Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/gpu/drm/display/drm_dp_helper.c
26494 views
1
/*
2
* Copyright © 2009 Keith Packard
3
*
4
* Permission to use, copy, modify, distribute, and sell this software and its
5
* documentation for any purpose is hereby granted without fee, provided that
6
* the above copyright notice appear in all copies and that both that copyright
7
* notice and this permission notice appear in supporting documentation, and
8
* that the name of the copyright holders not be used in advertising or
9
* publicity pertaining to distribution of the software without specific,
10
* written prior permission. The copyright holders make no representations
11
* about the suitability of this software for any purpose. It is provided "as
12
* is" without express or implied warranty.
13
*
14
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16
* EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20
* OF THIS SOFTWARE.
21
*/
22
23
#include <linux/backlight.h>
24
#include <linux/delay.h>
25
#include <linux/dynamic_debug.h>
26
#include <linux/errno.h>
27
#include <linux/export.h>
28
#include <linux/i2c.h>
29
#include <linux/init.h>
30
#include <linux/iopoll.h>
31
#include <linux/kernel.h>
32
#include <linux/module.h>
33
#include <linux/sched.h>
34
#include <linux/seq_file.h>
35
#include <linux/string_helpers.h>
36
37
#include <drm/display/drm_dp_helper.h>
38
#include <drm/display/drm_dp_mst_helper.h>
39
#include <drm/drm_edid.h>
40
#include <drm/drm_fixed.h>
41
#include <drm/drm_print.h>
42
#include <drm/drm_vblank.h>
43
#include <drm/drm_panel.h>
44
45
#include "drm_dp_helper_internal.h"
46
47
DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
48
"DRM_UT_CORE",
49
"DRM_UT_DRIVER",
50
"DRM_UT_KMS",
51
"DRM_UT_PRIME",
52
"DRM_UT_ATOMIC",
53
"DRM_UT_VBL",
54
"DRM_UT_STATE",
55
"DRM_UT_LEASE",
56
"DRM_UT_DP",
57
"DRM_UT_DRMRES");
58
59
struct dp_aux_backlight {
60
struct backlight_device *base;
61
struct drm_dp_aux *aux;
62
struct drm_edp_backlight_info info;
63
bool enabled;
64
};
65
66
/**
67
* DOC: dp helpers
68
*
69
* These functions contain some common logic and helpers at various abstraction
70
* levels to deal with Display Port sink devices and related things like DP aux
71
* channel transfers, EDID reading over DP aux channels, decoding certain DPCD
72
* blocks, ...
73
*/
74
75
/* Helpers for DP link training */
76
static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
77
{
78
return link_status[r - DP_LANE0_1_STATUS];
79
}
80
81
static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
82
int lane)
83
{
84
int i = DP_LANE0_1_STATUS + (lane >> 1);
85
int s = (lane & 1) * 4;
86
u8 l = dp_link_status(link_status, i);
87
88
return (l >> s) & 0xf;
89
}
90
91
bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
92
int lane_count)
93
{
94
u8 lane_align;
95
u8 lane_status;
96
int lane;
97
98
lane_align = dp_link_status(link_status,
99
DP_LANE_ALIGN_STATUS_UPDATED);
100
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
101
return false;
102
for (lane = 0; lane < lane_count; lane++) {
103
lane_status = dp_get_lane_status(link_status, lane);
104
if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
105
return false;
106
}
107
return true;
108
}
109
EXPORT_SYMBOL(drm_dp_channel_eq_ok);
110
111
bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
112
int lane_count)
113
{
114
int lane;
115
u8 lane_status;
116
117
for (lane = 0; lane < lane_count; lane++) {
118
lane_status = dp_get_lane_status(link_status, lane);
119
if ((lane_status & DP_LANE_CR_DONE) == 0)
120
return false;
121
}
122
return true;
123
}
124
EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
125
126
u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
127
int lane)
128
{
129
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
130
int s = ((lane & 1) ?
131
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
132
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
133
u8 l = dp_link_status(link_status, i);
134
135
return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
136
}
137
EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
138
139
u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
140
int lane)
141
{
142
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
143
int s = ((lane & 1) ?
144
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
145
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
146
u8 l = dp_link_status(link_status, i);
147
148
return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
149
}
150
EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
151
152
/* DP 2.0 128b/132b */
153
u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
154
int lane)
155
{
156
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
157
int s = ((lane & 1) ?
158
DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
159
DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
160
u8 l = dp_link_status(link_status, i);
161
162
return (l >> s) & 0xf;
163
}
164
EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
165
166
/* DP 2.0 errata for 128b/132b */
167
bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
168
int lane_count)
169
{
170
u8 lane_align, lane_status;
171
int lane;
172
173
lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
174
if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
175
return false;
176
177
for (lane = 0; lane < lane_count; lane++) {
178
lane_status = dp_get_lane_status(link_status, lane);
179
if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
180
return false;
181
}
182
return true;
183
}
184
EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
185
186
/* DP 2.0 errata for 128b/132b */
187
bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
188
int lane_count)
189
{
190
u8 lane_status;
191
int lane;
192
193
for (lane = 0; lane < lane_count; lane++) {
194
lane_status = dp_get_lane_status(link_status, lane);
195
if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
196
return false;
197
}
198
return true;
199
}
200
EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
201
202
/* DP 2.0 errata for 128b/132b */
203
bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
204
{
205
u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
206
207
return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
208
}
209
EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
210
211
/* DP 2.0 errata for 128b/132b */
212
bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
213
{
214
u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
215
216
return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
217
}
218
EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
219
220
/* DP 2.0 errata for 128b/132b */
221
bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
222
{
223
u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
224
225
return status & DP_128B132B_LT_FAILED;
226
}
227
EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
228
229
static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
230
{
231
if (rd_interval > 4)
232
drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
233
aux->name, rd_interval);
234
235
if (rd_interval == 0)
236
return 100;
237
238
return rd_interval * 4 * USEC_PER_MSEC;
239
}
240
241
static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
242
{
243
if (rd_interval > 4)
244
drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
245
aux->name, rd_interval);
246
247
if (rd_interval == 0)
248
return 400;
249
250
return rd_interval * 4 * USEC_PER_MSEC;
251
}
252
253
static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
254
{
255
switch (rd_interval) {
256
default:
257
drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
258
aux->name, rd_interval);
259
fallthrough;
260
case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
261
return 400;
262
case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
263
return 4000;
264
case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
265
return 8000;
266
case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
267
return 12000;
268
case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
269
return 16000;
270
case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
271
return 32000;
272
case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
273
return 64000;
274
}
275
}
276
277
/*
278
* The link training delays are different for:
279
*
280
* - Clock recovery vs. channel equalization
281
* - DPRX vs. LTTPR
282
* - 128b/132b vs. 8b/10b
283
* - DPCD rev 1.3 vs. later
284
*
285
* Get the correct delay in us, reading DPCD if necessary.
286
*/
287
static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
288
enum drm_dp_phy dp_phy, bool uhbr, bool cr)
289
{
290
int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
291
unsigned int offset;
292
u8 rd_interval, mask;
293
294
if (dp_phy == DP_PHY_DPRX) {
295
if (uhbr) {
296
if (cr)
297
return 100;
298
299
offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
300
mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
301
parse = __128b132b_channel_eq_delay_us;
302
} else {
303
if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
304
return 100;
305
306
offset = DP_TRAINING_AUX_RD_INTERVAL;
307
mask = DP_TRAINING_AUX_RD_MASK;
308
if (cr)
309
parse = __8b10b_clock_recovery_delay_us;
310
else
311
parse = __8b10b_channel_eq_delay_us;
312
}
313
} else {
314
if (uhbr) {
315
offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
316
mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
317
parse = __128b132b_channel_eq_delay_us;
318
} else {
319
if (cr)
320
return 100;
321
322
offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
323
mask = DP_TRAINING_AUX_RD_MASK;
324
parse = __8b10b_channel_eq_delay_us;
325
}
326
}
327
328
if (offset < DP_RECEIVER_CAP_SIZE) {
329
rd_interval = dpcd[offset];
330
} else {
331
if (drm_dp_dpcd_read_byte(aux, offset, &rd_interval) < 0) {
332
drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
333
aux->name);
334
/* arbitrary default delay */
335
return 400;
336
}
337
}
338
339
return parse(aux, rd_interval & mask);
340
}
341
342
int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
343
enum drm_dp_phy dp_phy, bool uhbr)
344
{
345
return __read_delay(aux, dpcd, dp_phy, uhbr, true);
346
}
347
EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
348
349
int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
350
enum drm_dp_phy dp_phy, bool uhbr)
351
{
352
return __read_delay(aux, dpcd, dp_phy, uhbr, false);
353
}
354
EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
355
356
/* Per DP 2.0 Errata */
357
int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
358
{
359
int unit;
360
u8 val;
361
362
if (drm_dp_dpcd_read_byte(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) < 0) {
363
drm_err(aux->drm_dev, "%s: failed rd interval read\n",
364
aux->name);
365
/* default to max */
366
val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
367
}
368
369
unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
370
val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
371
372
return (val + 1) * unit * 1000;
373
}
374
EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
375
376
void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
377
const u8 dpcd[DP_RECEIVER_CAP_SIZE])
378
{
379
u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
380
DP_TRAINING_AUX_RD_MASK;
381
int delay_us;
382
383
if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
384
delay_us = 100;
385
else
386
delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
387
388
usleep_range(delay_us, delay_us * 2);
389
}
390
EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
391
392
static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
393
u8 rd_interval)
394
{
395
int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
396
397
usleep_range(delay_us, delay_us * 2);
398
}
399
400
void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
401
const u8 dpcd[DP_RECEIVER_CAP_SIZE])
402
{
403
__drm_dp_link_train_channel_eq_delay(aux,
404
dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
405
DP_TRAINING_AUX_RD_MASK);
406
}
407
EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
408
409
/**
410
* drm_dp_phy_name() - Get the name of the given DP PHY
411
* @dp_phy: The DP PHY identifier
412
*
413
* Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
414
* "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
415
* non-NULL and valid.
416
*
417
* Returns: Name of the DP PHY.
418
*/
419
const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
420
{
421
static const char * const phy_names[] = {
422
[DP_PHY_DPRX] = "DPRX",
423
[DP_PHY_LTTPR1] = "LTTPR 1",
424
[DP_PHY_LTTPR2] = "LTTPR 2",
425
[DP_PHY_LTTPR3] = "LTTPR 3",
426
[DP_PHY_LTTPR4] = "LTTPR 4",
427
[DP_PHY_LTTPR5] = "LTTPR 5",
428
[DP_PHY_LTTPR6] = "LTTPR 6",
429
[DP_PHY_LTTPR7] = "LTTPR 7",
430
[DP_PHY_LTTPR8] = "LTTPR 8",
431
};
432
433
if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
434
WARN_ON(!phy_names[dp_phy]))
435
return "<INVALID DP PHY>";
436
437
return phy_names[dp_phy];
438
}
439
EXPORT_SYMBOL(drm_dp_phy_name);
440
441
void drm_dp_lttpr_link_train_clock_recovery_delay(void)
442
{
443
usleep_range(100, 200);
444
}
445
EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
446
447
static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
448
{
449
return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
450
}
451
452
void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
453
const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
454
{
455
u8 interval = dp_lttpr_phy_cap(phy_cap,
456
DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
457
DP_TRAINING_AUX_RD_MASK;
458
459
__drm_dp_link_train_channel_eq_delay(aux, interval);
460
}
461
EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
462
463
/**
464
* drm_dp_lttpr_wake_timeout_setup() - Grant extended time for sink to wake up
465
* @aux: The DP AUX channel to use
466
* @transparent_mode: This is true if lttpr is in transparent mode
467
*
468
* This function checks if the sink needs any extended wake time, if it does
469
* it grants this request. Post this setup the source device can keep trying
470
* the Aux transaction till the granted wake timeout.
471
* If this function is not called all Aux transactions are expected to take
472
* a default of 1ms before they throw an error.
473
*/
474
void drm_dp_lttpr_wake_timeout_setup(struct drm_dp_aux *aux, bool transparent_mode)
475
{
476
u8 val = 1;
477
int ret;
478
479
if (transparent_mode) {
480
static const u8 timeout_mapping[] = {
481
[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_1_MS] = 1,
482
[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_20_MS] = 20,
483
[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_40_MS] = 40,
484
[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_60_MS] = 60,
485
[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_80_MS] = 80,
486
[DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_100_MS] = 100,
487
};
488
489
ret = drm_dp_dpcd_readb(aux, DP_EXTENDED_DPRX_SLEEP_WAKE_TIMEOUT_REQUEST, &val);
490
if (ret != 1) {
491
drm_dbg_kms(aux->drm_dev,
492
"Failed to read Extended sleep wake timeout request\n");
493
return;
494
}
495
496
val = (val < sizeof(timeout_mapping) && timeout_mapping[val]) ?
497
timeout_mapping[val] : 1;
498
499
if (val > 1)
500
drm_dp_dpcd_writeb(aux,
501
DP_EXTENDED_DPRX_SLEEP_WAKE_TIMEOUT_GRANT,
502
DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_GRANTED);
503
} else {
504
ret = drm_dp_dpcd_readb(aux, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT, &val);
505
if (ret != 1) {
506
drm_dbg_kms(aux->drm_dev,
507
"Failed to read Extended sleep wake timeout request\n");
508
return;
509
}
510
511
val = (val & DP_EXTENDED_WAKE_TIMEOUT_REQUEST_MASK) ?
512
(val & DP_EXTENDED_WAKE_TIMEOUT_REQUEST_MASK) * 10 : 1;
513
514
if (val > 1)
515
drm_dp_dpcd_writeb(aux, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT,
516
DP_EXTENDED_WAKE_TIMEOUT_GRANT);
517
}
518
}
519
EXPORT_SYMBOL(drm_dp_lttpr_wake_timeout_setup);
520
521
u8 drm_dp_link_rate_to_bw_code(int link_rate)
522
{
523
switch (link_rate) {
524
case 1000000:
525
return DP_LINK_BW_10;
526
case 1350000:
527
return DP_LINK_BW_13_5;
528
case 2000000:
529
return DP_LINK_BW_20;
530
default:
531
/* Spec says link_bw = link_rate / 0.27Gbps */
532
return link_rate / 27000;
533
}
534
}
535
EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
536
537
int drm_dp_bw_code_to_link_rate(u8 link_bw)
538
{
539
switch (link_bw) {
540
case DP_LINK_BW_10:
541
return 1000000;
542
case DP_LINK_BW_13_5:
543
return 1350000;
544
case DP_LINK_BW_20:
545
return 2000000;
546
default:
547
/* Spec says link_rate = link_bw * 0.27Gbps */
548
return link_bw * 27000;
549
}
550
}
551
EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
552
553
#define AUX_RETRY_INTERVAL 500 /* us */
554
555
static inline void
556
drm_dp_dump_access(const struct drm_dp_aux *aux,
557
u8 request, uint offset, void *buffer, int ret)
558
{
559
const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
560
561
if (ret > 0)
562
drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
563
aux->name, offset, arrow, ret, min(ret, 20), buffer);
564
else
565
drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
566
aux->name, offset, arrow, ret);
567
}
568
569
/**
570
* DOC: dp helpers
571
*
572
* The DisplayPort AUX channel is an abstraction to allow generic, driver-
573
* independent access to AUX functionality. Drivers can take advantage of
574
* this by filling in the fields of the drm_dp_aux structure.
575
*
576
* Transactions are described using a hardware-independent drm_dp_aux_msg
577
* structure, which is passed into a driver's .transfer() implementation.
578
* Both native and I2C-over-AUX transactions are supported.
579
*/
580
581
static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
582
unsigned int offset, void *buffer, size_t size)
583
{
584
struct drm_dp_aux_msg msg;
585
unsigned int retry, native_reply;
586
int err = 0, ret = 0;
587
588
memset(&msg, 0, sizeof(msg));
589
msg.address = offset;
590
msg.request = request;
591
msg.buffer = buffer;
592
msg.size = size;
593
594
mutex_lock(&aux->hw_mutex);
595
596
/*
597
* If the device attached to the aux bus is powered down then there's
598
* no reason to attempt a transfer. Error out immediately.
599
*/
600
if (aux->powered_down) {
601
ret = -EBUSY;
602
goto unlock;
603
}
604
605
/*
606
* The specification doesn't give any recommendation on how often to
607
* retry native transactions. We used to retry 7 times like for
608
* aux i2c transactions but real world devices this wasn't
609
* sufficient, bump to 32 which makes Dell 4k monitors happier.
610
*/
611
for (retry = 0; retry < 32; retry++) {
612
if (ret != 0 && ret != -ETIMEDOUT) {
613
usleep_range(AUX_RETRY_INTERVAL,
614
AUX_RETRY_INTERVAL + 100);
615
}
616
617
ret = aux->transfer(aux, &msg);
618
if (ret >= 0) {
619
native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
620
if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
621
if (ret == size)
622
goto unlock;
623
624
ret = -EPROTO;
625
} else
626
ret = -EIO;
627
}
628
629
/*
630
* We want the error we return to be the error we received on
631
* the first transaction, since we may get a different error the
632
* next time we retry
633
*/
634
if (!err)
635
err = ret;
636
}
637
638
drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
639
aux->name, err);
640
ret = err;
641
642
unlock:
643
mutex_unlock(&aux->hw_mutex);
644
return ret;
645
}
646
647
/**
648
* drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
649
* @aux: DisplayPort AUX channel (SST)
650
* @offset: address of the register to probe
651
*
652
* Probe the provided DPCD address by reading 1 byte from it. The function can
653
* be used to trigger some side-effect the read access has, like waking up the
654
* sink, without the need for the read-out value.
