Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/gpu/drm/amd/amdkfd/kfd_chardev.c
26516 views
1
// SPDX-License-Identifier: GPL-2.0 OR MIT
2
/*
3
* Copyright 2014-2022 Advanced Micro Devices, Inc.
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
* and/or sell copies of the Software, and to permit persons to whom the
10
* Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be included in
13
* all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21
* OTHER DEALINGS IN THE SOFTWARE.
22
*/
23
24
#include <linux/device.h>
25
#include <linux/err.h>
26
#include <linux/fs.h>
27
#include <linux/file.h>
28
#include <linux/sched.h>
29
#include <linux/slab.h>
30
#include <linux/uaccess.h>
31
#include <linux/compat.h>
32
#include <uapi/linux/kfd_ioctl.h>
33
#include <linux/time.h>
34
#include <linux/mm.h>
35
#include <linux/mman.h>
36
#include <linux/ptrace.h>
37
#include <linux/dma-buf.h>
38
#include <linux/processor.h>
39
#include "kfd_priv.h"
40
#include "kfd_device_queue_manager.h"
41
#include "kfd_svm.h"
42
#include "amdgpu_amdkfd.h"
43
#include "kfd_smi_events.h"
44
#include "amdgpu_dma_buf.h"
45
#include "kfd_debug.h"
46
47
static long kfd_ioctl(struct file *, unsigned int, unsigned long);
48
static int kfd_open(struct inode *, struct file *);
49
static int kfd_release(struct inode *, struct file *);
50
static int kfd_mmap(struct file *, struct vm_area_struct *);
51
52
static const char kfd_dev_name[] = "kfd";
53
54
static const struct file_operations kfd_fops = {
55
.owner = THIS_MODULE,
56
.unlocked_ioctl = kfd_ioctl,
57
.compat_ioctl = compat_ptr_ioctl,
58
.open = kfd_open,
59
.release = kfd_release,
60
.mmap = kfd_mmap,
61
};
62
63
static int kfd_char_dev_major = -1;
64
struct device *kfd_device;
65
static const struct class kfd_class = {
66
.name = kfd_dev_name,
67
};
68
69
static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
70
{
71
struct kfd_process_device *pdd;
72
73
mutex_lock(&p->mutex);
74
pdd = kfd_process_device_data_by_id(p, gpu_id);
75
76
if (pdd)
77
return pdd;
78
79
mutex_unlock(&p->mutex);
80
return NULL;
81
}
82
83
static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
84
{
85
mutex_unlock(&pdd->process->mutex);
86
}
87
88
int kfd_chardev_init(void)
89
{
90
int err = 0;
91
92
kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
93
err = kfd_char_dev_major;
94
if (err < 0)
95
goto err_register_chrdev;
96
97
err = class_register(&kfd_class);
98
if (err)
99
goto err_class_create;
100
101
kfd_device = device_create(&kfd_class, NULL,
102
MKDEV(kfd_char_dev_major, 0),
103
NULL, kfd_dev_name);
104
err = PTR_ERR(kfd_device);
105
if (IS_ERR(kfd_device))
106
goto err_device_create;
107
108
return 0;
109
110
err_device_create:
111
class_unregister(&kfd_class);
112
err_class_create:
113
unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
114
err_register_chrdev:
115
return err;
116
}
117
118
void kfd_chardev_exit(void)
119
{
120
device_destroy(&kfd_class, MKDEV(kfd_char_dev_major, 0));
121
class_unregister(&kfd_class);
122
unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
123
kfd_device = NULL;
124
}
125
126
127
static int kfd_open(struct inode *inode, struct file *filep)
128
{
129
struct kfd_process *process;
130
bool is_32bit_user_mode;
131
132
if (iminor(inode) != 0)
133
return -ENODEV;
134
135
is_32bit_user_mode = in_compat_syscall();
136
137
if (is_32bit_user_mode) {
138
dev_warn(kfd_device,
139
"Process %d (32-bit) failed to open /dev/kfd\n"
140
"32-bit processes are not supported by amdkfd\n",
141
current->pid);
142
return -EPERM;
143
}
144
145
process = kfd_create_process(current);
146
if (IS_ERR(process))
147
return PTR_ERR(process);
148
149
if (kfd_process_init_cwsr_apu(process, filep)) {
150
kfd_unref_process(process);
151
return -EFAULT;
152
}
153
154
/* filep now owns the reference returned by kfd_create_process */
155
filep->private_data = process;
156
157
dev_dbg(kfd_device, "process pid %d opened kfd node, compat mode (32 bit) - %d\n",
158
process->lead_thread->pid, process->is_32bit_user_mode);
159
160
return 0;
161
}
162
163
static int kfd_release(struct inode *inode, struct file *filep)
164
{
165
struct kfd_process *process = filep->private_data;
166
167
if (process)
168
kfd_unref_process(process);
169
170
return 0;
171
}
172
173
static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
174
void *data)
175
{
176
struct kfd_ioctl_get_version_args *args = data;
177
178
args->major_version = KFD_IOCTL_MAJOR_VERSION;
179
args->minor_version = KFD_IOCTL_MINOR_VERSION;
180
181
return 0;
182
}
183
184
static int set_queue_properties_from_user(struct queue_properties *q_properties,
185
struct kfd_ioctl_create_queue_args *args)
186
{
187
/*
188
* Repurpose queue percentage to accommodate new features:
189
* bit 0-7: queue percentage
190
* bit 8-15: pm4_target_xcc
191
*/
192
if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
193
pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
194
return -EINVAL;
195
}
196
197
if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
198
pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
199
return -EINVAL;
200
}
201
202
if ((args->ring_base_address) &&
203
(!access_ok((const void __user *) args->ring_base_address,
204
sizeof(uint64_t)))) {
205
pr_err("Can't access ring base address\n");
206
return -EFAULT;
207
}
208
209
if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
210
pr_err("Ring size must be a power of 2 or 0\n");
211
return -EINVAL;
212
}
213
214
if (args->ring_size < KFD_MIN_QUEUE_RING_SIZE) {
215
args->ring_size = KFD_MIN_QUEUE_RING_SIZE;
216
pr_debug("Size lower. clamped to KFD_MIN_QUEUE_RING_SIZE");
217
}
218
219
if (!access_ok((const void __user *) args->read_pointer_address,
220
sizeof(uint32_t))) {
221
pr_err("Can't access read pointer\n");
222
return -EFAULT;
223
}
224
225
if (!access_ok((const void __user *) args->write_pointer_address,
226
sizeof(uint32_t))) {
227
pr_err("Can't access write pointer\n");
228
return -EFAULT;
229
}
230
231
if (args->eop_buffer_address &&
232
!access_ok((const void __user *) args->eop_buffer_address,
233
sizeof(uint32_t))) {
234
pr_debug("Can't access eop buffer");
235
return -EFAULT;
236
}
237
238
if (args->ctx_save_restore_address &&
239
!access_ok((const void __user *) args->ctx_save_restore_address,
240
sizeof(uint32_t))) {
241
pr_debug("Can't access ctx save restore buffer");
242
return -EFAULT;
243
}
244
245
q_properties->is_interop = false;
246
q_properties->is_gws = false;
247
q_properties->queue_percent = args->queue_percentage & 0xFF;
248
/* bit 8-15 are repurposed to be PM4 target XCC */
249
q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
250
q_properties->priority = args->queue_priority;
251
q_properties->queue_address = args->ring_base_address;
252
q_properties->queue_size = args->ring_size;
253
q_properties->read_ptr = (void __user *)args->read_pointer_address;
254
q_properties->write_ptr = (void __user *)args->write_pointer_address;
255
q_properties->eop_ring_buffer_address = args->eop_buffer_address;
256
q_properties->eop_ring_buffer_size = args->eop_buffer_size;
257
q_properties->ctx_save_restore_area_address =
258
args->ctx_save_restore_address;
259
q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
260
q_properties->ctl_stack_size = args->ctl_stack_size;
261
q_properties->sdma_engine_id = args->sdma_engine_id;
262
if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
263
args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
264
q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
265
else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
266
q_properties->type = KFD_QUEUE_TYPE_SDMA;
267
else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
268
q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
269
else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_BY_ENG_ID)
270
q_properties->type = KFD_QUEUE_TYPE_SDMA_BY_ENG_ID;
271
else
272
return -ENOTSUPP;
273
274
if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
275
q_properties->format = KFD_QUEUE_FORMAT_AQL;
276
else
277
q_properties->format = KFD_QUEUE_FORMAT_PM4;
278
279
pr_debug("Queue Percentage: %d, %d\n",
280
q_properties->queue_percent, args->queue_percentage);
281
282
pr_debug("Queue Priority: %d, %d\n",
283
q_properties->priority, args->queue_priority);
284
285
pr_debug("Queue Address: 0x%llX, 0x%llX\n",
286
q_properties->queue_address, args->ring_base_address);
287
288
pr_debug("Queue Size: 0x%llX, %u\n",
289
q_properties->queue_size, args->ring_size);
290
291
pr_debug("Queue r/w Pointers: %px, %px\n",
292
q_properties->read_ptr,
293
q_properties->write_ptr);
294
295
pr_debug("Queue Format: %d\n", q_properties->format);
296
297
pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
298
299
pr_debug("Queue CTX save area: 0x%llX\n",
300
q_properties->ctx_save_restore_area_address);
301
302
return 0;
303
}
304
305
static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
306
void *data)
307
{
308
struct kfd_ioctl_create_queue_args *args = data;
309
struct kfd_node *dev;
310
int err = 0;
311
unsigned int queue_id;
312
struct kfd_process_device *pdd;
313
struct queue_properties q_properties;
314
uint32_t doorbell_offset_in_process = 0;
315
316
memset(&q_properties, 0, sizeof(struct queue_properties));
317
318
pr_debug("Creating queue ioctl\n");
319
320
err = set_queue_properties_from_user(&q_properties, args);
321
if (err)
322
return err;
323
324
pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
325
326
mutex_lock(&p->mutex);
327
328
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
329
if (!pdd) {
330
pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
331
err = -EINVAL;
332
goto err_pdd;
333
}
334
dev = pdd->dev;
335
336
pdd = kfd_bind_process_to_device(dev, p);
337
if (IS_ERR(pdd)) {
338
err = -ESRCH;
339
goto err_bind_process;
340
}
341
342
if (q_properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
343
int max_sdma_eng_id = kfd_get_num_sdma_engines(dev) +
344
kfd_get_num_xgmi_sdma_engines(dev) - 1;
345
346
if (q_properties.sdma_engine_id > max_sdma_eng_id) {
347
err = -EINVAL;
348
pr_err("sdma_engine_id %i exceeds maximum id of %i\n",
349
q_properties.sdma_engine_id, max_sdma_eng_id);
350
goto err_sdma_engine_id;
351
}
352
}
353
354
if (!pdd->qpd.proc_doorbells) {
355
err = kfd_alloc_process_doorbells(dev->kfd, pdd);
356
if (err) {
357
pr_debug("failed to allocate process doorbells\n");
358
goto err_bind_process;
359
}
360
}
361
362
err = kfd_queue_acquire_buffers(pdd, &q_properties);
363
if (err) {
364
pr_debug("failed to acquire user queue buffers\n");
365
goto err_acquire_queue_buf;
366
}
367
368
pr_debug("Creating queue for process pid %d on gpu 0x%x\n",
369
p->lead_thread->pid,
370
dev->id);
371
372
err = pqm_create_queue(&p->pqm, dev, &q_properties, &queue_id,
373
NULL, NULL, NULL, &doorbell_offset_in_process);
374
if (err != 0)
375
goto err_create_queue;
376
377
args->queue_id = queue_id;
378
379
380
/* Return gpu_id as doorbell offset for mmap usage */
381
args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
382
args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
383
if (KFD_IS_SOC15(dev))
384
/* On SOC15 ASICs, include the doorbell offset within the
385
* process doorbell frame, which is 2 pages.
