Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/hid/hid-core.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* HID support for Linux
4
*
5
* Copyright (c) 1999 Andreas Gal
6
* Copyright (c) 2000-2005 Vojtech Pavlik <[email protected]>
7
* Copyright (c) 2005 Michael Haboustak <[email protected]> for Concept2, Inc
8
* Copyright (c) 2006-2012 Jiri Kosina
9
*/
10
11
/*
12
*/
13
14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16
#include <linux/module.h>
17
#include <linux/slab.h>
18
#include <linux/init.h>
19
#include <linux/kernel.h>
20
#include <linux/list.h>
21
#include <linux/mm.h>
22
#include <linux/spinlock.h>
23
#include <linux/unaligned.h>
24
#include <asm/byteorder.h>
25
#include <linux/input.h>
26
#include <linux/wait.h>
27
#include <linux/vmalloc.h>
28
#include <linux/sched.h>
29
#include <linux/semaphore.h>
30
31
#include <linux/hid.h>
32
#include <linux/hiddev.h>
33
#include <linux/hid-debug.h>
34
#include <linux/hidraw.h>
35
36
#include "hid-ids.h"
37
38
/*
39
* Version Information
40
*/
41
42
#define DRIVER_DESC "HID core driver"
43
44
static int hid_ignore_special_drivers = 0;
45
module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46
MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47
48
/*
49
* Convert a signed n-bit integer to signed 32-bit integer.
50
*/
51
52
static s32 snto32(__u32 value, unsigned int n)
53
{
54
if (!value || !n)
55
return 0;
56
57
if (n > 32)
58
n = 32;
59
60
return sign_extend32(value, n - 1);
61
}
62
63
/*
64
* Convert a signed 32-bit integer to a signed n-bit integer.
65
*/
66
67
static u32 s32ton(__s32 value, unsigned int n)
68
{
69
s32 a;
70
71
if (!value || !n)
72
return 0;
73
74
a = value >> (n - 1);
75
if (a && a != -1)
76
return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
77
return value & ((1 << n) - 1);
78
}
79
80
/*
81
* Register a new report for a device.
82
*/
83
84
struct hid_report *hid_register_report(struct hid_device *device,
85
enum hid_report_type type, unsigned int id,
86
unsigned int application)
87
{
88
struct hid_report_enum *report_enum = device->report_enum + type;
89
struct hid_report *report;
90
91
if (id >= HID_MAX_IDS)
92
return NULL;
93
if (report_enum->report_id_hash[id])
94
return report_enum->report_id_hash[id];
95
96
report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
97
if (!report)
98
return NULL;
99
100
if (id != 0)
101
report_enum->numbered = 1;
102
103
report->id = id;
104
report->type = type;
105
report->size = 0;
106
report->device = device;
107
report->application = application;
108
report_enum->report_id_hash[id] = report;
109
110
list_add_tail(&report->list, &report_enum->report_list);
111
INIT_LIST_HEAD(&report->field_entry_list);
112
113
return report;
114
}
115
EXPORT_SYMBOL_GPL(hid_register_report);
116
117
/*
118
* Register a new field for this report.
119
*/
120
121
static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
122
{
123
struct hid_field *field;
124
125
if (report->maxfield == HID_MAX_FIELDS) {
126
hid_err(report->device, "too many fields in report\n");
127
return NULL;
128
}
129
130
field = kvzalloc((sizeof(struct hid_field) +
131
usages * sizeof(struct hid_usage) +
132
3 * usages * sizeof(unsigned int)), GFP_KERNEL);
133
if (!field)
134
return NULL;
135
136
field->index = report->maxfield++;
137
report->field[field->index] = field;
138
field->usage = (struct hid_usage *)(field + 1);
139
field->value = (s32 *)(field->usage + usages);
140
field->new_value = (s32 *)(field->value + usages);
141
field->usages_priorities = (s32 *)(field->new_value + usages);
142
field->report = report;
143
144
return field;
145
}
146
147
/*
148
* Open a collection. The type/usage is pushed on the stack.
149
*/
150
151
static int open_collection(struct hid_parser *parser, unsigned type)
152
{
153
struct hid_collection *collection;
154
unsigned usage;
155
int collection_index;
156
157
usage = parser->local.usage[0];
158
159
if (parser->collection_stack_ptr == parser->collection_stack_size) {
160
unsigned int *collection_stack;
161
unsigned int new_size = parser->collection_stack_size +
162
HID_COLLECTION_STACK_SIZE;
163
164
collection_stack = krealloc(parser->collection_stack,
165
new_size * sizeof(unsigned int),
166
GFP_KERNEL);
167
if (!collection_stack)
168
return -ENOMEM;
169
170
parser->collection_stack = collection_stack;
171
parser->collection_stack_size = new_size;
172
}
173
174
if (parser->device->maxcollection == parser->device->collection_size) {
175
collection = kmalloc(
176
array3_size(sizeof(struct hid_collection),
177
parser->device->collection_size,
178
2),
179
GFP_KERNEL);
180
if (collection == NULL) {
181
hid_err(parser->device, "failed to reallocate collection array\n");
182
return -ENOMEM;
183
}
184
memcpy(collection, parser->device->collection,
185
sizeof(struct hid_collection) *
186
parser->device->collection_size);
187
memset(collection + parser->device->collection_size, 0,
188
sizeof(struct hid_collection) *
189
parser->device->collection_size);
190
kfree(parser->device->collection);
191
parser->device->collection = collection;
192
parser->device->collection_size *= 2;
193
}
194
195
parser->collection_stack[parser->collection_stack_ptr++] =
196
parser->device->maxcollection;
197
198
collection_index = parser->device->maxcollection++;
199
collection = parser->device->collection + collection_index;
200
collection->type = type;
201
collection->usage = usage;
202
collection->level = parser->collection_stack_ptr - 1;
203
collection->parent_idx = (collection->level == 0) ? -1 :
204
parser->collection_stack[collection->level - 1];
205
206
if (type == HID_COLLECTION_APPLICATION)
207
parser->device->maxapplication++;
208
209
return 0;
210
}
211
212
/*
213
* Close a collection.
214
*/
215
216
static int close_collection(struct hid_parser *parser)
217
{
218
if (!parser->collection_stack_ptr) {
219
hid_err(parser->device, "collection stack underflow\n");
220
return -EINVAL;
221
}
222
parser->collection_stack_ptr--;
223
return 0;
224
}
225
226
/*
227
* Climb up the stack, search for the specified collection type
228
* and return the usage.
229
*/
230
231
static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
232
{
233
struct hid_collection *collection = parser->device->collection;
234
int n;
235
236
for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
237
unsigned index = parser->collection_stack[n];
238
if (collection[index].type == type)
239
return collection[index].usage;
240
}
241
return 0; /* we know nothing about this usage type */
242
}
243
244
/*
245
* Concatenate usage which defines 16 bits or less with the
246
* currently defined usage page to form a 32 bit usage
247
*/
248
249
static void complete_usage(struct hid_parser *parser, unsigned int index)
250
{
251
parser->local.usage[index] &= 0xFFFF;
252
parser->local.usage[index] |=
253
(parser->global.usage_page & 0xFFFF) << 16;
254
}
255
256
/*
257
* Add a usage to the temporary parser table.
258
*/
259
260
static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
261
{
262
if (parser->local.usage_index >= HID_MAX_USAGES) {
263
hid_err(parser->device, "usage index exceeded\n");
264
return -1;
265
}
266
parser->local.usage[parser->local.usage_index] = usage;
267
268
/*
269
* If Usage item only includes usage id, concatenate it with
270
* currently defined usage page
271
*/
272
if (size <= 2)
273
complete_usage(parser, parser->local.usage_index);
274
275
parser->local.usage_size[parser->local.usage_index] = size;
276
parser->local.collection_index[parser->local.usage_index] =
277
parser->collection_stack_ptr ?
278
parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
279
parser->local.usage_index++;
280
return 0;
281
}
282
283
/*
284
* Register a new field for this report.
285
*/
286
287
static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
288
{
289
struct hid_report *report;
290
struct hid_field *field;
291
unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
292
unsigned int usages;
293
unsigned int offset;
294
unsigned int i;
295
unsigned int application;
296
297
application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
298
299
report = hid_register_report(parser->device, report_type,
300
parser->global.report_id, application);
301
if (!report) {
302
hid_err(parser->device, "hid_register_report failed\n");
303
return -1;
304
}
305
306
/* Handle both signed and unsigned cases properly */
307
if ((parser->global.logical_minimum < 0 &&
308
parser->global.logical_maximum <
309
parser->global.logical_minimum) ||
310
(parser->global.logical_minimum >= 0 &&
311
(__u32)parser->global.logical_maximum <
312
(__u32)parser->global.logical_minimum)) {
313
dbg_hid("logical range invalid 0x%x 0x%x\n",
314
parser->global.logical_minimum,
315
parser->global.logical_maximum);
316
return -1;
317
}
318
319
offset = report->size;
320
report->size += parser->global.report_size * parser->global.report_count;
321
322
if (parser->device->ll_driver->max_buffer_size)
323
max_buffer_size = parser->device->ll_driver->max_buffer_size;
324
325
/* Total size check: Allow for possible report index byte */
326
if (report->size > (max_buffer_size - 1) << 3) {
327
hid_err(parser->device, "report is too long\n");
328
return -1;
329
}
330
331
if (!parser->local.usage_index) /* Ignore padding fields */
332
return 0;
333
334
usages = max_t(unsigned, parser->local.usage_index,
335
parser->global.report_count);
336
337
field = hid_register_field(report, usages);
338
if (!field)
339
return 0;
340
341
field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
342
field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
343
field->application = application;
344
345
for (i = 0; i < usages; i++) {
346
unsigned j = i;
347
/* Duplicate the last usage we parsed if we have excess values */
348
if (i >= parser->local.usage_index)
349
j = parser->local.usage_index - 1;
350
field->usage[i].hid = parser->local.usage[j];
351
field->usage[i].collection_index =
352
parser->local.collection_index[j];
353
field->usage[i].usage_index = i;
354
field->usage[i].resolution_multiplier = 1;
355
}
356
357
field->maxusage = usages;
358
field->flags = flags;
359
field->report_offset = offset;
360
field->report_type = report_type;
361
field->report_size = parser->global.report_size;
362
field->report_count = parser->global.report_count;
363
field->logical_minimum = parser->global.logical_minimum;
364
field->logical_maximum = parser->global.logical_maximum;
365
field->physical_minimum = parser->global.physical_minimum;
366
field->physical_maximum = parser->global.physical_maximum;
367
field->unit_exponent = parser->global.unit_exponent;
368
field->unit = parser->global.unit;
369
370
return 0;
371
}
372
373
/*
374
* Read data value from item.
375
*/
376
377
static u32 item_udata(struct hid_item *item)
378
{
379
switch (item->size) {
380
case 1: return item->data.u8;
381
case 2: return item->data.u16;
382
case 4: return item->data.u32;
383
}
384
return 0;
385
}
386
387
static s32 item_sdata(struct hid_item *item)
388
{
389
switch (item->size) {
390
case 1: return item->data.s8;
391
case 2: return item->data.s16;
392
case 4: return item->data.s32;
393
}
394
return 0;
395
}
396
397
/*
398
* Process a global item.
