,
1022
struct amdkfd_process_info *process_info,
1023
bool userptr)
1024
{
1025
mutex_lock(&process_info->lock);
1026
if (userptr)
1027
list_add_tail(&mem->validate_list,
1028
&process_info->userptr_valid_list);
1029
else
1030
list_add_tail(&mem->validate_list, &process_info->kfd_bo_list);
1031
mutex_unlock(&process_info->lock);
1032
}
1033
1034
static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem,
1035
struct amdkfd_process_info *process_info)
1036
{
1037
mutex_lock(&process_info->lock);
1038
list_del(&mem->validate_list);
1039
mutex_unlock(&process_info->lock);
1040
}
1041
1042
/* Initializes user pages. It registers the MMU notifier and validates
1043
* the userptr BO in the GTT domain.
1044
*
1045
* The BO must already be on the userptr_valid_list. Otherwise an
1046
* eviction and restore may happen that leaves the new BO unmapped
1047
* with the user mode queues running.
1048
*
1049
* Takes the process_info->lock to protect against concurrent restore
1050
* workers.
1051
*
1052
* Returns 0 for success, negative errno for errors.
1053
*/
1054
static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr,
1055
bool criu_resume)
1056
{
1057
struct amdkfd_process_info *process_info = mem->process_info;
1058
struct amdgpu_bo *bo = mem->bo;
1059
struct ttm_operation_ctx ctx = { true, false };
1060
struct amdgpu_hmm_range *range;
1061
int ret = 0;
1062
1063
mutex_lock(&process_info->lock);
1064
1065
ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0);
1066
if (ret) {
1067
pr_err("%s: Failed to set userptr: %d\n", __func__, ret);
1068
goto out;
1069
}
1070
1071
ret = amdgpu_hmm_register(bo, user_addr);
1072
if (ret) {
1073
pr_err("%s: Failed to register MMU notifier: %d\n",
1074
__func__, ret);
1075
goto out;
1076
}
1077
1078
if (criu_resume) {
1079
/*
1080
* During a CRIU restore operation, the userptr buffer objects
1081
* will be validated in the restore_userptr_work worker at a
1082
* later stage when it is scheduled by another ioctl called by
1083
* CRIU master process for the target pid for restore.
1084
*/
1085
mutex_lock(&process_info->notifier_lock);
1086
mem->invalid++;
1087
mutex_unlock(&process_info->notifier_lock);
1088
mutex_unlock(&process_info->lock);
1089
return 0;
1090
}
1091
1092
range = amdgpu_hmm_range_alloc(NULL);
1093
if (unlikely(!range)) {
1094
ret = -ENOMEM;
1095
goto unregister_out;
1096
}
1097
1098
ret = amdgpu_ttm_tt_get_user_pages(bo, range);
1099
if (ret) {
1100
amdgpu_hmm_range_free(range);
1101
if (ret == -EAGAIN)
1102
pr_debug("Failed to get user pages, try again\n");
1103
else
1104
pr_err("%s: Failed to get user pages: %d\n", __func__, ret);
1105
goto unregister_out;
1106
}
1107
1108
ret = amdgpu_bo_reserve(bo, true);
1109
if (ret) {
1110
pr_err("%s: Failed to reserve BO\n", __func__);
1111
goto release_out;
1112
}
1113
1114
amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, range);
1115
1116
amdgpu_bo_placement_from_domain(bo, mem->domain);
1117
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
1118
if (ret)
1119
pr_err("%s: failed to validate BO\n", __func__);
1120
amdgpu_bo_unreserve(bo);
1121
1122
release_out:
1123
amdgpu_hmm_range_free(range);
1124
unregister_out:
1125
if (ret)
1126
amdgpu_hmm_unregister(bo);
1127
out:
1128
mutex_unlock(&process_info->lock);
1129
return ret;
1130
}
1131
1132
/* Reserving a BO and its page table BOs must happen atomically to
1133
* avoid deadlocks. Some operations update multiple VMs at once. Track
1134
* all the reservation info in a context structure. Optionally a sync
1135
* object can track VM updates.
1136
*/
1137
struct bo_vm_reservation_context {
1138
/* DRM execution context for the reservation */
1139
struct drm_exec exec;
1140
/* Number of VMs reserved */
1141
unsigned int n_vms;
1142
/* Pointer to sync object */
1143
struct amdgpu_sync *sync;
1144
};
1145
1146
enum bo_vm_match {
1147
BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */
1148
BO_VM_MAPPED, /* Match VMs where a BO is mapped */
1149
BO_VM_ALL, /* Match all VMs a BO was added to */
1150
};
1151
1152
/**
1153
* reserve_bo_and_vm - reserve a BO and a VM unconditionally.
1154
* @mem: KFD BO structure.
1155
* @vm: the VM to reserve.
1156
* @ctx: the struct that will be used in unreserve_bo_and_vms().
1157
*/
1158
static int reserve_bo_and_vm(struct kgd_mem *mem,
1159
struct amdgpu_vm *vm,
1160
struct bo_vm_reservation_context *ctx)
1161
{
1162
struct amdgpu_bo *bo = mem->bo;
1163
int ret;
1164
1165
WARN_ON(!vm);
1166
1167
ctx->n_vms = 1;
1168
ctx->sync = &mem->sync;
1169
drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
1170
drm_exec_until_all_locked(&ctx->exec) {
1171
ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1172
drm_exec_retry_on_contention(&ctx->exec);
1173
if (unlikely(ret))
1174
goto error;
1175
1176
ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1);
1177
drm_exec_retry_on_contention(&ctx->exec);
1178
if (unlikely(ret))
1179
goto error;
1180
}
1181
return 0;
1182
1183
error:
1184
pr_err("Failed to reserve buffers in ttm.\n");
1185
drm_exec_fini(&ctx->exec);
1186
return ret;
1187
}
1188
1189
/**
1190
* reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally
1191
* @mem: KFD BO structure.
1192
* @vm: the VM to reserve. If NULL, then all VMs associated with the BO
1193
* is used. Otherwise, a single VM associated with the BO.
1194
* @map_type: the mapping status that will be used to filter the VMs.
1195
* @ctx: the struct that will be used in unreserve_bo_and_vms().
1196
*
1197
* Returns 0 for success, negative for failure.
1198
*/
1199
static int reserve_bo_and_cond_vms(struct kgd_mem *mem,
1200
struct amdgpu_vm *vm, enum bo_vm_match map_type,
1201
struct bo_vm_reservation_context *ctx)
1202
{
1203
struct kfd_mem_attachment *entry;
1204
struct amdgpu_bo *bo = mem->bo;
1205
int ret;
1206
1207
ctx->sync = &mem->sync;
1208
drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT |
1209
DRM_EXEC_IGNORE_DUPLICATES, 0);
1210
drm_exec_until_all_locked(&ctx->exec) {
1211
ctx->n_vms = 0;
1212
list_for_each_entry(entry, &mem->attachments, list) {
1213
if ((vm && vm != entry->bo_va->base.vm) ||
1214
(entry->is_mapped != map_type
1215
&& map_type != BO_VM_ALL))
1216
continue;
1217
1218
ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm,
1219
&ctx->exec, 2);
1220
drm_exec_retry_on_contention(&ctx->exec);
1221
if (unlikely(ret))
1222
goto error;
1223
++ctx->n_vms;
1224
}
1225
1226
ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1);
1227
drm_exec_retry_on_contention(&ctx->exec);
1228
if (unlikely(ret))
1229
goto error;
1230
}
1231
return 0;
1232
1233
error:
1234
pr_err("Failed to reserve buffers in ttm.\n");
1235
drm_exec_fini(&ctx->exec);
1236
return ret;
1237
}
1238
1239
/**
1240
* unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context
1241
* @ctx: Reservation context to unreserve
1242
* @wait: Optionally wait for a sync object representing pending VM updates
1243
* @intr: Whether the wait is interruptible
1244
*
1245
* Also frees any resources allocated in
1246
* reserve_bo_and_(cond_)vm(s). Returns the status from
1247
* amdgpu_sync_wait.
