Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/gpu/drm/arm/malidp_crtc.c
50951 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* (C) COPYRIGHT 2016 ARM Limited. All rights reserved.
4
* Author: Liviu Dudau <[email protected]>
5
*
6
* ARM Mali DP500/DP550/DP650 driver (crtc operations)
7
*/
8
9
#include <linux/clk.h>
10
#include <linux/pm_runtime.h>
11
12
#include <video/videomode.h>
13
14
#include <drm/drm_atomic.h>
15
#include <drm/drm_atomic_helper.h>
16
#include <drm/drm_crtc.h>
17
#include <drm/drm_framebuffer.h>
18
#include <drm/drm_print.h>
19
#include <drm/drm_probe_helper.h>
20
#include <drm/drm_vblank.h>
21
22
#include "malidp_drv.h"
23
#include "malidp_hw.h"
24
25
static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc,
26
const struct drm_display_mode *mode)
27
{
28
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
29
struct malidp_hw_device *hwdev = malidp->dev;
30
31
/*
32
* check that the hardware can drive the required clock rate,
33
* but skip the check if the clock is meant to be disabled (req_rate = 0)
34
*/
35
long rate, req_rate = mode->crtc_clock * 1000;
36
37
if (req_rate) {
38
rate = clk_round_rate(hwdev->pxlclk, req_rate);
39
if (rate != req_rate) {
40
DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n",
41
req_rate);
42
return MODE_NOCLOCK;
43
}
44
}
45
46
return MODE_OK;
47
}
48
49
static void malidp_crtc_atomic_enable(struct drm_crtc *crtc,
50
struct drm_atomic_state *state)
51
{
52
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
53
struct malidp_hw_device *hwdev = malidp->dev;
54
struct videomode vm;
55
int err = pm_runtime_get_sync(crtc->dev->dev);
56
57
if (err < 0) {
58
DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err);
59
return;
60
}
61
62
drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm);
63
clk_prepare_enable(hwdev->pxlclk);
64
65
/* We rely on firmware to set mclk to a sensible level. */
66
clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000);
67
68
hwdev->hw->modeset(hwdev, &vm);
69
hwdev->hw->leave_config_mode(hwdev);
70
drm_crtc_vblank_on(crtc);
71
}
72
73
static void malidp_crtc_atomic_disable(struct drm_crtc *crtc,
74
struct drm_atomic_state *state)
75
{
76
struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
77
crtc);
78
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
79
struct malidp_hw_device *hwdev = malidp->dev;
80
81
/* always disable planes on the CRTC that is being turned off */
82
drm_atomic_helper_disable_planes_on_crtc(old_state, false);
83
84
drm_crtc_vblank_off(crtc);
85
hwdev->hw->enter_config_mode(hwdev);
86
87
clk_disable_unprepare(hwdev->pxlclk);
88
89
pm_runtime_put(crtc->dev->dev);
90
}
91
92
static const struct gamma_curve_segment {
93
u16 start;
94
u16 end;
95
} segments[MALIDP_COEFFTAB_NUM_COEFFS] = {
96
/* sector 0 */
97
{ 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 },
98
{ 4, 4 }, { 5, 5 }, { 6, 6 }, { 7, 7 },
99
{ 8, 8 }, { 9, 9 }, { 10, 10 }, { 11, 11 },
100
{ 12, 12 }, { 13, 13 }, { 14, 14 }, { 15, 15 },
101
/* sector 1 */
102
{ 16, 19 }, { 20, 23 }, { 24, 27 }, { 28, 31 },
103
/* sector 2 */
104
{ 32, 39 }, { 40, 47 }, { 48, 55 }, { 56, 63 },
105
/* sector 3 */
106
{ 64, 79 }, { 80, 95 }, { 96, 111 }, { 112, 127 },
107
/* sector 4 */
108
{ 128, 159 }, { 160, 191 }, { 192, 223 }, { 224, 255 },
109
/* sector 5 */
110
{ 256, 319 }, { 320, 383 }, { 384, 447 }, { 448, 511 },
111
/* sector 6 */
112
{ 512, 639 }, { 640, 767 }, { 768, 895 }, { 896, 1023 },
113
{ 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 },
114
{ 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 },
115
{ 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 },
116
{ 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 },
117
{ 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 },
118
{ 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 },
119
};
120
121
#define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff)))
122
123
static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob,
124
u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS])
125
{
126
struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data;
127
int i;
128
129
for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) {
130
u32 a, b, delta_in, out_start, out_end;
131
132
delta_in = segments[i].end - segments[i].start;
133
/* DP has 12-bit internal precision for its LUTs. */
134
out_start = drm_color_lut_extract(lut[segments[i].start].green,
135
12);
136
out_end = drm_color_lut_extract(lut[segments[i].end].green, 12);
137
a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in;
138
b = out_start;
139
coeffs[i] = DE_COEFTAB_DATA(a, b);
140
}
141
}
142
143
/*
144
* Check if there is a new gamma LUT and if it is of an acceptable size. Also,
145
* reject any LUTs that use distinct red, green, and blue curves.
