Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/gpu/drm/drm_drv.c
26444 views
1
/*
2
* Created: Fri Jan 19 10:48:35 2001 by [email protected]
3
*
4
* Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5
* All Rights Reserved.
6
*
7
* Author Rickard E. (Rik) Faith <[email protected]>
8
*
9
* Permission is hereby granted, free of charge, to any person obtaining a
10
* copy of this software and associated documentation files (the "Software"),
11
* to deal in the Software without restriction, including without limitation
12
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
13
* and/or sell copies of the Software, and to permit persons to whom the
14
* Software is furnished to do so, subject to the following conditions:
15
*
16
* The above copyright notice and this permission notice (including the next
17
* paragraph) shall be included in all copies or substantial portions of the
18
* Software.
19
*
20
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23
* PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26
* DEALINGS IN THE SOFTWARE.
27
*/
28
29
#include <linux/bitops.h>
30
#include <linux/cgroup_dmem.h>
31
#include <linux/debugfs.h>
32
#include <linux/export.h>
33
#include <linux/fs.h>
34
#include <linux/module.h>
35
#include <linux/moduleparam.h>
36
#include <linux/mount.h>
37
#include <linux/pseudo_fs.h>
38
#include <linux/sched.h>
39
#include <linux/slab.h>
40
#include <linux/sprintf.h>
41
#include <linux/srcu.h>
42
#include <linux/xarray.h>
43
44
#include <drm/drm_accel.h>
45
#include <drm/drm_bridge.h>
46
#include <drm/drm_cache.h>
47
#include <drm/drm_client_event.h>
48
#include <drm/drm_color_mgmt.h>
49
#include <drm/drm_drv.h>
50
#include <drm/drm_file.h>
51
#include <drm/drm_managed.h>
52
#include <drm/drm_mode_object.h>
53
#include <drm/drm_panic.h>
54
#include <drm/drm_print.h>
55
#include <drm/drm_privacy_screen_machine.h>
56
57
#include "drm_crtc_internal.h"
58
#include "drm_internal.h"
59
60
MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
61
MODULE_DESCRIPTION("DRM shared core routines");
62
MODULE_LICENSE("GPL and additional rights");
63
64
DEFINE_XARRAY_ALLOC(drm_minors_xa);
65
66
/*
67
* If the drm core fails to init for whatever reason,
68
* we should prevent any drivers from registering with it.
69
* It's best to check this at drm_dev_init(), as some drivers
70
* prefer to embed struct drm_device into their own device
71
* structure and call drm_dev_init() themselves.
72
*/
73
static bool drm_core_init_complete;
74
75
DEFINE_STATIC_SRCU(drm_unplug_srcu);
76
77
/*
78
* DRM Minors
79
* A DRM device can provide several char-dev interfaces on the DRM-Major. Each
80
* of them is represented by a drm_minor object. Depending on the capabilities
81
* of the device-driver, different interfaces are registered.
82
*
83
* Minors can be accessed via dev->$minor_name. This pointer is either
84
* NULL or a valid drm_minor pointer and stays valid as long as the device is
85
* valid. This means, DRM minors have the same life-time as the underlying
86
* device. However, this doesn't mean that the minor is active. Minors are
87
* registered and unregistered dynamically according to device-state.
88
*/
89
90
static struct xarray *drm_minor_get_xa(enum drm_minor_type type)
91
{
92
if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)
93
return &drm_minors_xa;
94
#if IS_ENABLED(CONFIG_DRM_ACCEL)
95
else if (type == DRM_MINOR_ACCEL)
96
return &accel_minors_xa;
97
#endif
98
else
99
return ERR_PTR(-EOPNOTSUPP);
100
}
101
102
static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
103
enum drm_minor_type type)
104
{
105
switch (type) {
106
case DRM_MINOR_PRIMARY:
107
return &dev->primary;
108
case DRM_MINOR_RENDER:
109
return &dev->render;
110
case DRM_MINOR_ACCEL:
111
return &dev->accel;
112
default:
113
BUG();
114
}
115
}
116
117
static void drm_minor_alloc_release(struct drm_device *dev, void *data)
118
{
119
struct drm_minor *minor = data;
120
121
WARN_ON(dev != minor->dev);
122
123
put_device(minor->kdev);
124
125
xa_erase(drm_minor_get_xa(minor->type), minor->index);
126
}
127
128
/*
129
* DRM used to support 64 devices, for backwards compatibility we need to maintain the
130
* minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes,
131
* and 128-191 are render nodes.
132
* After reaching the limit, we're allocating minors dynamically - first-come, first-serve.
133
* Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX
134
* range.
