Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/gpu/drm/amd/amdkfd/kfd_device.c
26516 views
1
// SPDX-License-Identifier: GPL-2.0 OR MIT
2
/*
3
* Copyright 2014-2022 Advanced Micro Devices, Inc.
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
* and/or sell copies of the Software, and to permit persons to whom the
10
* Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be included in
13
* all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21
* OTHER DEALINGS IN THE SOFTWARE.
22
*/
23
24
#include <linux/bsearch.h>
25
#include <linux/pci.h>
26
#include <linux/slab.h>
27
#include "kfd_priv.h"
28
#include "kfd_device_queue_manager.h"
29
#include "kfd_pm4_headers_vi.h"
30
#include "kfd_pm4_headers_aldebaran.h"
31
#include "cwsr_trap_handler.h"
32
#include "amdgpu_amdkfd.h"
33
#include "kfd_smi_events.h"
34
#include "kfd_svm.h"
35
#include "kfd_migrate.h"
36
#include "amdgpu.h"
37
#include "amdgpu_xcp.h"
38
39
#define MQD_SIZE_ALIGNED 768
40
41
/*
42
* kfd_locked is used to lock the kfd driver during suspend or reset
43
* once locked, kfd driver will stop any further GPU execution.
44
* create process (open) will return -EAGAIN.
45
*/
46
static int kfd_locked;
47
48
#ifdef CONFIG_DRM_AMDGPU_CIK
49
extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
50
#endif
51
extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
52
extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
53
extern const struct kfd2kgd_calls arcturus_kfd2kgd;
54
extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
55
extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
56
extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
57
extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
58
extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
59
extern const struct kfd2kgd_calls gfx_v12_kfd2kgd;
60
61
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
62
unsigned int chunk_size);
63
static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
64
65
static int kfd_resume(struct kfd_node *kfd);
66
67
static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
68
{
69
uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0);
70
71
switch (sdma_version) {
72
case IP_VERSION(4, 0, 0):/* VEGA10 */
73
case IP_VERSION(4, 0, 1):/* VEGA12 */
74
case IP_VERSION(4, 1, 0):/* RAVEN */
75
case IP_VERSION(4, 1, 1):/* RAVEN */
76
case IP_VERSION(4, 1, 2):/* RENOIR */
77
case IP_VERSION(5, 2, 1):/* VANGOGH */
78
case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
79
case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
80
case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
81
kfd->device_info.num_sdma_queues_per_engine = 2;
82
break;
83
case IP_VERSION(4, 2, 0):/* VEGA20 */
84
case IP_VERSION(4, 2, 2):/* ARCTURUS */
85
case IP_VERSION(4, 4, 0):/* ALDEBARAN */
86
case IP_VERSION(4, 4, 2):
87
case IP_VERSION(4, 4, 5):
88
case IP_VERSION(4, 4, 4):
89
case IP_VERSION(5, 0, 0):/* NAVI10 */
90
case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
91
case IP_VERSION(5, 0, 2):/* NAVI14 */
92
case IP_VERSION(5, 0, 5):/* NAVI12 */
93
case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
94
case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
95
case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
96
case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
97
case IP_VERSION(6, 0, 0):
98
case IP_VERSION(6, 0, 1):
99
case IP_VERSION(6, 0, 2):
100
case IP_VERSION(6, 0, 3):
101
case IP_VERSION(6, 1, 0):
102
case IP_VERSION(6, 1, 1):
103
case IP_VERSION(6, 1, 2):
104
case IP_VERSION(6, 1, 3):
105
case IP_VERSION(7, 0, 0):
106
case IP_VERSION(7, 0, 1):
107
kfd->device_info.num_sdma_queues_per_engine = 8;
108
break;
109
default:
110
dev_warn(kfd_device,
111
"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
112
sdma_version);
113
kfd->device_info.num_sdma_queues_per_engine = 8;
114
}
115
116
bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
117
118
switch (sdma_version) {
119
case IP_VERSION(6, 0, 0):
120
case IP_VERSION(6, 0, 1):
121
case IP_VERSION(6, 0, 2):
122
case IP_VERSION(6, 0, 3):
123
case IP_VERSION(6, 1, 0):
124
case IP_VERSION(6, 1, 1):
125
case IP_VERSION(6, 1, 2):
126
case IP_VERSION(6, 1, 3):
127
case IP_VERSION(7, 0, 0):
128
case IP_VERSION(7, 0, 1):
129
/* Reserve 1 for paging and 1 for gfx */
130
kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
131
/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
132
bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
133
kfd->adev->sdma.num_instances *
134
kfd->device_info.num_reserved_sdma_queues_per_engine);
135
break;
136
default:
137
break;
138
}
139
}
140
141
static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
142
{
143
uint32_t gc_version = KFD_GC_VERSION(kfd);
144
145
switch (gc_version) {
146
case IP_VERSION(9, 0, 1): /* VEGA10 */
147
case IP_VERSION(9, 1, 0): /* RAVEN */
148
case IP_VERSION(9, 2, 1): /* VEGA12 */
149
case IP_VERSION(9, 2, 2): /* RAVEN */
150
case IP_VERSION(9, 3, 0): /* RENOIR */
151
case IP_VERSION(9, 4, 0): /* VEGA20 */
152
case IP_VERSION(9, 4, 1): /* ARCTURUS */
153
case IP_VERSION(9, 4, 2): /* ALDEBARAN */
154
kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
155
break;
156
case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
157
case IP_VERSION(9, 4, 4): /* GC 9.4.4 */
158
case IP_VERSION(9, 5, 0): /* GC 9.5.0 */
159
kfd->device_info.event_interrupt_class =
160
&event_interrupt_class_v9_4_3;
161
break;
162
case IP_VERSION(10, 3, 1): /* VANGOGH */
163
case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
164
case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
165
case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
166
case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
167
case IP_VERSION(10, 1, 4):
168
case IP_VERSION(10, 1, 10): /* NAVI10 */
169
case IP_VERSION(10, 1, 2): /* NAVI12 */
170
case IP_VERSION(10, 1, 1): /* NAVI14 */
171
case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
172
case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
173
case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
174
case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
175
kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
176
break;
177
case IP_VERSION(11, 0, 0):
178
case IP_VERSION(11, 0, 1):
179
case IP_VERSION(11, 0, 2):
180
case IP_VERSION(11, 0, 3):
181
case IP_VERSION(11, 0, 4):
182
case IP_VERSION(11, 5, 0):
183
case IP_VERSION(11, 5, 1):
184
case IP_VERSION(11, 5, 2):
185
case IP_VERSION(11, 5, 3):
186
kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
187
break;
188
case IP_VERSION(12, 0, 0):
189
case IP_VERSION(12, 0, 1):
190
/* GFX12_TODO: Change to v12 version. */
191
kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
192
break;
193
default:
194
dev_warn(kfd_device, "v9 event interrupt handler is set due to "
195
"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
196
kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
197
}
198
}
199
200
static void kfd_device_info_init(struct kfd_dev *kfd,
201
bool vf, uint32_t gfx_target_version)
202
{
203
uint32_t gc_version = KFD_GC_VERSION(kfd);
204
uint32_t asic_type = kfd->adev->asic_type;
205
206
kfd->device_info.max_pasid_bits = 16;
207
kfd->device_info.max_no_of_hqd = 24;
208
kfd->device_info.num_of_watch_points = 4;
209
kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
210
kfd->device_info.gfx_target_version = gfx_target_version;
211
212
if (KFD_IS_SOC15(kfd)) {
213
kfd->device_info.doorbell_size = 8;
214
kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
215
kfd->device_info.supports_cwsr = true;
216
217
kfd_device_info_set_sdma_info(kfd);
218
219
kfd_device_info_set_event_interrupt_class(kfd);
220
221
if (gc_version < IP_VERSION(11, 0, 0)) {
222
/* Navi2x+, Navi1x+ */
223
if (gc_version == IP_VERSION(10, 3, 6))
224
kfd->device_info.no_atomic_fw_version = 14;
225
else if (gc_version == IP_VERSION(10, 3, 7))
226
kfd->device_info.no_atomic_fw_version = 3;
227
else if (gc_version >= IP_VERSION(10, 3, 0))
228
kfd->device_info.no_atomic_fw_version = 92;
229
else if (gc_version >= IP_VERSION(10, 1, 1))
230
kfd->device_info.no_atomic_fw_version = 145;
231
232
/* Navi1x+ */
233
if (gc_version >= IP_VERSION(10, 1, 1))
234
kfd->device_info.needs_pci_atomics = true;
235
} else if (gc_version < IP_VERSION(12, 0, 0)) {
236
/*
237
* PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
238
* MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
239
* PCIe atomics support.