655
*
656
* Returns 0 if the read access suceeded, or a negative error code on failure.
657
*/
658
int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
659
{
660
u8 buffer;
661
int ret;
662
663
ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
664
WARN_ON(ret == 0);
665
666
drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
667
668
return ret < 0 ? ret : 0;
669
}
670
EXPORT_SYMBOL(drm_dp_dpcd_probe);
671
672
/**
673
* drm_dp_dpcd_set_powered() - Set whether the DP device is powered
674
* @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here
675
* and the function will be a no-op.
676
* @powered: true if powered; false if not
677
*
678
* If the endpoint device on the DP AUX bus is known to be powered down
679
* then this function can be called to make future transfers fail immediately
680
* instead of needing to time out.
681
*
682
* If this function is never called then a device defaults to being powered.
683
*/
684
void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered)
685
{
686
if (!aux)
687
return;
688
689
mutex_lock(&aux->hw_mutex);
690
aux->powered_down = !powered;
691
mutex_unlock(&aux->hw_mutex);
692
}
693
EXPORT_SYMBOL(drm_dp_dpcd_set_powered);
694
695
/**
696
* drm_dp_dpcd_set_probe() - Set whether a probing before DPCD access is done
697
* @aux: DisplayPort AUX channel
698
* @enable: Enable the probing if required
699
*/
700
void drm_dp_dpcd_set_probe(struct drm_dp_aux *aux, bool enable)
701
{
702
WRITE_ONCE(aux->dpcd_probe_disabled, !enable);
703
}
704
EXPORT_SYMBOL(drm_dp_dpcd_set_probe);
705
706
static bool dpcd_access_needs_probe(struct drm_dp_aux *aux)
707
{
708
/*
709
* HP ZR24w corrupts the first DPCD access after entering power save
710
* mode. Eg. on a read, the entire buffer will be filled with the same
711
* byte. Do a throw away read to avoid corrupting anything we care
712
* about. Afterwards things will work correctly until the monitor
713
* gets woken up and subsequently re-enters power save mode.
714
*
715
* The user pressing any button on the monitor is enough to wake it
716
* up, so there is no particularly good place to do the workaround.
717
* We just have to do it before any DPCD access and hope that the
718
* monitor doesn't power down exactly after the throw away read.
719
*/
720
return !aux->is_remote && !READ_ONCE(aux->dpcd_probe_disabled);
721
}
722
723
/**
724
* drm_dp_dpcd_read() - read a series of bytes from the DPCD
725
* @aux: DisplayPort AUX channel (SST or MST)
726
* @offset: address of the (first) register to read
727
* @buffer: buffer to store the register values
728
* @size: number of bytes in @buffer
729
*
730
* Returns the number of bytes transferred on success, or a negative error
731
* code on failure. -EIO is returned if the request was NAKed by the sink or
732
* if the retry count was exceeded. If not all bytes were transferred, this
733
* function returns -EPROTO. Errors from the underlying AUX channel transfer
734
* function, with the exception of -EBUSY (which causes the transaction to
735
* be retried), are propagated to the caller.
736
*
737
* In most of the cases you want to use drm_dp_dpcd_read_data() instead.
738
*/
739
ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
740
void *buffer, size_t size)
741
{
742
int ret;
743
744
if (dpcd_access_needs_probe(aux)) {
745
ret = drm_dp_dpcd_probe(aux, DP_TRAINING_PATTERN_SET);
746
if (ret < 0)
747
return ret;
748
}
749
750
if (aux->is_remote)
751
ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
752
else
753
ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
754
buffer, size);
755
756
drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
757
return ret;
758
}
759
EXPORT_SYMBOL(drm_dp_dpcd_read);
760
761
/**
762
* drm_dp_dpcd_write() - write a series of bytes to the DPCD
763
* @aux: DisplayPort AUX channel (SST or MST)
764
* @offset: address of the (first) register to write
765
* @buffer: buffer containing the values to write
766
* @size: number of bytes in @buffer
767
*
768
* Returns the number of bytes transferred on success, or a negative error
769
* code on failure. -EIO is returned if the request was NAKed by the sink or
770
* if the retry count was exceeded. If not all bytes were transferred, this
771
* function returns -EPROTO. Errors from the underlying AUX channel transfer
772
* function, with the exception of -EBUSY (which causes the transaction to
773
* be retried), are propagated to the caller.
774
*
775
* In most of the cases you want to use drm_dp_dpcd_write_data() instead.
776
*/
777
ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
778
void *buffer, size_t size)
779
{
780
int ret;
781
782
if (aux->is_remote)
783
ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
784
else
785
ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
786
buffer, size);
787
788
drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
789
return ret;
790
}
791
EXPORT_SYMBOL(drm_dp_dpcd_write);
792
793
/**
794
* drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
795
* @aux: DisplayPort AUX channel
796
* @status: buffer to store the link status in (must be at least 6 bytes)
797
*
798
* Returns a negative error code on failure or 0 on success.
799
*/
800
int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
801
u8 status[DP_LINK_STATUS_SIZE])
802
{
803
return drm_dp_dpcd_read_data(aux, DP_LANE0_1_STATUS, status,
804
DP_LINK_STATUS_SIZE);
805
}
806
EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
807
808
/**
809
* drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
810
* @aux: DisplayPort AUX channel
811
* @dp_phy: the DP PHY to get the link status for
812
* @link_status: buffer to return the status in
813
*
814
* Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
815
* layout of the returned @link_status matches the DPCD register layout of the
816
* DPRX PHY link status.
817
*
818
* Returns 0 if the information was read successfully or a negative error code
819
* on failure.
820
*/
821
int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
822
enum drm_dp_phy dp_phy,
823
u8 link_status[DP_LINK_STATUS_SIZE])
824
{
825
int ret;
826
827
if (dp_phy == DP_PHY_DPRX)
828
return drm_dp_dpcd_read_data(aux,
829
DP_LANE0_1_STATUS,
830
link_status,
831
DP_LINK_STATUS_SIZE);
832
833
ret = drm_dp_dpcd_read_data(aux,
834
DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
835
link_status,
836
DP_LINK_STATUS_SIZE - 1);
837
838
if (ret < 0)
839
return ret;
840
841
/* Convert the LTTPR to the sink PHY link status layout */
842
memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
843
&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
844
DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
845
link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
846
847
return 0;
848
}
849
EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
850
851
/**
852
* drm_dp_link_power_up() - power up a DisplayPort link
853
* @aux: DisplayPort AUX channel
854
* @revision: DPCD revision supported on the link
855
*
856
* Returns 0 on success or a negative error code on failure.
857
*/
858
int drm_dp_link_power_up(struct drm_dp_aux *aux, unsigned char revision)
859
{
860
u8 value;
861
int err;
862
863
/* DP_SET_POWER register is only available on DPCD v1.1 and later */
864
if (revision < DP_DPCD_REV_11)
865
return 0;
866
867
err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value);
868
if (err < 0)
869
return err;
870
871
value &= ~DP_SET_POWER_MASK;
872
value |= DP_SET_POWER_D0;
873
874
err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value);
875
if (err < 0)
876
return err;
877
878
/*
879
* According to the DP 1.1 specification, a "Sink Device must exit the
880
* power saving state within 1 ms" (Section 2.5.3.1, Table 5-52, "Sink
881
* Control Field" (register 0x600).
882
*/
883
usleep_range(1000, 2000);
884
885
return 0;
886
}
887
EXPORT_SYMBOL(drm_dp_link_power_up);
888
889
/**
890
* drm_dp_link_power_down() - power down a DisplayPort link
891
* @aux: DisplayPort AUX channel
892
* @revision: DPCD revision supported on the link
893
*
894
* Returns 0 on success or a negative error code on failure.
895
*/
896
int drm_dp_link_power_down(struct drm_dp_aux *aux, unsigned char revision)
897
{
898
u8 value;
899
int err;
900
901
/* DP_SET_POWER register is only available on DPCD v1.1 and later */
902
if (revision < DP_DPCD_REV_11)
903
return 0;
904
905
err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value);
906
if (err < 0)
907
return err;
908
909
value &= ~DP_SET_POWER_MASK;
910
value |= DP_SET_POWER_D3;
911
912
err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value);
913
if (err < 0)
914
return err;
915
916
return 0;
917
}
918
EXPORT_SYMBOL(drm_dp_link_power_down);
919
920
static int read_payload_update_status(struct drm_dp_aux *aux)
921
{
922
int ret;
923
u8 status;
924
925
ret = drm_dp_dpcd_read_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
926
if (ret < 0)
927
return ret;
928
929
return status;
930
}
931
932
/**
933
* drm_dp_dpcd_write_payload() - Write Virtual Channel information to payload table
934
* @aux: DisplayPort AUX channel
935
* @vcpid: Virtual Channel Payload ID
936
* @start_time_slot: Starting time slot
937
* @time_slot_count: Time slot count
938
*
939
* Write the Virtual Channel payload allocation table, checking the payload
940
* update status and retrying as necessary.
941
*
942
* Returns:
943
* 0 on success, negative error otherwise
944
*/
945
int drm_dp_dpcd_write_payload(struct drm_dp_aux *aux,
946
int vcpid, u8 start_time_slot, u8 time_slot_count)
947
{
948
u8 payload_alloc[3], status;
949
int ret;
950
int retries = 0;
951
952
drm_dp_dpcd_write_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS,
953
DP_PAYLOAD_TABLE_UPDATED);
954
955
payload_alloc[0] = vcpid;
956
payload_alloc[1] = start_time_slot;
957
payload_alloc[2] = time_slot_count;
958
959
ret = drm_dp_dpcd_write_data(aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3);
960
if (ret < 0) {
961
drm_dbg_kms(aux->drm_dev, "failed to write payload allocation %d\n", ret);
962
goto fail;
963
}
964
965
retry:
966
ret = drm_dp_dpcd_read_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
967
if (ret < 0) {
968
drm_dbg_kms(aux->drm_dev, "failed to read payload table status %d\n", ret);
969
goto fail;
970
}
971
972
if (!(status & DP_PAYLOAD_TABLE_UPDATED)) {
973
retries++;
974
if (retries < 20) {
975
usleep_range(10000, 20000);
976
goto retry;
977
}
978
drm_dbg_kms(aux->drm_dev, "status not set after read payload table status %d\n",
979
status);
980
ret = -EINVAL;
981
goto fail;
982
}
983
ret = 0;
984
fail:
985
return ret;
986
}
987
EXPORT_SYMBOL(drm_dp_dpcd_write_payload);
988
989
/**
990
* drm_dp_dpcd_clear_payload() - Clear the entire VC Payload ID table
991
* @aux: DisplayPort AUX channel
992
*
993
* Clear the entire VC Payload ID table.
994
*
995
* Returns: 0 on success, negative error code on errors.
996
*/
997
int drm_dp_dpcd_clear_payload(struct drm_dp_aux *aux)
998
{
999
return drm_dp_dpcd_write_payload(aux, 0, 0, 0x3f);
1000
}
1001
EXPORT_SYMBOL(drm_dp_dpcd_clear_payload);
1002
1003
/**
1004
* drm_dp_dpcd_poll_act_handled() - Poll for ACT handled status
1005
* @aux: DisplayPort AUX channel
1006
* @timeout_ms: Timeout in ms
1007
*
1008
* Try waiting for the sink to finish updating its payload table by polling for
1009
* the ACT handled bit of DP_PAYLOAD_TABLE_UPDATE_STATUS for up to @timeout_ms
1010
* milliseconds, defaulting to 3000 ms if 0.
1011
*
1012
* Returns:
1013
* 0 if the ACT was handled in time, negative error code on failure.
1014
*/
1015
int drm_dp_dpcd_poll_act_handled(struct drm_dp_aux *aux, int timeout_ms)
1016
{
1017
int ret, status;
1018
1019
/* default to 3 seconds, this is arbitrary */
1020
timeout_ms = timeout_ms ?: 3000;
1021
1022
ret = readx_poll_timeout(read_payload_update_status, aux, status,
1023
status & DP_PAYLOAD_ACT_HANDLED || status < 0,
1024
200, timeout_ms * USEC_PER_MSEC);
1025
if (ret < 0 && status >= 0) {
1026
drm_err(aux->drm_dev, "Failed to get ACT after %d ms, last status: %02x\n",
1027
timeout_ms, status);
1028
return -EINVAL;
1029
} else if (status < 0) {
1030
/*
1031
* Failure here isn't unexpected - the hub may have
1032
* just been unplugged
1033
*/
1034
drm_dbg_kms(aux->drm_dev, "Failed to read payload table status: %d\n", status);
1035
return status;
1036
}
1037
1038
return 0;
1039
}
1040
EXPORT_SYMBOL(drm_dp_dpcd_poll_act_handled);
1041
1042
static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid)
1043
{
1044
/* FIXME: get rid of drm_edid_raw() */
1045
const struct edid *edid = drm_edid_raw(drm_edid);
1046
1047
return edid && edid->revision >= 4 &&
1048
edid->input & DRM_EDID_INPUT_DIGITAL &&
1049
(edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
1050
}
1051
1052
/**
1053
* drm_dp_downstream_is_type() - is the downstream facing port of certain type?
1054
* @dpcd: DisplayPort configuration data
1055
* @port_cap: port capabilities
1056
* @type: port type to be checked. Can be:
1057
* %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
1058
* %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
1059
* %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
1060
*
1061
* Caveat: Only works with DPCD 1.1+ port caps.
1062
*
1063
* Returns: whether the downstream facing port matches the type.
1064
*/
1065
bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1066
const u8 port_cap[4], u8 type)
1067
{
1068
return drm_dp_is_branch(dpcd) &&
1069
dpcd[DP_DPCD_REV] >= 0x11 &&
1070
(port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
1071
}
1072
EXPORT_SYMBOL(drm_dp_downstream_is_type);
1073
1074
/**
1075
* drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
1076
* @dpcd: DisplayPort configuration data
1077
* @port_cap: port capabilities
1078
* @drm_edid: EDID
1079
*
1080
* Returns: whether the downstream facing port is TMDS (HDMI/DVI).
1081
*/
1082
bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1083
const u8 port_cap[4],
1084
const struct drm_edid *drm_edid)
1085
{
1086
if (dpcd[DP_DPCD_REV] < 0x11) {
1087
switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1088
case DP_DWN_STRM_PORT_TYPE_TMDS:
1089
return true;
1090
default:
1091
return false;
1092
}
1093
}
1094
1095
switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1096
case DP_DS_PORT_TYPE_DP_DUALMODE:
1097
if (is_edid_digital_input_dp(drm_edid))
1098
return false;
1099
fallthrough;
1100
case DP_DS_PORT_TYPE_DVI:
1101
case DP_DS_PORT_TYPE_HDMI:
1102
return true;
1103
default:
1104
return false;
1105
}
1106
}
1107
EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
1108
1109
/**
1110
* drm_dp_send_real_edid_checksum() - send back real edid checksum value
1111
* @aux: DisplayPort AUX channel
1112
* @real_edid_checksum: real edid checksum for the last block
1113
*
1114
* Returns:
1115
* True on success
1116
*/
1117
bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
1118
u8 real_edid_checksum)
1119
{
1120
u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
1121
1122
if (drm_dp_dpcd_read_byte(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
1123
&auto_test_req) < 0) {
1124
drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
1125
aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
1126
return false;
1127
}
1128
auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
1129
1130
if (drm_dp_dpcd_read_byte(aux, DP_TEST_REQUEST, &link_edid_read) < 0) {
1131
drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
1132
aux->name, DP_TEST_REQUEST);
1133
return false;
1134
}
1135
link_edid_read &= DP_TEST_LINK_EDID_READ;
1136
1137
if (!auto_test_req || !link_edid_read) {
1138
drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
1139
aux->name);
1140
return false;
1141
}
1142
1143
if (drm_dp_dpcd_write_byte(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
1144
auto_test_req) < 0) {
1145
drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1146
aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
1147
return false;
1148
}
1149
1150
/* send back checksum for the last edid extension block data */
1151
if (drm_dp_dpcd_write_byte(aux, DP_TEST_EDID_CHECKSUM,
1152
real_edid_checksum) < 0) {
1153
drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1154
aux->name, DP_TEST_EDID_CHECKSUM);
1155
return false;
1156
}
1157
1158
test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
1159
if (drm_dp_dpcd_write_byte(aux, DP_TEST_RESPONSE, test_resp) < 0) {
1160
drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1161
aux->name, DP_TEST_RESPONSE);
1162
return false;
1163
}
1164
1165
return true;
1166
}
1167
EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
1168
1169
static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
1170
{
1171
u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
1172
1173
if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
1174
port_count = 4;
1175
1176
return port_count;
1177
}
1178
1179
static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
1180
u8 dpcd[DP_RECEIVER_CAP_SIZE])
1181
{
1182
u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
1183
int ret;
1184
1185
/*
1186
* Prior to DP1.3 the bit represented by
1187
* DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
1188
* If it is set DP_DPCD_REV at 0000h could be at a value less than
1189
* the true capability of the panel. The only way to check is to
1190
* then compare 0000h and 2200h.
