Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/gpu/drm/amd/amdkfd/kfd_migrate.c
50594 views
1
// SPDX-License-Identifier: GPL-2.0 OR MIT
2
/*
3
* Copyright 2020-2021 Advanced Micro Devices, Inc.
4
*
5
* Permission is hereby granted, free of charge, to any person obtaining a
6
* copy of this software and associated documentation files (the "Software"),
7
* to deal in the Software without restriction, including without limitation
8
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
* and/or sell copies of the Software, and to permit persons to whom the
10
* Software is furnished to do so, subject to the following conditions:
11
*
12
* The above copyright notice and this permission notice shall be included in
13
* all copies or substantial portions of the Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21
* OTHER DEALINGS IN THE SOFTWARE.
22
*/
23
#include <linux/types.h>
24
#include <linux/dma-direction.h>
25
#include <linux/dma-mapping.h>
26
#include <linux/migrate.h>
27
#include "amdgpu_sync.h"
28
#include "amdgpu_object.h"
29
#include "amdgpu_vm.h"
30
#include "amdgpu_res_cursor.h"
31
#include "kfd_priv.h"
32
#include "kfd_svm.h"
33
#include "kfd_migrate.h"
34
#include "kfd_smi_events.h"
35
36
#ifdef dev_fmt
37
#undef dev_fmt
38
#endif
39
#define dev_fmt(fmt) "kfd_migrate: " fmt
40
41
static u64
42
svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, u64 addr)
43
{
44
return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM);
45
}
46
47
static int
48
svm_migrate_gart_map(struct amdgpu_ring *ring, u64 npages,
49
dma_addr_t *addr, u64 *gart_addr, u64 flags)
50
{
51
struct amdgpu_device *adev = ring->adev;
52
struct amdgpu_job *job;
53
unsigned int num_dw, num_bytes;
54
struct dma_fence *fence;
55
u64 src_addr, dst_addr;
56
u64 pte_flags;
57
void *cpu_addr;
58
int r;
59
60
/* use gart window 0 */
61
*gart_addr = adev->gmc.gart_start;
62
63
num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
64
num_bytes = npages * 8;
65
66
r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
67
AMDGPU_FENCE_OWNER_UNDEFINED,
68
num_dw * 4 + num_bytes,
69
AMDGPU_IB_POOL_DELAYED,
70
&job,
71
AMDGPU_KERNEL_JOB_ID_KFD_GART_MAP);
72
if (r)
73
return r;
74
75
src_addr = num_dw * 4;
76
src_addr += job->ibs[0].gpu_addr;
77
78
dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
79
amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
80
dst_addr, num_bytes, 0);
81
82
amdgpu_ring_pad_ib(ring, &job->ibs[0]);
83
WARN_ON(job->ibs[0].length_dw > num_dw);
84
85
pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
86
pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED;
87
if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO))
88
pte_flags |= AMDGPU_PTE_WRITEABLE;
89
pte_flags |= adev->gart.gart_pte_flags;
90
91
cpu_addr = &job->ibs[0].ptr[num_dw];
92
93
amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr);
94
fence = amdgpu_job_submit(job);
95
dma_fence_put(fence);
96
97
return r;
98
}
99
100
/**
101
* svm_migrate_copy_memory_gart - sdma copy data between ram and vram
102
*
103
* @adev: amdgpu device the sdma ring running
104
* @sys: system DMA pointer to be copied
105
* @vram: vram destination DMA pointer
106
* @npages: number of pages to copy
107
* @direction: enum MIGRATION_COPY_DIR
108
* @mfence: output, sdma fence to signal after sdma is done
109
*
110
* ram address uses GART table continuous entries mapping to ram pages,
111
* vram address uses direct mapping of vram pages, which must have npages
112
* number of continuous pages.
113
* GART update and sdma uses same buf copy function ring, sdma is splited to
114
* multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for
115
* the last sdma finish fence which is returned to check copy memory is done.
