Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gpuvm.c
26517 views
1
// SPDX-License-Identifier: MIT
2
/*
3
* Copyright 2014-2018 Advanced Micro Devices, Inc.
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
* and/or sell copies of the Software, and to permit persons to whom the
10
* Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be included in
13
* all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21
* OTHER DEALINGS IN THE SOFTWARE.
22
*/
23
#include <linux/dma-buf.h>
24
#include <linux/list.h>
25
#include <linux/pagemap.h>
26
#include <linux/sched/mm.h>
27
#include <linux/sched/task.h>
28
#include <drm/ttm/ttm_tt.h>
29
30
#include <drm/drm_exec.h>
31
32
#include "amdgpu_object.h"
33
#include "amdgpu_gem.h"
34
#include "amdgpu_vm.h"
35
#include "amdgpu_hmm.h"
36
#include "amdgpu_amdkfd.h"
37
#include "amdgpu_dma_buf.h"
38
#include <uapi/linux/kfd_ioctl.h>
39
#include "amdgpu_xgmi.h"
40
#include "kfd_priv.h"
41
#include "kfd_smi_events.h"
42
43
/* Userptr restore delay, just long enough to allow consecutive VM
44
* changes to accumulate
45
*/
46
#define AMDGPU_USERPTR_RESTORE_DELAY_MS 1
47
#define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29)
48
49
/*
50
* Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB
51
* BO chunk
52
*/
53
#define VRAM_AVAILABLITY_ALIGN (1 << 21)
54
55
/* Impose limit on how much memory KFD can use */
56
static struct {
57
uint64_t max_system_mem_limit;
58
uint64_t max_ttm_mem_limit;
59
int64_t system_mem_used;
60
int64_t ttm_mem_used;
61
spinlock_t mem_limit_lock;
62
} kfd_mem_limit;
63
64
static const char * const domain_bit_to_string[] = {
65
"CPU",
66
"GTT",
67
"VRAM",
68
"GDS",
69
"GWS",
70
"OA"
71
};
72
73
#define domain_string(domain) domain_bit_to_string[ffs(domain)-1]
74
75
static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work);
76
77
static bool kfd_mem_is_attached(struct amdgpu_vm *avm,
78
struct kgd_mem *mem)
79
{
80
struct kfd_mem_attachment *entry;
81
82
list_for_each_entry(entry, &mem->attachments, list)
83
if (entry->bo_va->base.vm == avm)
84
return true;
85
86
return false;
87
}
88
89
/**
90
* reuse_dmamap() - Check whether adev can share the original
91
* userptr BO
92
*
93
* If both adev and bo_adev are in direct mapping or
94
* in the same iommu group, they can share the original BO.
95
*
96
* @adev: Device to which can or cannot share the original BO
97
* @bo_adev: Device to which allocated BO belongs to
98
*
99
* Return: returns true if adev can share original userptr BO,
100
* false otherwise.
101
*/
102
static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev)
103
{
104
return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) ||
105
(adev->dev->iommu_group == bo_adev->dev->iommu_group);
106
}
107
108
/* Set memory usage limits. Current, limits are
109
* System (TTM + userptr) memory - 15/16th System RAM
110
* TTM memory - 3/8th System RAM
111
*/
112
void amdgpu_amdkfd_gpuvm_init_mem_limits(void)
113
{
114
struct sysinfo si;
115
uint64_t mem;
116
117
if (kfd_mem_limit.max_system_mem_limit)
118
return;
119
120
si_meminfo(&si);
121
mem = si.totalram - si.totalhigh;
122
mem *= si.mem_unit;
123
124
spin_lock_init(&kfd_mem_limit.mem_limit_lock);
125
kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6);
126
if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT)
127
kfd_mem_limit.max_system_mem_limit >>= 1;
128
else
129
kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT;
130
131
kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT;
132
pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n",
133
(kfd_mem_limit.max_system_mem_limit >> 20),
134
(kfd_mem_limit.max_ttm_mem_limit >> 20));
135
}
136
137
void amdgpu_amdkfd_reserve_system_mem(uint64_t size)
138
{
139
kfd_mem_limit.system_mem_used += size;
140
}
141
142
/* Estimate page table size needed to represent a given memory size
143
*
144
* With 4KB pages, we need one 8 byte PTE for each 4KB of memory
145
* (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB
146
* of memory (factor 256K, >> 18). ROCm user mode tries to optimize
147
* for 2MB pages for TLB efficiency. However, small allocations and
148
* fragmented system memory still need some 4KB pages. We choose a
149
* compromise that should work in most cases without reserving too
150
* much memory for page tables unnecessarily (factor 16K, >> 14).
151
*/
152
153
#define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM)
154
155
/**
156
* amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size
157
* of buffer.
158
*
159
* @adev: Device to which allocated BO belongs to
160
* @size: Size of buffer, in bytes, encapsulated by B0. This should be
161
* equivalent to amdgpu_bo_size(BO)
162
* @alloc_flag: Flag used in allocating a BO as noted above
163
* @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is
164
* managed as one compute node in driver for app
165
*
166
* Return:
167
* returns -ENOMEM in case of error, ZERO otherwise
168
*/
169
int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev,
170
uint64_t size, u32 alloc_flag, int8_t xcp_id)
171
{
172
uint64_t reserved_for_pt =
173
ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
174
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
175
uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0);
176
size_t system_mem_needed, ttm_mem_needed, vram_needed;
177
int ret = 0;
178
uint64_t vram_size = 0;
179
180
system_mem_needed = 0;
181
ttm_mem_needed = 0;
182
vram_needed = 0;
183
if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
184
system_mem_needed = size;
185
ttm_mem_needed = size;
186
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
187
/*
188
* Conservatively round up the allocation requirement to 2 MB
189
* to avoid fragmentation caused by 4K allocations in the tail
190
* 2M BO chunk.
191
*/
192
vram_needed = size;
193
/*
194
* For GFX 9.4.3, get the VRAM size from XCP structs
195
*/
196
if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id))
197
return -EINVAL;
198
199
vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id);
200
if (adev->apu_prefer_gtt) {
201
system_mem_needed = size;
202
ttm_mem_needed = size;
203
}
204
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
205
system_mem_needed = size;
206
} else if (!(alloc_flag &
207
(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
208
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
209
pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
210
return -ENOMEM;
211
}
212
213
spin_lock(&kfd_mem_limit.mem_limit_lock);
214
215
if (kfd_mem_limit.system_mem_used + system_mem_needed >
216
kfd_mem_limit.max_system_mem_limit)
217
pr_debug("Set no_system_mem_limit=1 if using shared memory\n");
218
219
if ((kfd_mem_limit.system_mem_used + system_mem_needed >
220
kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) ||
221
(kfd_mem_limit.ttm_mem_used + ttm_mem_needed >
222
kfd_mem_limit.max_ttm_mem_limit) ||
223
(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed >
224
vram_size - reserved_for_pt - reserved_for_ras - atomic64_read(&adev->vram_pin_size))) {
225
ret = -ENOMEM;
226
goto release;
227
}
228
229
/* Update memory accounting by decreasing available system
230
* memory, TTM memory and GPU memory as computed above
231
*/
232
WARN_ONCE(vram_needed && !adev,
233
"adev reference can't be null when vram is used");
234
if (adev && xcp_id >= 0) {
235
adev->kfd.vram_used[xcp_id] += vram_needed;
236
adev->kfd.vram_used_aligned[xcp_id] +=
237
adev->apu_prefer_gtt ?
238
vram_needed :
239
ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN);
240
}
241
kfd_mem_limit.system_mem_used += system_mem_needed;
242
kfd_mem_limit.ttm_mem_used += ttm_mem_needed;
243
244
release:
245
spin_unlock(&kfd_mem_limit.mem_limit_lock);
246
return ret;
247
}
248
249
void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev,
250
uint64_t size, u32 alloc_flag, int8_t xcp_id)
251
{
252
spin_lock(&kfd_mem_limit.mem_limit_lock);
253
254
if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
255
kfd_mem_limit.system_mem_used -= size;
256
kfd_mem_limit.ttm_mem_used -= size;
257
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
258
WARN_ONCE(!adev,
259
"adev reference can't be null when alloc mem flags vram is set");
260
if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id))
261
goto release;
262
263
if (adev) {
264
adev->kfd.vram_used[xcp_id] -= size;
265
if (adev->apu_prefer_gtt) {
266
adev->kfd.vram_used_aligned[xcp_id] -= size;
267
kfd_mem_limit.system_mem_used -= size;
268
kfd_mem_limit.ttm_mem_used -= size;
269
} else {
270
adev->kfd.vram_used_aligned[xcp_id] -=
271
ALIGN(size, VRAM_AVAILABLITY_ALIGN);
272
}
273
}
274
} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
275
kfd_mem_limit.system_mem_used -= size;
276
} else if (!(alloc_flag &
277
(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
278
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
279
pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
280
goto release;
281
}
282
WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0,
283
"KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id);
284
WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0,
285
"KFD TTM memory accounting unbalanced");
286
WARN_ONCE(kfd_mem_limit.system_mem_used < 0,
287
"KFD system memory accounting unbalanced");
288
289
release:
290
spin_unlock(&kfd_mem_limit.mem_limit_lock);
291
}
292
293
void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo)
294
{
295
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
296
u32 alloc_flags = bo->kfd_bo->alloc_flags;
297
u64 size = amdgpu_bo_size(bo);
298
299
amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags,
300
bo->xcp_id);
301
302
kfree(bo->kfd_bo);
303
}
304
305
/**
306
* create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information
307
* about USERPTR or DOOREBELL or MMIO BO.
308
*
309
* @adev: Device for which dmamap BO is being created
310
* @mem: BO of peer device that is being DMA mapped. Provides parameters
311
* in building the dmamap BO
312
* @bo_out: Output parameter updated with handle of dmamap BO
313
*/
314
static int
315
create_dmamap_sg_bo(struct amdgpu_device *adev,
316
struct kgd_mem *mem, struct amdgpu_bo **bo_out)
317
{
318
struct drm_gem_object *gem_obj;
319
int ret;
320
uint64_t flags = 0;
321
322
ret = amdgpu_bo_reserve(mem->bo, false);
323
if (ret)
324
return ret;
325
326
if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR)
327
flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT |
328
AMDGPU_GEM_CREATE_UNCACHED);
329
330
ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1,
331
AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags,
332
ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0);
333
334
amdgpu_bo_unreserve(mem->bo);
335
336
if (ret) {
337
pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret);
338
return -EINVAL;
339
}
340
341
*bo_out = gem_to_amdgpu_bo(gem_obj);
342
(*bo_out)->parent = amdgpu_bo_ref(mem->bo);
343
return ret;
344
}
345
346
/* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's
347
* reservation object.
348
*
349
* @bo: [IN] Remove eviction fence(s) from this BO
350
* @ef: [IN] This eviction fence is removed if it
351
* is present in the shared list.
352
*
353
* NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held.
354
*/
355
static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo,
356
struct amdgpu_amdkfd_fence *ef)
357
{
358
struct dma_fence *replacement;
359
360
if (!ef)
361
return -EINVAL;
362
363
/* TODO: Instead of block before we should use the fence of the page
364
* table update and TLB flush here directly.
365
*/
366
replacement = dma_fence_get_stub();
367
dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context,
368
replacement, DMA_RESV_USAGE_BOOKKEEP);
369
dma_fence_put(replacement);
370
return 0;
371
}
372
373
/**
374
* amdgpu_amdkfd_remove_all_eviction_fences - Remove all eviction fences
375
* @bo: the BO where to remove the evictions fences from.
376
*
377
* This functions should only be used on release when all references to the BO
378
* are already dropped. We remove the eviction fence from the private copy of
379
* the dma_resv object here since that is what is used during release to
380
* determine of the BO is idle or not.
381
*/
382
void amdgpu_amdkfd_remove_all_eviction_fences(struct amdgpu_bo *bo)
383
{
384
struct dma_resv *resv = &bo->tbo.base._resv;
385
struct dma_fence *fence, *stub;
386
struct dma_resv_iter cursor;
387
388
dma_resv_assert_held(resv);
389
390
stub = dma_fence_get_stub();
391
dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) {
392
if (!to_amdgpu_amdkfd_fence(fence))
393
continue;
394
395
dma_resv_replace_fences(resv, fence->context, stub,
396
DMA_RESV_USAGE_BOOKKEEP);
397
}
398
dma_fence_put(stub);
399
}
400
401
static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain,
402
bool wait)
403
{
404
struct ttm_operation_ctx ctx = { false, false };
405
int ret;
406
407
if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm),
408
"Called with userptr BO"))
409
return -EINVAL;
410
411
/* bo has been pinned, not need validate it */
412
if (bo->tbo.pin_count)
413
return 0;
414
415
amdgpu_bo_placement_from_domain(bo, domain);
416
417
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
418
if (ret)
419
goto validate_fail;
420
if (wait)
421
amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
422
423
validate_fail:
424
return ret;
425
}
426
427
int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo,
428
uint32_t domain,
429
struct dma_fence *fence)
430
{
431
int ret = amdgpu_bo_reserve(bo, false);
432
433
if (ret)
434
return ret;
435
436
ret = amdgpu_amdkfd_bo_validate(bo, domain, true);
437
if (ret)
438
goto unreserve_out;
439
440
ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
441
if (ret)
442
goto unreserve_out;
443
444
dma_resv_add_fence(bo->tbo.base.resv, fence,
445
DMA_RESV_USAGE_BOOKKEEP);
446
447
unreserve_out:
448
amdgpu_bo_unreserve(bo);
449
450
return ret;
451
}
452
453
static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo)
454
{
455
return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false);
456
}
457
458
/* vm_validate_pt_pd_bos - Validate page table and directory BOs
459
*
460
* Page directories are not updated here because huge page handling
461
* during page table updates can invalidate page directory entries
462
* again. Page directories are only updated after updating page
463
* tables.