399
*/
400
401
static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
402
{
403
__s32 raw_value;
404
switch (item->tag) {
405
case HID_GLOBAL_ITEM_TAG_PUSH:
406
407
if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
408
hid_err(parser->device, "global environment stack overflow\n");
409
return -1;
410
}
411
412
memcpy(parser->global_stack + parser->global_stack_ptr++,
413
&parser->global, sizeof(struct hid_global));
414
return 0;
415
416
case HID_GLOBAL_ITEM_TAG_POP:
417
418
if (!parser->global_stack_ptr) {
419
hid_err(parser->device, "global environment stack underflow\n");
420
return -1;
421
}
422
423
memcpy(&parser->global, parser->global_stack +
424
--parser->global_stack_ptr, sizeof(struct hid_global));
425
return 0;
426
427
case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
428
parser->global.usage_page = item_udata(item);
429
return 0;
430
431
case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
432
parser->global.logical_minimum = item_sdata(item);
433
return 0;
434
435
case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
436
if (parser->global.logical_minimum < 0)
437
parser->global.logical_maximum = item_sdata(item);
438
else
439
parser->global.logical_maximum = item_udata(item);
440
return 0;
441
442
case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
443
parser->global.physical_minimum = item_sdata(item);
444
return 0;
445
446
case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
447
if (parser->global.physical_minimum < 0)
448
parser->global.physical_maximum = item_sdata(item);
449
else
450
parser->global.physical_maximum = item_udata(item);
451
return 0;
452
453
case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
454
/* Many devices provide unit exponent as a two's complement
455
* nibble due to the common misunderstanding of HID
456
* specification 1.11, 6.2.2.7 Global Items. Attempt to handle
457
* both this and the standard encoding. */
458
raw_value = item_sdata(item);
459
if (!(raw_value & 0xfffffff0))
460
parser->global.unit_exponent = snto32(raw_value, 4);
461
else
462
parser->global.unit_exponent = raw_value;
463
return 0;
464
465
case HID_GLOBAL_ITEM_TAG_UNIT:
466
parser->global.unit = item_udata(item);
467
return 0;
468
469
case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
470
parser->global.report_size = item_udata(item);
471
if (parser->global.report_size > 256) {
472
hid_err(parser->device, "invalid report_size %d\n",
473
parser->global.report_size);
474
return -1;
475
}
476
return 0;
477
478
case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
479
parser->global.report_count = item_udata(item);
480
if (parser->global.report_count > HID_MAX_USAGES) {
481
hid_err(parser->device, "invalid report_count %d\n",
482
parser->global.report_count);
483
return -1;
484
}
485
return 0;
486
487
case HID_GLOBAL_ITEM_TAG_REPORT_ID:
488
parser->global.report_id = item_udata(item);
489
if (parser->global.report_id == 0 ||
490
parser->global.report_id >= HID_MAX_IDS) {
491
hid_err(parser->device, "report_id %u is invalid\n",
492
parser->global.report_id);
493
return -1;
494
}
495
return 0;
496
497
default:
498
hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
499
return -1;
500
}
501
}
502
503
/*
504
* Process a local item.
505
*/
506
507
static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
508
{
509
__u32 data;
510
unsigned n;
511
__u32 count;
512
513
data = item_udata(item);
514
515
switch (item->tag) {
516
case HID_LOCAL_ITEM_TAG_DELIMITER:
517
518
if (data) {
519
/*
520
* We treat items before the first delimiter
521
* as global to all usage sets (branch 0).
522
* In the moment we process only these global
523
* items and the first delimiter set.
524
*/
525
if (parser->local.delimiter_depth != 0) {
526
hid_err(parser->device, "nested delimiters\n");
527
return -1;
528
}
529
parser->local.delimiter_depth++;
530
parser->local.delimiter_branch++;
531
} else {
532
if (parser->local.delimiter_depth < 1) {
533
hid_err(parser->device, "bogus close delimiter\n");
534
return -1;
535
}
536
parser->local.delimiter_depth--;
537
}
538
return 0;
539
540
case HID_LOCAL_ITEM_TAG_USAGE:
541
542
if (parser->local.delimiter_branch > 1) {
543
dbg_hid("alternative usage ignored\n");
544
return 0;
545
}
546
547
return hid_add_usage(parser, data, item->size);
548
549
case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
550
551
if (parser->local.delimiter_branch > 1) {
552
dbg_hid("alternative usage ignored\n");
553
return 0;
554
}
555
556
parser->local.usage_minimum = data;
557
return 0;
558
559
case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
560
561
if (parser->local.delimiter_branch > 1) {
562
dbg_hid("alternative usage ignored\n");
563
return 0;
564
}
565
566
count = data - parser->local.usage_minimum;
567
if (count + parser->local.usage_index >= HID_MAX_USAGES) {
568
/*
569
* We do not warn if the name is not set, we are
570
* actually pre-scanning the device.
571
*/
572
if (dev_name(&parser->device->dev))
573
hid_warn(parser->device,
574
"ignoring exceeding usage max\n");
575
data = HID_MAX_USAGES - parser->local.usage_index +
576
parser->local.usage_minimum - 1;
577
if (data <= 0) {
578
hid_err(parser->device,
579
"no more usage index available\n");
580
return -1;
581
}
582
}
583
584
for (n = parser->local.usage_minimum; n <= data; n++)
585
if (hid_add_usage(parser, n, item->size)) {
586
dbg_hid("hid_add_usage failed\n");
587
return -1;
588
}
589
return 0;
590
591
default:
592
593
dbg_hid("unknown local item tag 0x%x\n", item->tag);
594
return 0;
595
}
596
return 0;
597
}
598
599
/*
600
* Concatenate Usage Pages into Usages where relevant:
601
* As per specification, 6.2.2.8: "When the parser encounters a main item it
602
* concatenates the last declared Usage Page with a Usage to form a complete
603
* usage value."
604
*/
605
606
static void hid_concatenate_last_usage_page(struct hid_parser *parser)
607
{
608
int i;
609
unsigned int usage_page;
610
unsigned int current_page;
611
612
if (!parser->local.usage_index)
613
return;
614
615
usage_page = parser->global.usage_page;
616
617
/*
618
* Concatenate usage page again only if last declared Usage Page
619
* has not been already used in previous usages concatenation
620
*/
621
for (i = parser->local.usage_index - 1; i >= 0; i--) {
622
if (parser->local.usage_size[i] > 2)
623
/* Ignore extended usages */
624
continue;
625
626
current_page = parser->local.usage[i] >> 16;
627
if (current_page == usage_page)
628
break;
629
630
complete_usage(parser, i);
631
}
632
}
633
634
/*
635
* Process a main item.
636
*/
637
638
static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
639
{
640
__u32 data;
641
int ret;
642
643
hid_concatenate_last_usage_page(parser);
644
645
data = item_udata(item);
646
647
switch (item->tag) {
648
case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
649
ret = open_collection(parser, data & 0xff);
650
break;
651
case HID_MAIN_ITEM_TAG_END_COLLECTION:
652
ret = close_collection(parser);
653
break;
654
case HID_MAIN_ITEM_TAG_INPUT:
655
ret = hid_add_field(parser, HID_INPUT_REPORT, data);
656
break;
657
case HID_MAIN_ITEM_TAG_OUTPUT:
658
ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
659
break;
660
case HID_MAIN_ITEM_TAG_FEATURE:
661
ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
662
break;
663
default:
664
if (item->tag >= HID_MAIN_ITEM_TAG_RESERVED_MIN &&
665
item->tag <= HID_MAIN_ITEM_TAG_RESERVED_MAX)
666
hid_warn_ratelimited(parser->device, "reserved main item tag 0x%x\n", item->tag);
667
else
668
hid_warn_ratelimited(parser->device, "unknown main item tag 0x%x\n", item->tag);
669
ret = 0;
670
}
671
672
memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
673
674
return ret;
675
}
676
677
/*
678
* Process a reserved item.
679
*/
680
681
static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
682
{
683
dbg_hid("reserved item type, tag 0x%x\n", item->tag);
684
return 0;
685
}
686
687
/*
688
* Free a report and all registered fields. The field->usage and
689
* field->value table's are allocated behind the field, so we need
690
* only to free(field) itself.
691
*/
692
693
static void hid_free_report(struct hid_report *report)
694
{
695
unsigned n;
696
697
kfree(report->field_entries);
698
699
for (n = 0; n < report->maxfield; n++)
700
kvfree(report->field[n]);
701
kfree(report);
702
}
703
704
/*
705
* Close report. This function returns the device
706
* state to the point prior to hid_open_report().
707
*/
708
static void hid_close_report(struct hid_device *device)
709
{
710
unsigned i, j;
711
712
for (i = 0; i < HID_REPORT_TYPES; i++) {
713
struct hid_report_enum *report_enum = device->report_enum + i;
714
715
for (j = 0; j < HID_MAX_IDS; j++) {
716
struct hid_report *report = report_enum->report_id_hash[j];
717
if (report)
718
hid_free_report(report);
719
}
720
memset(report_enum, 0, sizeof(*report_enum));
721
INIT_LIST_HEAD(&report_enum->report_list);
722
}
723
724
/*
725
* If the HID driver had a rdesc_fixup() callback, dev->rdesc
726
* will be allocated by hid-core and needs to be freed.
727
* Otherwise, it is either equal to dev_rdesc or bpf_rdesc, in
728
* which cases it'll be freed later on device removal or destroy.
729
*/
730
if (device->rdesc != device->dev_rdesc && device->rdesc != device->bpf_rdesc)
731
kfree(device->rdesc);
732
device->rdesc = NULL;
733
device->rsize = 0;
734
735
kfree(device->collection);
736
device->collection = NULL;
737
device->collection_size = 0;
738
device->maxcollection = 0;
739
device->maxapplication = 0;
740
741
device->status &= ~HID_STAT_PARSED;
742
}
743
744
static inline void hid_free_bpf_rdesc(struct hid_device *hdev)
745
{
746
/* bpf_rdesc is either equal to dev_rdesc or allocated by call_hid_bpf_rdesc_fixup() */
747
if (hdev->bpf_rdesc != hdev->dev_rdesc)
748
kfree(hdev->bpf_rdesc);
749
hdev->bpf_rdesc = NULL;
750
}
751
752
/*
753
* Free a device structure, all reports, and all fields.
754
*/
755
756
void hiddev_free(struct kref *ref)
757
{
758
struct hid_device *hid = container_of(ref, struct hid_device, ref);
759
760
hid_close_report(hid);
761
hid_free_bpf_rdesc(hid);
762
kfree(hid->dev_rdesc);
763
kfree(hid);
764
}
765
766
static void hid_device_release(struct device *dev)
767
{
768
struct hid_device *hid = to_hid_device(dev);
769
770
kref_put(&hid->ref, hiddev_free);
771
}
772
773
/*
774
* Fetch a report description item from the data stream. We support long
775
* items, though they are not used yet.
776
*/
777
778
static const u8 *fetch_item(const __u8 *start, const __u8 *end, struct hid_item *item)
779
{
780
u8 b;
781
782
if ((end - start) <= 0)
783
return NULL;
784
785
b = *start++;
786
787
item->type = (b >> 2) & 3;
788
item->tag = (b >> 4) & 15;
789
790
if (item->tag == HID_ITEM_TAG_LONG) {
791
792
item->format = HID_ITEM_FORMAT_LONG;
793
794
if ((end - start) < 2)
795
return NULL;
796
797
item->size = *start++;
798
item->tag = *start++;
799
800
if ((end - start) < item->size)
801
return NULL;
802
803
item->data.longdata = start;
804
start += item->size;
805
return start;
806
}
807
808
item->format = HID_ITEM_FORMAT_SHORT;
809
item->size = BIT(b & 3) >> 1; /* 0, 1, 2, 3 -> 0, 1, 2, 4 */
810
811
if (end - start < item->size)
812
return NULL;
813
814
switch (item->size) {
815
case 0:
816
break;
817
818
case 1:
819
item->data.u8 = *start;
820
break;
821
822
case 2:
823
item->data.u16 = get_unaligned_le16(start);
824
break;
825
826
case 4:
827
item->data.u32 = get_unaligned_le32(start);
828
break;
829
}
830
831
return start + item->size;
832
}
833
834
static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
835
{
836
struct hid_device *hid = parser->device;
837
838
if (usage == HID_DG_CONTACTID)
839
hid->group = HID_GROUP_MULTITOUCH;
840
}
841
842
static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
843
{
844
if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
845
parser->global.report_size == 8)
846
parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
847
848
if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
849
parser->global.report_size == 8)
850
parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
851
}
852
853
static void hid_scan_collection(struct hid_parser *parser, unsigned type)
854
{
855
struct hid_device *hid = parser->device;
856
int i;
857
858
if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
859
(type == HID_COLLECTION_PHYSICAL ||
860
type == HID_COLLECTION_APPLICATION))
861
hid->group = HID_GROUP_SENSOR_HUB;
862
863
if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
864
hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
865
hid->group == HID_GROUP_MULTITOUCH)
866
hid->group = HID_GROUP_GENERIC;
867
868
if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
869
for (i = 0; i < parser->local.usage_index; i++)
870
if (parser->local.usage[i] == HID_GD_POINTER)
871
parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
872
873
if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
874
parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
875
876
if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
877
for (i = 0; i < parser->local.usage_index; i++)
878
if (parser->local.usage[i] ==
879
(HID_UP_GOOGLEVENDOR | 0x0001))
880
parser->device->group =
881
HID_GROUP_VIVALDI;
882
}
883
884
static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
885
{
886
__u32 data;
887
int i;
888
889
hid_concatenate_last_usage_page(parser);
890
891
data = item_udata(item);
892
893
switch (item->tag) {
894
case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
895
hid_scan_collection(parser, data & 0xff);
896
break;
897
case HID_MAIN_ITEM_TAG_END_COLLECTION:
898
break;
899
case HID_MAIN_ITEM_TAG_INPUT:
900
/* ignore constant inputs, they will be ignored by hid-input */
901
if (data & HID_MAIN_ITEM_CONSTANT)
902
break;
903
for (i = 0; i < parser->local.usage_index; i++)
904
hid_scan_input_usage(parser, parser->local.usage[i]);
905
break;
906
case HID_MAIN_ITEM_TAG_OUTPUT:
907
break;
908
case HID_MAIN_ITEM_TAG_FEATURE:
909
for (i = 0; i < parser->local.usage_index; i++)
910
hid_scan_feature_usage(parser, parser->local.usage[i]);
911
break;
912
}
913
914
/* Reset the local parser environment */
915
memset(&parser->local, 0, sizeof(parser->local));
916
917
return 0;
918
}
919
920
/*
921
* Scan a report descriptor before the device is added to the bus.