116
*
117
* Context: Process context, takes and releases gtt_window_lock
118
*
119
* Return:
120
* 0 - OK, otherwise error code
121
*/
122
123
static int
124
svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys,
125
u64 *vram, u64 npages,
126
enum MIGRATION_COPY_DIR direction,
127
struct dma_fence **mfence)
128
{
129
const u64 GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE;
130
struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
131
u64 gart_s, gart_d;
132
struct dma_fence *next;
133
u64 size;
134
int r;
135
136
mutex_lock(&adev->mman.gtt_window_lock);
137
138
while (npages) {
139
size = min(GTT_MAX_PAGES, npages);
140
141
if (direction == FROM_VRAM_TO_RAM) {
142
gart_s = svm_migrate_direct_mapping_addr(adev, *vram);
143
r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0);
144
145
} else if (direction == FROM_RAM_TO_VRAM) {
146
r = svm_migrate_gart_map(ring, size, sys, &gart_s,
147
KFD_IOCTL_SVM_FLAG_GPU_RO);
148
gart_d = svm_migrate_direct_mapping_addr(adev, *vram);
149
}
150
if (r) {
151
dev_err(adev->dev, "fail %d create gart mapping\n", r);
152
goto out_unlock;
153
}
154
155
r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE,
156
NULL, &next, false, true, 0);
157
if (r) {
158
dev_err(adev->dev, "fail %d to copy memory\n", r);
159
goto out_unlock;
160
}
161
162
dma_fence_put(*mfence);
163
*mfence = next;
164
npages -= size;
165
if (npages) {
166
sys += size;
167
vram += size;
168
}
169
}
170
171
out_unlock:
172
mutex_unlock(&adev->mman.gtt_window_lock);
173
174
return r;
175
}
176
177
/**
178
* svm_migrate_copy_done - wait for memory copy sdma is done
179
*
180
* @adev: amdgpu device the sdma memory copy is executing on
181
* @mfence: migrate fence
182
*
183
* Wait for dma fence is signaled, if the copy ssplit into multiple sdma
184
* operations, this is the last sdma operation fence.
185
*
186
* Context: called after svm_migrate_copy_memory
187
*
188
* Return:
189
* 0 - success
190
* otherwise - error code from dma fence signal
191
*/
192
static int
193
svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence)
194
{
195
int r = 0;
196
197
if (mfence) {
198
r = dma_fence_wait(mfence, false);
199
dma_fence_put(mfence);
200
pr_debug("sdma copy memory fence done\n");
201
}
202
203
return r;
204
}
205
206
unsigned long
207
svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr)
208
{
209
return (addr + adev->kfd.pgmap.range.start) >> PAGE_SHIFT;
210
}
211
212
static void
213
svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn)
214
{
215
struct page *page;
216
217
page = pfn_to_page(pfn);
218
svm_range_bo_ref(prange->svm_bo);
219
page->zone_device_data = prange->svm_bo;
220
zone_device_page_init(page, page_pgmap(page), 0);
221
}
222
223
static void
224
svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr)
225
{
226
struct page *page;
227
228
page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr));
229
unlock_page(page);
230
put_page(page);
231
}
232
233
static unsigned long
234
svm_migrate_addr(struct amdgpu_device *adev, struct page *page)
235
{
236
unsigned long addr;
237
238
addr = page_to_pfn(page) << PAGE_SHIFT;
239
return (addr - adev->kfd.pgmap.range.start);
240
}
241
242
static struct page *
243
svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr)
244
{
245
struct page *page;
246
247
page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
248
if (page)
249
lock_page(page);
250
251
return page;
252
}
253
254
static void svm_migrate_put_sys_page(unsigned long addr)
255
{
256
struct page *page;
257
258
page = pfn_to_page(addr >> PAGE_SHIFT);
259
unlock_page(page);
260
put_page(page);
261
}
262
263
static unsigned long svm_migrate_successful_pages(struct migrate_vma *migrate)
264
{
265
unsigned long mpages = 0;
266
unsigned long i;
267
268
for (i = 0; i < migrate->npages; i++) {
269
if (migrate->dst[i] & MIGRATE_PFN_VALID &&
270
migrate->src[i] & MIGRATE_PFN_MIGRATE)
271
mpages++;
272
}
273
return mpages;
274
}
275
276
