#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/unaligned.h>
#include <drm/display/drm_dp_helper.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_probe_helper.h>
#define FLD_VAL(val, start, end) FIELD_PREP(GENMASK(start, end), val)
#define D0W_DPHYCONTTX 0x0004
#define CLW_DPHYCONTRX 0x0020
#define D0W_DPHYCONTRX 0x0024
#define D1W_DPHYCONTRX 0x0028
#define D2W_DPHYCONTRX 0x002C
#define D3W_DPHYCONTRX 0x0030
#define COM_DPHYCONTRX 0x0038
#define CLW_CNTRL 0x0040
#define D0W_CNTRL 0x0044
#define D1W_CNTRL 0x0048
#define D2W_CNTRL 0x004C
#define D3W_CNTRL 0x0050
#define DFTMODE_CNTRL 0x0054
#define PPI_STARTPPI 0x0104
#define PPI_START_FUNCTION 1
#define PPI_BUSYPPI 0x0108
#define PPI_LINEINITCNT 0x0110
#define PPI_LPTXTIMECNT 0x0114
#define PPI_LANEENABLE 0x0134
#define PPI_TX_RX_TA 0x013C
#define PPI_CLS_ATMR 0x0140
#define PPI_D0S_ATMR 0x0144
#define PPI_D1S_ATMR 0x0148
#define PPI_D2S_ATMR 0x014C
#define PPI_D3S_ATMR 0x0150
#define PPI_D0S_CLRSIPOCOUNT 0x0164
#define PPI_D1S_CLRSIPOCOUNT 0x0168
#define PPI_D2S_CLRSIPOCOUNT 0x016C
#define PPI_D3S_CLRSIPOCOUNT 0x0170
#define CLS_PRE 0x0180
#define D0S_PRE 0x0184
#define D1S_PRE 0x0188
#define D2S_PRE 0x018C
#define D3S_PRE 0x0190
#define CLS_PREP 0x01A0
#define D0S_PREP 0x01A4
#define D1S_PREP 0x01A8
#define D2S_PREP 0x01AC
#define D3S_PREP 0x01B0
#define CLS_ZERO 0x01C0
#define D0S_ZERO 0x01C4
#define D1S_ZERO 0x01C8
#define D2S_ZERO 0x01CC
#define D3S_ZERO 0x01D0
#define PPI_CLRFLG 0x01E0
#define PPI_CLRSIPO 0x01E4
#define HSTIMEOUT 0x01F0
#define HSTIMEOUTENABLE 0x01F4
#define DSI_STARTDSI 0x0204
#define DSI_RX_START 1
#define DSI_BUSYDSI 0x0208
#define DSI_LANEENABLE 0x0210
#define DSI_LANESTATUS0 0x0214
#define DSI_LANESTATUS1 0x0218
#define DSI_INTSTATUS 0x0220
#define DSI_INTMASK 0x0224
#define DSI_INTCLR 0x0228
#define DSI_LPTXTO 0x0230
#define DSIERRCNT 0x0300
#define APLCTRL 0x0400
#define RDPKTLN 0x0404
#define VPCTRL 0x0450
#define EVTMODE BIT(5)
#define HTIM1 0x0454
#define HTIM2 0x0458
#define VTIM1 0x045C
#define VTIM2 0x0460
#define VFUEN 0x0464
#define VFUEN_EN BIT(0)
#define LV_MX0003 0x0480
#define LV_MX0407 0x0484
#define LV_MX0811 0x0488
#define LV_MX1215 0x048C
#define LV_MX1619 0x0490
#define LV_MX2023 0x0494
#define LV_MX2427 0x0498
#define LV_MX(b0, b1, b2, b3) (FLD_VAL(b0, 4, 0) | FLD_VAL(b1, 12, 8) | \
FLD_VAL(b2, 20, 16) | FLD_VAL(b3, 28, 24))
enum {
LVI_R0,
LVI_R1,
LVI_R2,
LVI_R3,
LVI_R4,
LVI_R5,
LVI_R6,
LVI_R7,
LVI_G0,
LVI_G1,
LVI_G2,
LVI_G3,
LVI_G4,
LVI_G5,
LVI_G6,
LVI_G7,
LVI_B0,
LVI_B1,
LVI_B2,
LVI_B3,
LVI_B4,
LVI_B5,
LVI_B6,
LVI_B7,
LVI_HS,
LVI_VS,
LVI_DE,
LVI_L0
};
#define LVCFG 0x049C
#define LVPHY0 0x04A0
#define LV_PHY0_RST(v) FLD_VAL(v, 22, 22)
#define LV_PHY0_IS(v) FLD_VAL(v, 15, 14)
#define LV_PHY0_ND(v) FLD_VAL(v, 4, 0)
#define LV_PHY0_PRBS_ON(v) FLD_VAL(v, 20, 16)
#define LVPHY1 0x04A4