135
*/
136
#define DRM_MINOR_LIMIT(t) ({ \
137
typeof(t) _t = (t); \
138
_t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \
139
})
140
#define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1)
141
142
static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type)
143
{
144
struct drm_minor *minor;
145
int r;
146
147
minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
148
if (!minor)
149
return -ENOMEM;
150
151
minor->type = type;
152
minor->dev = dev;
153
154
r = xa_alloc(drm_minor_get_xa(type), &minor->index,
155
NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL);
156
if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER))
157
r = xa_alloc(&drm_minors_xa, &minor->index,
158
NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL);
159
if (r < 0)
160
return r;
161
162
r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
163
if (r)
164
return r;
165
166
minor->kdev = drm_sysfs_minor_alloc(minor);
167
if (IS_ERR(minor->kdev))
168
return PTR_ERR(minor->kdev);
169
170
*drm_minor_get_slot(dev, type) = minor;
171
return 0;
172
}
173
174
static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type)
175
{
176
struct drm_minor *minor;
177
void *entry;
178
int ret;
179
180
DRM_DEBUG("\n");
181
182
minor = *drm_minor_get_slot(dev, type);
183
if (!minor)
184
return 0;
185
186
if (minor->type != DRM_MINOR_ACCEL) {
187
ret = drm_debugfs_register(minor, minor->index);
188
if (ret) {
189
DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
190
goto err_debugfs;
191
}
192
}
193
194
ret = device_add(minor->kdev);
195
if (ret)
196
goto err_debugfs;
197
198
/* replace NULL with @minor so lookups will succeed from now on */
199
entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL);
200
if (xa_is_err(entry)) {
201
ret = xa_err(entry);
202
goto err_debugfs;
203
}
204
WARN_ON(entry);
205
206
DRM_DEBUG("new minor registered %d\n", minor->index);
207
return 0;
208
209
err_debugfs:
210
drm_debugfs_unregister(minor);
211
return ret;
212
}
213
214
static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type)
215
{
216
struct drm_minor *minor;
217
218
minor = *drm_minor_get_slot(dev, type);
219
if (!minor || !device_is_registered(minor->kdev))
220
return;
221
222
/* replace @minor with NULL so lookups will fail from now on */
223
xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL);
224
225
device_del(minor->kdev);
226
dev_set_drvdata(minor->kdev, NULL); /* safety belt */
227
drm_debugfs_unregister(minor);
228
}
229
230
/*
231
* Looks up the given minor-ID and returns the respective DRM-minor object. The
232
* refence-count of the underlying device is increased so you must release this
233
* object with drm_minor_release().
234
*
235
* As long as you hold this minor, it is guaranteed that the object and the
236
* minor->dev pointer will stay valid! However, the device may get unplugged and
237
* unregistered while you hold the minor.
238
*/
239
struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id)
240
{
241
struct drm_minor *minor;
242
243
xa_lock(minor_xa);
244
minor = xa_load(minor_xa, minor_id);
245
if (minor)
246
drm_dev_get(minor->dev);
247
xa_unlock(minor_xa);
248
249
if (!minor) {
250
return ERR_PTR(-ENODEV);
251
} else if (drm_dev_is_unplugged(minor->dev)) {
252
drm_dev_put(minor->dev);
253
return ERR_PTR(-ENODEV);
254
}
255
256
return minor;
257
}
258
259
void drm_minor_release(struct drm_minor *minor)
260
{
261
drm_dev_put(minor->dev);
262
}
263
264
/**
265
* DOC: driver instance overview
266
*
267
* A device instance for a drm driver is represented by &struct drm_device. This
268
* is allocated and initialized with devm_drm_dev_alloc(), usually from
269
* bus-specific ->probe() callbacks implemented by the driver. The driver then
270
* needs to initialize all the various subsystems for the drm device like memory
271
* management, vblank handling, modesetting support and initial output
272
* configuration plus obviously initialize all the corresponding hardware bits.
273
* Finally when everything is up and running and ready for userspace the device
274
* instance can be published using drm_dev_register().
275
*
276
* There is also deprecated support for initializing device instances using
277
* bus-specific helpers and the &drm_driver.load callback. But due to
278
* backwards-compatibility needs the device instance have to be published too
279
* early, which requires unpretty global locking to make safe and is therefore
280
* only support for existing drivers not yet converted to the new scheme.
281
*
282
* When cleaning up a device instance everything needs to be done in reverse:
283
* First unpublish the device instance with drm_dev_unregister(). Then clean up
284
* any other resources allocated at device initialization and drop the driver's
285
* reference to &drm_device using drm_dev_put().
286
*
287
* Note that any allocation or resource which is visible to userspace must be
288
* released only when the final drm_dev_put() is called, and not when the
289
* driver is unbound from the underlying physical struct &device. Best to use
290
* &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
291
* related functions.
292
*
293
* devres managed resources like devm_kmalloc() can only be used for resources
294
* directly related to the underlying hardware device, and only used in code
295
* paths fully protected by drm_dev_enter() and drm_dev_exit().
296
*
297
* Display driver example
298
* ~~~~~~~~~~~~~~~~~~~~~~
299
*
300
* The following example shows a typical structure of a DRM display driver.
301
* The example focus on the probe() function and the other functions that is
302
* almost always present and serves as a demonstration of devm_drm_dev_alloc().
303
*
304
* .. code-block:: c
305
*
306
* struct driver_device {
307
* struct drm_device drm;
308
* void *userspace_facing;
309
* struct clk *pclk;
310
* };
311
*
312
* static const struct drm_driver driver_drm_driver = {
313
* [...]