static int
277
svm_migrate_copy_to_vram(struct kfd_node *node, struct svm_range *prange,
278
struct migrate_vma *migrate, struct dma_fence **mfence,
279
dma_addr_t *scratch, u64 ttm_res_offset)
280
{
281
u64 npages = migrate->npages;
282
struct amdgpu_device *adev = node->adev;
283
struct device *dev = adev->dev;
284
struct amdgpu_res_cursor cursor;
285
u64 mpages = 0;
286
dma_addr_t *src;
287
u64 *dst;
288
u64 i, j;
289
int r;
290
291
pr_debug("svms 0x%p [0x%lx 0x%lx 0x%llx]\n", prange->svms, prange->start,
292
prange->last, ttm_res_offset);
293
294
src = scratch;
295
dst = (u64 *)(scratch + npages);
296
297
amdgpu_res_first(prange->ttm_res, ttm_res_offset,
298
npages << PAGE_SHIFT, &cursor);
299
for (i = j = 0; (i < npages) && (mpages < migrate->cpages); i++) {
300
struct page *spage;
301
302
if (migrate->src[i] & MIGRATE_PFN_MIGRATE) {
303
dst[i] = cursor.start + (j << PAGE_SHIFT);
304
migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]);
305
svm_migrate_get_vram_page(prange, migrate->dst[i]);
306
migrate->dst[i] = migrate_pfn(migrate->dst[i]);
307
mpages++;
308
}
309
spage = migrate_pfn_to_page(migrate->src[i]);
310
if (spage && !is_zone_device_page(spage)) {
311
src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE,
312
DMA_BIDIRECTIONAL);
313
r = dma_mapping_error(dev, src[i]);
314
if (r) {
315
dev_err(dev, "%s: fail %d dma_map_page\n",
316
__func__, r);
317
goto out_free_vram_pages;
318
}
319
} else {
320
if (j) {
321
r = svm_migrate_copy_memory_gart(
322
adev, src + i - j,
323
dst + i - j, j,
324
FROM_RAM_TO_VRAM,
325
mfence);
326
if (r)
327
goto out_free_vram_pages;
328
amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT);
329
j = 0;
330
} else {
331
amdgpu_res_next(&cursor, PAGE_SIZE);
332
}
333
continue;
334
}
335
336
pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n",
337
src[i] >> PAGE_SHIFT, page_to_pfn(spage));
338
339
if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) {
340
r = svm_migrate_copy_memory_gart(adev, src + i - j,
341
dst + i - j, j + 1,
342
FROM_RAM_TO_VRAM,
343
mfence);
344
if (r)
345
goto out_free_vram_pages;
346
amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE);
347
j = 0;
348
} else {
349
j++;
350
}
351
}
352
353
r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j,
354
FROM_RAM_TO_VRAM, mfence);
355
356
out_free_vram_pages:
357
if (r) {
358
pr_debug("failed %d to copy memory to vram\n", r);
359
for (i = 0; i < npages && mpages; i++) {
360
if (!dst[i])
361
continue;
362
svm_migrate_put_vram_page(adev, dst[i]);
363
migrate->dst[i] = 0;
364
mpages--;
365
}
366
}
367
368
#ifdef DEBUG_FORCE_MIXED_DOMAINS
369
for (i = 0, j = 0; i < npages; i += 4, j++) {
370
if (j & 1)
371
continue;
372
svm_migrate_put_vram_page(adev, dst[i]);
373
migrate->dst[i] = 0;
374
svm_migrate_put_vram_page(adev, dst[i + 1]);
375
migrate->dst[i + 1] = 0;
376
svm_migrate_put_vram_page(adev, dst[i + 2]);
377
migrate->dst[i + 2] = 0;
378
svm_migrate_put_vram_page(adev, dst[i + 3]);
379
migrate->dst[i + 3] = 0;
380
}
381
#endif
382
383
return r;
384
}
385
386
static long
387
svm_migrate_vma_to_vram(struct kfd_node *node, struct svm_range *prange,
388
struct vm_area_struct *vma, u64 start,
389
u64 end, uint32_t trigger, u64 ttm_res_offset)
390
{
391
struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
392
u64 npages = (end - start) >> PAGE_SHIFT;
393
struct amdgpu_device *adev = node->adev;
394
struct kfd_process_device *pdd;
395
struct dma_fence *mfence = NULL;
396
struct migrate_vma migrate = { 0 };
397
unsigned long cpages = 0;
398
unsigned long mpages = 0;
399
dma_addr_t *scratch;
400
void *buf;
401
int r = -ENOMEM;
402
403
memset(&migrate, 0, sizeof(migrate));
404
migrate.vma = vma;
405
migrate.start = start;
406
migrate.end = end;
407
migrate.flags = MIGRATE_VMA_SELECT_SYSTEM;
408
migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev);
409
410
buf = kvcalloc(npages,
411
2 * sizeof(*migrate.src) + sizeof(u64) + sizeof(dma_addr_t),