1191
*/
1192
if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
1193
DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
1194
return 0;
1195
1196
ret = drm_dp_dpcd_read_data(aux, DP_DP13_DPCD_REV, &dpcd_ext,
1197
sizeof(dpcd_ext));
1198
if (ret < 0)
1199
return ret;
1200
1201
if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
1202
drm_dbg_kms(aux->drm_dev,
1203
"%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
1204
aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
1205
return 0;
1206
}
1207
1208
if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
1209
return 0;
1210
1211
drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
1212
1213
memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
1214
1215
return 0;
1216
}
1217
1218
/**
1219
* drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
1220
* available
1221
* @aux: DisplayPort AUX channel
1222
* @dpcd: Buffer to store the resulting DPCD in
1223
*
1224
* Attempts to read the base DPCD caps for @aux. Additionally, this function
1225
* checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
1226
* present.
1227
*
1228
* Returns: %0 if the DPCD was read successfully, negative error code
1229
* otherwise.
1230
*/
1231
int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
1232
u8 dpcd[DP_RECEIVER_CAP_SIZE])
1233
{
1234
int ret;
1235
1236
ret = drm_dp_dpcd_read_data(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
1237
if (ret < 0)
1238
return ret;
1239
if (dpcd[DP_DPCD_REV] == 0)
1240
return -EIO;
1241
1242
ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
1243
if (ret < 0)
1244
return ret;
1245
1246
drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
1247
1248
return ret;
1249
}
1250
EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
1251
1252
/**
1253
* drm_dp_read_downstream_info() - read DPCD downstream port info if available
1254
* @aux: DisplayPort AUX channel
1255
* @dpcd: A cached copy of the port's DPCD
1256
* @downstream_ports: buffer to store the downstream port info in
1257
*
1258
* See also:
1259
* drm_dp_downstream_max_clock()
1260
* drm_dp_downstream_max_bpc()
1261
*
1262
* Returns: 0 if either the downstream port info was read successfully or
1263
* there was no downstream info to read, or a negative error code otherwise.
1264
*/
1265
int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
1266
const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1267
u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
1268
{
1269
int ret;
1270
u8 len;
1271
1272
memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
1273
1274
/* No downstream info to read */
1275
if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
1276
return 0;
1277
1278
/* Some branches advertise having 0 downstream ports, despite also advertising they have a
1279
* downstream port present. The DP spec isn't clear on if this is allowed or not, but since
1280
* some branches do it we need to handle it regardless.
1281
*/
1282
len = drm_dp_downstream_port_count(dpcd);
1283
if (!len)
1284
return 0;
1285
1286
if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
1287
len *= 4;
1288
1289
ret = drm_dp_dpcd_read_data(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
1290
if (ret < 0)
1291
return ret;
1292
1293
drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1294
1295
return 0;
1296
}
1297
EXPORT_SYMBOL(drm_dp_read_downstream_info);
1298
1299
/**
1300
* drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1301
* @dpcd: DisplayPort configuration data
1302
* @port_cap: port capabilities
1303
*
1304
* Returns: Downstream facing port max dot clock in kHz on success,
1305
* or 0 if max clock not defined
1306
*/
1307
int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1308
const u8 port_cap[4])
1309
{
1310
if (!drm_dp_is_branch(dpcd))
1311
return 0;
1312
1313
if (dpcd[DP_DPCD_REV] < 0x11)
1314
return 0;
1315
1316
switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1317
case DP_DS_PORT_TYPE_VGA:
1318
if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1319
return 0;
1320
return port_cap[1] * 8000;
1321
default:
1322
return 0;
1323
}
1324
}
1325
EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1326
1327
/**
1328
* drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1329
* @dpcd: DisplayPort configuration data
1330
* @port_cap: port capabilities
1331
* @drm_edid: EDID
1332
*
1333
* Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1334
* or 0 if max TMDS clock not defined
1335
*/
1336
int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1337
const u8 port_cap[4],
1338
const struct drm_edid *drm_edid)
1339
{
1340
if (!drm_dp_is_branch(dpcd))
1341
return 0;
1342
1343
if (dpcd[DP_DPCD_REV] < 0x11) {
1344
switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1345
case DP_DWN_STRM_PORT_TYPE_TMDS:
1346
return 165000;
1347
default:
1348
return 0;
1349
}
1350
}
1351
1352
switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1353
case DP_DS_PORT_TYPE_DP_DUALMODE:
1354
if (is_edid_digital_input_dp(drm_edid))
1355
return 0;
1356
/*
1357
* It's left up to the driver to check the
1358
* DP dual mode adapter's max TMDS clock.
1359
*
1360
* Unfortunately it looks like branch devices
1361
* may not fordward that the DP dual mode i2c
1362
* access so we just usually get i2c nak :(
1363
*/
1364
fallthrough;
1365
case DP_DS_PORT_TYPE_HDMI:
1366
/*
1367
* We should perhaps assume 165 MHz when detailed cap
1368
* info is not available. But looks like many typical
1369
* branch devices fall into that category and so we'd
1370
* probably end up with users complaining that they can't
1371
* get high resolution modes with their favorite dongle.
1372
*
1373
* So let's limit to 300 MHz instead since DPCD 1.4
1374
* HDMI 2.0 DFPs are required to have the detailed cap
1375
* info. So it's more likely we're dealing with a HDMI 1.4
1376
* compatible* device here.
1377
*/
1378
if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1379
return 300000;
1380
return port_cap[1] * 2500;
1381
case DP_DS_PORT_TYPE_DVI:
1382
if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1383
return 165000;
1384
/* FIXME what to do about DVI dual link? */
1385
return port_cap[1] * 2500;
1386
default:
1387
return 0;
1388
}
1389
}
1390
EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1391
1392
/**
1393
* drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1394
* @dpcd: DisplayPort configuration data
1395
* @port_cap: port capabilities
1396
* @drm_edid: EDID
1397
*
1398
* Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1399
* or 0 if max TMDS clock not defined
1400
*/
1401
int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1402
const u8 port_cap[4],
1403
const struct drm_edid *drm_edid)
1404
{
1405
if (!drm_dp_is_branch(dpcd))
1406
return 0;
1407
1408
if (dpcd[DP_DPCD_REV] < 0x11) {
1409
switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1410
case DP_DWN_STRM_PORT_TYPE_TMDS:
1411
return 25000;
1412
default:
1413
return 0;
1414
}
1415
}
1416
1417
switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1418
case DP_DS_PORT_TYPE_DP_DUALMODE:
1419
if (is_edid_digital_input_dp(drm_edid))
1420
return 0;
1421
fallthrough;
1422
case DP_DS_PORT_TYPE_DVI:
1423
case DP_DS_PORT_TYPE_HDMI:
1424
/*
1425
* Unclear whether the protocol converter could
1426
* utilize pixel replication. Assume it won't.
1427
*/
1428
return 25000;
1429
default:
1430
return 0;
1431
}
1432
}
1433
EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1434
1435
/**
1436
* drm_dp_downstream_max_bpc() - extract downstream facing port max
1437
* bits per component
1438
* @dpcd: DisplayPort configuration data
1439
* @port_cap: downstream facing port capabilities
1440
* @drm_edid: EDID
1441
*
1442
* Returns: Max bpc on success or 0 if max bpc not defined
1443
*/
1444
int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1445
const u8 port_cap[4],
1446
const struct drm_edid *drm_edid)
1447
{
1448
if (!drm_dp_is_branch(dpcd))
1449
return 0;
1450
1451
if (dpcd[DP_DPCD_REV] < 0x11) {
1452
switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1453
case DP_DWN_STRM_PORT_TYPE_DP:
1454
return 0;
1455
default:
1456
return 8;
1457
}
1458
}
1459
1460
switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1461
case DP_DS_PORT_TYPE_DP:
1462
return 0;
1463
case DP_DS_PORT_TYPE_DP_DUALMODE:
1464
if (is_edid_digital_input_dp(drm_edid))
1465
return 0;
1466
fallthrough;
1467
case DP_DS_PORT_TYPE_HDMI:
1468
case DP_DS_PORT_TYPE_DVI:
1469
case DP_DS_PORT_TYPE_VGA:
1470
if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1471
return 8;
1472
1473
switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1474
case DP_DS_8BPC:
1475
return 8;
1476
case DP_DS_10BPC:
1477
return 10;
1478
case DP_DS_12BPC:
1479
return 12;
1480
case DP_DS_16BPC:
1481
return 16;
1482
default:
1483
return 8;
1484
}
1485
break;
1486
default:
1487
return 8;
1488
}
1489
}
1490
EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1491
1492
/**
1493
* drm_dp_downstream_420_passthrough() - determine downstream facing port
1494
* YCbCr 4:2:0 pass-through capability
1495
* @dpcd: DisplayPort configuration data
1496
* @port_cap: downstream facing port capabilities
1497
*
1498
* Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1499
*/
1500
bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1501
const u8 port_cap[4])
1502
{
1503
if (!drm_dp_is_branch(dpcd))
1504
return false;
1505
1506
if (dpcd[DP_DPCD_REV] < 0x13)
1507
return false;
1508
1509
switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1510
case DP_DS_PORT_TYPE_DP:
1511
return true;
1512
case DP_DS_PORT_TYPE_HDMI:
1513
if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1514
return false;
1515
1516
return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1517
default:
1518
return false;
1519
}
1520
}
1521
EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1522
1523
/**
1524
* drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1525
* YCbCr 4:4:4->4:2:0 conversion capability
1526
* @dpcd: DisplayPort configuration data
1527
* @port_cap: downstream facing port capabilities
1528
*
1529
* Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1530
*/
1531
bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1532
const u8 port_cap[4])
1533
{
1534
if (!drm_dp_is_branch(dpcd))
1535
return false;
1536
1537
if (dpcd[DP_DPCD_REV] < 0x13)
1538
return false;
1539
1540
switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1541
case DP_DS_PORT_TYPE_HDMI:
1542
if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1543
return false;
1544
1545
return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1546
default:
1547
return false;
1548
}
1549
}
1550
EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1551
1552
/**
1553
* drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1554
* RGB->YCbCr conversion capability
1555
* @dpcd: DisplayPort configuration data
1556
* @port_cap: downstream facing port capabilities
1557
* @color_spc: Colorspace for which conversion cap is sought
1558
*
1559
* Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1560
* colorspace.
1561
*/
1562
bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1563
const u8 port_cap[4],
1564
u8 color_spc)
1565
{
1566
if (!drm_dp_is_branch(dpcd))
1567
return false;
1568
1569
if (dpcd[DP_DPCD_REV] < 0x13)
1570
return false;
1571
1572
switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1573
case DP_DS_PORT_TYPE_HDMI:
1574
if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1575
return false;
1576
1577
return port_cap[3] & color_spc;
1578
default:
1579
return false;
1580
}
1581
}
1582
EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1583
1584
/**
1585
* drm_dp_downstream_mode() - return a mode for downstream facing port
1586
* @dev: DRM device
1587
* @dpcd: DisplayPort configuration data
1588
* @port_cap: port capabilities
1589
*
1590
* Provides a suitable mode for downstream facing ports without EDID.
1591
*
1592
* Returns: A new drm_display_mode on success or NULL on failure
1593
*/
1594
struct drm_display_mode *
1595
drm_dp_downstream_mode(struct drm_device *dev,
1596
const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1597
const u8 port_cap[4])
1598
1599
{
1600
u8 vic;
1601
1602
if (!drm_dp_is_branch(dpcd))
1603
return NULL;
1604
1605
if (dpcd[DP_DPCD_REV] < 0x11)
1606
return NULL;
1607
1608
switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1609
case DP_DS_PORT_TYPE_NON_EDID:
1610
switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1611
case DP_DS_NON_EDID_720x480i_60:
1612
vic = 6;
1613
break;
1614
case DP_DS_NON_EDID_720x480i_50:
1615
vic = 21;
1616
break;
1617
case DP_DS_NON_EDID_1920x1080i_60:
1618
vic = 5;
1619
break;
1620
case DP_DS_NON_EDID_1920x1080i_50:
1621
vic = 20;
1622
break;
1623
case DP_DS_NON_EDID_1280x720_60:
1624
vic = 4;
1625
break;
1626
case DP_DS_NON_EDID_1280x720_50:
1627
vic = 19;
1628
break;
1629
default:
1630
return NULL;
1631
}
1632
return drm_display_mode_from_cea_vic(dev, vic);
1633
default:
1634
return NULL;
1635
}
1636
}
1637
EXPORT_SYMBOL(drm_dp_downstream_mode);
1638
1639
/**
1640
* drm_dp_downstream_id() - identify branch device
1641
* @aux: DisplayPort AUX channel
1642
* @id: DisplayPort branch device id
1643
*
1644
* Returns branch device id on success or NULL on failure
1645
*/
1646
int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1647
{
1648
return drm_dp_dpcd_read_data(aux, DP_BRANCH_ID, id, 6);
1649
}
1650
EXPORT_SYMBOL(drm_dp_downstream_id);
1651
1652
/**
1653
* drm_dp_downstream_debug() - debug DP branch devices
1654
* @m: pointer for debugfs file
1655
* @dpcd: DisplayPort configuration data
1656
* @port_cap: port capabilities
1657
* @drm_edid: EDID
1658
* @aux: DisplayPort AUX channel
1659
*
1660
*/
1661
void drm_dp_downstream_debug(struct seq_file *m,
1662
const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1663
const u8 port_cap[4],
1664
const struct drm_edid *drm_edid,
1665
struct drm_dp_aux *aux)
1666
{
1667
bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1668
DP_DETAILED_CAP_INFO_AVAILABLE;
1669
int clk;
1670
int bpc;
1671
char id[7];
1672
int len;
1673
uint8_t rev[2];
1674
int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1675
bool branch_device = drm_dp_is_branch(dpcd);
1676
1677
seq_printf(m, "\tDP branch device present: %s\n",
1678
str_yes_no(branch_device));
1679
1680
if (!branch_device)
1681
return;
1682
1683
switch (type) {
1684
case DP_DS_PORT_TYPE_DP:
1685
seq_puts(m, "\t\tType: DisplayPort\n");
1686
break;
1687
case DP_DS_PORT_TYPE_VGA:
1688
seq_puts(m, "\t\tType: VGA\n");
1689
break;
1690
case DP_DS_PORT_TYPE_DVI:
1691
seq_puts(m, "\t\tType: DVI\n");
1692
break;
1693
case DP_DS_PORT_TYPE_HDMI:
1694
seq_puts(m, "\t\tType: HDMI\n");
1695
break;
1696
case DP_DS_PORT_TYPE_NON_EDID:
1697
seq_puts(m, "\t\tType: others without EDID support\n");
1698
break;
1699
case DP_DS_PORT_TYPE_DP_DUALMODE:
1700
seq_puts(m, "\t\tType: DP++\n");
1701
break;
1702
case DP_DS_PORT_TYPE_WIRELESS:
1703
seq_puts(m, "\t\tType: Wireless\n");
1704
break;
1705
default:
1706
seq_puts(m, "\t\tType: N/A\n");
1707
}
1708
1709
memset(id, 0, sizeof(id));
1710
drm_dp_downstream_id(aux, id);
1711
seq_printf(m, "\t\tID: %s\n", id);
1712
1713
len = drm_dp_dpcd_read_data(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1714
if (!len)
1715
seq_printf(m, "\t\tHW: %d.%d\n",
1716
(rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1717
1718
len = drm_dp_dpcd_read_data(aux, DP_BRANCH_SW_REV, rev, 2);
1719
if (!len)
1720
seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1721
1722
if (detailed_cap_info) {
1723
clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1724
if (clk > 0)
1725
seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1726
1727
clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid);
1728
if (clk > 0)
1729
seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1730
1731
clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid);
1732
if (clk > 0)
1733
seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1734
1735
bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid);
1736
1737
if (bpc > 0)
1738
seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1739
}
1740
}
1741
EXPORT_SYMBOL(drm_dp_downstream_debug);
1742
1743
/**
1744
* drm_dp_subconnector_type() - get DP branch device type
1745
* @dpcd: DisplayPort configuration data
1746
* @port_cap: port capabilities
1747
*/
1748
enum drm_mode_subconnector
1749
drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1750
const u8 port_cap[4])
1751
{
1752
int type;
1753
if (!drm_dp_is_branch(dpcd))
1754
return DRM_MODE_SUBCONNECTOR_Native;
1755
/* DP 1.0 approach */
1756
if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1757
type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1758
DP_DWN_STRM_PORT_TYPE_MASK;
1759
1760
switch (type) {
1761
case DP_DWN_STRM_PORT_TYPE_TMDS:
1762
/* Can be HDMI or DVI-D, DVI-D is a safer option */
1763
return DRM_MODE_SUBCONNECTOR_DVID;
1764
case DP_DWN_STRM_PORT_TYPE_ANALOG:
1765
/* Can be VGA or DVI-A, VGA is more popular */
1766
return DRM_MODE_SUBCONNECTOR_VGA;
1767
case DP_DWN_STRM_PORT_TYPE_DP:
1768
return DRM_MODE_SUBCONNECTOR_DisplayPort;
1769
case DP_DWN_STRM_PORT_TYPE_OTHER:
1770
default:
1771
return DRM_MODE_SUBCONNECTOR_Unknown;
1772
}
1773
}
1774
type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1775
1776
switch (type) {
1777
case DP_DS_PORT_TYPE_DP:
1778
case DP_DS_PORT_TYPE_DP_DUALMODE:
1779
return DRM_MODE_SUBCONNECTOR_DisplayPort;
1780
case DP_DS_PORT_TYPE_VGA:
1781
return DRM_MODE_SUBCONNECTOR_VGA;
1782
case DP_DS_PORT_TYPE_DVI:
1783
return DRM_MODE_SUBCONNECTOR_DVID;
1784
case DP_DS_PORT_TYPE_HDMI:
1785
return DRM_MODE_SUBCONNECTOR_HDMIA;
1786
case DP_DS_PORT_TYPE_WIRELESS:
1787
return DRM_MODE_SUBCONNECTOR_Wireless;
1788
case DP_DS_PORT_TYPE_NON_EDID:
1789
default:
1790
return DRM_MODE_SUBCONNECTOR_Unknown;
1791
}
1792
}
1793
EXPORT_SYMBOL(drm_dp_subconnector_type);
1794
1795
/**
1796
* drm_dp_set_subconnector_property - set subconnector for DP connector
1797
* @connector: connector to set property on
1798
* @status: connector status
1799
* @dpcd: DisplayPort configuration data
1800
* @port_cap: port capabilities
1801
*
1802
* Called by a driver on every detect event.