#define SYSSTAT 0x0500
#define SYSRST 0x0504
#define SYS_RST_I2CS BIT(0)
#define SYS_RST_I2CM BIT(1)
#define SYS_RST_LCD BIT(2)
#define SYS_RST_BM BIT(3)
#define SYS_RST_DSIRX BIT(4)
#define SYS_RST_REG BIT(5)
#define GPIOC 0x0520
#define GPIOO 0x0524
#define GPIOI 0x0528
#define I2CTIMCTRL 0x0540
#define I2CMADDR 0x0544
#define WDATAQ 0x0548
#define RDATAQ 0x054C
#define IDREG 0x0580
#define LPX_PERIOD 4
#define TTA_GET 0x40000
#define TTA_SURE 6
#define SINGLE_LINK 1
#define DUAL_LINK 2
#define TC358775XBG_ID 0x00007500
#define DEBUG00 0x05A0
#define DEBUG01 0x05A4
#define DSI_CLEN_BIT BIT(0)
#define DIVIDE_BY_3 3
#define DIVIDE_BY_6 6
#define LVCFG_LVEN_BIT BIT(0)
#define L0EN BIT(1)
#define TC358775_VPCTRL_VSDELAY__MASK 0x3FF00000
#define TC358775_VPCTRL_VSDELAY__SHIFT 20
static inline u32 TC358775_VPCTRL_VSDELAY(uint32_t val)
{
return ((val) << TC358775_VPCTRL_VSDELAY__SHIFT) &
TC358775_VPCTRL_VSDELAY__MASK;
}
#define TC358775_VPCTRL_OPXLFMT__MASK 0x00000100
#define TC358775_VPCTRL_OPXLFMT__SHIFT 8
static inline u32 TC358775_VPCTRL_OPXLFMT(uint32_t val)
{
return ((val) << TC358775_VPCTRL_OPXLFMT__SHIFT) &
TC358775_VPCTRL_OPXLFMT__MASK;
}
#define TC358775_VPCTRL_MSF__MASK 0x00000001
#define TC358775_VPCTRL_MSF__SHIFT 0
static inline u32 TC358775_VPCTRL_MSF(uint32_t val)
{
return ((val) << TC358775_VPCTRL_MSF__SHIFT) &
TC358775_VPCTRL_MSF__MASK;
}
#define TC358775_LVCFG_PCLKDIV__MASK 0x000000f0
#define TC358775_LVCFG_PCLKDIV__SHIFT 4
static inline u32 TC358775_LVCFG_PCLKDIV(uint32_t val)
{
return ((val) << TC358775_LVCFG_PCLKDIV__SHIFT) &
TC358775_LVCFG_PCLKDIV__MASK;
}
#define TC358775_LVCFG_LVDLINK__MASK 0x00000002
#define TC358775_LVCFG_LVDLINK__SHIFT 1
static inline u32 TC358775_LVCFG_LVDLINK(uint32_t val)
{
return ((val) << TC358775_LVCFG_LVDLINK__SHIFT) &
TC358775_LVCFG_LVDLINK__MASK;
}
enum tc358775_ports {
TC358775_DSI_IN,
TC358775_LVDS_OUT0,
TC358775_LVDS_OUT1,
};
enum tc3587x5_type {
TC358765 = 0x65,
TC358775 = 0x75,
};
struct tc_data {
struct i2c_client *i2c;
struct device *dev;
struct drm_bridge bridge;
struct drm_bridge *panel_bridge;
struct device_node *host_node;
struct mipi_dsi_device *dsi;
u8 num_dsi_lanes;
struct regulator *vdd;
struct regulator *vddio;
struct gpio_desc *reset_gpio;
struct gpio_desc *stby_gpio;
u8 lvds_link;
u8 bpc;
enum tc3587x5_type type;
};
static inline struct tc_data *bridge_to_tc(struct drm_bridge *b)
{
return container_of(b, struct tc_data, bridge);
}
static void tc_bridge_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_atomic_state *state)
{
struct tc_data *tc = bridge_to_tc(bridge);
struct device *dev = &tc->dsi->dev;
int ret;
ret = regulator_enable(tc->vddio);
if (ret < 0)
dev_err(dev, "regulator vddio enable failed, %d\n", ret);
usleep_range(10000, 11000);
ret = regulator_enable(tc->vdd);
if (ret < 0)
dev_err(dev, "regulator vdd enable failed, %d\n", ret);
