Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/gpu/drm/bridge/ti-sn65dsi83.c
26494 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* TI SN65DSI83,84,85 driver
4
*
5
* Currently supported:
6
* - SN65DSI83
7
* = 1x Single-link DSI ~ 1x Single-link LVDS
8
* - Supported
9
* - Single-link LVDS mode tested
10
* - SN65DSI84
11
* = 1x Single-link DSI ~ 2x Single-link or 1x Dual-link LVDS
12
* - Supported
13
* - Dual-link LVDS mode tested
14
* - 2x Single-link LVDS mode unsupported
15
* (should be easy to add by someone who has the HW)
16
* - SN65DSI85
17
* = 2x Single-link or 1x Dual-link DSI ~ 2x Single-link or 1x Dual-link LVDS
18
* - Unsupported
19
* (should be easy to add by someone who has the HW)
20
*
21
* Copyright (C) 2021 Marek Vasut <[email protected]>
22
*
23
* Based on previous work of:
24
* Valentin Raevsky <[email protected]>
25
* Philippe Schenker <[email protected]>
26
*/
27
28
#include <linux/bits.h>
29
#include <linux/clk.h>
30
#include <linux/gpio/consumer.h>
31
#include <linux/i2c.h>
32
#include <linux/media-bus-format.h>
33
#include <linux/module.h>
34
#include <linux/of.h>
35
#include <linux/of_graph.h>
36
#include <linux/regmap.h>
37
#include <linux/regulator/consumer.h>
38
#include <linux/timer.h>
39
#include <linux/workqueue.h>
40
41
#include <drm/drm_atomic_helper.h>
42
#include <drm/drm_bridge.h>
43
#include <drm/drm_bridge_helper.h>
44
#include <drm/drm_mipi_dsi.h>
45
#include <drm/drm_of.h>
46
#include <drm/drm_print.h>
47
#include <drm/drm_probe_helper.h>
48
49
/* ID registers */
50
#define REG_ID(n) (0x00 + (n))
51
/* Reset and clock registers */
52
#define REG_RC_RESET 0x09
53
#define REG_RC_RESET_SOFT_RESET BIT(0)
54
#define REG_RC_LVDS_PLL 0x0a
55
#define REG_RC_LVDS_PLL_PLL_EN_STAT BIT(7)
56
#define REG_RC_LVDS_PLL_LVDS_CLK_RANGE(n) (((n) & 0x7) << 1)
57
#define REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY BIT(0)
58
#define REG_RC_DSI_CLK 0x0b
59
#define REG_RC_DSI_CLK_DSI_CLK_DIVIDER(n) (((n) & 0x1f) << 3)
60
#define REG_RC_DSI_CLK_REFCLK_MULTIPLIER(n) ((n) & 0x3)
61
#define REG_RC_PLL_EN 0x0d
62
#define REG_RC_PLL_EN_PLL_EN BIT(0)
63
/* DSI registers */
64
#define REG_DSI_LANE 0x10
65
#define REG_DSI_LANE_LEFT_RIGHT_PIXELS BIT(7) /* DSI85-only */
66
#define REG_DSI_LANE_DSI_CHANNEL_MODE_DUAL 0 /* DSI85-only */
67
#define REG_DSI_LANE_DSI_CHANNEL_MODE_2SINGLE BIT(6) /* DSI85-only */
68
#define REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE BIT(5)
69
#define REG_DSI_LANE_CHA_DSI_LANES(n) (((n) & 0x3) << 3)
70
#define REG_DSI_LANE_CHB_DSI_LANES(n) (((n) & 0x3) << 1)
71
#define REG_DSI_LANE_SOT_ERR_TOL_DIS BIT(0)
72
#define REG_DSI_EQ 0x11
73
#define REG_DSI_EQ_CHA_DSI_DATA_EQ(n) (((n) & 0x3) << 6)
74
#define REG_DSI_EQ_CHA_DSI_CLK_EQ(n) (((n) & 0x3) << 2)
75
#define REG_DSI_CLK 0x12
76
#define REG_DSI_CLK_CHA_DSI_CLK_RANGE(n) ((n) & 0xff)
77
/* LVDS registers */
78
#define REG_LVDS_FMT 0x18
79
#define REG_LVDS_FMT_DE_NEG_POLARITY BIT(7)
80
#define REG_LVDS_FMT_HS_NEG_POLARITY BIT(6)
81
#define REG_LVDS_FMT_VS_NEG_POLARITY BIT(5)
82
#define REG_LVDS_FMT_LVDS_LINK_CFG BIT(4) /* 0:AB 1:A-only */
83
#define REG_LVDS_FMT_CHA_24BPP_MODE BIT(3)
84
#define REG_LVDS_FMT_CHB_24BPP_MODE BIT(2)
85
#define REG_LVDS_FMT_CHA_24BPP_FORMAT1 BIT(1)
86
#define REG_LVDS_FMT_CHB_24BPP_FORMAT1 BIT(0)
87
#define REG_LVDS_VCOM 0x19
88
#define REG_LVDS_VCOM_CHA_LVDS_VOCM BIT(6)
89
#define REG_LVDS_VCOM_CHB_LVDS_VOCM BIT(4)
90
#define REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(n) (((n) & 0x3) << 2)
91
#define REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(n) ((n) & 0x3)
92
#define REG_LVDS_LANE 0x1a
93
#define REG_LVDS_LANE_EVEN_ODD_SWAP BIT(6)
94
#define REG_LVDS_LANE_CHA_REVERSE_LVDS BIT(5)
95
#define REG_LVDS_LANE_CHB_REVERSE_LVDS BIT(4)
96
#define REG_LVDS_LANE_CHA_LVDS_TERM BIT(1)
97
#define REG_LVDS_LANE_CHB_LVDS_TERM BIT(0)
98
#define REG_LVDS_CM 0x1b
99
#define REG_LVDS_CM_CHA_LVDS_CM_ADJUST(n) (((n) & 0x3) << 4)
100
#define REG_LVDS_CM_CHB_LVDS_CM_ADJUST(n) ((n) & 0x3)
101
/* Video registers */
102
#define REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW 0x20
103
#define REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH 0x21
104
#define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW 0x24
105
#define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH 0x25
106
#define REG_VID_CHA_SYNC_DELAY_LOW 0x28
107
#define REG_VID_CHA_SYNC_DELAY_HIGH 0x29
108
#define REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW 0x2c