412
GFP_KERNEL);
413
if (!buf)
414
goto out;
415
416
migrate.src = buf;
417
migrate.dst = migrate.src + npages;
418
scratch = (dma_addr_t *)(migrate.dst + npages);
419
420
kfd_smi_event_migration_start(node, p->lead_thread->pid,
421
start >> PAGE_SHIFT, end >> PAGE_SHIFT,
422
0, node->id, prange->prefetch_loc,
423
prange->preferred_loc, trigger);
424
425
r = migrate_vma_setup(&migrate);
426
if (r) {
427
dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n",
428
__func__, r, prange->start, prange->last);
429
goto out_free;
430
}
431
432
cpages = migrate.cpages;
433
if (!cpages) {
434
pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n",
435
prange->start, prange->last);
436
goto out_free;
437
}
438
if (cpages != npages)
439
pr_debug("partial migration, 0x%lx/0x%llx pages collected\n",
440
cpages, npages);
441
else
442
pr_debug("0x%lx pages collected\n", cpages);
443
444
r = svm_migrate_copy_to_vram(node, prange, &migrate, &mfence, scratch, ttm_res_offset);
445
migrate_vma_pages(&migrate);
446
447
svm_migrate_copy_done(adev, mfence);
448
migrate_vma_finalize(&migrate);
449
450
mpages = svm_migrate_successful_pages(&migrate);
451
pr_debug("migrated/collected/requested 0x%lx/0x%lx/0x%lx\n",
452
mpages, cpages, migrate.npages);
453
454
svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages);
455
456
out_free:
457
kvfree(buf);
458
kfd_smi_event_migration_end(node, p->lead_thread->pid,
459
start >> PAGE_SHIFT, end >> PAGE_SHIFT,
460
0, node->id, trigger, r);
461
out:
462
if (!r && mpages) {
463
pdd = svm_range_get_pdd_by_node(prange, node);
464
if (pdd)
465
WRITE_ONCE(pdd->page_in, pdd->page_in + mpages);
466
467
return mpages;
468
}
469
return r;
470
}
471
472
/**
473
* svm_migrate_ram_to_vram - migrate svm range from system to device
474
* @prange: range structure
475
* @best_loc: the device to migrate to
476
* @start_mgr: start page to migrate
477
* @last_mgr: last page to migrate
478
* @mm: the process mm structure
479
* @trigger: reason of migration
480
*
481
* Context: Process context, caller hold mmap read lock, svms lock, prange lock
482
*
483
* Return:
484
* 0 - OK, otherwise error code
485
*/
486
static int
487
svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc,
488
unsigned long start_mgr, unsigned long last_mgr,
489
struct mm_struct *mm, uint32_t trigger)
490
{
491
unsigned long addr, start, end;
492
struct vm_area_struct *vma;
493
u64 ttm_res_offset;
494
struct kfd_node *node;
495
unsigned long mpages = 0;
496
long r = 0;
497
498
if (start_mgr < prange->start || last_mgr > prange->last) {
499
pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n",
500
start_mgr, last_mgr, prange->start, prange->last);
501
return -EFAULT;
502
}
503
504
node = svm_range_get_node_by_id(prange, best_loc);
505
if (!node) {
506
pr_debug("failed to get kfd node by id 0x%x\n", best_loc);
507
return -ENODEV;
508
}
509
510
pr_debug("svms 0x%p [0x%lx 0x%lx] in [0x%lx 0x%lx] to gpu 0x%x\n",
511
prange->svms, start_mgr, last_mgr, prange->start, prange->last,
512
best_loc);
513
514
start = start_mgr << PAGE_SHIFT;
515
end = (last_mgr + 1) << PAGE_SHIFT;
516
517
r = amdgpu_amdkfd_reserve_mem_limit(node->adev,
518
prange->npages * PAGE_SIZE,
519
KFD_IOC_ALLOC_MEM_FLAGS_VRAM,
520
node->xcp ? node->xcp->id : 0);
521
if (r) {
522
dev_dbg(node->adev->dev, "failed to reserve VRAM, r: %ld\n", r);
523
return -ENOSPC;
524
}
525
526
r = svm_range_vram_node_new(node, prange, true);
527
if (r) {
528
dev_dbg(node->adev->dev, "fail %ld to alloc vram\n", r);
529
goto out;
530
}
531
ttm_res_offset = (start_mgr - prange->start + prange->offset) << PAGE_SHIFT;
532
533
for (addr = start; addr < end;) {
534
unsigned long next;
535
536
vma = vma_lookup(mm, addr);
537
if (!vma)
538
break;
539
540
next = min(vma->vm_end, end);
541
r = svm_migrate_vma_to_vram(node, prange, vma, addr, next, trigger, ttm_res_offset);
542
if (r < 0) {
543
pr_debug("failed %ld to migrate\n", r);
544
break;
545
} else {
546
mpages += r;