146
*/
147
static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc,
148
struct drm_crtc_state *state)
149
{
150
struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
151
struct drm_color_lut *lut;
152
size_t lut_size;
153
int i;
154
155
if (!state->color_mgmt_changed || !state->gamma_lut)
156
return 0;
157
158
if (crtc->state->gamma_lut &&
159
(crtc->state->gamma_lut->base.id == state->gamma_lut->base.id))
160
return 0;
161
162
if (state->gamma_lut->length % sizeof(struct drm_color_lut))
163
return -EINVAL;
164
165
lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut);
166
if (lut_size != MALIDP_GAMMA_LUT_SIZE)
167
return -EINVAL;
168
169
lut = (struct drm_color_lut *)state->gamma_lut->data;
170
for (i = 0; i < lut_size; ++i)
171
if (!((lut[i].red == lut[i].green) &&
172
(lut[i].red == lut[i].blue)))
173
return -EINVAL;
174
175
if (!state->mode_changed) {
176
int ret;
177
178
state->mode_changed = true;
179
/*
180
* Kerneldoc for drm_atomic_helper_check_modeset mandates that
181
* it be invoked when the driver sets ->mode_changed. Since
182
* changing the gamma LUT doesn't depend on any external
183
* resources, it is safe to call it only once.
184
*/
185
ret = drm_atomic_helper_check_modeset(crtc->dev, state->state);
186
if (ret)
187
return ret;
188
}
189
190
malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs);
191
return 0;
192
}
193
194
/*
195
* Check if there is a new CTM and if it contains valid input. Valid here means
196
* that the number is inside the representable range for a Q3.12 number,
197
* excluding truncating the fractional part of the input data.
198
*
199
* The COLORADJ registers can be changed atomically.
200
*/
201
static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc,
202
struct drm_crtc_state *state)
203
{
204
struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
205
struct drm_color_ctm *ctm;
206
int i;
207
208
if (!state->color_mgmt_changed)
209
return 0;
210
211
if (!state->ctm)
212
return 0;
213
214
if (crtc->state->ctm && (crtc->state->ctm->base.id ==
215
state->ctm->base.id))
216
return 0;
217
218
/*
219
* The size of the ctm is checked in
220
* drm_property_replace_blob_from_id.
221
*/
222
ctm = (struct drm_color_ctm *)state->ctm->data;
223
for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) {
224
/* Convert from S31.32 to Q3.12. */
225
s64 val = ctm->matrix[i];
226
u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) &
227
GENMASK_ULL(14, 0);
228
229
/*
230
* Convert to 2s complement and check the destination's top bit
231
* for overflow. NB: Can't check before converting or it'd
232
* incorrectly reject the case:
233
* sign == 1
234
* mag == 0x2000
235
*/
236
if (val & BIT_ULL(63))
237
mag = ~mag + 1;
238
if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14)))
239
return -EINVAL;
240
mc->coloradj_coeffs[i] = mag;
241
}
242
243
return 0;
244
}
245
246
static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc,
247
struct drm_crtc_state *state)
248
{
249
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
250
struct malidp_hw_device *hwdev = malidp->dev;
251
struct malidp_crtc_state *cs = to_malidp_crtc_state(state);
252
struct malidp_se_config *s = &cs->scaler_config;
253
struct drm_plane *plane;
254
struct videomode vm;
255
const struct drm_plane_state *pstate;
256
u32 h_upscale_factor = 0; /* U16.16 */
257
u32 v_upscale_factor = 0; /* U16.16 */
258
u8 scaling = cs->scaled_planes_mask;
259
int ret;
260
261
if (!scaling) {
262
s->scale_enable = false;
263
goto mclk_calc;
264
}
265
266
/* The scaling engine can only handle one plane at a time. */
267
if (scaling & (scaling - 1))
268
return -EINVAL;
269
270
drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
271
struct malidp_plane *mp = to_malidp_plane(plane);
272
u32 phase;
273
274
if (!(mp->layer->id & scaling))
275
continue;
276
277
/*
278
* Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h]
279
* to get the U16.16 result.