1248
*/
1249
static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx,
1250
bool wait, bool intr)
1251
{
1252
int ret = 0;
1253
1254
if (wait)
1255
ret = amdgpu_sync_wait(ctx->sync, intr);
1256
1257
drm_exec_fini(&ctx->exec);
1258
ctx->sync = NULL;
1259
return ret;
1260
}
1261
1262
static int unmap_bo_from_gpuvm(struct kgd_mem *mem,
1263
struct kfd_mem_attachment *entry,
1264
struct amdgpu_sync *sync)
1265
{
1266
struct amdgpu_bo_va *bo_va = entry->bo_va;
1267
struct amdgpu_device *adev = entry->adev;
1268
struct amdgpu_vm *vm = bo_va->base.vm;
1269
1270
if (bo_va->queue_refcount) {
1271
pr_debug("bo_va->queue_refcount %d\n", bo_va->queue_refcount);
1272
return -EBUSY;
1273
}
1274
1275
(void)amdgpu_vm_bo_unmap(adev, bo_va, entry->va);
1276
1277
/* VM entity stopped if process killed, don't clear freed pt bo */
1278
if (!amdgpu_vm_ready(vm))
1279
return 0;
1280
1281
(void)amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update);
1282
1283
(void)amdgpu_sync_fence(sync, bo_va->last_pt_update, GFP_KERNEL);
1284
1285
return 0;
1286
}
1287
1288
static int update_gpuvm_pte(struct kgd_mem *mem,
1289
struct kfd_mem_attachment *entry,
1290
struct amdgpu_sync *sync)
1291
{
1292
struct amdgpu_bo_va *bo_va = entry->bo_va;
1293
struct amdgpu_device *adev = entry->adev;
1294
int ret;
1295
1296
ret = kfd_mem_dmamap_attachment(mem, entry);
1297
if (ret)
1298
return ret;
1299
1300
/* Update the page tables */
1301
ret = amdgpu_vm_bo_update(adev, bo_va, false);
1302
if (ret) {
1303
pr_err("amdgpu_vm_bo_update failed\n");
1304
return ret;
1305
}
1306
1307
return amdgpu_sync_fence(sync, bo_va->last_pt_update, GFP_KERNEL);
1308
}
1309
1310
static int map_bo_to_gpuvm(struct kgd_mem *mem,
1311
struct kfd_mem_attachment *entry,
1312
struct amdgpu_sync *sync,
1313
bool no_update_pte)
1314
{
1315
int ret;
1316
1317
/* Set virtual address for the allocation */
1318
ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0,
1319
amdgpu_bo_size(entry->bo_va->base.bo),
1320
entry->pte_flags);
1321
if (ret) {
1322
pr_err("Failed to map VA 0x%llx in vm. ret %d\n",
1323
entry->va, ret);
1324
return ret;
1325
}
1326
1327
if (no_update_pte)
1328
return 0;
1329
1330
ret = update_gpuvm_pte(mem, entry, sync);
1331
if (ret) {
1332
pr_err("update_gpuvm_pte() failed\n");
1333
goto update_gpuvm_pte_failed;
1334
}
1335
1336
return 0;
1337
1338
update_gpuvm_pte_failed:
1339
unmap_bo_from_gpuvm(mem, entry, sync);
1340
kfd_mem_dmaunmap_attachment(mem, entry);
1341
return ret;
1342
}
1343
1344
static int process_validate_vms(struct amdkfd_process_info *process_info,
1345
struct ww_acquire_ctx *ticket)
1346
{
1347
struct amdgpu_vm *peer_vm;
1348
int ret;
1349
1350
list_for_each_entry(peer_vm, &process_info->vm_list_head,
1351
vm_list_node) {
1352
ret = vm_validate_pt_pd_bos(peer_vm, ticket);
1353
if (ret)
1354
return ret;
1355
}
1356
1357
return 0;
1358
}
1359
1360
static int process_sync_pds_resv(struct amdkfd_process_info *process_info,
1361
struct amdgpu_sync *sync)
1362
{
1363
struct amdgpu_vm *peer_vm;
1364
int ret;
1365
1366
list_for_each_entry(peer_vm, &process_info->vm_list_head,
1367
vm_list_node) {
1368
struct amdgpu_bo *pd = peer_vm->root.bo;
1369
1370
ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv,
1371
AMDGPU_SYNC_NE_OWNER,
1372
AMDGPU_FENCE_OWNER_KFD);
1373
if (ret)
1374
return ret;
1375
}
1376
1377
return 0;
1378
}
1379
1380
static int process_update_pds(struct amdkfd_process_info *process_info,
1381
struct amdgpu_sync *sync)
1382
{
1383
struct amdgpu_vm *peer_vm;
1384
int ret;
1385
1386
list_for_each_entry(peer_vm, &process_info->vm_list_head,
1387
vm_list_node) {
1388
ret = vm_update_pds(peer_vm, sync);
1389
if (ret)
1390
return ret;
1391
}
1392
1393
return 0;
1394
}
1395
1396
static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info,
1397
struct dma_fence **ef)
1398
{
1399
struct amdkfd_process_info *info = NULL;
1400
int ret;
1401
1402
if (!*process_info) {
1403
info = kzalloc(sizeof(*info), GFP_KERNEL);
1404
if (!info)
1405
return -ENOMEM;
1406
1407
mutex_init(&info->lock);
1408
mutex_init(&info->notifier_lock);
1409
INIT_LIST_HEAD(&info->vm_list_head);
1410
INIT_LIST_HEAD(&info->kfd_bo_list);
1411
INIT_LIST_HEAD(&info->userptr_valid_list);
1412
INIT_LIST_HEAD(&info->userptr_inval_list);
1413
1414
info->eviction_fence =
1415
amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
1416
current->mm,
1417
NULL);
1418
if (!info->eviction_fence) {
1419
pr_err("Failed to create eviction fence\n");
1420
ret = -ENOMEM;
1421
goto create_evict_fence_fail;
1422
}
1423
1424
info->pid = get_task_pid(current->group_leader, PIDTYPE_PID);
1425
INIT_DELAYED_WORK(&info->restore_userptr_work,
1426
amdgpu_amdkfd_restore_userptr_worker);
1427
1428
*process_info = info;
1429
}
1430
1431
vm->process_info = *process_info;
1432
1433
/* Validate page directory and attach eviction fence */
1434
ret = amdgpu_bo_reserve(vm->root.bo, true);
1435
if (ret)
1436
goto reserve_pd_fail;
1437
ret = vm_validate_pt_pd_bos(vm, NULL);
1438
if (ret) {
1439
pr_err("validate_pt_pd_bos() failed\n");
1440
goto validate_pd_fail;
1441
}
1442
ret = amdgpu_bo_sync_wait(vm->root.bo,
1443
AMDGPU_FENCE_OWNER_KFD, false);
1444
if (ret)
1445
goto wait_pd_fail;
1446
ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1);
1447
if (ret)
1448
goto reserve_shared_fail;
1449
dma_resv_add_fence(vm->root.bo->tbo.base.resv,
1450
&vm->process_info->eviction_fence->base,
1451
DMA_RESV_USAGE_BOOKKEEP);
1452
amdgpu_bo_unreserve(vm->root.bo);
1453
1454
/* Update process info */
1455
mutex_lock(&vm->process_info->lock);
1456
list_add_tail(&vm->vm_list_node,
1457
&(vm->process_info->vm_list_head));
1458
vm->process_info->n_vms++;
1459
if (ef)
1460
*ef = dma_fence_get(&vm->process_info->eviction_fence->base);
1461
mutex_unlock(&vm->process_info->lock);
1462
1463
return 0;
1464
1465
reserve_shared_fail:
1466
wait_pd_fail:
1467
validate_pd_fail:
1468
amdgpu_bo_unreserve(vm->root.bo);
1469
reserve_pd_fail:
1470
vm->process_info = NULL;
1471
if (info) {
1472
dma_fence_put(&info->eviction_fence->base);
1473
*process_info = NULL;
1474
put_pid(info->pid);
1475
create_evict_fence_fail:
1476
mutex_destroy(&info->lock);
1477
mutex_destroy(&info->notifier_lock);
1478
kfree(info);
1479
}
1480
return ret;
1481
}
1482
1483
/**
1484
* amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria
1485
* @bo: Handle of buffer object being pinned
1486
* @domain: Domain into which BO should be pinned
1487
*
1488
* - USERPTR BOs are UNPINNABLE and will return error
1489
* - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1490
* PIN count incremented. It is valid to PIN a BO multiple times
1491
*
1492
* Return: ZERO if successful in pinning, Non-Zero in case of error.
1493
*/
1494
static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain)
1495
{
1496
int ret = 0;
1497
1498
ret = amdgpu_bo_reserve(bo, false);
1499
if (unlikely(ret))
1500
return ret;
1501
1502
if (bo->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS) {
1503
/*
1504
* If bo is not contiguous on VRAM, move to system memory first to ensure
1505
* we can get contiguous VRAM space after evicting other BOs.