922
* Sets device groups and other properties that determine what driver
923
* to load.
924
*/
925
static int hid_scan_report(struct hid_device *hid)
926
{
927
struct hid_parser *parser;
928
struct hid_item item;
929
const __u8 *start = hid->dev_rdesc;
930
const __u8 *end = start + hid->dev_rsize;
931
static int (*dispatch_type[])(struct hid_parser *parser,
932
struct hid_item *item) = {
933
hid_scan_main,
934
hid_parser_global,
935
hid_parser_local,
936
hid_parser_reserved
937
};
938
939
parser = vzalloc(sizeof(struct hid_parser));
940
if (!parser)
941
return -ENOMEM;
942
943
parser->device = hid;
944
hid->group = HID_GROUP_GENERIC;
945
946
/*
947
* The parsing is simpler than the one in hid_open_report() as we should
948
* be robust against hid errors. Those errors will be raised by
949
* hid_open_report() anyway.
950
*/
951
while ((start = fetch_item(start, end, &item)) != NULL)
952
dispatch_type[item.type](parser, &item);
953
954
/*
955
* Handle special flags set during scanning.
956
*/
957
if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
958
(hid->group == HID_GROUP_MULTITOUCH))
959
hid->group = HID_GROUP_MULTITOUCH_WIN_8;
960
961
/*
962
* Vendor specific handlings
963
*/
964
switch (hid->vendor) {
965
case USB_VENDOR_ID_WACOM:
966
hid->group = HID_GROUP_WACOM;
967
break;
968
case USB_VENDOR_ID_SYNAPTICS:
969
if (hid->group == HID_GROUP_GENERIC)
970
if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
971
&& (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
972
/*
973
* hid-rmi should take care of them,
974
* not hid-generic
975
*/
976
hid->group = HID_GROUP_RMI;
977
break;
978
}
979
980
kfree(parser->collection_stack);
981
vfree(parser);
982
return 0;
983
}
984
985
/**
986
* hid_parse_report - parse device report
987
*
988
* @hid: hid device
989
* @start: report start
990
* @size: report size
991
*
992
* Allocate the device report as read by the bus driver. This function should
993
* only be called from parse() in ll drivers.
994
*/
995
int hid_parse_report(struct hid_device *hid, const __u8 *start, unsigned size)
996
{
997
hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
998
if (!hid->dev_rdesc)
999
return -ENOMEM;
1000
hid->dev_rsize = size;
1001
return 0;
1002
}
1003
EXPORT_SYMBOL_GPL(hid_parse_report);
1004
1005
static const char * const hid_report_names[] = {
1006
"HID_INPUT_REPORT",
1007
"HID_OUTPUT_REPORT",
1008
"HID_FEATURE_REPORT",
1009
};
1010
/**
1011
* hid_validate_values - validate existing device report's value indexes
1012
*
1013
* @hid: hid device
1014
* @type: which report type to examine
1015
* @id: which report ID to examine (0 for first)
1016
* @field_index: which report field to examine
1017
* @report_counts: expected number of values
1018
*
1019
* Validate the number of values in a given field of a given report, after
1020
* parsing.
1021
*/
1022
struct hid_report *hid_validate_values(struct hid_device *hid,
1023
enum hid_report_type type, unsigned int id,
1024
unsigned int field_index,
1025
unsigned int report_counts)
1026
{
1027
struct hid_report *report;
1028
1029
if (type > HID_FEATURE_REPORT) {
1030
hid_err(hid, "invalid HID report type %u\n", type);
1031
return NULL;
1032
}
1033
1034
if (id >= HID_MAX_IDS) {
1035
hid_err(hid, "invalid HID report id %u\n", id);
1036
return NULL;
1037
}
1038
1039
/*
1040
* Explicitly not using hid_get_report() here since it depends on
1041
* ->numbered being checked, which may not always be the case when
1042
* drivers go to access report values.
1043
*/
1044
if (id == 0) {
1045
/*
1046
* Validating on id 0 means we should examine the first
1047
* report in the list.
1048
*/
1049
report = list_first_entry_or_null(
1050
&hid->report_enum[type].report_list,
1051
struct hid_report, list);
1052
} else {
1053
report = hid->report_enum[type].report_id_hash[id];
1054
}
1055
if (!report) {
1056
hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1057
return NULL;
1058
}
1059
if (report->maxfield <= field_index) {
1060
hid_err(hid, "not enough fields in %s %u\n",
1061
hid_report_names[type], id);
1062
return NULL;
1063
}
1064
if (report->field[field_index]->report_count < report_counts) {
1065
hid_err(hid, "not enough values in %s %u field %u\n",
1066
hid_report_names[type], id, field_index);
1067
return NULL;
1068
}
1069
return report;
1070
}
1071
EXPORT_SYMBOL_GPL(hid_validate_values);
1072
1073
static int hid_calculate_multiplier(struct hid_device *hid,
1074
struct hid_field *multiplier)
1075
{
1076
int m;
1077
__s32 v = *multiplier->value;
1078
__s32 lmin = multiplier->logical_minimum;
1079
__s32 lmax = multiplier->logical_maximum;
1080
__s32 pmin = multiplier->physical_minimum;
1081
__s32 pmax = multiplier->physical_maximum;
1082
1083
/*
1084
* "Because OS implementations will generally divide the control's
1085
* reported count by the Effective Resolution Multiplier, designers
1086
* should take care not to establish a potential Effective
1087
* Resolution Multiplier of zero."
1088
* HID Usage Table, v1.12, Section 4.3.1, p31
1089
*/
1090
if (lmax - lmin == 0)
1091
return 1;
1092
/*
1093
* Handling the unit exponent is left as an exercise to whoever
1094
* finds a device where that exponent is not 0.
1095
*/
1096
m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1097
if (unlikely(multiplier->unit_exponent != 0)) {
1098
hid_warn(hid,
1099
"unsupported Resolution Multiplier unit exponent %d\n",
1100
multiplier->unit_exponent);
1101
}
1102
1103
/* There are no devices with an effective multiplier > 255 */
1104
if (unlikely(m == 0 || m > 255 || m < -255)) {
1105
hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1106
m = 1;
1107
}
1108
1109
return m;
1110
}
1111
1112
static void hid_apply_multiplier_to_field(struct hid_device *hid,
1113
struct hid_field *field,
1114
struct hid_collection *multiplier_collection,
1115
int effective_multiplier)
1116
{
1117
struct hid_collection *collection;
1118
struct hid_usage *usage;
1119
int i;
1120
1121
/*
1122
* If multiplier_collection is NULL, the multiplier applies
1123
* to all fields in the report.
1124
* Otherwise, it is the Logical Collection the multiplier applies to
1125
* but our field may be in a subcollection of that collection.
1126
*/
1127
for (i = 0; i < field->maxusage; i++) {
1128
usage = &field->usage[i];
1129
1130
collection = &hid->collection[usage->collection_index];
1131
while (collection->parent_idx != -1 &&
1132
collection != multiplier_collection)
1133
collection = &hid->collection[collection->parent_idx];
1134
1135
if (collection->parent_idx != -1 ||
1136
multiplier_collection == NULL)
1137
usage->resolution_multiplier = effective_multiplier;
1138
1139
}
1140
}
1141
1142
static void hid_apply_multiplier(struct hid_device *hid,
1143
struct hid_field *multiplier)
1144
{
1145
struct hid_report_enum *rep_enum;
1146
struct hid_report *rep;
1147
struct hid_field *field;
1148
struct hid_collection *multiplier_collection;
1149
int effective_multiplier;
1150
int i;
1151
1152
/*
1153
* "The Resolution Multiplier control must be contained in the same
1154
* Logical Collection as the control(s) to which it is to be applied.
1155
* If no Resolution Multiplier is defined, then the Resolution
1156
* Multiplier defaults to 1. If more than one control exists in a
1157
* Logical Collection, the Resolution Multiplier is associated with
1158
* all controls in the collection. If no Logical Collection is
1159
* defined, the Resolution Multiplier is associated with all
1160
* controls in the report."
1161
* HID Usage Table, v1.12, Section 4.3.1, p30
1162
*
1163
* Thus, search from the current collection upwards until we find a
1164
* logical collection. Then search all fields for that same parent
1165
* collection. Those are the fields the multiplier applies to.
1166
*
1167
* If we have more than one multiplier, it will overwrite the
1168
* applicable fields later.
1169
*/
1170
multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1171
while (multiplier_collection->parent_idx != -1 &&
1172
multiplier_collection->type != HID_COLLECTION_LOGICAL)
1173
multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1174
if (multiplier_collection->type != HID_COLLECTION_LOGICAL)
1175
multiplier_collection = NULL;
1176
1177
effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1178
1179
rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1180
list_for_each_entry(rep, &rep_enum->report_list, list) {
1181
for (i = 0; i < rep->maxfield; i++) {
1182
field = rep->field[i];
1183
hid_apply_multiplier_to_field(hid, field,
1184
multiplier_collection,
1185
effective_multiplier);
1186
}
1187
}
1188
}
1189
1190
/*
1191
* hid_setup_resolution_multiplier - set up all resolution multipliers
1192
*
1193
* @device: hid device
1194
*
1195
* Search for all Resolution Multiplier Feature Reports and apply their
1196
* value to all matching Input items. This only updates the internal struct
1197
* fields.
1198
*
1199
* The Resolution Multiplier is applied by the hardware. If the multiplier
1200
* is anything other than 1, the hardware will send pre-multiplied events
1201
* so that the same physical interaction generates an accumulated
1202
* accumulated_value = value * * multiplier
1203
* This may be achieved by sending
1204
* - "value * multiplier" for each event, or
1205
* - "value" but "multiplier" times as frequently, or
1206
* - a combination of the above
1207
* The only guarantee is that the same physical interaction always generates
1208
* an accumulated 'value * multiplier'.
1209
*
1210
* This function must be called before any event processing and after
1211
* any SetRequest to the Resolution Multiplier.