240
*/
241
kfd->device_info.needs_pci_atomics = true;
242
kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
243
} else if (gc_version < IP_VERSION(13, 0, 0)) {
244
kfd->device_info.needs_pci_atomics = true;
245
kfd->device_info.no_atomic_fw_version = 2090;
246
} else {
247
kfd->device_info.needs_pci_atomics = true;
248
}
249
} else {
250
kfd->device_info.doorbell_size = 4;
251
kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
252
kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
253
kfd->device_info.num_sdma_queues_per_engine = 2;
254
255
if (asic_type != CHIP_KAVERI &&
256
asic_type != CHIP_HAWAII &&
257
asic_type != CHIP_TONGA)
258
kfd->device_info.supports_cwsr = true;
259
260
if (asic_type != CHIP_HAWAII && !vf)
261
kfd->device_info.needs_pci_atomics = true;
262
}
263
}
264
265
struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
266
{
267
struct kfd_dev *kfd = NULL;
268
const struct kfd2kgd_calls *f2g = NULL;
269
uint32_t gfx_target_version = 0;
270
271
switch (adev->asic_type) {
272
#ifdef CONFIG_DRM_AMDGPU_CIK
273
case CHIP_KAVERI:
274
gfx_target_version = 70000;
275
if (!vf)
276
f2g = &gfx_v7_kfd2kgd;
277
break;
278
#endif
279
case CHIP_CARRIZO:
280
gfx_target_version = 80001;
281
if (!vf)
282
f2g = &gfx_v8_kfd2kgd;
283
break;
284
#ifdef CONFIG_DRM_AMDGPU_CIK
285
case CHIP_HAWAII:
286
gfx_target_version = 70001;
287
if (!amdgpu_exp_hw_support)
288
pr_info(
289
"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
290
);
291
else if (!vf)
292
f2g = &gfx_v7_kfd2kgd;
293
break;
294
#endif
295
case CHIP_TONGA:
296
gfx_target_version = 80002;
297
if (!vf)
298
f2g = &gfx_v8_kfd2kgd;
299
break;
300
case CHIP_FIJI:
301
case CHIP_POLARIS10:
302
gfx_target_version = 80003;
303
f2g = &gfx_v8_kfd2kgd;
304
break;
305
case CHIP_POLARIS11:
306
case CHIP_POLARIS12:
307
case CHIP_VEGAM:
308
gfx_target_version = 80003;
309
if (!vf)
310
f2g = &gfx_v8_kfd2kgd;
311
break;
312
default:
313
switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
314
/* Vega 10 */
315
case IP_VERSION(9, 0, 1):
316
gfx_target_version = 90000;
317
f2g = &gfx_v9_kfd2kgd;
318
break;
319
/* Raven */
320
case IP_VERSION(9, 1, 0):
321
case IP_VERSION(9, 2, 2):
322
gfx_target_version = 90002;
323
if (!vf)
324
f2g = &gfx_v9_kfd2kgd;
325
break;
326
/* Vega12 */
327
case IP_VERSION(9, 2, 1):
328
gfx_target_version = 90004;
329
if (!vf)
330
f2g = &gfx_v9_kfd2kgd;
331
break;
332
/* Renoir */
333
case IP_VERSION(9, 3, 0):
334
gfx_target_version = 90012;
335
if (!vf)
336
f2g = &gfx_v9_kfd2kgd;
337
break;
338
/* Vega20 */
339
case IP_VERSION(9, 4, 0):
340
gfx_target_version = 90006;
341
if (!vf)
342
f2g = &gfx_v9_kfd2kgd;
343
break;
344
/* Arcturus */
345
case IP_VERSION(9, 4, 1):
346
gfx_target_version = 90008;
347
f2g = &arcturus_kfd2kgd;
348
break;
349
/* Aldebaran */
350
case IP_VERSION(9, 4, 2):
351
gfx_target_version = 90010;
352
f2g = &aldebaran_kfd2kgd;
353
break;
354
case IP_VERSION(9, 4, 3):
355
case IP_VERSION(9, 4, 4):
356
gfx_target_version = 90402;
357
f2g = &gc_9_4_3_kfd2kgd;
358
break;
359
case IP_VERSION(9, 5, 0):
360
gfx_target_version = 90500;
361
f2g = &gc_9_4_3_kfd2kgd;
362
break;
363
/* Navi10 */
364
case IP_VERSION(10, 1, 10):
365
gfx_target_version = 100100;
366
if (!vf)
367
f2g = &gfx_v10_kfd2kgd;
368
break;
369
/* Navi12 */
370
case IP_VERSION(10, 1, 2):
371
gfx_target_version = 100101;
372
f2g = &gfx_v10_kfd2kgd;
373
break;
374
/* Navi14 */
375
case IP_VERSION(10, 1, 1):
376
gfx_target_version = 100102;
377
if (!vf)
378
f2g = &gfx_v10_kfd2kgd;
379
break;
380
/* Cyan Skillfish */
381
case IP_VERSION(10, 1, 3):
382
case IP_VERSION(10, 1, 4):
383
gfx_target_version = 100103;
384
if (!vf)
385
f2g = &gfx_v10_kfd2kgd;
386
break;
387
/* Sienna Cichlid */
388
case IP_VERSION(10, 3, 0):
389
gfx_target_version = 100300;
390
f2g = &gfx_v10_3_kfd2kgd;
391
break;
392
/* Navy Flounder */
393
case IP_VERSION(10, 3, 2):
394
gfx_target_version = 100301;
395
f2g = &gfx_v10_3_kfd2kgd;
396
break;
397
/* Van Gogh */
398
case IP_VERSION(10, 3, 1):
399
gfx_target_version = 100303;
400
if (!vf)
401
f2g = &gfx_v10_3_kfd2kgd;
402
break;
403
/* Dimgrey Cavefish */
404
case IP_VERSION(10, 3, 4):
405
gfx_target_version = 100302;
406
f2g = &gfx_v10_3_kfd2kgd;
407
break;
408
/* Beige Goby */
409
case IP_VERSION(10, 3, 5):
410
gfx_target_version = 100304;
411
f2g = &gfx_v10_3_kfd2kgd;
412
break;
413
/* Yellow Carp */
414
case IP_VERSION(10, 3, 3):
415
gfx_target_version = 100305;
416
if (!vf)
417
f2g = &gfx_v10_3_kfd2kgd;
418
break;
419
case IP_VERSION(10, 3, 6):
420
case IP_VERSION(10, 3, 7):
421
gfx_target_version = 100306;
422
if (!vf)
423
f2g = &gfx_v10_3_kfd2kgd;
424
break;
425
case IP_VERSION(11, 0, 0):
426
gfx_target_version = 110000;
427
f2g = &gfx_v11_kfd2kgd;
428
break;
429
case IP_VERSION(11, 0, 1):
430
case IP_VERSION(11, 0, 4):
431
gfx_target_version = 110003;
432
f2g = &gfx_v11_kfd2kgd;
433
break;
434
case IP_VERSION(11, 0, 2):
435
gfx_target_version = 110002;
436
f2g = &gfx_v11_kfd2kgd;
437
break;
438
case IP_VERSION(11, 0, 3):
439
/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
440
gfx_target_version = 110001;
441
f2g = &gfx_v11_kfd2kgd;
442
break;
443
case IP_VERSION(11, 5, 0):
444
gfx_target_version = 110500;
445
f2g = &gfx_v11_kfd2kgd;
446
break;
447
case IP_VERSION(11, 5, 1):
448
gfx_target_version = 110501;
449
f2g = &gfx_v11_kfd2kgd;
450
break;
451
case IP_VERSION(11, 5, 2):
452
gfx_target_version = 110502;
453
f2g = &gfx_v11_kfd2kgd;
454
break;
455
case IP_VERSION(11, 5, 3):
456
gfx_target_version = 110503;
457
f2g = &gfx_v11_kfd2kgd;
458
break;
459
case IP_VERSION(12, 0, 0):
460
gfx_target_version = 120000;
461