464
*/
465
static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm,
466
struct ww_acquire_ctx *ticket)
467
{
468
struct amdgpu_bo *pd = vm->root.bo;
469
struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
470
int ret;
471
472
ret = amdgpu_vm_validate(adev, vm, ticket,
473
amdgpu_amdkfd_validate_vm_bo, NULL);
474
if (ret) {
475
pr_err("failed to validate PT BOs\n");
476
return ret;
477
}
478
479
vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo);
480
481
return 0;
482
}
483
484
static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync)
485
{
486
struct amdgpu_bo *pd = vm->root.bo;
487
struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
488
int ret;
489
490
ret = amdgpu_vm_update_pdes(adev, vm, false);
491
if (ret)
492
return ret;
493
494
return amdgpu_sync_fence(sync, vm->last_update, GFP_KERNEL);
495
}
496
497
static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem)
498
{
499
uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE |
500
AMDGPU_VM_MTYPE_DEFAULT;
501
502
if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE)
503
mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE;
504
if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE)
505
mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
506
507
return amdgpu_gem_va_map_flags(adev, mapping_flags);
508
}
509
510
/**
511
* create_sg_table() - Create an sg_table for a contiguous DMA addr range
512
* @addr: The starting address to point to
513
* @size: Size of memory area in bytes being pointed to
514
*
515
* Allocates an instance of sg_table and initializes it to point to memory
516
* area specified by input parameters. The address used to build is assumed
517
* to be DMA mapped, if needed.
518
*
519
* DOORBELL or MMIO BOs use only one scatterlist node in their sg_table
520
* because they are physically contiguous.
521
*
522
* Return: Initialized instance of SG Table or NULL
523
*/
524
static struct sg_table *create_sg_table(uint64_t addr, uint32_t size)
525
{
526
struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL);
527
528
if (!sg)
529
return NULL;
530
if (sg_alloc_table(sg, 1, GFP_KERNEL)) {
531
kfree(sg);
532
return NULL;
533
}
534
sg_dma_address(sg->sgl) = addr;
535
sg->sgl->length = size;
536
#ifdef CONFIG_NEED_SG_DMA_LENGTH
537
sg->sgl->dma_length = size;
538
#endif
539
return sg;
540
}
541
542
static int
543
kfd_mem_dmamap_userptr(struct kgd_mem *mem,
544
struct kfd_mem_attachment *attachment)
545
{
546
enum dma_data_direction direction =
547
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
548
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
549
struct ttm_operation_ctx ctx = {.interruptible = true};
550
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
551
struct amdgpu_device *adev = attachment->adev;
552
struct ttm_tt *src_ttm = mem->bo->tbo.ttm;
553
struct ttm_tt *ttm = bo->tbo.ttm;
554
int ret;
555
556
if (WARN_ON(ttm->num_pages != src_ttm->num_pages))
557
return -EINVAL;
558
559
ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL);
560
if (unlikely(!ttm->sg))
561
return -ENOMEM;
562
563
/* Same sequence as in amdgpu_ttm_tt_pin_userptr */
564
ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages,
565
ttm->num_pages, 0,
566
(u64)ttm->num_pages << PAGE_SHIFT,
567
GFP_KERNEL);
568
if (unlikely(ret))
569
goto free_sg;
570
571
ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
572
if (unlikely(ret))
573
goto release_sg;
574
575
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
576
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
577
if (ret)
578
goto unmap_sg;
579
580
return 0;
581
582
unmap_sg:
583
dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
584
release_sg:
585
pr_err("DMA map userptr failed: %d\n", ret);
586
sg_free_table(ttm->sg);
587
free_sg:
588
kfree(ttm->sg);
589
ttm->sg = NULL;
590
return ret;
591
}
592
593
static int
594
kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment)
595
{
596
struct ttm_operation_ctx ctx = {.interruptible = true};
597
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
598
599
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
600
return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
601
}
602
603
/**
604
* kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO
605
* @mem: SG BO of the DOORBELL or MMIO resource on the owning device
606
* @attachment: Virtual address attachment of the BO on accessing device
607
*
608
* An access request from the device that owns DOORBELL does not require DMA mapping.
609
* This is because the request doesn't go through PCIe root complex i.e. it instead
610
* loops back. The need to DMA map arises only when accessing peer device's DOORBELL
611
*
612
* In contrast, all access requests for MMIO need to be DMA mapped without regard to
613
* device ownership. This is because access requests for MMIO go through PCIe root
614
* complex.
615
*
616
* This is accomplished in two steps:
617
* - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used
618
* in updating requesting device's page table
619
* - Signal TTM to mark memory pointed to by requesting device's BO as GPU
620
* accessible. This allows an update of requesting device's page table
621
* with entries associated with DOOREBELL or MMIO memory
622
*
623
* This method is invoked in the following contexts:
624
* - Mapping of DOORBELL or MMIO BO of same or peer device
625
* - Validating an evicted DOOREBELL or MMIO BO on device seeking access
626
*
627
* Return: ZERO if successful, NON-ZERO otherwise
628
*/
629
static int
630
kfd_mem_dmamap_sg_bo(struct kgd_mem *mem,
631
struct kfd_mem_attachment *attachment)
632
{
633
struct ttm_operation_ctx ctx = {.interruptible = true};
634
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
635
struct amdgpu_device *adev = attachment->adev;
636
struct ttm_tt *ttm = bo->tbo.ttm;
637
enum dma_data_direction dir;
638
dma_addr_t dma_addr;
639
bool mmio;
640
int ret;
641
642
/* Expect SG Table of dmapmap BO to be NULL */
643
mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP);
644
if (unlikely(ttm->sg)) {
645
pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio);
646
return -EINVAL;
647
}
648
649
dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
650
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
651
dma_addr = mem->bo->tbo.sg->sgl->dma_address;
652
pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length);
653
pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr);
654
dma_addr = dma_map_resource(adev->dev, dma_addr,
655
mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
656
ret = dma_mapping_error(adev->dev, dma_addr);
657
if (unlikely(ret))
658
return ret;
659
pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr);
660
661
ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length);
662
if (unlikely(!ttm->sg)) {
663
ret = -ENOMEM;
664
goto unmap_sg;
665
}
666
667
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
668
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
669
if (unlikely(ret))
670
goto free_sg;
671
672
return ret;
673
674
free_sg:
675
sg_free_table(ttm->sg);
676
kfree(ttm->sg);
677
ttm->sg = NULL;
678
unmap_sg:
679
dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length,
680
dir, DMA_ATTR_SKIP_CPU_SYNC);
681
return ret;
682
}
683
684
static int
685
kfd_mem_dmamap_attachment(struct kgd_mem *mem,
686
struct kfd_mem_attachment *attachment)
687
{
688
switch (attachment->type) {
689
case KFD_MEM_ATT_SHARED:
690
return 0;
691
case KFD_MEM_ATT_USERPTR:
692
return kfd_mem_dmamap_userptr(mem, attachment);
693
case KFD_MEM_ATT_DMABUF:
694
return kfd_mem_dmamap_dmabuf(attachment);
695
case KFD_MEM_ATT_SG:
696
return kfd_mem_dmamap_sg_bo(mem, attachment);
697
default:
698
WARN_ON_ONCE(1);
699
}
700
return -EINVAL;
701
}
702
703
static void
704
kfd_mem_dmaunmap_userptr(struct kgd_mem *mem,
705
struct kfd_mem_attachment *attachment)
706
{
707
enum dma_data_direction direction =
708
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
709
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
710
struct ttm_operation_ctx ctx = {.interruptible = false};
711
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
712
struct amdgpu_device *adev = attachment->adev;
713
struct ttm_tt *ttm = bo->tbo.ttm;
714
715
if (unlikely(!ttm->sg))
716
return;
717
718
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
719
(void)ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
720
721
dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
722
sg_free_table(ttm->sg);
723
kfree(ttm->sg);
724
ttm->sg = NULL;
725
}
726
727
static void
728
kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment)
729
{
730
/* This is a no-op. We don't want to trigger eviction fences when
731
* unmapping DMABufs. Therefore the invalidation (moving to system
732
* domain) is done in kfd_mem_dmamap_dmabuf.
733
*/
734
}
735
736
/**
737
* kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO
738
* @mem: SG BO of the DOORBELL or MMIO resource on the owning device
739
* @attachment: Virtual address attachment of the BO on accessing device
740
*
741
* The method performs following steps:
742
* - Signal TTM to mark memory pointed to by BO as GPU inaccessible
743
* - Free SG Table that is used to encapsulate DMA mapped memory of
744
* peer device's DOORBELL or MMIO memory
745
*
746
* This method is invoked in the following contexts:
747
* UNMapping of DOORBELL or MMIO BO on a device having access to its memory
748
* Eviction of DOOREBELL or MMIO BO on device having access to its memory
749
*
750
* Return: void
751
*/
752
static void
753
kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem,
754
struct kfd_mem_attachment *attachment)
755
{
756
struct ttm_operation_ctx ctx = {.interruptible = true};
757
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
758
struct amdgpu_device *adev = attachment->adev;
759
struct ttm_tt *ttm = bo->tbo.ttm;
760
enum dma_data_direction dir;
761
762
if (unlikely(!ttm->sg)) {
763
pr_debug("SG Table of BO is NULL");
764
return;
765
}
766
767
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
768
(void)ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
769
770
dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
771
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
772
dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address,
773
ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
774
sg_free_table(ttm->sg);
775
kfree(ttm->sg);
776
ttm->sg = NULL;
777
bo->tbo.sg = NULL;
778
}
779
780
static void
781
kfd_mem_dmaunmap_attachment(struct kgd_mem *mem,
782
struct kfd_mem_attachment *attachment)
783
{
784
switch (attachment->type) {
785
case KFD_MEM_ATT_SHARED:
786
break;
787
case KFD_MEM_ATT_USERPTR:
788
kfd_mem_dmaunmap_userptr(mem, attachment);
789
break;
790
case KFD_MEM_ATT_DMABUF:
791
kfd_mem_dmaunmap_dmabuf(attachment);
792
break;
793
case KFD_MEM_ATT_SG:
794
kfd_mem_dmaunmap_sg_bo(mem, attachment);
795
break;
796
default:
797
WARN_ON_ONCE(1);
798
}
799
}
800
801
static int kfd_mem_export_dmabuf(struct kgd_mem *mem)
802
{
803
if (!mem->dmabuf) {
804
struct amdgpu_device *bo_adev;
805
struct dma_buf *dmabuf;
806
807
bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
808
dmabuf = drm_gem_prime_handle_to_dmabuf(&bo_adev->ddev, bo_adev->kfd.client.file,
809
mem->gem_handle,
810
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
811
DRM_RDWR : 0);
812
if (IS_ERR(dmabuf))
813
return PTR_ERR(dmabuf);
814
mem->dmabuf = dmabuf;
815
}
816
817
return 0;
818
}
819
820
static int
821
kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem,
822
struct amdgpu_bo **bo)
823
{
824
struct drm_gem_object *gobj;
825
int ret;
826
827
ret = kfd_mem_export_dmabuf(mem);
828
if (ret)
829
return ret;
830
831
gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf);
832
if (IS_ERR(gobj))
833
return PTR_ERR(gobj);
834
835
*bo = gem_to_amdgpu_bo(gobj);
836
(*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE;
837
838
return 0;
839
}
840
841
/* kfd_mem_attach - Add a BO to a VM
842
*
843
* Everything that needs to bo done only once when a BO is first added
844
* to a VM. It can later be mapped and unmapped many times without
845
* repeating these steps.
846
*
847
* 0. Create BO for DMA mapping, if needed
848
* 1. Allocate and initialize BO VA entry data structure
849
* 2. Add BO to the VM
850
* 3. Determine ASIC-specific PTE flags
851
* 4. Alloc page tables and directories if needed
852
* 4a. Validate new page tables and directories
853
*/
854
static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem,
855
struct amdgpu_vm *vm, bool is_aql)
856
{
857
struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
858
unsigned long bo_size = mem->bo->tbo.base.size;
859
uint64_t va = mem->va;
860
struct kfd_mem_attachment *attachment[2] = {NULL, NULL};
861
struct amdgpu_bo *bo[2] = {NULL, NULL};
862
struct amdgpu_bo_va *bo_va;
863
bool same_hive = false;
864
int i, ret;
865
866
if (!va) {
867
pr_err("Invalid VA when adding BO to VM\n");
868
return -EINVAL;
869
}
870
871
/* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices
872
*
873
* The access path of MMIO and DOORBELL BOs of is always over PCIe.