386
*/
387
args->doorbell_offset |= doorbell_offset_in_process;
388
389
mutex_unlock(&p->mutex);
390
391
pr_debug("Queue id %d was created successfully\n", args->queue_id);
392
393
pr_debug("Ring buffer address == 0x%016llX\n",
394
args->ring_base_address);
395
396
pr_debug("Read ptr address == 0x%016llX\n",
397
args->read_pointer_address);
398
399
pr_debug("Write ptr address == 0x%016llX\n",
400
args->write_pointer_address);
401
402
kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
403
return 0;
404
405
err_create_queue:
406
kfd_queue_unref_bo_vas(pdd, &q_properties);
407
kfd_queue_release_buffers(pdd, &q_properties);
408
err_acquire_queue_buf:
409
err_sdma_engine_id:
410
err_bind_process:
411
err_pdd:
412
mutex_unlock(&p->mutex);
413
return err;
414
}
415
416
static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
417
void *data)
418
{
419
int retval;
420
struct kfd_ioctl_destroy_queue_args *args = data;
421
422
pr_debug("Destroying queue id %d for process pid %d\n",
423
args->queue_id,
424
p->lead_thread->pid);
425
426
mutex_lock(&p->mutex);
427
428
retval = pqm_destroy_queue(&p->pqm, args->queue_id);
429
430
mutex_unlock(&p->mutex);
431
return retval;
432
}
433
434
static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
435
void *data)
436
{
437
int retval;
438
struct kfd_ioctl_update_queue_args *args = data;
439
struct queue_properties properties;
440
441
/*
442
* Repurpose queue percentage to accommodate new features:
443
* bit 0-7: queue percentage
444
* bit 8-15: pm4_target_xcc
445
*/
446
if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
447
pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
448
return -EINVAL;
449
}
450
451
if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
452
pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
453
return -EINVAL;
454
}
455
456
if ((args->ring_base_address) &&
457
(!access_ok((const void __user *) args->ring_base_address,
458
sizeof(uint64_t)))) {
459
pr_err("Can't access ring base address\n");
460
return -EFAULT;
461
}
462
463
if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
464
pr_err("Ring size must be a power of 2 or 0\n");
465
return -EINVAL;
466
}
467
468
if (args->ring_size < KFD_MIN_QUEUE_RING_SIZE) {
469
args->ring_size = KFD_MIN_QUEUE_RING_SIZE;
470
pr_debug("Size lower. clamped to KFD_MIN_QUEUE_RING_SIZE");
471
}
472
473
properties.queue_address = args->ring_base_address;
474
properties.queue_size = args->ring_size;
475
properties.queue_percent = args->queue_percentage & 0xFF;
476
/* bit 8-15 are repurposed to be PM4 target XCC */
477
properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
478
properties.priority = args->queue_priority;
479
480
pr_debug("Updating queue id %d for process pid %d\n",
481
args->queue_id, p->lead_thread->pid);
482
483
mutex_lock(&p->mutex);
484
485
retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
486
487
mutex_unlock(&p->mutex);
488
489
return retval;
490
}
491
492
static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
493
void *data)
494
{
495
int retval;
496
const int max_num_cus = 1024;
497
struct kfd_ioctl_set_cu_mask_args *args = data;
498
struct mqd_update_info minfo = {0};
499
uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
500
size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
501
502
if ((args->num_cu_mask % 32) != 0) {
503
pr_debug("num_cu_mask 0x%x must be a multiple of 32",
504
args->num_cu_mask);
505
return -EINVAL;
506
}
507
508
minfo.cu_mask.count = args->num_cu_mask;
509
if (minfo.cu_mask.count == 0) {
510
pr_debug("CU mask cannot be 0");
511
return -EINVAL;
512
}
513
514
/* To prevent an unreasonably large CU mask size, set an arbitrary
515
* limit of max_num_cus bits. We can then just drop any CU mask bits
516
* past max_num_cus bits and just use the first max_num_cus bits.
517
*/
518
if (minfo.cu_mask.count > max_num_cus) {
519
pr_debug("CU mask cannot be greater than 1024 bits");
520
minfo.cu_mask.count = max_num_cus;
521
cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
522
}
523
524
minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
525
if (!minfo.cu_mask.ptr)
526
return -ENOMEM;
527
528
retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
529
if (retval) {
530
pr_debug("Could not copy CU mask from userspace");
531
retval = -EFAULT;
532
goto out;
533
}
534
535
mutex_lock(&p->mutex);
536
537
retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
538
539
mutex_unlock(&p->mutex);
540
541
out:
542
kfree(minfo.cu_mask.ptr);
543
return retval;
544
}
545
546
static int kfd_ioctl_get_queue_wave_state(struct file *filep,
547
struct kfd_process *p, void *data)
548
{
549
struct kfd_ioctl_get_queue_wave_state_args *args = data;
550
int r;
551
552
mutex_lock(&p->mutex);
553
554
r = pqm_get_wave_state(&p->pqm, args->queue_id,
555
(void __user *)args->ctl_stack_address,
556
&args->ctl_stack_used_size,
557
&args->save_area_used_size);
558
559
mutex_unlock(&p->mutex);
560
561
return r;
562
}
563
564
static int kfd_ioctl_set_memory_policy(struct file *filep,
565
struct kfd_process *p, void *data)
566
{
567
struct kfd_ioctl_set_memory_policy_args *args = data;
568
int err = 0;
569
struct kfd_process_device *pdd;
570
enum cache_policy default_policy, alternate_policy;
571
572
if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
573
&& args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
574
return -EINVAL;
575
}
576
577
if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
578
&& args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
579
return -EINVAL;
580
}
581
582
mutex_lock(&p->mutex);
583
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
584
if (!pdd) {
585
pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
586
err = -EINVAL;
587
goto err_pdd;
588
}
589
590
pdd = kfd_bind_process_to_device(pdd->dev, p);
591
if (IS_ERR(pdd)) {
592
err = -ESRCH;
593
goto out;
594
}
595
596
default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
597
? cache_policy_coherent : cache_policy_noncoherent;
598
599
alternate_policy =
600
(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
601
? cache_policy_coherent : cache_policy_noncoherent;
602
603
if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
604
&pdd->qpd,
605
default_policy,
606
alternate_policy,
607
(void __user *)args->alternate_aperture_base,
608
args->alternate_aperture_size,
609
args->misc_process_flag))
610
err = -EINVAL;
611
612
out:
613
err_pdd:
614
mutex_unlock(&p->mutex);
615
616
return err;
617
}
618
619
static int kfd_ioctl_set_trap_handler(struct file *filep,
620
struct kfd_process *p, void *data)
621
{
622
struct kfd_ioctl_set_trap_handler_args *args = data;
623
int err = 0;
624
struct kfd_process_device *pdd;
625
626
mutex_lock(&p->mutex);
627
628
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
629
if (!pdd) {
630
err = -EINVAL;
631
goto err_pdd;
632
}
633
634
pdd = kfd_bind_process_to_device(pdd->dev, p);
635
if (IS_ERR(pdd)) {
636
err = -ESRCH;
637
goto out;
638
}
639
640
kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
641
642
out:
643
err_pdd:
644
mutex_unlock(&p->mutex);
645
646
return err;
647
}
648
649
static int kfd_ioctl_dbg_register(struct file *filep,
650
struct kfd_process *p, void *data)
651
{
652
return -EPERM;
653
}
654
655
static int kfd_ioctl_dbg_unregister(struct file *filep,
656
struct kfd_process *p, void *data)
657
{
658
return -EPERM;
659
}
660
661
static int kfd_ioctl_dbg_address_watch(struct file *filep,
662
struct kfd_process *p, void *data)
663
{
664
return -EPERM;
665
}
666
667
/* Parse and generate fixed size data structure for wave control */
668
static int kfd_ioctl_dbg_wave_control(struct file *filep,
669
struct kfd_process *p, void *data)
670
{
671
return -EPERM;
672
}
673
674
static int kfd_ioctl_get_clock_counters(struct file *filep,
675
struct kfd_process *p, void *data)
676
{
677
struct kfd_ioctl_get_clock_counters_args *args = data;
678
struct kfd_process_device *pdd;
679
680
mutex_lock(&p->mutex);
681
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
682
mutex_unlock(&p->mutex);
683
if (pdd)
684
/* Reading GPU clock counter from KGD */
685
args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
686
else
687
/* Node without GPU resource */
688
args->gpu_clock_counter = 0;
689
690
/* No access to rdtsc. Using raw monotonic time */
691
args->cpu_clock_counter = ktime_get_raw_ns();
692
args->system_clock_counter = ktime_get_boottime_ns();
693
694
/* Since the counter is in nano-seconds we use 1GHz frequency */
695
args->system_clock_freq = 1000000000;
696
697
return 0;
698
}
699
700
701
static int kfd_ioctl_get_process_apertures(struct file *filp,
702
struct kfd_process *p, void *data)
703
{
704
struct kfd_ioctl_get_process_apertures_args *args = data;
705
struct kfd_process_device_apertures *pAperture;
706
int i;
707
708
dev_dbg(kfd_device, "get apertures for process pid %d", p->lead_thread->pid);
709
710
args->num_of_nodes = 0;
711
712
mutex_lock(&p->mutex);
713
/* Run over all pdd of the process */
714
for (i = 0; i < p->n_pdds; i++) {
715
struct kfd_process_device *pdd = p->pdds[i];
716
717
pAperture =
718
&args->process_apertures[args->num_of_nodes];
719
pAperture->gpu_id = pdd->dev->id;
720
pAperture->lds_base = pdd->lds_base;
721
pAperture->lds_limit = pdd->lds_limit;
722
pAperture->gpuvm_base = pdd->gpuvm_base;
723
pAperture->gpuvm_limit = pdd->gpuvm_limit;
724
pAperture->scratch_base = pdd->scratch_base;
725
pAperture->scratch_limit = pdd->scratch_limit;
726
727
dev_dbg(kfd_device,
728
"node id %u\n", args->num_of_nodes);
729
dev_dbg(kfd_device,
730
"gpu id %u\n", pdd->dev->id);
731
dev_dbg(kfd_device,
732
"lds_base %llX\n", pdd->lds_base);
733
dev_dbg(kfd_device,
734
"lds_limit %llX\n", pdd->lds_limit);
735
dev_dbg(kfd_device,
736
"gpuvm_base %llX\n", pdd->gpuvm_base);
737
dev_dbg(kfd_device,
738
"gpuvm_limit %llX\n", pdd->gpuvm_limit);
739
dev_dbg(kfd_device,
740
"scratch_base %llX\n", pdd->scratch_base);
741
dev_dbg(kfd_device,
742
"scratch_limit %llX\n", pdd->scratch_limit);
743
744
if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
745
break;
746
}
747
mutex_unlock(&p->mutex);
748
749
return 0;
750
}
751
752
static int kfd_ioctl_get_process_apertures_new(struct file *filp,
753
struct kfd_process *p, void *data)
754
{
755
struct kfd_ioctl_get_process_apertures_new_args *args = data;
756
struct kfd_process_device_apertures *pa;
757
int ret;
758
int i;
759
760
dev_dbg(kfd_device, "get apertures for process pid %d",
761
p->lead_thread->pid);
762
763
if (args->num_of_nodes == 0) {
764
/* Return number of nodes, so that user space can alloacate
765
* sufficient memory
766
*/
767
mutex_lock(&p->mutex);
768
args->num_of_nodes = p->n_pdds;
769
goto out_unlock;
770
}
771
772
/* Fill in process-aperture information for all available
773
* nodes, but not more than args->num_of_nodes as that is
774
* the amount of memory allocated by user
775
*/
776
pa = kcalloc(args->num_of_nodes, sizeof(struct kfd_process_device_apertures),
777
GFP_KERNEL);
778
if (!pa)
779
return -ENOMEM;
780
781
mutex_lock(&p->mutex);
782
783
if (!p->n_pdds) {
784
args->num_of_nodes = 0;
785
kfree(pa);
786
goto out_unlock;
787
}
788
789
/* Run over all pdd of the process */
790
for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
791
struct kfd_process_device *pdd = p->pdds[i];
792
793
pa[i].gpu_id = pdd->dev->id;
794
pa[i].lds_base = pdd->lds_base;
795
pa[i].lds_limit = pdd->lds_limit;
796
pa[i].gpuvm_base = pdd->gpuvm_base;
797
pa[i].gpuvm_limit = pdd->gpuvm_limit;
798
pa[i].scratch_base = pdd->scratch_base;
799
pa[i].scratch_limit = pdd->scratch_limit;
800
801
dev_dbg(kfd_device,
802
"gpu id %u\n", pdd->dev->id);
803
dev_dbg(kfd_device,
804
"lds_base %llX\n", pdd->lds_base);
805
dev_dbg(kfd_device,
806
"lds_limit %llX\n", pdd->lds_limit);
807
dev_dbg(kfd_device,
808
"gpuvm_base %llX\n", pdd->gpuvm_base);
809
dev_dbg(kfd_device,
810
"gpuvm_limit %llX\n", pdd->gpuvm_limit);
811
dev_dbg(kfd_device,
812
"scratch_base %llX\n", pdd->scratch_base);
813
dev_dbg(kfd_device,
814
"scratch_limit %llX\n", pdd->scratch_limit);
815
}
816
mutex_unlock(&p->mutex);
817
818
args->num_of_nodes = i;
819
ret = copy_to_user(
820
(void __user *)args->kfd_process_device_apertures_ptr,
821
pa,
822
(i * sizeof(struct kfd_process_device_apertures)));
823
kfree(pa);
824
return ret ? -EFAULT : 0;
825
826
out_unlock:
827
mutex_unlock(&p->mutex);
828
return 0;
829
}
830
831
static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
832
void *data)
833
{
834
struct kfd_ioctl_create_event_args *args = data;
835
int err;
836
837
/* For dGPUs the event page is allocated in user mode. The
838
* handle is passed to KFD with the first call to this IOCTL
839
* through the event_page_offset field.