f2g = &gfx_v12_kfd2kgd;
462
break;
463
case IP_VERSION(12, 0, 1):
464
gfx_target_version = 120001;
465
f2g = &gfx_v12_kfd2kgd;
466
break;
467
default:
468
break;
469
}
470
break;
471
}
472
473
if (!f2g) {
474
if (amdgpu_ip_version(adev, GC_HWIP, 0))
475
dev_info(kfd_device,
476
"GC IP %06x %s not supported in kfd\n",
477
amdgpu_ip_version(adev, GC_HWIP, 0),
478
vf ? "VF" : "");
479
else
480
dev_info(kfd_device, "%s %s not supported in kfd\n",
481
amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
482
return NULL;
483
}
484
485
kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
486
if (!kfd)
487
return NULL;
488
489
kfd->adev = adev;
490
kfd_device_info_init(kfd, vf, gfx_target_version);
491
kfd->init_complete = false;
492
kfd->kfd2kgd = f2g;
493
atomic_set(&kfd->compute_profile, 0);
494
495
mutex_init(&kfd->doorbell_mutex);
496
497
ida_init(&kfd->doorbell_ida);
498
499
return kfd;
500
}
501
502
static void kfd_cwsr_init(struct kfd_dev *kfd)
503
{
504
if (cwsr_enable && kfd->device_info.supports_cwsr) {
505
if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
506
BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex)
507
> KFD_CWSR_TMA_OFFSET);
508
kfd->cwsr_isa = cwsr_trap_gfx8_hex;
509
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
510
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
511
BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex)
512
> KFD_CWSR_TMA_OFFSET);
513
kfd->cwsr_isa = cwsr_trap_arcturus_hex;
514
kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
515
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
516
BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex)
517
> KFD_CWSR_TMA_OFFSET);
518
kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
519
kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
520
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) ||
521
KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 4)) {
522
BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex)
523
> KFD_CWSR_TMA_OFFSET);
524
kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
525
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
526
} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 5, 0)) {
527
BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_5_0_hex) > PAGE_SIZE);
528
kfd->cwsr_isa = cwsr_trap_gfx9_5_0_hex;
529
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_5_0_hex);
530
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
531
BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex)
532
> KFD_CWSR_TMA_OFFSET);
533
kfd->cwsr_isa = cwsr_trap_gfx9_hex;
534
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
535
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
536
BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex)
537
> KFD_CWSR_TMA_OFFSET);
538
kfd->cwsr_isa = cwsr_trap_nv1x_hex;
539
kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
540
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
541
BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex)
542
> KFD_CWSR_TMA_OFFSET);
543
kfd->cwsr_isa = cwsr_trap_gfx10_hex;
544
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
545
} else if (KFD_GC_VERSION(kfd) < IP_VERSION(12, 0, 0)) {
546
/* The gfx11 cwsr trap handler must fit inside a single
547
page. */
548
BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
549
kfd->cwsr_isa = cwsr_trap_gfx11_hex;
550
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
551
} else {
552
BUILD_BUG_ON(sizeof(cwsr_trap_gfx12_hex)
553
> KFD_CWSR_TMA_OFFSET);
554
kfd->cwsr_isa = cwsr_trap_gfx12_hex;
555
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx12_hex);
556
}
557
558
kfd->cwsr_enabled = true;
559
}
560
}
561
562
static int kfd_gws_init(struct kfd_node *node)
563
{
564
int ret = 0;
565
struct kfd_dev *kfd = node->kfd;
566
uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
567
568
if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
569
return 0;
570
571
if (hws_gws_support || (KFD_IS_SOC15(node) &&
572
((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
573
&& kfd->mec2_fw_version >= 0x81b3) ||
574
(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
575
&& kfd->mec2_fw_version >= 0x1b3) ||
576
(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
577
&& kfd->mec2_fw_version >= 0x30) ||
578
(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
579
&& kfd->mec2_fw_version >= 0x28) ||
580
(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3) ||
581
KFD_GC_VERSION(node) == IP_VERSION(9, 4, 4)) ||
582
(KFD_GC_VERSION(node) == IP_VERSION(9, 5, 0)) ||
583
(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
584
&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
585
&& kfd->mec2_fw_version >= 0x6b) ||
586
(KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
587
&& KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
588
&& mes_rev >= 68) ||
589
(KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))))) {
590
if (KFD_GC_VERSION(node) >= IP_VERSION(12, 0, 0))
591
node->adev->gds.gws_size = 64;
592
ret = amdgpu_amdkfd_alloc_gws(node->adev,
593
node->adev->gds.gws_size, &node->gws);
594
}
595
596
return ret;
597
}
598
599
static void kfd_smi_init(struct kfd_node *dev)
600
{
601
INIT_LIST_HEAD(&dev->smi_clients);
602
spin_lock_init(&dev->smi_lock);
603
}
604
605
static int kfd_init_node(struct kfd_node *node)
606
{
607
int err = -1;
608
609
if (kfd_interrupt_init(node)) {
610
dev_err(kfd_device, "Error initializing interrupts\n");
611
goto kfd_interrupt_error;
612
}
613
614
node->dqm = device_queue_manager_init(node);
615
if (!node->dqm) {
616
dev_err(kfd_device, "Error initializing queue manager\n");
617