1212
*/
1213
void hid_setup_resolution_multiplier(struct hid_device *hid)
1214
{
1215
struct hid_report_enum *rep_enum;
1216
struct hid_report *rep;
1217
struct hid_usage *usage;
1218
int i, j;
1219
1220
rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1221
list_for_each_entry(rep, &rep_enum->report_list, list) {
1222
for (i = 0; i < rep->maxfield; i++) {
1223
/* Ignore if report count is out of bounds. */
1224
if (rep->field[i]->report_count < 1)
1225
continue;
1226
1227
for (j = 0; j < rep->field[i]->maxusage; j++) {
1228
usage = &rep->field[i]->usage[j];
1229
if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1230
hid_apply_multiplier(hid,
1231
rep->field[i]);
1232
}
1233
}
1234
}
1235
}
1236
EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1237
1238
/**
1239
* hid_open_report - open a driver-specific device report
1240
*
1241
* @device: hid device
1242
*
1243
* Parse a report description into a hid_device structure. Reports are
1244
* enumerated, fields are attached to these reports.
1245
* 0 returned on success, otherwise nonzero error value.
1246
*
1247
* This function (or the equivalent hid_parse() macro) should only be
1248
* called from probe() in drivers, before starting the device.
1249
*/
1250
int hid_open_report(struct hid_device *device)
1251
{
1252
struct hid_parser *parser;
1253
struct hid_item item;
1254
unsigned int size;
1255
const __u8 *start;
1256
const __u8 *end;
1257
const __u8 *next;
1258
int ret;
1259
int i;
1260
static int (*dispatch_type[])(struct hid_parser *parser,
1261
struct hid_item *item) = {
1262
hid_parser_main,
1263
hid_parser_global,
1264
hid_parser_local,
1265
hid_parser_reserved
1266
};
1267
1268
if (WARN_ON(device->status & HID_STAT_PARSED))
1269
return -EBUSY;
1270
1271
start = device->bpf_rdesc;
1272
if (WARN_ON(!start))
1273
return -ENODEV;
1274
size = device->bpf_rsize;
1275
1276
if (device->driver->report_fixup) {
1277
/*
1278
* device->driver->report_fixup() needs to work
1279
* on a copy of our report descriptor so it can
1280
* change it.
1281
*/
1282
__u8 *buf = kmemdup(start, size, GFP_KERNEL);
1283
1284
if (buf == NULL)
1285
return -ENOMEM;
1286
1287
start = device->driver->report_fixup(device, buf, &size);
1288
1289
/*
1290
* The second kmemdup is required in case report_fixup() returns
1291
* a static read-only memory, but we have no idea if that memory
1292
* needs to be cleaned up or not at the end.
1293
*/
1294
start = kmemdup(start, size, GFP_KERNEL);
1295
kfree(buf);
1296
if (start == NULL)
1297
return -ENOMEM;
1298
}
1299
1300
device->rdesc = start;
1301
device->rsize = size;
1302
1303
parser = vzalloc(sizeof(struct hid_parser));
1304
if (!parser) {
1305
ret = -ENOMEM;
1306
goto alloc_err;
1307
}
1308
1309
parser->device = device;
1310
1311
end = start + size;
1312
1313
device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1314
sizeof(struct hid_collection), GFP_KERNEL);
1315
if (!device->collection) {
1316
ret = -ENOMEM;
1317
goto err;
1318
}
1319
device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1320
for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1321
device->collection[i].parent_idx = -1;
1322
1323
ret = -EINVAL;
1324
while ((next = fetch_item(start, end, &item)) != NULL) {
1325
start = next;
1326
1327
if (item.format != HID_ITEM_FORMAT_SHORT) {
1328
hid_err(device, "unexpected long global item\n");
1329
goto err;
1330
}
1331
1332
if (dispatch_type[item.type](parser, &item)) {
1333
hid_err(device, "item %u %u %u %u parsing failed\n",
1334
item.format, (unsigned)item.size,
1335
(unsigned)item.type, (unsigned)item.tag);
1336
goto err;
1337
}
1338
1339
if (start == end) {
1340
if (parser->collection_stack_ptr) {
1341
hid_err(device, "unbalanced collection at end of report description\n");
1342
goto err;
1343
}
1344
if (parser->local.delimiter_depth) {
1345
hid_err(device, "unbalanced delimiter at end of report description\n");
1346
goto err;
1347
}
1348
1349
/*
1350
* fetch initial values in case the device's
1351
* default multiplier isn't the recommended 1
1352
*/
1353
hid_setup_resolution_multiplier(device);
1354
1355
kfree(parser->collection_stack);
1356
vfree(parser);
1357
device->status |= HID_STAT_PARSED;
1358
1359
return 0;
1360
}
1361
}
1362
1363
hid_err(device, "item fetching failed at offset %u/%u\n",
1364
size - (unsigned int)(end - start), size);
1365
err:
1366
kfree(parser->collection_stack);
1367
alloc_err:
1368
vfree(parser);
1369
hid_close_report(device);
1370
return ret;
1371
}
1372
EXPORT_SYMBOL_GPL(hid_open_report);
1373
1374
/*
1375
* Extract/implement a data field from/to a little endian report (bit array).
1376
*
1377
* Code sort-of follows HID spec:
1378
* http://www.usb.org/developers/hidpage/HID1_11.pdf
1379
*
1380
* While the USB HID spec allows unlimited length bit fields in "report
1381
* descriptors", most devices never use more than 16 bits.
1382
* One model of UPS is claimed to report "LINEV" as a 32-bit field.
1383
* Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1384
*/
1385
1386
static u32 __extract(u8 *report, unsigned offset, int n)
1387
{
1388
unsigned int idx = offset / 8;
1389
unsigned int bit_nr = 0;
1390
unsigned int bit_shift = offset % 8;
1391
int bits_to_copy = 8 - bit_shift;
1392
u32 value = 0;
1393
u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1394
1395
while (n > 0) {
1396
value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1397
n -= bits_to_copy;
1398
bit_nr += bits_to_copy;
1399
bits_to_copy = 8;
1400
bit_shift = 0;
1401
idx++;
1402
}
1403
1404
return value & mask;
1405
}
1406
1407
u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1408
unsigned offset, unsigned n)
1409
{
1410
if (n > 32) {
1411
hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1412
__func__, n, current->comm);
1413
n = 32;
1414
}
1415
1416
return __extract(report, offset, n);
1417
}
1418
EXPORT_SYMBOL_GPL(hid_field_extract);
1419
1420
/*
1421
* "implement" : set bits in a little endian bit stream.
1422
* Same concepts as "extract" (see comments above).
1423
* The data mangled in the bit stream remains in little endian
1424
* order the whole time. It make more sense to talk about
1425
* endianness of register values by considering a register
1426
* a "cached" copy of the little endian bit stream.
1427
*/
1428
1429
static void __implement(u8 *report, unsigned offset, int n, u32 value)
1430
{
1431
unsigned int idx = offset / 8;
1432
unsigned int bit_shift = offset % 8;
1433
int bits_to_set = 8 - bit_shift;
1434
1435
while (n - bits_to_set >= 0) {
1436
report[idx] &= ~(0xff << bit_shift);
1437
report[idx] |= value << bit_shift;
1438
value >>= bits_to_set;
1439
n -= bits_to_set;
1440
bits_to_set = 8;
1441
bit_shift = 0;
1442
idx++;
1443
}
1444
1445
/* last nibble */
1446
if (n) {
1447
u8 bit_mask = ((1U << n) - 1);
1448
report[idx] &= ~(bit_mask << bit_shift);
1449
report[idx] |= value << bit_shift;
1450
}
1451
}
1452
1453
static void implement(const struct hid_device *hid, u8 *report,
1454
unsigned offset, unsigned n, u32 value)
1455
{
1456
if (unlikely(n > 32)) {
1457
hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1458
__func__, n, current->comm);
1459
n = 32;
1460
} else if (n < 32) {
1461
u32 m = (1U << n) - 1;
1462
1463
if (unlikely(value > m)) {
1464
hid_warn(hid,
1465
"%s() called with too large value %d (n: %d)! (%s)\n",
1466
__func__, value, n, current->comm);
1467
value &= m;
1468
}
1469
}
1470
1471
__implement(report, offset, n, value);
1472
}
1473
1474
/*
1475
* Search an array for a value.
1476
*/
1477
1478
static int search(__s32 *array, __s32 value, unsigned n)
1479
{
1480
while (n--) {
1481
if (*array++ == value)
1482
return 0;
1483
}
1484
return -1;
1485
}
1486
1487
/**
1488
* hid_match_report - check if driver's raw_event should be called
1489
*
1490
* @hid: hid device
1491
* @report: hid report to match against
1492
*
1493
* compare hid->driver->report_table->report_type to report->type
1494
*/
1495
static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1496
{
1497
const struct hid_report_id *id = hid->driver->report_table;
1498
1499
if (!id) /* NULL means all */
1500
return 1;
1501
1502
for (; id->report_type != HID_TERMINATOR; id++)
1503
if (id->report_type == HID_ANY_ID ||
1504
id->report_type == report->type)
1505
return 1;
1506
return 0;
1507
}
1508
1509
/**
1510
* hid_match_usage - check if driver's event should be called
1511
*
1512
* @hid: hid device
1513
* @usage: usage to match against
1514
*
1515
* compare hid->driver->usage_table->usage_{type,code} to
1516
* usage->usage_{type,code}
1517
*/
1518
static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1519
{
1520
const struct hid_usage_id *id = hid->driver->usage_table;
1521
1522
if (!id) /* NULL means all */
1523
return 1;
1524
1525
for (; id->usage_type != HID_ANY_ID - 1; id++)
1526
if ((id->usage_hid == HID_ANY_ID ||
1527
id->usage_hid == usage->hid) &&
1528
(id->usage_type == HID_ANY_ID ||
1529
id->usage_type == usage->type) &&
1530
(id->usage_code == HID_ANY_ID ||
1531
id->usage_code == usage->code))
1532
return 1;
1533
return 0;
1534
}
1535
1536
static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1537
struct hid_usage *usage, __s32 value, int interrupt)
1538
{
1539
struct hid_driver *hdrv = hid->driver;
1540
int ret;
1541
1542
if (!list_empty(&hid->debug_list))
1543
hid_dump_input(hid, usage, value);
1544
1545
if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1546
ret = hdrv->event(hid, field, usage, value);
1547
if (ret != 0) {
1548
if (ret < 0)
1549
hid_err(hid, "%s's event failed with %d\n",
1550
hdrv->name, ret);
1551
return;
1552
}
1553
}
1554
1555
if (hid->claimed & HID_CLAIMED_INPUT)
1556
hidinput_hid_event(hid, field, usage, value);
1557
if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1558
hid->hiddev_hid_event(hid, field, usage, value);
1559
}
1560
1561
/*
1562
* Checks if the given value is valid within this field
1563
*/
1564
static inline int hid_array_value_is_valid(struct hid_field *field,
1565
__s32 value)
1566
{
1567
__s32 min = field->logical_minimum;
1568
1569
/*
1570
* Value needs to be between logical min and max, and
1571
* (value - min) is used as an index in the usage array.
1572
* This array is of size field->maxusage
1573
*/
1574
return value >= min &&
1575
value <= field->logical_maximum &&
1576
value - min < field->maxusage;
1577
}
1578
1579
/*
1580
* Fetch the field from the data. The field content is stored for next
1581
* report processing (we do differential reporting to the layer).
1582
*/
1583
static void hid_input_fetch_field(struct hid_device *hid,
1584
struct hid_field *field,
1585
__u8 *data)
1586
{
1587
unsigned n;
1588
unsigned count = field->report_count;
1589
unsigned offset = field->report_offset;
1590
unsigned size = field->report_size;
1591
__s32 min = field->logical_minimum;
1592
__s32 *value;
1593
1594
value = field->new_value;
1595
memset(value, 0, count * sizeof(__s32));
1596
field->ignored = false;
1597
1598
for (n = 0; n < count; n++) {
1599
1600
value[n] = min < 0 ?
1601
snto32(hid_field_extract(hid, data, offset + n * size,
1602
size), size) :
1603
hid_field_extract(hid, data, offset + n * size, size);
1604
1605
/* Ignore report if ErrorRollOver */
1606
if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1607
hid_array_value_is_valid(field, value[n]) &&
1608
field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1609
field->ignored = true;
1610
return;
1611
}
1612
}
1613
}
1614
1615
/*
1616
* Process a received variable field.
