Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/gpu/drm/amd/display/include/fixed31_32.h
26535 views
1
/*
2
* Copyright 2012-15 Advanced Micro Devices, Inc.
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice shall be included in
12
* all copies or substantial portions of the Software.
13
*
14
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20
* OTHER DEALINGS IN THE SOFTWARE.
21
*
22
* Authors: AMD
23
*
24
*/
25
26
#ifndef __DAL_FIXED31_32_H__
27
#define __DAL_FIXED31_32_H__
28
29
#ifndef LLONG_MAX
30
#define LLONG_MAX 9223372036854775807ll
31
#endif
32
#ifndef LLONG_MIN
33
#define LLONG_MIN (-LLONG_MAX - 1ll)
34
#endif
35
36
#define FIXED31_32_BITS_PER_FRACTIONAL_PART 32
37
#ifndef LLONG_MIN
38
#define LLONG_MIN (1LL<<63)
39
#endif
40
#ifndef LLONG_MAX
41
#define LLONG_MAX (-1LL>>1)
42
#endif
43
44
/*
45
* @brief
46
* Arithmetic operations on real numbers
47
* represented as fixed-point numbers.
48
* There are: 1 bit for sign,
49
* 31 bit for integer part,
50
* 32 bits for fractional part.
51
*
52
* @note
53
* Currently, overflows and underflows are asserted;
54
* no special result returned.
55
*/
56
57
struct fixed31_32 {
58
long long value;
59
};
60
61
62
/*
63
* @brief
64
* Useful constants
65
*/
66
67
static const struct fixed31_32 dc_fixpt_zero = { 0 };
68
static const struct fixed31_32 dc_fixpt_epsilon = { 1LL };
69
static const struct fixed31_32 dc_fixpt_half = { 0x80000000LL };
70
static const struct fixed31_32 dc_fixpt_one = { 0x100000000LL };
71
72
/*
73
* @brief
74
* Initialization routines
75
*/
76
77
/*
78
* @brief
79
* result = numerator / denominator
80
*/
81
struct fixed31_32 dc_fixpt_from_fraction(long long numerator, long long denominator);
82
83
/*
84
* @brief
85
* result = arg
86
*/
87
static inline struct fixed31_32 dc_fixpt_from_int(int arg)
88
{
89
struct fixed31_32 res;
90
91
res.value = (long long) arg << FIXED31_32_BITS_PER_FRACTIONAL_PART;
92
93
return res;
94
}
95
96
/*
97
* @brief
98
* Unary operators
99
*/
100
101
/*
102
* @brief
103
* result = -arg
104
*/
105
static inline struct fixed31_32 dc_fixpt_neg(struct fixed31_32 arg)
106
{
107
struct fixed31_32 res;
108
109
res.value = -arg.value;
110
111
return res;
112
}
113
114
/*
115
* @brief
116
* result = abs(arg) := (arg >= 0) ? arg : -arg
117
*/
118
static inline struct fixed31_32 dc_fixpt_abs(struct fixed31_32 arg)
119
{
120
if (arg.value < 0)
121
return dc_fixpt_neg(arg);
122
else
123
return arg;
124
}
125
126
/*
127
* @brief
128
* Binary relational operators
129
*/
130
131
/*
132
* @brief
133
* result = arg1 < arg2
134
*/
135
static inline bool dc_fixpt_lt(struct fixed31_32 arg1, struct fixed31_32 arg2)
136
{
137
return arg1.value < arg2.value;
138
}
139
140
/*
141
* @brief
142
* result = arg1 <= arg2
143
*/
144
static inline bool dc_fixpt_le(struct fixed31_32 arg1, struct fixed31_32 arg2)
145
{
146
return arg1.value <= arg2.value;
147
}
148
149
/*
150
* @brief
151
* result = arg1 == arg2
152
*/
153
static inline bool dc_fixpt_eq(struct fixed31_32 arg1, struct fixed31_32 arg2)