1803
*/
1804
void drm_dp_set_subconnector_property(struct drm_connector *connector,
1805
enum drm_connector_status status,
1806
const u8 *dpcd,
1807
const u8 port_cap[4])
1808
{
1809
enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1810
1811
if (status == connector_status_connected)
1812
subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1813
drm_object_property_set_value(&connector->base,
1814
connector->dev->mode_config.dp_subconnector_property,
1815
subconnector);
1816
}
1817
EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1818
1819
/**
1820
* drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1821
* count
1822
* @connector: The DRM connector to check
1823
* @dpcd: A cached copy of the connector's DPCD RX capabilities
1824
* @desc: A cached copy of the connector's DP descriptor
1825
*
1826
* See also: drm_dp_read_sink_count()
1827
*
1828
* Returns: %True if the (e)DP connector has a valid sink count that should
1829
* be probed, %false otherwise.
1830
*/
1831
bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1832
const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1833
const struct drm_dp_desc *desc)
1834
{
1835
/* Some eDP panels don't set a valid value for the sink count */
1836
return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1837
dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1838
dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1839
!drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1840
}
1841
EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1842
1843
/**
1844
* drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1845
* @aux: The DP AUX channel to use
1846
*
1847
* See also: drm_dp_read_sink_count_cap()
1848
*
1849
* Returns: The current sink count reported by @aux, or a negative error code
1850
* otherwise.
1851
*/
1852
int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1853
{
1854
u8 count;
1855
int ret;
1856
1857
ret = drm_dp_dpcd_read_byte(aux, DP_SINK_COUNT, &count);
1858
if (ret < 0)
1859
return ret;
1860
1861
return DP_GET_SINK_COUNT(count);
1862
}
1863
EXPORT_SYMBOL(drm_dp_read_sink_count);
1864
1865
/*
1866
* I2C-over-AUX implementation
1867
*/
1868
1869
static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1870
{
1871
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1872
I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1873
I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1874
I2C_FUNC_10BIT_ADDR;
1875
}
1876
1877
static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1878
{
1879
/*
1880
* In case of i2c defer or short i2c ack reply to a write,
1881
* we need to switch to WRITE_STATUS_UPDATE to drain the
1882
* rest of the message
1883
*/
1884
if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1885
msg->request &= DP_AUX_I2C_MOT;
1886
msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1887
}
1888
}
1889
1890
#define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1891
#define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1892
#define AUX_STOP_LEN 4
1893
#define AUX_CMD_LEN 4
1894
#define AUX_ADDRESS_LEN 20
1895
#define AUX_REPLY_PAD_LEN 4
1896
#define AUX_LENGTH_LEN 8
1897
1898
/*
1899
* Calculate the duration of the AUX request/reply in usec. Gives the
1900
* "best" case estimate, ie. successful while as short as possible.
1901
*/
1902
static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1903
{
1904
int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1905
AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1906
1907
if ((msg->request & DP_AUX_I2C_READ) == 0)
1908
len += msg->size * 8;
1909
1910
return len;
1911
}
1912
1913
static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1914
{
1915
int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1916
AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1917
1918
/*
1919
* For read we expect what was asked. For writes there will
1920
* be 0 or 1 data bytes. Assume 0 for the "best" case.
1921
*/
1922
if (msg->request & DP_AUX_I2C_READ)
1923
len += msg->size * 8;
1924
1925
return len;
1926
}
1927
1928
#define I2C_START_LEN 1
1929
#define I2C_STOP_LEN 1
1930
#define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1931
#define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1932
1933
/*
1934
* Calculate the length of the i2c transfer in usec, assuming
1935
* the i2c bus speed is as specified. Gives the "worst"
1936
* case estimate, ie. successful while as long as possible.
1937
* Doesn't account the "MOT" bit, and instead assumes each
1938
* message includes a START, ADDRESS and STOP. Neither does it
1939
* account for additional random variables such as clock stretching.
1940
*/
1941
static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1942
int i2c_speed_khz)
1943
{
1944
/* AUX bitrate is 1MHz, i2c bitrate as specified */
1945
return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1946
msg->size * I2C_DATA_LEN +
1947
I2C_STOP_LEN) * 1000, i2c_speed_khz);
1948
}
1949
1950
/*
1951
* Determine how many retries should be attempted to successfully transfer
1952
* the specified message, based on the estimated durations of the
1953
* i2c and AUX transfers.
1954
*/
1955
static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1956
int i2c_speed_khz)
1957
{
1958
int aux_time_us = drm_dp_aux_req_duration(msg) +
1959
drm_dp_aux_reply_duration(msg);
1960
int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1961
1962
return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1963
}
1964
1965
/*
1966
* FIXME currently assumes 10 kHz as some real world devices seem
1967
* to require it. We should query/set the speed via DPCD if supported.
1968
*/
1969
static int dp_aux_i2c_speed_khz __read_mostly = 10;
1970
module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1971
MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1972
"Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1973
1974
/*
1975
* Transfer a single I2C-over-AUX message and handle various error conditions,
1976
* retrying the transaction as appropriate. It is assumed that the
1977
* &drm_dp_aux.transfer function does not modify anything in the msg other than the
1978
* reply field.
1979
*
1980
* Returns bytes transferred on success, or a negative error code on failure.
1981
*/
1982
static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1983
{
1984
unsigned int retry, defer_i2c;
1985
int ret;
1986
/*
1987
* DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1988
* is required to retry at least seven times upon receiving AUX_DEFER
1989
* before giving up the AUX transaction.
1990
*
1991
* We also try to account for the i2c bus speed.
1992
*/
1993
int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1994
1995
for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1996
ret = aux->transfer(aux, msg);
1997
if (ret < 0) {
1998
if (ret == -EBUSY)
1999
continue;
2000
2001
/*
2002
* While timeouts can be errors, they're usually normal
2003
* behavior (for instance, when a driver tries to
2004
* communicate with a non-existent DisplayPort device).
2005
* Avoid spamming the kernel log with timeout errors.
2006
*/
2007
if (ret == -ETIMEDOUT)
2008
drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
2009
aux->name);
2010
else
2011
drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
2012
aux->name, ret);
2013
return ret;
2014
}
2015
2016
2017
switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
2018
case DP_AUX_NATIVE_REPLY_ACK:
2019
/*
2020
* For I2C-over-AUX transactions this isn't enough, we
2021
* need to check for the I2C ACK reply.
2022
*/
2023
break;
2024
2025
case DP_AUX_NATIVE_REPLY_NACK:
2026
drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
2027
aux->name, ret, msg->size);
2028
return -EREMOTEIO;
2029
2030
case DP_AUX_NATIVE_REPLY_DEFER:
2031
drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
2032
/*
2033
* We could check for I2C bit rate capabilities and if
2034
* available adjust this interval. We could also be
2035
* more careful with DP-to-legacy adapters where a
2036
* long legacy cable may force very low I2C bit rates.
2037
*
2038
* For now just defer for long enough to hopefully be
2039
* safe for all use-cases.
2040
*/
2041
usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
2042
continue;
2043
2044
default:
2045
drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
2046
aux->name, msg->reply);
2047
return -EREMOTEIO;
2048
}
2049
2050
switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
2051
case DP_AUX_I2C_REPLY_ACK:
2052
/*
2053
* Both native ACK and I2C ACK replies received. We
2054
* can assume the transfer was successful.
2055
*/
2056
if (ret != msg->size)
2057
drm_dp_i2c_msg_write_status_update(msg);
2058
return ret;
2059
2060
case DP_AUX_I2C_REPLY_NACK:
2061
drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
2062
aux->name, ret, msg->size);
2063
aux->i2c_nack_count++;
2064
return -EREMOTEIO;
2065
2066
case DP_AUX_I2C_REPLY_DEFER:
2067
drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
2068
/* DP Compliance Test 4.2.2.5 Requirement:
2069
* Must have at least 7 retries for I2C defers on the
2070
* transaction to pass this test
2071
*/
2072
aux->i2c_defer_count++;
2073
if (defer_i2c < 7)
2074
defer_i2c++;
2075
usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
2076
drm_dp_i2c_msg_write_status_update(msg);
2077
2078
continue;
2079
2080
default:
2081
drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
2082
aux->name, msg->reply);
2083
return -EREMOTEIO;
2084
}
2085
}
2086
2087
drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
2088
return -EREMOTEIO;
2089
}
2090
2091
static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
2092
const struct i2c_msg *i2c_msg)
2093
{
2094
msg->request = (i2c_msg->flags & I2C_M_RD) ?
2095
DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
2096
if (!(i2c_msg->flags & I2C_M_STOP))
2097
msg->request |= DP_AUX_I2C_MOT;
2098
}
2099
2100
/*
2101
* Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
2102
*
2103
* Returns an error code on failure, or a recommended transfer size on success.
2104
*/
2105
static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
2106
{
2107
int err, ret = orig_msg->size;
2108
struct drm_dp_aux_msg msg = *orig_msg;
2109
2110
while (msg.size > 0) {
2111
err = drm_dp_i2c_do_msg(aux, &msg);
2112
if (err <= 0)
2113
return err == 0 ? -EPROTO : err;
2114
2115
if (err < msg.size && err < ret) {
2116
drm_dbg_kms(aux->drm_dev,
2117
"%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
2118
aux->name, msg.size, err);
2119
ret = err;
2120
}
2121
2122
msg.size -= err;
2123
msg.buffer += err;
2124
}
2125
2126
return ret;
2127
}
2128
2129
/*
2130
* Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
2131
* packets to be as large as possible. If not, the I2C transactions never
2132
* succeed. Hence the default is maximum.
2133
*/
2134
static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
2135
module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
2136
MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
2137
"Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
2138
2139
static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
2140
int num)
2141
{
2142
struct drm_dp_aux *aux = adapter->algo_data;
2143
unsigned int i, j;
2144
unsigned transfer_size;
2145
struct drm_dp_aux_msg msg;
2146
int err = 0;
2147
2148
if (aux->powered_down)
2149
return -EBUSY;
2150
2151
dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
2152
2153
memset(&msg, 0, sizeof(msg));
2154
2155
for (i = 0; i < num; i++) {
2156
msg.address = msgs[i].addr;
2157
2158
if (!aux->no_zero_sized) {
2159
drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2160
/* Send a bare address packet to start the transaction.
2161
* Zero sized messages specify an address only (bare
2162
* address) transaction.
2163
*/
2164
msg.buffer = NULL;
2165
msg.size = 0;
2166
err = drm_dp_i2c_do_msg(aux, &msg);
2167
}
2168
2169
/*
2170
* Reset msg.request in case in case it got
2171
* changed into a WRITE_STATUS_UPDATE.
2172
*/
2173
drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2174
2175
if (err < 0)
2176
break;
2177
/* We want each transaction to be as large as possible, but
2178
* we'll go to smaller sizes if the hardware gives us a
2179
* short reply.
2180
*/
2181
transfer_size = dp_aux_i2c_transfer_size;
2182
for (j = 0; j < msgs[i].len; j += msg.size) {
2183
msg.buffer = msgs[i].buf + j;
2184
msg.size = min(transfer_size, msgs[i].len - j);
2185
2186
if (j + msg.size == msgs[i].len && aux->no_zero_sized)
2187
msg.request &= ~DP_AUX_I2C_MOT;
2188
err = drm_dp_i2c_drain_msg(aux, &msg);
2189
2190
/*
2191
* Reset msg.request in case in case it got
2192
* changed into a WRITE_STATUS_UPDATE.
2193
*/
2194
drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2195
2196
if (err < 0)
2197
break;
2198
transfer_size = err;
2199
}
2200
if (err < 0)
2201
break;
2202
}
2203
if (err >= 0)
2204
err = num;
2205
2206
if (!aux->no_zero_sized) {
2207
/* Send a bare address packet to close out the transaction.
2208
* Zero sized messages specify an address only (bare
2209
* address) transaction.
2210
*/
2211
msg.request &= ~DP_AUX_I2C_MOT;
2212
msg.buffer = NULL;
2213
msg.size = 0;
2214
(void)drm_dp_i2c_do_msg(aux, &msg);
2215
}
2216
return err;
2217
}
2218
2219
static const struct i2c_algorithm drm_dp_i2c_algo = {
2220
.functionality = drm_dp_i2c_functionality,
2221
.master_xfer = drm_dp_i2c_xfer,
2222
};
2223
2224
static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
2225
{
2226
return container_of(i2c, struct drm_dp_aux, ddc);
2227
}
2228
2229
static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
2230
{
2231
mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
2232
}
2233
2234
static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
2235
{
2236
return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
2237
}
2238
2239
static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
2240
{
2241
mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
2242
}
2243
2244
static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
2245
.lock_bus = lock_bus,
2246
.trylock_bus = trylock_bus,
2247
.unlock_bus = unlock_bus,
2248
};
2249
2250
static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
2251
{
2252
u8 buf, count;
2253
int ret;
2254
2255
ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf);
2256
if (ret < 0)
2257
return ret;
2258
2259
WARN_ON(!(buf & DP_TEST_SINK_START));
2260
2261
ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK_MISC, &buf);
2262
if (ret < 0)
2263
return ret;
2264
2265
count = buf & DP_TEST_COUNT_MASK;
2266
if (count == aux->crc_count)
2267
return -EAGAIN; /* No CRC yet */
2268
2269
aux->crc_count = count;
2270
2271
/*
2272
* At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
2273
* per component (RGB or CrYCb).
2274
*/
2275
return drm_dp_dpcd_read_data(aux, DP_TEST_CRC_R_CR, crc, 6);
2276
}
2277
2278
static void drm_dp_aux_crc_work(struct work_struct *work)
2279
{
2280
struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
2281
crc_work);
2282
struct drm_crtc *crtc;
2283
u8 crc_bytes[6];
2284
uint32_t crcs[3];
2285
int ret;
2286
2287
if (WARN_ON(!aux->crtc))
2288
return;
2289
2290
crtc = aux->crtc;
2291
while (crtc->crc.opened) {
2292
drm_crtc_wait_one_vblank(crtc);
2293
if (!crtc->crc.opened)
2294
break;
2295
2296
ret = drm_dp_aux_get_crc(aux, crc_bytes);
2297
if (ret == -EAGAIN) {
2298
usleep_range(1000, 2000);
2299
ret = drm_dp_aux_get_crc(aux, crc_bytes);
2300
}
2301
2302
if (ret == -EAGAIN) {
2303
drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2304
aux->name, ret);
2305
continue;
2306
} else if (ret) {
2307
drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2308
continue;
2309
}
2310
2311
crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2312
crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2313
crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2314
drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2315
}
2316
}
2317
2318
/**
2319
* drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2320
* @aux: DisplayPort AUX channel
2321
*
2322
* Used for remote aux channel in general. Merely initialize the crc work
2323
* struct.
2324
*/
2325
void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2326
{
2327
INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2328
}
2329
EXPORT_SYMBOL(drm_dp_remote_aux_init);
2330
2331
/**
2332
* drm_dp_aux_init() - minimally initialise an aux channel
2333
* @aux: DisplayPort AUX channel
2334
*
2335
* If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2336
* the outside world, call drm_dp_aux_init() first. For drivers which are
2337
* grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2338
* &drm_connector), you must still call drm_dp_aux_register() once the connector
2339
* has been registered to allow userspace access to the auxiliary DP channel.
2340
* Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2341
* early as possible so that the &drm_device that corresponds to the AUX adapter
2342
* may be mentioned in debugging output from the DRM DP helpers.
2343
*
2344
* For devices which use a separate platform device for their AUX adapters, this
2345
* may be called as early as required by the driver.