874
* In contrast the access path of VRAM BOs depens upon the type of
875
* link that connects the peer device. Access over PCIe is allowed
876
* if peer device has large BAR. In contrast, access over xGMI is
877
* allowed for both small and large BAR configurations of peer device
878
*/
879
if ((adev != bo_adev && !adev->apu_prefer_gtt) &&
880
((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) ||
881
(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) ||
882
(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
883
if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM)
884
same_hive = amdgpu_xgmi_same_hive(adev, bo_adev);
885
if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev))
886
return -EINVAL;
887
}
888
889
for (i = 0; i <= is_aql; i++) {
890
attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL);
891
if (unlikely(!attachment[i])) {
892
ret = -ENOMEM;
893
goto unwind;
894
}
895
896
pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va,
897
va + bo_size, vm);
898
899
if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) ||
900
(amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) ||
901
(mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) ||
902
same_hive) {
903
/* Mappings on the local GPU, or VRAM mappings in the
904
* local hive, or userptr, or GTT mapping can reuse dma map
905
* address space share the original BO
906
*/
907
attachment[i]->type = KFD_MEM_ATT_SHARED;
908
bo[i] = mem->bo;
909
drm_gem_object_get(&bo[i]->tbo.base);
910
} else if (i > 0) {
911
/* Multiple mappings on the same GPU share the BO */
912
attachment[i]->type = KFD_MEM_ATT_SHARED;
913
bo[i] = bo[0];
914
drm_gem_object_get(&bo[i]->tbo.base);
915
} else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
916
/* Create an SG BO to DMA-map userptrs on other GPUs */
917
attachment[i]->type = KFD_MEM_ATT_USERPTR;
918
ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
919
if (ret)
920
goto unwind;
921
/* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */
922
} else if (mem->bo->tbo.type == ttm_bo_type_sg) {
923
WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL ||
924
mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP),
925
"Handing invalid SG BO in ATTACH request");
926
attachment[i]->type = KFD_MEM_ATT_SG;
927
ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
928
if (ret)
929
goto unwind;
930
/* Enable acces to GTT and VRAM BOs of peer devices */
931
} else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT ||
932
mem->domain == AMDGPU_GEM_DOMAIN_VRAM) {
933
attachment[i]->type = KFD_MEM_ATT_DMABUF;
934
ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]);
935
if (ret)
936
goto unwind;
937
pr_debug("Employ DMABUF mechanism to enable peer GPU access\n");
938
} else {
939
WARN_ONCE(true, "Handling invalid ATTACH request");
940
ret = -EINVAL;
941
goto unwind;
942
}
943
944
/* Add BO to VM internal data structures */
945
ret = amdgpu_bo_reserve(bo[i], false);
946
if (ret) {
947
pr_debug("Unable to reserve BO during memory attach");
948
goto unwind;
949
}
950
bo_va = amdgpu_vm_bo_find(vm, bo[i]);
951
if (!bo_va)
952
bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]);
953
else
954
++bo_va->ref_count;
955
attachment[i]->bo_va = bo_va;
956
amdgpu_bo_unreserve(bo[i]);
957
if (unlikely(!attachment[i]->bo_va)) {
958
ret = -ENOMEM;
959
pr_err("Failed to add BO object to VM. ret == %d\n",
960
ret);
961
goto unwind;
962
}
963
attachment[i]->va = va;
964
attachment[i]->pte_flags = get_pte_flags(adev, mem);
965
attachment[i]->adev = adev;
966
list_add(&attachment[i]->list, &mem->attachments);
967
968
va += bo_size;
969
}
970
971
return 0;
972
973
unwind:
974
for (; i >= 0; i--) {
975
if (!attachment[i])
976
continue;
977
if (attachment[i]->bo_va) {
978
(void)amdgpu_bo_reserve(bo[i], true);
979
if (--attachment[i]->bo_va->ref_count == 0)
980
amdgpu_vm_bo_del(adev, attachment[i]->bo_va);
981
amdgpu_bo_unreserve(bo[i]);
982
list_del(&attachment[i]->list);
983
}
984
if (bo[i])
985
drm_gem_object_put(&bo[i]->tbo.base);
986
kfree(attachment[i]);
987
}
988
return ret;
989
}
990
991
static void kfd_mem_detach(struct kfd_mem_attachment *attachment)
992
{
993
struct amdgpu_bo *bo = attachment->bo_va->base.bo;
994
995
pr_debug("\t remove VA 0x%llx in entry %p\n",
996
attachment->va, attachment);
997
if (--attachment->bo_va->ref_count == 0)
998
amdgpu_vm_bo_del(attachment->adev, attachment->bo_va);
999
drm_gem_object_put(&bo->tbo.base);
1000
list_del(&attachment->list);
1001
kfree(attachment);
1002
}
1003
1004
static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem,
1005
struct amdkfd_process_info *process_info,
1006
bool userptr)
1007
{
1008
mutex_lock(&process_info->lock);
1009
if (userptr)
1010
list_add_tail(&mem->validate_list,
1011
&process_info->userptr_valid_list);
1012
else
1013
list_add_tail(&mem->validate_list, &process_info->kfd_bo_list);
1014
mutex_unlock(&process_info->lock);
1015
}
1016
1017
static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem,
1018
struct amdkfd_process_info *process_info)
1019
{
1020
mutex_lock(&process_info->lock);
1021
list_del(&mem->validate_list);
1022
mutex_unlock(&process_info->lock);
1023
}
1024
1025
/* Initializes user pages. It registers the MMU notifier and validates
1026
* the userptr BO in the GTT domain.
1027
*
1028
* The BO must already be on the userptr_valid_list. Otherwise an
1029
* eviction and restore may happen that leaves the new BO unmapped
1030
* with the user mode queues running.
1031
*
1032
* Takes the process_info->lock to protect against concurrent restore
1033
* workers.
1034
*
1035
* Returns 0 for success, negative errno for errors.
1036
*/
1037
static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr,
1038
bool criu_resume)
1039
{
1040
struct amdkfd_process_info *process_info = mem->process_info;
1041
struct amdgpu_bo *bo = mem->bo;
1042
struct ttm_operation_ctx ctx = { true, false };
1043
struct hmm_range *range;
1044
int ret = 0;
1045
1046
mutex_lock(&process_info->lock);
1047
1048
ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0);
1049
if (ret) {
1050
pr_err("%s: Failed to set userptr: %d\n", __func__, ret);
1051
goto out;
1052
}
1053
1054
ret = amdgpu_hmm_register(bo, user_addr);
1055
if (ret) {
1056
pr_err("%s: Failed to register MMU notifier: %d\n",
1057
__func__, ret);
1058
goto out;
1059
}
1060
1061
if (criu_resume) {
1062
/*
1063
* During a CRIU restore operation, the userptr buffer objects
1064
* will be validated in the restore_userptr_work worker at a
1065
* later stage when it is scheduled by another ioctl called by
1066
* CRIU master process for the target pid for restore.
1067
*/
1068
mutex_lock(&process_info->notifier_lock);
1069
mem->invalid++;
1070
mutex_unlock(&process_info->notifier_lock);
1071
mutex_unlock(&process_info->lock);
1072
return 0;
1073
}
1074
1075
ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range);
1076
if (ret) {
1077
if (ret == -EAGAIN)
1078
pr_debug("Failed to get user pages, try again\n");
1079
else
1080
pr_err("%s: Failed to get user pages: %d\n", __func__, ret);
1081
goto unregister_out;
1082
}
1083
1084
ret = amdgpu_bo_reserve(bo, true);
1085
if (ret) {
1086
pr_err("%s: Failed to reserve BO\n", __func__);
1087
goto release_out;
1088
}
1089
amdgpu_bo_placement_from_domain(bo, mem->domain);
1090
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
1091
if (ret)
1092
pr_err("%s: failed to validate BO\n", __func__);
1093
amdgpu_bo_unreserve(bo);
1094
1095
release_out:
1096
amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range);
1097
unregister_out:
1098
if (ret)
1099
amdgpu_hmm_unregister(bo);
1100
out:
1101
mutex_unlock(&process_info->lock);
1102
return ret;
1103
}
1104
1105
/* Reserving a BO and its page table BOs must happen atomically to
1106
* avoid deadlocks. Some operations update multiple VMs at once. Track
1107
* all the reservation info in a context structure. Optionally a sync
1108
* object can track VM updates.
1109
*/
1110
struct bo_vm_reservation_context {
1111
/* DRM execution context for the reservation */
1112
struct drm_exec exec;
1113
/* Number of VMs reserved */
1114
unsigned int n_vms;
1115
/* Pointer to sync object */
1116
struct amdgpu_sync *sync;
1117
};
1118
1119
enum bo_vm_match {
1120
BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */
1121
BO_VM_MAPPED, /* Match VMs where a BO is mapped */
1122
BO_VM_ALL, /* Match all VMs a BO was added to */
1123
};
1124
1125
/**
1126
* reserve_bo_and_vm - reserve a BO and a VM unconditionally.
1127
* @mem: KFD BO structure.
1128
* @vm: the VM to reserve.
1129
* @ctx: the struct that will be used in unreserve_bo_and_vms().
1130
*/
1131
static int reserve_bo_and_vm(struct kgd_mem *mem,
1132
struct amdgpu_vm *vm,
1133
struct bo_vm_reservation_context *ctx)
1134
{
1135
struct amdgpu_bo *bo = mem->bo;
1136
int ret;
1137
1138
WARN_ON(!vm);
1139
1140
ctx->n_vms = 1;
1141
ctx->sync = &mem->sync;
1142
drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
1143
drm_exec_until_all_locked(&ctx->exec) {
1144
ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1145
drm_exec_retry_on_contention(&ctx->exec);
1146
if (unlikely(ret))
1147
goto error;
1148
1149
ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1);
1150
drm_exec_retry_on_contention(&ctx->exec);
1151
if (unlikely(ret))
1152
goto error;
1153
}
1154
return 0;
1155
1156
error:
1157
pr_err("Failed to reserve buffers in ttm.\n");
1158
drm_exec_fini(&ctx->exec);
1159
return ret;
1160
}
1161
1162
/**
1163
* reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally
1164
* @mem: KFD BO structure.
1165
* @vm: the VM to reserve. If NULL, then all VMs associated with the BO
1166
* is used. Otherwise, a single VM associated with the BO.
1167
* @map_type: the mapping status that will be used to filter the VMs.
1168
* @ctx: the struct that will be used in unreserve_bo_and_vms().
1169
*
1170
* Returns 0 for success, negative for failure.
1171
*/
1172
static int reserve_bo_and_cond_vms(struct kgd_mem *mem,
1173
struct amdgpu_vm *vm, enum bo_vm_match map_type,
1174
struct bo_vm_reservation_context *ctx)
1175
{
1176
struct kfd_mem_attachment *entry;
1177
struct amdgpu_bo *bo = mem->bo;
1178
int ret;
1179
1180
ctx->sync = &mem->sync;
1181
drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT |
1182
DRM_EXEC_IGNORE_DUPLICATES, 0);
1183
drm_exec_until_all_locked(&ctx->exec) {
1184
ctx->n_vms = 0;
1185
list_for_each_entry(entry, &mem->attachments, list) {
1186
if ((vm && vm != entry->bo_va->base.vm) ||
1187
(entry->is_mapped != map_type
1188
&& map_type != BO_VM_ALL))
1189
continue;
1190
1191
ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm,
1192
&ctx->exec, 2);
1193
drm_exec_retry_on_contention(&ctx->exec);
1194
if (unlikely(ret))
1195
goto error;
1196
++ctx->n_vms;
1197
}
1198
1199
ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1);
1200
drm_exec_retry_on_contention(&ctx->exec);
1201
if (unlikely(ret))
1202
goto error;
1203
}
1204
return 0;
1205
1206
error:
1207
pr_err("Failed to reserve buffers in ttm.\n");
1208
drm_exec_fini(&ctx->exec);
1209
return ret;
1210
}
1211
1212
/**
1213
* unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context
1214
* @ctx: Reservation context to unreserve
1215
* @wait: Optionally wait for a sync object representing pending VM updates
1216
* @intr: Whether the wait is interruptible
1217
*
1218
* Also frees any resources allocated in
1219
* reserve_bo_and_(cond_)vm(s). Returns the status from
1220
* amdgpu_sync_wait.