547
}
548
ttm_res_offset += next - addr;
549
addr = next;
550
}
551
552
if (mpages) {
553
prange->actual_loc = best_loc;
554
prange->vram_pages += mpages;
555
} else if (!prange->actual_loc) {
556
/* if no page migrated and all pages from prange are at
557
* sys ram drop svm_bo got from svm_range_vram_node_new
558
*/
559
svm_range_vram_node_free(prange);
560
}
561
562
out:
563
amdgpu_amdkfd_unreserve_mem_limit(node->adev,
564
prange->npages * PAGE_SIZE,
565
KFD_IOC_ALLOC_MEM_FLAGS_VRAM,
566
node->xcp ? node->xcp->id : 0);
567
return r < 0 ? r : 0;
568
}
569
570
static void svm_migrate_folio_free(struct folio *folio)
571
{
572
struct page *page = &folio->page;
573
struct svm_range_bo *svm_bo = page->zone_device_data;
574
575
if (svm_bo) {
576
pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref));
577
svm_range_bo_unref_async(svm_bo);
578
}
579
}
580
581
static int
582
svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange,
583
struct migrate_vma *migrate, struct dma_fence **mfence,
584
dma_addr_t *scratch, u64 npages)
585
{
586
struct device *dev = adev->dev;
587
u64 *src;
588
dma_addr_t *dst;
589
struct page *dpage;
590
u64 i = 0, j;
591
u64 addr;
592
int r = 0;
593
594
pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start,
595
prange->last);
596
597
addr = migrate->start;
598
599
src = (u64 *)(scratch + npages);
600
dst = scratch;
601
602
for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) {
603
struct page *spage;
604
605
spage = migrate_pfn_to_page(migrate->src[i]);
606
if (!spage || !is_zone_device_page(spage)) {
607
pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n",
608
prange->svms, prange->start, prange->last);
609
if (j) {
610
r = svm_migrate_copy_memory_gart(adev, dst + i - j,
611
src + i - j, j,
612
FROM_VRAM_TO_RAM,
613
mfence);
614
if (r)
615
goto out_oom;
616
j = 0;
617
}
618
continue;
619
}
620
src[i] = svm_migrate_addr(adev, spage);
621
if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) {
622
r = svm_migrate_copy_memory_gart(adev, dst + i - j,
623
src + i - j, j,
624
FROM_VRAM_TO_RAM,
625
mfence);
626
if (r)
627
goto out_oom;
628
j = 0;
629
}
630
631
dpage = svm_migrate_get_sys_page(migrate->vma, addr);
632
if (!dpage) {
633
pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n",
634
prange->svms, prange->start, prange->last);
635
r = -ENOMEM;
636
goto out_oom;
637
}
638
639
dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
640
r = dma_mapping_error(dev, dst[i]);
641
if (r) {
642
dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r);
643
goto out_oom;
644
}
645
646
pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n",
647
dst[i] >> PAGE_SHIFT, page_to_pfn(dpage));
648
649
migrate->dst[i] = migrate_pfn(page_to_pfn(dpage));
650
j++;
651
}
652
653
r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j,
654
FROM_VRAM_TO_RAM, mfence);
655
656
out_oom:
657
if (r) {
658
pr_debug("failed %d copy to ram\n", r);
659
while (i--) {
660
svm_migrate_put_sys_page(dst[i]);
661
migrate->dst[i] = 0;
662
}
663
}
664
665
return r;
666
}
667
668
/**
669
* svm_migrate_vma_to_ram - migrate range inside one vma from device to system
670
*
671
* @prange: svm range structure
672
* @vma: vm_area_struct that range [start, end] belongs to
673
* @start: range start virtual address in pages
674
* @end: range end virtual address in pages
675
* @node: kfd node device to migrate from
676
* @trigger: reason of migration
677
* @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback
678
*
679
* Context: Process context, caller hold mmap read lock, prange->migrate_mutex
680
*
681
* Return:
682
* negative values - indicate error
683
* positive values or zero - number of pages got migrated
684
*/
685
static long
686
svm_migrate_vma_to_ram(struct kfd_node *node, struct svm_range *prange,
687
struct vm_area_struct *vma, u64 start, u64 end,
688
uint32_t trigger, struct page *fault_page)
689
{
690
struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