goto device_queue_manager_error;
618
}
619
620
if (kfd_gws_init(node)) {
621
dev_err(kfd_device, "Could not allocate %d gws\n",
622
node->adev->gds.gws_size);
623
goto gws_error;
624
}
625
626
if (kfd_resume(node))
627
goto kfd_resume_error;
628
629
if (kfd_topology_add_device(node)) {
630
dev_err(kfd_device, "Error adding device to topology\n");
631
goto kfd_topology_add_device_error;
632
}
633
634
kfd_smi_init(node);
635
636
return 0;
637
638
kfd_topology_add_device_error:
639
kfd_resume_error:
640
gws_error:
641
device_queue_manager_uninit(node->dqm);
642
device_queue_manager_error:
643
kfd_interrupt_exit(node);
644
kfd_interrupt_error:
645
if (node->gws)
646
amdgpu_amdkfd_free_gws(node->adev, node->gws);
647
648
/* Cleanup the node memory here */
649
kfree(node);
650
return err;
651
}
652
653
static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
654
{
655
struct kfd_node *knode;
656
unsigned int i;
657
658
/*
659
* flush_work ensures that there are no outstanding
660
* work-queue items that will access interrupt_ring. New work items
661
* can't be created because we stopped interrupt handling above.
662
*/
663
flush_workqueue(kfd->ih_wq);
664
destroy_workqueue(kfd->ih_wq);
665
666
for (i = 0; i < num_nodes; i++) {
667
knode = kfd->nodes[i];
668
device_queue_manager_uninit(knode->dqm);
669
kfd_interrupt_exit(knode);
670
kfd_topology_remove_device(knode);
671
if (knode->gws)
672
amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
673
kfree(knode);
674
kfd->nodes[i] = NULL;
675
}
676
}
677
678
static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
679
unsigned int kfd_node_idx)
680
{
681
struct amdgpu_device *adev = node->adev;
682
uint32_t xcc_mask = node->xcc_mask;
683
uint32_t xcc, mapped_xcc;
684
/*
685
* Interrupt bitmap is setup for processing interrupts from
686
* different XCDs and AIDs.
687
* Interrupt bitmap is defined as follows:
688
* 1. Bits 0-15 - correspond to the NodeId field.
689
* Each bit corresponds to NodeId number. For example, if
690
* a KFD node has interrupt bitmap set to 0x7, then this
691
* KFD node will process interrupts with NodeId = 0, 1 and 2
692
* in the IH cookie.
693
* 2. Bits 16-31 - unused.
694
*
695
* Please note that the kfd_node_idx argument passed to this
696
* function is not related to NodeId field received in the
697
* IH cookie.
698
*
699
* In CPX mode, a KFD node will process an interrupt if:
700
* - the Node Id matches the corresponding bit set in
701
* Bits 0-15.
702
* - AND VMID reported in the interrupt lies within the
703
* VMID range of the node.
704
*/
705
for_each_inst(xcc, xcc_mask) {
706
mapped_xcc = GET_INST(GC, xcc);
707
node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
708
}
709
dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
710
node->interrupt_bitmap);
711
}
712
713
bool kgd2kfd_device_init(struct kfd_dev *kfd,
714
const struct kgd2kfd_shared_resources *gpu_resources)
715
{
716
unsigned int size, map_process_packet_size, i;
717
struct kfd_node *node;
718
uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
719
unsigned int max_proc_per_quantum;
720
int partition_mode;
721
int xcp_idx;
722
723
kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
724
KGD_ENGINE_MEC1);
725
kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
726
KGD_ENGINE_MEC2);
727
kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
728
KGD_ENGINE_SDMA1);
729
kfd->shared_resources = *gpu_resources;
730
731
kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
732
733
if (kfd->num_nodes == 0) {
734
dev_err(kfd_device,
735
"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
736
kfd->adev->gfx.num_xcc_per_xcp);
737
goto out;
738
}
739
740
/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
741
* 32 and 64-bit requests are possible and must be
742
* supported.
743
*/
744
kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
745
if (!kfd->pci_atomic_requested &&
746
kfd->device_info.needs_pci_atomics &&
747
(!kfd->device_info.no_atomic_fw_version ||
748
kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
749
dev_info(kfd_device,
750
"skipped device %x:%x, PCI rejects atomics %d<%d\n",
751
kfd->adev->pdev->vendor, kfd->adev->pdev->device,
752
kfd->mec_fw_version,
753
kfd->device_info.no_atomic_fw_version);
754
return false;
755
}
756
757
first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
758
last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
759
vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
760
761
/* For multi-partition capable GPUs, we need special handling for VMIDs
762
* depending on partition mode.
763
* In CPX mode, the VMID range needs to be shared between XCDs.
764
* Additionally, there are 13 VMIDs (3-15) available for KFD. To
765
* divide them equally, we change starting VMID to 4 and not use
766
* VMID 3.
767
* If the VMID range changes for multi-partition capable GPUs, then
768
* this code MUST be revisited.
769
*/
770
if (kfd->adev->xcp_mgr) {
771
partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
772
AMDGPU_XCP_FL_LOCKED);
773
if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
774
kfd->num_nodes != 1) {
775
vmid_num_kfd /= 2;
776
first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
777
}
778
}
779
780
/* Verify module parameters regarding mapped process number*/
781
if (hws_max_conc_proc >= 0)
782
max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
783
else
784
max_proc_per_quantum = vmid_num_kfd;
785
786
/* calculate max size of mqds needed for queues */
787
size = max_num_of_queues_per_device *
788
kfd->device_info.mqd_size_aligned;
789
790
/*
791
* calculate max size of runlist packet.