154
{
155
return arg1.value == arg2.value;
156
}
157
158
/*
159
* @brief
160
* result = min(arg1, arg2) := (arg1 <= arg2) ? arg1 : arg2
161
*/
162
static inline struct fixed31_32 dc_fixpt_min(struct fixed31_32 arg1, struct fixed31_32 arg2)
163
{
164
if (arg1.value <= arg2.value)
165
return arg1;
166
else
167
return arg2;
168
}
169
170
/*
171
* @brief
172
* result = max(arg1, arg2) := (arg1 <= arg2) ? arg2 : arg1
173
*/
174
static inline struct fixed31_32 dc_fixpt_max(struct fixed31_32 arg1, struct fixed31_32 arg2)
175
{
176
if (arg1.value <= arg2.value)
177
return arg2;
178
else
179
return arg1;
180
}
181
182
/*
183
* @brief
184
* | min_value, when arg <= min_value
185
* result = | arg, when min_value < arg < max_value
186
* | max_value, when arg >= max_value
187
*/
188
static inline struct fixed31_32 dc_fixpt_clamp(
189
struct fixed31_32 arg,
190
struct fixed31_32 min_value,
191
struct fixed31_32 max_value)
192
{
193
if (dc_fixpt_le(arg, min_value))
194
return min_value;
195
else if (dc_fixpt_le(max_value, arg))
196
return max_value;
197
else
198
return arg;
199
}
200
201
/*
202
* @brief
203
* Binary shift operators
204
*/
205
206
/*
207
* @brief
208
* result = arg << shift
209
*/
210
static inline struct fixed31_32 dc_fixpt_shl(struct fixed31_32 arg, unsigned char shift)
211
{
212
ASSERT(((arg.value >= 0) && (arg.value <= LLONG_MAX >> shift)) ||
213
((arg.value < 0) && (arg.value >= ~(LLONG_MAX >> shift))));
214
215
arg.value = arg.value << shift;
216
217
return arg;
218
}
219
220
/*
221
* @brief
222
* result = arg >> shift
223
*/
224
static inline struct fixed31_32 dc_fixpt_shr(struct fixed31_32 arg, unsigned char shift)
225
{
226
bool negative = arg.value < 0;
227
228
if (negative)
229
arg.value = -arg.value;
230
arg.value = arg.value >> shift;
231
if (negative)
232
arg.value = -arg.value;
233
return arg;
234
}
235
236
/*
237
* @brief
238
* Binary additive operators
239
*/
240
241
/*
242
* @brief
243
* result = arg1 + arg2
244
*/
245
static inline struct fixed31_32 dc_fixpt_add(struct fixed31_32 arg1, struct fixed31_32 arg2)
246
{
247
struct fixed31_32 res;
248
249
ASSERT(((arg1.value >= 0) && (LLONG_MAX - arg1.value >= arg2.value)) ||
250
((arg1.value < 0) && (LLONG_MIN - arg1.value <= arg2.value)));
251
252
res.value = arg1.value + arg2.value;
253
254
return res;
255
}
256
257
/*
258
* @brief
259
* result = arg1 + arg2
260
*/
261
static inline struct fixed31_32 dc_fixpt_add_int(struct fixed31_32 arg1, int arg2)
262
{
263
return dc_fixpt_add(arg1, dc_fixpt_from_int(arg2));
264
}
265
266
/*
267
* @brief
268
* result = arg1 - arg2
269
*/
270
static inline struct fixed31_32 dc_fixpt_sub(struct fixed31_32 arg1, struct fixed31_32 arg2)
271
{
272
struct fixed31_32 res;
273
274
ASSERT(((arg2.value >= 0) && (LLONG_MIN + arg2.value <= arg1.value)) ||
275
((arg2.value < 0) && (LLONG_MAX + arg2.value >= arg1.value)));
276
277
res.value = arg1.value - arg2.value;
278
279
return res;
280
}
281
282
/*
283
* @brief
284
* result = arg1 - arg2
285
*/