840
*/
841
if (args->event_page_offset) {
842
mutex_lock(&p->mutex);
843
err = kfd_kmap_event_page(p, args->event_page_offset);
844
mutex_unlock(&p->mutex);
845
if (err)
846
return err;
847
}
848
849
err = kfd_event_create(filp, p, args->event_type,
850
args->auto_reset != 0, args->node_id,
851
&args->event_id, &args->event_trigger_data,
852
&args->event_page_offset,
853
&args->event_slot_index);
854
855
pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
856
return err;
857
}
858
859
static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
860
void *data)
861
{
862
struct kfd_ioctl_destroy_event_args *args = data;
863
864
return kfd_event_destroy(p, args->event_id);
865
}
866
867
static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
868
void *data)
869
{
870
struct kfd_ioctl_set_event_args *args = data;
871
872
return kfd_set_event(p, args->event_id);
873
}
874
875
static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
876
void *data)
877
{
878
struct kfd_ioctl_reset_event_args *args = data;
879
880
return kfd_reset_event(p, args->event_id);
881
}
882
883
static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
884
void *data)
885
{
886
struct kfd_ioctl_wait_events_args *args = data;
887
888
return kfd_wait_on_events(p, args->num_events,
889
(void __user *)args->events_ptr,
890
(args->wait_for_all != 0),
891
&args->timeout, &args->wait_result);
892
}
893
static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
894
struct kfd_process *p, void *data)
895
{
896
struct kfd_ioctl_set_scratch_backing_va_args *args = data;
897
struct kfd_process_device *pdd;
898
struct kfd_node *dev;
899
long err;
900
901
mutex_lock(&p->mutex);
902
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
903
if (!pdd) {
904
err = -EINVAL;
905
goto err_pdd;
906
}
907
dev = pdd->dev;
908
909
pdd = kfd_bind_process_to_device(dev, p);
910
if (IS_ERR(pdd)) {
911
err = PTR_ERR(pdd);
912
goto bind_process_to_device_fail;
913
}
914
915
pdd->qpd.sh_hidden_private_base = args->va_addr;
916
917
mutex_unlock(&p->mutex);
918
919
if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
920
pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
921
dev->kfd2kgd->set_scratch_backing_va(
922
dev->adev, args->va_addr, pdd->qpd.vmid);
923
924
return 0;
925
926
bind_process_to_device_fail:
927
err_pdd:
928
mutex_unlock(&p->mutex);
929
return err;
930
}
931
932
static int kfd_ioctl_get_tile_config(struct file *filep,
933
struct kfd_process *p, void *data)
934
{
935
struct kfd_ioctl_get_tile_config_args *args = data;
936
struct kfd_process_device *pdd;
937
struct tile_config config;
938
int err = 0;
939
940
mutex_lock(&p->mutex);
941
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
942
mutex_unlock(&p->mutex);
943
if (!pdd)
944
return -EINVAL;
945
946
amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
947
948
args->gb_addr_config = config.gb_addr_config;
949
args->num_banks = config.num_banks;
950
args->num_ranks = config.num_ranks;
951
952
if (args->num_tile_configs > config.num_tile_configs)
953
args->num_tile_configs = config.num_tile_configs;
954
err = copy_to_user((void __user *)args->tile_config_ptr,
955
config.tile_config_ptr,
956
args->num_tile_configs * sizeof(uint32_t));
957
if (err) {
958
args->num_tile_configs = 0;
959
return -EFAULT;
960
}
961
962
if (args->num_macro_tile_configs > config.num_macro_tile_configs)
963
args->num_macro_tile_configs =
964
config.num_macro_tile_configs;
965
err = copy_to_user((void __user *)args->macro_tile_config_ptr,
966
config.macro_tile_config_ptr,
967
args->num_macro_tile_configs * sizeof(uint32_t));
968
if (err) {
969
args->num_macro_tile_configs = 0;
970
return -EFAULT;
971
}
972
973
return 0;
974
}
975
976
static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
977
void *data)
978
{
979
struct kfd_ioctl_acquire_vm_args *args = data;
980
struct kfd_process_device *pdd;
981
struct file *drm_file;
982
int ret;
983
984
drm_file = fget(args->drm_fd);
985
if (!drm_file)
986
return -EINVAL;
987
988
mutex_lock(&p->mutex);
989
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
990
if (!pdd) {
991
ret = -EINVAL;
992
goto err_pdd;
993
}
994
995
if (pdd->drm_file) {
996
ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
997
goto err_drm_file;
998
}
999
1000
ret = kfd_process_device_init_vm(pdd, drm_file);
1001
if (ret)
1002
goto err_unlock;
1003
1004
/* On success, the PDD keeps the drm_file reference */
1005
mutex_unlock(&p->mutex);
1006
1007
return 0;
1008
1009
err_unlock:
1010
err_pdd:
1011
err_drm_file:
1012
mutex_unlock(&p->mutex);
1013
fput(drm_file);
1014
return ret;
1015
}
1016
1017
bool kfd_dev_is_large_bar(struct kfd_node *dev)
1018
{
1019
if (dev->kfd->adev->debug_largebar) {
1020
pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1021
return true;
1022
}
1023
1024
if (dev->local_mem_info.local_mem_size_private == 0 &&
1025
dev->local_mem_info.local_mem_size_public > 0)
1026
return true;
1027
1028
if (dev->local_mem_info.local_mem_size_public == 0 &&
1029
dev->kfd->adev->gmc.is_app_apu) {
1030
pr_debug("APP APU, Consider like a large bar system\n");
1031
return true;
1032
}
1033
1034
return false;
1035
}
1036
1037
static int kfd_ioctl_get_available_memory(struct file *filep,
1038
struct kfd_process *p, void *data)
1039
{
1040
struct kfd_ioctl_get_available_memory_args *args = data;
1041
struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
1042
1043
if (!pdd)
1044
return -EINVAL;
1045
args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
1046
pdd->dev->node_id);
1047
kfd_unlock_pdd(pdd);
1048
return 0;
1049
}
1050
1051
static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1052
struct kfd_process *p, void *data)
1053
{
1054
struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1055
struct kfd_process_device *pdd;
1056
void *mem;
1057
struct kfd_node *dev;
1058
int idr_handle;
1059
long err;
1060
uint64_t offset = args->mmap_offset;
1061
uint32_t flags = args->flags;
1062
1063
if (args->size == 0)
1064
return -EINVAL;
1065
1066
#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1067
/* Flush pending deferred work to avoid racing with deferred actions
1068
* from previous memory map changes (e.g. munmap).
1069
*/
1070
svm_range_list_lock_and_flush_work(&p->svms, current->mm);
1071
mutex_lock(&p->svms.lock);
1072
mmap_write_unlock(current->mm);
1073
if (interval_tree_iter_first(&p->svms.objects,
1074
args->va_addr >> PAGE_SHIFT,
1075
(args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
1076
pr_err("Address: 0x%llx already allocated by SVM\n",
1077
args->va_addr);
1078
mutex_unlock(&p->svms.lock);
1079
return -EADDRINUSE;
1080
}
1081
1082
/* When register user buffer check if it has been registered by svm by
1083
* buffer cpu virtual address.
1084
*/
1085
if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
1086
interval_tree_iter_first(&p->svms.objects,
1087
args->mmap_offset >> PAGE_SHIFT,
1088
(args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) {
1089
pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
1090
args->mmap_offset);
1091
mutex_unlock(&p->svms.lock);
1092
return -EADDRINUSE;
1093
}
1094
1095
mutex_unlock(&p->svms.lock);
1096
#endif
1097
mutex_lock(&p->mutex);
1098
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1099
if (!pdd) {
1100
err = -EINVAL;
1101
goto err_pdd;
1102
}
1103
1104
dev = pdd->dev;
1105
1106
if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1107
(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1108
!kfd_dev_is_large_bar(dev)) {
1109
pr_err("Alloc host visible vram on small bar is not allowed\n");
1110
err = -EINVAL;
1111
goto err_large_bar;
1112
}
1113
1114
pdd = kfd_bind_process_to_device(dev, p);
1115
if (IS_ERR(pdd)) {
1116
err = PTR_ERR(pdd);
1117
goto err_unlock;
1118
}
1119
1120
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1121
if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
1122
err = -EINVAL;
1123
goto err_unlock;
1124
}
1125
offset = kfd_get_process_doorbells(pdd);
1126
if (!offset) {
1127
err = -ENOMEM;
1128
goto err_unlock;
1129
}
1130
} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1131
if (args->size != PAGE_SIZE) {
1132
err = -EINVAL;
1133
goto err_unlock;
1134
}
1135
offset = dev->adev->rmmio_remap.bus_addr;
1136
if (!offset || (PAGE_SIZE > 4096)) {
1137
err = -ENOMEM;
1138
goto err_unlock;
1139
}
1140
}
1141
1142
err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1143
dev->adev, args->va_addr, args->size,
1144
pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
1145
flags, false);
1146
1147
if (err)
1148
goto err_unlock;
1149
1150
idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1151
if (idr_handle < 0) {
1152
err = -EFAULT;
1153
goto err_free;
1154
}
1155
1156
/* Update the VRAM usage count */
1157
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1158
uint64_t size = args->size;
1159
1160
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
1161
size >>= 1;
1162
atomic64_add(PAGE_ALIGN(size), &pdd->vram_usage);
1163
}
1164
1165
mutex_unlock(&p->mutex);
1166
1167
args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1168
args->mmap_offset = offset;
1169
1170
/* MMIO is mapped through kfd device
1171
* Generate a kfd mmap offset
1172
*/
1173
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1174
args->mmap_offset = KFD_MMAP_TYPE_MMIO
1175
| KFD_MMAP_GPU_ID(args->gpu_id);
1176
1177
return 0;
1178
1179
err_free:
1180
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
1181
pdd->drm_priv, NULL);
1182
err_unlock:
1183
err_pdd:
1184
err_large_bar:
1185
mutex_unlock(&p->mutex);
1186
return err;
1187
}
1188
1189
static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1190
struct kfd_process *p, void *data)
1191
{
1192
struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1193
struct kfd_process_device *pdd;
1194
void *mem;
1195
int ret;
1196
uint64_t size = 0;
1197
1198
mutex_lock(&p->mutex);
1199
/*
1200
* Safeguard to prevent user space from freeing signal BO.
1201
* It will be freed at process termination.
1202
*/
1203
if (p->signal_handle && (p->signal_handle == args->handle)) {
1204
pr_err("Free signal BO is not allowed\n");
1205
ret = -EPERM;
1206
goto err_unlock;
1207
}
1208
1209
pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1210
if (!pdd) {
1211
pr_err("Process device data doesn't exist\n");
1212
ret = -EINVAL;
1213
goto err_pdd;
1214
}
1215
1216
mem = kfd_process_device_translate_handle(
1217
pdd, GET_IDR_HANDLE(args->handle));
1218
if (!mem) {
1219
ret = -EINVAL;
1220
goto err_unlock;
1221
}
1222
1223
ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
1224
(struct kgd_mem *)mem, pdd->drm_priv, &size);
1225
1226
/* If freeing the buffer failed, leave the handle in place for
1227
* clean-up during process tear-down.