691
u64 npages = (end - start) >> PAGE_SHIFT;
692
unsigned long cpages = 0;
693
unsigned long mpages = 0;
694
struct amdgpu_device *adev = node->adev;
695
struct kfd_process_device *pdd;
696
struct dma_fence *mfence = NULL;
697
struct migrate_vma migrate = { 0 };
698
dma_addr_t *scratch;
699
void *buf;
700
int r = -ENOMEM;
701
702
memset(&migrate, 0, sizeof(migrate));
703
migrate.vma = vma;
704
migrate.start = start;
705
migrate.end = end;
706
migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev);
707
if (adev->gmc.xgmi.connected_to_cpu)
708
migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT;
709
else
710
migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
711
712
buf = kvcalloc(npages,
713
2 * sizeof(*migrate.src) + sizeof(u64) + sizeof(dma_addr_t),
714
GFP_KERNEL);
715
if (!buf)
716
goto out;
717
718
migrate.src = buf;
719
migrate.dst = migrate.src + npages;
720
migrate.fault_page = fault_page;
721
scratch = (dma_addr_t *)(migrate.dst + npages);
722
723
kfd_smi_event_migration_start(node, p->lead_thread->pid,
724
start >> PAGE_SHIFT, end >> PAGE_SHIFT,
725
node->id, 0, prange->prefetch_loc,
726
prange->preferred_loc, trigger);
727
728
r = migrate_vma_setup(&migrate);
729
if (r) {
730
dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n",
731
__func__, r, prange->start, prange->last);
732
goto out_free;
733
}
734
735
cpages = migrate.cpages;
736
if (!cpages) {
737
pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n",
738
prange->start, prange->last);
739
goto out_free;
740
}
741
if (cpages != npages)
742
pr_debug("partial migration, 0x%lx/0x%llx pages collected\n",
743
cpages, npages);
744
else
745
pr_debug("0x%lx pages collected\n", cpages);
746
747
r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence,
748
scratch, npages);
749
migrate_vma_pages(&migrate);
750
751
mpages = svm_migrate_successful_pages(&migrate);
752
pr_debug("migrated/collected/requested 0x%lx/0x%lx/0x%lx\n",
753
mpages, cpages, migrate.npages);
754
755
svm_migrate_copy_done(adev, mfence);
756
migrate_vma_finalize(&migrate);
757
758
svm_range_dma_unmap_dev(adev->dev, scratch, 0, npages);
759
760
out_free:
761
kvfree(buf);
762
kfd_smi_event_migration_end(node, p->lead_thread->pid,
763
start >> PAGE_SHIFT, end >> PAGE_SHIFT,
764
node->id, 0, trigger, r);
765
out:
766
if (!r && mpages) {
767
pdd = svm_range_get_pdd_by_node(prange, node);
768
if (pdd)
769
WRITE_ONCE(pdd->page_out, pdd->page_out + mpages);
770
}
771
772
return r ? r : mpages;
773
}
774
775
/**
776
* svm_migrate_vram_to_ram - migrate svm range from device to system
777
* @prange: range structure
778
* @mm: process mm, use current->mm if NULL
779
* @start_mgr: start page need be migrated to sys ram
780
* @last_mgr: last page need be migrated to sys ram
781
* @trigger: reason of migration
782
* @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback
783
*
784
* Context: Process context, caller hold mmap read lock, prange->migrate_mutex
785
*
786
* Return:
787
* 0 - OK, otherwise error code
788
*/
789
int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm,
790
unsigned long start_mgr, unsigned long last_mgr,
791
uint32_t trigger, struct page *fault_page)
792
{
793
struct kfd_node *node;
794
struct vm_area_struct *vma;
795
unsigned long addr;
796
unsigned long start;
797
unsigned long end;
798
unsigned long mpages = 0;
799
long r = 0;
800
801
/* this pragne has no any vram page to migrate to sys ram */
802
if (!prange->actual_loc) {
803
pr_debug("[0x%lx 0x%lx] already migrated to ram\n",
804
prange->start, prange->last);
805
return 0;
806
}
807
808
if (start_mgr < prange->start || last_mgr > prange->last) {
809
pr_debug("range [0x%lx 0x%lx] out prange [0x%lx 0x%lx]\n",
810
start_mgr, last_mgr, prange->start, prange->last);
811
return -EFAULT;
812
}
813
814
node = svm_range_get_node_by_id(prange, prange->actual_loc);
815
if (!node) {
816
pr_debug("failed to get kfd node by id 0x%x\n", prange->actual_loc);
817