792
* There can be only 2 packets at once
793
*/
794
map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
795
sizeof(struct pm4_mes_map_process_aldebaran) :
796
sizeof(struct pm4_mes_map_process);
797
size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
798
max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
799
+ sizeof(struct pm4_mes_runlist)) * 2;
800
801
/* Add size of HIQ & DIQ */
802
size += KFD_KERNEL_QUEUE_SIZE * 2;
803
804
/* add another 512KB for all other allocations on gart (HPD, fences) */
805
size += 512 * 1024;
806
807
if (amdgpu_amdkfd_alloc_gtt_mem(
808
kfd->adev, size, &kfd->gtt_mem,
809
&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
810
false)) {
811
dev_err(kfd_device, "Could not allocate %d bytes\n", size);
812
goto alloc_gtt_mem_failure;
813
}
814
815
dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
816
817
/* Initialize GTT sa with 512 byte chunk size */
818
if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
819
dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
820
goto kfd_gtt_sa_init_error;
821
}
822
823
if (kfd_doorbell_init(kfd)) {
824
dev_err(kfd_device,
825
"Error initializing doorbell aperture\n");
826
goto kfd_doorbell_error;
827
}
828
829
if (amdgpu_use_xgmi_p2p)
830
kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
831
832
/*
833
* For multi-partition capable GPUs, the KFD abstracts all partitions
834
* within a socket as xGMI connected in the topology so assign a unique
835
* hive id per device based on the pci device location if device is in
836
* PCIe mode.
837
*/
838
if (!kfd->hive_id && kfd->num_nodes > 1)
839
kfd->hive_id = pci_dev_id(kfd->adev->pdev);
840
841
kfd->noretry = kfd->adev->gmc.noretry;
842
843
kfd_cwsr_init(kfd);
844
845
dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
846
kfd->num_nodes);
847
848
/* Allocate the KFD nodes */
849
for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
850
node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
851
if (!node)
852
goto node_alloc_error;
853
854
node->node_id = i;
855
node->adev = kfd->adev;
856
node->kfd = kfd;
857
node->kfd2kgd = kfd->kfd2kgd;
858
node->vm_info.vmid_num_kfd = vmid_num_kfd;
859
node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
860
/* TODO : Check if error handling is needed */
861
if (node->xcp) {
862
amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
863
&node->xcc_mask);
864
++xcp_idx;
865
} else {
866
node->xcc_mask =
867
(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
868
}
869
870
if (node->xcp) {
871
dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
872
node->node_id, node->xcp->mem_id,
873
KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
874
}
875
876
if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
877
kfd->num_nodes != 1) {
878
/* For multi-partition capable GPUs and CPX mode, first
879
* XCD gets VMID range 4-9 and second XCD gets VMID
880
* range 10-15.
881
*/
882
883
node->vm_info.first_vmid_kfd = (i%2 == 0) ?
884
first_vmid_kfd :
885
first_vmid_kfd+vmid_num_kfd;
886
node->vm_info.last_vmid_kfd = (i%2 == 0) ?
887
last_vmid_kfd-vmid_num_kfd :
888
last_vmid_kfd;
889
node->compute_vmid_bitmap =
890
((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
891
((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
892
} else {
893
node->vm_info.first_vmid_kfd = first_vmid_kfd;
894
node->vm_info.last_vmid_kfd = last_vmid_kfd;
895
node->compute_vmid_bitmap =
896
gpu_resources->compute_vmid_bitmap;
897
}
898
node->max_proc_per_quantum = max_proc_per_quantum;
899
atomic_set(&node->sram_ecc_flag, 0);
900
901
amdgpu_amdkfd_get_local_mem_info(kfd->adev,
902
&node->local_mem_info, node->xcp);
903
904
if (kfd->adev->xcp_mgr)
905
kfd_setup_interrupt_bitmap(node, i);
906
907
/* Initialize the KFD node */
908
if (kfd_init_node(node)) {
909
dev_err(kfd_device, "Error initializing KFD node\n");
910
goto node_init_error;
911
}
912
913
spin_lock_init(&node->watch_points_lock);
914
915
kfd->nodes[i] = node;
916
}
917
918
svm_range_set_max_pages(kfd->adev);
919
920
kfd->init_complete = true;
921
dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
922
kfd->adev->pdev->device);
923
924
pr_debug("Starting kfd with the following scheduling policy %d\n",
925
node->dqm->sched_policy);
926
927
goto out;
928
929
node_init_error:
930
node_alloc_error:
931
kfd_cleanup_nodes(kfd, i);
932
kfd_doorbell_fini(kfd);
933
kfd_doorbell_error:
934
kfd_gtt_sa_fini(kfd);
935
kfd_gtt_sa_init_error:
936
amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
937
alloc_gtt_mem_failure:
938
dev_err(kfd_device,
939
"device %x:%x NOT added due to errors\n",
940
kfd->adev->pdev->vendor, kfd->adev->pdev->device);
941
out:
942
return kfd->init_complete;
943
}
944
945
void kgd2kfd_device_exit(struct kfd_dev *kfd)
946
{
947
if (kfd->init_complete) {
948
/* Cleanup KFD nodes */
949
kfd_cleanup_nodes(kfd, kfd->num_nodes);
950
/* Cleanup common/shared resources */
951
kfd_doorbell_fini(kfd);
952
ida_destroy(&kfd->doorbell_ida);
953
kfd_gtt_sa_fini(kfd);
954
amdgpu_amdkfd_free_gtt_mem(kfd->adev, &kfd->gtt_mem);
955
}
956
957
kfree(kfd);
958
}
959
960
int kgd2kfd_pre_reset(struct kfd_dev *kfd,
961
struct amdgpu_reset_context *reset_context)
962
{
963
struct kfd_node *node;
964
int i;
965
966
if (!kfd->init_complete)
967
return 0;
968
969
for (i = 0; i < kfd->num_nodes; i++) {
970
node = kfd->nodes[i];
971
kfd_smi_event_update_gpu_reset(node, false, reset_context);
972
}
973
974
kgd2kfd_suspend(kfd, true);
975
976
for (i = 0; i < kfd->num_nodes; i++)
977
kfd_signal_reset_event(kfd->nodes[i]);
978
979
return 0;
980
}
981
982
/*
983
* Fix me. KFD won't be able to resume existing process for now.
984
* We will keep all existing process in a evicted state and
985
* wait the process to be terminated.