1617
*/
1618
1619
static void hid_input_var_field(struct hid_device *hid,
1620
struct hid_field *field,
1621
int interrupt)
1622
{
1623
unsigned int count = field->report_count;
1624
__s32 *value = field->new_value;
1625
unsigned int n;
1626
1627
for (n = 0; n < count; n++)
1628
hid_process_event(hid,
1629
field,
1630
&field->usage[n],
1631
value[n],
1632
interrupt);
1633
1634
memcpy(field->value, value, count * sizeof(__s32));
1635
}
1636
1637
/*
1638
* Process a received array field. The field content is stored for
1639
* next report processing (we do differential reporting to the layer).
1640
*/
1641
1642
static void hid_input_array_field(struct hid_device *hid,
1643
struct hid_field *field,
1644
int interrupt)
1645
{
1646
unsigned int n;
1647
unsigned int count = field->report_count;
1648
__s32 min = field->logical_minimum;
1649
__s32 *value;
1650
1651
value = field->new_value;
1652
1653
/* ErrorRollOver */
1654
if (field->ignored)
1655
return;
1656
1657
for (n = 0; n < count; n++) {
1658
if (hid_array_value_is_valid(field, field->value[n]) &&
1659
search(value, field->value[n], count))
1660
hid_process_event(hid,
1661
field,
1662
&field->usage[field->value[n] - min],
1663
0,
1664
interrupt);
1665
1666
if (hid_array_value_is_valid(field, value[n]) &&
1667
search(field->value, value[n], count))
1668
hid_process_event(hid,
1669
field,
1670
&field->usage[value[n] - min],
1671
1,
1672
interrupt);
1673
}
1674
1675
memcpy(field->value, value, count * sizeof(__s32));
1676
}
1677
1678
/*
1679
* Analyse a received report, and fetch the data from it. The field
1680
* content is stored for next report processing (we do differential
1681
* reporting to the layer).
1682
*/
1683
static void hid_process_report(struct hid_device *hid,
1684
struct hid_report *report,
1685
__u8 *data,
1686
int interrupt)
1687
{
1688
unsigned int a;
1689
struct hid_field_entry *entry;
1690
struct hid_field *field;
1691
1692
/* first retrieve all incoming values in data */
1693
for (a = 0; a < report->maxfield; a++)
1694
hid_input_fetch_field(hid, report->field[a], data);
1695
1696
if (!list_empty(&report->field_entry_list)) {
1697
/* INPUT_REPORT, we have a priority list of fields */
1698
list_for_each_entry(entry,
1699
&report->field_entry_list,
1700
list) {
1701
field = entry->field;
1702
1703
if (field->flags & HID_MAIN_ITEM_VARIABLE)
1704
hid_process_event(hid,
1705
field,
1706
&field->usage[entry->index],
1707
field->new_value[entry->index],
1708
interrupt);
1709
else
1710
hid_input_array_field(hid, field, interrupt);
1711
}
1712
1713
/* we need to do the memcpy at the end for var items */
1714
for (a = 0; a < report->maxfield; a++) {
1715
field = report->field[a];
1716
1717
if (field->flags & HID_MAIN_ITEM_VARIABLE)
1718
memcpy(field->value, field->new_value,
1719
field->report_count * sizeof(__s32));
1720
}
1721
} else {
1722
/* FEATURE_REPORT, regular processing */
1723
for (a = 0; a < report->maxfield; a++) {
1724
field = report->field[a];
1725
1726
if (field->flags & HID_MAIN_ITEM_VARIABLE)
1727
hid_input_var_field(hid, field, interrupt);
1728
else
1729
hid_input_array_field(hid, field, interrupt);
1730
}
1731
}
1732
}
1733
1734
/*
1735
* Insert a given usage_index in a field in the list
1736
* of processed usages in the report.
1737
*
1738
* The elements of lower priority score are processed
1739
* first.
1740
*/
1741
static void __hid_insert_field_entry(struct hid_device *hid,
1742
struct hid_report *report,
1743
struct hid_field_entry *entry,
1744
struct hid_field *field,
1745
unsigned int usage_index)
1746
{
1747
struct hid_field_entry *next;
1748
1749
entry->field = field;
1750
entry->index = usage_index;
1751
entry->priority = field->usages_priorities[usage_index];
1752
1753
/* insert the element at the correct position */
1754
list_for_each_entry(next,
1755
&report->field_entry_list,
1756
list) {
1757
/*
1758
* the priority of our element is strictly higher
1759
* than the next one, insert it before
1760
*/
1761
if (entry->priority > next->priority) {
1762
list_add_tail(&entry->list, &next->list);
1763
return;
1764
}
1765
}
1766
1767
/* lowest priority score: insert at the end */
1768
list_add_tail(&entry->list, &report->field_entry_list);
1769
}
1770
1771
static void hid_report_process_ordering(struct hid_device *hid,
1772
struct hid_report *report)
1773
{
1774
struct hid_field *field;
1775
struct hid_field_entry *entries;
1776
unsigned int a, u, usages;
1777
unsigned int count = 0;
1778
1779
/* count the number of individual fields in the report */
1780
for (a = 0; a < report->maxfield; a++) {
1781
field = report->field[a];
1782
1783
if (field->flags & HID_MAIN_ITEM_VARIABLE)
1784
count += field->report_count;
1785
else
1786
count++;
1787
}
1788
1789
/* allocate the memory to process the fields */
1790
entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1791
if (!entries)
1792
return;
1793
1794
report->field_entries = entries;
1795
1796
/*
1797
* walk through all fields in the report and
1798
* store them by priority order in report->field_entry_list
1799
*
1800
* - Var elements are individualized (field + usage_index)
1801
* - Arrays are taken as one, we can not chose an order for them
1802
*/
1803
usages = 0;
1804
for (a = 0; a < report->maxfield; a++) {
1805
field = report->field[a];
1806
1807
if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1808
for (u = 0; u < field->report_count; u++) {
1809
__hid_insert_field_entry(hid, report,
1810
&entries[usages],
1811
field, u);
1812
usages++;
1813
}
1814
} else {
1815
__hid_insert_field_entry(hid, report, &entries[usages],
1816
field, 0);
1817
usages++;
1818
}
1819
}
1820
}
1821
1822
static void hid_process_ordering(struct hid_device *hid)
1823
{
1824
struct hid_report *report;
1825
struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1826
1827
list_for_each_entry(report, &report_enum->report_list, list)
1828
hid_report_process_ordering(hid, report);
1829
}
1830
1831
/*
1832
* Output the field into the report.
1833
*/
1834
1835
static void hid_output_field(const struct hid_device *hid,
1836
struct hid_field *field, __u8 *data)
1837
{
1838
unsigned count = field->report_count;
1839
unsigned offset = field->report_offset;
1840
unsigned size = field->report_size;
1841
unsigned n;
1842
1843
for (n = 0; n < count; n++) {
1844
if (field->logical_minimum < 0) /* signed values */
1845
implement(hid, data, offset + n * size, size,
1846
s32ton(field->value[n], size));
1847
else /* unsigned values */
1848
implement(hid, data, offset + n * size, size,
1849
field->value[n]);
1850
}
1851
}
1852
1853
/*
1854
* Compute the size of a report.
1855
*/
1856
static size_t hid_compute_report_size(struct hid_report *report)
1857
{
1858
if (report->size)
1859
return ((report->size - 1) >> 3) + 1;
1860
1861
return 0;
1862
}
1863
1864
/*
1865
* Create a report. 'data' has to be allocated using
1866
* hid_alloc_report_buf() so that it has proper size.
1867
*/
1868
1869
void hid_output_report(struct hid_report *report, __u8 *data)
1870
{
1871
unsigned n;
1872
1873
if (report->id > 0)
1874
*data++ = report->id;
1875
1876
memset(data, 0, hid_compute_report_size(report));
1877
for (n = 0; n < report->maxfield; n++)
1878
hid_output_field(report->device, report->field[n], data);
1879
}
1880
EXPORT_SYMBOL_GPL(hid_output_report);
1881
1882
/*
1883
* Allocator for buffer that is going to be passed to hid_output_report()
1884
*/
1885
u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1886
{
1887
/*
1888
* 7 extra bytes are necessary to achieve proper functionality
1889
* of implement() working on 8 byte chunks
1890
* 1 extra byte for the report ID if it is null (not used) so
1891
* we can reserve that extra byte in the first position of the buffer
1892
* when sending it to .raw_request()
1893
*/
1894
1895
u32 len = hid_report_len(report) + 7 + (report->id == 0);
1896
1897
return kzalloc(len, flags);
1898
}
1899
EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1900
1901
/*
1902
* Set a field value. The report this field belongs to has to be
1903
* created and transferred to the device, to set this value in the
1904
* device.