314
* };
315
*
316
* static int driver_probe(struct platform_device *pdev)
317
* {
318
* struct driver_device *priv;
319
* struct drm_device *drm;
320
* int ret;
321
*
322
* priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
323
* struct driver_device, drm);
324
* if (IS_ERR(priv))
325
* return PTR_ERR(priv);
326
* drm = &priv->drm;
327
*
328
* ret = drmm_mode_config_init(drm);
329
* if (ret)
330
* return ret;
331
*
332
* priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
333
* if (!priv->userspace_facing)
334
* return -ENOMEM;
335
*
336
* priv->pclk = devm_clk_get(dev, "PCLK");
337
* if (IS_ERR(priv->pclk))
338
* return PTR_ERR(priv->pclk);
339
*
340
* // Further setup, display pipeline etc
341
*
342
* platform_set_drvdata(pdev, drm);
343
*
344
* drm_mode_config_reset(drm);
345
*
346
* ret = drm_dev_register(drm);
347
* if (ret)
348
* return ret;
349
*
350
* drm_fbdev_{...}_setup(drm, 32);
351
*
352
* return 0;
353
* }
354
*
355
* // This function is called before the devm_ resources are released
356
* static int driver_remove(struct platform_device *pdev)
357
* {
358
* struct drm_device *drm = platform_get_drvdata(pdev);
359
*
360
* drm_dev_unregister(drm);
361
* drm_atomic_helper_shutdown(drm)
362
*
363
* return 0;
364
* }
365
*
366
* // This function is called on kernel restart and shutdown
367
* static void driver_shutdown(struct platform_device *pdev)
368
* {
369
* drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
370
* }
371
*
372
* static int __maybe_unused driver_pm_suspend(struct device *dev)
373
* {
374
* return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
375
* }
376
*
377
* static int __maybe_unused driver_pm_resume(struct device *dev)
378
* {
379
* drm_mode_config_helper_resume(dev_get_drvdata(dev));
380
*
381
* return 0;
382
* }
383
*
384
* static const struct dev_pm_ops driver_pm_ops = {
385
* SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
386
* };
387
*
388
* static struct platform_driver driver_driver = {
389
* .driver = {
390
* [...]
391
* .pm = &driver_pm_ops,
392
* },
393
* .probe = driver_probe,
394
* .remove = driver_remove,
395
* .shutdown = driver_shutdown,
396
* };
397
* module_platform_driver(driver_driver);
398
*
399
* Drivers that want to support device unplugging (USB, DT overlay unload) should
400
* use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
401
* regions that is accessing device resources to prevent use after they're
402
* released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
403
* shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
404
* drm_atomic_helper_shutdown() is called. This means that if the disable code
405
* paths are protected, they will not run on regular driver module unload,
406
* possibly leaving the hardware enabled.
407
*/
408
409
/**
410
* drm_put_dev - Unregister and release a DRM device
411
* @dev: DRM device
412
*
413
* Called at module unload time or when a PCI device is unplugged.
414
*
415
* Cleans up all DRM device, calling drm_lastclose().
416
*
417
* Note: Use of this function is deprecated. It will eventually go away
418
* completely. Please use drm_dev_unregister() and drm_dev_put() explicitly
419
* instead to make sure that the device isn't userspace accessible any more
420
* while teardown is in progress, ensuring that userspace can't access an
421
* inconsistent state.
422
*/
423
void drm_put_dev(struct drm_device *dev)
424
{
425
DRM_DEBUG("\n");
426
427
if (!dev) {
428
DRM_ERROR("cleanup called no dev\n");
429
return;
430
}
431
432
drm_dev_unregister(dev);
433
drm_dev_put(dev);
434
}
435
EXPORT_SYMBOL(drm_put_dev);
436
437
/**
438
* drm_dev_enter - Enter device critical section
439
* @dev: DRM device
440
* @idx: Pointer to index that will be passed to the matching drm_dev_exit()
441
*
442
* This function marks and protects the beginning of a section that should not
443
* be entered after the device has been unplugged. The section end is marked
444
* with drm_dev_exit(). Calls to this function can be nested.
445
*
446
* Returns:
447
* True if it is OK to enter the section, false otherwise.
448
*/
449
bool drm_dev_enter(struct drm_device *dev, int *idx)
450
{
451
*idx = srcu_read_lock(&drm_unplug_srcu);
452
453
if (dev->unplugged) {
454
srcu_read_unlock(&drm_unplug_srcu, *idx);
455
return false;
456
}
457
458
return true;
459
}
460
EXPORT_SYMBOL(drm_dev_enter);
461
462
/**
463
* drm_dev_exit - Exit device critical section
464
* @idx: index returned from drm_dev_enter()
465
*
466
* This function marks the end of a section that should not be entered after
467
* the device has been unplugged.
468
*/
469
void drm_dev_exit(int idx)
470
{
471
srcu_read_unlock(&drm_unplug_srcu, idx);
472
}
473
EXPORT_SYMBOL(drm_dev_exit);
474
475
/**
476
* drm_dev_unplug - unplug a DRM device
477
* @dev: DRM device
478
*
479
* This unplugs a hotpluggable DRM device, which makes it inaccessible to
480
* userspace operations. Entry-points can use drm_dev_enter() and
481
* drm_dev_exit() to protect device resources in a race free manner. This
482
* essentially unregisters the device like drm_dev_unregister(), but can be
483
* called while there are still open users of @dev.