109
#define REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH 0x2d
110
#define REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW 0x30
111
#define REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH 0x31
112
#define REG_VID_CHA_HORIZONTAL_BACK_PORCH 0x34
113
#define REG_VID_CHA_VERTICAL_BACK_PORCH 0x36
114
#define REG_VID_CHA_HORIZONTAL_FRONT_PORCH 0x38
115
#define REG_VID_CHA_VERTICAL_FRONT_PORCH 0x3a
116
#define REG_VID_CHA_TEST_PATTERN 0x3c
117
/* IRQ registers */
118
#define REG_IRQ_GLOBAL 0xe0
119
#define REG_IRQ_GLOBAL_IRQ_EN BIT(0)
120
#define REG_IRQ_EN 0xe1
121
#define REG_IRQ_EN_CHA_SYNCH_ERR_EN BIT(7)
122
#define REG_IRQ_EN_CHA_CRC_ERR_EN BIT(6)
123
#define REG_IRQ_EN_CHA_UNC_ECC_ERR_EN BIT(5)
124
#define REG_IRQ_EN_CHA_COR_ECC_ERR_EN BIT(4)
125
#define REG_IRQ_EN_CHA_LLP_ERR_EN BIT(3)
126
#define REG_IRQ_EN_CHA_SOT_BIT_ERR_EN BIT(2)
127
#define REG_IRQ_EN_CHA_PLL_UNLOCK_EN BIT(0)
128
#define REG_IRQ_STAT 0xe5
129
#define REG_IRQ_STAT_CHA_SYNCH_ERR BIT(7)
130
#define REG_IRQ_STAT_CHA_CRC_ERR BIT(6)
131
#define REG_IRQ_STAT_CHA_UNC_ECC_ERR BIT(5)
132
#define REG_IRQ_STAT_CHA_COR_ECC_ERR BIT(4)
133
#define REG_IRQ_STAT_CHA_LLP_ERR BIT(3)
134
#define REG_IRQ_STAT_CHA_SOT_BIT_ERR BIT(2)
135
#define REG_IRQ_STAT_CHA_PLL_UNLOCK BIT(0)
136
137
enum sn65dsi83_channel {
138
CHANNEL_A,
139
CHANNEL_B
140
};
141
142
enum sn65dsi83_lvds_term {
143
OHM_100,
144
OHM_200
145
};
146
147
enum sn65dsi83_model {
148
MODEL_SN65DSI83,
149
MODEL_SN65DSI84,
150
};
151
152
struct sn65dsi83 {
153
struct drm_bridge bridge;
154
struct device *dev;
155
struct regmap *regmap;
156
struct mipi_dsi_device *dsi;
157
struct drm_bridge *panel_bridge;
158
struct gpio_desc *enable_gpio;
159
struct regulator *vcc;
160
bool lvds_dual_link;
161
bool lvds_dual_link_even_odd_swap;
162
int lvds_vod_swing_conf[2];
163
int lvds_term_conf[2];
164
int irq;
165
struct delayed_work monitor_work;
166
struct work_struct reset_work;
167
};
168
169
static const struct regmap_range sn65dsi83_readable_ranges[] = {
170
regmap_reg_range(REG_ID(0), REG_ID(8)),
171
regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_DSI_CLK),
172
regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
173
regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
174
regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
175
regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
176
REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
177
regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
178
REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
179
regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
180
REG_VID_CHA_SYNC_DELAY_HIGH),
181
regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
182
REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
183
regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
184
REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
185
regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
186
REG_VID_CHA_HORIZONTAL_BACK_PORCH),
187
regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
188
REG_VID_CHA_VERTICAL_BACK_PORCH),
189
regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
190
REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
191
regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
192
REG_VID_CHA_VERTICAL_FRONT_PORCH),
193
regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
194
regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
195
regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
196
};
197
198
static const struct regmap_access_table sn65dsi83_readable_table = {
199
.yes_ranges = sn65dsi83_readable_ranges,
200
.n_yes_ranges = ARRAY_SIZE(sn65dsi83_readable_ranges),
201
};
202
203
static const struct regmap_range sn65dsi83_writeable_ranges[] = {
204
regmap_reg_range(REG_RC_RESET, REG_RC_DSI_CLK),
205
regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
206
regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
207
regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
208
regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
209
REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
210
regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
211
REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
212
regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
213
REG_VID_CHA_SYNC_DELAY_HIGH),
214
regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
215
REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