1905
*/
1906
1907
int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1908
{
1909
unsigned size;
1910
1911
if (!field)
1912
return -1;
1913
1914
size = field->report_size;
1915
1916
hid_dump_input(field->report->device, field->usage + offset, value);
1917
1918
if (offset >= field->report_count) {
1919
hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1920
offset, field->report_count);
1921
return -1;
1922
}
1923
if (field->logical_minimum < 0) {
1924
if (value != snto32(s32ton(value, size), size)) {
1925
hid_err(field->report->device, "value %d is out of range\n", value);
1926
return -1;
1927
}
1928
}
1929
field->value[offset] = value;
1930
return 0;
1931
}
1932
EXPORT_SYMBOL_GPL(hid_set_field);
1933
1934
struct hid_field *hid_find_field(struct hid_device *hdev, unsigned int report_type,
1935
unsigned int application, unsigned int usage)
1936
{
1937
struct list_head *report_list = &hdev->report_enum[report_type].report_list;
1938
struct hid_report *report;
1939
int i, j;
1940
1941
list_for_each_entry(report, report_list, list) {
1942
if (report->application != application)
1943
continue;
1944
1945
for (i = 0; i < report->maxfield; i++) {
1946
struct hid_field *field = report->field[i];
1947
1948
for (j = 0; j < field->maxusage; j++) {
1949
if (field->usage[j].hid == usage)
1950
return field;
1951
}
1952
}
1953
}
1954
1955
return NULL;
1956
}
1957
EXPORT_SYMBOL_GPL(hid_find_field);
1958
1959
static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1960
const u8 *data)
1961
{
1962
struct hid_report *report;
1963
unsigned int n = 0; /* Normally report number is 0 */
1964
1965
/* Device uses numbered reports, data[0] is report number */
1966
if (report_enum->numbered)
1967
n = *data;
1968
1969
report = report_enum->report_id_hash[n];
1970
if (report == NULL)
1971
dbg_hid("undefined report_id %u received\n", n);
1972
1973
return report;
1974
}
1975
1976
/*
1977
* Implement a generic .request() callback, using .raw_request()
1978
* DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1979
*/
1980
int __hid_request(struct hid_device *hid, struct hid_report *report,
1981
enum hid_class_request reqtype)
1982
{
1983
char *buf, *data_buf;
1984
int ret;
1985
u32 len;
1986
1987
buf = hid_alloc_report_buf(report, GFP_KERNEL);
1988
if (!buf)
1989
return -ENOMEM;
1990
1991
data_buf = buf;
1992
len = hid_report_len(report);
1993
1994
if (report->id == 0) {
1995
/* reserve the first byte for the report ID */
1996
data_buf++;
1997
len++;
1998
}
1999
2000
if (reqtype == HID_REQ_SET_REPORT)
2001
hid_output_report(report, data_buf);
2002
2003
ret = hid_hw_raw_request(hid, report->id, buf, len, report->type, reqtype);
2004
if (ret < 0) {
2005
dbg_hid("unable to complete request: %d\n", ret);
2006
goto out;
2007
}
2008
2009
if (reqtype == HID_REQ_GET_REPORT)
2010
hid_input_report(hid, report->type, buf, ret, 0);
2011
2012
ret = 0;
2013
2014
out:
2015
kfree(buf);
2016
return ret;
2017
}
2018
EXPORT_SYMBOL_GPL(__hid_request);
2019
2020
int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2021
int interrupt)
2022
{
2023
struct hid_report_enum *report_enum = hid->report_enum + type;
2024
struct hid_report *report;
2025
struct hid_driver *hdrv;
2026
int max_buffer_size = HID_MAX_BUFFER_SIZE;
2027
u32 rsize, csize = size;
2028
u8 *cdata = data;
2029
int ret = 0;
2030
2031
report = hid_get_report(report_enum, data);
2032
if (!report)
2033
goto out;
2034
2035
if (report_enum->numbered) {
2036
cdata++;
2037
csize--;
2038
}
2039
2040
rsize = hid_compute_report_size(report);
2041
2042
if (hid->ll_driver->max_buffer_size)
2043
max_buffer_size = hid->ll_driver->max_buffer_size;
2044
2045
if (report_enum->numbered && rsize >= max_buffer_size)
2046
rsize = max_buffer_size - 1;
2047
else if (rsize > max_buffer_size)
2048
rsize = max_buffer_size;
2049
2050
if (csize < rsize) {
2051
dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2052
csize, rsize);
2053
memset(cdata + csize, 0, rsize - csize);
2054
}
2055
2056
if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2057
hid->hiddev_report_event(hid, report);
2058
if (hid->claimed & HID_CLAIMED_HIDRAW) {
2059
ret = hidraw_report_event(hid, data, size);
2060
if (ret)
2061
goto out;
2062
}
2063
2064
if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2065
hid_process_report(hid, report, cdata, interrupt);
2066
hdrv = hid->driver;
2067
if (hdrv && hdrv->report)
2068
hdrv->report(hid, report);
2069
}
2070
2071
if (hid->claimed & HID_CLAIMED_INPUT)
2072
hidinput_report_event(hid, report);
2073
out:
2074
return ret;
2075
}
2076
EXPORT_SYMBOL_GPL(hid_report_raw_event);
2077
2078
2079
static int __hid_input_report(struct hid_device *hid, enum hid_report_type type,
2080
u8 *data, u32 size, int interrupt, u64 source, bool from_bpf,
2081
bool lock_already_taken)
2082
{
2083
struct hid_report_enum *report_enum;
2084
struct hid_driver *hdrv;
2085
struct hid_report *report;
2086
int ret = 0;
2087
2088
if (!hid)
2089
return -ENODEV;
2090
2091
ret = down_trylock(&hid->driver_input_lock);
2092
if (lock_already_taken && !ret) {
2093
up(&hid->driver_input_lock);
2094
return -EINVAL;
2095
} else if (!lock_already_taken && ret) {
2096
return -EBUSY;
2097
}
2098
2099
if (!hid->driver) {
2100
ret = -ENODEV;
2101
goto unlock;
2102
}
2103
report_enum = hid->report_enum + type;
2104
hdrv = hid->driver;
2105
2106
data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf);
2107
if (IS_ERR(data)) {
2108
ret = PTR_ERR(data);
2109
goto unlock;
2110
}
2111
2112
if (!size) {
2113
dbg_hid("empty report\n");
2114
ret = -1;
2115
goto unlock;
2116
}
2117
2118
/* Avoid unnecessary overhead if debugfs is disabled */
2119
if (!list_empty(&hid->debug_list))
2120
hid_dump_report(hid, type, data, size);
2121
2122
report = hid_get_report(report_enum, data);
2123
2124
if (!report) {
2125
ret = -1;
2126
goto unlock;
2127
}
2128
2129
if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2130
ret = hdrv->raw_event(hid, report, data, size);
2131
if (ret < 0)
2132
goto unlock;
2133
}
2134
2135
ret = hid_report_raw_event(hid, type, data, size, interrupt);
2136
2137
unlock:
2138
if (!lock_already_taken)
2139
up(&hid->driver_input_lock);
2140
return ret;
2141
}
2142
2143
/**
2144
* hid_input_report - report data from lower layer (usb, bt...)
2145
*
2146
* @hid: hid device
2147
* @type: HID report type (HID_*_REPORT)
2148
* @data: report contents
2149
* @size: size of data parameter
2150
* @interrupt: distinguish between interrupt and control transfers
2151
*
2152
* This is data entry for lower layers.
2153
*/
2154
int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2155
int interrupt)
2156
{
2157
return __hid_input_report(hid, type, data, size, interrupt, 0,
2158
false, /* from_bpf */
2159
false /* lock_already_taken */);
2160
}
2161
EXPORT_SYMBOL_GPL(hid_input_report);
2162
2163
bool hid_match_one_id(const struct hid_device *hdev,
2164
const struct hid_device_id *id)
2165
{
2166
return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2167
(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2168
(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2169
(id->product == HID_ANY_ID || id->product == hdev->product);
2170
}
2171
2172
const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2173
const struct hid_device_id *id)
2174
{
2175
for (; id->bus; id++)
2176
if (hid_match_one_id(hdev, id))
2177
return id;
2178
2179
return NULL;
2180
}
2181
EXPORT_SYMBOL_GPL(hid_match_id);
2182
2183
static const struct hid_device_id hid_hiddev_list[] = {
2184
{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2185
{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2186
{ }
2187
};
2188
2189
static bool hid_hiddev(struct hid_device *hdev)
2190
{
2191
return !!hid_match_id(hdev, hid_hiddev_list);
2192
}
2193
2194
2195
static ssize_t
2196
report_descriptor_read(struct file *filp, struct kobject *kobj,
2197
const struct bin_attribute *attr,
2198
char *buf, loff_t off, size_t count)
2199
{
2200
struct device *dev = kobj_to_dev(kobj);
2201
struct hid_device *hdev = to_hid_device(dev);
2202
2203
if (off >= hdev->rsize)
2204
return 0;
2205
2206
if (off + count > hdev->rsize)
2207
count = hdev->rsize - off;
2208
2209
memcpy(buf, hdev->rdesc + off, count);
2210
2211
return count;
2212
}
2213
2214
static ssize_t
2215
country_show(struct device *dev, struct device_attribute *attr,
2216
char *buf)
2217
{
2218
struct hid_device *hdev = to_hid_device(dev);
2219
2220
return sprintf(buf, "%02x\n", hdev->country & 0xff);
2221
}
2222
2223
static const BIN_ATTR_RO(report_descriptor, HID_MAX_DESCRIPTOR_SIZE);
2224
2225
static const DEVICE_ATTR_RO(country);
2226
2227
int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2228
{
2229
static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2230
"Joystick", "Gamepad", "Keyboard", "Keypad",
2231
"Multi-Axis Controller"
2232
};
2233
const char *type, *bus;
2234
char buf[64] = "";
2235
unsigned int i;
2236
int len;
2237
int ret;
2238
2239
ret = hid_bpf_connect_device(hdev);
2240
if (ret)
2241
return ret;
2242
2243
if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2244
connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2245
if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2246
connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2247
if (hdev->bus != BUS_USB)
2248
connect_mask &= ~HID_CONNECT_HIDDEV;
2249
if (hid_hiddev(hdev))
2250
connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2251
2252
if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2253
connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2254
hdev->claimed |= HID_CLAIMED_INPUT;
2255
2256
if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2257
!hdev->hiddev_connect(hdev,
2258
connect_mask & HID_CONNECT_HIDDEV_FORCE))
2259
hdev->claimed |= HID_CLAIMED_HIDDEV;
2260
if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2261
hdev->claimed |= HID_CLAIMED_HIDRAW;
2262
2263
if (connect_mask & HID_CONNECT_DRIVER)
2264
hdev->claimed |= HID_CLAIMED_DRIVER;
2265
2266
/* Drivers with the ->raw_event callback set are not required to connect
2267
* to any other listener. */
2268
if (!hdev->claimed && !hdev->driver->raw_event) {
2269
hid_err(hdev, "device has no listeners, quitting\n");
2270
return -ENODEV;
2271
}
2272
2273
hid_process_ordering(hdev);
2274
2275
if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2276
(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2277
hdev->ff_init(hdev);
2278
2279
len = 0;
2280
if (hdev->claimed & HID_CLAIMED_INPUT)
2281
len += sprintf(buf + len, "input");
2282
if (hdev->claimed & HID_CLAIMED_HIDDEV)
2283
len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2284
((struct hiddev *)hdev->hiddev)->minor);
2285
if (hdev->claimed & HID_CLAIMED_HIDRAW)
2286
len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2287
((struct hidraw *)hdev->hidraw)->minor);
2288
2289
type = "Device";
2290
for (i = 0; i < hdev->maxcollection; i++) {
2291
struct hid_collection *col = &hdev->collection[i];
2292
if (col->type == HID_COLLECTION_APPLICATION &&
2293
(col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2294
(col->usage & 0xffff) < ARRAY_SIZE(types)) {
2295
type = types[col->usage & 0xffff];
2296
break;
2297
}
2298
}
2299
2300
switch (hdev->bus) {
2301
case BUS_USB:
2302
bus = "USB";
2303
break;
2304
case BUS_BLUETOOTH:
2305
bus = "BLUETOOTH";
2306
break;
2307
case BUS_I2C:
2308
bus = "I2C";
2309
break;
2310
case BUS_SDW:
2311
bus = "SOUNDWIRE";
2312
break;
2313
case BUS_VIRTUAL:
2314
bus = "VIRTUAL";
2315
break;
2316
case BUS_INTEL_ISHTP:
2317
case BUS_AMD_SFH:
2318
bus = "SENSOR HUB";
2319
break;
2320
default:
2321
bus = "<UNKNOWN>";
2322
}
2323
2324
ret = device_create_file(&hdev->dev, &dev_attr_country);
2325
if (ret)
2326
hid_warn(hdev,
2327
"can't create sysfs country code attribute err: %d\n", ret);
2328
2329
hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2330
buf, bus, hdev->version >> 8, hdev->version & 0xff,
2331
type, hdev->name, hdev->phys);
2332
2333
return 0;
2334
}
2335
EXPORT_SYMBOL_GPL(hid_connect);
2336
2337
void hid_disconnect(struct hid_device *hdev)
2338
{
2339
device_remove_file(&hdev->dev, &dev_attr_country);
2340
if (hdev->claimed & HID_CLAIMED_INPUT)
2341
hidinput_disconnect(hdev);
2342
if (hdev->claimed & HID_CLAIMED_HIDDEV)
2343
hdev->hiddev_disconnect(hdev);
2344
if (hdev->claimed & HID_CLAIMED_HIDRAW)
2345
hidraw_disconnect(hdev);
2346
hdev->claimed = 0;
2347
2348
hid_bpf_disconnect_device(hdev);
2349
}
2350
EXPORT_SYMBOL_GPL(hid_disconnect);
2351
2352
/**
2353
* hid_hw_start - start underlying HW
2354
* @hdev: hid device
2355
* @connect_mask: which outputs to connect, see HID_CONNECT_*
2356
*
2357
* Call this in probe function *after* hid_parse. This will setup HW
2358
* buffers and start the device (if not defeirred to device open).
2359
* hid_hw_stop must be called if this was successful.
2360
*/
2361
int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2362
{
2363
int error;
2364
2365
error = hdev->ll_driver->start(hdev);
2366
if (error)
2367
return error;
2368
2369
if (connect_mask) {
2370
error = hid_connect(hdev, connect_mask);
2371
if (error) {
2372
hdev->ll_driver->stop(hdev);
2373
return error;
2374
}
2375
}
2376
2377
return 0;
2378
}
2379
EXPORT_SYMBOL_GPL(hid_hw_start);
2380
2381
/**
2382
* hid_hw_stop - stop underlying HW
2383
* @hdev: hid device
2384
*
2385
* This is usually called from remove function or from probe when something
2386
* failed and hid_hw_start was called already.