484
*/
485
void drm_dev_unplug(struct drm_device *dev)
486
{
487
/*
488
* After synchronizing any critical read section is guaranteed to see
489
* the new value of ->unplugged, and any critical section which might
490
* still have seen the old value of ->unplugged is guaranteed to have
491
* finished.
492
*/
493
dev->unplugged = true;
494
synchronize_srcu(&drm_unplug_srcu);
495
496
drm_dev_unregister(dev);
497
498
/* Clear all CPU mappings pointing to this device */
499
unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
500
}
501
EXPORT_SYMBOL(drm_dev_unplug);
502
503
/**
504
* drm_dev_set_dma_dev - set the DMA device for a DRM device
505
* @dev: DRM device
506
* @dma_dev: DMA device or NULL
507
*
508
* Sets the DMA device of the given DRM device. Only required if
509
* the DMA device is different from the DRM device's parent. After
510
* calling this function, the DRM device holds a reference on
511
* @dma_dev. Pass NULL to clear the DMA device.
512
*/
513
void drm_dev_set_dma_dev(struct drm_device *dev, struct device *dma_dev)
514
{
515
dma_dev = get_device(dma_dev);
516
517
put_device(dev->dma_dev);
518
dev->dma_dev = dma_dev;
519
}
520
EXPORT_SYMBOL(drm_dev_set_dma_dev);
521
522
/*
523
* Available recovery methods for wedged device. To be sent along with device
524
* wedged uevent.
525
*/
526
static const char *drm_get_wedge_recovery(unsigned int opt)
527
{
528
switch (BIT(opt)) {
529
case DRM_WEDGE_RECOVERY_NONE:
530
return "none";
531
case DRM_WEDGE_RECOVERY_REBIND:
532
return "rebind";
533
case DRM_WEDGE_RECOVERY_BUS_RESET:
534
return "bus-reset";
535
default:
536
return NULL;
537
}
538
}
539
540
#define WEDGE_STR_LEN 32
541
#define PID_STR_LEN 15
542
#define COMM_STR_LEN (TASK_COMM_LEN + 5)
543
544
/**
545
* drm_dev_wedged_event - generate a device wedged uevent
546
* @dev: DRM device
547
* @method: method(s) to be used for recovery
548
* @info: optional information about the guilty task
549
*
550
* This generates a device wedged uevent for the DRM device specified by @dev.
551
* Recovery @method\(s) of choice will be sent in the uevent environment as
552
* ``WEDGED=<method1>[,..,<methodN>]`` in order of less to more side-effects.
553
* If caller is unsure about recovery or @method is unknown (0),
554
* ``WEDGED=unknown`` will be sent instead.
555
*
556
* Refer to "Device Wedging" chapter in Documentation/gpu/drm-uapi.rst for more
557
* details.
558
*
559
* Returns: 0 on success, negative error code otherwise.
560
*/
561
int drm_dev_wedged_event(struct drm_device *dev, unsigned long method,
562
struct drm_wedge_task_info *info)
563
{
564
char event_string[WEDGE_STR_LEN], pid_string[PID_STR_LEN], comm_string[COMM_STR_LEN];
565
char *envp[] = { event_string, NULL, NULL, NULL };
566
const char *recovery = NULL;
567
unsigned int len, opt;
568
569
len = scnprintf(event_string, sizeof(event_string), "%s", "WEDGED=");
570
571
for_each_set_bit(opt, &method, BITS_PER_TYPE(method)) {
572
recovery = drm_get_wedge_recovery(opt);
573
if (drm_WARN_ONCE(dev, !recovery, "invalid recovery method %u\n", opt))
574
break;
575
576
len += scnprintf(event_string + len, sizeof(event_string) - len, "%s,", recovery);
577
}
578
579
if (recovery)
580
/* Get rid of trailing comma */
581
event_string[len - 1] = '\0';
582
else
583
/* Caller is unsure about recovery, do the best we can at this point. */
584
snprintf(event_string, sizeof(event_string), "%s", "WEDGED=unknown");
585
586
drm_info(dev, "device wedged, %s\n", method == DRM_WEDGE_RECOVERY_NONE ?
587
"but recovered through reset" : "needs recovery");
588
589
if (info && (info->comm[0] != '\0') && (info->pid >= 0)) {
590
snprintf(pid_string, sizeof(pid_string), "PID=%u", info->pid);
591
snprintf(comm_string, sizeof(comm_string), "TASK=%s", info->comm);
592
envp[1] = pid_string;
593
envp[2] = comm_string;
594
}
595
596
return kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, envp);
597
}
598
EXPORT_SYMBOL(drm_dev_wedged_event);
599
600
/*
601
* DRM internal mount
602
* We want to be able to allocate our own "struct address_space" to control
603
* memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
604
* stand-alone address_space objects, so we need an underlying inode. As there
605
* is no way to allocate an independent inode easily, we need a fake internal
606
* VFS mount-point.
607
*
608
* The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
609
* frees it again. You are allowed to use iget() and iput() to get references to
610
* the inode. But each drm_fs_inode_new() call must be paired with exactly one
611
* drm_fs_inode_free() call (which does not have to be the last iput()).