usleep_range(10000, 11000);
gpiod_set_value(tc->stby_gpio, 0);
usleep_range(10000, 11000);
gpiod_set_value(tc->reset_gpio, 0);
usleep_range(10, 20);
}
static void tc_bridge_atomic_post_disable(struct drm_bridge *bridge,
struct drm_atomic_state *state)
{
struct tc_data *tc = bridge_to_tc(bridge);
struct device *dev = &tc->dsi->dev;
int ret;
gpiod_set_value(tc->reset_gpio, 1);
usleep_range(10, 20);
gpiod_set_value(tc->stby_gpio, 1);
usleep_range(10000, 11000);
ret = regulator_disable(tc->vdd);
if (ret < 0)
dev_err(dev, "regulator vdd disable failed, %d\n", ret);
usleep_range(10000, 11000);
ret = regulator_disable(tc->vddio);
if (ret < 0)
dev_err(dev, "regulator vddio disable failed, %d\n", ret);
usleep_range(10000, 11000);
}
static void d2l_read(struct i2c_client *i2c, u16 addr, u32 *val)
{
int ret;
u8 buf_addr[2];
put_unaligned_be16(addr, buf_addr);
ret = i2c_master_send(i2c, buf_addr, sizeof(buf_addr));
if (ret < 0)
goto fail;
ret = i2c_master_recv(i2c, (u8 *)val, sizeof(*val));
if (ret < 0)
goto fail;
pr_debug("d2l: I2C : addr:%04x value:%08x\n", addr, *val);
return;
fail:
dev_err(&i2c->dev, "Error %d reading from subaddress 0x%x\n",
ret, addr);
}
static void d2l_write(struct i2c_client *i2c, u16 addr, u32 val)
{
u8 data[6];
int ret;
put_unaligned_be16(addr, data);
put_unaligned_le32(val, data + 2);
ret = i2c_master_send(i2c, data, ARRAY_SIZE(data));
if (ret < 0)
dev_err(&i2c->dev, "Error %d writing to subaddress 0x%x\n",
ret, addr);
}
static void tc_bridge_atomic_enable(struct drm_bridge *bridge,
struct drm_atomic_state *state)
{
struct tc_data *tc = bridge_to_tc(bridge);
u32 hback_porch, hsync_len, hfront_porch, hactive, htime1, htime2;
u32 vback_porch, vsync_len, vfront_porch, vactive, vtime1, vtime2;
u32 val = 0;
u16 dsiclk, clkdiv, byteclk, t1, t2, t3, vsdelay;
struct drm_connector *connector =
drm_atomic_get_new_connector_for_encoder(state, bridge->encoder);
struct drm_connector_state *conn_state =
drm_atomic_get_new_connector_state(state, connector);
struct drm_crtc_state *crtc_state =
drm_atomic_get_new_crtc_state(state, conn_state->crtc);
struct drm_display_mode *mode = &crtc_state->adjusted_mode;
hback_porch = mode->htotal - mode->hsync_end;
hsync_len = mode->hsync_end - mode->hsync_start;
vback_porch = mode->vtotal - mode->vsync_end;
vsync_len = mode->vsync_end - mode->vsync_start;
htime1 = (hback_porch << 16) + hsync_len;
vtime1 = (vback_porch << 16) + vsync_len;
hfront_porch = mode->hsync_start - mode->hdisplay;
hactive = mode->hdisplay;
vfront_porch = mode->vsync_start - mode->vdisplay;
vactive = mode->vdisplay;
htime2 = (hfront_porch << 16) + hactive;
vtime2 = (vfront_porch << 16) + vactive;
d2l_read(tc->i2c, IDREG, &val);
dev_info(tc->dev, "DSI2LVDS Chip ID.%02x Revision ID. %02x **\n",
(val >> 8) & 0xFF, val & 0xFF);