216
regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
217
REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
218
regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
219
REG_VID_CHA_HORIZONTAL_BACK_PORCH),
220
regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
221
REG_VID_CHA_VERTICAL_BACK_PORCH),
222
regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
223
REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
224
regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
225
REG_VID_CHA_VERTICAL_FRONT_PORCH),
226
regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
227
regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
228
regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
229
};
230
231
static const struct regmap_access_table sn65dsi83_writeable_table = {
232
.yes_ranges = sn65dsi83_writeable_ranges,
233
.n_yes_ranges = ARRAY_SIZE(sn65dsi83_writeable_ranges),
234
};
235
236
static const struct regmap_range sn65dsi83_volatile_ranges[] = {
237
regmap_reg_range(REG_RC_RESET, REG_RC_RESET),
238
regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_LVDS_PLL),
239
regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
240
};
241
242
static const struct regmap_access_table sn65dsi83_volatile_table = {
243
.yes_ranges = sn65dsi83_volatile_ranges,
244
.n_yes_ranges = ARRAY_SIZE(sn65dsi83_volatile_ranges),
245
};
246
247
static const struct regmap_config sn65dsi83_regmap_config = {
248
.reg_bits = 8,
249
.val_bits = 8,
250
.rd_table = &sn65dsi83_readable_table,
251
.wr_table = &sn65dsi83_writeable_table,
252
.volatile_table = &sn65dsi83_volatile_table,
253
.cache_type = REGCACHE_MAPLE,
254
.max_register = REG_IRQ_STAT,
255
};
256
257
static const int lvds_vod_swing_data_table[2][4][2] = {
258
{ /* 100 Ohm */
259
{ 180000, 313000 },
260
{ 215000, 372000 },
261
{ 250000, 430000 },
262
{ 290000, 488000 },
263
},
264
{ /* 200 Ohm */
265
{ 150000, 261000 },
266
{ 200000, 346000 },
267
{ 250000, 428000 },
268
{ 300000, 511000 },
269
},
270
};
271
272
static const int lvds_vod_swing_clock_table[2][4][2] = {
273
{ /* 100 Ohm */
274
{ 140000, 244000 },
275
{ 168000, 290000 },
276
{ 195000, 335000 },
277
{ 226000, 381000 },
278
},
279
{ /* 200 Ohm */
280
{ 117000, 204000 },
281
{ 156000, 270000 },
282
{ 195000, 334000 },
283
{ 234000, 399000 },
284
},
285
};
286
287
static struct sn65dsi83 *bridge_to_sn65dsi83(struct drm_bridge *bridge)
288
{
289
return container_of(bridge, struct sn65dsi83, bridge);
290
}
291
292
static int sn65dsi83_attach(struct drm_bridge *bridge,
293
struct drm_encoder *encoder,
294
enum drm_bridge_attach_flags flags)
295
{
296
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
297
298
return drm_bridge_attach(encoder, ctx->panel_bridge,
299
&ctx->bridge, flags);
300
}
301
302
static void sn65dsi83_detach(struct drm_bridge *bridge)
303
{
304
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
305
306
if (!ctx->dsi)
307
return;
308
309
ctx->dsi = NULL;
310
}
311
312
static u8 sn65dsi83_get_lvds_range(struct sn65dsi83 *ctx,
313
const struct drm_display_mode *mode)
314
{
315
/*
316
* The encoding of the LVDS_CLK_RANGE is as follows:
317
* 000 - 25 MHz <= LVDS_CLK < 37.5 MHz
318
* 001 - 37.5 MHz <= LVDS_CLK < 62.5 MHz
319
* 010 - 62.5 MHz <= LVDS_CLK < 87.5 MHz
320
* 011 - 87.5 MHz <= LVDS_CLK < 112.5 MHz
321
* 100 - 112.5 MHz <= LVDS_CLK < 137.5 MHz
322
* 101 - 137.5 MHz <= LVDS_CLK <= 154 MHz
323
* which is a range of 12.5MHz..162.5MHz in 50MHz steps, except that
324
* the ends of the ranges are clamped to the supported range. Since
325
* sn65dsi83_mode_valid() already filters the valid modes and limits
326
* the clock to 25..154 MHz, the range calculation can be simplified
327
* as follows:
328
*/
329
int mode_clock = mode->clock;
330
331
if (ctx->lvds_dual_link)
332
mode_clock /= 2;
333
334
return (mode_clock - 12500) / 25000;
335
}
336
337
static u8 sn65dsi83_get_dsi_range(struct sn65dsi83 *ctx,
338
const struct drm_display_mode *mode)
339
{
340
/*
341
* The encoding of the CHA_DSI_CLK_RANGE is as follows:
342
* 0x00 through 0x07 - Reserved
343
* 0x08 - 40 <= DSI_CLK < 45 MHz
344
* 0x09 - 45 <= DSI_CLK < 50 MHz
345
* ...
346
* 0x63 - 495 <= DSI_CLK < 500 MHz
347
* 0x64 - 500 MHz
348
* 0x65 through 0xFF - Reserved
349
* which is DSI clock in 5 MHz steps, clamped to 40..500 MHz.
350
* The DSI clock are calculated as:
351
* DSI_CLK = mode clock * bpp / dsi_data_lanes / 2
352
* the 2 is there because the bus is DDR.