612
* We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
613
* between multiple inode-users. You could, technically, call
614
* iget() + drm_fs_inode_free() directly after alloc and sometime later do an
615
* iput(), but this way you'd end up with a new vfsmount for each inode.
616
*/
617
618
static int drm_fs_cnt;
619
static struct vfsmount *drm_fs_mnt;
620
621
static int drm_fs_init_fs_context(struct fs_context *fc)
622
{
623
return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
624
}
625
626
static struct file_system_type drm_fs_type = {
627
.name = "drm",
628
.owner = THIS_MODULE,
629
.init_fs_context = drm_fs_init_fs_context,
630
.kill_sb = kill_anon_super,
631
};
632
633
static struct inode *drm_fs_inode_new(void)
634
{
635
struct inode *inode;
636
int r;
637
638
r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
639
if (r < 0) {
640
DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
641
return ERR_PTR(r);
642
}
643
644
inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
645
if (IS_ERR(inode))
646
simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
647
648
return inode;
649
}
650
651
static void drm_fs_inode_free(struct inode *inode)
652
{
653
if (inode) {
654
iput(inode);
655
simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
656
}
657
}
658
659
/**
660
* DOC: component helper usage recommendations
661
*
662
* DRM drivers that drive hardware where a logical device consists of a pile of
663
* independent hardware blocks are recommended to use the :ref:`component helper
664
* library<component>`. For consistency and better options for code reuse the
665
* following guidelines apply:
666
*
667
* - The entire device initialization procedure should be run from the
668
* &component_master_ops.master_bind callback, starting with
669
* devm_drm_dev_alloc(), then binding all components with
670
* component_bind_all() and finishing with drm_dev_register().
671
*
672
* - The opaque pointer passed to all components through component_bind_all()
673
* should point at &struct drm_device of the device instance, not some driver
674
* specific private structure.
675
*
676
* - The component helper fills the niche where further standardization of
677
* interfaces is not practical. When there already is, or will be, a
678
* standardized interface like &drm_bridge or &drm_panel, providing its own
679
* functions to find such components at driver load time, like
680
* drm_of_find_panel_or_bridge(), then the component helper should not be
681
* used.
682
*/
683
684
static void drm_dev_init_release(struct drm_device *dev, void *res)
685
{
686
drm_fs_inode_free(dev->anon_inode);
687
688
put_device(dev->dma_dev);
689
dev->dma_dev = NULL;
690
put_device(dev->dev);
691
/* Prevent use-after-free in drm_managed_release when debugging is
692
* enabled. Slightly awkward, but can't really be helped. */
693
dev->dev = NULL;
694
mutex_destroy(&dev->master_mutex);
695
mutex_destroy(&dev->clientlist_mutex);
696
mutex_destroy(&dev->filelist_mutex);
697
mutex_destroy(&dev->struct_mutex);
698
}
699
700
static int drm_dev_init(struct drm_device *dev,
701
const struct drm_driver *driver,
702
struct device *parent)
703
{
704
struct inode *inode;
705
int ret;
706
707
if (!drm_core_init_complete) {
708
DRM_ERROR("DRM core is not initialized\n");
709
return -ENODEV;
710
}
711
712
if (WARN_ON(!parent))
713
return -EINVAL;
714
715
kref_init(&dev->ref);
716
dev->dev = get_device(parent);
717
dev->driver = driver;
718
719
INIT_LIST_HEAD(&dev->managed.resources);
720
spin_lock_init(&dev->managed.lock);
721
722
/* no per-device feature limits by default */
723
dev->driver_features = ~0u;
724
725
if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) &&
726
(drm_core_check_feature(dev, DRIVER_RENDER) ||
727
drm_core_check_feature(dev, DRIVER_MODESET))) {
728
DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n");
729
return -EINVAL;
730
}
731
732
INIT_LIST_HEAD(&dev->filelist);
733
INIT_LIST_HEAD(&dev->filelist_internal);
734
INIT_LIST_HEAD(&dev->clientlist);
735
INIT_LIST_HEAD(&dev->vblank_event_list);
736
737
spin_lock_init(&dev->event_lock);
738
mutex_init(&dev->struct_mutex);
739
mutex_init(&dev->filelist_mutex);
740
mutex_init(&dev->clientlist_mutex);
741
mutex_init(&dev->master_mutex);
742
raw_spin_lock_init(&dev->mode_config.panic_lock);
743
744
ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL);
745
if (ret)
746
return ret;
747
748
inode = drm_fs_inode_new();
749
if (IS_ERR(inode)) {
750
ret = PTR_ERR(inode);
751
DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
752
goto err;
753
}
754
755
dev->anon_inode = inode;
756
757
if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) {
758
ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL);
759
if (ret)
760
goto err;
761
} else {
762
if (drm_core_check_feature(dev, DRIVER_RENDER)) {