return -ENODEV;
818
}
819
pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n",
820
prange->svms, prange, start_mgr, last_mgr,
821
prange->actual_loc);
822
823
start = start_mgr << PAGE_SHIFT;
824
end = (last_mgr + 1) << PAGE_SHIFT;
825
826
for (addr = start; addr < end;) {
827
unsigned long next;
828
829
vma = vma_lookup(mm, addr);
830
if (!vma) {
831
pr_debug("failed to find vma for prange %p\n", prange);
832
r = -EFAULT;
833
break;
834
}
835
836
next = min(vma->vm_end, end);
837
r = svm_migrate_vma_to_ram(node, prange, vma, addr, next, trigger,
838
fault_page);
839
if (r < 0) {
840
pr_debug("failed %ld to migrate prange %p\n", r, prange);
841
break;
842
} else {
843
mpages += r;
844
}
845
addr = next;
846
}
847
848
if (r >= 0) {
849
WARN_ONCE(prange->vram_pages < mpages,
850
"Recorded vram pages(0x%llx) should not be less than migration pages(0x%lx).",
851
prange->vram_pages, mpages);
852
prange->vram_pages -= mpages;
853
854
/* prange does not have vram page set its actual_loc to system
855
* and drop its svm_bo ref
856
*/
857
if (prange->vram_pages == 0 && prange->ttm_res) {
858
prange->actual_loc = 0;
859
svm_range_vram_node_free(prange);
860
}
861
}
862
863
return r < 0 ? r : 0;
864
}
865
866
/**
867
* svm_migrate_vram_to_vram - migrate svm range from device to device
868
* @prange: range structure
869
* @best_loc: the device to migrate to
870
* @start: start page need be migrated to sys ram
871
* @last: last page need be migrated to sys ram
872
* @mm: process mm, use current->mm if NULL
873
* @trigger: reason of migration
874
*
875
* Context: Process context, caller hold mmap read lock, svms lock, prange lock
876
*
877
* migrate all vram pages in prange to sys ram, then migrate
878
* [start, last] pages from sys ram to gpu node best_loc.
879
*
880
* Return:
881
* 0 - OK, otherwise error code
882
*/
883
static int
884
svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc,
885
unsigned long start, unsigned long last,
886
struct mm_struct *mm, uint32_t trigger)
887
{
888
int r, retries = 3;
889
890
/*
891
* TODO: for both devices with PCIe large bar or on same xgmi hive, skip
892
* system memory as migration bridge
893
*/
894
895
pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc);
896
897
do {
898
r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
899
trigger, NULL);
900
if (r)
901
return r;
902
} while (prange->actual_loc && --retries);
903
904
if (prange->actual_loc)
905
return -EDEADLK;
906
907
return svm_migrate_ram_to_vram(prange, best_loc, start, last, mm, trigger);
908
}
909
910
int
911
svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc,
912
unsigned long start, unsigned long last,
913
struct mm_struct *mm, uint32_t trigger)
914
{
915
if (!prange->actual_loc || prange->actual_loc == best_loc)
916
return svm_migrate_ram_to_vram(prange, best_loc, start, last,
917
mm, trigger);
918
919
else
920
return svm_migrate_vram_to_vram(prange, best_loc, start, last,
921
mm, trigger);
922
923
}
924
925
/**
926
* svm_migrate_to_ram - CPU page fault handler
927
* @vmf: CPU vm fault vma, address
928
*
929
* Context: vm fault handler, caller holds the mmap read lock
930
*
931
* Return:
932
* 0 - OK
933
* VM_FAULT_SIGBUS - notice application to have SIGBUS page fault
934
*/
935
static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf)
936
{
937
unsigned long start, last, size;
938
unsigned long addr = vmf->address;
939
struct svm_range_bo *svm_bo;
940
struct svm_range *prange;
941
struct kfd_process *p;
942
struct mm_struct *mm;
943
int r = 0;
944
945
svm_bo = vmf->page->zone_device_data;
946
if (!svm_bo) {
947
pr_debug("failed get device page at addr 0x%lx\n", addr);
948
return VM_FAULT_SIGBUS;
949
}
950
if (!mmget_not_zero(svm_bo->eviction_fence->mm)) {
951
pr_debug("addr 0x%lx of process mm is destroyed\n", addr);
952
return VM_FAULT_SIGBUS;
953
}
954
955
mm = svm_bo->eviction_fence->mm;
956
if (mm != vmf->vma->vm_mm)
957
pr_debug("addr 0x%lx is COW mapping in child process\n", addr);