1506
*/
1507
if (!(bo->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) {
1508
struct ttm_operation_ctx ctx = { true, false };
1509
1510
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
1511
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
1512
if (unlikely(ret)) {
1513
pr_debug("validate bo 0x%p to GTT failed %d\n", &bo->tbo, ret);
1514
goto out;
1515
}
1516
}
1517
}
1518
1519
ret = amdgpu_bo_pin(bo, domain);
1520
if (ret)
1521
pr_err("Error in Pinning BO to domain: %d\n", domain);
1522
1523
amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
1524
out:
1525
amdgpu_bo_unreserve(bo);
1526
return ret;
1527
}
1528
1529
/**
1530
* amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria
1531
* @bo: Handle of buffer object being unpinned
1532
*
1533
* - Is a illegal request for USERPTR BOs and is ignored
1534
* - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1535
* PIN count decremented. Calls to UNPIN must balance calls to PIN
1536
*/
1537
static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo)
1538
{
1539
int ret = 0;
1540
1541
ret = amdgpu_bo_reserve(bo, false);
1542
if (unlikely(ret))
1543
return;
1544
1545
amdgpu_bo_unpin(bo);
1546
amdgpu_bo_unreserve(bo);
1547
}
1548
1549
int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev,
1550
struct amdgpu_vm *avm,
1551
void **process_info,
1552
struct dma_fence **ef)
1553
{
1554
int ret;
1555
1556
/* Already a compute VM? */
1557
if (avm->process_info)
1558
return -EINVAL;
1559
1560
/* Convert VM into a compute VM */
1561
ret = amdgpu_vm_make_compute(adev, avm);
1562
if (ret)
1563
return ret;
1564
1565
/* Initialize KFD part of the VM and process info */
1566
ret = init_kfd_vm(avm, process_info, ef);
1567
if (ret)
1568
return ret;
1569
1570
amdgpu_vm_set_task_info(avm);
1571
1572
return 0;
1573
}
1574
1575
void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev,
1576
struct amdgpu_vm *vm)
1577
{
1578
struct amdkfd_process_info *process_info = vm->process_info;
1579
1580
if (!process_info)
1581
return;
1582
1583
/* Update process info */
1584
mutex_lock(&process_info->lock);
1585
process_info->n_vms--;
1586
list_del(&vm->vm_list_node);
1587
mutex_unlock(&process_info->lock);
1588
1589
vm->process_info = NULL;
1590
1591
/* Release per-process resources when last compute VM is destroyed */
1592
if (!process_info->n_vms) {
1593
WARN_ON(!list_empty(&process_info->kfd_bo_list));
1594
WARN_ON(!list_empty(&process_info->userptr_valid_list));
1595
WARN_ON(!list_empty(&process_info->userptr_inval_list));
1596
1597
dma_fence_put(&process_info->eviction_fence->base);
1598
cancel_delayed_work_sync(&process_info->restore_userptr_work);
1599
put_pid(process_info->pid);
1600
mutex_destroy(&process_info->lock);
1601
mutex_destroy(&process_info->notifier_lock);
1602
kfree(process_info);
1603
}
1604
}
1605
1606
uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv)
1607
{
1608
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1609
struct amdgpu_bo *pd = avm->root.bo;
1610
struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
1611
1612
if (adev->asic_type < CHIP_VEGA10)
1613
return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT;
1614
return avm->pd_phys_addr;
1615
}
1616
1617
void amdgpu_amdkfd_block_mmu_notifications(void *p)
1618
{
1619
struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1620
1621
mutex_lock(&pinfo->lock);
1622
WRITE_ONCE(pinfo->block_mmu_notifications, true);
1623
mutex_unlock(&pinfo->lock);
1624
}
1625
1626
int amdgpu_amdkfd_criu_resume(void *p)
1627
{
1628
int ret = 0;
1629
struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1630
1631
mutex_lock(&pinfo->lock);
1632
pr_debug("scheduling work\n");
1633
mutex_lock(&pinfo->notifier_lock);
1634
pinfo->evicted_bos++;
1635
mutex_unlock(&pinfo->notifier_lock);
1636
if (!READ_ONCE(pinfo->block_mmu_notifications)) {
1637
ret = -EINVAL;
1638
goto out_unlock;
1639
}
1640
WRITE_ONCE(pinfo->block_mmu_notifications, false);
1641
queue_delayed_work(system_freezable_wq,
1642
&pinfo->restore_userptr_work, 0);
1643
1644
out_unlock:
1645
mutex_unlock(&pinfo->lock);
1646
return ret;
1647
}
1648
1649
size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev,
1650
uint8_t xcp_id)
1651
{
1652
uint64_t reserved_for_pt =
1653
ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
1654
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
1655
uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0);
1656
ssize_t available;
1657
uint64_t vram_available, system_mem_available, ttm_mem_available;
1658
1659
spin_lock(&kfd_mem_limit.mem_limit_lock);
1660
if (adev->apu_prefer_gtt && !adev->gmc.is_app_apu)
1661
vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id)
1662
- adev->kfd.vram_used_aligned[xcp_id];
1663
else
1664
vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id)
1665
- adev->kfd.vram_used_aligned[xcp_id]
1666
- atomic64_read(&adev->vram_pin_size)
1667
- reserved_for_pt
1668
- reserved_for_ras;
1669
1670
if (adev->apu_prefer_gtt) {
1671
system_mem_available = no_system_mem_limit ?
1672
kfd_mem_limit.max_system_mem_limit :
1673
kfd_mem_limit.max_system_mem_limit -
1674
kfd_mem_limit.system_mem_used;
1675
1676
ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit -
1677
kfd_mem_limit.ttm_mem_used;
1678
1679
available = min3(system_mem_available, ttm_mem_available,
1680
vram_available);
1681
available = ALIGN_DOWN(available, PAGE_SIZE);
1682
} else {
1683
available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN);
1684
}
1685
1686
spin_unlock(&kfd_mem_limit.mem_limit_lock);
1687
1688
if (available < 0)
1689
available = 0;
1690
1691
return available;
1692
}
1693
1694
int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1695
struct amdgpu_device *adev, uint64_t va, uint64_t size,
1696
void *drm_priv, struct kgd_mem **mem,
1697
uint64_t *offset, uint32_t flags, bool criu_resume)
1698
{
1699
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1700
struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm);
1701
enum ttm_bo_type bo_type = ttm_bo_type_device;
1702
struct sg_table *sg = NULL;
1703
uint64_t user_addr = 0;
1704
struct amdgpu_bo *bo;
1705
struct drm_gem_object *gobj = NULL;
1706
u32 domain, alloc_domain;
1707
uint64_t aligned_size;
1708
int8_t xcp_id = -1;
1709
u64 alloc_flags;
1710
int ret;
1711
1712
/*
1713
* Check on which domain to allocate BO
1714
*/
1715
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1716
domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM;
1717
1718
if (adev->apu_prefer_gtt) {
1719
domain = AMDGPU_GEM_DOMAIN_GTT;
1720
alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
1721
alloc_flags = 0;
1722
} else {
1723
alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE;
1724
alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ?
1725
AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0;
1726
1727
/* For contiguous VRAM allocation */
1728
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS)
1729
alloc_flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1730
}
1731
xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ?
1732
0 : fpriv->xcp_id;
1733
} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
1734
domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
1735
alloc_flags = 0;
1736
} else {
1737
domain = AMDGPU_GEM_DOMAIN_GTT;
1738
alloc_domain = AMDGPU_GEM_DOMAIN_CPU;
1739
alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE;
1740
1741
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1742
if (!offset || !*offset)
1743
return -EINVAL;
1744
user_addr = untagged_addr(*offset);
1745
} else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1746
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1747
bo_type = ttm_bo_type_sg;
1748
if (size > UINT_MAX)
1749
return -EINVAL;
1750
sg = create_sg_table(*offset, size);
1751
if (!sg)
1752
return -ENOMEM;
1753
} else {
1754
return -EINVAL;
1755
}
1756
}
1757
1758
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT)
1759
alloc_flags |= AMDGPU_GEM_CREATE_COHERENT;
1760
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT)
1761
alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT;
1762
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED)
1763
alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED;
1764
1765
*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
1766
if (!*mem) {
1767
ret = -ENOMEM;
1768
goto err;
1769
}
1770
INIT_LIST_HEAD(&(*mem)->attachments);
1771
mutex_init(&(*mem)->lock);
1772
(*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM);
1773
1774
/* Workaround for AQL queue wraparound bug. Map the same
1775
* memory twice. That means we only actually allocate half
1776
* the memory.
1777
*/
1778
if ((*mem)->aql_queue)
1779
size >>= 1;
1780
aligned_size = PAGE_ALIGN(size);
1781
1782
(*mem)->alloc_flags = flags;
1783
1784
amdgpu_sync_create(&(*mem)->sync);
1785
1786
ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags,
1787
xcp_id);
1788
if (ret) {
1789
pr_debug("Insufficient memory\n");
1790
goto err_reserve_limit;
1791
}
1792
1793
pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n",
1794
va, (*mem)->aql_queue ? size << 1 : size,
1795
domain_string(alloc_domain), xcp_id);
1796
1797
ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags,
1798
bo_type, NULL, &gobj, xcp_id + 1);
1799
if (ret) {
1800
pr_debug("Failed to create BO on domain %s. ret %d\n",
1801
domain_string(alloc_domain), ret);
1802
goto err_bo_create;
1803
}
1804
ret = drm_vma_node_allow(&gobj->vma_node, drm_priv);
1805
if (ret) {
1806
pr_debug("Failed to allow vma node access. ret %d\n", ret);
1807
goto err_node_allow;
1808
}
1809
ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle);
1810
if (ret)
1811
goto err_gem_handle_create;
1812
bo = gem_to_amdgpu_bo(gobj);
1813
if (bo_type == ttm_bo_type_sg) {
1814
bo->tbo.sg = sg;
1815
bo->tbo.ttm->sg = sg;
1816
}
1817
bo->kfd_bo = *mem;
1818
(*mem)->bo = bo;
1819
if (user_addr)
1820
bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO;
1821
1822
(*mem)->va = va;
1823
(*mem)->domain = domain;
1824
(*mem)->mapped_to_gpu_memory = 0;
1825
(*mem)->process_info = avm->process_info;
1826
1827
add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr);
1828
1829
if (user_addr) {
1830
pr_debug("creating userptr BO for user_addr = %llx\n", user_addr);
1831
ret = init_user_pages(*mem, user_addr, criu_resume);
1832
if (ret)
1833
goto allocate_init_user_pages_failed;
1834
} else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1835
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1836
ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT);
1837
if (ret) {
1838
pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n");
1839
goto err_pin_bo;
1840
}
1841
bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT;
1842
bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT;
1843
} else {
1844
mutex_lock(&avm->process_info->lock);
1845
if (avm->process_info->eviction_fence &&
1846
!dma_fence_is_signaled(&avm->process_info->eviction_fence->base))
1847
ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain,
1848
&avm->process_info->eviction_fence->base);
1849
mutex_unlock(&avm->process_info->lock);
1850
if (ret)
1851
goto err_validate_bo;
1852
}
1853
1854
if (offset)
1855
*offset = amdgpu_bo_mmap_offset(bo);
1856
1857
return 0;
1858
1859
allocate_init_user_pages_failed:
1860
err_pin_bo:
1861
err_validate_bo:
1862
remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
1863
drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle);
1864
err_gem_handle_create:
1865
drm_vma_node_revoke(&gobj->vma_node, drm_priv);
1866
err_node_allow:
1867
/* Don't unreserve system mem limit twice */
1868
goto err_reserve_limit;
1869
err_bo_create:
1870
amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id);
1871
err_reserve_limit:
1872
amdgpu_sync_free(&(*mem)->sync);
1873
mutex_destroy(&(*mem)->lock);
1874
if (gobj)
1875
drm_gem_object_put(gobj);
1876
else
1877
kfree(*mem);
1878
err:
1879
if (sg) {
1880
sg_free_table(sg);
1881
kfree(sg);
1882
}
1883
return ret;
1884
}
1885
1886
int amdgpu_amdkfd_gpuvm_free_memory_of_gpu(
1887
struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv,
1888
uint64_t *size)
1889
{
1890
struct amdkfd_process_info *process_info = mem->process_info;
1891
unsigned long bo_size = mem->bo->tbo.base.size;
1892
bool use_release_notifier = (mem->bo->kfd_bo == mem);
1893
struct kfd_mem_attachment *entry, *tmp;
1894
struct bo_vm_reservation_context ctx;
1895
unsigned int mapped_to_gpu_memory;
1896
int ret;
1897
bool is_imported = false;
1898
1899
mutex_lock(&mem->lock);
1900
1901
/* Unpin MMIO/DOORBELL BO's that were pinned during allocation */
1902
if (mem->alloc_flags &
1903
(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1904
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1905
amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo);
1906
}
1907
1908
mapped_to_gpu_memory = mem->mapped_to_gpu_memory;
1909
is_imported = mem->is_imported;
1910
mutex_unlock(&mem->lock);
1911
/* lock is not needed after this, since mem is unused and will
1912
* be freed anyway
1913
*/
1914
1915
if (mapped_to_gpu_memory > 0) {
1916
pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n",
1917
mem->va, bo_size);
1918
return -EBUSY;
1919
}
1920
1921
/* Make sure restore workers don't access the BO any more */
1922
mutex_lock(&process_info->lock);
1923
if (!list_empty(&mem->validate_list))
1924
list_del_init(&mem->validate_list);
1925
mutex_unlock(&process_info->lock);
1926
1927
ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx);
1928
if (unlikely(ret))
1929
return ret;
1930
1931
/* Cleanup user pages and MMU notifiers */
1932
if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
1933
amdgpu_hmm_unregister(mem->bo);
1934
amdgpu_hmm_range_free(mem->range);
1935
mem->range = NULL;
1936
}
1937
1938
amdgpu_amdkfd_remove_eviction_fence(mem->bo,
1939
process_info->eviction_fence);
1940
pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va,
1941
mem->va + bo_size * (1 + mem->aql_queue));
1942
1943
/* Remove from VM internal data structures */
1944
list_for_each_entry_safe(entry, tmp, &mem->attachments, list) {
1945
kfd_mem_dmaunmap_attachment(mem, entry);
1946
kfd_mem_detach(entry);
1947
}
1948
1949
ret = unreserve_bo_and_vms(&ctx, false, false);
1950
1951
/* Free the sync object */
1952
amdgpu_sync_free(&mem->sync);
1953
1954
/* If the SG is not NULL, it's one we created for a doorbell or mmio
1955
* remap BO. We need to free it.