d2l_write(tc->i2c, SYSRST, SYS_RST_REG | SYS_RST_DSIRX | SYS_RST_BM |
SYS_RST_LCD | SYS_RST_I2CM);
usleep_range(30000, 40000);
d2l_write(tc->i2c, PPI_TX_RX_TA, TTA_GET | TTA_SURE);
d2l_write(tc->i2c, PPI_LPTXTIMECNT, LPX_PERIOD);
d2l_write(tc->i2c, PPI_D0S_CLRSIPOCOUNT, 3);
d2l_write(tc->i2c, PPI_D1S_CLRSIPOCOUNT, 3);
d2l_write(tc->i2c, PPI_D2S_CLRSIPOCOUNT, 3);
d2l_write(tc->i2c, PPI_D3S_CLRSIPOCOUNT, 3);
val = ((L0EN << tc->num_dsi_lanes) - L0EN) | DSI_CLEN_BIT;
d2l_write(tc->i2c, PPI_LANEENABLE, val);
d2l_write(tc->i2c, DSI_LANEENABLE, val);
d2l_write(tc->i2c, PPI_STARTPPI, PPI_START_FUNCTION);
d2l_write(tc->i2c, DSI_STARTDSI, DSI_RX_START);
if (tc->type == TC358765)
val = EVTMODE;
else
val = 0;
if (tc->bpc == 8)
val |= TC358775_VPCTRL_OPXLFMT(1);
else
val |= TC358775_VPCTRL_MSF(1);
dsiclk = mode->crtc_clock * 3 * tc->bpc / tc->num_dsi_lanes / 1000;
clkdiv = dsiclk / (tc->lvds_link == DUAL_LINK ? DIVIDE_BY_6 : DIVIDE_BY_3);
byteclk = dsiclk / 4;
t1 = hactive * (tc->bpc * 3 / 8) / tc->num_dsi_lanes;
t2 = ((100000 / clkdiv)) * (hactive + hback_porch + hsync_len + hfront_porch) / 1000;
t3 = ((t2 * byteclk) / 100) - (hactive * (tc->bpc * 3 / 8) /
tc->num_dsi_lanes);
vsdelay = (clkdiv * (t1 + t3) / byteclk) - hback_porch - hsync_len - hactive;
val |= TC358775_VPCTRL_VSDELAY(vsdelay);
d2l_write(tc->i2c, VPCTRL, val);
d2l_write(tc->i2c, HTIM1, htime1);
d2l_write(tc->i2c, VTIM1, vtime1);
d2l_write(tc->i2c, HTIM2, htime2);
d2l_write(tc->i2c, VTIM2, vtime2);
d2l_write(tc->i2c, VFUEN, VFUEN_EN);
d2l_write(tc->i2c, SYSRST, SYS_RST_LCD);
d2l_write(tc->i2c, LVPHY0, LV_PHY0_PRBS_ON(4) | LV_PHY0_ND(6));
dev_dbg(tc->dev, "bus_formats %04x bpc %d\n",
connector->display_info.bus_formats[0],
tc->bpc);
if (connector->display_info.bus_formats[0] ==
MEDIA_BUS_FMT_RGB888_1X7X4_SPWG) {
d2l_write(tc->i2c, LV_MX0003, LV_MX(LVI_R0, LVI_R1, LVI_R2, LVI_R3));
d2l_write(tc->i2c, LV_MX0407, LV_MX(LVI_R4, LVI_R7, LVI_R5, LVI_G0));
d2l_write(tc->i2c, LV_MX0811, LV_MX(LVI_G1, LVI_G2, LVI_G6, LVI_G7));
d2l_write(tc->i2c, LV_MX1215, LV_MX(LVI_G3, LVI_G4, LVI_G5, LVI_B0));
d2l_write(tc->i2c, LV_MX1619, LV_MX(LVI_B6, LVI_B7, LVI_B1, LVI_B2));
d2l_write(tc->i2c, LV_MX2023, LV_MX(LVI_B3, LVI_B4, LVI_B5, LVI_L0));
d2l_write(tc->i2c, LV_MX2427, LV_MX(LVI_HS, LVI_VS, LVI_DE, LVI_R6));
} else {
d2l_write(tc->i2c, LV_MX0003, LV_MX(LVI_R2, LVI_R3, LVI_R4, LVI_R5));
d2l_write(tc->i2c, LV_MX0407, LV_MX(LVI_R6, LVI_R1, LVI_R7, LVI_G2));
d2l_write(tc->i2c, LV_MX0811, LV_MX(LVI_G3, LVI_G4, LVI_G0, LVI_G1));
d2l_write(tc->i2c, LV_MX1215, LV_MX(LVI_G5, LVI_G6, LVI_G7, LVI_B2));
d2l_write(tc->i2c, LV_MX1619, LV_MX(LVI_B0, LVI_B1, LVI_B3, LVI_B4));
d2l_write(tc->i2c, LV_MX2023, LV_MX(LVI_B5, LVI_B6, LVI_B7, LVI_L0));
d2l_write(tc->i2c, LV_MX2427, LV_MX(LVI_HS, LVI_VS, LVI_DE, LVI_R0));
}
d2l_write(tc->i2c, VFUEN, VFUEN_EN);
val = LVCFG_LVEN_BIT;
if (tc->lvds_link == DUAL_LINK) {