2346
*
2347
*/
2348
void drm_dp_aux_init(struct drm_dp_aux *aux)
2349
{
2350
mutex_init(&aux->hw_mutex);
2351
mutex_init(&aux->cec.lock);
2352
INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2353
2354
aux->ddc.algo = &drm_dp_i2c_algo;
2355
aux->ddc.algo_data = aux;
2356
aux->ddc.retries = 3;
2357
2358
aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2359
}
2360
EXPORT_SYMBOL(drm_dp_aux_init);
2361
2362
/**
2363
* drm_dp_aux_register() - initialise and register aux channel
2364
* @aux: DisplayPort AUX channel
2365
*
2366
* Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2367
* should only be called once the parent of @aux, &drm_dp_aux.dev, is
2368
* initialized. For devices which are grandparents of their AUX channels,
2369
* &drm_dp_aux.dev will typically be the &drm_connector &device which
2370
* corresponds to @aux. For these devices, it's advised to call
2371
* drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2372
* call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2373
* Functions which don't follow this will likely Oops when
2374
* %CONFIG_DRM_DISPLAY_DP_AUX_CHARDEV is enabled.
2375
*
2376
* For devices where the AUX channel is a device that exists independently of
2377
* the &drm_device that uses it, such as SoCs and bridge devices, it is
2378
* recommended to call drm_dp_aux_register() after a &drm_device has been
2379
* assigned to &drm_dp_aux.drm_dev, and likewise to call
2380
* drm_dp_aux_unregister() once the &drm_device should no longer be associated
2381
* with the AUX channel (e.g. on bridge detach).
2382
*
2383
* Drivers which need to use the aux channel before either of the two points
2384
* mentioned above need to call drm_dp_aux_init() in order to use the AUX
2385
* channel before registration.
2386
*
2387
* Returns 0 on success or a negative error code on failure.
2388
*/
2389
int drm_dp_aux_register(struct drm_dp_aux *aux)
2390
{
2391
int ret;
2392
2393
WARN_ON_ONCE(!aux->drm_dev);
2394
2395
if (!aux->ddc.algo)
2396
drm_dp_aux_init(aux);
2397
2398
aux->ddc.owner = THIS_MODULE;
2399
aux->ddc.dev.parent = aux->dev;
2400
2401
strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2402
sizeof(aux->ddc.name));
2403
2404
ret = drm_dp_aux_register_devnode(aux);
2405
if (ret)
2406
return ret;
2407
2408
ret = i2c_add_adapter(&aux->ddc);
2409
if (ret) {
2410
drm_dp_aux_unregister_devnode(aux);
2411
return ret;
2412
}
2413
2414
return 0;
2415
}
2416
EXPORT_SYMBOL(drm_dp_aux_register);
2417
2418
/**
2419
* drm_dp_aux_unregister() - unregister an AUX adapter
2420
* @aux: DisplayPort AUX channel
2421
*/
2422
void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2423
{
2424
drm_dp_aux_unregister_devnode(aux);
2425
i2c_del_adapter(&aux->ddc);
2426
}
2427
EXPORT_SYMBOL(drm_dp_aux_unregister);
2428
2429
#define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2430
2431
/**
2432
* drm_dp_psr_setup_time() - PSR setup in time usec
2433
* @psr_cap: PSR capabilities from DPCD
2434
*
2435
* Returns:
2436
* PSR setup time for the panel in microseconds, negative
2437
* error code on failure.
2438
*/
2439
int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2440
{
2441
static const u16 psr_setup_time_us[] = {
2442
PSR_SETUP_TIME(330),
2443
PSR_SETUP_TIME(275),
2444
PSR_SETUP_TIME(220),
2445
PSR_SETUP_TIME(165),
2446
PSR_SETUP_TIME(110),
2447
PSR_SETUP_TIME(55),
2448
PSR_SETUP_TIME(0),
2449
};
2450
int i;
2451
2452
i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2453
if (i >= ARRAY_SIZE(psr_setup_time_us))
2454
return -EINVAL;
2455
2456
return psr_setup_time_us[i];
2457
}
2458
EXPORT_SYMBOL(drm_dp_psr_setup_time);
2459
2460
#undef PSR_SETUP_TIME
2461
2462
/**
2463
* drm_dp_start_crc() - start capture of frame CRCs
2464
* @aux: DisplayPort AUX channel
2465
* @crtc: CRTC displaying the frames whose CRCs are to be captured
2466
*
2467
* Returns 0 on success or a negative error code on failure.
2468
*/
2469
int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2470
{
2471
u8 buf;
2472
int ret;
2473
2474
ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf);
2475
if (ret < 0)
2476
return ret;
2477
2478
ret = drm_dp_dpcd_write_byte(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2479
if (ret < 0)
2480
return ret;
2481
2482
aux->crc_count = 0;
2483
aux->crtc = crtc;
2484
schedule_work(&aux->crc_work);
2485
2486
return 0;
2487
}
2488
EXPORT_SYMBOL(drm_dp_start_crc);
2489
2490
/**
2491
* drm_dp_stop_crc() - stop capture of frame CRCs
2492
* @aux: DisplayPort AUX channel
2493
*
2494
* Returns 0 on success or a negative error code on failure.
2495
*/
2496
int drm_dp_stop_crc(struct drm_dp_aux *aux)
2497
{
2498
u8 buf;
2499
int ret;
2500
2501
ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf);
2502
if (ret < 0)
2503
return ret;
2504
2505
ret = drm_dp_dpcd_write_byte(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2506
if (ret < 0)
2507
return ret;
2508
2509
flush_work(&aux->crc_work);
2510
aux->crtc = NULL;
2511
2512
return 0;
2513
}
2514
EXPORT_SYMBOL(drm_dp_stop_crc);
2515
2516
struct dpcd_quirk {
2517
u8 oui[3];
2518
u8 device_id[6];
2519
bool is_branch;
2520
u32 quirks;
2521
};
2522
2523
#define OUI(first, second, third) { (first), (second), (third) }
2524
#define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2525
{ (first), (second), (third), (fourth), (fifth), (sixth) }
2526
2527
#define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0)
2528
2529
static const struct dpcd_quirk dpcd_quirk_list[] = {
2530
/* Analogix 7737 needs reduced M and N at HBR2 link rates */
2531
{ OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2532
/* LG LP140WF6-SPM1 eDP panel */
2533
{ OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2534
/* Apple panels need some additional handling to support PSR */
2535
{ OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2536
/* CH7511 seems to leave SINK_COUNT zeroed */
2537
{ OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2538
/* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2539
{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2540
/* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */
2541
{ OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2542
/* MediaTek panels (at least in U3224KBA) require DSC for modes with a short HBLANK on UHBR links. */
2543
{ OUI(0x00, 0x0C, 0xE7), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2544
/* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2545
{ OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2546
};
2547
2548
#undef OUI
2549
2550
/*
2551
* Get a bit mask of DPCD quirks for the sink/branch device identified by
2552
* ident. The quirk data is shared but it's up to the drivers to act on the
2553
* data.
2554
*
2555
* For now, only the OUI (first three bytes) is used, but this may be extended
2556
* to device identification string and hardware/firmware revisions later.
2557
*/
2558
static u32
2559
drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2560
{
2561
const struct dpcd_quirk *quirk;
2562
u32 quirks = 0;
2563
int i;
2564
u8 any_device[] = DEVICE_ID_ANY;
2565
2566
for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2567
quirk = &dpcd_quirk_list[i];
2568
2569
if (quirk->is_branch != is_branch)
2570
continue;
2571
2572
if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2573
continue;
2574
2575
if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2576
memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2577
continue;
2578
2579
quirks |= quirk->quirks;
2580
}
2581
2582
return quirks;
2583
}
2584
2585
#undef DEVICE_ID_ANY
2586
#undef DEVICE_ID
2587
2588
static int drm_dp_read_ident(struct drm_dp_aux *aux, unsigned int offset,
2589
struct drm_dp_dpcd_ident *ident)
2590
{
2591
return drm_dp_dpcd_read_data(aux, offset, ident, sizeof(*ident));
2592
}
2593
2594
static void drm_dp_dump_desc(struct drm_dp_aux *aux,
2595
const char *device_name, const struct drm_dp_desc *desc)
2596
{
2597
const struct drm_dp_dpcd_ident *ident = &desc->ident;
2598
2599
drm_dbg_kms(aux->drm_dev,
2600
"%s: %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2601
aux->name, device_name,
2602
(int)sizeof(ident->oui), ident->oui,
2603
(int)strnlen(ident->device_id, sizeof(ident->device_id)), ident->device_id,
2604
ident->hw_rev >> 4, ident->hw_rev & 0xf,
2605
ident->sw_major_rev, ident->sw_minor_rev,
2606
desc->quirks);
2607
}
2608
2609
/**
2610
* drm_dp_read_desc - read sink/branch descriptor from DPCD
2611
* @aux: DisplayPort AUX channel
2612
* @desc: Device descriptor to fill from DPCD
2613
* @is_branch: true for branch devices, false for sink devices
2614
*
2615
* Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2616
* identification.
2617
*
2618
* Returns 0 on success or a negative error code on failure.
2619
*/
2620
int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2621
bool is_branch)
2622
{
2623
struct drm_dp_dpcd_ident *ident = &desc->ident;
2624
unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2625
int ret;
2626
2627
ret = drm_dp_read_ident(aux, offset, ident);
2628
if (ret < 0)
2629
return ret;
2630
2631
desc->quirks = drm_dp_get_quirks(ident, is_branch);
2632
2633
drm_dp_dump_desc(aux, is_branch ? "DP branch" : "DP sink", desc);
2634
2635
return 0;
2636
}
2637
EXPORT_SYMBOL(drm_dp_read_desc);
2638
2639
/**
2640
* drm_dp_dump_lttpr_desc - read and dump the DPCD descriptor for an LTTPR PHY
2641
* @aux: DisplayPort AUX channel
2642
* @dp_phy: LTTPR PHY instance
2643
*
2644
* Read the DPCD LTTPR PHY descriptor for @dp_phy and print a debug message
2645
* with its details to dmesg.
2646
*
2647
* Returns 0 on success or a negative error code on failure.
2648
*/
2649
int drm_dp_dump_lttpr_desc(struct drm_dp_aux *aux, enum drm_dp_phy dp_phy)
2650
{
2651
struct drm_dp_desc desc = {};
2652
int ret;
2653
2654
if (drm_WARN_ON(aux->drm_dev, dp_phy < DP_PHY_LTTPR1 || dp_phy > DP_MAX_LTTPR_COUNT))
2655
return -EINVAL;
2656
2657
ret = drm_dp_read_ident(aux, DP_OUI_PHY_REPEATER(dp_phy), &desc.ident);
2658
if (ret < 0)
2659
return ret;
2660
2661
drm_dp_dump_desc(aux, drm_dp_phy_name(dp_phy), &desc);
2662
2663
return 0;
2664
}
2665
EXPORT_SYMBOL(drm_dp_dump_lttpr_desc);
2666
2667
/**
2668
* drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment
2669
* @dsc_dpcd: DSC capabilities from DPCD
2670
*
2671
* Returns the bpp precision supported by the DP sink.
2672
*/
2673
u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2674
{
2675
u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT];
2676
2677
switch (bpp_increment_dpcd & DP_DSC_BITS_PER_PIXEL_MASK) {
2678
case DP_DSC_BITS_PER_PIXEL_1_16:
2679
return 16;
2680
case DP_DSC_BITS_PER_PIXEL_1_8:
2681
return 8;
2682
case DP_DSC_BITS_PER_PIXEL_1_4:
2683
return 4;
2684
case DP_DSC_BITS_PER_PIXEL_1_2:
2685
return 2;
2686
case DP_DSC_BITS_PER_PIXEL_1_1:
2687
return 1;
2688
}
2689
2690
return 0;
2691
}
2692
EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr);
2693
2694
/**
2695
* drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2696
* supported by the DSC sink.
2697
* @dsc_dpcd: DSC capabilities from DPCD
2698
* @is_edp: true if its eDP, false for DP
2699
*
2700
* Read the slice capabilities DPCD register from DSC sink to get
2701
* the maximum slice count supported. This is used to populate
2702
* the DSC parameters in the &struct drm_dsc_config by the driver.
2703
* Driver creates an infoframe using these parameters to populate
2704
* &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2705
* infoframe using the helper function drm_dsc_pps_infoframe_pack()
2706
*
2707
* Returns:
2708
* Maximum slice count supported by DSC sink or 0 its invalid
2709
*/
2710
u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2711
bool is_edp)
2712
{
2713
u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2714
2715
if (is_edp) {
2716
/* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2717
if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2718
return 4;
2719
if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2720
return 2;
2721
if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2722
return 1;
2723
} else {
2724
/* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2725
u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2726
2727
if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2728
return 24;
2729
if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2730
return 20;
2731
if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2732
return 16;
2733
if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2734
return 12;
2735
if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2736
return 10;
2737
if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2738
return 8;
2739
if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2740
return 6;
2741
if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2742
return 4;
2743
if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2744
return 2;
2745
if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2746
return 1;
2747
}
2748
2749
return 0;
2750
}
2751
EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2752
2753
/**
2754
* drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2755
* @dsc_dpcd: DSC capabilities from DPCD
2756
*
2757
* Read the DSC DPCD register to parse the line buffer depth in bits which is
2758
* number of bits of precision within the decoder line buffer supported by
2759
* the DSC sink. This is used to populate the DSC parameters in the
2760
* &struct drm_dsc_config by the driver.
2761
* Driver creates an infoframe using these parameters to populate
2762
* &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2763
* infoframe using the helper function drm_dsc_pps_infoframe_pack()
2764
*
2765
* Returns:
2766
* Line buffer depth supported by DSC panel or 0 its invalid
2767
*/
2768
u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2769
{
2770
u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2771
2772
switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2773
case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2774
return 9;
2775
case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2776
return 10;
2777
case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2778
return 11;
2779
case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2780
return 12;
2781
case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2782
return 13;
2783
case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2784
return 14;
2785
case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2786
return 15;
2787
case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2788
return 16;
2789
case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2790
return 8;
2791
}
2792
2793
return 0;
2794
}
2795
EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2796
2797
/**
2798
* drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2799
* values supported by the DSC sink.
2800
* @dsc_dpcd: DSC capabilities from DPCD
2801
* @dsc_bpc: An array to be filled by this helper with supported
2802
* input bpcs.
2803
*
2804
* Read the DSC DPCD from the sink device to parse the supported bits per
2805
* component values. This is used to populate the DSC parameters
2806
* in the &struct drm_dsc_config by the driver.
2807
* Driver creates an infoframe using these parameters to populate
2808
* &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2809
* infoframe using the helper function drm_dsc_pps_infoframe_pack()
2810
*
2811
* Returns:
2812
* Number of input BPC values parsed from the DPCD
2813
*/
2814
int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2815
u8 dsc_bpc[3])
2816
{
2817
int num_bpc = 0;
2818
u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2819
2820
if (!drm_dp_sink_supports_dsc(dsc_dpcd))
2821
return 0;
2822
2823
if (color_depth & DP_DSC_12_BPC)
2824
dsc_bpc[num_bpc++] = 12;
2825
if (color_depth & DP_DSC_10_BPC)
2826
dsc_bpc[num_bpc++] = 10;
2827
2828
/* A DP DSC Sink device shall support 8 bpc. */
2829
dsc_bpc[num_bpc++] = 8;
2830
2831
return num_bpc;
2832
}
2833
EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2834
2835
static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2836
const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2837
u8 *buf, int buf_size)
2838
{
2839
/*
2840
* At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2841
* corrupted values when reading from the 0xF0000- range with a block
2842
* size bigger than 1.
2843
*/
2844
int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2845
int offset;
2846
int ret;
2847
2848
for (offset = 0; offset < buf_size; offset += block_size) {
2849
ret = drm_dp_dpcd_read_data(aux,
2850
address + offset,
2851
&buf[offset], block_size);
2852
if (ret < 0)
2853
return ret;
2854
}
2855
2856
return 0;
2857
}
2858
2859
/**
2860
* drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2861
* @aux: DisplayPort AUX channel
2862
* @dpcd: DisplayPort configuration data
2863
* @caps: buffer to return the capability info in
2864
*
2865
* Read capabilities common to all LTTPRs.
2866
*
2867
* Returns 0 on success or a negative error code on failure.
2868
*/
2869
int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2870
const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2871
u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2872
{
2873
return drm_dp_read_lttpr_regs(aux, dpcd,
2874
DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2875
caps, DP_LTTPR_COMMON_CAP_SIZE);
2876
}
2877
EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2878
2879
/**
2880
* drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2881
* @aux: DisplayPort AUX channel
2882
* @dpcd: DisplayPort configuration data
2883
* @dp_phy: LTTPR PHY to read the capabilities for
2884
* @caps: buffer to return the capability info in
2885
*
2886
* Read the capabilities for the given LTTPR PHY.
2887
*
2888
* Returns 0 on success or a negative error code on failure.
2889
*/
2890
int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2891
const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2892
enum drm_dp_phy dp_phy,
2893
u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2894
{
2895
return drm_dp_read_lttpr_regs(aux, dpcd,
2896
DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2897
caps, DP_LTTPR_PHY_CAP_SIZE);
2898
}
2899
EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2900
2901
static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2902
{
2903
return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2904
}
2905
2906
/**
2907
* drm_dp_lttpr_count - get the number of detected LTTPRs
2908
* @caps: LTTPR common capabilities
2909
*
2910
* Get the number of detected LTTPRs from the LTTPR common capabilities info.