1228
*/
1229
if (!ret)
1230
kfd_process_device_remove_obj_handle(
1231
pdd, GET_IDR_HANDLE(args->handle));
1232
1233
atomic64_sub(size, &pdd->vram_usage);
1234
1235
err_unlock:
1236
err_pdd:
1237
mutex_unlock(&p->mutex);
1238
return ret;
1239
}
1240
1241
static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1242
struct kfd_process *p, void *data)
1243
{
1244
struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1245
struct kfd_process_device *pdd, *peer_pdd;
1246
void *mem;
1247
struct kfd_node *dev;
1248
long err = 0;
1249
int i;
1250
uint32_t *devices_arr = NULL;
1251
1252
if (!args->n_devices) {
1253
pr_debug("Device IDs array empty\n");
1254
return -EINVAL;
1255
}
1256
if (args->n_success > args->n_devices) {
1257
pr_debug("n_success exceeds n_devices\n");
1258
return -EINVAL;
1259
}
1260
1261
devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1262
GFP_KERNEL);
1263
if (!devices_arr)
1264
return -ENOMEM;
1265
1266
err = copy_from_user(devices_arr,
1267
(void __user *)args->device_ids_array_ptr,
1268
args->n_devices * sizeof(*devices_arr));
1269
if (err != 0) {
1270
err = -EFAULT;
1271
goto copy_from_user_failed;
1272
}
1273
1274
mutex_lock(&p->mutex);
1275
pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1276
if (!pdd) {
1277
err = -EINVAL;
1278
goto get_process_device_data_failed;
1279
}
1280
dev = pdd->dev;
1281
1282
pdd = kfd_bind_process_to_device(dev, p);
1283
if (IS_ERR(pdd)) {
1284
err = PTR_ERR(pdd);
1285
goto bind_process_to_device_failed;
1286
}
1287
1288
mem = kfd_process_device_translate_handle(pdd,
1289
GET_IDR_HANDLE(args->handle));
1290
if (!mem) {
1291
err = -ENOMEM;
1292
goto get_mem_obj_from_handle_failed;
1293
}
1294
1295
for (i = args->n_success; i < args->n_devices; i++) {
1296
peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1297
if (!peer_pdd) {
1298
pr_debug("Getting device by id failed for 0x%x\n",
1299
devices_arr[i]);
1300
err = -EINVAL;
1301
goto get_mem_obj_from_handle_failed;
1302
}
1303
1304
peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
1305
if (IS_ERR(peer_pdd)) {
1306
err = PTR_ERR(peer_pdd);
1307
goto get_mem_obj_from_handle_failed;
1308
}
1309
1310
err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1311
peer_pdd->dev->adev, (struct kgd_mem *)mem,
1312
peer_pdd->drm_priv);
1313
if (err) {
1314
struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
1315
1316
dev_err(dev->adev->dev,
1317
"Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
1318
pci_domain_nr(pdev->bus),
1319
pdev->bus->number,
1320
PCI_SLOT(pdev->devfn),
1321
PCI_FUNC(pdev->devfn),
1322
((struct kgd_mem *)mem)->domain);
1323
goto map_memory_to_gpu_failed;
1324
}
1325
args->n_success = i+1;
1326
}
1327
1328
err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
1329
if (err) {
1330
pr_debug("Sync memory failed, wait interrupted by user signal\n");
1331
goto sync_memory_failed;
1332
}
1333
1334
mutex_unlock(&p->mutex);
1335
1336
/* Flush TLBs after waiting for the page table updates to complete */
1337
for (i = 0; i < args->n_devices; i++) {
1338
peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1339
if (WARN_ON_ONCE(!peer_pdd))
1340
continue;
1341
kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
1342
}
1343
kfree(devices_arr);
1344
1345
return err;
1346
1347
get_process_device_data_failed:
1348
bind_process_to_device_failed:
1349
get_mem_obj_from_handle_failed:
1350
map_memory_to_gpu_failed:
1351
sync_memory_failed:
1352
mutex_unlock(&p->mutex);
1353
copy_from_user_failed:
1354
kfree(devices_arr);
1355
1356
return err;
1357
}
1358
1359
static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1360
struct kfd_process *p, void *data)
1361
{
1362
struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1363
struct kfd_process_device *pdd, *peer_pdd;
1364
void *mem;
1365
long err = 0;
1366
uint32_t *devices_arr = NULL, i;
1367
bool flush_tlb;
1368
1369
if (!args->n_devices) {
1370
pr_debug("Device IDs array empty\n");
1371
return -EINVAL;
1372
}
1373
if (args->n_success > args->n_devices) {
1374
pr_debug("n_success exceeds n_devices\n");
1375
return -EINVAL;
1376
}
1377
1378
devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1379
GFP_KERNEL);
1380
if (!devices_arr)
1381
return -ENOMEM;
1382
1383
err = copy_from_user(devices_arr,
1384
(void __user *)args->device_ids_array_ptr,
1385
args->n_devices * sizeof(*devices_arr));
1386
if (err != 0) {
1387
err = -EFAULT;
1388
goto copy_from_user_failed;
1389
}
1390
1391
mutex_lock(&p->mutex);
1392
pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
1393
if (!pdd) {
1394
err = -EINVAL;
1395
goto bind_process_to_device_failed;
1396
}
1397
1398
mem = kfd_process_device_translate_handle(pdd,
1399
GET_IDR_HANDLE(args->handle));
1400
if (!mem) {
1401
err = -ENOMEM;
1402
goto get_mem_obj_from_handle_failed;
1403
}
1404
1405
for (i = args->n_success; i < args->n_devices; i++) {
1406
peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1407
if (!peer_pdd) {
1408
err = -EINVAL;
1409
goto get_mem_obj_from_handle_failed;
1410
}
1411
err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1412
peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
1413
if (err) {
1414
pr_debug("Failed to unmap from gpu %d/%d\n", i, args->n_devices);
1415
goto unmap_memory_from_gpu_failed;
1416
}
1417
args->n_success = i+1;
1418
}
1419
1420
flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
1421
if (flush_tlb) {
1422
err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
1423
(struct kgd_mem *) mem, true);
1424
if (err) {
1425
pr_debug("Sync memory failed, wait interrupted by user signal\n");
1426
goto sync_memory_failed;
1427
}
1428
}
1429
1430
/* Flush TLBs after waiting for the page table updates to complete */
1431
for (i = 0; i < args->n_devices; i++) {
1432
peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
1433
if (WARN_ON_ONCE(!peer_pdd))
1434
continue;
1435
if (flush_tlb)
1436
kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
1437
1438
/* Remove dma mapping after tlb flush to avoid IO_PAGE_FAULT */
1439
err = amdgpu_amdkfd_gpuvm_dmaunmap_mem(mem, peer_pdd->drm_priv);
1440
if (err)
1441
goto sync_memory_failed;
1442
}
1443
1444
mutex_unlock(&p->mutex);
1445
1446
kfree(devices_arr);
1447
1448
return 0;
1449
1450
bind_process_to_device_failed:
1451
get_mem_obj_from_handle_failed:
1452
unmap_memory_from_gpu_failed:
1453
sync_memory_failed:
1454
mutex_unlock(&p->mutex);
1455
copy_from_user_failed:
1456
kfree(devices_arr);
1457
return err;
1458
}
1459
1460
static int kfd_ioctl_alloc_queue_gws(struct file *filep,
1461
struct kfd_process *p, void *data)
1462
{
1463
int retval;
1464
struct kfd_ioctl_alloc_queue_gws_args *args = data;
1465
struct queue *q;
1466
struct kfd_node *dev;
1467
1468
mutex_lock(&p->mutex);
1469
q = pqm_get_user_queue(&p->pqm, args->queue_id);
1470
1471
if (q) {
1472
dev = q->device;
1473
} else {
1474
retval = -EINVAL;
1475
goto out_unlock;
1476
}
1477
1478
if (!dev->gws) {
1479
retval = -ENODEV;
1480
goto out_unlock;
1481
}
1482
1483
if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1484
retval = -ENODEV;
1485
goto out_unlock;
1486
}
1487
1488
if (p->debug_trap_enabled && (!kfd_dbg_has_gws_support(dev) ||
1489
kfd_dbg_has_cwsr_workaround(dev))) {
1490
retval = -EBUSY;
1491
goto out_unlock;
1492
}
1493
1494
retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
1495
mutex_unlock(&p->mutex);
1496
1497
args->first_gws = 0;
1498
return retval;
1499
1500
out_unlock:
1501
mutex_unlock(&p->mutex);
1502
return retval;
1503
}
1504
1505
static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1506
struct kfd_process *p, void *data)
1507
{
1508
struct kfd_ioctl_get_dmabuf_info_args *args = data;
1509
struct kfd_node *dev = NULL;
1510
struct amdgpu_device *dmabuf_adev;
1511
void *metadata_buffer = NULL;
1512
uint32_t flags;
1513
int8_t xcp_id;
1514
unsigned int i;
1515
int r;
1516
1517
/* Find a KFD GPU device that supports the get_dmabuf_info query */
1518
for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1519
if (dev && !kfd_devcgroup_check_permission(dev))
1520
break;
1521
if (!dev)
1522
return -EINVAL;
1523
1524
if (args->metadata_ptr) {
1525
metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1526
if (!metadata_buffer)
1527
return -ENOMEM;
1528
}
1529
1530
/* Get dmabuf info from KGD */
1531
r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
1532
&dmabuf_adev, &args->size,
1533
metadata_buffer, args->metadata_size,
1534
&args->metadata_size, &flags, &xcp_id);
1535
if (r)
1536
goto exit;
1537
1538
if (xcp_id >= 0)
1539
args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
1540
else
1541
args->gpu_id = dev->id;
1542
args->flags = flags;
1543
1544
/* Copy metadata buffer to user mode */
1545
if (metadata_buffer) {
1546
r = copy_to_user((void __user *)args->metadata_ptr,
1547
metadata_buffer, args->metadata_size);
1548
if (r != 0)
1549
r = -EFAULT;
1550
}
1551
1552
exit:
1553
kfree(metadata_buffer);
1554
1555
return r;
1556
}
1557
1558
static int kfd_ioctl_import_dmabuf(struct file *filep,
1559
struct kfd_process *p, void *data)
1560
{
1561
struct kfd_ioctl_import_dmabuf_args *args = data;
1562
struct kfd_process_device *pdd;
1563
int idr_handle;
1564
uint64_t size;
1565
void *mem;
1566
int r;
1567
1568
mutex_lock(&p->mutex);
1569
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
1570
if (!pdd) {
1571
r = -EINVAL;
1572
goto err_unlock;
1573
}
1574
1575
pdd = kfd_bind_process_to_device(pdd->dev, p);
1576
if (IS_ERR(pdd)) {
1577
r = PTR_ERR(pdd);
1578
goto err_unlock;
1579
}
1580
1581
r = amdgpu_amdkfd_gpuvm_import_dmabuf_fd(pdd->dev->adev, args->dmabuf_fd,
1582
args->va_addr, pdd->drm_priv,
1583
(struct kgd_mem **)&mem, &size,
1584
NULL);
1585
if (r)
1586
goto err_unlock;
1587
1588
idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1589
if (idr_handle < 0) {
1590
r = -EFAULT;
1591
goto err_free;
1592
}
1593
1594
mutex_unlock(&p->mutex);
1595
1596
args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1597
1598
return 0;
1599
1600
err_free:
1601
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
1602
pdd->drm_priv, NULL);
1603
err_unlock:
1604
mutex_unlock(&p->mutex);
1605
return r;
1606
}
1607
1608
static int kfd_ioctl_export_dmabuf(struct file *filep,
1609
struct kfd_process *p, void *data)
1610
{
1611
struct kfd_ioctl_export_dmabuf_args *args = data;
1612
struct kfd_process_device *pdd;
1613
struct dma_buf *dmabuf;
1614
struct kfd_node *dev;
1615
void *mem;
1616
int ret = 0;
1617
1618
dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1619
if (!dev)
1620
return -EINVAL;
1621
1622
mutex_lock(&p->mutex);
1623
1624
pdd = kfd_get_process_device_data(dev, p);
1625
if (!pdd) {
1626
ret = -EINVAL;
1627
goto err_unlock;
1628
}
1629
1630
mem = kfd_process_device_translate_handle(pdd,
1631
GET_IDR_HANDLE(args->handle));
1632
if (!mem) {
1633
ret = -EINVAL;
1634
goto err_unlock;
1635
}
1636
1637
ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1638
mutex_unlock(&p->mutex);
1639
if (ret)
1640
goto err_out;
1641
1642
ret = dma_buf_fd(dmabuf, args->flags);
1643
if (ret < 0) {
1644
dma_buf_put(dmabuf);
1645
goto err_out;
1646
}
1647
/* dma_buf_fd assigns the reference count to the fd, no need to
1648
* put the reference here.
1649
*/
1650
args->dmabuf_fd = ret;
1651
1652
return 0;
1653
1654
err_unlock:
1655
mutex_unlock(&p->mutex);
1656
err_out:
1657
return ret;
1658
}
1659
1660
/* Handle requests for watching SMI events */
1661
static int kfd_ioctl_smi_events(struct file *filep,
1662
struct kfd_process *p, void *data)
1663
{
1664
struct kfd_ioctl_smi_events_args *args = data;
1665
struct kfd_process_device *pdd;
1666
1667
mutex_lock(&p->mutex);
1668
1669
pdd = kfd_process_device_data_by_id(p, args->gpuid);
1670
mutex_unlock(&p->mutex);
1671
if (!pdd)
1672
return -EINVAL;
1673
1674
return kfd_smi_event_open(pdd->dev, &args->anon_fd);
1675
}
1676
1677
#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
1678
1679
static int kfd_ioctl_set_xnack_mode(struct file *filep,
1680
struct kfd_process *p, void *data)
1681
{
1682
struct kfd_ioctl_set_xnack_mode_args *args = data;
1683
int r = 0;
1684
1685
mutex_lock(&p->mutex);
1686
if (args->xnack_enabled >= 0) {
1687
if (!list_empty(&p->pqm.queues)) {
1688
pr_debug("Process has user queues running\n");
1689
r = -EBUSY;
1690
goto out_unlock;
1691
}
1692
1693
if (p->xnack_enabled == args->xnack_enabled)
1694
goto out_unlock;
1695
1696
if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
1697
r = -EPERM;
1698
goto out_unlock;
1699
}
1700
1701
r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
1702
} else {
1703
args->xnack_enabled = p->xnack_enabled;
1704
}
1705
1706
out_unlock:
1707
mutex_unlock(&p->mutex);
1708
1709
return r;
1710
}
1711
1712
static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1713
{
1714
struct kfd_ioctl_svm_args *args = data;
1715
int r = 0;
1716
1717
pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
1718
args->start_addr, args->size, args->op, args->nattr);
1719
1720
if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
1721
return -EINVAL;
1722
if (!args->start_addr || !args->size)
1723
return -EINVAL;
1724
1725
r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
1726
args->attrs);
1727
1728
return r;
1729
}
1730
#else
1731
static int kfd_ioctl_set_xnack_mode(struct file *filep,
1732
struct kfd_process *p, void *data)
1733
{
1734
return -EPERM;
1735
}
1736
static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
1737
{
1738
return -EPERM;
1739
}
1740
#endif
1741
1742
static int criu_checkpoint_process(struct kfd_process *p,
1743
uint8_t __user *user_priv_data,
1744
uint64_t *priv_offset)
1745
{
1746
struct kfd_criu_process_priv_data process_priv;
1747
int ret;
1748
1749
memset(&process_priv, 0, sizeof(process_priv));
1750
1751
process_priv.version = KFD_CRIU_PRIV_VERSION;
1752
/* For CR, we don't consider negative xnack mode which is used for
1753
* querying without changing it, here 0 simply means disabled and 1
1754
* means enabled so retry for finding a valid PTE.