1956
*/
1957
if (mem->bo->tbo.sg) {
1958
sg_free_table(mem->bo->tbo.sg);
1959
kfree(mem->bo->tbo.sg);
1960
}
1961
1962
/* Update the size of the BO being freed if it was allocated from
1963
* VRAM and is not imported. For APP APU VRAM allocations are done
1964
* in GTT domain
1965
*/
1966
if (size) {
1967
if (!is_imported &&
1968
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)
1969
*size = bo_size;
1970
else
1971
*size = 0;
1972
}
1973
1974
/* Free the BO*/
1975
drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv);
1976
drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle);
1977
if (mem->dmabuf) {
1978
dma_buf_put(mem->dmabuf);
1979
mem->dmabuf = NULL;
1980
}
1981
mutex_destroy(&mem->lock);
1982
1983
/* If this releases the last reference, it will end up calling
1984
* amdgpu_amdkfd_release_notify and kfree the mem struct. That's why
1985
* this needs to be the last call here.
1986
*/
1987
drm_gem_object_put(&mem->bo->tbo.base);
1988
1989
/*
1990
* For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(),
1991
* explicitly free it here.
1992
*/
1993
if (!use_release_notifier)
1994
kfree(mem);
1995
1996
return ret;
1997
}
1998
1999
int amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
2000
struct amdgpu_device *adev, struct kgd_mem *mem,
2001
void *drm_priv)
2002
{
2003
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2004
int ret;
2005
struct amdgpu_bo *bo;
2006
uint32_t domain;
2007
struct kfd_mem_attachment *entry;
2008
struct bo_vm_reservation_context ctx;
2009
unsigned long bo_size;
2010
bool is_invalid_userptr = false;
2011
2012
bo = mem->bo;
2013
if (!bo) {
2014
pr_err("Invalid BO when mapping memory to GPU\n");
2015
return -EINVAL;
2016
}
2017
2018
/* Make sure restore is not running concurrently. Since we
2019
* don't map invalid userptr BOs, we rely on the next restore
2020
* worker to do the mapping
2021
*/
2022
mutex_lock(&mem->process_info->lock);
2023
2024
/* Lock notifier lock. If we find an invalid userptr BO, we can be
2025
* sure that the MMU notifier is no longer running
2026
* concurrently and the queues are actually stopped
2027
*/
2028
if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
2029
mutex_lock(&mem->process_info->notifier_lock);
2030
is_invalid_userptr = !!mem->invalid;
2031
mutex_unlock(&mem->process_info->notifier_lock);
2032
}
2033
2034
mutex_lock(&mem->lock);
2035
2036
domain = mem->domain;
2037
bo_size = bo->tbo.base.size;
2038
2039
pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n",
2040
mem->va,
2041
mem->va + bo_size * (1 + mem->aql_queue),
2042
avm, domain_string(domain));
2043
2044
if (!kfd_mem_is_attached(avm, mem)) {
2045
ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue);
2046
if (ret)
2047
goto out;
2048
}
2049
2050
ret = reserve_bo_and_vm(mem, avm, &ctx);
2051
if (unlikely(ret))
2052
goto out;
2053
2054
/* Userptr can be marked as "not invalid", but not actually be
2055
* validated yet (still in the system domain). In that case
2056
* the queues are still stopped and we can leave mapping for
2057
* the next restore worker
2058
*/
2059
if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) &&
2060
bo->tbo.resource->mem_type == TTM_PL_SYSTEM)
2061
is_invalid_userptr = true;
2062
2063
ret = vm_validate_pt_pd_bos(avm, NULL);
2064
if (unlikely(ret))
2065
goto out_unreserve;
2066
2067
list_for_each_entry(entry, &mem->attachments, list) {
2068
if (entry->bo_va->base.vm != avm || entry->is_mapped)
2069
continue;
2070
2071
pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n",
2072
entry->va, entry->va + bo_size, entry);
2073
2074
ret = map_bo_to_gpuvm(mem, entry, ctx.sync,
2075
is_invalid_userptr);
2076
if (ret) {
2077
pr_err("Failed to map bo to gpuvm\n");
2078
goto out_unreserve;
2079
}
2080
2081
ret = vm_update_pds(avm, ctx.sync);
2082
if (ret) {
2083
pr_err("Failed to update page directories\n");
2084
goto out_unreserve;
2085
}
2086
2087
entry->is_mapped = true;
2088
mem->mapped_to_gpu_memory++;
2089
pr_debug("\t INC mapping count %d\n",
2090
mem->mapped_to_gpu_memory);
2091
}
2092
2093
ret = unreserve_bo_and_vms(&ctx, false, false);
2094
2095
goto out;
2096
2097
out_unreserve:
2098
unreserve_bo_and_vms(&ctx, false, false);
2099
out:
2100
mutex_unlock(&mem->process_info->lock);
2101
mutex_unlock(&mem->lock);
2102
return ret;
2103
}
2104
2105
int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv)
2106
{
2107
struct kfd_mem_attachment *entry;
2108
struct amdgpu_vm *vm;
2109
int ret;
2110
2111
vm = drm_priv_to_vm(drm_priv);
2112
2113
mutex_lock(&mem->lock);
2114
2115
ret = amdgpu_bo_reserve(mem->bo, true);
2116
if (ret)
2117
goto out;
2118
2119
list_for_each_entry(entry, &mem->attachments, list) {
2120
if (entry->bo_va->base.vm != vm)
2121
continue;
2122
if (entry->bo_va->base.bo->tbo.ttm &&
2123
!entry->bo_va->base.bo->tbo.ttm->sg)
2124
continue;
2125
2126
kfd_mem_dmaunmap_attachment(mem, entry);
2127
}
2128
2129
amdgpu_bo_unreserve(mem->bo);
2130
out:
2131
mutex_unlock(&mem->lock);
2132
2133
return ret;
2134
}
2135
2136
int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
2137
struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv)
2138
{
2139
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2140
unsigned long bo_size = mem->bo->tbo.base.size;
2141
struct kfd_mem_attachment *entry;
2142
struct bo_vm_reservation_context ctx;
2143
int ret;
2144
2145
mutex_lock(&mem->lock);
2146
2147
ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx);
2148
if (unlikely(ret))
2149
goto out;
2150
/* If no VMs were reserved, it means the BO wasn't actually mapped */
2151
if (ctx.n_vms == 0) {
2152
ret = -EINVAL;
2153
goto unreserve_out;
2154
}
2155
2156
ret = vm_validate_pt_pd_bos(avm, NULL);
2157
if (unlikely(ret))
2158
goto unreserve_out;
2159
2160
pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n",
2161
mem->va,
2162
mem->va + bo_size * (1 + mem->aql_queue),
2163
avm);
2164
2165
list_for_each_entry(entry, &mem->attachments, list) {
2166
if (entry->bo_va->base.vm != avm || !entry->is_mapped)
2167
continue;
2168
2169
pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n",
2170
entry->va, entry->va + bo_size, entry);
2171
2172
ret = unmap_bo_from_gpuvm(mem, entry, ctx.sync);
2173
if (ret)
2174
goto unreserve_out;
2175
2176
entry->is_mapped = false;
2177
2178
mem->mapped_to_gpu_memory--;
2179
pr_debug("\t DEC mapping count %d\n",
2180
mem->mapped_to_gpu_memory);
2181
}
2182
2183
unreserve_out:
2184
unreserve_bo_and_vms(&ctx, false, false);
2185
out:
2186
mutex_unlock(&mem->lock);
2187
return ret;
2188
}
2189
2190
int amdgpu_amdkfd_gpuvm_sync_memory(
2191
struct amdgpu_device *adev, struct kgd_mem *mem, bool intr)
2192
{
2193
struct amdgpu_sync sync;
2194
int ret;
2195
2196
amdgpu_sync_create(&sync);
2197
2198
mutex_lock(&mem->lock);
2199
amdgpu_sync_clone(&mem->sync, &sync);
2200
mutex_unlock(&mem->lock);
2201
2202
ret = amdgpu_sync_wait(&sync, intr);
2203
amdgpu_sync_free(&sync);
2204
return ret;
2205
}
2206
2207
/**
2208
* amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count
2209
* @bo: Buffer object to be mapped
2210
* @bo_gart: Return bo reference
2211
*
2212
* Before return, bo reference count is incremented. To release the reference and unpin/
2213
* unmap the BO, call amdgpu_amdkfd_free_gtt_mem.