2911
*
2912
* Returns:
2913
* -ERANGE if more than supported number (8) of LTTPRs are detected
2914
* -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2915
* otherwise the number of detected LTTPRs
2916
*/
2917
int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2918
{
2919
u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2920
2921
switch (hweight8(count)) {
2922
case 0:
2923
return 0;
2924
case 1:
2925
return 8 - ilog2(count);
2926
case 8:
2927
return -ERANGE;
2928
default:
2929
return -EINVAL;
2930
}
2931
}
2932
EXPORT_SYMBOL(drm_dp_lttpr_count);
2933
2934
/**
2935
* drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2936
* @caps: LTTPR common capabilities
2937
*
2938
* Returns the maximum link rate supported by all detected LTTPRs.
2939
*/
2940
int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2941
{
2942
u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2943
2944
return drm_dp_bw_code_to_link_rate(rate);
2945
}
2946
EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2947
2948
/**
2949
* drm_dp_lttpr_set_transparent_mode() - set the LTTPR in transparent mode
2950
* @aux: DisplayPort AUX channel
2951
* @enable: Enable or disable transparent mode
2952
*
2953
* Returns: 0 on success or a negative error code on failure.
2954
*/
2955
int drm_dp_lttpr_set_transparent_mode(struct drm_dp_aux *aux, bool enable)
2956
{
2957
u8 val = enable ? DP_PHY_REPEATER_MODE_TRANSPARENT :
2958
DP_PHY_REPEATER_MODE_NON_TRANSPARENT;
2959
int ret = drm_dp_dpcd_writeb(aux, DP_PHY_REPEATER_MODE, val);
2960
2961
if (ret < 0)
2962
return ret;
2963
2964
return (ret == 1) ? 0 : -EIO;
2965
}
2966
EXPORT_SYMBOL(drm_dp_lttpr_set_transparent_mode);
2967
2968
/**
2969
* drm_dp_lttpr_init() - init LTTPR transparency mode according to DP standard
2970
* @aux: DisplayPort AUX channel
2971
* @lttpr_count: Number of LTTPRs. Between 0 and 8, according to DP standard.
2972
* Negative error code for any non-valid number.
2973
* See drm_dp_lttpr_count().
2974
*
2975
* Returns: 0 on success or a negative error code on failure.
2976
*/
2977
int drm_dp_lttpr_init(struct drm_dp_aux *aux, int lttpr_count)
2978
{
2979
int ret;
2980
2981
if (!lttpr_count)
2982
return 0;
2983
2984
/*
2985
* See DP Standard v2.0 3.6.6.1 about the explicit disabling of
2986
* non-transparent mode and the disable->enable non-transparent mode
2987
* sequence.
2988
*/
2989
ret = drm_dp_lttpr_set_transparent_mode(aux, true);
2990
if (ret)
2991
return ret;
2992
2993
if (lttpr_count < 0)
2994
return -ENODEV;
2995
2996
if (drm_dp_lttpr_set_transparent_mode(aux, false)) {
2997
/*
2998
* Roll-back to transparent mode if setting non-transparent
2999
* mode has failed
3000
*/
3001
drm_dp_lttpr_set_transparent_mode(aux, true);
3002
return -EINVAL;
3003
}
3004
3005
return 0;
3006
}
3007
EXPORT_SYMBOL(drm_dp_lttpr_init);
3008
3009
/**
3010
* drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
3011
* @caps: LTTPR common capabilities
3012
*
3013
* Returns the maximum lane count supported by all detected LTTPRs.
3014
*/
3015
int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
3016
{
3017
u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
3018
3019
return max_lanes & DP_MAX_LANE_COUNT_MASK;
3020
}
3021
EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
3022
3023
/**
3024
* drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
3025
* @caps: LTTPR PHY capabilities
3026
*
3027
* Returns true if the @caps for an LTTPR TX PHY indicate support for
3028
* voltage swing level 3.
3029
*/
3030
bool
3031
drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
3032
{
3033
u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
3034
3035
return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
3036
}
3037
EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
3038
3039
/**
3040
* drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
3041
* @caps: LTTPR PHY capabilities
3042
*
3043
* Returns true if the @caps for an LTTPR TX PHY indicate support for
3044
* pre-emphasis level 3.
3045
*/
3046
bool
3047
drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
3048
{
3049
u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
3050
3051
return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
3052
}
3053
EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
3054
3055
/**
3056
* drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
3057
* @aux: DisplayPort AUX channel
3058
* @data: DP phy compliance test parameters.
3059
*
3060
* Returns 0 on success or a negative error code on failure.
3061
*/
3062
int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
3063
struct drm_dp_phy_test_params *data)
3064
{
3065
int err;
3066
u8 rate, lanes;
3067
3068
err = drm_dp_dpcd_read_byte(aux, DP_TEST_LINK_RATE, &rate);
3069
if (err < 0)
3070
return err;
3071
data->link_rate = drm_dp_bw_code_to_link_rate(rate);
3072
3073
err = drm_dp_dpcd_read_byte(aux, DP_TEST_LANE_COUNT, &lanes);
3074
if (err < 0)
3075
return err;
3076
data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
3077
3078
if (lanes & DP_ENHANCED_FRAME_CAP)
3079
data->enhanced_frame_cap = true;
3080
3081
err = drm_dp_dpcd_read_byte(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
3082
if (err < 0)
3083
return err;
3084
3085
switch (data->phy_pattern) {
3086
case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
3087
err = drm_dp_dpcd_read_data(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
3088
&data->custom80, sizeof(data->custom80));
3089
if (err < 0)
3090
return err;
3091
3092
break;
3093
case DP_PHY_TEST_PATTERN_CP2520:
3094
err = drm_dp_dpcd_read_data(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
3095
&data->hbr2_reset,
3096
sizeof(data->hbr2_reset));
3097
if (err < 0)
3098
return err;
3099
}
3100
3101
return 0;
3102
}
3103
EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
3104
3105
/**
3106
* drm_dp_set_phy_test_pattern() - set the pattern to the sink.
3107
* @aux: DisplayPort AUX channel
3108
* @data: DP phy compliance test parameters.
3109
* @dp_rev: DP revision to use for compliance testing
3110
*
3111
* Returns 0 on success or a negative error code on failure.
3112
*/
3113
int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
3114
struct drm_dp_phy_test_params *data, u8 dp_rev)
3115
{
3116
int err, i;
3117
u8 test_pattern;
3118
3119
test_pattern = data->phy_pattern;
3120
if (dp_rev < 0x12) {
3121
test_pattern = (test_pattern << 2) &
3122
DP_LINK_QUAL_PATTERN_11_MASK;
3123
err = drm_dp_dpcd_write_byte(aux, DP_TRAINING_PATTERN_SET,
3124
test_pattern);
3125
if (err < 0)
3126
return err;
3127
} else {
3128
for (i = 0; i < data->num_lanes; i++) {
3129
err = drm_dp_dpcd_write_byte(aux,
3130
DP_LINK_QUAL_LANE0_SET + i,
3131
test_pattern);
3132
if (err < 0)
3133
return err;
3134
}
3135
}
3136
3137
return 0;
3138
}
3139
EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
3140
3141
static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
3142
{
3143
if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
3144
return "Invalid";
3145
3146
switch (pixelformat) {
3147
case DP_PIXELFORMAT_RGB:
3148
return "RGB";
3149
case DP_PIXELFORMAT_YUV444:
3150
return "YUV444";
3151
case DP_PIXELFORMAT_YUV422:
3152
return "YUV422";
3153
case DP_PIXELFORMAT_YUV420:
3154
return "YUV420";
3155
case DP_PIXELFORMAT_Y_ONLY:
3156
return "Y_ONLY";
3157
case DP_PIXELFORMAT_RAW:
3158
return "RAW";
3159
default:
3160
return "Reserved";
3161
}
3162
}
3163
3164
static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
3165
enum dp_colorimetry colorimetry)
3166
{
3167
if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
3168
return "Invalid";
3169
3170
switch (colorimetry) {
3171
case DP_COLORIMETRY_DEFAULT:
3172
switch (pixelformat) {
3173
case DP_PIXELFORMAT_RGB:
3174
return "sRGB";
3175
case DP_PIXELFORMAT_YUV444:
3176
case DP_PIXELFORMAT_YUV422:
3177
case DP_PIXELFORMAT_YUV420:
3178
return "BT.601";
3179
case DP_PIXELFORMAT_Y_ONLY:
3180
return "DICOM PS3.14";
3181
case DP_PIXELFORMAT_RAW:
3182
return "Custom Color Profile";
3183
default:
3184
return "Reserved";
3185
}
3186
case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
3187
switch (pixelformat) {
3188
case DP_PIXELFORMAT_RGB:
3189
return "Wide Fixed";
3190
case DP_PIXELFORMAT_YUV444:
3191
case DP_PIXELFORMAT_YUV422:
3192
case DP_PIXELFORMAT_YUV420:
3193
return "BT.709";
3194
default:
3195
return "Reserved";
3196
}
3197
case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
3198
switch (pixelformat) {
3199
case DP_PIXELFORMAT_RGB:
3200
return "Wide Float";
3201
case DP_PIXELFORMAT_YUV444:
3202
case DP_PIXELFORMAT_YUV422:
3203
case DP_PIXELFORMAT_YUV420:
3204
return "xvYCC 601";
3205
default:
3206
return "Reserved";
3207
}
3208
case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
3209
switch (pixelformat) {
3210
case DP_PIXELFORMAT_RGB:
3211
return "OpRGB";
3212
case DP_PIXELFORMAT_YUV444:
3213
case DP_PIXELFORMAT_YUV422:
3214
case DP_PIXELFORMAT_YUV420:
3215
return "xvYCC 709";
3216
default:
3217
return "Reserved";
3218
}
3219
case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
3220
switch (pixelformat) {
3221
case DP_PIXELFORMAT_RGB:
3222
return "DCI-P3";
3223
case DP_PIXELFORMAT_YUV444:
3224
case DP_PIXELFORMAT_YUV422:
3225
case DP_PIXELFORMAT_YUV420:
3226
return "sYCC 601";
3227
default:
3228
return "Reserved";
3229
}
3230
case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
3231
switch (pixelformat) {
3232
case DP_PIXELFORMAT_RGB:
3233
return "Custom Profile";
3234
case DP_PIXELFORMAT_YUV444:
3235
case DP_PIXELFORMAT_YUV422:
3236
case DP_PIXELFORMAT_YUV420:
3237
return "OpYCC 601";
3238
default:
3239
return "Reserved";
3240
}
3241
case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
3242
switch (pixelformat) {
3243
case DP_PIXELFORMAT_RGB:
3244
return "BT.2020 RGB";
3245
case DP_PIXELFORMAT_YUV444:
3246
case DP_PIXELFORMAT_YUV422:
3247
case DP_PIXELFORMAT_YUV420:
3248
return "BT.2020 CYCC";
3249
default:
3250
return "Reserved";
3251
}
3252
case DP_COLORIMETRY_BT2020_YCC:
3253
switch (pixelformat) {
3254
case DP_PIXELFORMAT_YUV444:
3255
case DP_PIXELFORMAT_YUV422:
3256
case DP_PIXELFORMAT_YUV420:
3257
return "BT.2020 YCC";
3258
default:
3259
return "Reserved";
3260
}
3261
default:
3262
return "Invalid";
3263
}
3264
}
3265
3266
static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
3267
{
3268
switch (dynamic_range) {
3269
case DP_DYNAMIC_RANGE_VESA:
3270
return "VESA range";
3271
case DP_DYNAMIC_RANGE_CTA:
3272
return "CTA range";
3273
default:
3274
return "Invalid";
3275
}
3276
}
3277
3278
static const char *dp_content_type_get_name(enum dp_content_type content_type)
3279
{
3280
switch (content_type) {
3281
case DP_CONTENT_TYPE_NOT_DEFINED:
3282
return "Not defined";
3283
case DP_CONTENT_TYPE_GRAPHICS:
3284
return "Graphics";
3285
case DP_CONTENT_TYPE_PHOTO:
3286
return "Photo";
3287
case DP_CONTENT_TYPE_VIDEO:
3288
return "Video";
3289
case DP_CONTENT_TYPE_GAME:
3290
return "Game";
3291
default:
3292
return "Reserved";
3293
}
3294
}
3295
3296
void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc)
3297
{
3298
drm_printf(p, "DP SDP: VSC, revision %u, length %u\n",
3299
vsc->revision, vsc->length);
3300
drm_printf(p, " pixelformat: %s\n",
3301
dp_pixelformat_get_name(vsc->pixelformat));
3302
drm_printf(p, " colorimetry: %s\n",
3303
dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
3304
drm_printf(p, " bpc: %u\n", vsc->bpc);
3305
drm_printf(p, " dynamic range: %s\n",
3306
dp_dynamic_range_get_name(vsc->dynamic_range));
3307
drm_printf(p, " content type: %s\n",
3308
dp_content_type_get_name(vsc->content_type));
3309
}
3310
EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
3311
3312
void drm_dp_as_sdp_log(struct drm_printer *p, const struct drm_dp_as_sdp *as_sdp)
3313
{
3314
drm_printf(p, "DP SDP: AS_SDP, revision %u, length %u\n",
3315
as_sdp->revision, as_sdp->length);
3316
drm_printf(p, " vtotal: %d\n", as_sdp->vtotal);
3317
drm_printf(p, " target_rr: %d\n", as_sdp->target_rr);
3318
drm_printf(p, " duration_incr_ms: %d\n", as_sdp->duration_incr_ms);
3319
drm_printf(p, " duration_decr_ms: %d\n", as_sdp->duration_decr_ms);
3320
drm_printf(p, " operation_mode: %d\n", as_sdp->mode);
3321
}
3322
EXPORT_SYMBOL(drm_dp_as_sdp_log);
3323
3324
/**
3325
* drm_dp_as_sdp_supported() - check if adaptive sync sdp is supported
3326
* @aux: DisplayPort AUX channel
3327
* @dpcd: DisplayPort configuration data
3328
*
3329
* Returns true if adaptive sync sdp is supported, else returns false
3330
*/
3331
bool drm_dp_as_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3332
{
3333
u8 rx_feature;
3334
3335
if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3336
return false;
3337
3338
if (drm_dp_dpcd_read_byte(aux, DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1,
3339
&rx_feature) < 0) {
3340
drm_dbg_dp(aux->drm_dev,
3341
"Failed to read DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1\n");
3342
return false;
3343
}
3344
3345
return (rx_feature & DP_ADAPTIVE_SYNC_SDP_SUPPORTED);
3346
}
3347
EXPORT_SYMBOL(drm_dp_as_sdp_supported);
3348
3349
/**
3350
* drm_dp_vsc_sdp_supported() - check if vsc sdp is supported
3351
* @aux: DisplayPort AUX channel
3352
* @dpcd: DisplayPort configuration data
3353
*
3354
* Returns true if vsc sdp is supported, else returns false
3355
*/
3356
bool drm_dp_vsc_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3357
{
3358
u8 rx_feature;
3359
3360
if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3361
return false;
3362
3363
if (drm_dp_dpcd_read_byte(aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &rx_feature) < 0) {
3364
drm_dbg_dp(aux->drm_dev, "failed to read DP_DPRX_FEATURE_ENUMERATION_LIST\n");
3365
return false;
3366
}
3367
3368
return (rx_feature & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED);
3369
}
3370
EXPORT_SYMBOL(drm_dp_vsc_sdp_supported);
3371
3372
/**
3373
* drm_dp_vsc_sdp_pack() - pack a given vsc sdp into generic dp_sdp
3374
* @vsc: vsc sdp initialized according to its purpose as defined in
3375
* table 2-118 - table 2-120 in DP 1.4a specification
3376
* @sdp: valid handle to the generic dp_sdp which will be packed
3377
*
3378
* Returns length of sdp on success and error code on failure
3379
*/
3380
ssize_t drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
3381
struct dp_sdp *sdp)
3382
{
3383
size_t length = sizeof(struct dp_sdp);
3384
3385
memset(sdp, 0, sizeof(struct dp_sdp));
3386
3387
/*
3388
* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
3389
* VSC SDP Header Bytes
3390
*/
3391
sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
3392
sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
3393
sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
3394
sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
3395
3396
if (vsc->revision == 0x6) {
3397
sdp->db[0] = 1;
3398
sdp->db[3] = 1;
3399
}
3400
3401
/*
3402
* Revision 0x5 and revision 0x7 supports Pixel Encoding/Colorimetry
3403
* Format as per DP 1.4a spec and DP 2.0 respectively.