986
*/
987
988
int kgd2kfd_post_reset(struct kfd_dev *kfd)
989
{
990
int ret;
991
struct kfd_node *node;
992
int i;
993
994
if (!kfd->init_complete)
995
return 0;
996
997
for (i = 0; i < kfd->num_nodes; i++) {
998
ret = kfd_resume(kfd->nodes[i]);
999
if (ret)
1000
return ret;
1001
}
1002
1003
mutex_lock(&kfd_processes_mutex);
1004
--kfd_locked;
1005
mutex_unlock(&kfd_processes_mutex);
1006
1007
for (i = 0; i < kfd->num_nodes; i++) {
1008
node = kfd->nodes[i];
1009
atomic_set(&node->sram_ecc_flag, 0);
1010
kfd_smi_event_update_gpu_reset(node, true, NULL);
1011
}
1012
1013
return 0;
1014
}
1015
1016
bool kfd_is_locked(struct kfd_dev *kfd)
1017
{
1018
uint8_t id = 0;
1019
struct kfd_node *dev;
1020
1021
lockdep_assert_held(&kfd_processes_mutex);
1022
1023
/* check reset/suspend lock */
1024
if (kfd_locked > 0)
1025
return true;
1026
1027
if (kfd)
1028
return kfd->kfd_dev_lock > 0;
1029
1030
/* check lock on all cgroup accessible devices */
1031
while (kfd_topology_enum_kfd_devices(id++, &dev) == 0) {
1032
if (!dev || kfd_devcgroup_check_permission(dev))
1033
continue;
1034
1035
if (dev->kfd->kfd_dev_lock > 0)
1036
return true;
1037
}
1038
1039
return false;
1040
}
1041
1042
void kgd2kfd_suspend(struct kfd_dev *kfd, bool suspend_proc)
1043
{
1044
struct kfd_node *node;
1045
int i;
1046
1047
if (!kfd->init_complete)
1048
return;
1049
1050
if (suspend_proc)
1051
kgd2kfd_suspend_process(kfd);
1052
1053
for (i = 0; i < kfd->num_nodes; i++) {
1054
node = kfd->nodes[i];
1055
node->dqm->ops.stop(node->dqm);
1056
}
1057
}
1058
1059
int kgd2kfd_resume(struct kfd_dev *kfd, bool resume_proc)
1060
{
1061
int ret, i;
1062
1063
if (!kfd->init_complete)
1064
return 0;
1065
1066
for (i = 0; i < kfd->num_nodes; i++) {
1067
ret = kfd_resume(kfd->nodes[i]);
1068
if (ret)
1069
return ret;
1070
}
1071
1072
if (resume_proc)
1073
ret = kgd2kfd_resume_process(kfd);
1074
1075
return ret;
1076
}
1077
1078
void kgd2kfd_suspend_process(struct kfd_dev *kfd)
1079
{
1080
if (!kfd->init_complete)
1081
return;
1082
1083
mutex_lock(&kfd_processes_mutex);
1084
/* For first KFD device suspend all the KFD processes */
1085
if (++kfd_locked == 1)
1086
kfd_suspend_all_processes();
1087
mutex_unlock(&kfd_processes_mutex);
1088
}
1089
1090
int kgd2kfd_resume_process(struct kfd_dev *kfd)
1091
{
1092
int ret = 0;
1093
1094
if (!kfd->init_complete)
1095
return 0;
1096
1097
mutex_lock(&kfd_processes_mutex);
1098
if (--kfd_locked == 0)
1099
ret = kfd_resume_all_processes();
1100
WARN_ONCE(kfd_locked < 0, "KFD suspend / resume ref. error");
1101
mutex_unlock(&kfd_processes_mutex);
1102
1103
return ret;
1104
}
1105
1106
static int kfd_resume(struct kfd_node *node)
1107
{
1108
int err = 0;
1109
1110
err = node->dqm->ops.start(node->dqm);
1111
if (err)
1112
dev_err(kfd_device,
1113
"Error starting queue manager for device %x:%x\n",
1114
node->adev->pdev->vendor, node->adev->pdev->device);
1115
1116
return err;
1117
}
1118
1119
/* This is called directly from KGD at ISR. */
1120
void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1121
{
1122
uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1123
bool is_patched = false;
1124
unsigned long flags;
1125
struct kfd_node *node;
1126
1127
if (!kfd->init_complete)
1128
return;
1129
1130
if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1131
dev_err_once(kfd_device, "Ring entry too small\n");
1132
return;
1133
}
1134
1135
for (i = 0; i < kfd->num_nodes; i++) {
1136
node = kfd->nodes[i];
1137
spin_lock_irqsave(&node->interrupt_lock, flags);
1138
1139
if (node->interrupts_active
1140
&& interrupt_is_wanted(node, ih_ring_entry,
1141
patched_ihre, &is_patched)
1142
&& enqueue_ih_ring_entry(node,
1143
is_patched ? patched_ihre : ih_ring_entry)) {
1144
queue_work(node->kfd->ih_wq, &node->interrupt_work);
1145
spin_unlock_irqrestore(&node->interrupt_lock, flags);
1146
return;
1147
}
1148
spin_unlock_irqrestore(&node->interrupt_lock, flags);
1149
}
1150
1151
}
1152
1153
int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1154
{
1155
struct kfd_process *p;
1156
int r;
1157
1158
/* Because we are called from arbitrary context (workqueue) as opposed
1159
* to process context, kfd_process could attempt to exit while we are
1160
* running so the lookup function increments the process ref count.
1161
*/
1162
p = kfd_lookup_process_by_mm(mm);
1163
if (!p)
1164
return -ESRCH;
1165
1166
WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1167
r = kfd_process_evict_queues(p, trigger);
1168
1169
kfd_unref_process(p);
1170
return r;
1171
}
1172
1173
int kgd2kfd_resume_mm(struct mm_struct *mm)
1174
{
1175
struct kfd_process *p;
1176
int r;
1177
1178
/* Because we are called from arbitrary context (workqueue) as opposed
1179
* to process context, kfd_process could attempt to exit while we are
1180
* running so the lookup function increments the process ref count.
1181
*/
1182
p = kfd_lookup_process_by_mm(mm);
1183
if (!p)
1184
return -ESRCH;
1185
1186
r = kfd_process_restore_queues(p);
1187
1188
kfd_unref_process(p);
1189
return r;
1190
}
1191
1192
/** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1193
* prepare for safe eviction of KFD BOs that belong to the specified
1194
* process.