763
ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
764
if (ret)
765
goto err;
766
}
767
768
ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
769
if (ret)
770
goto err;
771
}
772
773
if (drm_core_check_feature(dev, DRIVER_GEM)) {
774
ret = drm_gem_init(dev);
775
if (ret) {
776
DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
777
goto err;
778
}
779
}
780
781
dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL);
782
if (!dev->unique) {
783
ret = -ENOMEM;
784
goto err;
785
}
786
787
drm_debugfs_dev_init(dev);
788
789
return 0;
790
791
err:
792
drm_managed_release(dev);
793
794
return ret;
795
}
796
797
static void devm_drm_dev_init_release(void *data)
798
{
799
drm_dev_put(data);
800
}
801
802
static int devm_drm_dev_init(struct device *parent,
803
struct drm_device *dev,
804
const struct drm_driver *driver)
805
{
806
int ret;
807
808
ret = drm_dev_init(dev, driver, parent);
809
if (ret)
810
return ret;
811
812
return devm_add_action_or_reset(parent,
813
devm_drm_dev_init_release, dev);
814
}
815
816
void *__devm_drm_dev_alloc(struct device *parent,
817
const struct drm_driver *driver,
818
size_t size, size_t offset)
819
{
820
void *container;
821
struct drm_device *drm;
822
int ret;
823
824
container = kzalloc(size, GFP_KERNEL);
825
if (!container)
826
return ERR_PTR(-ENOMEM);
827
828
drm = container + offset;
829
ret = devm_drm_dev_init(parent, drm, driver);
830
if (ret) {
831
kfree(container);
832
return ERR_PTR(ret);
833
}
834
drmm_add_final_kfree(drm, container);
835
836
return container;
837
}
838
EXPORT_SYMBOL(__devm_drm_dev_alloc);
839
840
/**
841
* __drm_dev_alloc - Allocation of a &drm_device instance
842
* @parent: Parent device object
843
* @driver: DRM driver
844
* @size: the size of the struct which contains struct drm_device
845
* @offset: the offset of the &drm_device within the container.
846
*
847
* This should *NOT* be by any drivers, but is a dedicated interface for the
848
* corresponding Rust abstraction.
849
*
850
* This is the same as devm_drm_dev_alloc(), but without the corresponding
851
* resource management through the parent device, but not the same as
852
* drm_dev_alloc(), since the latter is the deprecated version, which does not
853
* support subclassing.
854
*
855
* Returns: A pointer to new DRM device, or an ERR_PTR on failure.
856
*/
857
void *__drm_dev_alloc(struct device *parent,
858
const struct drm_driver *driver,
859
size_t size, size_t offset)
860
{
861
void *container;
862
struct drm_device *drm;
863
int ret;
864
865
container = kzalloc(size, GFP_KERNEL);
866
if (!container)
867
return ERR_PTR(-ENOMEM);
868
869
drm = container + offset;
870
ret = drm_dev_init(drm, driver, parent);
871
if (ret) {
872
kfree(container);
873
return ERR_PTR(ret);
874
}
875
drmm_add_final_kfree(drm, container);
876
877
return container;
878
}
879
EXPORT_SYMBOL(__drm_dev_alloc);
880
881
/**
882
* drm_dev_alloc - Allocate new DRM device
883
* @driver: DRM driver to allocate device for
884
* @parent: Parent device object
885
*
886
* This is the deprecated version of devm_drm_dev_alloc(), which does not support
887
* subclassing through embedding the struct &drm_device in a driver private
888
* structure, and which does not support automatic cleanup through devres.
889
*
890
* RETURNS:
891
* Pointer to new DRM device, or ERR_PTR on failure.
892
*/
893
struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
894
struct device *parent)
895
{
896
return __drm_dev_alloc(parent, driver, sizeof(struct drm_device), 0);
897
}
898
EXPORT_SYMBOL(drm_dev_alloc);
899
900
static void drm_dev_release(struct kref *ref)
901
{
902
struct drm_device *dev = container_of(ref, struct drm_device, ref);
903
904
/* Just in case register/unregister was never called */
905
drm_debugfs_dev_fini(dev);
906
907
if (dev->driver->release)
908
dev->driver->release(dev);
909
910
drm_managed_release(dev);
911
912
kfree(dev->managed.final_kfree);
913
}
914
915
/**
916
* drm_dev_get - Take reference of a DRM device
917
* @dev: device to take reference of or NULL
918
*
919
* This increases the ref-count of @dev by one. You *must* already own a
920
* reference when calling this. Use drm_dev_put() to drop this reference
921
* again.
922
*
923
* This function never fails. However, this function does not provide *any*
924
* guarantee whether the device is alive or running. It only provides a
925
* reference to the object and the memory associated with it.
926
*/
927
void drm_dev_get(struct drm_device *dev)
928
{
929
if (dev)
930
kref_get(&dev->ref);
931
}
932
EXPORT_SYMBOL(drm_dev_get);
933
934
/**
935
* drm_dev_put - Drop reference of a DRM device
936
* @dev: device to drop reference of or NULL
937
*
938
* This decreases the ref-count of @dev by one. The device is destroyed if the
939
* ref-count drops to zero.