2214
*/
2215
int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo, struct amdgpu_bo **bo_gart)
2216
{
2217
int ret;
2218
2219
ret = amdgpu_bo_reserve(bo, true);
2220
if (ret) {
2221
pr_err("Failed to reserve bo. ret %d\n", ret);
2222
goto err_reserve_bo_failed;
2223
}
2224
2225
ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2226
if (ret) {
2227
pr_err("Failed to pin bo. ret %d\n", ret);
2228
goto err_pin_bo_failed;
2229
}
2230
2231
ret = amdgpu_ttm_alloc_gart(&bo->tbo);
2232
if (ret) {
2233
pr_err("Failed to bind bo to GART. ret %d\n", ret);
2234
goto err_map_bo_gart_failed;
2235
}
2236
2237
amdgpu_amdkfd_remove_eviction_fence(
2238
bo, bo->vm_bo->vm->process_info->eviction_fence);
2239
2240
amdgpu_bo_unreserve(bo);
2241
2242
*bo_gart = amdgpu_bo_ref(bo);
2243
2244
return 0;
2245
2246
err_map_bo_gart_failed:
2247
amdgpu_bo_unpin(bo);
2248
err_pin_bo_failed:
2249
amdgpu_bo_unreserve(bo);
2250
err_reserve_bo_failed:
2251
2252
return ret;
2253
}
2254
2255
/** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access
2256
*
2257
* @mem: Buffer object to be mapped for CPU access
2258
* @kptr[out]: pointer in kernel CPU address space
2259
* @size[out]: size of the buffer
2260
*
2261
* Pins the BO and maps it for kernel CPU access. The eviction fence is removed
2262
* from the BO, since pinned BOs cannot be evicted. The bo must remain on the
2263
* validate_list, so the GPU mapping can be restored after a page table was
2264
* evicted.
2265
*
2266
* Return: 0 on success, error code on failure
2267
*/
2268
int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem,
2269
void **kptr, uint64_t *size)
2270
{
2271
int ret;
2272
struct amdgpu_bo *bo = mem->bo;
2273
2274
if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
2275
pr_err("userptr can't be mapped to kernel\n");
2276
return -EINVAL;
2277
}
2278
2279
mutex_lock(&mem->process_info->lock);
2280
2281
ret = amdgpu_bo_reserve(bo, true);
2282
if (ret) {
2283
pr_err("Failed to reserve bo. ret %d\n", ret);
2284
goto bo_reserve_failed;
2285
}
2286
2287
ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2288
if (ret) {
2289
pr_err("Failed to pin bo. ret %d\n", ret);
2290
goto pin_failed;
2291
}
2292
2293
ret = amdgpu_bo_kmap(bo, kptr);
2294
if (ret) {
2295
pr_err("Failed to map bo to kernel. ret %d\n", ret);
2296
goto kmap_failed;
2297
}
2298
2299
amdgpu_amdkfd_remove_eviction_fence(
2300
bo, mem->process_info->eviction_fence);
2301
2302
if (size)
2303
*size = amdgpu_bo_size(bo);
2304
2305
amdgpu_bo_unreserve(bo);
2306
2307
mutex_unlock(&mem->process_info->lock);
2308
return 0;
2309
2310
kmap_failed:
2311
amdgpu_bo_unpin(bo);
2312
pin_failed:
2313
amdgpu_bo_unreserve(bo);
2314
bo_reserve_failed:
2315
mutex_unlock(&mem->process_info->lock);
2316
2317
return ret;
2318
}
2319
2320
/** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access
2321
*
2322
* @mem: Buffer object to be unmapped for CPU access
2323
*
2324
* Removes the kernel CPU mapping and unpins the BO. It does not restore the
2325
* eviction fence, so this function should only be used for cleanup before the
2326
* BO is destroyed.
2327
*/
2328
void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem)
2329
{
2330
struct amdgpu_bo *bo = mem->bo;
2331
2332
(void)amdgpu_bo_reserve(bo, true);
2333
amdgpu_bo_kunmap(bo);
2334
amdgpu_bo_unpin(bo);
2335
amdgpu_bo_unreserve(bo);
2336
}
2337
2338
int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev,
2339
struct kfd_vm_fault_info *mem)
2340
{
2341
if (atomic_read_acquire(&adev->gmc.vm_fault_info_updated) == 1) {
2342
*mem = *adev->gmc.vm_fault_info;
2343
atomic_set_release(&adev->gmc.vm_fault_info_updated, 0);
2344
}
2345
return 0;
2346
}
2347
2348
static int import_obj_create(struct amdgpu_device *adev,
2349
struct dma_buf *dma_buf,
2350
struct drm_gem_object *obj,
2351
uint64_t va, void *drm_priv,
2352
struct kgd_mem **mem, uint64_t *size,
2353
uint64_t *mmap_offset)
2354
{
2355
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2356
struct amdgpu_bo *bo;
2357
int ret;
2358
2359
bo = gem_to_amdgpu_bo(obj);
2360
if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM |
2361
AMDGPU_GEM_DOMAIN_GTT)))
2362
/* Only VRAM and GTT BOs are supported */
2363
return -EINVAL;
2364
2365
*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
2366
if (!*mem)
2367
return -ENOMEM;
2368
2369
ret = drm_vma_node_allow(&obj->vma_node, drm_priv);
2370
if (ret)
2371
goto err_free_mem;
2372
2373
if (size)
2374
*size = amdgpu_bo_size(bo);
2375
2376
if (mmap_offset)
2377
*mmap_offset = amdgpu_bo_mmap_offset(bo);
2378
2379
INIT_LIST_HEAD(&(*mem)->attachments);
2380
mutex_init(&(*mem)->lock);
2381
2382
(*mem)->alloc_flags =
2383
((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
2384
KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT)
2385
| KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE
2386
| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
2387
2388
get_dma_buf(dma_buf);
2389
(*mem)->dmabuf = dma_buf;
2390
(*mem)->bo = bo;
2391
(*mem)->va = va;
2392
(*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) &&
2393
!adev->apu_prefer_gtt ?
2394
AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT;
2395
2396
(*mem)->mapped_to_gpu_memory = 0;
2397
(*mem)->process_info = avm->process_info;
2398
add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false);
2399
amdgpu_sync_create(&(*mem)->sync);
2400
(*mem)->is_imported = true;
2401
2402
mutex_lock(&avm->process_info->lock);
2403
if (avm->process_info->eviction_fence &&
2404
!dma_fence_is_signaled(&avm->process_info->eviction_fence->base))
2405
ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain,
2406
&avm->process_info->eviction_fence->base);
2407
mutex_unlock(&avm->process_info->lock);
2408
if (ret)
2409
goto err_remove_mem;
2410
2411
return 0;
2412
2413
err_remove_mem:
2414
remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
2415
drm_vma_node_revoke(&obj->vma_node, drm_priv);
2416
err_free_mem:
2417
kfree(*mem);
2418
return ret;
2419
}
2420
2421
int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd,
2422
uint64_t va, void *drm_priv,
2423
struct kgd_mem **mem, uint64_t *size,
2424
uint64_t *mmap_offset)
2425
{
2426
struct drm_gem_object *obj;
2427
uint32_t handle;
2428
int ret;
2429
2430
ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd,
2431
&handle);
2432
if (ret)
2433
return ret;
2434
obj = drm_gem_object_lookup(adev->kfd.client.file, handle);
2435
if (!obj) {
2436
ret = -EINVAL;
2437
goto err_release_handle;
2438
}
2439
2440
ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size,
2441
mmap_offset);
2442
if (ret)
2443
goto err_put_obj;
2444
2445
(*mem)->gem_handle = handle;
2446
2447
return 0;
2448
2449
err_put_obj:
2450
drm_gem_object_put(obj);
2451
err_release_handle:
2452
drm_gem_handle_delete(adev->kfd.client.file, handle);
2453
return ret;
2454
}
2455
2456
int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem,
2457
struct dma_buf **dma_buf)
2458
{
2459
int ret;
2460
2461
mutex_lock(&mem->lock);
2462
ret = kfd_mem_export_dmabuf(mem);
2463
if (ret)
2464
goto out;
2465
2466
get_dma_buf(mem->dmabuf);
2467
*dma_buf = mem->dmabuf;
2468
out:
2469
mutex_unlock(&mem->lock);
2470
return ret;
2471
}
2472
2473
/* Evict a userptr BO by stopping the queues if necessary
2474
*
2475
* Runs in MMU notifier, may be in RECLAIM_FS context. This means it
2476
* cannot do any memory allocations, and cannot take any locks that
2477
* are held elsewhere while allocating memory.