1755
*/
1756
process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
1757
1758
ret = copy_to_user(user_priv_data + *priv_offset,
1759
&process_priv, sizeof(process_priv));
1760
1761
if (ret) {
1762
pr_err("Failed to copy process information to user\n");
1763
ret = -EFAULT;
1764
}
1765
1766
*priv_offset += sizeof(process_priv);
1767
return ret;
1768
}
1769
1770
static int criu_checkpoint_devices(struct kfd_process *p,
1771
uint32_t num_devices,
1772
uint8_t __user *user_addr,
1773
uint8_t __user *user_priv_data,
1774
uint64_t *priv_offset)
1775
{
1776
struct kfd_criu_device_priv_data *device_priv = NULL;
1777
struct kfd_criu_device_bucket *device_buckets = NULL;
1778
int ret = 0, i;
1779
1780
device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
1781
if (!device_buckets) {
1782
ret = -ENOMEM;
1783
goto exit;
1784
}
1785
1786
device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
1787
if (!device_priv) {
1788
ret = -ENOMEM;
1789
goto exit;
1790
}
1791
1792
for (i = 0; i < num_devices; i++) {
1793
struct kfd_process_device *pdd = p->pdds[i];
1794
1795
device_buckets[i].user_gpu_id = pdd->user_gpu_id;
1796
device_buckets[i].actual_gpu_id = pdd->dev->id;
1797
1798
/*
1799
* priv_data does not contain useful information for now and is reserved for
1800
* future use, so we do not set its contents.
1801
*/
1802
}
1803
1804
ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
1805
if (ret) {
1806
pr_err("Failed to copy device information to user\n");
1807
ret = -EFAULT;
1808
goto exit;
1809
}
1810
1811
ret = copy_to_user(user_priv_data + *priv_offset,
1812
device_priv,
1813
num_devices * sizeof(*device_priv));
1814
if (ret) {
1815
pr_err("Failed to copy device information to user\n");
1816
ret = -EFAULT;
1817
}
1818
*priv_offset += num_devices * sizeof(*device_priv);
1819
1820
exit:
1821
kvfree(device_buckets);
1822
kvfree(device_priv);
1823
return ret;
1824
}
1825
1826
static uint32_t get_process_num_bos(struct kfd_process *p)
1827
{
1828
uint32_t num_of_bos = 0;
1829
int i;
1830
1831
/* Run over all PDDs of the process */
1832
for (i = 0; i < p->n_pdds; i++) {
1833
struct kfd_process_device *pdd = p->pdds[i];
1834
void *mem;
1835
int id;
1836
1837
idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1838
struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
1839
1840
if (!kgd_mem->va || kgd_mem->va > pdd->gpuvm_base)
1841
num_of_bos++;
1842
}
1843
}
1844
return num_of_bos;
1845
}
1846
1847
static int criu_get_prime_handle(struct kgd_mem *mem,
1848
int flags, u32 *shared_fd,
1849
struct file **file)
1850
{
1851
struct dma_buf *dmabuf;
1852
int ret;
1853
1854
ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
1855
if (ret) {
1856
pr_err("dmabuf export failed for the BO\n");
1857
return ret;
1858
}
1859
1860
ret = get_unused_fd_flags(flags);
1861
if (ret < 0) {
1862
pr_err("dmabuf create fd failed, ret:%d\n", ret);
1863
goto out_free_dmabuf;
1864
}
1865
1866
*shared_fd = ret;
1867
*file = dmabuf->file;
1868
return 0;
1869
1870
out_free_dmabuf:
1871
dma_buf_put(dmabuf);
1872
return ret;
1873
}
1874
1875
static void commit_files(struct file **files,
1876
struct kfd_criu_bo_bucket *bo_buckets,
1877
unsigned int count,
1878
int err)
1879
{
1880
while (count--) {
1881
struct file *file = files[count];
1882
1883
if (!file)
1884
continue;
1885
if (err) {
1886
fput(file);
1887
put_unused_fd(bo_buckets[count].dmabuf_fd);
1888
} else {
1889
fd_install(bo_buckets[count].dmabuf_fd, file);
1890
}
1891
}
1892
}
1893
1894
static int criu_checkpoint_bos(struct kfd_process *p,
1895
uint32_t num_bos,
1896
uint8_t __user *user_bos,
1897
uint8_t __user *user_priv_data,
1898
uint64_t *priv_offset)
1899
{
1900
struct kfd_criu_bo_bucket *bo_buckets;
1901
struct kfd_criu_bo_priv_data *bo_privs;
1902
struct file **files = NULL;
1903
int ret = 0, pdd_index, bo_index = 0, id;
1904
void *mem;
1905
1906
bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
1907
if (!bo_buckets)
1908
return -ENOMEM;
1909
1910
bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
1911
if (!bo_privs) {
1912
ret = -ENOMEM;
1913
goto exit;
1914
}
1915
1916
files = kvzalloc(num_bos * sizeof(struct file *), GFP_KERNEL);
1917
if (!files) {
1918
ret = -ENOMEM;
1919
goto exit;
1920
}
1921
1922
for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
1923
struct kfd_process_device *pdd = p->pdds[pdd_index];
1924
struct amdgpu_bo *dumper_bo;
1925
struct kgd_mem *kgd_mem;
1926
1927
idr_for_each_entry(&pdd->alloc_idr, mem, id) {
1928
struct kfd_criu_bo_bucket *bo_bucket;
1929
struct kfd_criu_bo_priv_data *bo_priv;
1930
int i, dev_idx = 0;
1931
1932
kgd_mem = (struct kgd_mem *)mem;
1933
dumper_bo = kgd_mem->bo;
1934
1935
/* Skip checkpointing BOs that are used for Trap handler
1936
* code and state. Currently, these BOs have a VA that
1937
* is less GPUVM Base
1938
*/
1939
if (kgd_mem->va && kgd_mem->va <= pdd->gpuvm_base)
1940
continue;
1941
1942
bo_bucket = &bo_buckets[bo_index];
1943
bo_priv = &bo_privs[bo_index];
1944
1945
bo_bucket->gpu_id = pdd->user_gpu_id;
1946
bo_bucket->addr = (uint64_t)kgd_mem->va;
1947
bo_bucket->size = amdgpu_bo_size(dumper_bo);
1948
bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
1949
bo_priv->idr_handle = id;
1950
1951
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1952
ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
1953
&bo_priv->user_addr);
1954
if (ret) {
1955
pr_err("Failed to obtain user address for user-pointer bo\n");
1956
goto exit;
1957
}
1958
}
1959
if (bo_bucket->alloc_flags
1960
& (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
1961
ret = criu_get_prime_handle(kgd_mem,
1962
bo_bucket->alloc_flags &
1963
KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
1964
&bo_bucket->dmabuf_fd, &files[bo_index]);
1965
if (ret)
1966
goto exit;
1967
} else {
1968
bo_bucket->dmabuf_fd = KFD_INVALID_FD;
1969
}
1970
1971
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
1972
bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
1973
KFD_MMAP_GPU_ID(pdd->dev->id);
1974
else if (bo_bucket->alloc_flags &
1975
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
1976
bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
1977
KFD_MMAP_GPU_ID(pdd->dev->id);
1978
else
1979
bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
1980
1981
for (i = 0; i < p->n_pdds; i++) {
1982
if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->drm_priv, kgd_mem))
1983
bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
1984
}
1985
1986
pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
1987
"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
1988
bo_bucket->size,
1989
bo_bucket->addr,
1990
bo_bucket->offset,
1991
bo_bucket->gpu_id,
1992
bo_bucket->alloc_flags,
1993
bo_priv->idr_handle);
1994
bo_index++;
1995
}
1996
}
1997
1998
ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
1999
if (ret) {
2000
pr_err("Failed to copy BO information to user\n");
2001
ret = -EFAULT;
2002
goto exit;
2003
}
2004
2005
ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
2006
if (ret) {
2007
pr_err("Failed to copy BO priv information to user\n");
2008
ret = -EFAULT;
2009
goto exit;
2010
}
2011
2012
*priv_offset += num_bos * sizeof(*bo_privs);
2013
2014
exit:
2015
commit_files(files, bo_buckets, bo_index, ret);
2016
kvfree(files);
2017
kvfree(bo_buckets);
2018
kvfree(bo_privs);
2019
return ret;
2020
}
2021
2022
static int criu_get_process_object_info(struct kfd_process *p,
2023
uint32_t *num_devices,
2024
uint32_t *num_bos,
2025
uint32_t *num_objects,
2026
uint64_t *objs_priv_size)
2027
{
2028
uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
2029
uint32_t num_queues, num_events, num_svm_ranges;
2030
int ret;
2031
2032
*num_devices = p->n_pdds;
2033
*num_bos = get_process_num_bos(p);
2034
2035
ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
2036
if (ret)
2037
return ret;
2038
2039
num_events = kfd_get_num_events(p);
2040
2041
svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
2042
2043
*num_objects = num_queues + num_events + num_svm_ranges;
2044
2045
if (objs_priv_size) {
2046
priv_size = sizeof(struct kfd_criu_process_priv_data);
2047
priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
2048
priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
2049
priv_size += queues_priv_data_size;
2050
priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
2051
priv_size += svm_priv_data_size;
2052
*objs_priv_size = priv_size;
2053
}
2054
return 0;
2055
}
2056
2057
static int criu_checkpoint(struct file *filep,
2058
struct kfd_process *p,
2059
struct kfd_ioctl_criu_args *args)
2060
{
2061
int ret;
2062
uint32_t num_devices, num_bos, num_objects;
2063
uint64_t priv_size, priv_offset = 0, bo_priv_offset;
2064
2065
if (!args->devices || !args->bos || !args->priv_data)
2066
return -EINVAL;
2067
2068
mutex_lock(&p->mutex);
2069
2070
if (!p->n_pdds) {
2071
pr_err("No pdd for given process\n");
2072
ret = -ENODEV;
2073
goto exit_unlock;
2074
}
2075
2076
/* Confirm all process queues are evicted */
2077
if (!p->queues_paused) {
2078
pr_err("Cannot dump process when queues are not in evicted state\n");
2079
/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
2080
ret = -EINVAL;
2081
goto exit_unlock;
2082
}
2083
2084
ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
2085
if (ret)
2086
goto exit_unlock;
2087
2088
if (num_devices != args->num_devices ||
2089
num_bos != args->num_bos ||
2090
num_objects != args->num_objects ||
2091
priv_size != args->priv_data_size) {
2092
2093
ret = -EINVAL;
2094
goto exit_unlock;
2095
}
2096
2097
/* each function will store private data inside priv_data and adjust priv_offset */
2098
ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
2099
if (ret)
2100
goto exit_unlock;
2101
2102
ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
2103
(uint8_t __user *)args->priv_data, &priv_offset);
2104
if (ret)
2105
goto exit_unlock;
2106
2107
/* Leave room for BOs in the private data. They need to be restored
2108
* before events, but we checkpoint them last to simplify the error
2109
* handling.
2110
*/
2111
bo_priv_offset = priv_offset;
2112
priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
2113
2114
if (num_objects) {
2115
ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
2116
&priv_offset);
2117
if (ret)
2118
goto exit_unlock;
2119
2120
ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
2121
&priv_offset);
2122
if (ret)
2123
goto exit_unlock;
2124
2125
ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
2126
if (ret)
2127
goto exit_unlock;
2128
}
2129
2130
/* This must be the last thing in this function that can fail.
2131
* Otherwise we leak dmabuf file descriptors.