353
*/
354
return DIV_ROUND_UP(clamp((unsigned int)mode->clock *
355
mipi_dsi_pixel_format_to_bpp(ctx->dsi->format) /
356
ctx->dsi->lanes / 2, 40000U, 500000U), 5000U);
357
}
358
359
static u8 sn65dsi83_get_dsi_div(struct sn65dsi83 *ctx)
360
{
361
/* The divider is (DSI_CLK / LVDS_CLK) - 1, which really is: */
362
unsigned int dsi_div = mipi_dsi_pixel_format_to_bpp(ctx->dsi->format);
363
364
dsi_div /= ctx->dsi->lanes;
365
366
if (!ctx->lvds_dual_link)
367
dsi_div /= 2;
368
369
return dsi_div - 1;
370
}
371
372
static int sn65dsi83_reset_pipe(struct sn65dsi83 *sn65dsi83)
373
{
374
struct drm_modeset_acquire_ctx ctx;
375
int err;
376
377
/*
378
* Reset active outputs of the related CRTC.
379
*
380
* This way, drm core will reconfigure each components in the CRTC
381
* outputs path. In our case, this will force the previous component to
382
* go back in LP11 mode and so allow the reconfiguration of SN65DSI83
383
* bridge.
384
*
385
* Keep the lock during the whole operation to be atomic.
386
*/
387
388
drm_modeset_acquire_init(&ctx, 0);
389
390
dev_warn(sn65dsi83->dev, "reset the pipe\n");
391
392
retry:
393
err = drm_bridge_helper_reset_crtc(&sn65dsi83->bridge, &ctx);
394
if (err == -EDEADLK) {
395
drm_modeset_backoff(&ctx);
396
goto retry;
397
}
398
399
drm_modeset_drop_locks(&ctx);
400
drm_modeset_acquire_fini(&ctx);
401
402
return 0;
403
}
404
405
static void sn65dsi83_reset_work(struct work_struct *ws)
406
{
407
struct sn65dsi83 *ctx = container_of(ws, struct sn65dsi83, reset_work);
408
int ret;
409
410
/* Reset the pipe */
411
ret = sn65dsi83_reset_pipe(ctx);
412
if (ret) {
413
dev_err(ctx->dev, "reset pipe failed %pe\n", ERR_PTR(ret));
414
return;
415
}
416
if (ctx->irq)
417
enable_irq(ctx->irq);
418
}
419
420
static void sn65dsi83_handle_errors(struct sn65dsi83 *ctx)
421
{
422
unsigned int irq_stat;
423
int ret;
424
425
/*
426
* Schedule a reset in case of:
427
* - the bridge doesn't answer
428
* - the bridge signals an error
429
*/
430
431
ret = regmap_read(ctx->regmap, REG_IRQ_STAT, &irq_stat);
432
if (ret || irq_stat) {
433
/*
434
* IRQ acknowledged is not always possible (the bridge can be in
435
* a state where it doesn't answer anymore). To prevent an
436
* interrupt storm, disable interrupt. The interrupt will be
437
* after the reset.
438
*/
439
if (ctx->irq)
440
disable_irq_nosync(ctx->irq);
441
442
schedule_work(&ctx->reset_work);
443
}
444
}
445
446
static void sn65dsi83_monitor_work(struct work_struct *work)
447
{
448
struct sn65dsi83 *ctx = container_of(to_delayed_work(work),
449
struct sn65dsi83, monitor_work);
450
451
sn65dsi83_handle_errors(ctx);
452
453
schedule_delayed_work(&ctx->monitor_work, msecs_to_jiffies(1000));
454
}
455
456
static void sn65dsi83_monitor_start(struct sn65dsi83 *ctx)
457
{
458
schedule_delayed_work(&ctx->monitor_work, msecs_to_jiffies(1000));
459
}
460
461
static void sn65dsi83_monitor_stop(struct sn65dsi83 *ctx)
462
{
463
cancel_delayed_work_sync(&ctx->monitor_work);
464
}
465
466
static void sn65dsi83_atomic_pre_enable(struct drm_bridge *bridge,
467
struct drm_atomic_state *state)
468
{
469
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
470
const struct drm_bridge_state *bridge_state;
471
const struct drm_crtc_state *crtc_state;
472
const struct drm_display_mode *mode;
473
struct drm_connector *connector;
474
struct drm_crtc *crtc;
475
bool lvds_format_24bpp;
476
bool lvds_format_jeida;
477
unsigned int pval;
478
__le16 le16val;
479
u16 val;
480
int ret;
481
482
ret = regulator_enable(ctx->vcc);
483
if (ret) {
484
dev_err(ctx->dev, "Failed to enable vcc: %d\n", ret);
485
return;
486
}
487
488
/* Deassert reset */
489
gpiod_set_value_cansleep(ctx->enable_gpio, 1);
490
usleep_range(10000, 11000);
491
492
/* Get the LVDS format from the bridge state. */
493
bridge_state = drm_atomic_get_new_bridge_state(state, bridge);
494
495
switch (bridge_state->output_bus_cfg.format) {
496
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
497
lvds_format_24bpp = false;
498
lvds_format_jeida = true;
499
break;
500
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
501
lvds_format_24bpp = true;
502
lvds_format_jeida = true;
503
break;
504
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
505
lvds_format_24bpp = true;
506
lvds_format_jeida = false;
507
break;
508
default:
509
/*
510
* Some bridges still don't set the correct
511
* LVDS bus pixel format, use SPWG24 default
512
* format until those are fixed.
513
*/
514
lvds_format_24bpp = true;
515
lvds_format_jeida = false;
516
dev_warn(ctx->dev,
517
"Unsupported LVDS bus format 0x%04x, please check output bridge driver. Falling back to SPWG24.\n",
518
bridge_state->output_bus_cfg.format);
519
break;
520
}
521
522
/*
523
* Retrieve the CRTC adjusted mode. This requires a little dance to go
524
* from the bridge to the encoder, to the connector and to the CRTC.