2478
*
2479
* It doesn't do anything to the BO itself. The real work happens in
2480
* restore, where we get updated page addresses. This function only
2481
* ensures that GPU access to the BO is stopped.
2482
*/
2483
int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni,
2484
unsigned long cur_seq, struct kgd_mem *mem)
2485
{
2486
struct amdkfd_process_info *process_info = mem->process_info;
2487
int r = 0;
2488
2489
/* Do not process MMU notifications during CRIU restore until
2490
* KFD_CRIU_OP_RESUME IOCTL is received
2491
*/
2492
if (READ_ONCE(process_info->block_mmu_notifications))
2493
return 0;
2494
2495
mutex_lock(&process_info->notifier_lock);
2496
mmu_interval_set_seq(mni, cur_seq);
2497
2498
mem->invalid++;
2499
if (++process_info->evicted_bos == 1) {
2500
/* First eviction, stop the queues */
2501
r = kgd2kfd_quiesce_mm(mni->mm,
2502
KFD_QUEUE_EVICTION_TRIGGER_USERPTR);
2503
2504
if (r && r != -ESRCH)
2505
pr_err("Failed to quiesce KFD\n");
2506
2507
if (r != -ESRCH)
2508
queue_delayed_work(system_freezable_wq,
2509
&process_info->restore_userptr_work,
2510
msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2511
}
2512
mutex_unlock(&process_info->notifier_lock);
2513
2514
return r;
2515
}
2516
2517
/* Update invalid userptr BOs
2518
*
2519
* Moves invalidated (evicted) userptr BOs from userptr_valid_list to
2520
* userptr_inval_list and updates user pages for all BOs that have
2521
* been invalidated since their last update.
2522
*/
2523
static int update_invalid_user_pages(struct amdkfd_process_info *process_info,
2524
struct mm_struct *mm)
2525
{
2526
struct kgd_mem *mem, *tmp_mem;
2527
struct amdgpu_bo *bo;
2528
struct ttm_operation_ctx ctx = { false, false };
2529
uint32_t invalid;
2530
int ret = 0;
2531
2532
mutex_lock(&process_info->notifier_lock);
2533
2534
/* Move all invalidated BOs to the userptr_inval_list */
2535
list_for_each_entry_safe(mem, tmp_mem,
2536
&process_info->userptr_valid_list,
2537
validate_list)
2538
if (mem->invalid)
2539
list_move_tail(&mem->validate_list,
2540
&process_info->userptr_inval_list);
2541
2542
/* Go through userptr_inval_list and update any invalid user_pages */
2543
list_for_each_entry(mem, &process_info->userptr_inval_list,
2544
validate_list) {
2545
invalid = mem->invalid;
2546
if (!invalid)
2547
/* BO hasn't been invalidated since the last
2548
* revalidation attempt. Keep its page list.
2549
*/
2550
continue;
2551
2552
bo = mem->bo;
2553
2554
amdgpu_hmm_range_free(mem->range);
2555
mem->range = NULL;
2556
2557
/* BO reservations and getting user pages (hmm_range_fault)
2558
* must happen outside the notifier lock
2559
*/
2560
mutex_unlock(&process_info->notifier_lock);
2561
2562
/* Move the BO to system (CPU) domain if necessary to unmap
2563
* and free the SG table
2564
*/
2565
if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) {
2566
if (amdgpu_bo_reserve(bo, true))
2567
return -EAGAIN;
2568
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
2569
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2570
amdgpu_bo_unreserve(bo);
2571
if (ret) {
2572
pr_err("%s: Failed to invalidate userptr BO\n",
2573
__func__);
2574
return -EAGAIN;
2575
}
2576
}
2577
2578
mem->range = amdgpu_hmm_range_alloc(NULL);
2579
if (unlikely(!mem->range))
2580
return -ENOMEM;
2581
/* Get updated user pages */
2582
ret = amdgpu_ttm_tt_get_user_pages(bo, mem->range);
2583
if (ret) {
2584
amdgpu_hmm_range_free(mem->range);
2585
mem->range = NULL;
2586
pr_debug("Failed %d to get user pages\n", ret);
2587
2588
/* Return -EFAULT bad address error as success. It will
2589
* fail later with a VM fault if the GPU tries to access
2590
* it. Better than hanging indefinitely with stalled
2591
* user mode queues.
2592
*
2593
* Return other error -EBUSY or -ENOMEM to retry restore
2594
*/
2595
if (ret != -EFAULT)
2596
return ret;
2597
2598
/* If applications unmap memory before destroying the userptr
2599
* from the KFD, trigger a segmentation fault in VM debug mode.
2600
*/
2601
if (amdgpu_ttm_adev(bo->tbo.bdev)->debug_vm_userptr) {
2602
struct kfd_process *p;
2603
2604
pr_err("Pid %d unmapped memory before destroying userptr at GPU addr 0x%llx\n",
2605
pid_nr(process_info->pid), mem->va);
2606
2607
// Send GPU VM fault to user space
2608
p = kfd_lookup_process_by_pid(process_info->pid);
2609
if (p) {
2610
kfd_signal_vm_fault_event_with_userptr(p, mem->va);
2611
kfd_unref_process(p);
2612
}
2613
}
2614
2615
ret = 0;
2616
}
2617
2618
amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, mem->range);
2619
2620
mutex_lock(&process_info->notifier_lock);
2621
2622
/* Mark the BO as valid unless it was invalidated
2623
* again concurrently.
2624
*/
2625
if (mem->invalid != invalid) {
2626
ret = -EAGAIN;
2627
goto unlock_out;
2628
}
2629
/* set mem valid if mem has hmm range associated */
2630
if (mem->range)
2631
mem->invalid = 0;
2632
}
2633
2634
unlock_out:
2635
mutex_unlock(&process_info->notifier_lock);
2636
2637
return ret;
2638
}
2639
2640
/* Validate invalid userptr BOs
2641
*
2642
* Validates BOs on the userptr_inval_list. Also updates GPUVM page tables
2643
* with new page addresses and waits for the page table updates to complete.
2644
*/
2645
static int validate_invalid_user_pages(struct amdkfd_process_info *process_info)
2646
{
2647
struct ttm_operation_ctx ctx = { false, false };
2648
struct amdgpu_sync sync;
2649
struct drm_exec exec;
2650
2651
struct amdgpu_vm *peer_vm;
2652
struct kgd_mem *mem, *tmp_mem;
2653
struct amdgpu_bo *bo;
2654
int ret;
2655
2656
amdgpu_sync_create(&sync);
2657
2658
drm_exec_init(&exec, 0, 0);
2659
/* Reserve all BOs and page tables for validation */
2660
drm_exec_until_all_locked(&exec) {
2661
/* Reserve all the page directories */
2662
list_for_each_entry(peer_vm, &process_info->vm_list_head,
2663
vm_list_node) {
2664
ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2);
2665
drm_exec_retry_on_contention(&exec);
2666
if (unlikely(ret))
2667
goto unreserve_out;
2668
}
2669
2670
/* Reserve the userptr_inval_list entries to resv_list */
2671
list_for_each_entry(mem, &process_info->userptr_inval_list,
2672
validate_list) {
2673
struct drm_gem_object *gobj;
2674
2675
gobj = &mem->bo->tbo.base;
2676
ret = drm_exec_prepare_obj(&exec, gobj, 1);
2677
drm_exec_retry_on_contention(&exec);
2678
if (unlikely(ret))
2679
goto unreserve_out;
2680
}
2681
}
2682
2683
ret = process_validate_vms(process_info, NULL);
2684
if (ret)
2685
goto unreserve_out;
2686
2687
/* Validate BOs and update GPUVM page tables */
2688
list_for_each_entry_safe(mem, tmp_mem,
2689
&process_info->userptr_inval_list,
2690
validate_list) {
2691
struct kfd_mem_attachment *attachment;
2692
2693
bo = mem->bo;
2694
2695
/* Validate the BO if we got user pages */
2696
if (bo->tbo.ttm->pages[0]) {
2697
amdgpu_bo_placement_from_domain(bo, mem->domain);
2698
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2699
if (ret) {
2700
pr_err("%s: failed to validate BO\n", __func__);
2701
goto unreserve_out;
2702
}
2703
}
2704
2705
/* Update mapping. If the BO was not validated
2706
* (because we couldn't get user pages), this will
2707
* clear the page table entries, which will result in
2708
* VM faults if the GPU tries to access the invalid
2709
* memory.
2710
*/
2711
list_for_each_entry(attachment, &mem->attachments, list) {
2712
if (!attachment->is_mapped)
2713
continue;
2714
2715
kfd_mem_dmaunmap_attachment(mem, attachment);
2716
ret = update_gpuvm_pte(mem, attachment, &sync);
2717
if (ret) {
2718
pr_err("%s: update PTE failed\n", __func__);
2719
/* make sure this gets validated again */
2720
mutex_lock(&process_info->notifier_lock);
2721
mem->invalid++;
2722
mutex_unlock(&process_info->notifier_lock);
2723
goto unreserve_out;
2724
}
2725
}
2726
}
2727
2728
/* Update page directories */
2729
ret = process_update_pds(process_info, &sync);
2730
2731
unreserve_out:
2732
drm_exec_fini(&exec);
2733
amdgpu_sync_wait(&sync, false);
2734
amdgpu_sync_free(&sync);
2735
2736
return ret;
2737
}
2738
2739
/* Confirm that all user pages are valid while holding the notifier lock
2740
*
2741
* Moves valid BOs from the userptr_inval_list back to userptr_val_list.