2387
*/
2388
void hid_hw_stop(struct hid_device *hdev)
2389
{
2390
hid_disconnect(hdev);
2391
hdev->ll_driver->stop(hdev);
2392
}
2393
EXPORT_SYMBOL_GPL(hid_hw_stop);
2394
2395
/**
2396
* hid_hw_open - signal underlying HW to start delivering events
2397
* @hdev: hid device
2398
*
2399
* Tell underlying HW to start delivering events from the device.
2400
* This function should be called sometime after successful call
2401
* to hid_hw_start().
2402
*/
2403
int hid_hw_open(struct hid_device *hdev)
2404
{
2405
int ret;
2406
2407
ret = mutex_lock_killable(&hdev->ll_open_lock);
2408
if (ret)
2409
return ret;
2410
2411
if (!hdev->ll_open_count++) {
2412
ret = hdev->ll_driver->open(hdev);
2413
if (ret)
2414
hdev->ll_open_count--;
2415
2416
if (hdev->driver->on_hid_hw_open)
2417
hdev->driver->on_hid_hw_open(hdev);
2418
}
2419
2420
mutex_unlock(&hdev->ll_open_lock);
2421
return ret;
2422
}
2423
EXPORT_SYMBOL_GPL(hid_hw_open);
2424
2425
/**
2426
* hid_hw_close - signal underlaying HW to stop delivering events
2427
*
2428
* @hdev: hid device
2429
*
2430
* This function indicates that we are not interested in the events
2431
* from this device anymore. Delivery of events may or may not stop,
2432
* depending on the number of users still outstanding.
2433
*/
2434
void hid_hw_close(struct hid_device *hdev)
2435
{
2436
mutex_lock(&hdev->ll_open_lock);
2437
if (!--hdev->ll_open_count) {
2438
hdev->ll_driver->close(hdev);
2439
2440
if (hdev->driver->on_hid_hw_close)
2441
hdev->driver->on_hid_hw_close(hdev);
2442
}
2443
mutex_unlock(&hdev->ll_open_lock);
2444
}
2445
EXPORT_SYMBOL_GPL(hid_hw_close);
2446
2447
/**
2448
* hid_hw_request - send report request to device
2449
*
2450
* @hdev: hid device
2451
* @report: report to send
2452
* @reqtype: hid request type
2453
*/
2454
void hid_hw_request(struct hid_device *hdev,
2455
struct hid_report *report, enum hid_class_request reqtype)
2456
{
2457
if (hdev->ll_driver->request)
2458
return hdev->ll_driver->request(hdev, report, reqtype);
2459
2460
__hid_request(hdev, report, reqtype);
2461
}
2462
EXPORT_SYMBOL_GPL(hid_hw_request);
2463
2464
int __hid_hw_raw_request(struct hid_device *hdev,
2465
unsigned char reportnum, __u8 *buf,
2466
size_t len, enum hid_report_type rtype,
2467
enum hid_class_request reqtype,
2468
u64 source, bool from_bpf)
2469
{
2470
unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2471
int ret;
2472
2473
if (hdev->ll_driver->max_buffer_size)
2474
max_buffer_size = hdev->ll_driver->max_buffer_size;
2475
2476
if (len < 1 || len > max_buffer_size || !buf)
2477
return -EINVAL;
2478
2479
ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype,
2480
reqtype, source, from_bpf);
2481
if (ret)
2482
return ret;
2483
2484
return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2485
rtype, reqtype);
2486
}
2487
2488
/**
2489
* hid_hw_raw_request - send report request to device
2490
*
2491
* @hdev: hid device
2492
* @reportnum: report ID
2493
* @buf: in/out data to transfer
2494
* @len: length of buf
2495
* @rtype: HID report type
2496
* @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2497
*
2498
* Return: count of data transferred, negative if error
2499
*
2500
* Same behavior as hid_hw_request, but with raw buffers instead.
2501
*/
2502
int hid_hw_raw_request(struct hid_device *hdev,
2503
unsigned char reportnum, __u8 *buf,
2504
size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2505
{
2506
return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false);
2507
}
2508
EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2509
2510
int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source,
2511
bool from_bpf)
2512
{
2513
unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2514
int ret;
2515
2516
if (hdev->ll_driver->max_buffer_size)
2517
max_buffer_size = hdev->ll_driver->max_buffer_size;
2518
2519
if (len < 1 || len > max_buffer_size || !buf)
2520
return -EINVAL;
2521
2522
ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf);
2523
if (ret)
2524
return ret;
2525
2526
if (hdev->ll_driver->output_report)
2527
return hdev->ll_driver->output_report(hdev, buf, len);
2528
2529
return -ENOSYS;
2530
}
2531
2532
/**
2533
* hid_hw_output_report - send output report to device
2534
*
2535
* @hdev: hid device
2536
* @buf: raw data to transfer
2537
* @len: length of buf
2538
*
2539
* Return: count of data transferred, negative if error
2540
*/
2541
int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2542
{
2543
return __hid_hw_output_report(hdev, buf, len, 0, false);
2544
}
2545
EXPORT_SYMBOL_GPL(hid_hw_output_report);
2546
2547
#ifdef CONFIG_PM
2548
int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2549
{
2550
if (hdev->driver && hdev->driver->suspend)
2551
return hdev->driver->suspend(hdev, state);
2552
2553
return 0;
2554
}
2555
EXPORT_SYMBOL_GPL(hid_driver_suspend);
2556
2557
int hid_driver_reset_resume(struct hid_device *hdev)
2558
{
2559
if (hdev->driver && hdev->driver->reset_resume)
2560
return hdev->driver->reset_resume(hdev);
2561
2562
return 0;
2563
}
2564
EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2565
2566
int hid_driver_resume(struct hid_device *hdev)
2567
{
2568
if (hdev->driver && hdev->driver->resume)
2569
return hdev->driver->resume(hdev);
2570
2571
return 0;
2572
}
2573
EXPORT_SYMBOL_GPL(hid_driver_resume);
2574
#endif /* CONFIG_PM */
2575
2576
struct hid_dynid {
2577
struct list_head list;
2578
struct hid_device_id id;
2579
};
2580
2581
/**
2582
* new_id_store - add a new HID device ID to this driver and re-probe devices
2583
* @drv: target device driver
2584
* @buf: buffer for scanning device ID data
2585
* @count: input size
2586
*
2587
* Adds a new dynamic hid device ID to this driver,
2588
* and causes the driver to probe for all devices again.
2589
*/
2590
static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2591
size_t count)
2592
{
2593
struct hid_driver *hdrv = to_hid_driver(drv);
2594
struct hid_dynid *dynid;
2595
__u32 bus, vendor, product;
2596
unsigned long driver_data = 0;
2597
int ret;
2598
2599
ret = sscanf(buf, "%x %x %x %lx",
2600
&bus, &vendor, &product, &driver_data);
2601
if (ret < 3)
2602
return -EINVAL;
2603
2604
dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2605
if (!dynid)
2606
return -ENOMEM;
2607
2608
dynid->id.bus = bus;
2609
dynid->id.group = HID_GROUP_ANY;
2610
dynid->id.vendor = vendor;
2611
dynid->id.product = product;
2612
dynid->id.driver_data = driver_data;
2613
2614
spin_lock(&hdrv->dyn_lock);
2615
list_add_tail(&dynid->list, &hdrv->dyn_list);
2616
spin_unlock(&hdrv->dyn_lock);
2617
2618
ret = driver_attach(&hdrv->driver);
2619
2620
return ret ? : count;
2621
}
2622
static DRIVER_ATTR_WO(new_id);
2623
2624
static struct attribute *hid_drv_attrs[] = {
2625
&driver_attr_new_id.attr,
2626
NULL,
2627
};
2628
ATTRIBUTE_GROUPS(hid_drv);
2629
2630
static void hid_free_dynids(struct hid_driver *hdrv)
2631
{
2632
struct hid_dynid *dynid, *n;
2633
2634
spin_lock(&hdrv->dyn_lock);
2635
list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2636
list_del(&dynid->list);
2637
kfree(dynid);
2638
}
2639
spin_unlock(&hdrv->dyn_lock);
2640
}
2641
2642
const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2643
struct hid_driver *hdrv)
2644
{
2645
struct hid_dynid *dynid;
2646
2647
spin_lock(&hdrv->dyn_lock);
2648
list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2649
if (hid_match_one_id(hdev, &dynid->id)) {
2650
spin_unlock(&hdrv->dyn_lock);
2651
return &dynid->id;
2652
}
2653
}
2654
spin_unlock(&hdrv->dyn_lock);
2655
2656
return hid_match_id(hdev, hdrv->id_table);
2657
}
2658
EXPORT_SYMBOL_GPL(hid_match_device);
2659
2660
static int hid_bus_match(struct device *dev, const struct device_driver *drv)
2661
{
2662
struct hid_driver *hdrv = to_hid_driver(drv);
2663
struct hid_device *hdev = to_hid_device(dev);
2664
2665
return hid_match_device(hdev, hdrv) != NULL;
2666
}
2667
2668
/**
2669
* hid_compare_device_paths - check if both devices share the same path
2670
* @hdev_a: hid device
2671
* @hdev_b: hid device
2672
* @separator: char to use as separator
2673
*
2674
* Check if two devices share the same path up to the last occurrence of
2675
* the separator char. Both paths must exist (i.e., zero-length paths
2676
* don't match).
2677
*/
2678
bool hid_compare_device_paths(struct hid_device *hdev_a,
2679
struct hid_device *hdev_b, char separator)
2680
{
2681
int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2682
int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2683
2684
if (n1 != n2 || n1 <= 0 || n2 <= 0)
2685
return false;
2686
2687
return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2688
}
2689
EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2690
2691
static bool hid_check_device_match(struct hid_device *hdev,
2692
struct hid_driver *hdrv,
2693
const struct hid_device_id **id)
2694
{
2695
*id = hid_match_device(hdev, hdrv);
2696
if (!*id)
2697
return false;
2698
2699
if (hdrv->match)
2700
return hdrv->match(hdev, hid_ignore_special_drivers);
2701
2702
/*
2703
* hid-generic implements .match(), so we must be dealing with a
2704
* different HID driver here, and can simply check if
2705
* hid_ignore_special_drivers or HID_QUIRK_IGNORE_SPECIAL_DRIVER
2706
* are set or not.
2707
*/
2708
return !hid_ignore_special_drivers && !(hdev->quirks & HID_QUIRK_IGNORE_SPECIAL_DRIVER);
2709
}
2710
2711
static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2712
{
2713
const struct hid_device_id *id;
2714
int ret;
2715
2716
if (!hdev->bpf_rsize) {
2717
/* in case a bpf program gets detached, we need to free the old one */
2718
hid_free_bpf_rdesc(hdev);
2719
2720
/* keep this around so we know we called it once */
2721
hdev->bpf_rsize = hdev->dev_rsize;
2722
2723
/* call_hid_bpf_rdesc_fixup will always return a valid pointer */
2724
hdev->bpf_rdesc = call_hid_bpf_rdesc_fixup(hdev, hdev->dev_rdesc,
2725
&hdev->bpf_rsize);
2726
}
2727
2728
if (!hid_check_device_match(hdev, hdrv, &id))
2729
return -ENODEV;
2730
2731
hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2732
if (!hdev->devres_group_id)
2733
return -ENOMEM;
2734
2735
/* reset the quirks that has been previously set */
2736
hdev->quirks = hid_lookup_quirk(hdev);
2737
hdev->driver = hdrv;
2738
2739
if (hdrv->probe) {
2740
ret = hdrv->probe(hdev, id);
2741
} else { /* default probe */
2742
ret = hid_open_report(hdev);
2743
if (!ret)
2744
ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2745
}
2746
2747
/*
2748
* Note that we are not closing the devres group opened above so
2749
* even resources that were attached to the device after probe is
2750
* run are released when hid_device_remove() is executed. This is
2751
* needed as some drivers would allocate additional resources,
2752
* for example when updating firmware.