2132
*/
2133
ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
2134
(uint8_t __user *)args->priv_data, &bo_priv_offset);
2135
2136
exit_unlock:
2137
mutex_unlock(&p->mutex);
2138
if (ret)
2139
pr_err("Failed to dump CRIU ret:%d\n", ret);
2140
else
2141
pr_debug("CRIU dump ret:%d\n", ret);
2142
2143
return ret;
2144
}
2145
2146
static int criu_restore_process(struct kfd_process *p,
2147
struct kfd_ioctl_criu_args *args,
2148
uint64_t *priv_offset,
2149
uint64_t max_priv_data_size)
2150
{
2151
int ret = 0;
2152
struct kfd_criu_process_priv_data process_priv;
2153
2154
if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
2155
return -EINVAL;
2156
2157
ret = copy_from_user(&process_priv,
2158
(void __user *)(args->priv_data + *priv_offset),
2159
sizeof(process_priv));
2160
if (ret) {
2161
pr_err("Failed to copy process private information from user\n");
2162
ret = -EFAULT;
2163
goto exit;
2164
}
2165
*priv_offset += sizeof(process_priv);
2166
2167
if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
2168
pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
2169
process_priv.version, KFD_CRIU_PRIV_VERSION);
2170
return -EINVAL;
2171
}
2172
2173
pr_debug("Setting XNACK mode\n");
2174
if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
2175
pr_err("xnack mode cannot be set\n");
2176
ret = -EPERM;
2177
goto exit;
2178
} else {
2179
pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
2180
p->xnack_enabled = process_priv.xnack_mode;
2181
}
2182
2183
exit:
2184
return ret;
2185
}
2186
2187
static int criu_restore_devices(struct kfd_process *p,
2188
struct kfd_ioctl_criu_args *args,
2189
uint64_t *priv_offset,
2190
uint64_t max_priv_data_size)
2191
{
2192
struct kfd_criu_device_bucket *device_buckets;
2193
struct kfd_criu_device_priv_data *device_privs;
2194
int ret = 0;
2195
uint32_t i;
2196
2197
if (args->num_devices != p->n_pdds)
2198
return -EINVAL;
2199
2200
if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
2201
return -EINVAL;
2202
2203
device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
2204
if (!device_buckets)
2205
return -ENOMEM;
2206
2207
ret = copy_from_user(device_buckets, (void __user *)args->devices,
2208
args->num_devices * sizeof(*device_buckets));
2209
if (ret) {
2210
pr_err("Failed to copy devices buckets from user\n");
2211
ret = -EFAULT;
2212
goto exit;
2213
}
2214
2215
for (i = 0; i < args->num_devices; i++) {
2216
struct kfd_node *dev;
2217
struct kfd_process_device *pdd;
2218
struct file *drm_file;
2219
2220
/* device private data is not currently used */
2221
2222
if (!device_buckets[i].user_gpu_id) {
2223
pr_err("Invalid user gpu_id\n");
2224
ret = -EINVAL;
2225
goto exit;
2226
}
2227
2228
dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
2229
if (!dev) {
2230
pr_err("Failed to find device with gpu_id = %x\n",
2231
device_buckets[i].actual_gpu_id);
2232
ret = -EINVAL;
2233
goto exit;
2234
}
2235
2236
pdd = kfd_get_process_device_data(dev, p);
2237
if (!pdd) {
2238
pr_err("Failed to get pdd for gpu_id = %x\n",
2239
device_buckets[i].actual_gpu_id);
2240
ret = -EINVAL;
2241
goto exit;
2242
}
2243
pdd->user_gpu_id = device_buckets[i].user_gpu_id;
2244
2245
drm_file = fget(device_buckets[i].drm_fd);
2246
if (!drm_file) {
2247
pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
2248
device_buckets[i].drm_fd);
2249
ret = -EINVAL;
2250
goto exit;
2251
}
2252
2253
if (pdd->drm_file) {
2254
ret = -EINVAL;
2255
goto exit;
2256
}
2257
2258
/* create the vm using render nodes for kfd pdd */
2259
if (kfd_process_device_init_vm(pdd, drm_file)) {
2260
pr_err("could not init vm for given pdd\n");
2261
/* On success, the PDD keeps the drm_file reference */
2262
fput(drm_file);
2263
ret = -EINVAL;
2264
goto exit;
2265
}
2266
/*
2267
* pdd now already has the vm bound to render node so below api won't create a new
2268
* exclusive kfd mapping but use existing one with renderDXXX but is still needed
2269
* for iommu v2 binding and runtime pm.
2270
*/
2271
pdd = kfd_bind_process_to_device(dev, p);
2272
if (IS_ERR(pdd)) {
2273
ret = PTR_ERR(pdd);
2274
goto exit;
2275
}
2276
2277
if (!pdd->qpd.proc_doorbells) {
2278
ret = kfd_alloc_process_doorbells(dev->kfd, pdd);
2279
if (ret)
2280
goto exit;
2281
}
2282
}
2283
2284
/*
2285
* We are not copying device private data from user as we are not using the data for now,
2286
* but we still adjust for its private data.
2287
*/
2288
*priv_offset += args->num_devices * sizeof(*device_privs);
2289
2290
exit:
2291
kfree(device_buckets);
2292
return ret;
2293
}
2294
2295
static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
2296
struct kfd_criu_bo_bucket *bo_bucket,
2297
struct kfd_criu_bo_priv_data *bo_priv,
2298
struct kgd_mem **kgd_mem)
2299
{
2300
int idr_handle;
2301
int ret;
2302
const bool criu_resume = true;
2303
u64 offset;
2304
2305
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
2306
if (bo_bucket->size !=
2307
kfd_doorbell_process_slice(pdd->dev->kfd))
2308
return -EINVAL;
2309
2310
offset = kfd_get_process_doorbells(pdd);
2311
if (!offset)
2312
return -ENOMEM;
2313
} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2314
/* MMIO BOs need remapped bus address */
2315
if (bo_bucket->size != PAGE_SIZE) {
2316
pr_err("Invalid page size\n");
2317
return -EINVAL;
2318
}
2319
offset = pdd->dev->adev->rmmio_remap.bus_addr;
2320
if (!offset || (PAGE_SIZE > 4096)) {
2321
pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
2322
return -ENOMEM;
2323
}
2324
} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
2325
offset = bo_priv->user_addr;
2326
}
2327
/* Create the BO */
2328
ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
2329
bo_bucket->size, pdd->drm_priv, kgd_mem,
2330
&offset, bo_bucket->alloc_flags, criu_resume);
2331
if (ret) {
2332
pr_err("Could not create the BO\n");
2333
return ret;
2334
}
2335
pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
2336
bo_bucket->size, bo_bucket->addr, offset);
2337
2338
/* Restore previous IDR handle */
2339
pr_debug("Restoring old IDR handle for the BO");
2340
idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
2341
bo_priv->idr_handle + 1, GFP_KERNEL);
2342
2343
if (idr_handle < 0) {
2344
pr_err("Could not allocate idr\n");
2345
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
2346
NULL);
2347
return -ENOMEM;
2348
}
2349
2350
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
2351
bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
2352
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
2353
bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
2354
} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
2355
bo_bucket->restored_offset = offset;
2356
} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
2357
bo_bucket->restored_offset = offset;
2358
/* Update the VRAM usage count */
2359
atomic64_add(bo_bucket->size, &pdd->vram_usage);
2360
}
2361
return 0;
2362
}
2363
2364
static int criu_restore_bo(struct kfd_process *p,
2365
struct kfd_criu_bo_bucket *bo_bucket,
2366
struct kfd_criu_bo_priv_data *bo_priv,
2367
struct file **file)
2368
{
2369
struct kfd_process_device *pdd;
2370
struct kgd_mem *kgd_mem;
2371
int ret;
2372
int j;
2373
2374
pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
2375
bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
2376
bo_priv->idr_handle);
2377
2378
pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
2379
if (!pdd) {
2380
pr_err("Failed to get pdd\n");
2381
return -ENODEV;
2382
}
2383
2384
ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
2385
if (ret)
2386
return ret;
2387
2388
/* now map these BOs to GPU/s */
2389
for (j = 0; j < p->n_pdds; j++) {
2390
struct kfd_node *peer;
2391
struct kfd_process_device *peer_pdd;
2392
2393
if (!bo_priv->mapped_gpuids[j])
2394
break;
2395
2396
peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
2397
if (!peer_pdd)
2398
return -EINVAL;
2399
2400
peer = peer_pdd->dev;
2401
2402
peer_pdd = kfd_bind_process_to_device(peer, p);
2403
if (IS_ERR(peer_pdd))
2404
return PTR_ERR(peer_pdd);
2405
2406
ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
2407
peer_pdd->drm_priv);
2408
if (ret) {
2409
pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
2410
return ret;
2411
}
2412
}
2413
2414
pr_debug("map memory was successful for the BO\n");
2415
/* create the dmabuf object and export the bo */
2416
if (bo_bucket->alloc_flags
2417
& (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
2418
ret = criu_get_prime_handle(kgd_mem, DRM_RDWR,
2419
&bo_bucket->dmabuf_fd, file);
2420
if (ret)
2421
return ret;
2422
} else {
2423
bo_bucket->dmabuf_fd = KFD_INVALID_FD;
2424
}
2425
2426
return 0;
2427
}
2428
2429
static int criu_restore_bos(struct kfd_process *p,
2430
struct kfd_ioctl_criu_args *args,
2431
uint64_t *priv_offset,
2432
uint64_t max_priv_data_size)
2433
{
2434
struct kfd_criu_bo_bucket *bo_buckets = NULL;
2435
struct kfd_criu_bo_priv_data *bo_privs = NULL;
2436
struct file **files = NULL;
2437
int ret = 0;
2438
uint32_t i = 0;
2439
2440
if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
2441
return -EINVAL;
2442
2443
/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
2444
amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
2445
2446
bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
2447
if (!bo_buckets)
2448
return -ENOMEM;
2449
2450
files = kvzalloc(args->num_bos * sizeof(struct file *), GFP_KERNEL);
2451
if (!files) {
2452
ret = -ENOMEM;
2453
goto exit;
2454
}
2455
2456
ret = copy_from_user(bo_buckets, (void __user *)args->bos,
2457
args->num_bos * sizeof(*bo_buckets));
2458
if (ret) {
2459
pr_err("Failed to copy BOs information from user\n");
2460
ret = -EFAULT;
2461
goto exit;
2462
}
2463
2464
bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
2465
if (!bo_privs) {
2466
ret = -ENOMEM;
2467
goto exit;
2468
}
2469
2470
ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
2471
args->num_bos * sizeof(*bo_privs));
2472
if (ret) {
2473
pr_err("Failed to copy BOs information from user\n");
2474
ret = -EFAULT;
2475
goto exit;
2476
}
2477
*priv_offset += args->num_bos * sizeof(*bo_privs);
2478
2479
/* Create and map new BOs */
2480
for (; i < args->num_bos; i++) {
2481
ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i], &files[i]);
2482
if (ret) {
2483
pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
2484
goto exit;
2485
}
2486
} /* done */
2487
2488
/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
2489
ret = copy_to_user((void __user *)args->bos,
2490
bo_buckets,
2491
(args->num_bos * sizeof(*bo_buckets)));
2492
if (ret)
2493
ret = -EFAULT;
2494
2495
exit:
2496
commit_files(files, bo_buckets, i, ret);
2497
kvfree(files);
2498
kvfree(bo_buckets);
2499
kvfree(bo_privs);
2500
return ret;
2501
}
2502
2503
static int criu_restore_objects(struct file *filep,
2504
struct kfd_process *p,
2505
struct kfd_ioctl_criu_args *args,
2506
uint64_t *priv_offset,
2507
uint64_t max_priv_data_size)
2508
{
2509
int ret = 0;
2510
uint32_t i;
2511
2512
BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
2513
BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
2514
BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
2515
2516
for (i = 0; i < args->num_objects; i++) {
2517
uint32_t object_type;
2518
2519
if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
2520
pr_err("Invalid private data size\n");
2521
return -EINVAL;
2522
}
2523
2524
ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
2525
if (ret) {
2526
pr_err("Failed to copy private information from user\n");
2527
goto exit;
2528
}
2529
2530
switch (object_type) {
2531
case KFD_CRIU_OBJECT_TYPE_QUEUE:
2532
ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
2533
priv_offset, max_priv_data_size);
2534
if (ret)
2535
goto exit;
2536
break;
2537
case KFD_CRIU_OBJECT_TYPE_EVENT:
2538
ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
2539
priv_offset, max_priv_data_size);
2540
if (ret)
2541
goto exit;
2542
break;
2543
case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
2544
ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
2545
priv_offset, max_priv_data_size);
2546
if (ret)
2547
goto exit;
2548
break;
2549
default:
2550
pr_err("Invalid object type:%u at index:%d\n", object_type, i);
2551
ret = -EINVAL;
2552
goto exit;
2553
}
2554
}
2555
exit:
2556
return ret;
2557
}
2558
2559
static int criu_restore(struct file *filep,
2560
struct kfd_process *p,
2561
struct kfd_ioctl_criu_args *args)
2562
{
2563
uint64_t priv_offset = 0;
2564
int ret = 0;
2565
2566
pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
2567
args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
2568
2569
if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
2570
!args->num_devices || !args->num_bos)
2571
return -EINVAL;
2572
2573
mutex_lock(&p->mutex);
2574
2575
/*
2576
* Set the process to evicted state to avoid running any new queues before all the memory
2577
* mappings are ready.