3404
*/
3405
if (!(vsc->revision == 0x5 || vsc->revision == 0x7))
3406
goto out;
3407
3408
/* VSC SDP Payload for DB16 through DB18 */
3409
/* Pixel Encoding and Colorimetry Formats */
3410
sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
3411
sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
3412
3413
switch (vsc->bpc) {
3414
case 6:
3415
/* 6bpc: 0x0 */
3416
break;
3417
case 8:
3418
sdp->db[17] = 0x1; /* DB17[3:0] */
3419
break;
3420
case 10:
3421
sdp->db[17] = 0x2;
3422
break;
3423
case 12:
3424
sdp->db[17] = 0x3;
3425
break;
3426
case 16:
3427
sdp->db[17] = 0x4;
3428
break;
3429
default:
3430
WARN(1, "Missing case %d\n", vsc->bpc);
3431
return -EINVAL;
3432
}
3433
3434
/* Dynamic Range and Component Bit Depth */
3435
if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
3436
sdp->db[17] |= 0x80; /* DB17[7] */
3437
3438
/* Content Type */
3439
sdp->db[18] = vsc->content_type & 0x7;
3440
3441
out:
3442
return length;
3443
}
3444
EXPORT_SYMBOL(drm_dp_vsc_sdp_pack);
3445
3446
/**
3447
* drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
3448
* @dpcd: DisplayPort configuration data
3449
* @port_cap: port capabilities
3450
*
3451
* Returns maximum frl bandwidth supported by PCON in GBPS,
3452
* returns 0 if not supported.
3453
*/
3454
int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
3455
const u8 port_cap[4])
3456
{
3457
int bw;
3458
u8 buf;
3459
3460
buf = port_cap[2];
3461
bw = buf & DP_PCON_MAX_FRL_BW;
3462
3463
switch (bw) {
3464
case DP_PCON_MAX_9GBPS:
3465
return 9;
3466
case DP_PCON_MAX_18GBPS:
3467
return 18;
3468
case DP_PCON_MAX_24GBPS:
3469
return 24;
3470
case DP_PCON_MAX_32GBPS:
3471
return 32;
3472
case DP_PCON_MAX_40GBPS:
3473
return 40;
3474
case DP_PCON_MAX_48GBPS:
3475
return 48;
3476
case DP_PCON_MAX_0GBPS:
3477
default:
3478
return 0;
3479
}
3480
3481
return 0;
3482
}
3483
EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
3484
3485
/**
3486
* drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
3487
* @aux: DisplayPort AUX channel
3488
* @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
3489
*
3490
* Returns 0 if success, else returns negative error code.
3491
*/
3492
int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
3493
{
3494
u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
3495
DP_PCON_ENABLE_LINK_FRL_MODE;
3496
3497
if (enable_frl_ready_hpd)
3498
buf |= DP_PCON_ENABLE_HPD_READY;
3499
3500
return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3501
}
3502
EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
3503
3504
/**
3505
* drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
3506
* @aux: DisplayPort AUX channel
3507
*
3508
* Returns true if success, else returns false.
3509
*/
3510
bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
3511
{
3512
int ret;
3513
u8 buf;
3514
3515
ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3516
if (ret < 0)
3517
return false;
3518
3519
if (buf & DP_PCON_FRL_READY)
3520
return true;
3521
3522
return false;
3523
}
3524
EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3525
3526
/**
3527
* drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3528
* @aux: DisplayPort AUX channel
3529
* @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3530
* @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3531
* In Concurrent Mode, the FRL link bring up can be done along with
3532
* DP Link training. In Sequential mode, the FRL link bring up is done prior to
3533
* the DP Link training.
3534
*
3535
* Returns 0 if success, else returns negative error code.
3536
*/
3537
3538
int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3539
u8 frl_mode)
3540
{
3541
int ret;
3542
u8 buf;
3543
3544
ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3545
if (ret < 0)
3546
return ret;
3547
3548
if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3549
buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3550
else
3551
buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3552
3553
switch (max_frl_gbps) {
3554
case 9:
3555
buf |= DP_PCON_ENABLE_MAX_BW_9GBPS;
3556
break;
3557
case 18:
3558
buf |= DP_PCON_ENABLE_MAX_BW_18GBPS;
3559
break;
3560
case 24:
3561
buf |= DP_PCON_ENABLE_MAX_BW_24GBPS;
3562
break;
3563
case 32:
3564
buf |= DP_PCON_ENABLE_MAX_BW_32GBPS;
3565
break;
3566
case 40:
3567
buf |= DP_PCON_ENABLE_MAX_BW_40GBPS;
3568
break;
3569
case 48:
3570
buf |= DP_PCON_ENABLE_MAX_BW_48GBPS;
3571
break;
3572
case 0:
3573
buf |= DP_PCON_ENABLE_MAX_BW_0GBPS;
3574
break;
3575
default:
3576
return -EINVAL;
3577
}
3578
3579
return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3580
}
3581
EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3582
3583
/**
3584
* drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3585
* @aux: DisplayPort AUX channel
3586
* @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3587
* @frl_type : FRL training type, can be Extended, or Normal.
3588
* In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3589
* starting from min, and stops when link training is successful. In Extended
3590
* FRL training, all frl bw selected in the mask are trained by the PCON.
3591
*
3592
* Returns 0 if success, else returns negative error code.
3593
*/
3594
int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3595
u8 frl_type)
3596
{
3597
int ret;
3598
u8 buf = max_frl_mask;
3599
3600
if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3601
buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3602
else
3603
buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3604
3605
return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3606
if (ret < 0)
3607
return ret;
3608
3609
return 0;
3610
}
3611
EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3612
3613
/**
3614
* drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3615
* @aux: DisplayPort AUX channel
3616
*
3617
* Returns 0 if success, else returns negative error code.
3618
*/
3619
int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3620
{
3621
return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3622
}
3623
EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3624
3625
/**
3626
* drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3627
* @aux: DisplayPort AUX channel
3628
*
3629
* Returns 0 if success, else returns negative error code.
3630
*/
3631
int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3632
{
3633
int ret;
3634
u8 buf = 0;
3635
3636
ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3637
if (ret < 0)
3638
return ret;
3639
if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3640
drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3641
aux->name);
3642
return -EINVAL;
3643
}
3644
buf |= DP_PCON_ENABLE_HDMI_LINK;
3645
return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3646
}
3647
EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3648
3649
/**
3650
* drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3651
* @aux: DisplayPort AUX channel
3652
*
3653
* Returns true if link is active else returns false.
3654
*/
3655
bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3656
{
3657
u8 buf;
3658
int ret;
3659
3660
ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3661
if (ret < 0)
3662
return false;
3663
3664
return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3665
}
3666
EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3667
3668
/**
3669
* drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3670
* @aux: DisplayPort AUX channel
3671
* @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3672
* Valid only if the MODE returned is FRL. For Normal Link training mode
3673
* only 1 of the bits will be set, but in case of Extended mode, more than
3674
* one bits can be set.
3675
*
3676
* Returns the link mode : TMDS or FRL on success, else returns negative error
3677
* code.
3678
*/
3679
int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3680
{
3681
u8 buf;
3682
int mode;
3683
int ret;
3684
3685
ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3686
if (ret < 0)
3687
return ret;
3688
3689
mode = buf & DP_PCON_HDMI_LINK_MODE;
3690
3691
if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3692
*frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3693
3694
return mode;
3695
}
3696
EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3697
3698
/**
3699
* drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3700
* during link failure between PCON and HDMI sink
3701
* @aux: DisplayPort AUX channel
3702
* @connector: DRM connector
3703
* code.
3704
**/
3705
3706
void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3707
struct drm_connector *connector)
3708
{
3709
u8 buf, error_count;
3710
int i, num_error;
3711
struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3712
3713
for (i = 0; i < hdmi->max_lanes; i++) {
3714
if (drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3715
return;
3716
3717
error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3718
switch (error_count) {
3719
case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3720
num_error = 100;
3721
break;
3722
case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3723
num_error = 10;
3724
break;
3725
case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3726
num_error = 3;
3727
break;
3728
default:
3729
num_error = 0;
3730
}
3731
3732
drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3733
aux->name, num_error, i);
3734
}
3735
}
3736
EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3737
3738
/*
3739
* drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3740
* @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3741
*
3742
* Returns true is PCON encoder is DSC 1.2 else returns false.
3743
*/
3744
bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3745
{
3746
u8 buf;
3747
u8 major_v, minor_v;
3748
3749
buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3750
major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3751
minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3752
3753
if (major_v == 1 && minor_v == 2)
3754
return true;
3755
3756
return false;
3757
}
3758
EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3759
3760
/*
3761
* drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3762
* @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3763
*
3764
* Returns maximum no. of slices supported by the PCON DSC Encoder.
3765
*/
3766
int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3767
{
3768
u8 slice_cap1, slice_cap2;
3769
3770
slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3771
slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3772
3773
if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3774
return 24;
3775
if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3776
return 20;
3777
if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3778
return 16;
3779
if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3780
return 12;
3781
if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3782
return 10;
3783
if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3784
return 8;
3785
if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3786
return 6;
3787
if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3788
return 4;
3789
if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3790
return 2;
3791
if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3792
return 1;
3793
3794
return 0;
3795
}
3796
EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3797
3798
/*
3799
* drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3800
* @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3801
*
3802
* Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3803
*/
3804
int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3805
{
3806
u8 buf;
3807
3808
buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3809
3810
return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3811
}
3812
EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3813
3814
/*
3815
* drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3816
* @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3817
*
3818
* Returns the bpp precision supported by the PCON encoder.
3819
*/
3820
int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3821
{
3822
u8 buf;
3823
3824
buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3825
3826
switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3827
case DP_PCON_DSC_ONE_16TH_BPP:
3828
return 16;
3829
case DP_PCON_DSC_ONE_8TH_BPP:
3830
return 8;
3831
case DP_PCON_DSC_ONE_4TH_BPP:
3832
return 4;
3833
case DP_PCON_DSC_ONE_HALF_BPP:
3834
return 2;
3835
case DP_PCON_DSC_ONE_BPP:
3836
return 1;
3837
}
3838
3839
return 0;
3840
}
3841
EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3842
3843
static
3844
int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3845
{
3846
u8 buf;
3847
int ret;
3848
3849
ret = drm_dp_dpcd_read_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3850
if (ret < 0)
3851
return ret;
3852
3853
buf |= DP_PCON_ENABLE_DSC_ENCODER;
3854
3855
if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3856
buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3857
buf |= pps_buf_config << 2;
3858
}
3859
3860
return drm_dp_dpcd_write_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3861
}
3862
3863
/**
3864
* drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3865
* for DSC1.2 between PCON & HDMI2.1 sink
3866
* @aux: DisplayPort AUX channel
3867
*
3868
* Returns 0 on success, else returns negative error code.
3869
*/
3870
int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3871
{
3872
return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3873
}
3874
EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3875
3876
/**
3877
* drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3878
* HDMI sink
3879
* @aux: DisplayPort AUX channel
3880
* @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3881
*
3882
* Returns 0 on success, else returns negative error code.
3883
*/
3884
int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3885
{
3886
int ret;
3887
3888
ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3889
if (ret < 0)
3890
return ret;
3891
3892
return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3893
}
3894
EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3895
3896
/*
3897
* drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3898
* override registers
3899
* @aux: DisplayPort AUX channel
3900
* @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3901
* bits_per_pixel.
3902
*
3903
* Returns 0 on success, else returns negative error code.
3904
*/
3905
int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3906
{
3907
int ret;
3908
3909
ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3910
if (ret < 0)
3911
return ret;
3912
ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3913
if (ret < 0)
3914
return ret;
3915
ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3916
if (ret < 0)
3917
return ret;
3918
3919
return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3920
}
3921
EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3922
3923
/*
3924
* drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3925
* @aux: displayPort AUX channel
3926
* @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3927
*
3928
* Returns 0 on success, else returns negative error code.
3929
*/
3930
int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3931
{
3932
int ret;
3933
u8 buf;
3934
3935
ret = drm_dp_dpcd_read_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3936
if (ret < 0)
3937
return ret;
3938
3939
if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3940
buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3941
else
3942
buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3943
3944
return drm_dp_dpcd_write_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3945
}
3946
EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3947
3948
/**
3949
* drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3950
* @aux: The DP AUX channel to use
3951
* @bl: Backlight capability info from drm_edp_backlight_init()
3952
* @level: The brightness level to set
3953
*
3954
* Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3955
* already have been enabled by the driver by calling drm_edp_backlight_enable().
3956
*
3957
* Returns: %0 on success, negative error code on failure
3958
*/
3959
int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3960
u32 level)
3961
{
3962
int ret;
3963
unsigned int offset = DP_EDP_BACKLIGHT_BRIGHTNESS_MSB;
3964
u8 buf[3] = { 0 };
3965
3966
/* The panel uses the PWM for controlling brightness levels */
3967
if (!(bl->aux_set || bl->luminance_set))
3968
return 0;
3969
3970
if (bl->luminance_set) {
3971
level = level * 1000;
3972
level &= 0xffffff;
3973
buf[0] = (level & 0x0000ff);
3974
buf[1] = (level & 0x00ff00) >> 8;
3975
buf[2] = (level & 0xff0000) >> 16;
3976
offset = DP_EDP_PANEL_TARGET_LUMINANCE_VALUE;
3977
} else if (bl->lsb_reg_used) {
3978
buf[0] = (level & 0xff00) >> 8;
3979
buf[1] = (level & 0x00ff);
3980
} else {
3981
buf[0] = level;
3982
}
3983
3984
ret = drm_dp_dpcd_write_data(aux, offset, buf, sizeof(buf));
3985
if (ret < 0) {
3986
drm_err(aux->drm_dev,
3987
"%s: Failed to write aux backlight level: %d\n",
3988
aux->name, ret);
3989
return ret;
3990
}
3991
3992
return 0;
3993
}
3994
EXPORT_SYMBOL(drm_edp_backlight_set_level);
3995
3996
static int
3997
drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3998
bool enable)
3999
{
4000
int ret;
4001
u8 buf;
4002
4003
/* This panel uses the EDP_BL_PWR GPIO for enablement */
4004
if (!bl->aux_enable)
4005
return 0;
4006
4007
ret = drm_dp_dpcd_read_byte(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
4008
if (ret < 0) {
4009
drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
4010
aux->name, ret);
4011
return ret;
4012
}
4013
if (enable)
4014
buf |= DP_EDP_BACKLIGHT_ENABLE;
4015
else
4016
buf &= ~DP_EDP_BACKLIGHT_ENABLE;
4017
4018
ret = drm_dp_dpcd_write_byte(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
4019
if (ret < 0) {
4020
drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
4021
aux->name, ret);
4022
return ret;
4023
}
4024
4025
return 0;
4026
}
4027
4028
/**
4029
* drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
4030
* @aux: The DP AUX channel to use
4031
* @bl: Backlight capability info from drm_edp_backlight_init()
4032
* @level: The initial backlight level to set via AUX, if there is one
4033
*
4034
* This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
4035
* restoring any important backlight state such as the given backlight level, the brightness byte
4036
* count, backlight frequency, etc.
4037
*
4038
* Note that certain panels do not support being enabled or disabled via DPCD, but instead require
4039
* that the driver handle enabling/disabling the panel through implementation-specific means using
4040
* the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
4041
* this function becomes a no-op, and the driver is expected to handle powering the panel on using
4042
* the EDP_BL_PWR GPIO.
4043
*
4044
* Returns: %0 on success, negative error code on failure.
4045
*/
4046
int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
4047
const u32 level)
4048
{
4049
int ret;
4050
u8 dpcd_buf;
4051
4052
if (bl->aux_set)
4053
dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
4054
else
4055
dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
4056
4057
if (bl->luminance_set)
4058
dpcd_buf |= DP_EDP_PANEL_LUMINANCE_CONTROL_ENABLE;
4059
4060
if (bl->pwmgen_bit_count) {
4061
ret = drm_dp_dpcd_write_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
4062
if (ret < 0)
4063
drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
4064
aux->name, ret);
4065
}
4066
4067
if (bl->pwm_freq_pre_divider) {
4068
ret = drm_dp_dpcd_write_byte(aux, DP_EDP_BACKLIGHT_FREQ_SET,
4069
bl->pwm_freq_pre_divider);
4070
if (ret < 0)
4071
drm_dbg_kms(aux->drm_dev,
4072
"%s: Failed to write aux backlight frequency: %d\n",
4073
aux->name, ret);
4074
else
4075
dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
4076
}
4077
4078
ret = drm_dp_dpcd_write_byte(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
4079
if (ret < 0) {
4080
drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
4081
aux->name, ret);
4082
return ret < 0 ? ret : -EIO;
4083
}
4084
4085
ret = drm_edp_backlight_set_level(aux, bl, level);
4086
if (ret < 0)
4087
return ret;
4088
ret = drm_edp_backlight_set_enable(aux, bl, true);
4089
if (ret < 0)
4090
return ret;
4091
4092
return 0;
4093
}
4094
EXPORT_SYMBOL(drm_edp_backlight_enable);
4095
4096
/**
4097
* drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
4098
* @aux: The DP AUX channel to use
4099
* @bl: Backlight capability info from drm_edp_backlight_init()
4100
*
4101
* This function handles disabling DPCD backlight controls on a panel over AUX.
4102
*
4103
* Note that certain panels do not support being enabled or disabled via DPCD, but instead require
4104
* that the driver handle enabling/disabling the panel through implementation-specific means using
4105
* the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
4106
* this function becomes a no-op, and the driver is expected to handle powering the panel off using
4107
* the EDP_BL_PWR GPIO.
4108
*
4109
* Returns: %0 on success or no-op, negative error code on failure.