525
*/
526
connector = drm_atomic_get_new_connector_for_encoder(state,
527
bridge->encoder);
528
crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
529
crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
530
mode = &crtc_state->adjusted_mode;
531
532
/* Clear reset, disable PLL */
533
regmap_write(ctx->regmap, REG_RC_RESET, 0x00);
534
regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
535
536
/* Reference clock derived from DSI link clock. */
537
regmap_write(ctx->regmap, REG_RC_LVDS_PLL,
538
REG_RC_LVDS_PLL_LVDS_CLK_RANGE(sn65dsi83_get_lvds_range(ctx, mode)) |
539
REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY);
540
regmap_write(ctx->regmap, REG_DSI_CLK,
541
REG_DSI_CLK_CHA_DSI_CLK_RANGE(sn65dsi83_get_dsi_range(ctx, mode)));
542
regmap_write(ctx->regmap, REG_RC_DSI_CLK,
543
REG_RC_DSI_CLK_DSI_CLK_DIVIDER(sn65dsi83_get_dsi_div(ctx)));
544
545
/* Set number of DSI lanes and LVDS link config. */
546
regmap_write(ctx->regmap, REG_DSI_LANE,
547
REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE |
548
REG_DSI_LANE_CHA_DSI_LANES(~(ctx->dsi->lanes - 1)) |
549
/* CHB is DSI85-only, set to default on DSI83/DSI84 */
550
REG_DSI_LANE_CHB_DSI_LANES(3));
551
/* No equalization. */
552
regmap_write(ctx->regmap, REG_DSI_EQ, 0x00);
553
554
/* Set up sync signal polarity. */
555
val = (mode->flags & DRM_MODE_FLAG_NHSYNC ?
556
REG_LVDS_FMT_HS_NEG_POLARITY : 0) |
557
(mode->flags & DRM_MODE_FLAG_NVSYNC ?
558
REG_LVDS_FMT_VS_NEG_POLARITY : 0);
559
val |= bridge_state->output_bus_cfg.flags & DRM_BUS_FLAG_DE_LOW ?
560
REG_LVDS_FMT_DE_NEG_POLARITY : 0;
561
562
/* Set up bits-per-pixel, 18bpp or 24bpp. */
563
if (lvds_format_24bpp) {
564
val |= REG_LVDS_FMT_CHA_24BPP_MODE;
565
if (ctx->lvds_dual_link)
566
val |= REG_LVDS_FMT_CHB_24BPP_MODE;
567
}
568
569
/* Set up LVDS format, JEIDA/Format 1 or SPWG/Format 2 */
570
if (lvds_format_jeida) {
571
val |= REG_LVDS_FMT_CHA_24BPP_FORMAT1;
572
if (ctx->lvds_dual_link)
573
val |= REG_LVDS_FMT_CHB_24BPP_FORMAT1;
574
}
575
576
/* Set up LVDS output config (DSI84,DSI85) */
577
if (!ctx->lvds_dual_link)
578
val |= REG_LVDS_FMT_LVDS_LINK_CFG;
579
580
regmap_write(ctx->regmap, REG_LVDS_FMT, val);
581
regmap_write(ctx->regmap, REG_LVDS_VCOM,
582
REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(ctx->lvds_vod_swing_conf[CHANNEL_A]) |
583
REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(ctx->lvds_vod_swing_conf[CHANNEL_B]));
584
regmap_write(ctx->regmap, REG_LVDS_LANE,
585
(ctx->lvds_dual_link_even_odd_swap ?
586
REG_LVDS_LANE_EVEN_ODD_SWAP : 0) |
587
(ctx->lvds_term_conf[CHANNEL_A] ?
588
REG_LVDS_LANE_CHA_LVDS_TERM : 0) |
589
(ctx->lvds_term_conf[CHANNEL_B] ?