2578
*/
2579
ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
2580
if (ret)
2581
goto exit_unlock;
2582
2583
/* Each function will adjust priv_offset based on how many bytes they consumed */
2584
ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
2585
if (ret)
2586
goto exit_unlock;
2587
2588
ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
2589
if (ret)
2590
goto exit_unlock;
2591
2592
ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
2593
if (ret)
2594
goto exit_unlock;
2595
2596
ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
2597
if (ret)
2598
goto exit_unlock;
2599
2600
if (priv_offset != args->priv_data_size) {
2601
pr_err("Invalid private data size\n");
2602
ret = -EINVAL;
2603
}
2604
2605
exit_unlock:
2606
mutex_unlock(&p->mutex);
2607
if (ret)
2608
pr_err("Failed to restore CRIU ret:%d\n", ret);
2609
else
2610
pr_debug("CRIU restore successful\n");
2611
2612
return ret;
2613
}
2614
2615
static int criu_unpause(struct file *filep,
2616
struct kfd_process *p,
2617
struct kfd_ioctl_criu_args *args)
2618
{
2619
int ret;
2620
2621
mutex_lock(&p->mutex);
2622
2623
if (!p->queues_paused) {
2624
mutex_unlock(&p->mutex);
2625
return -EINVAL;
2626
}
2627
2628
ret = kfd_process_restore_queues(p);
2629
if (ret)
2630
pr_err("Failed to unpause queues ret:%d\n", ret);
2631
else
2632
p->queues_paused = false;
2633
2634
mutex_unlock(&p->mutex);
2635
2636
return ret;
2637
}
2638
2639
static int criu_resume(struct file *filep,
2640
struct kfd_process *p,
2641
struct kfd_ioctl_criu_args *args)
2642
{
2643
struct kfd_process *target = NULL;
2644
struct pid *pid = NULL;
2645
int ret = 0;
2646
2647
pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
2648
args->pid);
2649
2650
pid = find_get_pid(args->pid);
2651
if (!pid) {
2652
pr_err("Cannot find pid info for %i\n", args->pid);
2653
return -ESRCH;
2654
}
2655
2656
pr_debug("calling kfd_lookup_process_by_pid\n");
2657
target = kfd_lookup_process_by_pid(pid);
2658
2659
put_pid(pid);
2660
2661
if (!target) {
2662
pr_debug("Cannot find process info for %i\n", args->pid);
2663
return -ESRCH;
2664
}
2665
2666
mutex_lock(&target->mutex);
2667
ret = kfd_criu_resume_svm(target);
2668
if (ret) {
2669
pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
2670
goto exit;
2671
}
2672
2673
ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info);
2674
if (ret)
2675
pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
2676
2677
exit:
2678
mutex_unlock(&target->mutex);
2679
2680
kfd_unref_process(target);
2681
return ret;
2682
}
2683
2684
static int criu_process_info(struct file *filep,
2685
struct kfd_process *p,
2686
struct kfd_ioctl_criu_args *args)
2687
{
2688
int ret = 0;
2689
2690
mutex_lock(&p->mutex);
2691
2692
if (!p->n_pdds) {
2693
pr_err("No pdd for given process\n");
2694
ret = -ENODEV;
2695
goto err_unlock;
2696
}
2697
2698
ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
2699
if (ret)
2700
goto err_unlock;
2701
2702
p->queues_paused = true;
2703
2704
args->pid = task_pid_nr_ns(p->lead_thread,
2705
task_active_pid_ns(p->lead_thread));
2706
2707
ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
2708
&args->num_objects, &args->priv_data_size);
2709
if (ret)
2710
goto err_unlock;
2711
2712
dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
2713
args->num_devices, args->num_bos, args->num_objects,
2714
args->priv_data_size);
2715
2716
err_unlock:
2717
if (ret) {
2718
kfd_process_restore_queues(p);
2719
p->queues_paused = false;
2720
}
2721
mutex_unlock(&p->mutex);
2722
return ret;
2723
}
2724
2725
static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
2726
{
2727
struct kfd_ioctl_criu_args *args = data;
2728
int ret;
2729
2730
dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
2731
switch (args->op) {
2732
case KFD_CRIU_OP_PROCESS_INFO:
2733
ret = criu_process_info(filep, p, args);
2734
break;
2735
case KFD_CRIU_OP_CHECKPOINT:
2736
ret = criu_checkpoint(filep, p, args);
2737
break;
2738
case KFD_CRIU_OP_UNPAUSE:
2739
ret = criu_unpause(filep, p, args);
2740
break;
2741
case KFD_CRIU_OP_RESTORE:
2742
ret = criu_restore(filep, p, args);
2743
break;
2744
case KFD_CRIU_OP_RESUME:
2745
ret = criu_resume(filep, p, args);
2746
break;
2747
default:
2748
dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
2749
ret = -EINVAL;
2750
break;
2751
}
2752
2753
if (ret)
2754
dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
2755
2756
return ret;
2757
}
2758
2759
static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
2760
bool enable_ttmp_setup)
2761
{
2762
int i = 0, ret = 0;
2763
2764
if (p->is_runtime_retry)
2765
goto retry;
2766
2767
if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
2768
return -EBUSY;
2769
2770
for (i = 0; i < p->n_pdds; i++) {
2771
struct kfd_process_device *pdd = p->pdds[i];
2772
2773
if (pdd->qpd.queue_count)
2774
return -EEXIST;
2775
2776
/*
2777
* Setup TTMPs by default.
2778
* Note that this call must remain here for MES ADD QUEUE to
2779
* skip_process_ctx_clear unconditionally as the first call to
2780
* SET_SHADER_DEBUGGER clears any stale process context data
2781
* saved in MES.
2782
*/
2783
if (pdd->dev->kfd->shared_resources.enable_mes)
2784
kfd_dbg_set_mes_debug_mode(pdd, !kfd_dbg_has_cwsr_workaround(pdd->dev));
2785
}
2786
2787
p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
2788
p->runtime_info.r_debug = r_debug;
2789
p->runtime_info.ttmp_setup = enable_ttmp_setup;
2790
2791
if (p->runtime_info.ttmp_setup) {
2792
for (i = 0; i < p->n_pdds; i++) {
2793
struct kfd_process_device *pdd = p->pdds[i];
2794
2795
if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
2796
amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
2797
pdd->dev->kfd2kgd->enable_debug_trap(
2798
pdd->dev->adev,
2799
true,
2800
pdd->dev->vm_info.last_vmid_kfd);
2801
} else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2802
pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
2803
pdd->dev->adev,
2804
false,
2805
0);
2806
}
2807
}
2808
}
2809
2810
retry:
2811
if (p->debug_trap_enabled) {
2812
if (!p->is_runtime_retry) {
2813
kfd_dbg_trap_activate(p);
2814
kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2815
p, NULL, 0, false, NULL, 0);
2816
}
2817
2818
mutex_unlock(&p->mutex);
2819
ret = down_interruptible(&p->runtime_enable_sema);
2820
mutex_lock(&p->mutex);
2821
2822
p->is_runtime_retry = !!ret;
2823
}
2824
2825
return ret;
2826
}
2827
2828
static int runtime_disable(struct kfd_process *p)
2829
{
2830
int i = 0, ret;
2831
bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
2832
2833
p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
2834
p->runtime_info.r_debug = 0;
2835
2836
if (p->debug_trap_enabled) {
2837
if (was_enabled)
2838
kfd_dbg_trap_deactivate(p, false, 0);
2839
2840
if (!p->is_runtime_retry)
2841
kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
2842
p, NULL, 0, false, NULL, 0);
2843
2844
mutex_unlock(&p->mutex);
2845
ret = down_interruptible(&p->runtime_enable_sema);
2846
mutex_lock(&p->mutex);
2847
2848
p->is_runtime_retry = !!ret;
2849
if (ret)
2850
return ret;
2851
}
2852
2853
if (was_enabled && p->runtime_info.ttmp_setup) {
2854
for (i = 0; i < p->n_pdds; i++) {
2855
struct kfd_process_device *pdd = p->pdds[i];
2856
2857
if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
2858
amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
2859
}
2860
}
2861
2862
p->runtime_info.ttmp_setup = false;
2863
2864
/* disable ttmp setup */
2865
for (i = 0; i < p->n_pdds; i++) {
2866
struct kfd_process_device *pdd = p->pdds[i];
2867
2868
if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
2869
pdd->spi_dbg_override =
2870
pdd->dev->kfd2kgd->disable_debug_trap(
2871
pdd->dev->adev,
2872
false,
2873
pdd->dev->vm_info.last_vmid_kfd);
2874
2875
if (!pdd->dev->kfd->shared_resources.enable_mes)
2876
debug_refresh_runlist(pdd->dev->dqm);
2877
else
2878
kfd_dbg_set_mes_debug_mode(pdd,
2879
!kfd_dbg_has_cwsr_workaround(pdd->dev));
2880
}
2881
}
2882
2883
return 0;
2884
}
2885
2886
static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
2887
{
2888
struct kfd_ioctl_runtime_enable_args *args = data;
2889
int r;
2890
2891
mutex_lock(&p->mutex);
2892
2893
if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
2894
r = runtime_enable(p, args->r_debug,
2895
!!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
2896
else
2897
r = runtime_disable(p);
2898
2899
mutex_unlock(&p->mutex);
2900
2901
return r;
2902
}
2903
2904
static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
2905
{
2906
struct kfd_ioctl_dbg_trap_args *args = data;
2907
struct task_struct *thread = NULL;
2908
struct mm_struct *mm = NULL;
2909
struct pid *pid = NULL;
2910
struct kfd_process *target = NULL;
2911
struct kfd_process_device *pdd = NULL;
2912
int r = 0;
2913
2914
if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2915
pr_err("Debugging does not support sched_policy %i", sched_policy);
2916
return -EINVAL;
2917
}
2918
2919
pid = find_get_pid(args->pid);
2920
if (!pid) {
2921
pr_debug("Cannot find pid info for %i\n", args->pid);
2922
r = -ESRCH;
2923
goto out;
2924
}
2925
2926
thread = get_pid_task(pid, PIDTYPE_PID);
2927
if (!thread) {
2928
r = -ESRCH;
2929
goto out;
2930
}
2931
2932
mm = get_task_mm(thread);
2933
if (!mm) {
2934
r = -ESRCH;
2935
goto out;
2936
}
2937
2938
if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
2939
bool create_process;
2940
2941
rcu_read_lock();
2942
create_process = thread && thread != current && ptrace_parent(thread) == current;
2943
rcu_read_unlock();
2944
2945
target = create_process ? kfd_create_process(thread) :
2946
kfd_lookup_process_by_pid(pid);
2947
} else {
2948
target = kfd_lookup_process_by_pid(pid);
2949
}
2950
2951
if (IS_ERR_OR_NULL(target)) {
2952
pr_debug("Cannot find process PID %i to debug\n", args->pid);
2953
r = target ? PTR_ERR(target) : -ESRCH;
2954
target = NULL;
2955
goto out;
2956
}
2957
2958
/* Check if target is still PTRACED. */
2959
rcu_read_lock();
2960
if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
2961
&& ptrace_parent(target->lead_thread) != current) {
2962
pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
2963
r = -EPERM;
2964
}
2965
rcu_read_unlock();
2966
2967
if (r)
2968
goto out;
2969
2970
mutex_lock(&target->mutex);
2971
2972
if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
2973
pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
2974
r = -EINVAL;
2975
goto unlock_out;
2976
}
2977
2978
if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
2979
(args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
2980
args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
2981
args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
2982
args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
2983
args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2984
args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
2985
args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
2986
r = -EPERM;
2987
goto unlock_out;
2988
}
2989
2990
if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
2991
args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
2992
int user_gpu_id = kfd_process_get_user_gpu_id(target,
2993
args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
2994
args->set_node_address_watch.gpu_id :
2995
args->clear_node_address_watch.gpu_id);
2996
2997
pdd = kfd_process_device_data_by_id(target, user_gpu_id);
2998
if (user_gpu_id == -EINVAL || !pdd) {
2999
r = -ENODEV;
3000
goto unlock_out;
3001
}
3002
}
3003
3004
switch (args->op) {
3005
case KFD_IOC_DBG_TRAP_ENABLE:
3006
if (target != p)
3007
target->debugger_process = p;
3008
3009
r = kfd_dbg_trap_enable(target,
3010
args->enable.dbg_fd,
3011
(void __user *)args->enable.rinfo_ptr,
3012
&args->enable.rinfo_size);
3013
if (!r)
3014
target->exception_enable_mask = args->enable.exception_mask;
3015
3016
break;
3017
case KFD_IOC_DBG_TRAP_DISABLE:
3018
r = kfd_dbg_trap_disable(target);
3019
break;
3020
case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
3021
r = kfd_dbg_send_exception_to_runtime(target,
3022
args->send_runtime_event.gpu_id,
3023
args->send_runtime_event.queue_id,
3024
args->send_runtime_event.exception_mask);
3025
break;
3026
case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
3027
kfd_dbg_set_enabled_debug_exception_mask(target,
3028
args->set_exceptions_enabled.exception_mask);
3029
break;
3030