280
*/
281
h_upscale_factor = div_u64((u64)pstate->crtc_w << 32,
282
pstate->src_w);
283
v_upscale_factor = div_u64((u64)pstate->crtc_h << 32,
284
pstate->src_h);
285
286
s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 ||
287
(v_upscale_factor >> 16) >= 2);
288
289
if (pstate->rotation & MALIDP_ROTATED_MASK) {
290
s->input_w = pstate->src_h >> 16;
291
s->input_h = pstate->src_w >> 16;
292
} else {
293
s->input_w = pstate->src_w >> 16;
294
s->input_h = pstate->src_h >> 16;
295
}
296
297
s->output_w = pstate->crtc_w;
298
s->output_h = pstate->crtc_h;
299
300
#define SE_N_PHASE 4
301
#define SE_SHIFT_N_PHASE 12
302
/* Calculate initial_phase and delta_phase for horizontal. */
303
phase = s->input_w;
304
s->h_init_phase =
305
((phase << SE_N_PHASE) / s->output_w + 1) / 2;
306
307
phase = s->input_w;
308
phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
309
s->h_delta_phase = phase / s->output_w;
310
311
/* Same for vertical. */
312
phase = s->input_h;
313
s->v_init_phase =
314
((phase << SE_N_PHASE) / s->output_h + 1) / 2;
315
316
phase = s->input_h;
317
phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
318
s->v_delta_phase = phase / s->output_h;
319
#undef SE_N_PHASE
320
#undef SE_SHIFT_N_PHASE
321
s->plane_src_id = mp->layer->id;
322
}
323
324
s->scale_enable = true;
325
s->hcoeff = malidp_se_select_coeffs(h_upscale_factor);
326
s->vcoeff = malidp_se_select_coeffs(v_upscale_factor);
327
328
mclk_calc:
329
drm_display_mode_to_videomode(&state->adjusted_mode, &vm);
330
ret = hwdev->hw->se_calc_mclk(hwdev, s, &vm);
331
if (ret < 0)
332
return -EINVAL;
333
return 0;
334
}
335
336
static int malidp_crtc_atomic_check(struct drm_crtc *crtc,
337
struct drm_atomic_state *state)
338
{
339
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
340
crtc);
341
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
342
struct malidp_hw_device *hwdev = malidp->dev;
343
struct drm_plane *plane;
344
const struct drm_plane_state *pstate;
345
u32 rot_mem_free, rot_mem_usable;
346
int rotated_planes = 0;
347
int ret;
348
349
/*
350
* check if there is enough rotation memory available for planes
351
* that need 90° and 270° rotion or planes that are compressed.
352
* Each plane has set its required memory size in the ->plane_check()
353
* callback, here we only make sure that the sums are less that the
354
* total usable memory.
355
*
356
* The rotation memory allocation algorithm (for each plane):
357
* a. If no more rotated or compressed planes exist, all remaining
358
* rotate memory in the bank is available for use by the plane.
359
* b. If other rotated or compressed planes exist, and plane's
360
* layer ID is DE_VIDEO1, it can use all the memory from first bank
361
* if secondary rotation memory bank is available, otherwise it can
362
* use up to half the bank's memory.
363
* c. If other rotated or compressed planes exist, and plane's layer ID
364
* is not DE_VIDEO1, it can use half of the available memory.
365
*
366
* Note: this algorithm assumes that the order in which the planes are
367
* checked always has DE_VIDEO1 plane first in the list if it is
368
* rotated. Because that is how we create the planes in the first
369
* place, under current DRM version things work, but if ever the order
370
* in which drm_atomic_crtc_state_for_each_plane() iterates over planes
371
* changes, we need to pre-sort the planes before validation.