2742
*/
2743
static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info)
2744
{
2745
struct kgd_mem *mem, *tmp_mem;
2746
int ret = 0;
2747
2748
list_for_each_entry_safe(mem, tmp_mem,
2749
&process_info->userptr_inval_list,
2750
validate_list) {
2751
bool valid;
2752
2753
/* keep mem without hmm range at userptr_inval_list */
2754
if (!mem->range)
2755
continue;
2756
2757
/* Only check mem with hmm range associated */
2758
valid = amdgpu_hmm_range_valid(mem->range);
2759
amdgpu_hmm_range_free(mem->range);
2760
2761
mem->range = NULL;
2762
if (!valid) {
2763
WARN(!mem->invalid, "Invalid BO not marked invalid");
2764
ret = -EAGAIN;
2765
continue;
2766
}
2767
2768
if (mem->invalid) {
2769
WARN(1, "Valid BO is marked invalid");
2770
ret = -EAGAIN;
2771
continue;
2772
}
2773
2774
list_move_tail(&mem->validate_list,
2775
&process_info->userptr_valid_list);
2776
}
2777
2778
return ret;
2779
}
2780
2781
/* Worker callback to restore evicted userptr BOs
2782
*
2783
* Tries to update and validate all userptr BOs. If successful and no
2784
* concurrent evictions happened, the queues are restarted. Otherwise,
2785
* reschedule for another attempt later.
2786
*/
2787
static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work)
2788
{
2789
struct delayed_work *dwork = to_delayed_work(work);
2790
struct amdkfd_process_info *process_info =
2791
container_of(dwork, struct amdkfd_process_info,
2792
restore_userptr_work);
2793
struct task_struct *usertask;
2794
struct mm_struct *mm;
2795
uint32_t evicted_bos;
2796
2797
mutex_lock(&process_info->notifier_lock);
2798
evicted_bos = process_info->evicted_bos;
2799
mutex_unlock(&process_info->notifier_lock);
2800
if (!evicted_bos)
2801
return;
2802
2803
/* Reference task and mm in case of concurrent process termination */
2804
usertask = get_pid_task(process_info->pid, PIDTYPE_PID);
2805
if (!usertask)
2806
return;
2807
mm = get_task_mm(usertask);
2808
if (!mm) {
2809
put_task_struct(usertask);
2810
return;
2811
}
2812
2813
mutex_lock(&process_info->lock);
2814
2815
if (update_invalid_user_pages(process_info, mm))
2816
goto unlock_out;
2817
/* userptr_inval_list can be empty if all evicted userptr BOs
2818
* have been freed. In that case there is nothing to validate
2819
* and we can just restart the queues.
2820
*/
2821
if (!list_empty(&process_info->userptr_inval_list)) {
2822
if (validate_invalid_user_pages(process_info))
2823
goto unlock_out;
2824
}
2825
/* Final check for concurrent evicton and atomic update. If
2826
* another eviction happens after successful update, it will
2827
* be a first eviction that calls quiesce_mm. The eviction
2828
* reference counting inside KFD will handle this case.
2829
*/
2830
mutex_lock(&process_info->notifier_lock);
2831
if (process_info->evicted_bos != evicted_bos)
2832
goto unlock_notifier_out;
2833
2834
if (confirm_valid_user_pages_locked(process_info)) {
2835
WARN(1, "User pages unexpectedly invalid");
2836
goto unlock_notifier_out;
2837
}
2838
2839
process_info->evicted_bos = evicted_bos = 0;
2840
2841
if (kgd2kfd_resume_mm(mm)) {
2842
pr_err("%s: Failed to resume KFD\n", __func__);
2843
/* No recovery from this failure. Probably the CP is
2844
* hanging. No point trying again.
2845
*/
2846
}
2847
2848
unlock_notifier_out:
2849
mutex_unlock(&process_info->notifier_lock);
2850
unlock_out:
2851
mutex_unlock(&process_info->lock);
2852
2853
/* If validation failed, reschedule another attempt */
2854
if (evicted_bos) {
2855
queue_delayed_work(system_freezable_wq,
2856
&process_info->restore_userptr_work,
2857
msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2858
2859
kfd_smi_event_queue_restore_rescheduled(mm);
2860
}
2861
mmput(mm);
2862
put_task_struct(usertask);
2863
}
2864
2865
static void replace_eviction_fence(struct dma_fence __rcu **ef,
2866
struct dma_fence *new_ef)
2867
{
2868
struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true
2869
/* protected by process_info->lock */);
2870
2871
/* If we're replacing an unsignaled eviction fence, that fence will
2872
* never be signaled, and if anyone is still waiting on that fence,
2873
* they will hang forever. This should never happen. We should only
2874
* replace the fence in restore_work that only gets scheduled after
2875
* eviction work signaled the fence.
2876
*/
2877
WARN_ONCE(!dma_fence_is_signaled(old_ef),
2878
"Replacing unsignaled eviction fence");
2879
dma_fence_put(old_ef);
2880
}
2881
2882
/** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given
2883
* KFD process identified by process_info
2884
*
2885
* @process_info: amdkfd_process_info of the KFD process
2886
*
2887
* After memory eviction, restore thread calls this function. The function
2888
* should be called when the Process is still valid. BO restore involves -
2889
*
2890
* 1. Release old eviction fence and create new one
2891
* 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list.
2892
* 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of
2893
* BOs that need to be reserved.
2894
* 4. Reserve all the BOs
2895
* 5. Validate of PD and PT BOs.
2896
* 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence
2897
* 7. Add fence to all PD and PT BOs.
2898
* 8. Unreserve all BOs
2899
*/
2900
int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef)
2901
{
2902
struct amdkfd_process_info *process_info = info;
2903
struct amdgpu_vm *peer_vm;
2904
struct kgd_mem *mem;
2905
struct list_head duplicate_save;
2906
struct amdgpu_sync sync_obj;
2907
unsigned long failed_size = 0;
2908
unsigned long total_size = 0;
2909
struct drm_exec exec;
2910
int ret;
2911
2912
INIT_LIST_HEAD(&duplicate_save);
2913
2914
mutex_lock(&process_info->lock);
2915
2916
drm_exec_init(&exec, DRM_EXEC_IGNORE_DUPLICATES, 0);
2917
drm_exec_until_all_locked(&exec) {
2918
list_for_each_entry(peer_vm, &process_info->vm_list_head,
2919
vm_list_node) {
2920
ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2);
2921
drm_exec_retry_on_contention(&exec);
2922
if (unlikely(ret)) {
2923
pr_err("Locking VM PD failed, ret: %d\n", ret);
2924
goto ttm_reserve_fail;
2925
}
2926
}
2927
2928
/* Reserve all BOs and page tables/directory. Add all BOs from
2929
* kfd_bo_list to ctx.list
2930
*/
2931
list_for_each_entry(mem, &process_info->kfd_bo_list,
2932
validate_list) {
2933
struct drm_gem_object *gobj;
2934
2935
gobj = &mem->bo->tbo.base;
2936
ret = drm_exec_prepare_obj(&exec, gobj, 1);
2937
drm_exec_retry_on_contention(&exec);
2938
if (unlikely(ret)) {
2939
pr_err("drm_exec_prepare_obj failed, ret: %d\n", ret);
2940
goto ttm_reserve_fail;
2941
}
2942
}
2943
}
2944
2945
amdgpu_sync_create(&sync_obj);
2946
2947
/* Validate BOs managed by KFD */
2948
list_for_each_entry(mem, &process_info->kfd_bo_list,
2949
validate_list) {
2950
2951
struct amdgpu_bo *bo = mem->bo;
2952
uint32_t domain = mem->domain;
2953
struct dma_resv_iter cursor;
2954
struct dma_fence *fence;
2955
2956
total_size += amdgpu_bo_size(bo);
2957
2958
ret = amdgpu_amdkfd_bo_validate(bo, domain, false);
2959
if (ret) {
2960
pr_debug("Memory eviction: Validate BOs failed\n");
2961
failed_size += amdgpu_bo_size(bo);
2962
ret = amdgpu_amdkfd_bo_validate(bo,
2963
AMDGPU_GEM_DOMAIN_GTT, false);
2964
if (ret) {
2965
pr_debug("Memory eviction: Try again\n");
2966
goto validate_map_fail;
2967
}
2968
}
2969
dma_resv_for_each_fence(&cursor, bo->tbo.base.resv,
2970
DMA_RESV_USAGE_KERNEL, fence) {
2971
ret = amdgpu_sync_fence(&sync_obj, fence, GFP_KERNEL);
2972
if (ret) {
2973
pr_debug("Memory eviction: Sync BO fence failed. Try again\n");
2974
goto validate_map_fail;
2975
}
2976
}
2977
}
2978
2979
if (failed_size)
2980
pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size);
2981
2982
/* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO
2983
* validations above would invalidate DMABuf imports again.