2753
*/
2754
2755
if (ret) {
2756
devres_release_group(&hdev->dev, hdev->devres_group_id);
2757
hid_close_report(hdev);
2758
hdev->driver = NULL;
2759
}
2760
2761
return ret;
2762
}
2763
2764
static int hid_device_probe(struct device *dev)
2765
{
2766
struct hid_device *hdev = to_hid_device(dev);
2767
struct hid_driver *hdrv = to_hid_driver(dev->driver);
2768
int ret = 0;
2769
2770
if (down_interruptible(&hdev->driver_input_lock))
2771
return -EINTR;
2772
2773
hdev->io_started = false;
2774
clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2775
2776
if (!hdev->driver)
2777
ret = __hid_device_probe(hdev, hdrv);
2778
2779
if (!hdev->io_started)
2780
up(&hdev->driver_input_lock);
2781
2782
return ret;
2783
}
2784
2785
static void hid_device_remove(struct device *dev)
2786
{
2787
struct hid_device *hdev = to_hid_device(dev);
2788
struct hid_driver *hdrv;
2789
2790
down(&hdev->driver_input_lock);
2791
hdev->io_started = false;
2792
2793
hdrv = hdev->driver;
2794
if (hdrv) {
2795
if (hdrv->remove)
2796
hdrv->remove(hdev);
2797
else /* default remove */
2798
hid_hw_stop(hdev);
2799
2800
/* Release all devres resources allocated by the driver */
2801
devres_release_group(&hdev->dev, hdev->devres_group_id);
2802
2803
hid_close_report(hdev);
2804
hdev->driver = NULL;
2805
}
2806
2807
if (!hdev->io_started)
2808
up(&hdev->driver_input_lock);
2809
}
2810
2811
static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2812
char *buf)
2813
{
2814
struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2815
2816
return sysfs_emit(buf, "hid:b%04Xg%04Xv%08Xp%08X\n",
2817
hdev->bus, hdev->group, hdev->vendor, hdev->product);
2818
}
2819
static DEVICE_ATTR_RO(modalias);
2820
2821
static struct attribute *hid_dev_attrs[] = {
2822
&dev_attr_modalias.attr,
2823
NULL,
2824
};
2825
static const struct bin_attribute *hid_dev_bin_attrs[] = {
2826
&bin_attr_report_descriptor,
2827
NULL
2828
};
2829
static const struct attribute_group hid_dev_group = {
2830
.attrs = hid_dev_attrs,
2831
.bin_attrs = hid_dev_bin_attrs,
2832
};
2833
__ATTRIBUTE_GROUPS(hid_dev);
2834
2835
static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2836
{
2837
const struct hid_device *hdev = to_hid_device(dev);
2838
2839
if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2840
hdev->bus, hdev->vendor, hdev->product))
2841
return -ENOMEM;
2842
2843
if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2844
return -ENOMEM;
2845
2846
if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2847
return -ENOMEM;
2848
2849
if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2850
return -ENOMEM;
2851
2852
if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2853
hdev->bus, hdev->group, hdev->vendor, hdev->product))
2854
return -ENOMEM;
2855
2856
return 0;
2857
}
2858
2859
const struct bus_type hid_bus_type = {
2860
.name = "hid",
2861
.dev_groups = hid_dev_groups,
2862
.drv_groups = hid_drv_groups,
2863
.match = hid_bus_match,
2864
.probe = hid_device_probe,
2865
.remove = hid_device_remove,
2866
.uevent = hid_uevent,
2867
};
2868
EXPORT_SYMBOL(hid_bus_type);
2869
2870
int hid_add_device(struct hid_device *hdev)
2871
{
2872
static atomic_t id = ATOMIC_INIT(0);
2873
int ret;
2874
2875
if (WARN_ON(hdev->status & HID_STAT_ADDED))
2876
return -EBUSY;
2877
2878
hdev->quirks = hid_lookup_quirk(hdev);
2879
2880
/* we need to kill them here, otherwise they will stay allocated to
2881
* wait for coming driver */
2882
if (hid_ignore(hdev))
2883
return -ENODEV;
2884
2885
/*
2886
* Check for the mandatory transport channel.
2887
*/
2888
if (!hdev->ll_driver->raw_request) {
2889
hid_err(hdev, "transport driver missing .raw_request()\n");
2890
return -EINVAL;
2891
}
2892
2893
/*
2894
* Read the device report descriptor once and use as template
2895
* for the driver-specific modifications.
2896
*/
2897
ret = hdev->ll_driver->parse(hdev);
2898
if (ret)
2899
return ret;
2900
if (!hdev->dev_rdesc)
2901
return -ENODEV;
2902
2903
/*
2904
* Scan generic devices for group information
2905
*/
2906
if (hid_ignore_special_drivers) {
2907
hdev->group = HID_GROUP_GENERIC;
2908
} else if (!hdev->group &&
2909
!(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2910
ret = hid_scan_report(hdev);
2911
if (ret)
2912
hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2913
}
2914
2915
hdev->id = atomic_inc_return(&id);
2916
2917
/* XXX hack, any other cleaner solution after the driver core
2918
* is converted to allow more than 20 bytes as the device name? */
2919
dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2920
hdev->vendor, hdev->product, hdev->id);
2921
2922
hid_debug_register(hdev, dev_name(&hdev->dev));
2923
ret = device_add(&hdev->dev);
2924
if (!ret)
2925
hdev->status |= HID_STAT_ADDED;
2926
else
2927
hid_debug_unregister(hdev);
2928
2929
return ret;
2930
}
2931
EXPORT_SYMBOL_GPL(hid_add_device);
2932
2933
/**
2934
* hid_allocate_device - allocate new hid device descriptor
2935
*
2936
* Allocate and initialize hid device, so that hid_destroy_device might be
2937
* used to free it.
2938
*
2939
* New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2940
* error value.
2941
*/
2942
struct hid_device *hid_allocate_device(void)
2943
{
2944
struct hid_device *hdev;
2945
int ret = -ENOMEM;
2946
2947
hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2948
if (hdev == NULL)
2949
return ERR_PTR(ret);
2950
2951
device_initialize(&hdev->dev);
2952
hdev->dev.release = hid_device_release;
2953
hdev->dev.bus = &hid_bus_type;
2954
device_enable_async_suspend(&hdev->dev);
2955
2956
hid_close_report(hdev);
2957
2958
init_waitqueue_head(&hdev->debug_wait);
2959
INIT_LIST_HEAD(&hdev->debug_list);
2960
spin_lock_init(&hdev->debug_list_lock);
2961
sema_init(&hdev->driver_input_lock, 1);
2962
mutex_init(&hdev->ll_open_lock);
2963
kref_init(&hdev->ref);
2964
2965
ret = hid_bpf_device_init(hdev);
2966
if (ret)
2967
goto out_err;
2968
2969
return hdev;
2970
2971
out_err:
2972
hid_destroy_device(hdev);
2973
return ERR_PTR(ret);
2974
}
2975
EXPORT_SYMBOL_GPL(hid_allocate_device);
2976
2977
static void hid_remove_device(struct hid_device *hdev)
2978
{
2979
if (hdev->status & HID_STAT_ADDED) {
2980
device_del(&hdev->dev);
2981
hid_debug_unregister(hdev);
2982
hdev->status &= ~HID_STAT_ADDED;
2983
}
2984
hid_free_bpf_rdesc(hdev);
2985
kfree(hdev->dev_rdesc);
2986
hdev->dev_rdesc = NULL;
2987
hdev->dev_rsize = 0;
2988
hdev->bpf_rsize = 0;
2989
}
2990
2991
/**
2992
* hid_destroy_device - free previously allocated device
2993
*
2994
* @hdev: hid device
2995
*
2996
* If you allocate hid_device through hid_allocate_device, you should ever
2997
* free by this function.
2998
*/
2999
void hid_destroy_device(struct hid_device *hdev)
3000
{
3001
hid_bpf_destroy_device(hdev);
3002
hid_remove_device(hdev);
3003
put_device(&hdev->dev);
3004
}
3005
EXPORT_SYMBOL_GPL(hid_destroy_device);
3006
3007
3008
static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
3009
{
3010
struct hid_driver *hdrv = data;
3011
struct hid_device *hdev = to_hid_device(dev);
3012
3013
if (hdev->driver == hdrv &&
3014
!hdrv->match(hdev, hid_ignore_special_drivers) &&
3015
!test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
3016
return device_reprobe(dev);
3017
3018
return 0;
3019
}
3020
3021
static int __hid_bus_driver_added(struct device_driver *drv, void *data)
3022
{
3023
struct hid_driver *hdrv = to_hid_driver(drv);
3024
3025
if (hdrv->match) {
3026
bus_for_each_dev(&hid_bus_type, NULL, hdrv,
3027
__hid_bus_reprobe_drivers);
3028
}
3029
3030
return 0;
3031
}
3032
3033
static int __bus_removed_driver(struct device_driver *drv, void *data)
3034
{
3035
return bus_rescan_devices(&hid_bus_type);
3036
}
3037
3038
int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
3039
const char *mod_name)
3040
{
3041
int ret;
3042
3043
hdrv->driver.name = hdrv->name;
3044
hdrv->driver.bus = &hid_bus_type;
3045
hdrv->driver.owner = owner;
3046
hdrv->driver.mod_name = mod_name;
3047
3048
INIT_LIST_HEAD(&hdrv->dyn_list);
3049
spin_lock_init(&hdrv->dyn_lock);
3050
3051
ret = driver_register(&hdrv->driver);
3052
3053
if (ret == 0)
3054
bus_for_each_drv(&hid_bus_type, NULL, NULL,
3055
__hid_bus_driver_added);
3056
3057
return ret;
3058
}
3059
EXPORT_SYMBOL_GPL(__hid_register_driver);
3060
3061
void hid_unregister_driver(struct hid_driver *hdrv)
3062
{
3063
driver_unregister(&hdrv->driver);
3064
hid_free_dynids(hdrv);
3065
3066
bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
3067
}
3068
EXPORT_SYMBOL_GPL(hid_unregister_driver);
3069
3070
int hid_check_keys_pressed(struct hid_device *hid)
3071
{
3072
struct hid_input *hidinput;
3073
int i;
3074
3075
if (!(hid->claimed & HID_CLAIMED_INPUT))
3076
return 0;
3077
3078
list_for_each_entry(hidinput, &hid->inputs, list) {
3079
for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
3080
if (hidinput->input->key[i])
3081
return 1;
3082
}
3083
3084
return 0;
3085
}
3086
EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
3087
3088
#ifdef CONFIG_HID_BPF
3089
static const struct hid_ops __hid_ops = {
3090
.hid_get_report = hid_get_report,
3091
.hid_hw_raw_request = __hid_hw_raw_request,
3092
.hid_hw_output_report = __hid_hw_output_report,
3093
.hid_input_report = __hid_input_report,
3094
.owner = THIS_MODULE,
3095
.bus_type = &hid_bus_type,
3096
};
3097
#endif
3098
3099
static int __init hid_init(void)
3100
{
3101
int ret;
3102
3103
ret = bus_register(&hid_bus_type);
3104
if (ret) {
3105
pr_err("can't register hid bus\n");
3106
goto err;
3107
}
3108
3109
#ifdef CONFIG_HID_BPF
3110
hid_ops = &__hid_ops;
3111
#endif
3112
3113
ret = hidraw_init();
3114
if (ret)
3115
goto err_bus;
3116
3117
hid_debug_init();
3118
3119
return 0;
3120
err_bus:
3121
bus_unregister(&hid_bus_type);
3122
err:
3123
return ret;
3124
}
3125
3126
static void __exit hid_exit(void)
3127
{
3128
#ifdef CONFIG_HID_BPF
3129
hid_ops = NULL;
3130
#endif
3131
hid_debug_exit();
3132
hidraw_exit();
3133
bus_unregister(&hid_bus_type);
3134
hid_quirks_exit(HID_BUS_ANY);
3135
}
3136
3137
module_init(hid_init);
3138
module_exit(hid_exit);
3139
3140
MODULE_AUTHOR("Andreas Gal");
3141
MODULE_AUTHOR("Vojtech Pavlik");
3142
MODULE_AUTHOR("Jiri Kosina");
3143
MODULE_DESCRIPTION("HID support for Linux");
3144
MODULE_LICENSE("GPL");
3145
3146