case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
3031
r = kfd_dbg_trap_set_wave_launch_override(target,
3032
args->launch_override.override_mode,
3033
args->launch_override.enable_mask,
3034
args->launch_override.support_request_mask,
3035
&args->launch_override.enable_mask,
3036
&args->launch_override.support_request_mask);
3037
break;
3038
case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
3039
r = kfd_dbg_trap_set_wave_launch_mode(target,
3040
args->launch_mode.launch_mode);
3041
break;
3042
case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
3043
r = suspend_queues(target,
3044
args->suspend_queues.num_queues,
3045
args->suspend_queues.grace_period,
3046
args->suspend_queues.exception_mask,
3047
(uint32_t *)args->suspend_queues.queue_array_ptr);
3048
3049
break;
3050
case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
3051
r = resume_queues(target, args->resume_queues.num_queues,
3052
(uint32_t *)args->resume_queues.queue_array_ptr);
3053
break;
3054
case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
3055
r = kfd_dbg_trap_set_dev_address_watch(pdd,
3056
args->set_node_address_watch.address,
3057
args->set_node_address_watch.mask,
3058
&args->set_node_address_watch.id,
3059
args->set_node_address_watch.mode);
3060
break;
3061
case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
3062
r = kfd_dbg_trap_clear_dev_address_watch(pdd,
3063
args->clear_node_address_watch.id);
3064
break;
3065
case KFD_IOC_DBG_TRAP_SET_FLAGS:
3066
r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
3067
break;
3068
case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
3069
r = kfd_dbg_ev_query_debug_event(target,
3070
&args->query_debug_event.queue_id,
3071
&args->query_debug_event.gpu_id,
3072
args->query_debug_event.exception_mask,
3073
&args->query_debug_event.exception_mask);
3074
break;
3075
case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
3076
r = kfd_dbg_trap_query_exception_info(target,
3077
args->query_exception_info.source_id,
3078
args->query_exception_info.exception_code,
3079
args->query_exception_info.clear_exception,
3080
(void __user *)args->query_exception_info.info_ptr,
3081
&args->query_exception_info.info_size);
3082
break;
3083
case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
3084
r = pqm_get_queue_snapshot(&target->pqm,
3085
args->queue_snapshot.exception_mask,
3086
(void __user *)args->queue_snapshot.snapshot_buf_ptr,
3087
&args->queue_snapshot.num_queues,
3088
&args->queue_snapshot.entry_size);
3089
break;
3090
case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
3091
r = kfd_dbg_trap_device_snapshot(target,
3092
args->device_snapshot.exception_mask,
3093
(void __user *)args->device_snapshot.snapshot_buf_ptr,
3094
&args->device_snapshot.num_devices,
3095
&args->device_snapshot.entry_size);
3096
break;
3097
default:
3098
pr_err("Invalid option: %i\n", args->op);
3099
r = -EINVAL;
3100
}
3101
3102
unlock_out:
3103
mutex_unlock(&target->mutex);
3104
3105
out:
3106
if (thread)
3107
put_task_struct(thread);
3108
3109
if (mm)
3110
mmput(mm);
3111
3112
if (pid)
3113
put_pid(pid);
3114
3115
if (target)
3116
kfd_unref_process(target);
3117
3118
return r;
3119
}
3120
3121
#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
3122
[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
3123
.cmd_drv = 0, .name = #ioctl}
3124
3125
/** Ioctl table */
3126
static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
3127
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
3128
kfd_ioctl_get_version, 0),
3129
3130
AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
3131
kfd_ioctl_create_queue, 0),
3132
3133
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
3134
kfd_ioctl_destroy_queue, 0),
3135
3136
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
3137
kfd_ioctl_set_memory_policy, 0),
3138
3139
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
3140
kfd_ioctl_get_clock_counters, 0),
3141
3142
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
3143
kfd_ioctl_get_process_apertures, 0),
3144
3145
AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
3146
kfd_ioctl_update_queue, 0),
3147
3148
AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
3149
kfd_ioctl_create_event, 0),
3150
3151
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
3152
kfd_ioctl_destroy_event, 0),
3153
3154
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
3155
kfd_ioctl_set_event, 0),
3156
3157
AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
3158
kfd_ioctl_reset_event, 0),
3159
3160
AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
3161
kfd_ioctl_wait_events, 0),
3162
3163
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
3164
kfd_ioctl_dbg_register, 0),
3165
3166
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
3167
kfd_ioctl_dbg_unregister, 0),
3168
3169
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
3170
kfd_ioctl_dbg_address_watch, 0),
3171
3172
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
3173
kfd_ioctl_dbg_wave_control, 0),
3174
3175
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
3176
kfd_ioctl_set_scratch_backing_va, 0),
3177
3178
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
3179
kfd_ioctl_get_tile_config, 0),
3180
3181
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
3182
kfd_ioctl_set_trap_handler, 0),
3183
3184
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
3185
kfd_ioctl_get_process_apertures_new, 0),
3186
3187
AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
3188
kfd_ioctl_acquire_vm, 0),
3189
3190
AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
3191
kfd_ioctl_alloc_memory_of_gpu, 0),
3192
3193
AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
3194
kfd_ioctl_free_memory_of_gpu, 0),
3195
3196
AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
3197
kfd_ioctl_map_memory_to_gpu, 0),
3198
3199
AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
3200
kfd_ioctl_unmap_memory_from_gpu, 0),
3201
3202
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
3203
kfd_ioctl_set_cu_mask, 0),
3204
3205
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
3206
kfd_ioctl_get_queue_wave_state, 0),
3207
3208
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
3209
kfd_ioctl_get_dmabuf_info, 0),
3210
3211
AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
3212
kfd_ioctl_import_dmabuf, 0),
3213
3214
AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
3215
kfd_ioctl_alloc_queue_gws, 0),
3216
3217
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
3218
kfd_ioctl_smi_events, 0),
3219
3220
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
3221
3222
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
3223
kfd_ioctl_set_xnack_mode, 0),
3224
3225
AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
3226
kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
3227
3228
AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
3229
kfd_ioctl_get_available_memory, 0),
3230
3231
AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
3232
kfd_ioctl_export_dmabuf, 0),
3233
3234
AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
3235
kfd_ioctl_runtime_enable, 0),
3236
3237
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
3238
kfd_ioctl_set_debug_trap, 0),
3239
};
3240
3241
#define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
3242
3243
static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
3244
{
3245
struct kfd_process *process;
3246
amdkfd_ioctl_t *func;
3247
const struct amdkfd_ioctl_desc *ioctl = NULL;
3248
unsigned int nr = _IOC_NR(cmd);
3249
char stack_kdata[128];
3250
char *kdata = NULL;
3251
unsigned int usize, asize;
3252
int retcode = -EINVAL;
3253
bool ptrace_attached = false;
3254
3255
if (nr >= AMDKFD_CORE_IOCTL_COUNT)
3256
goto err_i1;
3257
3258
if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
3259
u32 amdkfd_size;
3260
3261
ioctl = &amdkfd_ioctls[nr];
3262
3263
amdkfd_size = _IOC_SIZE(ioctl->cmd);
3264
usize = asize = _IOC_SIZE(cmd);
3265
if (amdkfd_size > asize)
3266
asize = amdkfd_size;
3267
3268
cmd = ioctl->cmd;
3269
} else
3270
goto err_i1;
3271
3272
dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
3273
3274
/* Get the process struct from the filep. Only the process
3275
* that opened /dev/kfd can use the file descriptor. Child
3276
* processes need to create their own KFD device context.
3277
*/
3278
process = filep->private_data;
3279
3280
rcu_read_lock();
3281
if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
3282
ptrace_parent(process->lead_thread) == current)
3283
ptrace_attached = true;
3284
rcu_read_unlock();
3285
3286
if (process->lead_thread != current->group_leader
3287
&& !ptrace_attached) {
3288
dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
3289
retcode = -EBADF;
3290
goto err_i1;
3291
}
3292
3293
/* Do not trust userspace, use our own definition */
3294
func = ioctl->func;
3295
3296
if (unlikely(!func)) {
3297
dev_dbg(kfd_device, "no function\n");
3298
retcode = -EINVAL;
3299
goto err_i1;
3300
}
3301
3302
/*
3303
* Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
3304
* CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
3305
* more priviledged access.
3306
*/
3307
if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
3308
if (!capable(CAP_CHECKPOINT_RESTORE) &&
3309
!capable(CAP_SYS_ADMIN)) {
3310
retcode = -EACCES;
3311
goto err_i1;
3312
}
3313
}
3314
3315
if (cmd & (IOC_IN | IOC_OUT)) {
3316
if (asize <= sizeof(stack_kdata)) {
3317
kdata = stack_kdata;
3318
} else {
3319
kdata = kmalloc(asize, GFP_KERNEL);
3320
if (!kdata) {
3321
retcode = -ENOMEM;
3322
goto err_i1;
3323
}
3324
}
3325
if (asize > usize)
3326
memset(kdata + usize, 0, asize - usize);
3327
}
3328
3329
if (cmd & IOC_IN) {
3330
if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
3331
retcode = -EFAULT;
3332
goto err_i1;
3333
}
3334
} else if (cmd & IOC_OUT) {
3335
memset(kdata, 0, usize);
3336
}
3337
3338
retcode = func(filep, process, kdata);
3339
3340
if (cmd & IOC_OUT)
3341
if (copy_to_user((void __user *)arg, kdata, usize) != 0)
3342
retcode = -EFAULT;
3343
3344
err_i1:
3345
if (!ioctl)
3346
dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
3347
task_pid_nr(current), cmd, nr);
3348
3349
if (kdata != stack_kdata)
3350
kfree(kdata);
3351
3352
if (retcode)
3353
dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
3354
nr, arg, retcode);
3355
3356
return retcode;
3357
}
3358
3359
static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
3360
struct vm_area_struct *vma)
3361
{
3362
phys_addr_t address;
3363
3364
if (vma->vm_end - vma->vm_start != PAGE_SIZE)
3365
return -EINVAL;
3366
3367
if (PAGE_SIZE > 4096)
3368
return -EINVAL;
3369
3370
address = dev->adev->rmmio_remap.bus_addr;
3371
3372
vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
3373
VM_DONTDUMP | VM_PFNMAP);
3374
3375
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
3376
3377
pr_debug("process pid %d mapping mmio page\n"
3378
" target user address == 0x%08llX\n"
3379
" physical address == 0x%08llX\n"
3380
" vm_flags == 0x%04lX\n"
3381
" size == 0x%04lX\n",
3382
process->lead_thread->pid, (unsigned long long) vma->vm_start,
3383
address, vma->vm_flags, PAGE_SIZE);
3384
3385
return io_remap_pfn_range(vma,
3386
vma->vm_start,
3387
address >> PAGE_SHIFT,
3388
PAGE_SIZE,
3389
vma->vm_page_prot);
3390
}
3391
3392
3393
static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
3394
{
3395
struct kfd_process *process;
3396
struct kfd_node *dev = NULL;
3397
unsigned long mmap_offset;
3398
unsigned int gpu_id;
3399
3400
process = kfd_get_process(current);
3401
if (IS_ERR(process))
3402
return PTR_ERR(process);
3403
3404
mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
3405
gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
3406
if (gpu_id)
3407
dev = kfd_device_by_id(gpu_id);
3408
3409
switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
3410
case KFD_MMAP_TYPE_DOORBELL:
3411
if (!dev)
3412
return -ENODEV;
3413
return kfd_doorbell_mmap(dev, process, vma);
3414
3415
case KFD_MMAP_TYPE_EVENTS:
3416
return kfd_event_mmap(process, vma);
3417
3418
case KFD_MMAP_TYPE_RESERVED_MEM:
3419
if (!dev)
3420
return -ENODEV;
3421
return kfd_reserved_mem_mmap(dev, process, vma);
3422
case KFD_MMAP_TYPE_MMIO:
3423
if (!dev)
3424
return -ENODEV;
3425
return kfd_mmio_mmap(dev, process, vma);
3426
}
3427
3428
return -EFAULT;
3429
}
3430
3431