286
static inline struct fixed31_32 dc_fixpt_sub_int(struct fixed31_32 arg1, int arg2)
287
{
288
return dc_fixpt_sub(arg1, dc_fixpt_from_int(arg2));
289
}
290
291
292
/*
293
* @brief
294
* Binary multiplicative operators
295
*/
296
297
/*
298
* @brief
299
* result = arg1 * arg2
300
*/
301
struct fixed31_32 dc_fixpt_mul(struct fixed31_32 arg1, struct fixed31_32 arg2);
302
303
304
/*
305
* @brief
306
* result = arg1 * arg2
307
*/
308
static inline struct fixed31_32 dc_fixpt_mul_int(struct fixed31_32 arg1, int arg2)
309
{
310
return dc_fixpt_mul(arg1, dc_fixpt_from_int(arg2));
311
}
312
313
/*
314
* @brief
315
* result = square(arg) := arg * arg
316
*/
317
struct fixed31_32 dc_fixpt_sqr(struct fixed31_32 arg);
318
319
/*
320
* @brief
321
* result = arg1 / arg2
322
*/
323
static inline struct fixed31_32 dc_fixpt_div_int(struct fixed31_32 arg1, long long arg2)
324
{
325
return dc_fixpt_from_fraction(arg1.value, dc_fixpt_from_int((int)arg2).value);
326
}
327
328
/*
329
* @brief
330
* result = arg1 / arg2
331
*/
332
static inline struct fixed31_32 dc_fixpt_div(struct fixed31_32 arg1, struct fixed31_32 arg2)
333
{
334
return dc_fixpt_from_fraction(arg1.value, arg2.value);
335
}
336
337
/*
338
* @brief
339
* Reciprocal function
340
*/
341
342
/*
343
* @brief
344
* result = reciprocal(arg) := 1 / arg
345
*
346
* @note
347
* No special actions taken in case argument is zero.
348
*/
349
struct fixed31_32 dc_fixpt_recip(struct fixed31_32 arg);
350
351
/*
352
* @brief
353
* Trigonometric functions
354
*/
355
356
/*
357
* @brief
358
* result = sinc(arg) := sin(arg) / arg
359
*
360
* @note
361
* Argument specified in radians,
362
* internally it's normalized to [-2pi...2pi] range.
363
*/
364
struct fixed31_32 dc_fixpt_sinc(struct fixed31_32 arg);
365
366
/*
367
* @brief
368
* result = sin(arg)
369
*
370
* @note
371
* Argument specified in radians,
372
* internally it's normalized to [-2pi...2pi] range.
373
*/
374
struct fixed31_32 dc_fixpt_sin(struct fixed31_32 arg);
375
376
/*
377
* @brief
378
* result = cos(arg)
379
*
380
* @note
381
* Argument specified in radians
382
* and should be in [-2pi...2pi] range -
383
* passing arguments outside that range
384
* will cause incorrect result!
385
*/
386
struct fixed31_32 dc_fixpt_cos(struct fixed31_32 arg);
387
388
/*
389
* @brief
390
* Transcendent functions
391
*/
392
393
/*
394
* @brief
395
* result = exp(arg)
396
*
397
* @note
398
* Currently, function is verified for abs(arg) <= 1.
399
*/
400
struct fixed31_32 dc_fixpt_exp(struct fixed31_32 arg);
401
402
/*
403
* @brief
404
* result = log(arg)
405
*
406
* @note
407
* Currently, abs(arg) should be less than 1.
408
* No normalization is done.
409
* Currently, no special actions taken
410
* in case of invalid argument(s). Take care!
411
*/
412
struct fixed31_32 dc_fixpt_log(struct fixed31_32 arg);
413
414
/*
415
* @brief
416
* Power function
417
*/
418
419
/*
420
* @brief
421
* result = pow(arg1, arg2)
422
*
423
* @note
424
* Currently, abs(arg1) should be less than 1. Take care!