1221
*/
1222
static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx,
1223
bool wait, bool intr)
1224
{
1225
int ret = 0;
1226
1227
if (wait)
1228
ret = amdgpu_sync_wait(ctx->sync, intr);
1229
1230
drm_exec_fini(&ctx->exec);
1231
ctx->sync = NULL;
1232
return ret;
1233
}
1234
1235
static int unmap_bo_from_gpuvm(struct kgd_mem *mem,
1236
struct kfd_mem_attachment *entry,
1237
struct amdgpu_sync *sync)
1238
{
1239
struct amdgpu_bo_va *bo_va = entry->bo_va;
1240
struct amdgpu_device *adev = entry->adev;
1241
struct amdgpu_vm *vm = bo_va->base.vm;
1242
1243
if (bo_va->queue_refcount) {
1244
pr_debug("bo_va->queue_refcount %d\n", bo_va->queue_refcount);
1245
return -EBUSY;
1246
}
1247
1248
(void)amdgpu_vm_bo_unmap(adev, bo_va, entry->va);
1249
1250
(void)amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update);
1251
1252
(void)amdgpu_sync_fence(sync, bo_va->last_pt_update, GFP_KERNEL);
1253
1254
return 0;
1255
}
1256
1257
static int update_gpuvm_pte(struct kgd_mem *mem,
1258
struct kfd_mem_attachment *entry,
1259
struct amdgpu_sync *sync)
1260
{
1261
struct amdgpu_bo_va *bo_va = entry->bo_va;
1262
struct amdgpu_device *adev = entry->adev;
1263
int ret;
1264
1265
ret = kfd_mem_dmamap_attachment(mem, entry);
1266
if (ret)
1267
return ret;
1268
1269
/* Update the page tables */
1270
ret = amdgpu_vm_bo_update(adev, bo_va, false);
1271
if (ret) {
1272
pr_err("amdgpu_vm_bo_update failed\n");
1273
return ret;
1274
}
1275
1276
return amdgpu_sync_fence(sync, bo_va->last_pt_update, GFP_KERNEL);
1277
}
1278
1279
static int map_bo_to_gpuvm(struct kgd_mem *mem,
1280
struct kfd_mem_attachment *entry,
1281
struct amdgpu_sync *sync,
1282
bool no_update_pte)
1283
{
1284
int ret;
1285
1286
/* Set virtual address for the allocation */
1287
ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0,
1288
amdgpu_bo_size(entry->bo_va->base.bo),
1289
entry->pte_flags);
1290
if (ret) {
1291
pr_err("Failed to map VA 0x%llx in vm. ret %d\n",
1292
entry->va, ret);
1293
return ret;
1294
}
1295
1296
if (no_update_pte)
1297
return 0;
1298
1299
ret = update_gpuvm_pte(mem, entry, sync);
1300
if (ret) {
1301
pr_err("update_gpuvm_pte() failed\n");
1302
goto update_gpuvm_pte_failed;
1303
}
1304
1305
return 0;
1306
1307
update_gpuvm_pte_failed:
1308
unmap_bo_from_gpuvm(mem, entry, sync);
1309
kfd_mem_dmaunmap_attachment(mem, entry);
1310
return ret;
1311
}
1312
1313
static int process_validate_vms(struct amdkfd_process_info *process_info,
1314
struct ww_acquire_ctx *ticket)
1315
{
1316
struct amdgpu_vm *peer_vm;
1317
int ret;
1318
1319
list_for_each_entry(peer_vm, &process_info->vm_list_head,
1320
vm_list_node) {
1321
ret = vm_validate_pt_pd_bos(peer_vm, ticket);
1322
if (ret)
1323
return ret;
1324
}
1325
1326
return 0;
1327
}
1328
1329
static int process_sync_pds_resv(struct amdkfd_process_info *process_info,
1330
struct amdgpu_sync *sync)
1331
{
1332
struct amdgpu_vm *peer_vm;
1333
int ret;
1334
1335
list_for_each_entry(peer_vm, &process_info->vm_list_head,
1336
vm_list_node) {
1337
struct amdgpu_bo *pd = peer_vm->root.bo;
1338
1339
ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv,
1340
AMDGPU_SYNC_NE_OWNER,
1341
AMDGPU_FENCE_OWNER_KFD);
1342
if (ret)
1343
return ret;
1344
}
1345
1346
return 0;
1347
}
1348
1349
static int process_update_pds(struct amdkfd_process_info *process_info,
1350
struct amdgpu_sync *sync)
1351
{
1352
struct amdgpu_vm *peer_vm;
1353
int ret;
1354
1355
list_for_each_entry(peer_vm, &process_info->vm_list_head,
1356
vm_list_node) {
1357
ret = vm_update_pds(peer_vm, sync);
1358
if (ret)
1359
return ret;
1360
}
1361
1362
return 0;
1363
}
1364
1365
static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info,
1366
struct dma_fence **ef)
1367
{
1368
struct amdkfd_process_info *info = NULL;
1369
int ret;
1370
1371
if (!*process_info) {
1372
info = kzalloc(sizeof(*info), GFP_KERNEL);
1373
if (!info)
1374
return -ENOMEM;
1375
1376
mutex_init(&info->lock);
1377
mutex_init(&info->notifier_lock);
1378
INIT_LIST_HEAD(&info->vm_list_head);
1379
INIT_LIST_HEAD(&info->kfd_bo_list);
1380
INIT_LIST_HEAD(&info->userptr_valid_list);
1381
INIT_LIST_HEAD(&info->userptr_inval_list);
1382
1383
info->eviction_fence =
1384
amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
1385
current->mm,
1386
NULL);
1387
if (!info->eviction_fence) {
1388
pr_err("Failed to create eviction fence\n");
1389
ret = -ENOMEM;
1390
goto create_evict_fence_fail;
1391
}
1392
1393
info->pid = get_task_pid(current->group_leader, PIDTYPE_PID);
1394
INIT_DELAYED_WORK(&info->restore_userptr_work,
1395
amdgpu_amdkfd_restore_userptr_worker);
1396
1397
*process_info = info;
1398
}
1399
1400
vm->process_info = *process_info;
1401
1402
/* Validate page directory and attach eviction fence */
1403
ret = amdgpu_bo_reserve(vm->root.bo, true);
1404
if (ret)
1405
goto reserve_pd_fail;
1406
ret = vm_validate_pt_pd_bos(vm, NULL);
1407
if (ret) {
1408
pr_err("validate_pt_pd_bos() failed\n");
1409
goto validate_pd_fail;
1410
}
1411
ret = amdgpu_bo_sync_wait(vm->root.bo,
1412
AMDGPU_FENCE_OWNER_KFD, false);
1413
if (ret)
1414
goto wait_pd_fail;
1415
ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1);
1416
if (ret)
1417
goto reserve_shared_fail;
1418
dma_resv_add_fence(vm->root.bo->tbo.base.resv,
1419
&vm->process_info->eviction_fence->base,
1420
DMA_RESV_USAGE_BOOKKEEP);
1421
amdgpu_bo_unreserve(vm->root.bo);
1422
1423
/* Update process info */
1424
mutex_lock(&vm->process_info->lock);
1425
list_add_tail(&vm->vm_list_node,
1426
&(vm->process_info->vm_list_head));
1427
vm->process_info->n_vms++;
1428
if (ef)
1429
*ef = dma_fence_get(&vm->process_info->eviction_fence->base);
1430
mutex_unlock(&vm->process_info->lock);
1431
1432
return 0;
1433
1434
reserve_shared_fail:
1435
wait_pd_fail:
1436
validate_pd_fail:
1437
amdgpu_bo_unreserve(vm->root.bo);
1438
reserve_pd_fail:
1439
vm->process_info = NULL;
1440
if (info) {
1441
dma_fence_put(&info->eviction_fence->base);
1442
*process_info = NULL;
1443
put_pid(info->pid);
1444
create_evict_fence_fail:
1445
mutex_destroy(&info->lock);
1446
mutex_destroy(&info->notifier_lock);
1447
kfree(info);
1448
}
1449
return ret;
1450
}
1451
1452
/**
1453
* amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria
1454
* @bo: Handle of buffer object being pinned
1455
* @domain: Domain into which BO should be pinned
1456
*
1457
* - USERPTR BOs are UNPINNABLE and will return error
1458
* - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1459
* PIN count incremented. It is valid to PIN a BO multiple times
1460
*
1461
* Return: ZERO if successful in pinning, Non-Zero in case of error.
1462
*/
1463
static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain)
1464
{
1465
int ret = 0;
1466
1467
ret = amdgpu_bo_reserve(bo, false);
1468
if (unlikely(ret))
1469
return ret;
1470
1471
if (bo->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS) {
1472
/*
1473
* If bo is not contiguous on VRAM, move to system memory first to ensure
1474
* we can get contiguous VRAM space after evicting other BOs.
1475
*/
1476
if (!(bo->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) {
1477
struct ttm_operation_ctx ctx = { true, false };
1478
1479
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
1480
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
1481
if (unlikely(ret)) {
1482
pr_debug("validate bo 0x%p to GTT failed %d\n", &bo->tbo, ret);
1483
goto out;
1484
}
1485
}
1486
}
1487
1488
ret = amdgpu_bo_pin(bo, domain);
1489
if (ret)
1490
pr_err("Error in Pinning BO to domain: %d\n", domain);
1491
1492
amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
1493
out:
1494
amdgpu_bo_unreserve(bo);
1495
return ret;
1496
}
1497
1498
/**
1499
* amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria
1500
* @bo: Handle of buffer object being unpinned
1501
*
1502
* - Is a illegal request for USERPTR BOs and is ignored
1503
* - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1504
* PIN count decremented. Calls to UNPIN must balance calls to PIN
1505
*/
1506
static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo)
1507
{
1508
int ret = 0;
1509
1510
ret = amdgpu_bo_reserve(bo, false);
1511
if (unlikely(ret))
1512
return;
1513
1514
amdgpu_bo_unpin(bo);
1515
amdgpu_bo_unreserve(bo);
1516
}
1517
1518
int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev,
1519
struct amdgpu_vm *avm,
1520
void **process_info,
1521
struct dma_fence **ef)
1522
{
1523
int ret;
1524
1525
/* Already a compute VM? */
1526
if (avm->process_info)
1527
return -EINVAL;
1528
1529
/* Convert VM into a compute VM */
1530
ret = amdgpu_vm_make_compute(adev, avm);
1531
if (ret)
1532
return ret;
1533
1534
/* Initialize KFD part of the VM and process info */
1535
ret = init_kfd_vm(avm, process_info, ef);
1536
if (ret)
1537
return ret;
1538
1539
amdgpu_vm_set_task_info(avm);
1540
1541
return 0;
1542
}
1543
1544
void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev,
1545
struct amdgpu_vm *vm)
1546
{
1547
struct amdkfd_process_info *process_info = vm->process_info;
1548
1549
if (!process_info)
1550
return;
1551
1552
/* Update process info */
1553
mutex_lock(&process_info->lock);
1554
process_info->n_vms--;
1555
list_del(&vm->vm_list_node);
1556
mutex_unlock(&process_info->lock);
1557
1558
vm->process_info = NULL;
1559
1560
/* Release per-process resources when last compute VM is destroyed */
1561
if (!process_info->n_vms) {
1562
WARN_ON(!list_empty(&process_info->kfd_bo_list));
1563
WARN_ON(!list_empty(&process_info->userptr_valid_list));
1564
WARN_ON(!list_empty(&process_info->userptr_inval_list));
1565
1566
dma_fence_put(&process_info->eviction_fence->base);
1567
cancel_delayed_work_sync(&process_info->restore_userptr_work);
1568
put_pid(process_info->pid);
1569
mutex_destroy(&process_info->lock);
1570
mutex_destroy(&process_info->notifier_lock);
1571
kfree(process_info);
1572
}
1573
}
1574
1575
uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv)
1576
{
1577
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1578
struct amdgpu_bo *pd = avm->root.bo;
1579
struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
1580
1581
if (adev->asic_type < CHIP_VEGA10)
1582
return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT;
1583
return avm->pd_phys_addr;
1584
}
1585
1586
void amdgpu_amdkfd_block_mmu_notifications(void *p)
1587
{
1588
struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1589
1590
mutex_lock(&pinfo->lock);
1591
WRITE_ONCE(pinfo->block_mmu_notifications, true);
1592
mutex_unlock(&pinfo->lock);
1593
}
1594
1595
int amdgpu_amdkfd_criu_resume(void *p)
1596
{
1597
int ret = 0;
1598
struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1599
1600
mutex_lock(&pinfo->lock);
1601
pr_debug("scheduling work\n");
1602
mutex_lock(&pinfo->notifier_lock);
1603
pinfo->evicted_bos++;
1604
mutex_unlock(&pinfo->notifier_lock);
1605
if (!READ_ONCE(pinfo->block_mmu_notifications)) {
1606
ret = -EINVAL;
1607
goto out_unlock;
1608
}
1609
WRITE_ONCE(pinfo->block_mmu_notifications, false);
1610
queue_delayed_work(system_freezable_wq,
1611
&pinfo->restore_userptr_work, 0);
1612
1613
out_unlock:
1614
mutex_unlock(&pinfo->lock);
1615
return ret;
1616
}
1617
1618
size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev,
1619
uint8_t xcp_id)
1620
{
1621
uint64_t reserved_for_pt =
1622
ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
1623
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
1624
uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0);
1625
ssize_t available;
1626
uint64_t vram_available, system_mem_available, ttm_mem_available;
1627
1628
spin_lock(&kfd_mem_limit.mem_limit_lock);
1629
vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id)
1630
- adev->kfd.vram_used_aligned[xcp_id]
1631
- atomic64_read(&adev->vram_pin_size)
1632
- reserved_for_pt
1633
- reserved_for_ras;
1634
1635
if (adev->apu_prefer_gtt) {
1636
system_mem_available = no_system_mem_limit ?