1195
*
1196
* @mm: mm_struct that identifies the specified KFD process
1197
* @fence: eviction fence attached to KFD process BOs
1198
*
1199
*/
1200
int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1201
struct dma_fence *fence)
1202
{
1203
struct kfd_process *p;
1204
unsigned long active_time;
1205
unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1206
1207
if (!fence)
1208
return -EINVAL;
1209
1210
if (dma_fence_is_signaled(fence))
1211
return 0;
1212
1213
p = kfd_lookup_process_by_mm(mm);
1214
if (!p)
1215
return -ENODEV;
1216
1217
if (fence->seqno == p->last_eviction_seqno)
1218
goto out;
1219
1220
p->last_eviction_seqno = fence->seqno;
1221
1222
/* Avoid KFD process starvation. Wait for at least
1223
* PROCESS_ACTIVE_TIME_MS before evicting the process again
1224
*/
1225
active_time = get_jiffies_64() - p->last_restore_timestamp;
1226
if (delay_jiffies > active_time)
1227
delay_jiffies -= active_time;
1228
else
1229
delay_jiffies = 0;
1230
1231
/* During process initialization eviction_work.dwork is initialized
1232
* to kfd_evict_bo_worker
1233
*/
1234
WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1235
p->lead_thread->pid, delay_jiffies);
1236
schedule_delayed_work(&p->eviction_work, delay_jiffies);
1237
out:
1238
kfd_unref_process(p);
1239
return 0;
1240
}
1241
1242
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1243
unsigned int chunk_size)
1244
{
1245
if (WARN_ON(buf_size < chunk_size))
1246
return -EINVAL;
1247
if (WARN_ON(buf_size == 0))
1248
return -EINVAL;
1249
if (WARN_ON(chunk_size == 0))
1250
return -EINVAL;
1251
1252
kfd->gtt_sa_chunk_size = chunk_size;
1253
kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1254
1255
kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1256
GFP_KERNEL);
1257
if (!kfd->gtt_sa_bitmap)
1258
return -ENOMEM;
1259
1260
pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1261
kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1262
1263
mutex_init(&kfd->gtt_sa_lock);
1264
1265
return 0;
1266
}
1267
1268
static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1269
{
1270
mutex_destroy(&kfd->gtt_sa_lock);
1271
bitmap_free(kfd->gtt_sa_bitmap);
1272
}
1273
1274
static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1275
unsigned int bit_num,
1276
unsigned int chunk_size)
1277
{
1278
return start_addr + bit_num * chunk_size;
1279
}
1280
1281
static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1282
unsigned int bit_num,
1283
unsigned int chunk_size)
1284
{
1285
return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1286
}
1287
1288
int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1289
struct kfd_mem_obj **mem_obj)
1290
{
1291
unsigned int found, start_search, cur_size;
1292
struct kfd_dev *kfd = node->kfd;
1293
1294
if (size == 0)
1295
return -EINVAL;
1296
1297
if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1298
return -ENOMEM;
1299
1300
*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1301
if (!(*mem_obj))
1302
return -ENOMEM;
1303
1304
pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1305
1306
start_search = 0;
1307
1308
mutex_lock(&kfd->gtt_sa_lock);
1309
1310
kfd_gtt_restart_search:
1311
/* Find the first chunk that is free */
1312
found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1313
kfd->gtt_sa_num_of_chunks,
1314
start_search);
1315
1316
pr_debug("Found = %d\n", found);
1317
1318
/* If there wasn't any free chunk, bail out */
1319
if (found == kfd->gtt_sa_num_of_chunks)
1320
goto kfd_gtt_no_free_chunk;
1321
1322
/* Update fields of mem_obj */
1323
(*mem_obj)->range_start = found;
1324
(*mem_obj)->range_end = found;
1325
(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1326
kfd->gtt_start_gpu_addr,
1327
found,
1328
kfd->gtt_sa_chunk_size);
1329
(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1330
kfd->gtt_start_cpu_ptr,
1331
found,
1332
kfd->gtt_sa_chunk_size);
1333
1334
pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1335
(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1336
1337
/* If we need only one chunk, mark it as allocated and get out */
1338
if (size <= kfd->gtt_sa_chunk_size) {
1339
pr_debug("Single bit\n");
1340
__set_bit(found, kfd->gtt_sa_bitmap);
1341
goto kfd_gtt_out;
1342
}
1343
1344
/* Otherwise, try to see if we have enough contiguous chunks */
1345
cur_size = size - kfd->gtt_sa_chunk_size;
1346
do {
1347
(*mem_obj)->range_end =
1348
find_next_zero_bit(kfd->gtt_sa_bitmap,
1349
kfd->gtt_sa_num_of_chunks, ++found);
1350
/*
1351
* If next free chunk is not contiguous than we need to
1352
* restart our search from the last free chunk we found (which
1353
* wasn't contiguous to the previous ones
1354
*/
1355
if ((*mem_obj)->range_end != found) {
1356
start_search = found;
1357
goto kfd_gtt_restart_search;
1358
}
1359
1360
/*
1361
* If we reached end of buffer, bail out with error
1362
*/
1363
if (found == kfd->gtt_sa_num_of_chunks)
1364
goto kfd_gtt_no_free_chunk;
1365
1366
/* Check if we don't need another chunk */
1367
if (cur_size <= kfd->gtt_sa_chunk_size)
1368
cur_size = 0;
1369
else
1370
cur_size -= kfd->gtt_sa_chunk_size;
1371
1372
} while (cur_size > 0);
1373
1374
pr_debug("range_start = %d, range_end = %d\n",
1375
(*mem_obj)->range_start, (*mem_obj)->range_end);
1376
1377
/* Mark the chunks as allocated */
1378
bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1379
(*mem_obj)->range_end - (*mem_obj)->range_start + 1);
1380
1381
kfd_gtt_out:
1382
mutex_unlock(&kfd->gtt_sa_lock);
1383
return 0;
1384
1385
kfd_gtt_no_free_chunk:
1386
pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1387
mutex_unlock(&kfd->gtt_sa_lock);
1388
kfree(*mem_obj);
1389
return -ENOMEM;
1390
}
1391
1392
int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1393
{
1394
struct kfd_dev *kfd = node->kfd;
1395
1396
/* Act like kfree when trying to free a NULL object */
1397
if (!mem_obj)
1398
return 0;
1399
1400
pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1401
mem_obj, mem_obj->range_start, mem_obj->range_end);
1402
1403
mutex_lock(&kfd->gtt_sa_lock);
1404
1405
/* Mark the chunks as free */
1406
bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1407
mem_obj->range_end - mem_obj->range_start + 1);
1408
1409
mutex_unlock(&kfd->gtt_sa_lock);
1410
1411
kfree(mem_obj);
1412
return 0;
1413
}
1414
1415
void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1416
{
1417
/*
1418
* TODO: Currently update SRAM ECC flag for first node.
1419
* This needs to be updated later when we can
1420
* identify SRAM ECC error on other nodes also.
1421
*/
1422
if (kfd)
1423
atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1424
}
1425
1426
void kfd_inc_compute_active(struct kfd_node *node)
1427
{
1428
if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1429
amdgpu_amdkfd_set_compute_idle(node->adev, false);
1430
}
1431
1432
void kfd_dec_compute_active(struct kfd_node *node)
1433
{
1434
int count = atomic_dec_return(&node->kfd->compute_profile);
1435
1436
if (count == 0)
1437
amdgpu_amdkfd_set_compute_idle(node->adev, true);
1438
WARN_ONCE(count < 0, "Compute profile ref. count error");
1439
}
1440
1441
static bool kfd_compute_active(struct kfd_node *node)
1442
{
1443
if (atomic_read(&node->kfd->compute_profile))
1444
return true;
1445
return false;
1446
}
1447
1448
void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1449
{
1450
/*
1451
* TODO: For now, raise the throttling event only on first node.
1452
* This will need to change after we are able to determine
1453
* which node raised the throttling event.
1454
*/
1455
if (kfd && kfd->init_complete)
1456
kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1457
throttle_bitmask);
1458
}
1459
1460
/* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1461
* kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1462
* When the device has more than two engines, we reserve two for PCIe to enable
1463
* full-duplex and the rest are used as XGMI.