958
959
p = kfd_lookup_process_by_mm(mm);
960
if (!p) {
961
pr_debug("failed find process at fault address 0x%lx\n", addr);
962
r = VM_FAULT_SIGBUS;
963
goto out_mmput;
964
}
965
if (READ_ONCE(p->svms.faulting_task) == current) {
966
pr_debug("skipping ram migration\n");
967
r = 0;
968
goto out_unref_process;
969
}
970
971
pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr);
972
addr >>= PAGE_SHIFT;
973
974
mutex_lock(&p->svms.lock);
975
976
prange = svm_range_from_addr(&p->svms, addr, NULL);
977
if (!prange) {
978
pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr);
979
r = -EFAULT;
980
goto out_unlock_svms;
981
}
982
983
mutex_lock(&prange->migrate_mutex);
984
985
if (!prange->actual_loc)
986
goto out_unlock_prange;
987
988
/* Align migration range start and size to granularity size */
989
size = 1UL << prange->granularity;
990
start = max(ALIGN_DOWN(addr, size), prange->start);
991
last = min(ALIGN(addr + 1, size) - 1, prange->last);
992
993
r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm, start, last,
994
KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU, vmf->page);
995
if (r)
996
pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n",
997
r, prange->svms, prange, start, last);
998
999
out_unlock_prange:
1000
mutex_unlock(&prange->migrate_mutex);
1001
out_unlock_svms:
1002
mutex_unlock(&p->svms.lock);
1003
out_unref_process:
1004
pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr);
1005
kfd_unref_process(p);
1006
out_mmput:
1007
mmput(mm);
1008
return r ? VM_FAULT_SIGBUS : 0;
1009
}
1010
1011
static const struct dev_pagemap_ops svm_migrate_pgmap_ops = {
1012
.folio_free = svm_migrate_folio_free,
1013
.migrate_to_ram = svm_migrate_to_ram,
1014
};
1015
1016
/* Each VRAM page uses sizeof(struct page) on system memory */
1017
#define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page))
1018
1019
int kgd2kfd_init_zone_device(struct amdgpu_device *adev)
1020
{
1021
struct amdgpu_kfd_dev *kfddev = &adev->kfd;
1022
struct dev_pagemap *pgmap;
1023
struct resource *res = NULL;
1024
unsigned long size;
1025
void *r;
1026
1027
/* Page migration works on gfx9 or newer */
1028
if (amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 1))
1029
return -EINVAL;
1030
1031
if (adev->apu_prefer_gtt)
1032
return 0;
1033
1034
pgmap = &kfddev->pgmap;
1035
memset(pgmap, 0, sizeof(*pgmap));
1036
1037
/* TODO: register all vram to HMM for now.
1038
* should remove reserved size
1039
*/
1040
size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20);
1041
if (adev->gmc.xgmi.connected_to_cpu) {
1042
pgmap->range.start = adev->gmc.aper_base;
1043
pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1;
1044
pgmap->type = MEMORY_DEVICE_COHERENT;
1045
} else {
1046
res = devm_request_free_mem_region(adev->dev, &iomem_resource, size);
1047
if (IS_ERR(res))
1048
return PTR_ERR(res);
1049
pgmap->range.start = res->start;
1050
pgmap->range.end = res->end;
1051
pgmap->type = MEMORY_DEVICE_PRIVATE;
1052
}
1053
1054
pgmap->nr_range = 1;
1055
pgmap->ops = &svm_migrate_pgmap_ops;
1056
pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev);
1057
pgmap->flags = 0;
1058
/* Device manager releases device-specific resources, memory region and
1059
* pgmap when driver disconnects from device.
1060
*/
1061
r = devm_memremap_pages(adev->dev, pgmap);
1062
if (IS_ERR(r)) {
1063
pr_err("failed to register HMM device memory\n");
1064
if (pgmap->type == MEMORY_DEVICE_PRIVATE)
1065
devm_release_mem_region(adev->dev, res->start, resource_size(res));
1066
/* Disable SVM support capability */
1067
pgmap->type = 0;
1068
return PTR_ERR(r);
1069
}
1070
1071
pr_debug("reserve %ldMB system memory for VRAM pages struct\n",
1072
SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20);
1073
1074
amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size));
1075
1076
pr_info("HMM registered %ldMB device memory\n", size >> 20);
1077
1078
return 0;
1079
}
1080
1081