2984
*/
2985
ret = process_validate_vms(process_info, &exec.ticket);
2986
if (ret) {
2987
pr_debug("Validating VMs failed, ret: %d\n", ret);
2988
goto validate_map_fail;
2989
}
2990
2991
/* Update mappings managed by KFD. */
2992
list_for_each_entry(mem, &process_info->kfd_bo_list,
2993
validate_list) {
2994
struct kfd_mem_attachment *attachment;
2995
2996
list_for_each_entry(attachment, &mem->attachments, list) {
2997
if (!attachment->is_mapped)
2998
continue;
2999
3000
kfd_mem_dmaunmap_attachment(mem, attachment);
3001
ret = update_gpuvm_pte(mem, attachment, &sync_obj);
3002
if (ret) {
3003
pr_debug("Memory eviction: update PTE failed. Try again\n");
3004
goto validate_map_fail;
3005
}
3006
}
3007
}
3008
3009
/* Update mappings not managed by KFD */
3010
list_for_each_entry(peer_vm, &process_info->vm_list_head,
3011
vm_list_node) {
3012
struct amdgpu_device *adev = amdgpu_ttm_adev(
3013
peer_vm->root.bo->tbo.bdev);
3014
3015
struct amdgpu_fpriv *fpriv =
3016
container_of(peer_vm, struct amdgpu_fpriv, vm);
3017
3018
ret = amdgpu_vm_bo_update(adev, fpriv->prt_va, false);
3019
if (ret) {
3020
dev_dbg(adev->dev,
3021
"Memory eviction: handle PRT moved failed, pid %8d. Try again.\n",
3022
pid_nr(process_info->pid));
3023
goto validate_map_fail;
3024
}
3025
3026
ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket);
3027
if (ret) {
3028
dev_dbg(adev->dev,
3029
"Memory eviction: handle moved failed, pid %8d. Try again.\n",
3030
pid_nr(process_info->pid));
3031
goto validate_map_fail;
3032
}
3033
}
3034
3035
/* Update page directories */
3036
ret = process_update_pds(process_info, &sync_obj);
3037
if (ret) {
3038
pr_debug("Memory eviction: update PDs failed. Try again\n");
3039
goto validate_map_fail;
3040
}
3041
3042
/* Sync with fences on all the page tables. They implicitly depend on any
3043
* move fences from amdgpu_vm_handle_moved above.
3044
*/
3045
ret = process_sync_pds_resv(process_info, &sync_obj);
3046
if (ret) {
3047
pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n");
3048
goto validate_map_fail;
3049
}
3050
3051
/* Wait for validate and PT updates to finish */
3052
amdgpu_sync_wait(&sync_obj, false);
3053
3054
/* The old eviction fence may be unsignaled if restore happens
3055
* after a GPU reset or suspend/resume. Keep the old fence in that
3056
* case. Otherwise release the old eviction fence and create new
3057
* one, because fence only goes from unsignaled to signaled once
3058
* and cannot be reused. Use context and mm from the old fence.
3059
*
3060
* If an old eviction fence signals after this check, that's OK.
3061
* Anyone signaling an eviction fence must stop the queues first
3062
* and schedule another restore worker.
3063
*/
3064
if (dma_fence_is_signaled(&process_info->eviction_fence->base)) {
3065
struct amdgpu_amdkfd_fence *new_fence =
3066
amdgpu_amdkfd_fence_create(
3067
process_info->eviction_fence->base.context,
3068
process_info->eviction_fence->mm,
3069
NULL);
3070
3071
if (!new_fence) {
3072
pr_err("Failed to create eviction fence\n");
3073
ret = -ENOMEM;
3074
goto validate_map_fail;
3075
}
3076
dma_fence_put(&process_info->eviction_fence->base);
3077
process_info->eviction_fence = new_fence;
3078
replace_eviction_fence(ef, dma_fence_get(&new_fence->base));
3079
} else {
3080
WARN_ONCE(*ef != &process_info->eviction_fence->base,
3081
"KFD eviction fence doesn't match KGD process_info");
3082
}
3083
3084
/* Attach new eviction fence to all BOs except pinned ones */
3085
list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) {
3086
if (mem->bo->tbo.pin_count)
3087
continue;
3088
3089
dma_resv_add_fence(mem->bo->tbo.base.resv,
3090
&process_info->eviction_fence->base,
3091
DMA_RESV_USAGE_BOOKKEEP);
3092
}
3093
/* Attach eviction fence to PD / PT BOs and DMABuf imports */
3094
list_for_each_entry(peer_vm, &process_info->vm_list_head,
3095
vm_list_node) {
3096
struct amdgpu_bo *bo = peer_vm->root.bo;
3097
3098
dma_resv_add_fence(bo->tbo.base.resv,
3099
&process_info->eviction_fence->base,
3100
DMA_RESV_USAGE_BOOKKEEP);
3101
}
3102
3103
validate_map_fail:
3104
amdgpu_sync_free(&sync_obj);
3105
ttm_reserve_fail:
3106
drm_exec_fini(&exec);
3107
mutex_unlock(&process_info->lock);
3108
return ret;
3109
}
3110
3111
int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem)
3112
{
3113
struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
3114
struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws;
3115
int ret;
3116
3117
if (!info || !gws)
3118
return -EINVAL;
3119
3120
*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
3121
if (!*mem)
3122
return -ENOMEM;
3123
3124
mutex_init(&(*mem)->lock);
3125
INIT_LIST_HEAD(&(*mem)->attachments);
3126
(*mem)->bo = amdgpu_bo_ref(gws_bo);
3127
(*mem)->domain = AMDGPU_GEM_DOMAIN_GWS;
3128
(*mem)->process_info = process_info;
3129
add_kgd_mem_to_kfd_bo_list(*mem, process_info, false);
3130
amdgpu_sync_create(&(*mem)->sync);
3131
3132
3133
/* Validate gws bo the first time it is added to process */
3134
mutex_lock(&(*mem)->process_info->lock);
3135
ret = amdgpu_bo_reserve(gws_bo, false);
3136
if (unlikely(ret)) {
3137
pr_err("Reserve gws bo failed %d\n", ret);
3138
goto bo_reservation_failure;
3139
}
3140
3141
ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true);
3142
if (ret) {
3143
pr_err("GWS BO validate failed %d\n", ret);
3144
goto bo_validation_failure;
3145
}
3146
/* GWS resource is shared b/t amdgpu and amdkfd
3147
* Add process eviction fence to bo so they can
3148
* evict each other.
3149
*/
3150
ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1);
3151
if (ret)
3152
goto reserve_shared_fail;
3153
dma_resv_add_fence(gws_bo->tbo.base.resv,
3154
&process_info->eviction_fence->base,
3155
DMA_RESV_USAGE_BOOKKEEP);
3156
amdgpu_bo_unreserve(gws_bo);
3157
mutex_unlock(&(*mem)->process_info->lock);
3158
3159
return ret;
3160
3161
reserve_shared_fail:
3162
bo_validation_failure:
3163
amdgpu_bo_unreserve(gws_bo);
3164
bo_reservation_failure:
3165
mutex_unlock(&(*mem)->process_info->lock);
3166
amdgpu_sync_free(&(*mem)->sync);
3167
remove_kgd_mem_from_kfd_bo_list(*mem, process_info);
3168
amdgpu_bo_unref(&gws_bo);
3169
mutex_destroy(&(*mem)->lock);
3170
kfree(*mem);
3171
*mem = NULL;
3172
return ret;
3173
}
3174
3175
int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem)
3176
{
3177
int ret;
3178
struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
3179
struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
3180
struct amdgpu_bo *gws_bo = kgd_mem->bo;
3181
3182
/* Remove BO from process's validate list so restore worker won't touch
3183
* it anymore
3184
*/
3185
remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info);
3186
3187
ret = amdgpu_bo_reserve(gws_bo, false);
3188
if (unlikely(ret)) {
3189
pr_err("Reserve gws bo failed %d\n", ret);
3190
//TODO add BO back to validate_list?
3191
return ret;
3192
}
3193
amdgpu_amdkfd_remove_eviction_fence(gws_bo,
3194
process_info->eviction_fence);
3195
amdgpu_bo_unreserve(gws_bo);
3196
amdgpu_sync_free(&kgd_mem->sync);
3197
amdgpu_bo_unref(&gws_bo);
3198
mutex_destroy(&kgd_mem->lock);
3199
kfree(mem);
3200
return 0;
3201
}
3202
3203
/* Returns GPU-specific tiling mode information */
3204
int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev,
3205
struct tile_config *config)
3206
{
3207
config->gb_addr_config = adev->gfx.config.gb_addr_config;
3208
config->tile_config_ptr = adev->gfx.config.tile_mode_array;
3209
config->num_tile_configs =
3210
ARRAY_SIZE(adev->gfx.config.tile_mode_array);
3211
config->macro_tile_config_ptr =
3212
adev->gfx.config.macrotile_mode_array;
3213
config->num_macro_tile_configs =
3214
ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
3215
3216
/* Those values are not set from GFX9 onwards */
3217
config->num_banks = adev->gfx.config.num_banks;
3218
config->num_ranks = adev->gfx.config.num_ranks;
3219
3220
return 0;
3221
}
3222
3223
bool amdgpu_amdkfd_bo_mapped_to_dev(void *drm_priv, struct kgd_mem *mem)
3224
{
3225
struct amdgpu_vm *vm = drm_priv_to_vm(drm_priv);
3226
struct kfd_mem_attachment *entry;
3227
3228
list_for_each_entry(entry, &mem->attachments, list) {
3229
if (entry->is_mapped && entry->bo_va->base.vm == vm)
3230
return true;
3231
}
3232
return false;
3233
}
3234
3235
#if defined(CONFIG_DEBUG_FS)
3236
3237
int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data)
3238
{
3239
3240
spin_lock(&kfd_mem_limit.mem_limit_lock);
3241
seq_printf(m, "System mem used %lldM out of %lluM\n",
3242
(kfd_mem_limit.system_mem_used >> 20),
3243
(kfd_mem_limit.max_system_mem_limit >> 20));
3244
seq_printf(m, "TTM mem used %lldM out of %lluM\n",
3245
(kfd_mem_limit.ttm_mem_used >> 20),
3246
(kfd_mem_limit.max_ttm_mem_limit >> 20));
3247
spin_unlock(&kfd_mem_limit.mem_limit_lock);
3248
3249
return 0;
3250
}
3251
3252
#endif
3253
3254