940
*/
941
void drm_dev_put(struct drm_device *dev)
942
{
943
if (dev)
944
kref_put(&dev->ref, drm_dev_release);
945
}
946
EXPORT_SYMBOL(drm_dev_put);
947
948
static void drmm_cg_unregister_region(struct drm_device *dev, void *arg)
949
{
950
dmem_cgroup_unregister_region(arg);
951
}
952
953
/**
954
* drmm_cgroup_register_region - Register a region of a DRM device to cgroups
955
* @dev: device for region
956
* @region_name: Region name for registering
957
* @size: Size of region in bytes
958
*
959
* This decreases the ref-count of @dev by one. The device is destroyed if the
960
* ref-count drops to zero.
961
*/
962
struct dmem_cgroup_region *drmm_cgroup_register_region(struct drm_device *dev, const char *region_name, u64 size)
963
{
964
struct dmem_cgroup_region *region;
965
int ret;
966
967
region = dmem_cgroup_register_region(size, "drm/%s/%s", dev->unique, region_name);
968
if (IS_ERR_OR_NULL(region))
969
return region;
970
971
ret = drmm_add_action_or_reset(dev, drmm_cg_unregister_region, region);
972
if (ret)
973
return ERR_PTR(ret);
974
975
return region;
976
}
977
EXPORT_SYMBOL_GPL(drmm_cgroup_register_region);
978
979
static int create_compat_control_link(struct drm_device *dev)
980
{
981
struct drm_minor *minor;
982
char *name;
983
int ret;
984
985
if (!drm_core_check_feature(dev, DRIVER_MODESET))
986
return 0;
987
988
minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
989
if (!minor)
990
return 0;
991
992
/*
993
* Some existing userspace out there uses the existing of the controlD*
994
* sysfs files to figure out whether it's a modeset driver. It only does
995
* readdir, hence a symlink is sufficient (and the least confusing
996
* option). Otherwise controlD* is entirely unused.
997
*
998
* Old controlD chardev have been allocated in the range
999
* 64-127.
1000
*/
1001
name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
1002
if (!name)
1003
return -ENOMEM;
1004
1005
ret = sysfs_create_link(minor->kdev->kobj.parent,
1006
&minor->kdev->kobj,
1007
name);
1008
1009
kfree(name);
1010
1011
return ret;
1012
}
1013
1014
static void remove_compat_control_link(struct drm_device *dev)
1015
{
1016
struct drm_minor *minor;
1017
char *name;
1018
1019
if (!drm_core_check_feature(dev, DRIVER_MODESET))
1020
return;
1021
1022
minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
1023
if (!minor)
1024
return;
1025
1026
name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
1027
if (!name)
1028
return;
1029
1030
sysfs_remove_link(minor->kdev->kobj.parent, name);
1031
1032
kfree(name);
1033
}
1034
1035
/**
1036
* drm_dev_register - Register DRM device
1037
* @dev: Device to register
1038
* @flags: Flags passed to the driver's .load() function
1039
*
1040
* Register the DRM device @dev with the system, advertise device to user-space
1041
* and start normal device operation. @dev must be initialized via drm_dev_init()
1042
* previously.
1043
*
1044
* Never call this twice on any device!
1045
*
1046
* NOTE: To ensure backward compatibility with existing drivers method this
1047
* function calls the &drm_driver.load method after registering the device
1048
* nodes, creating race conditions. Usage of the &drm_driver.load methods is
1049
* therefore deprecated, drivers must perform all initialization before calling
1050
* drm_dev_register().
1051
*
1052
* RETURNS:
1053
* 0 on success, negative error code on failure.
1054
*/
1055
int drm_dev_register(struct drm_device *dev, unsigned long flags)
1056
{
1057
const struct drm_driver *driver = dev->driver;
1058
int ret;
1059
1060
if (!driver->load)
1061
drm_mode_config_validate(dev);
1062
1063
WARN_ON(!dev->managed.final_kfree);
1064
1065
if (drm_dev_needs_global_mutex(dev))
1066
mutex_lock(&drm_global_mutex);
1067
1068
if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL))
1069
accel_debugfs_register(dev);
1070
else
1071
drm_debugfs_dev_register(dev);
1072
1073
ret = drm_minor_register(dev, DRM_MINOR_RENDER);
1074
if (ret)
1075
goto err_minors;
1076
1077
ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
1078
if (ret)
1079
goto err_minors;
1080
1081
ret = drm_minor_register(dev, DRM_MINOR_ACCEL);
1082
if (ret)
1083
goto err_minors;
1084
1085
ret = create_compat_control_link(dev);
1086
if (ret)
1087
goto err_minors;
1088
1089
dev->registered = true;
1090
1091
if (driver->load) {
1092
ret = driver->load(dev, flags);
1093
if (ret)
1094
goto err_minors;
1095
}
1096
1097
if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1098
ret = drm_modeset_register_all(dev);
1099
if (ret)
1100
goto err_unload;
1101
}
1102
drm_panic_register(dev);
1103
1104
DRM_INFO("Initialized %s %d.%d.%d for %s on minor %d\n",
1105
driver->name, driver->major, driver->minor,
1106
driver->patchlevel,
1107
dev->dev ? dev_name(dev->dev) : "virtual device",
1108
dev->primary ? dev->primary->index : dev->accel->index);
1109
1110
goto out_unlock;
1111
1112
err_unload:
1113
if (dev->driver->unload)
1114
dev->driver->unload(dev);
1115
err_minors:
1116
remove_compat_control_link(dev);
1117
drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1118
drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1119
drm_minor_unregister(dev, DRM_MINOR_RENDER);
1120
out_unlock:
1121
if (drm_dev_needs_global_mutex(dev))
1122
mutex_unlock(&drm_global_mutex);
1123
return ret;
1124
}
1125
EXPORT_SYMBOL(drm_dev_register);
1126
1127
/**
1128
* drm_dev_unregister - Unregister DRM device
1129
* @dev: Device to unregister
1130
*
1131
* Unregister the DRM device from the system. This does the reverse of
1132
* drm_dev_register() but does not deallocate the device. The caller must call
1133
* drm_dev_put() to drop their final reference, unless it is managed with devres
1134
* (as devices allocated with devm_drm_dev_alloc() are), in which case there is
1135
* already an unwind action registered.