372
*/
373
374
/* first count the number of rotated planes */
375
drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
376
struct drm_framebuffer *fb = pstate->fb;
377
378
if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier)
379
rotated_planes++;
380
}
381
382
rot_mem_free = hwdev->rotation_memory[0];
383
/*
384
* if we have more than 1 plane using rotation memory, use the second
385
* block of rotation memory as well
386
*/
387
if (rotated_planes > 1)
388
rot_mem_free += hwdev->rotation_memory[1];
389
390
/* now validate the rotation memory requirements */
391
drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
392
struct malidp_plane *mp = to_malidp_plane(plane);
393
struct malidp_plane_state *ms = to_malidp_plane_state(pstate);
394
struct drm_framebuffer *fb = pstate->fb;
395
396
if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) {
397
/* process current plane */
398
rotated_planes--;
399
400
if (!rotated_planes) {
401
/* no more rotated planes, we can use what's left */
402
rot_mem_usable = rot_mem_free;
403
} else {
404
if ((mp->layer->id != DE_VIDEO1) ||
405
(hwdev->rotation_memory[1] == 0))
406
rot_mem_usable = rot_mem_free / 2;
407
else
408
rot_mem_usable = hwdev->rotation_memory[0];
409
}
410
411
rot_mem_free -= rot_mem_usable;
412
413
if (ms->rotmem_size > rot_mem_usable)
414
return -EINVAL;
415
}
416
}
417
418
/* If only the writeback routing has changed, we don't need a modeset */
419
if (crtc_state->connectors_changed) {
420
u32 old_mask = crtc->state->connector_mask;
421
u32 new_mask = crtc_state->connector_mask;
422
423
if ((old_mask ^ new_mask) ==
424
(1 << drm_connector_index(&malidp->mw_connector.base)))
425
crtc_state->connectors_changed = false;
426
}
427
428
ret = malidp_crtc_atomic_check_gamma(crtc, crtc_state);
429
ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, crtc_state);
430
ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, crtc_state);
431
432
return ret;
433
}
434
435
static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = {
436
.mode_valid = malidp_crtc_mode_valid,
437
.atomic_check = malidp_crtc_atomic_check,
438
.atomic_enable = malidp_crtc_atomic_enable,
439
.atomic_disable = malidp_crtc_atomic_disable,
440
};
441
442
static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc)
443
{
444
struct malidp_crtc_state *state, *old_state;
445
446
if (WARN_ON(!crtc->state))
447
return NULL;
448
449
old_state = to_malidp_crtc_state(crtc->state);
450
state = kmalloc(sizeof(*state), GFP_KERNEL);
451
if (!state)
452
return NULL;
453
454
__drm_atomic_helper_crtc_duplicate_state(crtc, &state->base);
455
memcpy(state->gamma_coeffs, old_state->gamma_coeffs,
456
sizeof(state->gamma_coeffs));
457
memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs,
458
sizeof(state->coloradj_coeffs));
459
memcpy(&state->scaler_config, &old_state->scaler_config,
460
sizeof(state->scaler_config));
461
state->scaled_planes_mask = 0;
462
463
return &state->base;
464
}
465
466
static void malidp_crtc_destroy_state(struct drm_crtc *crtc,
467
struct drm_crtc_state *state)
468
{
469
struct malidp_crtc_state *mali_state = NULL;
470
471
if (state) {
472
mali_state = to_malidp_crtc_state(state);
473
__drm_atomic_helper_crtc_destroy_state(state);
474
}
475
476
kfree(mali_state);
477
}
478
479
static void malidp_crtc_reset(struct drm_crtc *crtc)
480
{
481
struct malidp_crtc_state *state =
482
kzalloc(sizeof(*state), GFP_KERNEL);
483
484
if (crtc->state)
485
malidp_crtc_destroy_state(crtc, crtc->state);
486
487
if (state)
488
__drm_atomic_helper_crtc_reset(crtc, &state->base);
489
else
490
__drm_atomic_helper_crtc_reset(crtc, NULL);
491
}
492
493
static int malidp_crtc_enable_vblank(struct drm_crtc *crtc)
494
{
495
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
496
struct malidp_hw_device *hwdev = malidp->dev;
497
498
malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK,
499
hwdev->hw->map.de_irq_map.vsync_irq);
500
return 0;
501
}
502
503
static void malidp_crtc_disable_vblank(struct drm_crtc *crtc)
504
{
505
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
506
struct malidp_hw_device *hwdev = malidp->dev;
507
508
malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK,
509
hwdev->hw->map.de_irq_map.vsync_irq);
510
}
511
512
static const struct drm_crtc_funcs malidp_crtc_funcs = {
513
.set_config = drm_atomic_helper_set_config,
514
.page_flip = drm_atomic_helper_page_flip,
515
.reset = malidp_crtc_reset,
516
.atomic_duplicate_state = malidp_crtc_duplicate_state,
517
.atomic_destroy_state = malidp_crtc_destroy_state,
518
.enable_vblank = malidp_crtc_enable_vblank,
519
.disable_vblank = malidp_crtc_disable_vblank,
520
};
521
522
int malidp_crtc_init(struct drm_device *drm)
523
{
524
struct malidp_drm *malidp = drm_to_malidp(drm);
525
struct drm_plane *primary = NULL, *plane;
526
int ret;
527
528
ret = malidp_de_planes_init(drm);
529
if (ret < 0) {
530
DRM_ERROR("Failed to initialise planes\n");
531
return ret;
532
}
533
534
drm_for_each_plane(plane, drm) {
535
if (plane->type == DRM_PLANE_TYPE_PRIMARY) {
536
primary = plane;
537
break;
538
}
539
}
540
541
if (!primary) {
542
DRM_ERROR("no primary plane found\n");
543
return -EINVAL;
544
}
545
546
ret = drmm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL,
547
&malidp_crtc_funcs, NULL);
548
if (ret)
549
return ret;
550
551
drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs);
552
drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE);
553
/* No inverse-gamma: it is per-plane. */
554
drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE);
555
556
malidp_se_set_enh_coeffs(malidp->dev);
557
558
return 0;
559
}
560
561