590
REG_LVDS_LANE_CHB_LVDS_TERM : 0));
591
regmap_write(ctx->regmap, REG_LVDS_CM, 0x00);
592
593
le16val = cpu_to_le16(mode->hdisplay);
594
regmap_bulk_write(ctx->regmap, REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
595
&le16val, 2);
596
le16val = cpu_to_le16(mode->vdisplay);
597
regmap_bulk_write(ctx->regmap, REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
598
&le16val, 2);
599
/* 32 + 1 pixel clock to ensure proper operation */
600
le16val = cpu_to_le16(32 + 1);
601
regmap_bulk_write(ctx->regmap, REG_VID_CHA_SYNC_DELAY_LOW, &le16val, 2);
602
le16val = cpu_to_le16(mode->hsync_end - mode->hsync_start);
603
regmap_bulk_write(ctx->regmap, REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
604
&le16val, 2);
605
le16val = cpu_to_le16(mode->vsync_end - mode->vsync_start);
606
regmap_bulk_write(ctx->regmap, REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
607
&le16val, 2);
608
regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_BACK_PORCH,
609
mode->htotal - mode->hsync_end);
610
regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_BACK_PORCH,
611
mode->vtotal - mode->vsync_end);
612
regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
613
mode->hsync_start - mode->hdisplay);
614
regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_FRONT_PORCH,
615
mode->vsync_start - mode->vdisplay);
616
regmap_write(ctx->regmap, REG_VID_CHA_TEST_PATTERN, 0x00);
617
618
/* Enable PLL */
619
regmap_write(ctx->regmap, REG_RC_PLL_EN, REG_RC_PLL_EN_PLL_EN);
620
usleep_range(3000, 4000);
621
ret = regmap_read_poll_timeout(ctx->regmap, REG_RC_LVDS_PLL, pval,
622
pval & REG_RC_LVDS_PLL_PLL_EN_STAT,
623
1000, 100000);
624
if (ret) {
625
dev_err(ctx->dev, "failed to lock PLL, ret=%i\n", ret);
626
/* On failure, disable PLL again and exit. */
627
regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
628
return;
629
}
630
631
/* Trigger reset after CSR register update. */
632
regmap_write(ctx->regmap, REG_RC_RESET, REG_RC_RESET_SOFT_RESET);
633
634
/* Wait for 10ms after soft reset as specified in datasheet */
635
usleep_range(10000, 12000);
636
}
637
638
static void sn65dsi83_atomic_enable(struct drm_bridge *bridge,
639
struct drm_atomic_state *state)
640
{
641
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
642
unsigned int pval;
643
644
/* Clear all errors that got asserted during initialization. */
645
regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
646
regmap_write(ctx->regmap, REG_IRQ_STAT, pval);
647
648
/* Wait for 1ms and check for errors in status register */
649
usleep_range(1000, 1100);
650
regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
651
if (pval)
652
dev_err(ctx->dev, "Unexpected link status 0x%02x\n", pval);
653
654
if (ctx->irq) {
655
/* Enable irq to detect errors */
656
regmap_write(ctx->regmap, REG_IRQ_GLOBAL, REG_IRQ_GLOBAL_IRQ_EN);
657
regmap_write(ctx->regmap, REG_IRQ_EN, 0xff);
658
} else {
659
/* Use the polling task */
660
sn65dsi83_monitor_start(ctx);
661
}
662
}
663
664
static void sn65dsi83_atomic_disable(struct drm_bridge *bridge,
665
struct drm_atomic_state *state)
666
{
667
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
668
int ret;
669
670
if (ctx->irq) {
671
/* Disable irq */
672
regmap_write(ctx->regmap, REG_IRQ_EN, 0x0);
673
regmap_write(ctx->regmap, REG_IRQ_GLOBAL, 0x0);
674
} else {
675
/* Stop the polling task */
676
sn65dsi83_monitor_stop(ctx);
677
}
678
679
/* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
680
gpiod_set_value_cansleep(ctx->enable_gpio, 0);
681
usleep_range(10000, 11000);
682
683
ret = regulator_disable(ctx->vcc);
684
if (ret)
685
dev_err(ctx->dev, "Failed to disable vcc: %d\n", ret);
686
687
regcache_mark_dirty(ctx->regmap);
688
}
689
690
static enum drm_mode_status
691
sn65dsi83_mode_valid(struct drm_bridge *bridge,
692
const struct drm_display_info *info,
693
const struct drm_display_mode *mode)
694
{
695
/* LVDS output clock range 25..154 MHz */
696
if (mode->clock < 25000)
697
return MODE_CLOCK_LOW;
698
if (mode->clock > 154000)
699
return MODE_CLOCK_HIGH;
700
701
return MODE_OK;
702
}
703
704
#define MAX_INPUT_SEL_FORMATS 1
705
706
static u32 *
707
sn65dsi83_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
708
struct drm_bridge_state *bridge_state,
709
struct drm_crtc_state *crtc_state,
710
struct drm_connector_state *conn_state,
711
u32 output_fmt,
712
unsigned int *num_input_fmts)
713
{
714
u32 *input_fmts;
715
716
*num_input_fmts = 0;
717
718
input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
719
GFP_KERNEL);
720
if (!input_fmts)
721
return NULL;
722
723
/* This is the DSI-end bus format */
724
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
725
*num_input_fmts = 1;
726
727
return input_fmts;
728
}
729
730
static const struct drm_bridge_funcs sn65dsi83_funcs = {