1637
kfd_mem_limit.max_system_mem_limit :
1638
kfd_mem_limit.max_system_mem_limit -
1639
kfd_mem_limit.system_mem_used;
1640
1641
ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit -
1642
kfd_mem_limit.ttm_mem_used;
1643
1644
available = min3(system_mem_available, ttm_mem_available,
1645
vram_available);
1646
available = ALIGN_DOWN(available, PAGE_SIZE);
1647
} else {
1648
available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN);
1649
}
1650
1651
spin_unlock(&kfd_mem_limit.mem_limit_lock);
1652
1653
if (available < 0)
1654
available = 0;
1655
1656
return available;
1657
}
1658
1659
int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1660
struct amdgpu_device *adev, uint64_t va, uint64_t size,
1661
void *drm_priv, struct kgd_mem **mem,
1662
uint64_t *offset, uint32_t flags, bool criu_resume)
1663
{
1664
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1665
struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm);
1666
enum ttm_bo_type bo_type = ttm_bo_type_device;
1667
struct sg_table *sg = NULL;
1668
uint64_t user_addr = 0;
1669
struct amdgpu_bo *bo;
1670
struct drm_gem_object *gobj = NULL;
1671
u32 domain, alloc_domain;
1672
uint64_t aligned_size;
1673
int8_t xcp_id = -1;
1674
u64 alloc_flags;
1675
int ret;
1676
1677
/*
1678
* Check on which domain to allocate BO
1679
*/
1680
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1681
domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM;
1682
1683
if (adev->apu_prefer_gtt) {
1684
domain = AMDGPU_GEM_DOMAIN_GTT;
1685
alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
1686
alloc_flags = 0;
1687
} else {
1688
alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE;
1689
alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ?
1690
AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0;
1691
1692
/* For contiguous VRAM allocation */
1693
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS)
1694
alloc_flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1695
}
1696
xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ?
1697
0 : fpriv->xcp_id;
1698
} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
1699
domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
1700
alloc_flags = 0;
1701
} else {
1702
domain = AMDGPU_GEM_DOMAIN_GTT;
1703
alloc_domain = AMDGPU_GEM_DOMAIN_CPU;
1704
alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE;
1705
1706
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1707
if (!offset || !*offset)
1708
return -EINVAL;
1709
user_addr = untagged_addr(*offset);
1710
} else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1711
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1712
bo_type = ttm_bo_type_sg;
1713
if (size > UINT_MAX)
1714
return -EINVAL;
1715
sg = create_sg_table(*offset, size);
1716
if (!sg)
1717
return -ENOMEM;
1718
} else {
1719
return -EINVAL;
1720
}
1721
}
1722
1723
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT)
1724
alloc_flags |= AMDGPU_GEM_CREATE_COHERENT;
1725
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT)
1726
alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT;
1727
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED)
1728
alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED;
1729
1730
*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
1731
if (!*mem) {
1732
ret = -ENOMEM;
1733
goto err;
1734
}
1735
INIT_LIST_HEAD(&(*mem)->attachments);
1736
mutex_init(&(*mem)->lock);
1737
(*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM);
1738
1739
/* Workaround for AQL queue wraparound bug. Map the same
1740
* memory twice. That means we only actually allocate half
1741
* the memory.
1742
*/
1743
if ((*mem)->aql_queue)
1744
size >>= 1;
1745
aligned_size = PAGE_ALIGN(size);
1746
1747
(*mem)->alloc_flags = flags;
1748
1749
amdgpu_sync_create(&(*mem)->sync);
1750
1751
ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags,
1752
xcp_id);
1753
if (ret) {
1754
pr_debug("Insufficient memory\n");
1755
goto err_reserve_limit;
1756
}
1757
1758
pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n",
1759
va, (*mem)->aql_queue ? size << 1 : size,
1760
domain_string(alloc_domain), xcp_id);
1761
1762
ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags,
1763
bo_type, NULL, &gobj, xcp_id + 1);
1764
if (ret) {
1765
pr_debug("Failed to create BO on domain %s. ret %d\n",
1766
domain_string(alloc_domain), ret);
1767
goto err_bo_create;
1768
}
1769
ret = drm_vma_node_allow(&gobj->vma_node, drm_priv);
1770
if (ret) {
1771
pr_debug("Failed to allow vma node access. ret %d\n", ret);
1772
goto err_node_allow;
1773
}
1774
ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle);
1775
if (ret)
1776
goto err_gem_handle_create;
1777
bo = gem_to_amdgpu_bo(gobj);
1778
if (bo_type == ttm_bo_type_sg) {
1779
bo->tbo.sg = sg;
1780
bo->tbo.ttm->sg = sg;
1781
}
1782
bo->kfd_bo = *mem;
1783
(*mem)->bo = bo;
1784
if (user_addr)
1785
bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO;
1786
1787
(*mem)->va = va;
1788
(*mem)->domain = domain;
1789
(*mem)->mapped_to_gpu_memory = 0;
1790
(*mem)->process_info = avm->process_info;
1791
1792
add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr);
1793
1794
if (user_addr) {
1795
pr_debug("creating userptr BO for user_addr = %llx\n", user_addr);
1796
ret = init_user_pages(*mem, user_addr, criu_resume);
1797
if (ret)
1798
goto allocate_init_user_pages_failed;
1799
} else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1800
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1801
ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT);
1802
if (ret) {
1803
pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n");
1804
goto err_pin_bo;
1805
}
1806
bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT;
1807
bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT;
1808
} else {
1809
mutex_lock(&avm->process_info->lock);
1810
if (avm->process_info->eviction_fence &&
1811
!dma_fence_is_signaled(&avm->process_info->eviction_fence->base))
1812
ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain,
1813
&avm->process_info->eviction_fence->base);
1814
mutex_unlock(&avm->process_info->lock);
1815
if (ret)
1816
goto err_validate_bo;
1817
}
1818
1819
if (offset)
1820
*offset = amdgpu_bo_mmap_offset(bo);
1821
1822
return 0;
1823
1824
allocate_init_user_pages_failed:
1825
err_pin_bo:
1826
err_validate_bo:
1827
remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
1828
drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle);
1829
err_gem_handle_create:
1830
drm_vma_node_revoke(&gobj->vma_node, drm_priv);
1831
err_node_allow:
1832
/* Don't unreserve system mem limit twice */
1833
goto err_reserve_limit;
1834
err_bo_create:
1835
amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id);
1836
err_reserve_limit:
1837
amdgpu_sync_free(&(*mem)->sync);
1838
mutex_destroy(&(*mem)->lock);
1839
if (gobj)
1840
drm_gem_object_put(gobj);
1841
else
1842
kfree(*mem);
1843
err:
1844
if (sg) {
1845
sg_free_table(sg);
1846
kfree(sg);
1847
}
1848
return ret;
1849
}
1850
1851
int amdgpu_amdkfd_gpuvm_free_memory_of_gpu(
1852
struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv,
1853
uint64_t *size)
1854
{
1855
struct amdkfd_process_info *process_info = mem->process_info;
1856
unsigned long bo_size = mem->bo->tbo.base.size;
1857
bool use_release_notifier = (mem->bo->kfd_bo == mem);
1858
struct kfd_mem_attachment *entry, *tmp;
1859
struct bo_vm_reservation_context ctx;
1860
unsigned int mapped_to_gpu_memory;
1861
int ret;
1862
bool is_imported = false;
1863
1864
mutex_lock(&mem->lock);
1865
1866
/* Unpin MMIO/DOORBELL BO's that were pinned during allocation */
1867
if (mem->alloc_flags &
1868
(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1869
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1870
amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo);
1871
}
1872
1873
mapped_to_gpu_memory = mem->mapped_to_gpu_memory;
1874
is_imported = mem->is_imported;
1875
mutex_unlock(&mem->lock);
1876
/* lock is not needed after this, since mem is unused and will
1877
* be freed anyway
1878
*/
1879
1880
if (mapped_to_gpu_memory > 0) {
1881
pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n",
1882
mem->va, bo_size);
1883
return -EBUSY;
1884
}
1885
1886
/* Make sure restore workers don't access the BO any more */
1887
mutex_lock(&process_info->lock);
1888
list_del(&mem->validate_list);
1889
mutex_unlock(&process_info->lock);
1890
1891
/* Cleanup user pages and MMU notifiers */
1892
if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
1893
amdgpu_hmm_unregister(mem->bo);
1894
mutex_lock(&process_info->notifier_lock);
1895
amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range);
1896
mutex_unlock(&process_info->notifier_lock);
1897
}
1898
1899
ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx);
1900
if (unlikely(ret))
1901
return ret;
1902
1903
amdgpu_amdkfd_remove_eviction_fence(mem->bo,
1904
process_info->eviction_fence);
1905
pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va,
1906
mem->va + bo_size * (1 + mem->aql_queue));
1907
1908
/* Remove from VM internal data structures */
1909
list_for_each_entry_safe(entry, tmp, &mem->attachments, list) {
1910
kfd_mem_dmaunmap_attachment(mem, entry);
1911
kfd_mem_detach(entry);
1912
}
1913
1914
ret = unreserve_bo_and_vms(&ctx, false, false);
1915
1916
/* Free the sync object */
1917
amdgpu_sync_free(&mem->sync);
1918
1919
/* If the SG is not NULL, it's one we created for a doorbell or mmio
1920
* remap BO. We need to free it.
1921
*/
1922
if (mem->bo->tbo.sg) {
1923
sg_free_table(mem->bo->tbo.sg);
1924
kfree(mem->bo->tbo.sg);
1925
}
1926
1927
/* Update the size of the BO being freed if it was allocated from
1928
* VRAM and is not imported. For APP APU VRAM allocations are done
1929
* in GTT domain
1930
*/
1931
if (size) {
1932
if (!is_imported &&
1933
(mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM ||
1934
(adev->apu_prefer_gtt &&
1935
mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT)))
1936
*size = bo_size;
1937
else
1938
*size = 0;
1939
}
1940
1941
/* Free the BO*/
1942
drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv);
1943
drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle);
1944
if (mem->dmabuf) {
1945
dma_buf_put(mem->dmabuf);
1946
mem->dmabuf = NULL;
1947
}
1948
mutex_destroy(&mem->lock);
1949
1950
/* If this releases the last reference, it will end up calling
1951
* amdgpu_amdkfd_release_notify and kfree the mem struct. That's why
1952
* this needs to be the last call here.
1953
*/
1954
drm_gem_object_put(&mem->bo->tbo.base);
1955
1956
/*
1957
* For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(),
1958
* explicitly free it here.