4110
*/
4111
int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
4112
{
4113
int ret;
4114
4115
ret = drm_edp_backlight_set_enable(aux, bl, false);
4116
if (ret < 0)
4117
return ret;
4118
4119
return 0;
4120
}
4121
EXPORT_SYMBOL(drm_edp_backlight_disable);
4122
4123
static inline int
4124
drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4125
u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
4126
{
4127
int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
4128
int ret;
4129
u8 pn, pn_min, pn_max;
4130
4131
if (!bl->aux_set)
4132
return 0;
4133
4134
ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
4135
if (ret < 0) {
4136
drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
4137
aux->name, ret);
4138
return -ENODEV;
4139
}
4140
4141
pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4142
bl->max = (1 << pn) - 1;
4143
if (!driver_pwm_freq_hz)
4144
return 0;
4145
4146
/*
4147
* Set PWM Frequency divider to match desired frequency provided by the driver.
4148
* The PWM Frequency is calculated as 27Mhz / (F x P).
4149
* - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
4150
* EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
4151
* - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
4152
* EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
4153
*/
4154
4155
/* Find desired value of (F x P)
4156
* Note that, if F x P is out of supported range, the maximum value or minimum value will
4157
* applied automatically. So no need to check that.
4158
*/
4159
fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
4160
4161
/* Use highest possible value of Pn for more granularity of brightness adjustment while
4162
* satisfying the conditions below.
4163
* - Pn is in the range of Pn_min and Pn_max
4164
* - F is in the range of 1 and 255
4165
* - FxP is within 25% of desired value.
4166
* Note: 25% is arbitrary value and may need some tweak.
4167
*/
4168
ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
4169
if (ret < 0) {
4170
drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
4171
aux->name, ret);
4172
return 0;
4173
}
4174
ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
4175
if (ret < 0) {
4176
drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
4177
aux->name, ret);
4178
return 0;
4179
}
4180
pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4181
pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4182
4183
/* Ensure frequency is within 25% of desired value */
4184
fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
4185
fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
4186
if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
4187
drm_dbg_kms(aux->drm_dev,
4188
"%s: Driver defined backlight frequency (%d) out of range\n",
4189
aux->name, driver_pwm_freq_hz);
4190
return 0;
4191
}
4192
4193
for (pn = pn_max; pn >= pn_min; pn--) {
4194
f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
4195
fxp_actual = f << pn;
4196
if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
4197
break;
4198
}
4199
4200
ret = drm_dp_dpcd_write_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
4201
if (ret < 0) {
4202
drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
4203
aux->name, ret);
4204
return 0;
4205
}
4206
bl->pwmgen_bit_count = pn;
4207
bl->max = (1 << pn) - 1;
4208
4209
if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
4210
bl->pwm_freq_pre_divider = f;
4211
drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
4212
aux->name, driver_pwm_freq_hz);
4213
}
4214
4215
return 0;
4216
}
4217
4218
static inline int
4219
drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4220
u8 *current_mode)
4221
{
4222
int ret;
4223
u8 buf[3];
4224
u8 mode_reg;
4225
4226
ret = drm_dp_dpcd_read_byte(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
4227
if (ret < 0) {
4228
drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
4229
aux->name, ret);
4230
return ret < 0 ? ret : -EIO;
4231
}
4232
4233
*current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
4234
if (!bl->aux_set)
4235
return 0;
4236
4237
if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
4238
int size = 1 + bl->lsb_reg_used;
4239
4240
if (bl->luminance_set) {
4241
ret = drm_dp_dpcd_read_data(aux, DP_EDP_PANEL_TARGET_LUMINANCE_VALUE,
4242
buf, sizeof(buf));
4243
if (ret < 0) {
4244
drm_dbg_kms(aux->drm_dev,
4245
"%s: Failed to read backlight level: %d\n",
4246
aux->name, ret);
4247
return ret;
4248
}
4249
4250
/*
4251
* Incase luminance is set we want to send the value back in nits but
4252
* since DP_EDP_PANEL_TARGET_LUMINANCE stores values in millinits we
4253
* need to divide by 1000.
4254
*/
4255
return (buf[0] | buf[1] << 8 | buf[2] << 16) / 1000;
4256
} else {
4257
ret = drm_dp_dpcd_read_data(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB,
4258
buf, size);
4259
if (ret < 0) {
4260
drm_dbg_kms(aux->drm_dev,
4261
"%s: Failed to read backlight level: %d\n",
4262
aux->name, ret);
4263
return ret;
4264
}
4265
4266
if (bl->lsb_reg_used)
4267
return (buf[0] << 8) | buf[1];
4268
else
4269
return buf[0];
4270
}
4271
}
4272
4273
/*
4274
* If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
4275
* the driver should assume max brightness
4276
*/
4277
return bl->max;
4278
}
4279
4280
/**
4281
* drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
4282
* interface.
4283
* @aux: The DP aux device to use for probing
4284
* @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
4285
* @max_luminance: max luminance when need luminance is set as true
4286
* @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
4287
* @edp_dpcd: A cached copy of the eDP DPCD
4288
* @current_level: Where to store the probed brightness level, if any
4289
* @current_mode: Where to store the currently set backlight control mode
4290
* @need_luminance: Tells us if a we want to manipulate backlight using luminance values
4291
*
4292
* Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
4293
* along with also probing the current and maximum supported brightness levels.
4294
*
4295
* If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
4296
* default frequency from the panel is used.
4297
*
4298
* Returns: %0 on success, negative error code on failure.
4299
*/
4300
int
4301
drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4302
u32 max_luminance,
4303
u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
4304
u32 *current_level, u8 *current_mode, bool need_luminance)
4305
{
4306
int ret;
4307
4308
if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
4309
bl->aux_enable = true;
4310
if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
4311
bl->aux_set = true;
4312
if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
4313
bl->lsb_reg_used = true;
4314
if ((edp_dpcd[0] & DP_EDP_15) && edp_dpcd[3] &
4315
(DP_EDP_PANEL_LUMINANCE_CONTROL_CAPABLE) && need_luminance)
4316
bl->luminance_set = true;
4317
4318
/* Sanity check caps */
4319
if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP) &&
4320
!bl->luminance_set) {
4321
drm_dbg_kms(aux->drm_dev,
4322
"%s: Panel does not support AUX, PWM or luminance-based brightness control. Aborting\n",
4323
aux->name);
4324
return -EINVAL;
4325
}
4326
4327
if (bl->luminance_set) {
4328
bl->max = max_luminance;
4329
} else {
4330
ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
4331
if (ret < 0)
4332
return ret;
4333
}
4334
4335
ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
4336
if (ret < 0)
4337
return ret;
4338
*current_level = ret;
4339
4340
drm_dbg_kms(aux->drm_dev,
4341
"%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
4342
aux->name, bl->aux_set, bl->aux_enable, *current_mode);
4343
if (bl->aux_set) {
4344
drm_dbg_kms(aux->drm_dev,
4345
"%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
4346
aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
4347
bl->lsb_reg_used);
4348
}
4349
4350
return 0;
4351
}
4352
EXPORT_SYMBOL(drm_edp_backlight_init);
4353
4354
#if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
4355
(IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
4356
4357
static int dp_aux_backlight_update_status(struct backlight_device *bd)
4358
{
4359
struct dp_aux_backlight *bl = bl_get_data(bd);
4360
u16 brightness = backlight_get_brightness(bd);
4361
int ret = 0;
4362
4363
if (!backlight_is_blank(bd)) {
4364
if (!bl->enabled) {
4365
drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
4366
bl->enabled = true;
4367
return 0;
4368
}
4369
ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
4370
} else {
4371
if (bl->enabled) {
4372
drm_edp_backlight_disable(bl->aux, &bl->info);
4373
bl->enabled = false;
4374
}
4375
}
4376
4377
return ret;
4378
}
4379
4380
static const struct backlight_ops dp_aux_bl_ops = {
4381
.update_status = dp_aux_backlight_update_status,
4382
};
4383
4384
/**
4385
* drm_panel_dp_aux_backlight - create and use DP AUX backlight
4386
* @panel: DRM panel
4387
* @aux: The DP AUX channel to use
4388
*
4389
* Use this function to create and handle backlight if your panel
4390
* supports backlight control over DP AUX channel using DPCD
4391
* registers as per VESA's standard backlight control interface.
4392
*
4393
* When the panel is enabled backlight will be enabled after a
4394
* successful call to &drm_panel_funcs.enable()
4395
*
4396
* When the panel is disabled backlight will be disabled before the
4397
* call to &drm_panel_funcs.disable().
4398
*
4399
* A typical implementation for a panel driver supporting backlight
4400
* control over DP AUX will call this function at probe time.
4401
* Backlight will then be handled transparently without requiring
4402
* any intervention from the driver.
4403
*
4404
* drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
4405
*
4406
* Return: 0 on success or a negative error code on failure.
4407
*/
4408
int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
4409
{
4410
struct dp_aux_backlight *bl;
4411
struct backlight_properties props = { 0 };
4412
u32 current_level;
4413
u8 current_mode;
4414
u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
4415
int ret;
4416
4417
if (!panel || !panel->dev || !aux)
4418
return -EINVAL;
4419
4420
ret = drm_dp_dpcd_read_data(aux, DP_EDP_DPCD_REV, edp_dpcd,
4421
EDP_DISPLAY_CTL_CAP_SIZE);
4422
if (ret < 0)
4423
return ret;
4424
4425
if (!drm_edp_backlight_supported(edp_dpcd)) {
4426
DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
4427
return 0;
4428
}
4429
4430
bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
4431
if (!bl)
4432
return -ENOMEM;
4433
4434
bl->aux = aux;
4435
4436
ret = drm_edp_backlight_init(aux, &bl->info, 0, 0, edp_dpcd,
4437
&current_level, &current_mode, false);
4438
if (ret < 0)
4439
return ret;
4440
4441
props.type = BACKLIGHT_RAW;
4442
props.brightness = current_level;
4443
props.max_brightness = bl->info.max;
4444
4445
bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
4446
panel->dev, bl,
4447
&dp_aux_bl_ops, &props);
4448
if (IS_ERR(bl->base))
4449
return PTR_ERR(bl->base);
4450
4451
backlight_disable(bl->base);
4452
4453
panel->backlight = bl->base;
4454
4455
return 0;
4456
}
4457
EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
4458
4459
#endif
4460
4461
/* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */
4462
static int drm_dp_link_data_symbol_cycles(int lane_count, int pixels,
4463
int bpp_x16, int symbol_size,
4464
bool is_mst)
4465
{
4466
int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count);
4467
int align = is_mst ? 4 / lane_count : 1;
4468
4469
return ALIGN(cycles, align);
4470
}
4471
4472
/**
4473
* drm_dp_link_symbol_cycles - calculate the link symbol count with/without dsc
4474
* @lane_count: DP link lane count
4475
* @pixels: number of pixels in a scanline
4476
* @dsc_slice_count: number of slices for DSC or '0' for non-DSC
4477
* @bpp_x16: bits per pixel in .4 binary fixed format
4478
* @symbol_size: DP symbol size
4479
* @is_mst: %true for MST and %false for SST
4480
*
4481
* Calculate the link symbol cycles for both DSC (@dsc_slice_count !=0) and
4482
* non-DSC case (@dsc_slice_count == 0) and return the count.
4483
*/
4484
int drm_dp_link_symbol_cycles(int lane_count, int pixels, int dsc_slice_count,
4485
int bpp_x16, int symbol_size, bool is_mst)
4486
{
4487
int slice_count = dsc_slice_count ? : 1;
4488
int slice_pixels = DIV_ROUND_UP(pixels, slice_count);
4489
int slice_data_cycles = drm_dp_link_data_symbol_cycles(lane_count,
4490
slice_pixels,
4491
bpp_x16,
4492
symbol_size,
4493
is_mst);
4494
int slice_eoc_cycles = 0;
4495
4496
if (dsc_slice_count)
4497
slice_eoc_cycles = is_mst ? 4 / lane_count : 1;
4498
4499
return slice_count * (slice_data_cycles + slice_eoc_cycles);
4500
}
4501
EXPORT_SYMBOL(drm_dp_link_symbol_cycles);
4502
4503
/**
4504
* drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream
4505
* @lane_count: DP link lane count
4506
* @hactive: pixel count of the active period in one scanline of the stream
4507
* @dsc_slice_count: number of slices for DSC or '0' for non-DSC
4508
* @bpp_x16: bits per pixel in .4 binary fixed point
4509
* @flags: DRM_DP_OVERHEAD_x flags
4510
*
4511
* Calculate the BW allocation overhead of a DP link stream, depending
4512
* on the link's
4513
* - @lane_count
4514
* - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST)
4515
* - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR)
4516
* - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC)
4517
* - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK)
4518
* as well as the stream's
4519
* - @hactive timing
4520
* - @bpp_x16 color depth
4521
* - compression mode (@dsc_slice_count != 0)
4522
* Note that this overhead doesn't account for the 8b/10b, 128b/132b
4523
* channel coding efficiency, for that see
4524
* @drm_dp_link_bw_channel_coding_efficiency().
4525
*
4526
* Returns the overhead as 100% + overhead% in 1ppm units.
4527
*/
4528
int drm_dp_bw_overhead(int lane_count, int hactive,
4529
int dsc_slice_count,
4530
int bpp_x16, unsigned long flags)
4531
{
4532
int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8;
4533
bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST;
4534
u32 overhead = 1000000;
4535
int symbol_cycles;
4536
4537
if (lane_count == 0 || hactive == 0 || bpp_x16 == 0) {
4538
DRM_DEBUG_KMS("Invalid BW overhead params: lane_count %d, hactive %d, bpp_x16 " FXP_Q4_FMT "\n",
4539
lane_count, hactive,
4540
FXP_Q4_ARGS(bpp_x16));
4541
return 0;
4542
}
4543
4544
/*
4545
* DP Standard v2.1 2.6.4.1
4546
* SSC downspread and ref clock variation margin:
4547
* 5300ppm + 300ppm ~ 0.6%
4548
*/
4549
if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK)
4550
overhead += 6000;
4551
4552
/*
4553
* DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4:
4554
* FEC symbol insertions for 8b/10b channel coding:
4555
* After each 250 data symbols on 2-4 lanes:
4556
* 250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ (256 byte FEC block)
4557
* After each 2 x 250 data symbols on 1 lane:
4558
* 2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block)
4559
* After 256 (2-4 lanes) or 128 (1 lane) FEC blocks:
4560
* 256 * 256 bytes + 1 FEC_PM
4561
* or
4562
* 128 * 512 bytes + 1 FEC_PM
4563
* (256 * 6 + 1) / (256 * 250) = 2.4015625 %
4564
*/
4565
if (flags & DRM_DP_BW_OVERHEAD_FEC)
4566
overhead += 24016;
4567
4568
/*
4569
* DP Standard v2.1 2.7.9, 5.9.7
4570
* The FEC overhead for UHBR is accounted for in its 96.71% channel
4571
* coding efficiency.
4572
*/
4573
WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) &&
4574
(flags & DRM_DP_BW_OVERHEAD_FEC));
4575
4576
symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive,
4577
dsc_slice_count,
4578
bpp_x16, symbol_size,
4579
is_mst);
4580
4581
return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count,
4582
overhead * 16),
4583
hactive * bpp_x16);
4584
}
4585
EXPORT_SYMBOL(drm_dp_bw_overhead);
4586
4587
/**
4588
* drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency
4589
* @is_uhbr: Whether the link has a 128b/132b channel coding
4590
*
4591
* Return the channel coding efficiency of the given DP link type, which is
4592
* either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes
4593
* the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead
4594
* and for 128b/132b any link or PHY level control symbol insertion overhead
4595
* (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the
4596
* corresponding FEC overhead is BW allocation specific, included in the value
4597
* returned by drm_dp_bw_overhead().
4598
*
4599
* Returns the efficiency in the 100%/coding-overhead% ratio in
4600
* 1ppm units.
4601
*/
4602
int drm_dp_bw_channel_coding_efficiency(bool is_uhbr)
4603
{
4604
if (is_uhbr)
4605
return 967100;
4606
else
4607
/*
4608
* Note that on 8b/10b MST the efficiency is only
4609
* 78.75% due to the 1 out of 64 MTPH packet overhead,
4610
* not accounted for here.
4611
*/
4612
return 800000;
4613
}
4614
EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency);
4615
4616
/**
4617
* drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink
4618
* @max_link_rate: max DPRX link rate in 10kbps units
4619
* @max_lanes: max DPRX lane count
4620
*
4621
* Given a link rate and lanes, get the data bandwidth.
4622
*
4623
* Data bandwidth is the actual payload rate, which depends on the data
4624
* bandwidth efficiency and the link rate.
4625
*
4626
* Note that protocol layers above the DPRX link level considered here can
4627
* further limit the maximum data rate. Such layers are the MST topology (with
4628
* limits on the link between the source and first branch device as well as on
4629
* the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels -
4630
* which in turn can encapsulate an MST link with its own limit - with each
4631
* SST or MST encapsulated tunnel sharing the BW of a tunnel group.
4632
*
4633
* Returns the maximum data rate in kBps units.
4634
*/
4635
int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes)
4636
{
4637
int ch_coding_efficiency =
4638
drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate));
4639
4640
return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes,
4641
ch_coding_efficiency),
4642
1000000 * 8);
4643
}
4644
EXPORT_SYMBOL(drm_dp_max_dprx_data_rate);
4645
4646