425
*/
426
static inline struct fixed31_32 dc_fixpt_pow(struct fixed31_32 arg1, struct fixed31_32 arg2)
427
{
428
if (arg1.value == 0)
429
return arg2.value == 0 ? dc_fixpt_one : dc_fixpt_zero;
430
431
return dc_fixpt_exp(
432
dc_fixpt_mul(
433
dc_fixpt_log(arg1),
434
arg2));
435
}
436
437
/*
438
* @brief
439
* Rounding functions
440
*/
441
442
/*
443
* @brief
444
* result = floor(arg) := greatest integer lower than or equal to arg
445
*/
446
static inline int dc_fixpt_floor(struct fixed31_32 arg)
447
{
448
unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value;
449
450
if (arg.value >= 0)
451
return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
452
else
453
return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
454
}
455
456
/*
457
* @brief
458
* result = round(arg) := integer nearest to arg
459
*/
460
static inline int dc_fixpt_round(struct fixed31_32 arg)
461
{
462
unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value;
463
464
const long long summand = dc_fixpt_half.value;
465
466
ASSERT(LLONG_MAX - (long long)arg_value >= summand);
467
468
arg_value += summand;
469
470
if (arg.value >= 0)
471
return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
472
else
473
return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
474
}
475
476
/*
477
* @brief
478
* result = ceil(arg) := lowest integer greater than or equal to arg
479
*/
480
static inline int dc_fixpt_ceil(struct fixed31_32 arg)
481
{
482
unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value;
483
484
const long long summand = dc_fixpt_one.value -
485
dc_fixpt_epsilon.value;
486
487
ASSERT(LLONG_MAX - (long long)arg_value >= summand);
488
489
arg_value += summand;
490
491
if (arg.value >= 0)
492
return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
493
else
494
return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
495
}
496
497
/* the following two function are used in scaler hw programming to convert fixed
498
* point value to format 2 bits from integer part and 19 bits from fractional
499
* part. The same applies for u0d19, 0 bits from integer part and 19 bits from
500
* fractional
501
*/
502
503
unsigned int dc_fixpt_u4d19(struct fixed31_32 arg);
504
505
unsigned int dc_fixpt_u3d19(struct fixed31_32 arg);
506
507
unsigned int dc_fixpt_u2d19(struct fixed31_32 arg);
508
509
unsigned int dc_fixpt_u0d19(struct fixed31_32 arg);
510
511
unsigned int dc_fixpt_clamp_u0d14(struct fixed31_32 arg);
512
513
unsigned int dc_fixpt_clamp_u0d10(struct fixed31_32 arg);
514
515
int dc_fixpt_s4d19(struct fixed31_32 arg);
516
517
static inline struct fixed31_32 dc_fixpt_truncate(struct fixed31_32 arg, unsigned int frac_bits)
518
{
519
bool negative = arg.value < 0;
520
521
if (frac_bits >= FIXED31_32_BITS_PER_FRACTIONAL_PART) {
522
ASSERT(frac_bits == FIXED31_32_BITS_PER_FRACTIONAL_PART);
523
return arg;
524
}
525
526
if (negative)
527
arg.value = -arg.value;
528
arg.value &= (~0ULL) << (FIXED31_32_BITS_PER_FRACTIONAL_PART - frac_bits);
529
if (negative)
530
arg.value = -arg.value;
531
return arg;
532
}
533
534
struct fixed31_32 dc_fixpt_from_ux_dy(unsigned int value, unsigned int integer_bits, unsigned int fractional_bits);
535
struct fixed31_32 dc_fixpt_from_int_dy(unsigned int int_value,
536
unsigned int frac_value,
537
unsigned int integer_bits,
538
unsigned int fractional_bits);
539
540
#endif
541
542