1959
*/
1960
if (!use_release_notifier)
1961
kfree(mem);
1962
1963
return ret;
1964
}
1965
1966
int amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1967
struct amdgpu_device *adev, struct kgd_mem *mem,
1968
void *drm_priv)
1969
{
1970
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1971
int ret;
1972
struct amdgpu_bo *bo;
1973
uint32_t domain;
1974
struct kfd_mem_attachment *entry;
1975
struct bo_vm_reservation_context ctx;
1976
unsigned long bo_size;
1977
bool is_invalid_userptr = false;
1978
1979
bo = mem->bo;
1980
if (!bo) {
1981
pr_err("Invalid BO when mapping memory to GPU\n");
1982
return -EINVAL;
1983
}
1984
1985
/* Make sure restore is not running concurrently. Since we
1986
* don't map invalid userptr BOs, we rely on the next restore
1987
* worker to do the mapping
1988
*/
1989
mutex_lock(&mem->process_info->lock);
1990
1991
/* Lock notifier lock. If we find an invalid userptr BO, we can be
1992
* sure that the MMU notifier is no longer running
1993
* concurrently and the queues are actually stopped
1994
*/
1995
if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
1996
mutex_lock(&mem->process_info->notifier_lock);
1997
is_invalid_userptr = !!mem->invalid;
1998
mutex_unlock(&mem->process_info->notifier_lock);
1999
}
2000
2001
mutex_lock(&mem->lock);
2002
2003
domain = mem->domain;
2004
bo_size = bo->tbo.base.size;
2005
2006
pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n",
2007
mem->va,
2008
mem->va + bo_size * (1 + mem->aql_queue),
2009
avm, domain_string(domain));
2010
2011
if (!kfd_mem_is_attached(avm, mem)) {
2012
ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue);
2013
if (ret)
2014
goto out;
2015
}
2016
2017
ret = reserve_bo_and_vm(mem, avm, &ctx);
2018
if (unlikely(ret))
2019
goto out;
2020
2021
/* Userptr can be marked as "not invalid", but not actually be
2022
* validated yet (still in the system domain). In that case
2023
* the queues are still stopped and we can leave mapping for
2024
* the next restore worker
2025
*/
2026
if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) &&
2027
bo->tbo.resource->mem_type == TTM_PL_SYSTEM)
2028
is_invalid_userptr = true;
2029
2030
ret = vm_validate_pt_pd_bos(avm, NULL);
2031
if (unlikely(ret))
2032
goto out_unreserve;
2033
2034
list_for_each_entry(entry, &mem->attachments, list) {
2035
if (entry->bo_va->base.vm != avm || entry->is_mapped)
2036
continue;
2037
2038
pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n",
2039
entry->va, entry->va + bo_size, entry);
2040
2041
ret = map_bo_to_gpuvm(mem, entry, ctx.sync,
2042
is_invalid_userptr);
2043
if (ret) {
2044
pr_err("Failed to map bo to gpuvm\n");
2045
goto out_unreserve;
2046
}
2047
2048
ret = vm_update_pds(avm, ctx.sync);
2049
if (ret) {
2050
pr_err("Failed to update page directories\n");
2051
goto out_unreserve;
2052
}
2053
2054
entry->is_mapped = true;
2055
mem->mapped_to_gpu_memory++;
2056
pr_debug("\t INC mapping count %d\n",
2057
mem->mapped_to_gpu_memory);
2058
}
2059
2060
ret = unreserve_bo_and_vms(&ctx, false, false);
2061
2062
goto out;
2063
2064
out_unreserve:
2065
unreserve_bo_and_vms(&ctx, false, false);
2066
out:
2067
mutex_unlock(&mem->process_info->lock);
2068
mutex_unlock(&mem->lock);
2069
return ret;
2070
}
2071
2072
int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv)
2073
{
2074
struct kfd_mem_attachment *entry;
2075
struct amdgpu_vm *vm;
2076
int ret;
2077
2078
vm = drm_priv_to_vm(drm_priv);
2079
2080
mutex_lock(&mem->lock);
2081
2082
ret = amdgpu_bo_reserve(mem->bo, true);
2083
if (ret)
2084
goto out;
2085
2086
list_for_each_entry(entry, &mem->attachments, list) {
2087
if (entry->bo_va->base.vm != vm)
2088
continue;
2089
if (entry->bo_va->base.bo->tbo.ttm &&
2090
!entry->bo_va->base.bo->tbo.ttm->sg)
2091
continue;
2092
2093
kfd_mem_dmaunmap_attachment(mem, entry);
2094
}
2095
2096
amdgpu_bo_unreserve(mem->bo);
2097
out:
2098
mutex_unlock(&mem->lock);
2099
2100
return ret;
2101
}
2102
2103
int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
2104
struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv)
2105
{
2106
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2107
unsigned long bo_size = mem->bo->tbo.base.size;
2108
struct kfd_mem_attachment *entry;
2109
struct bo_vm_reservation_context ctx;
2110
int ret;
2111
2112
mutex_lock(&mem->lock);
2113
2114
ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx);
2115
if (unlikely(ret))
2116
goto out;
2117
/* If no VMs were reserved, it means the BO wasn't actually mapped */
2118
if (ctx.n_vms == 0) {
2119
ret = -EINVAL;
2120
goto unreserve_out;
2121
}
2122
2123
ret = vm_validate_pt_pd_bos(avm, NULL);
2124
if (unlikely(ret))
2125
goto unreserve_out;
2126
2127
pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n",
2128
mem->va,
2129
mem->va + bo_size * (1 + mem->aql_queue),
2130
avm);
2131
2132
list_for_each_entry(entry, &mem->attachments, list) {
2133
if (entry->bo_va->base.vm != avm || !entry->is_mapped)
2134
continue;
2135
2136
pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n",
2137
entry->va, entry->va + bo_size, entry);
2138
2139
ret = unmap_bo_from_gpuvm(mem, entry, ctx.sync);
2140
if (ret)
2141
goto unreserve_out;
2142
2143
entry->is_mapped = false;
2144
2145
mem->mapped_to_gpu_memory--;
2146
pr_debug("\t DEC mapping count %d\n",
2147
mem->mapped_to_gpu_memory);
2148
}
2149
2150
unreserve_out:
2151
unreserve_bo_and_vms(&ctx, false, false);
2152
out:
2153
mutex_unlock(&mem->lock);
2154
return ret;
2155
}
2156
2157
int amdgpu_amdkfd_gpuvm_sync_memory(
2158
struct amdgpu_device *adev, struct kgd_mem *mem, bool intr)
2159
{
2160
struct amdgpu_sync sync;
2161
int ret;
2162
2163
amdgpu_sync_create(&sync);
2164
2165
mutex_lock(&mem->lock);
2166
amdgpu_sync_clone(&mem->sync, &sync);
2167
mutex_unlock(&mem->lock);
2168
2169
ret = amdgpu_sync_wait(&sync, intr);
2170
amdgpu_sync_free(&sync);
2171
return ret;
2172
}
2173
2174
/**
2175
* amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count
2176
* @bo: Buffer object to be mapped
2177
* @bo_gart: Return bo reference
2178
*
2179
* Before return, bo reference count is incremented. To release the reference and unpin/
2180
* unmap the BO, call amdgpu_amdkfd_free_gtt_mem.
2181
*/
2182
int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo, struct amdgpu_bo **bo_gart)
2183
{
2184
int ret;
2185
2186
ret = amdgpu_bo_reserve(bo, true);
2187
if (ret) {
2188
pr_err("Failed to reserve bo. ret %d\n", ret);
2189
goto err_reserve_bo_failed;
2190
}
2191
2192
ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2193
if (ret) {
2194
pr_err("Failed to pin bo. ret %d\n", ret);
2195
goto err_pin_bo_failed;
2196
}
2197
2198
ret = amdgpu_ttm_alloc_gart(&bo->tbo);
2199
if (ret) {
2200
pr_err("Failed to bind bo to GART. ret %d\n", ret);
2201
goto err_map_bo_gart_failed;
2202
}
2203
2204
amdgpu_amdkfd_remove_eviction_fence(
2205
bo, bo->vm_bo->vm->process_info->eviction_fence);
2206
2207
amdgpu_bo_unreserve(bo);
2208
2209
*bo_gart = amdgpu_bo_ref(bo);
2210
2211
return 0;
2212
2213
err_map_bo_gart_failed:
2214
amdgpu_bo_unpin(bo);
2215
err_pin_bo_failed:
2216
amdgpu_bo_unreserve(bo);
2217
err_reserve_bo_failed:
2218
2219
return ret;
2220
}
2221
2222
/** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access
2223
*
2224
* @mem: Buffer object to be mapped for CPU access
2225
* @kptr[out]: pointer in kernel CPU address space
2226
* @size[out]: size of the buffer
2227
*
2228
* Pins the BO and maps it for kernel CPU access. The eviction fence is removed
2229
* from the BO, since pinned BOs cannot be evicted. The bo must remain on the
2230
* validate_list, so the GPU mapping can be restored after a page table was
2231
* evicted.
2232
*
2233
* Return: 0 on success, error code on failure
2234
*/
2235
int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem,
2236
void **kptr, uint64_t *size)
2237
{
2238
int ret;
2239
struct amdgpu_bo *bo = mem->bo;
2240
2241
if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
2242
pr_err("userptr can't be mapped to kernel\n");
2243
return -EINVAL;
2244
}
2245
2246
mutex_lock(&mem->process_info->lock);
2247
2248
ret = amdgpu_bo_reserve(bo, true);
2249
if (ret) {
2250
pr_err("Failed to reserve bo. ret %d\n", ret);
2251
goto bo_reserve_failed;
2252
}
2253
2254
ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2255
if (ret) {
2256
pr_err("Failed to pin bo. ret %d\n", ret);
2257
goto pin_failed;
2258
}
2259
2260
ret = amdgpu_bo_kmap(bo, kptr);
2261
if (ret) {
2262
pr_err("Failed to map bo to kernel. ret %d\n", ret);
2263
goto kmap_failed;
2264
}
2265
2266
amdgpu_amdkfd_remove_eviction_fence(
2267
bo, mem->process_info->eviction_fence);
2268
2269
if (size)
2270
*size = amdgpu_bo_size(bo);
2271
2272
amdgpu_bo_unreserve(bo);
2273
2274
mutex_unlock(&mem->process_info->lock);
2275
return 0;
2276
2277
kmap_failed:
2278
amdgpu_bo_unpin(bo);
2279
pin_failed:
2280
amdgpu_bo_unreserve(bo);
2281
bo_reserve_failed:
2282
mutex_unlock(&mem->process_info->lock);
2283
2284
return ret;
2285
}
2286
2287
/** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access
2288
*
2289
* @mem: Buffer object to be unmapped for CPU access
2290
*
2291
* Removes the kernel CPU mapping and unpins the BO. It does not restore the
2292
* eviction fence, so this function should only be used for cleanup before the
2293
* BO is destroyed.
2294
*/
2295
void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem)
2296
{
2297
struct amdgpu_bo *bo = mem->bo;
2298
2299
(void)amdgpu_bo_reserve(bo, true);
2300
amdgpu_bo_kunmap(bo);
2301
amdgpu_bo_unpin(bo);
2302
amdgpu_bo_unreserve(bo);
2303
}
2304
2305
int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev,
2306
struct kfd_vm_fault_info *mem)
2307
{
2308
if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) {
2309
*mem = *adev->gmc.vm_fault_info;
2310
mb(); /* make sure read happened */
2311
atomic_set(&adev->gmc.vm_fault_info_updated, 0);
2312
}
2313
return 0;
2314
}
2315
2316
static int import_obj_create(struct amdgpu_device *adev,
2317
struct dma_buf *dma_buf,
2318
struct drm_gem_object *obj,
2319
uint64_t va, void *drm_priv,
2320
struct kgd_mem **mem, uint64_t *size,
2321
uint64_t *mmap_offset)
2322
{
2323
struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2324
struct amdgpu_bo *bo;
2325
int ret;
2326
2327
bo = gem_to_amdgpu_bo(obj);
2328
if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM |
2329
AMDGPU_GEM_DOMAIN_GTT)))
2330
/* Only VRAM and GTT BOs are supported */
2331
return -EINVAL;
2332
2333
*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
2334
if (!*mem)
2335
return -ENOMEM;
2336
2337
ret = drm_vma_node_allow(&obj->vma_node, drm_priv);
2338
if (ret)
2339
goto err_free_mem;
2340
2341
if (size)
2342
*size = amdgpu_bo_size(bo);
2343
2344
if (mmap_offset)
2345
*mmap_offset = amdgpu_bo_mmap_offset(bo);
2346
2347
INIT_LIST_HEAD(&(*mem)->attachments);
2348
mutex_init(&(*mem)->lock);
2349
2350
(*mem)->alloc_flags =
2351
((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
2352
KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT)
2353
| KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE
2354
| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
2355
2356
get_dma_buf(dma_buf);
2357
(*mem)->dmabuf = dma_buf;
2358
(*mem)->bo = bo;
2359
(*mem)->va = va;
2360
(*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) &&
2361
!adev->apu_prefer_gtt ?
2362
AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT;
2363
2364
(*mem)->mapped_to_gpu_memory = 0;
2365
(*mem)->process_info = avm->process_info;
2366
add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false);
2367
amdgpu_sync_create(&(*mem)->sync);
2368
(*mem)->is_imported = true;
2369
2370
mutex_lock(&avm->process_info->lock);
2371
if (avm->process_info->eviction_fence &&
2372
!dma_fence_is_signaled(&avm->process_info->eviction_fence->base))
2373
ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain,
2374
&avm->process_info->eviction_fence->base);
2375
mutex_unlock(&avm->process_info->lock);
2376
if (ret)
2377
goto err_remove_mem;
2378
2379
return 0;
2380
2381
err_remove_mem:
2382
remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
2383
drm_vma_node_revoke(&obj->vma_node, drm_priv);
2384
err_free_mem:
2385
kfree(*mem);
2386
return ret;
2387
}
2388
2389
int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd,
2390
uint64_t va, void *drm_priv,
2391
struct kgd_mem **mem, uint64_t *size,
2392
uint64_t *mmap_offset)
2393
{
2394
struct drm_gem_object *obj;
2395
uint32_t handle;
2396
int ret;
2397
2398
ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd,
2399
&handle);
2400
if (ret)
2401
return ret;
2402
obj = drm_gem_object_lookup(adev->kfd.client.file, handle);
2403
if (!obj) {
2404
ret = -EINVAL;
2405
goto err_release_handle;
2406
}
2407
2408
ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size,
2409
mmap_offset);
2410
if (ret)
2411
goto err_put_obj;
2412
2413
(*mem)->gem_handle = handle;
2414
2415
return 0;
2416
2417
err_put_obj:
2418
drm_gem_object_put(obj);
2419
err_release_handle:
2420
drm_gem_handle_delete(adev->kfd.client.file, handle);
2421
return ret;
2422
}
2423
2424
int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem,
2425
struct dma_buf **dma_buf)
2426
{
2427
int ret;
2428
2429
mutex_lock(&mem->lock);
2430
ret = kfd_mem_export_dmabuf(mem);
2431
if (ret)
2432
goto out;
2433
2434
get_dma_buf(mem->dmabuf);
2435
*dma_buf = mem->dmabuf;
2436
out:
2437
mutex_unlock(&mem->lock);
2438
return ret;
2439
}
2440
2441
/* Evict a userptr BO by stopping the queues if necessary
2442
*
2443
* Runs in MMU notifier, may be in RECLAIM_FS context. This means it
2444
* cannot do any memory allocations, and cannot take any locks that
2445
* are held elsewhere while allocating memory.
2446
*
2447
* It doesn't do anything to the BO itself. The real work happens in
2448
* restore, where we get updated page addresses. This function only
2449
* ensures that GPU access to the BO is stopped.
2450
*/
2451
int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni,
2452
unsigned long cur_seq, struct kgd_mem *mem)
2453
{
2454
struct amdkfd_process_info *process_info = mem->process_info;
2455
int r = 0;
2456
2457
/* Do not process MMU notifications during CRIU restore until
2458
* KFD_CRIU_OP_RESUME IOCTL is received
2459
*/
2460
if (READ_ONCE(process_info->block_mmu_notifications))
2461
return 0;
2462
2463
mutex_lock(&process_info->notifier_lock);
2464
mmu_interval_set_seq(mni, cur_seq);
2465
2466
mem->invalid++;
2467
if (++process_info->evicted_bos == 1) {
2468
/* First eviction, stop the queues */
2469
r = kgd2kfd_quiesce_mm(mni->mm,
2470
KFD_QUEUE_EVICTION_TRIGGER_USERPTR);
2471
2472
if (r && r != -ESRCH)
2473
pr_err("Failed to quiesce KFD\n");
2474
2475
if (r != -ESRCH)
2476
queue_delayed_work(system_freezable_wq,
2477
&process_info->restore_userptr_work,
2478
msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2479
}
2480
mutex_unlock(&process_info->notifier_lock);
2481
2482
return r;
2483
}
2484
2485
/* Update invalid userptr BOs
2486
*
2487
* Moves invalidated (evicted) userptr BOs from userptr_valid_list to
2488
* userptr_inval_list and updates user pages for all BOs that have
2489
* been invalidated since their last update.