val |= TC358775_LVCFG_LVDLINK(1);
val |= TC358775_LVCFG_PCLKDIV(DIVIDE_BY_6);
} else {
val |= TC358775_LVCFG_PCLKDIV(DIVIDE_BY_3);
}
d2l_write(tc->i2c, LVCFG, val);
}
static enum drm_mode_status
tc_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct tc_data *tc = bridge_to_tc(bridge);
if ((mode->clock > 135000 && tc->lvds_link == SINGLE_LINK) ||
(mode->clock > 270000 && tc->lvds_link == DUAL_LINK))
return MODE_CLOCK_HIGH;
switch (info->bus_formats[0]) {
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
tc->bpc = 8;
break;
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
tc->bpc = 6;
break;
default:
dev_warn(tc->dev,
"unsupported LVDS bus format 0x%04x\n",
info->bus_formats[0]);
return MODE_NOMODE;
}
return MODE_OK;
}
static int tc358775_parse_dt(struct device_node *np, struct tc_data *tc)
{
struct device_node *endpoint;
struct device_node *remote;
int dsi_lanes = -1;
endpoint = of_graph_get_endpoint_by_regs(tc->dev->of_node,
TC358775_DSI_IN, -1);
dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4);
if (dsi_lanes == -EINVAL || dsi_lanes == -ENODEV) {
remote = of_graph_get_remote_endpoint(endpoint);
dsi_lanes = drm_of_get_data_lanes_count(remote, 1, 4);
of_node_put(remote);
if (dsi_lanes >= 1)
dev_warn(tc->dev, "no dsi-lanes for the bridge, using host lanes\n");
}
of_node_put(endpoint);
if (dsi_lanes < 0)
return dsi_lanes;
tc->num_dsi_lanes = dsi_lanes;
tc->host_node = of_graph_get_remote_node(np, 0, 0);
if (!tc->host_node)
return -ENODEV;
of_node_put(tc->host_node);
tc->lvds_link = SINGLE_LINK;
endpoint = of_graph_get_endpoint_by_regs(tc->dev->of_node,
TC358775_LVDS_OUT1, -1);
if (endpoint) {
remote = of_graph_get_remote_port_parent(endpoint);
of_node_put(endpoint);
if (remote) {
if (of_device_is_available(remote))
tc->lvds_link = DUAL_LINK;
of_node_put(remote);
}
}
dev_dbg(tc->dev, "no.of dsi lanes: %d\n", tc->num_dsi_lanes);
dev_dbg(tc->dev, "operating in %d-link mode\n", tc->lvds_link);
return 0;
}
static int tc_bridge_attach(struct drm_bridge *bridge,
struct drm_encoder *encoder,
enum drm_bridge_attach_flags flags)
{
struct tc_data *tc = bridge_to_tc(bridge);
return drm_bridge_attach(encoder, tc->panel_bridge,
&tc->bridge, flags);
}
static const struct drm_bridge_funcs tc_bridge_funcs = {
.attach = tc_bridge_attach,
.atomic_pre_enable = tc_bridge_atomic_pre_enable,
.atomic_enable = tc_bridge_atomic_enable,
.mode_valid = tc_mode_valid,
.atomic_post_disable = tc_bridge_atomic_post_disable,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
};
static int tc_attach_host(struct tc_data *tc)
{
struct device *dev = &tc->i2c->dev;
struct mipi_dsi_host *host;
struct mipi_dsi_device *dsi;
int ret;
const struct mipi_dsi_device_info info = { .type = "tc358775",
.channel = 0,
.node = NULL,
};
host = of_find_mipi_dsi_host_by_node(tc->host_node);
if (!host)