731
.attach = sn65dsi83_attach,
732
.detach = sn65dsi83_detach,
733
.atomic_enable = sn65dsi83_atomic_enable,
734
.atomic_pre_enable = sn65dsi83_atomic_pre_enable,
735
.atomic_disable = sn65dsi83_atomic_disable,
736
.mode_valid = sn65dsi83_mode_valid,
737
738
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
739
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
740
.atomic_reset = drm_atomic_helper_bridge_reset,
741
.atomic_get_input_bus_fmts = sn65dsi83_atomic_get_input_bus_fmts,
742
};
743
744
static int sn65dsi83_select_lvds_vod_swing(struct device *dev,
745
u32 lvds_vod_swing_data[2], u32 lvds_vod_swing_clk[2], u8 lvds_term)
746
{
747
int i;
748
749
for (i = 0; i <= 3; i++) {
750
if (lvds_vod_swing_data_table[lvds_term][i][0] >= lvds_vod_swing_data[0] &&
751
lvds_vod_swing_data_table[lvds_term][i][1] <= lvds_vod_swing_data[1] &&
752
lvds_vod_swing_clock_table[lvds_term][i][0] >= lvds_vod_swing_clk[0] &&
753
lvds_vod_swing_clock_table[lvds_term][i][1] <= lvds_vod_swing_clk[1])
754
return i;
755
}
756
757
dev_err(dev, "failed to find appropriate LVDS_VOD_SWING configuration\n");
758
return -EINVAL;
759
}
760
761
static int sn65dsi83_parse_lvds_endpoint(struct sn65dsi83 *ctx, int channel)
762
{
763
struct device *dev = ctx->dev;
764
struct device_node *endpoint;
765
int endpoint_reg;
766
/* Set so the property can be freely selected if not defined */
767
u32 lvds_vod_swing_data[2] = { 0, 1000000 };
768
u32 lvds_vod_swing_clk[2] = { 0, 1000000 };
769
/* Set default near end terminataion to 200 Ohm */
770
u32 lvds_term = 200;
771
int lvds_vod_swing_conf;
772
int ret = 0;
773
int ret_data;
774
int ret_clock;
775
776
if (channel == CHANNEL_A)
777
endpoint_reg = 2;
778
else
779
endpoint_reg = 3;
780
781
endpoint = of_graph_get_endpoint_by_regs(dev->of_node, endpoint_reg, -1);
782
783
of_property_read_u32(endpoint, "ti,lvds-termination-ohms", &lvds_term);
784
if (lvds_term == 100)
785
ctx->lvds_term_conf[channel] = OHM_100;
786
else if (lvds_term == 200)
787
ctx->lvds_term_conf[channel] = OHM_200;
788
else {
789
ret = -EINVAL;
790
goto exit;
791
}
792
793
ret_data = of_property_read_u32_array(endpoint, "ti,lvds-vod-swing-data-microvolt",
794
lvds_vod_swing_data, ARRAY_SIZE(lvds_vod_swing_data));
795
if (ret_data != 0 && ret_data != -EINVAL) {
796
ret = ret_data;
797
goto exit;
798
}
799
800
ret_clock = of_property_read_u32_array(endpoint, "ti,lvds-vod-swing-clock-microvolt",
801
lvds_vod_swing_clk, ARRAY_SIZE(lvds_vod_swing_clk));
802
if (ret_clock != 0 && ret_clock != -EINVAL) {
803
ret = ret_clock;
804
goto exit;
805
}
806
807
/* Use default value if both properties are NOT defined. */
808
if (ret_data == -EINVAL && ret_clock == -EINVAL)
809
lvds_vod_swing_conf = 0x1;
810
811
/* Use lookup table if any of the two properties is defined. */
812
if (!ret_data || !ret_clock) {
813
lvds_vod_swing_conf = sn65dsi83_select_lvds_vod_swing(dev, lvds_vod_swing_data,
814
lvds_vod_swing_clk, ctx->lvds_term_conf[channel]);
815
if (lvds_vod_swing_conf < 0) {
816
ret = lvds_vod_swing_conf;
817
goto exit;
818
}
819
}
820
821
ctx->lvds_vod_swing_conf[channel] = lvds_vod_swing_conf;
822
ret = 0;
823
exit:
824
of_node_put(endpoint);
825
return ret;
826
}
827
828
static int sn65dsi83_parse_dt(struct sn65dsi83 *ctx, enum sn65dsi83_model model)
829
{
830
struct drm_bridge *panel_bridge;
831
struct device *dev = ctx->dev;
832
int ret;
833
834
ret = sn65dsi83_parse_lvds_endpoint(ctx, CHANNEL_A);
835
if (ret < 0)
836
return ret;
837
838
ret = sn65dsi83_parse_lvds_endpoint(ctx, CHANNEL_B);
839
if (ret < 0)
840
return ret;
841
842
ctx->lvds_dual_link = false;
843
ctx->lvds_dual_link_even_odd_swap = false;
844
if (model != MODEL_SN65DSI83) {
845
struct device_node *port2, *port3;
846
int dual_link;
847
848
port2 = of_graph_get_port_by_id(dev->of_node, 2);
849
port3 = of_graph_get_port_by_id(dev->of_node, 3);
850
dual_link = drm_of_lvds_get_dual_link_pixel_order(port2, port3);
851
of_node_put(port2);
852
of_node_put(port3);
853
854
if (dual_link == DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) {
855
ctx->lvds_dual_link = true;
856
/* Odd pixels to LVDS Channel A, even pixels to B */
857
ctx->lvds_dual_link_even_odd_swap = false;
858
} else if (dual_link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS) {
859
ctx->lvds_dual_link = true;
860
/* Even pixels to LVDS Channel A, odd pixels to B */
861
ctx->lvds_dual_link_even_odd_swap = true;
862
}
863
}
864
865
panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 2, 0);
866
if (IS_ERR(panel_bridge))
867
return dev_err_probe(dev, PTR_ERR(panel_bridge), "Failed to get panel bridge\n");
868
869
ctx->panel_bridge = panel_bridge;
870
871
ctx->vcc = devm_regulator_get(dev, "vcc");
872
if (IS_ERR(ctx->vcc))
873
return dev_err_probe(dev, PTR_ERR(ctx->vcc),