2490
*/
2491
static int update_invalid_user_pages(struct amdkfd_process_info *process_info,
2492
struct mm_struct *mm)
2493
{
2494
struct kgd_mem *mem, *tmp_mem;
2495
struct amdgpu_bo *bo;
2496
struct ttm_operation_ctx ctx = { false, false };
2497
uint32_t invalid;
2498
int ret = 0;
2499
2500
mutex_lock(&process_info->notifier_lock);
2501
2502
/* Move all invalidated BOs to the userptr_inval_list */
2503
list_for_each_entry_safe(mem, tmp_mem,
2504
&process_info->userptr_valid_list,
2505
validate_list)
2506
if (mem->invalid)
2507
list_move_tail(&mem->validate_list,
2508
&process_info->userptr_inval_list);
2509
2510
/* Go through userptr_inval_list and update any invalid user_pages */
2511
list_for_each_entry(mem, &process_info->userptr_inval_list,
2512
validate_list) {
2513
invalid = mem->invalid;
2514
if (!invalid)
2515
/* BO hasn't been invalidated since the last
2516
* revalidation attempt. Keep its page list.
2517
*/
2518
continue;
2519
2520
bo = mem->bo;
2521
2522
amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range);
2523
mem->range = NULL;
2524
2525
/* BO reservations and getting user pages (hmm_range_fault)
2526
* must happen outside the notifier lock
2527
*/
2528
mutex_unlock(&process_info->notifier_lock);
2529
2530
/* Move the BO to system (CPU) domain if necessary to unmap
2531
* and free the SG table
2532
*/
2533
if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) {
2534
if (amdgpu_bo_reserve(bo, true))
2535
return -EAGAIN;
2536
amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
2537
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2538
amdgpu_bo_unreserve(bo);
2539
if (ret) {
2540
pr_err("%s: Failed to invalidate userptr BO\n",
2541
__func__);
2542
return -EAGAIN;
2543
}
2544
}
2545
2546
/* Get updated user pages */
2547
ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages,
2548
&mem->range);
2549
if (ret) {
2550
pr_debug("Failed %d to get user pages\n", ret);
2551
2552
/* Return -EFAULT bad address error as success. It will
2553
* fail later with a VM fault if the GPU tries to access
2554
* it. Better than hanging indefinitely with stalled
2555
* user mode queues.
2556
*
2557
* Return other error -EBUSY or -ENOMEM to retry restore
2558
*/
2559
if (ret != -EFAULT)
2560
return ret;
2561
2562
/* If applications unmap memory before destroying the userptr
2563
* from the KFD, trigger a segmentation fault in VM debug mode.
2564
*/
2565
if (amdgpu_ttm_adev(bo->tbo.bdev)->debug_vm_userptr) {
2566
pr_err("Pid %d unmapped memory before destroying userptr at GPU addr 0x%llx\n",
2567
pid_nr(process_info->pid), mem->va);
2568
2569
// Send GPU VM fault to user space
2570
kfd_signal_vm_fault_event_with_userptr(kfd_lookup_process_by_pid(process_info->pid),
2571
mem->va);
2572
}
2573
2574
ret = 0;
2575
}
2576
2577
mutex_lock(&process_info->notifier_lock);
2578
2579
/* Mark the BO as valid unless it was invalidated
2580
* again concurrently.
2581
*/
2582
if (mem->invalid != invalid) {
2583
ret = -EAGAIN;
2584
goto unlock_out;
2585
}
2586
/* set mem valid if mem has hmm range associated */
2587
if (mem->range)
2588
mem->invalid = 0;
2589
}
2590
2591
unlock_out:
2592
mutex_unlock(&process_info->notifier_lock);
2593
2594
return ret;
2595
}
2596
2597
/* Validate invalid userptr BOs
2598
*
2599
* Validates BOs on the userptr_inval_list. Also updates GPUVM page tables
2600
* with new page addresses and waits for the page table updates to complete.
2601
*/
2602
static int validate_invalid_user_pages(struct amdkfd_process_info *process_info)
2603
{
2604
struct ttm_operation_ctx ctx = { false, false };
2605
struct amdgpu_sync sync;
2606
struct drm_exec exec;
2607
2608
struct amdgpu_vm *peer_vm;
2609
struct kgd_mem *mem, *tmp_mem;
2610
struct amdgpu_bo *bo;
2611
int ret;
2612
2613
amdgpu_sync_create(&sync);
2614
2615
drm_exec_init(&exec, 0, 0);
2616
/* Reserve all BOs and page tables for validation */
2617
drm_exec_until_all_locked(&exec) {
2618
/* Reserve all the page directories */
2619
list_for_each_entry(peer_vm, &process_info->vm_list_head,
2620
vm_list_node) {
2621
ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2);
2622
drm_exec_retry_on_contention(&exec);
2623
if (unlikely(ret))
2624
goto unreserve_out;
2625
}
2626
2627
/* Reserve the userptr_inval_list entries to resv_list */
2628
list_for_each_entry(mem, &process_info->userptr_inval_list,
2629
validate_list) {
2630
struct drm_gem_object *gobj;
2631
2632
gobj = &mem->bo->tbo.base;
2633
ret = drm_exec_prepare_obj(&exec, gobj, 1);
2634
drm_exec_retry_on_contention(&exec);
2635
if (unlikely(ret))
2636
goto unreserve_out;
2637
}
2638
}
2639
2640
ret = process_validate_vms(process_info, NULL);
2641
if (ret)
2642
goto unreserve_out;
2643
2644
/* Validate BOs and update GPUVM page tables */
2645
list_for_each_entry_safe(mem, tmp_mem,
2646
&process_info->userptr_inval_list,
2647
validate_list) {
2648
struct kfd_mem_attachment *attachment;
2649
2650
bo = mem->bo;
2651
2652
/* Validate the BO if we got user pages */
2653
if (bo->tbo.ttm->pages[0]) {
2654
amdgpu_bo_placement_from_domain(bo, mem->domain);
2655
ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2656
if (ret) {
2657
pr_err("%s: failed to validate BO\n", __func__);
2658
goto unreserve_out;
2659
}
2660
}
2661
2662
/* Update mapping. If the BO was not validated
2663
* (because we couldn't get user pages), this will
2664
* clear the page table entries, which will result in
2665
* VM faults if the GPU tries to access the invalid
2666
* memory.
2667
*/
2668
list_for_each_entry(attachment, &mem->attachments, list) {
2669
if (!attachment->is_mapped)
2670
continue;
2671
2672
kfd_mem_dmaunmap_attachment(mem, attachment);
2673
ret = update_gpuvm_pte(mem, attachment, &sync);
2674
if (ret) {
2675
pr_err("%s: update PTE failed\n", __func__);
2676
/* make sure this gets validated again */
2677
mutex_lock(&process_info->notifier_lock);
2678
mem->invalid++;
2679
mutex_unlock(&process_info->notifier_lock);
2680
goto unreserve_out;
2681
}
2682
}
2683
}
2684
2685
/* Update page directories */
2686
ret = process_update_pds(process_info, &sync);
2687
2688
unreserve_out:
2689
drm_exec_fini(&exec);
2690
amdgpu_sync_wait(&sync, false);
2691
amdgpu_sync_free(&sync);
2692
2693
return ret;
2694
}
2695
2696
/* Confirm that all user pages are valid while holding the notifier lock
2697
*
2698
* Moves valid BOs from the userptr_inval_list back to userptr_val_list.
2699
*/
2700
static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info)
2701
{
2702
struct kgd_mem *mem, *tmp_mem;
2703
int ret = 0;
2704
2705
list_for_each_entry_safe(mem, tmp_mem,
2706
&process_info->userptr_inval_list,
2707
validate_list) {
2708
bool valid;
2709
2710
/* keep mem without hmm range at userptr_inval_list */
2711
if (!mem->range)
2712
continue;
2713
2714
/* Only check mem with hmm range associated */
2715
valid = amdgpu_ttm_tt_get_user_pages_done(
2716
mem->bo->tbo.ttm, mem->range);
2717
2718
mem->range = NULL;
2719
if (!valid) {
2720
WARN(!mem->invalid, "Invalid BO not marked invalid");
2721
ret = -EAGAIN;
2722
continue;
2723
}
2724
2725
if (mem->invalid) {
2726
WARN(1, "Valid BO is marked invalid");
2727
ret = -EAGAIN;
2728
continue;
2729
}
2730
2731
list_move_tail(&mem->validate_list,
2732
&process_info->userptr_valid_list);
2733
}
2734
2735
return ret;
2736
}
2737
2738
/* Worker callback to restore evicted userptr BOs
2739
*
2740
* Tries to update and validate all userptr BOs. If successful and no
2741
* concurrent evictions happened, the queues are restarted. Otherwise,
2742
* reschedule for another attempt later.
2743
*/
2744
static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work)
2745
{
2746
struct delayed_work *dwork = to_delayed_work(work);
2747
struct amdkfd_process_info *process_info =
2748
container_of(dwork, struct amdkfd_process_info,
2749
restore_userptr_work);
2750
struct task_struct *usertask;
2751
struct mm_struct *mm;
2752
uint32_t evicted_bos;
2753
2754
mutex_lock(&process_info->notifier_lock);
2755
evicted_bos = process_info->evicted_bos;
2756
mutex_unlock(&process_info->notifier_lock);
2757
if (!evicted_bos)
2758
return;
2759
2760
/* Reference task and mm in case of concurrent process termination */
2761
usertask = get_pid_task(process_info->pid, PIDTYPE_PID);
2762
if (!usertask)
2763
return;
2764
mm = get_task_mm(usertask);
2765
if (!mm) {
2766
put_task_struct(usertask);
2767
return;
2768
}
2769
2770
mutex_lock(&process_info->lock);
2771
2772
if (update_invalid_user_pages(process_info, mm))
2773
goto unlock_out;
2774
/* userptr_inval_list can be empty if all evicted userptr BOs
2775
* have been freed. In that case there is nothing to validate
2776
* and we can just restart the queues.
2777
*/
2778
if (!list_empty(&process_info->userptr_inval_list)) {
2779
if (validate_invalid_user_pages(process_info))
2780
goto unlock_out;
2781
}
2782
/* Final check for concurrent evicton and atomic update. If
2783
* another eviction happens after successful update, it will
2784
* be a first eviction that calls quiesce_mm. The eviction
2785
* reference counting inside KFD will handle this case.
2786
*/
2787
mutex_lock(&process_info->notifier_lock);
2788
if (process_info->evicted_bos != evicted_bos)
2789
goto unlock_notifier_out;
2790
2791
if (confirm_valid_user_pages_locked(process_info)) {
2792
WARN(1, "User pages unexpectedly invalid");
2793
goto unlock_notifier_out;
2794
}
2795
2796
process_info->evicted_bos = evicted_bos = 0;
2797
2798
if (kgd2kfd_resume_mm(mm)) {
2799
pr_err("%s: Failed to resume KFD\n", __func__);
2800
/* No recovery from this failure. Probably the CP is
2801
* hanging. No point trying again.
2802
*/
2803
}
2804
2805
unlock_notifier_out:
2806
mutex_unlock(&process_info->notifier_lock);
2807
unlock_out:
2808
mutex_unlock(&process_info->lock);
2809
2810
/* If validation failed, reschedule another attempt */
2811
if (evicted_bos) {
2812
queue_delayed_work(system_freezable_wq,
2813
&process_info->restore_userptr_work,
2814
msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2815
2816
kfd_smi_event_queue_restore_rescheduled(mm);
2817
}
2818
mmput(mm);
2819
put_task_struct(usertask);
2820
}
2821
2822
static void replace_eviction_fence(struct dma_fence __rcu **ef,
2823
struct dma_fence *new_ef)
2824
{
2825
struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true
2826
/* protected by process_info->lock */);
2827
2828
/* If we're replacing an unsignaled eviction fence, that fence will
2829
* never be signaled, and if anyone is still waiting on that fence,
2830
* they will hang forever. This should never happen. We should only
2831
* replace the fence in restore_work that only gets scheduled after
2832
* eviction work signaled the fence.
2833
*/
2834
WARN_ONCE(!dma_fence_is_signaled(old_ef),
2835
"Replacing unsignaled eviction fence");
2836
dma_fence_put(old_ef);
2837
}
2838
2839
/** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given
2840
* KFD process identified by process_info
2841
*
2842
* @process_info: amdkfd_process_info of the KFD process
2843
*
2844
* After memory eviction, restore thread calls this function. The function
2845
* should be called when the Process is still valid. BO restore involves -
2846
*
2847
* 1. Release old eviction fence and create new one
2848
* 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list.
2849
* 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of
2850
* BOs that need to be reserved.