return dev_err_probe(dev, -EPROBE_DEFER, "failed to find dsi host\n");
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi)) {
dev_err(dev, "failed to create dsi device\n");
return PTR_ERR(dsi);
}
tc->dsi = dsi;
dsi->lanes = tc->num_dsi_lanes;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
MIPI_DSI_MODE_LPM;
if (tc->type == TC358765)
dsi->hs_rate = 800000000;
else
dsi->hs_rate = 1000000000;
dsi->lp_rate = 10000000;
ret = devm_mipi_dsi_attach(dev, dsi);
if (ret < 0) {
dev_err(dev, "failed to attach dsi to host\n");
return ret;
}
return 0;
}
static int tc_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct tc_data *tc;
int ret;
tc = devm_drm_bridge_alloc(dev, struct tc_data, bridge,
&tc_bridge_funcs);
if (IS_ERR(tc))
return PTR_ERR(tc);
tc->dev = dev;
tc->i2c = client;
tc->type = (enum tc3587x5_type)(unsigned long)of_device_get_match_data(dev);
tc->panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node,
TC358775_LVDS_OUT0, 0);
if (IS_ERR(tc->panel_bridge))
return PTR_ERR(tc->panel_bridge);
ret = tc358775_parse_dt(dev->of_node, tc);
if (ret)
return ret;
tc->vddio = devm_regulator_get(dev, "vddio-supply");
if (IS_ERR(tc->vddio)) {
ret = PTR_ERR(tc->vddio);
dev_err(dev, "vddio-supply not found\n");
return ret;
}
tc->vdd = devm_regulator_get(dev, "vdd-supply");
if (IS_ERR(tc->vdd)) {
ret = PTR_ERR(tc->vdd);
dev_err(dev, "vdd-supply not found\n");
return ret;
}
tc->stby_gpio = devm_gpiod_get_optional(dev, "stby", GPIOD_OUT_HIGH);
if (IS_ERR(tc->stby_gpio))
return PTR_ERR(tc->stby_gpio);
tc->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(tc->reset_gpio)) {
ret = PTR_ERR(tc->reset_gpio);
dev_err(dev, "cannot get reset-gpios %d\n", ret);
return ret;
}
tc->bridge.of_node = dev->of_node;
tc->bridge.pre_enable_prev_first = true;
drm_bridge_add(&tc->bridge);
i2c_set_clientdata(client, tc);
ret = tc_attach_host(tc);
if (ret)
goto err_bridge_remove;
return 0;
err_bridge_remove:
drm_bridge_remove(&tc->bridge);
return ret;
}
static void tc_remove(struct i2c_client *client)
{
struct tc_data *tc = i2c_get_clientdata(client);
drm_bridge_remove(&tc->bridge);
}
static const struct i2c_device_id tc358775_i2c_ids[] = {
{ "tc358765", TC358765, },
{ "tc358775", TC358775, },
{ }
};
MODULE_DEVICE_TABLE(i2c, tc358775_i2c_ids);
static const struct of_device_id tc358775_of_ids[] = {
{ .compatible = "toshiba,tc358765", .data = (void *)TC358765, },
{ .compatible = "toshiba,tc358775", .data = (void *)TC358775, },
{ }
};
MODULE_DEVICE_TABLE(of, tc358775_of_ids);
static struct i2c_driver tc358775_driver = {
.driver = {
.name = "tc358775",
.of_match_table = tc358775_of_ids,
},
.id_table = tc358775_i2c_ids,
.probe = tc_probe,
.remove = tc_remove,
};
module_i2c_driver(tc358775_driver);
MODULE_AUTHOR("Vinay Simha BN <[email protected]>");
MODULE_DESCRIPTION("TC358775 DSI/LVDS bridge driver");
MODULE_LICENSE("GPL v2");