1464
*/
1465
unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1466
{
1467
/* If XGMI is not supported, all SDMA engines are PCIe */
1468
if (!node->adev->gmc.xgmi.supported)
1469
return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1470
1471
return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1472
}
1473
1474
unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1475
{
1476
/* After reserved for PCIe, the rest of engines are XGMI */
1477
return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1478
kfd_get_num_sdma_engines(node);
1479
}
1480
1481
int kgd2kfd_check_and_lock_kfd(struct kfd_dev *kfd)
1482
{
1483
struct kfd_process *p;
1484
int r = 0, temp, idx;
1485
1486
mutex_lock(&kfd_processes_mutex);
1487
1488
if (hash_empty(kfd_processes_table) && !kfd_is_locked(kfd))
1489
goto out;
1490
1491
/* fail under system reset/resume or kfd device is partition switching. */
1492
if (kfd_is_locked(kfd)) {
1493
r = -EBUSY;
1494
goto out;
1495
}
1496
1497
/*
1498
* ensure all running processes are cgroup excluded from device before mode switch.
1499
* i.e. no pdd was created on the process socket.
1500
*/
1501
idx = srcu_read_lock(&kfd_processes_srcu);
1502
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1503
int i;
1504
1505
for (i = 0; i < p->n_pdds; i++) {
1506
if (p->pdds[i]->dev->kfd != kfd)
1507
continue;
1508
1509
r = -EBUSY;
1510
goto proc_check_unlock;
1511
}
1512
}
1513
1514
proc_check_unlock:
1515
srcu_read_unlock(&kfd_processes_srcu, idx);
1516
out:
1517
if (!r)
1518
++kfd->kfd_dev_lock;
1519
mutex_unlock(&kfd_processes_mutex);
1520
1521
return r;
1522
}
1523
1524
void kgd2kfd_unlock_kfd(struct kfd_dev *kfd)
1525
{
1526
mutex_lock(&kfd_processes_mutex);
1527
--kfd->kfd_dev_lock;
1528
mutex_unlock(&kfd_processes_mutex);
1529
}
1530
1531
int kgd2kfd_start_sched(struct kfd_dev *kfd, uint32_t node_id)
1532
{
1533
struct kfd_node *node;
1534
int ret;
1535
1536
if (!kfd->init_complete)
1537
return 0;
1538
1539
if (node_id >= kfd->num_nodes) {
1540
dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1541
node_id, kfd->num_nodes - 1);
1542
return -EINVAL;
1543
}
1544
node = kfd->nodes[node_id];
1545
1546
ret = node->dqm->ops.unhalt(node->dqm);
1547
if (ret)
1548
dev_err(kfd_device, "Error in starting scheduler\n");
1549
1550
return ret;
1551
}
1552
1553
int kgd2kfd_stop_sched(struct kfd_dev *kfd, uint32_t node_id)
1554
{
1555
struct kfd_node *node;
1556
1557
if (!kfd->init_complete)
1558
return 0;
1559
1560
if (node_id >= kfd->num_nodes) {
1561
dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1562
node_id, kfd->num_nodes - 1);
1563
return -EINVAL;
1564
}
1565
1566
node = kfd->nodes[node_id];
1567
return node->dqm->ops.halt(node->dqm);
1568
}
1569
1570
bool kgd2kfd_compute_active(struct kfd_dev *kfd, uint32_t node_id)
1571
{
1572
struct kfd_node *node;
1573
1574
if (!kfd->init_complete)
1575
return false;
1576
1577
if (node_id >= kfd->num_nodes) {
1578
dev_warn(kfd->adev->dev, "Invalid node ID: %u exceeds %u\n",
1579
node_id, kfd->num_nodes - 1);
1580
return false;
1581
}
1582
1583
node = kfd->nodes[node_id];
1584
1585
return kfd_compute_active(node);
1586
}
1587
1588
/**
1589
* kgd2kfd_vmfault_fast_path() - KFD vm page fault interrupt handling fast path for gmc v9
1590
* @adev: amdgpu device
1591
* @entry: vm fault interrupt vector
1592
* @retry_fault: if this is retry fault
1593
*
1594
* retry fault -
1595
* with CAM enabled, adev primary ring
1596
* | gmc_v9_0_process_interrupt()
1597
* adev soft_ring
1598
* | gmc_v9_0_process_interrupt() worker failed to recover page fault
1599
* KFD node ih_fifo
1600
* | KFD interrupt_wq worker
1601
* kfd_signal_vm_fault_event
1602
*
1603
* without CAM, adev primary ring1
1604
* | gmc_v9_0_process_interrupt worker failed to recvoer page fault
1605
* KFD node ih_fifo
1606
* | KFD interrupt_wq worker
1607
* kfd_signal_vm_fault_event
1608
*
1609
* no-retry fault -
1610
* adev primary ring
1611
* | gmc_v9_0_process_interrupt()
1612
* KFD node ih_fifo
1613
* | KFD interrupt_wq worker
1614
* kfd_signal_vm_fault_event
1615
*
1616
* fast path - After kfd_signal_vm_fault_event, gmc_v9_0_process_interrupt drop the page fault
1617
* of same process, don't copy interrupt to KFD node ih_fifo.
1618
* With gdb debugger enabled, need convert the retry fault to no-retry fault for
1619
* debugger, cannot use the fast path.
1620
*
1621
* Return:
1622
* true - use the fast path to handle this fault
1623
* false - use normal path to handle it
1624
*/
1625
bool kgd2kfd_vmfault_fast_path(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry,
1626
bool retry_fault)
1627
{
1628
struct kfd_process *p;
1629
u32 cam_index;
1630
1631
if (entry->ih == &adev->irq.ih_soft || entry->ih == &adev->irq.ih1) {
1632
p = kfd_lookup_process_by_pasid(entry->pasid, NULL);
1633
if (!p)
1634
return true;
1635
1636
if (p->gpu_page_fault && !p->debug_trap_enabled) {
1637
if (retry_fault && adev->irq.retry_cam_enabled) {
1638
cam_index = entry->src_data[2] & 0x3ff;
1639
WDOORBELL32(adev->irq.retry_cam_doorbell_index, cam_index);
1640
}
1641
1642
kfd_unref_process(p);
1643
return true;
1644
}
1645
1646
/*
1647
* This is the first page fault, set flag and then signal user space
1648
*/
1649
p->gpu_page_fault = true;
1650
kfd_unref_process(p);
1651
}
1652
return false;
1653
}
1654
1655
#if defined(CONFIG_DEBUG_FS)
1656
1657
/* This function will send a package to HIQ to hang the HWS
1658
* which will trigger a GPU reset and bring the HWS back to normal state
1659
*/
1660
int kfd_debugfs_hang_hws(struct kfd_node *dev)
1661
{
1662
if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1663
pr_err("HWS is not enabled");
1664
return -EINVAL;
1665
}
1666
1667
if (dev->kfd->shared_resources.enable_mes) {
1668
dev_err(dev->adev->dev, "Inducing MES hang is not supported\n");
1669
return -EINVAL;
1670
}
1671
1672
return dqm_debugfs_hang_hws(dev->dqm);
1673
}
1674
1675
#endif
1676
1677