2851
* 4. Reserve all the BOs
2852
* 5. Validate of PD and PT BOs.
2853
* 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence
2854
* 7. Add fence to all PD and PT BOs.
2855
* 8. Unreserve all BOs
2856
*/
2857
int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef)
2858
{
2859
struct amdkfd_process_info *process_info = info;
2860
struct amdgpu_vm *peer_vm;
2861
struct kgd_mem *mem;
2862
struct list_head duplicate_save;
2863
struct amdgpu_sync sync_obj;
2864
unsigned long failed_size = 0;
2865
unsigned long total_size = 0;
2866
struct drm_exec exec;
2867
int ret;
2868
2869
INIT_LIST_HEAD(&duplicate_save);
2870
2871
mutex_lock(&process_info->lock);
2872
2873
drm_exec_init(&exec, DRM_EXEC_IGNORE_DUPLICATES, 0);
2874
drm_exec_until_all_locked(&exec) {
2875
list_for_each_entry(peer_vm, &process_info->vm_list_head,
2876
vm_list_node) {
2877
ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2);
2878
drm_exec_retry_on_contention(&exec);
2879
if (unlikely(ret)) {
2880
pr_err("Locking VM PD failed, ret: %d\n", ret);
2881
goto ttm_reserve_fail;
2882
}
2883
}
2884
2885
/* Reserve all BOs and page tables/directory. Add all BOs from
2886
* kfd_bo_list to ctx.list
2887
*/
2888
list_for_each_entry(mem, &process_info->kfd_bo_list,
2889
validate_list) {
2890
struct drm_gem_object *gobj;
2891
2892
gobj = &mem->bo->tbo.base;
2893
ret = drm_exec_prepare_obj(&exec, gobj, 1);
2894
drm_exec_retry_on_contention(&exec);
2895
if (unlikely(ret)) {
2896
pr_err("drm_exec_prepare_obj failed, ret: %d\n", ret);
2897
goto ttm_reserve_fail;
2898
}
2899
}
2900
}
2901
2902
amdgpu_sync_create(&sync_obj);
2903
2904
/* Validate BOs managed by KFD */
2905
list_for_each_entry(mem, &process_info->kfd_bo_list,
2906
validate_list) {
2907
2908
struct amdgpu_bo *bo = mem->bo;
2909
uint32_t domain = mem->domain;
2910
struct dma_resv_iter cursor;
2911
struct dma_fence *fence;
2912
2913
total_size += amdgpu_bo_size(bo);
2914
2915
ret = amdgpu_amdkfd_bo_validate(bo, domain, false);
2916
if (ret) {
2917
pr_debug("Memory eviction: Validate BOs failed\n");
2918
failed_size += amdgpu_bo_size(bo);
2919
ret = amdgpu_amdkfd_bo_validate(bo,
2920
AMDGPU_GEM_DOMAIN_GTT, false);
2921
if (ret) {
2922
pr_debug("Memory eviction: Try again\n");
2923
goto validate_map_fail;
2924
}
2925
}
2926
dma_resv_for_each_fence(&cursor, bo->tbo.base.resv,
2927
DMA_RESV_USAGE_KERNEL, fence) {
2928
ret = amdgpu_sync_fence(&sync_obj, fence, GFP_KERNEL);
2929
if (ret) {
2930
pr_debug("Memory eviction: Sync BO fence failed. Try again\n");
2931
goto validate_map_fail;
2932
}
2933
}
2934
}
2935
2936
if (failed_size)
2937
pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size);
2938
2939
/* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO
2940
* validations above would invalidate DMABuf imports again.
2941
*/
2942
ret = process_validate_vms(process_info, &exec.ticket);
2943
if (ret) {
2944
pr_debug("Validating VMs failed, ret: %d\n", ret);
2945
goto validate_map_fail;
2946
}
2947
2948
/* Update mappings managed by KFD. */
2949
list_for_each_entry(mem, &process_info->kfd_bo_list,
2950
validate_list) {
2951
struct kfd_mem_attachment *attachment;
2952
2953
list_for_each_entry(attachment, &mem->attachments, list) {
2954
if (!attachment->is_mapped)
2955
continue;
2956
2957
kfd_mem_dmaunmap_attachment(mem, attachment);
2958
ret = update_gpuvm_pte(mem, attachment, &sync_obj);
2959
if (ret) {
2960
pr_debug("Memory eviction: update PTE failed. Try again\n");
2961
goto validate_map_fail;
2962
}
2963
}
2964
}
2965
2966
/* Update mappings not managed by KFD */
2967
list_for_each_entry(peer_vm, &process_info->vm_list_head,
2968
vm_list_node) {
2969
struct amdgpu_device *adev = amdgpu_ttm_adev(
2970
peer_vm->root.bo->tbo.bdev);
2971
2972
ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket);
2973
if (ret) {
2974
pr_debug("Memory eviction: handle moved failed. Try again\n");
2975
goto validate_map_fail;
2976
}
2977
}
2978
2979
/* Update page directories */
2980
ret = process_update_pds(process_info, &sync_obj);
2981
if (ret) {
2982
pr_debug("Memory eviction: update PDs failed. Try again\n");
2983
goto validate_map_fail;
2984
}
2985
2986
/* Sync with fences on all the page tables. They implicitly depend on any
2987
* move fences from amdgpu_vm_handle_moved above.
2988
*/
2989
ret = process_sync_pds_resv(process_info, &sync_obj);
2990
if (ret) {
2991
pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n");
2992
goto validate_map_fail;
2993
}
2994
2995
/* Wait for validate and PT updates to finish */
2996
amdgpu_sync_wait(&sync_obj, false);
2997
2998
/* The old eviction fence may be unsignaled if restore happens
2999
* after a GPU reset or suspend/resume. Keep the old fence in that
3000
* case. Otherwise release the old eviction fence and create new
3001
* one, because fence only goes from unsignaled to signaled once
3002
* and cannot be reused. Use context and mm from the old fence.
3003
*
3004
* If an old eviction fence signals after this check, that's OK.
3005
* Anyone signaling an eviction fence must stop the queues first
3006
* and schedule another restore worker.
3007
*/
3008
if (dma_fence_is_signaled(&process_info->eviction_fence->base)) {
3009
struct amdgpu_amdkfd_fence *new_fence =
3010
amdgpu_amdkfd_fence_create(
3011
process_info->eviction_fence->base.context,
3012
process_info->eviction_fence->mm,
3013
NULL);
3014
3015
if (!new_fence) {
3016
pr_err("Failed to create eviction fence\n");
3017
ret = -ENOMEM;
3018
goto validate_map_fail;
3019
}
3020
dma_fence_put(&process_info->eviction_fence->base);
3021
process_info->eviction_fence = new_fence;
3022
replace_eviction_fence(ef, dma_fence_get(&new_fence->base));
3023
} else {
3024
WARN_ONCE(*ef != &process_info->eviction_fence->base,
3025
"KFD eviction fence doesn't match KGD process_info");
3026
}
3027
3028
/* Attach new eviction fence to all BOs except pinned ones */
3029
list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) {
3030
if (mem->bo->tbo.pin_count)
3031
continue;
3032
3033
dma_resv_add_fence(mem->bo->tbo.base.resv,
3034
&process_info->eviction_fence->base,
3035
DMA_RESV_USAGE_BOOKKEEP);
3036
}
3037
/* Attach eviction fence to PD / PT BOs and DMABuf imports */
3038
list_for_each_entry(peer_vm, &process_info->vm_list_head,
3039
vm_list_node) {
3040
struct amdgpu_bo *bo = peer_vm->root.bo;
3041
3042
dma_resv_add_fence(bo->tbo.base.resv,
3043
&process_info->eviction_fence->base,
3044
DMA_RESV_USAGE_BOOKKEEP);
3045
}
3046
3047
validate_map_fail:
3048
amdgpu_sync_free(&sync_obj);
3049
ttm_reserve_fail:
3050
drm_exec_fini(&exec);
3051
mutex_unlock(&process_info->lock);
3052
return ret;
3053
}
3054
3055
int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem)
3056
{
3057
struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
3058
struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws;
3059
int ret;
3060
3061
if (!info || !gws)
3062
return -EINVAL;
3063
3064
*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
3065
if (!*mem)
3066
return -ENOMEM;
3067
3068
mutex_init(&(*mem)->lock);
3069
INIT_LIST_HEAD(&(*mem)->attachments);
3070
(*mem)->bo = amdgpu_bo_ref(gws_bo);
3071
(*mem)->domain = AMDGPU_GEM_DOMAIN_GWS;
3072
(*mem)->process_info = process_info;
3073
add_kgd_mem_to_kfd_bo_list(*mem, process_info, false);
3074
amdgpu_sync_create(&(*mem)->sync);
3075
3076
3077
/* Validate gws bo the first time it is added to process */
3078
mutex_lock(&(*mem)->process_info->lock);
3079
ret = amdgpu_bo_reserve(gws_bo, false);
3080
if (unlikely(ret)) {
3081
pr_err("Reserve gws bo failed %d\n", ret);
3082
goto bo_reservation_failure;
3083
}
3084
3085
ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true);
3086
if (ret) {
3087
pr_err("GWS BO validate failed %d\n", ret);
3088
goto bo_validation_failure;
3089
}
3090
/* GWS resource is shared b/t amdgpu and amdkfd
3091
* Add process eviction fence to bo so they can
3092
* evict each other.
3093
*/
3094
ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1);
3095
if (ret)
3096
goto reserve_shared_fail;
3097
dma_resv_add_fence(gws_bo->tbo.base.resv,
3098
&process_info->eviction_fence->base,
3099
DMA_RESV_USAGE_BOOKKEEP);
3100
amdgpu_bo_unreserve(gws_bo);
3101
mutex_unlock(&(*mem)->process_info->lock);
3102
3103
return ret;
3104
3105
reserve_shared_fail:
3106
bo_validation_failure:
3107
amdgpu_bo_unreserve(gws_bo);
3108
bo_reservation_failure:
3109
mutex_unlock(&(*mem)->process_info->lock);
3110
amdgpu_sync_free(&(*mem)->sync);
3111
remove_kgd_mem_from_kfd_bo_list(*mem, process_info);
3112
amdgpu_bo_unref(&gws_bo);
3113
mutex_destroy(&(*mem)->lock);
3114
kfree(*mem);
3115
*mem = NULL;
3116
return ret;
3117
}
3118
3119
int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem)
3120
{
3121
int ret;
3122
struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
3123
struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
3124
struct amdgpu_bo *gws_bo = kgd_mem->bo;
3125
3126
/* Remove BO from process's validate list so restore worker won't touch
3127
* it anymore
3128
*/
3129
remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info);
3130
3131
ret = amdgpu_bo_reserve(gws_bo, false);
3132
if (unlikely(ret)) {
3133
pr_err("Reserve gws bo failed %d\n", ret);
3134
//TODO add BO back to validate_list?
3135
return ret;
3136
}
3137
amdgpu_amdkfd_remove_eviction_fence(gws_bo,
3138
process_info->eviction_fence);
3139
amdgpu_bo_unreserve(gws_bo);
3140
amdgpu_sync_free(&kgd_mem->sync);
3141
amdgpu_bo_unref(&gws_bo);
3142
mutex_destroy(&kgd_mem->lock);
3143
kfree(mem);
3144
return 0;
3145
}
3146
3147
/* Returns GPU-specific tiling mode information */
3148
int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev,
3149
struct tile_config *config)
3150
{
3151
config->gb_addr_config = adev->gfx.config.gb_addr_config;
3152
config->tile_config_ptr = adev->gfx.config.tile_mode_array;
3153
config->num_tile_configs =
3154
ARRAY_SIZE(adev->gfx.config.tile_mode_array);
3155
config->macro_tile_config_ptr =
3156
adev->gfx.config.macrotile_mode_array;
3157
config->num_macro_tile_configs =
3158
ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
3159
3160
/* Those values are not set from GFX9 onwards */
3161
config->num_banks = adev->gfx.config.num_banks;
3162
config->num_ranks = adev->gfx.config.num_ranks;
3163
3164
return 0;
3165
}
3166
3167
bool amdgpu_amdkfd_bo_mapped_to_dev(void *drm_priv, struct kgd_mem *mem)
3168
{
3169
struct amdgpu_vm *vm = drm_priv_to_vm(drm_priv);
3170
struct kfd_mem_attachment *entry;
3171
3172
list_for_each_entry(entry, &mem->attachments, list) {
3173
if (entry->is_mapped && entry->bo_va->base.vm == vm)
3174
return true;
3175
}
3176
return false;
3177
}
3178
3179
#if defined(CONFIG_DEBUG_FS)
3180
3181
int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data)
3182
{
3183
3184
spin_lock(&kfd_mem_limit.mem_limit_lock);
3185
seq_printf(m, "System mem used %lldM out of %lluM\n",
3186
(kfd_mem_limit.system_mem_used >> 20),
3187
(kfd_mem_limit.max_system_mem_limit >> 20));
3188
seq_printf(m, "TTM mem used %lldM out of %lluM\n",
3189
(kfd_mem_limit.ttm_mem_used >> 20),
3190
(kfd_mem_limit.max_ttm_mem_limit >> 20));
3191
spin_unlock(&kfd_mem_limit.mem_limit_lock);
3192
3193
return 0;
3194
}
3195
3196
#endif
3197
3198