874
"Failed to get supply 'vcc'\n");
875
876
return 0;
877
}
878
879
static int sn65dsi83_host_attach(struct sn65dsi83 *ctx)
880
{
881
struct device *dev = ctx->dev;
882
struct device_node *host_node;
883
struct device_node *endpoint;
884
struct mipi_dsi_device *dsi;
885
struct mipi_dsi_host *host;
886
const struct mipi_dsi_device_info info = {
887
.type = "sn65dsi83",
888
.channel = 0,
889
.node = NULL,
890
};
891
int dsi_lanes, ret;
892
893
endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1);
894
dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4);
895
host_node = of_graph_get_remote_port_parent(endpoint);
896
host = of_find_mipi_dsi_host_by_node(host_node);
897
of_node_put(host_node);
898
of_node_put(endpoint);
899
900
if (!host)
901
return -EPROBE_DEFER;
902
903
if (dsi_lanes < 0)
904
return dsi_lanes;
905
906
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
907
if (IS_ERR(dsi))
908
return dev_err_probe(dev, PTR_ERR(dsi),
909
"failed to create dsi device\n");
910
911
ctx->dsi = dsi;
912
913
dsi->lanes = dsi_lanes;
914
dsi->format = MIPI_DSI_FMT_RGB888;
915
dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
916
MIPI_DSI_MODE_VIDEO_NO_HFP | MIPI_DSI_MODE_VIDEO_NO_HBP |
917
MIPI_DSI_MODE_VIDEO_NO_HSA | MIPI_DSI_MODE_NO_EOT_PACKET;
918
919
ret = devm_mipi_dsi_attach(dev, dsi);
920
if (ret < 0) {
921
dev_err(dev, "failed to attach dsi to host: %d\n", ret);
922
return ret;
923
}
924
925
return 0;
926
}
927
928
static irqreturn_t sn65dsi83_irq(int irq, void *data)
929
{
930
struct sn65dsi83 *ctx = data;
931
932
sn65dsi83_handle_errors(ctx);
933
return IRQ_HANDLED;
934
}
935
936
static int sn65dsi83_probe(struct i2c_client *client)
937
{
938
const struct i2c_device_id *id = i2c_client_get_device_id(client);
939
struct device *dev = &client->dev;
940
enum sn65dsi83_model model;
941
struct sn65dsi83 *ctx;
942
int ret;
943
944
ctx = devm_drm_bridge_alloc(dev, struct sn65dsi83, bridge, &sn65dsi83_funcs);
945
if (IS_ERR(ctx))
946
return PTR_ERR(ctx);
947
948
ctx->dev = dev;
949
INIT_WORK(&ctx->reset_work, sn65dsi83_reset_work);
950
INIT_DELAYED_WORK(&ctx->monitor_work, sn65dsi83_monitor_work);
951
952
if (dev->of_node) {
953
model = (enum sn65dsi83_model)(uintptr_t)
954
of_device_get_match_data(dev);
955
} else {
956
model = id->driver_data;
957
}
958
959
/* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
960
ctx->enable_gpio = devm_gpiod_get_optional(ctx->dev, "enable",
961
GPIOD_OUT_LOW);
962
if (IS_ERR(ctx->enable_gpio))
963
return dev_err_probe(dev, PTR_ERR(ctx->enable_gpio), "failed to get enable GPIO\n");
964
965
usleep_range(10000, 11000);
966
967
ret = sn65dsi83_parse_dt(ctx, model);
968
if (ret)
969
return ret;
970
971
ctx->regmap = devm_regmap_init_i2c(client, &sn65dsi83_regmap_config);
972
if (IS_ERR(ctx->regmap))
973
return dev_err_probe(dev, PTR_ERR(ctx->regmap), "failed to get regmap\n");
974
975
if (client->irq) {
976
ctx->irq = client->irq;
977
ret = devm_request_threaded_irq(ctx->dev, ctx->irq, NULL, sn65dsi83_irq,
978
IRQF_ONESHOT, dev_name(ctx->dev), ctx);
979
if (ret)
980
return dev_err_probe(dev, ret, "failed to request irq\n");
981
}
982
983
dev_set_drvdata(dev, ctx);
984
i2c_set_clientdata(client, ctx);
985
986
ctx->bridge.of_node = dev->of_node;
987
ctx->bridge.pre_enable_prev_first = true;
988
ctx->bridge.type = DRM_MODE_CONNECTOR_LVDS;
989
drm_bridge_add(&ctx->bridge);
990
991
ret = sn65dsi83_host_attach(ctx);
992
if (ret) {
993
dev_err_probe(dev, ret, "failed to attach DSI host\n");
994
goto err_remove_bridge;
995
}
996
997
return 0;
998
999
err_remove_bridge:
1000
drm_bridge_remove(&ctx->bridge);
1001
return ret;
1002
}
1003
1004
static void sn65dsi83_remove(struct i2c_client *client)
1005
{
1006
struct sn65dsi83 *ctx = i2c_get_clientdata(client);
1007
1008
drm_bridge_remove(&ctx->bridge);
1009
}
1010
1011
static const struct i2c_device_id sn65dsi83_id[] = {
1012
{ "ti,sn65dsi83", MODEL_SN65DSI83 },
1013
{ "ti,sn65dsi84", MODEL_SN65DSI84 },
1014
{},
1015
};
1016
MODULE_DEVICE_TABLE(i2c, sn65dsi83_id);
1017
1018
static const struct of_device_id sn65dsi83_match_table[] = {
1019
{ .compatible = "ti,sn65dsi83", .data = (void *)MODEL_SN65DSI83 },
1020
{ .compatible = "ti,sn65dsi84", .data = (void *)MODEL_SN65DSI84 },
1021
{},
1022
};
1023
MODULE_DEVICE_TABLE(of, sn65dsi83_match_table);
1024
1025
static struct i2c_driver sn65dsi83_driver = {
1026
.probe = sn65dsi83_probe,
1027
.remove = sn65dsi83_remove,
1028
.id_table = sn65dsi83_id,
1029
.driver = {
1030
.name = "sn65dsi83",
1031
.of_match_table = sn65dsi83_match_table,
1032
},
1033
};
1034
module_i2c_driver(sn65dsi83_driver);
1035
1036
MODULE_AUTHOR("Marek Vasut <[email protected]>");
1037
MODULE_DESCRIPTION("TI SN65DSI83 DSI to LVDS bridge driver");
1038
MODULE_LICENSE("GPL v2");
1039
1040