1136
*
1137
* A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
1138
* which can be called while there are still open users of @dev.
1139
*
1140
* This should be called first in the device teardown code to make sure
1141
* userspace can't access the device instance any more.
1142
*/
1143
void drm_dev_unregister(struct drm_device *dev)
1144
{
1145
dev->registered = false;
1146
1147
drm_panic_unregister(dev);
1148
1149
drm_client_dev_unregister(dev);
1150
1151
if (drm_core_check_feature(dev, DRIVER_MODESET))
1152
drm_modeset_unregister_all(dev);
1153
1154
if (dev->driver->unload)
1155
dev->driver->unload(dev);
1156
1157
remove_compat_control_link(dev);
1158
drm_minor_unregister(dev, DRM_MINOR_ACCEL);
1159
drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
1160
drm_minor_unregister(dev, DRM_MINOR_RENDER);
1161
drm_debugfs_dev_fini(dev);
1162
}
1163
EXPORT_SYMBOL(drm_dev_unregister);
1164
1165
/*
1166
* DRM Core
1167
* The DRM core module initializes all global DRM objects and makes them
1168
* available to drivers. Once setup, drivers can probe their respective
1169
* devices.
1170
* Currently, core management includes:
1171
* - The "DRM-Global" key/value database
1172
* - Global ID management for connectors
1173
* - DRM major number allocation
1174
* - DRM minor management
1175
* - DRM sysfs class
1176
* - DRM debugfs root
1177
*
1178
* Furthermore, the DRM core provides dynamic char-dev lookups. For each
1179
* interface registered on a DRM device, you can request minor numbers from DRM
1180
* core. DRM core takes care of major-number management and char-dev
1181
* registration. A stub ->open() callback forwards any open() requests to the
1182
* registered minor.
1183
*/
1184
1185
static int drm_stub_open(struct inode *inode, struct file *filp)
1186
{
1187
const struct file_operations *new_fops;
1188
struct drm_minor *minor;
1189
int err;
1190
1191
DRM_DEBUG("\n");
1192
1193
minor = drm_minor_acquire(&drm_minors_xa, iminor(inode));
1194
if (IS_ERR(minor))
1195
return PTR_ERR(minor);
1196
1197
new_fops = fops_get(minor->dev->driver->fops);
1198
if (!new_fops) {
1199
err = -ENODEV;
1200
goto out;
1201
}
1202
1203
replace_fops(filp, new_fops);
1204
if (filp->f_op->open)
1205
err = filp->f_op->open(inode, filp);
1206
else
1207
err = 0;
1208
1209
out:
1210
drm_minor_release(minor);
1211
1212
return err;
1213
}
1214
1215
static const struct file_operations drm_stub_fops = {
1216
.owner = THIS_MODULE,
1217
.open = drm_stub_open,
1218
.llseek = noop_llseek,
1219
};
1220
1221
static void drm_core_exit(void)
1222
{
1223
drm_privacy_screen_lookup_exit();
1224
drm_panic_exit();
1225
accel_core_exit();
1226
unregister_chrdev(DRM_MAJOR, "drm");
1227
drm_debugfs_remove_root();
1228
drm_sysfs_destroy();
1229
WARN_ON(!xa_empty(&drm_minors_xa));
1230
drm_connector_ida_destroy();
1231
}
1232
1233
static int __init drm_core_init(void)
1234
{
1235
int ret;
1236
1237
drm_connector_ida_init();
1238
drm_memcpy_init_early();
1239
1240
ret = drm_sysfs_init();
1241
if (ret < 0) {
1242
DRM_ERROR("Cannot create DRM class: %d\n", ret);
1243
goto error;
1244
}
1245
1246
drm_debugfs_init_root();
1247
drm_debugfs_bridge_params();
1248
1249
ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1250
if (ret < 0)
1251
goto error;
1252
1253
ret = accel_core_init();
1254
if (ret < 0)
1255
goto error;
1256
1257
drm_panic_init();
1258
1259
drm_privacy_screen_lookup_init();
1260
1261
drm_core_init_complete = true;
1262
1263
DRM_DEBUG("Initialized\n");
1264
return 0;
1265
1266
error:
1267
drm_core_exit();
1268
return ret;
1269
}
1270
1271
module_init(drm_core_init);
1272
module_exit(drm_core_exit);
1273
1274