Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/net/wireless/realtek/rtw88/phy.c
25924 views
1
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2
/* Copyright(c) 2018-2019 Realtek Corporation
3
*/
4
5
#include <linux/bcd.h>
6
7
#include "main.h"
8
#include "reg.h"
9
#include "fw.h"
10
#include "phy.h"
11
#include "debug.h"
12
#include "regd.h"
13
#include "sar.h"
14
15
struct phy_cfg_pair {
16
u32 addr;
17
u32 data;
18
};
19
20
union phy_table_tile {
21
struct {
22
struct rtw_phy_cond cond;
23
struct rtw_phy_cond2 cond2;
24
} __packed;
25
struct phy_cfg_pair cfg;
26
};
27
28
static const u32 db_invert_table[12][8] = {
29
{10, 13, 16, 20,
30
25, 32, 40, 50},
31
{64, 80, 101, 128,
32
160, 201, 256, 318},
33
{401, 505, 635, 800,
34
1007, 1268, 1596, 2010},
35
{316, 398, 501, 631,
36
794, 1000, 1259, 1585},
37
{1995, 2512, 3162, 3981,
38
5012, 6310, 7943, 10000},
39
{12589, 15849, 19953, 25119,
40
31623, 39811, 50119, 63098},
41
{79433, 100000, 125893, 158489,
42
199526, 251189, 316228, 398107},
43
{501187, 630957, 794328, 1000000,
44
1258925, 1584893, 1995262, 2511886},
45
{3162278, 3981072, 5011872, 6309573,
46
7943282, 1000000, 12589254, 15848932},
47
{19952623, 25118864, 31622777, 39810717,
48
50118723, 63095734, 79432823, 100000000},
49
{125892541, 158489319, 199526232, 251188643,
50
316227766, 398107171, 501187234, 630957345},
51
{794328235, 1000000000, 1258925412, 1584893192,
52
1995262315, 2511886432U, 3162277660U, 3981071706U}
53
};
54
55
const u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
56
57
const u8 rtw_ofdm_rates[] = {
58
DESC_RATE6M, DESC_RATE9M, DESC_RATE12M,
59
DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
60
DESC_RATE48M, DESC_RATE54M
61
};
62
63
const u8 rtw_ht_1s_rates[] = {
64
DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
65
DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
66
DESC_RATEMCS6, DESC_RATEMCS7
67
};
68
69
const u8 rtw_ht_2s_rates[] = {
70
DESC_RATEMCS8, DESC_RATEMCS9, DESC_RATEMCS10,
71
DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
72
DESC_RATEMCS14, DESC_RATEMCS15
73
};
74
75
const u8 rtw_vht_1s_rates[] = {
76
DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
77
DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
78
DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
79
DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
80
DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
81
};
82
83
const u8 rtw_vht_2s_rates[] = {
84
DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
85
DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
86
DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
87
DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
88
DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
89
};
90
91
const u8 rtw_ht_3s_rates[] = {
92
DESC_RATEMCS16, DESC_RATEMCS17, DESC_RATEMCS18,
93
DESC_RATEMCS19, DESC_RATEMCS20, DESC_RATEMCS21,
94
DESC_RATEMCS22, DESC_RATEMCS23
95
};
96
97
const u8 rtw_ht_4s_rates[] = {
98
DESC_RATEMCS24, DESC_RATEMCS25, DESC_RATEMCS26,
99
DESC_RATEMCS27, DESC_RATEMCS28, DESC_RATEMCS29,
100
DESC_RATEMCS30, DESC_RATEMCS31
101
};
102
103
const u8 rtw_vht_3s_rates[] = {
104
DESC_RATEVHT3SS_MCS0, DESC_RATEVHT3SS_MCS1,
105
DESC_RATEVHT3SS_MCS2, DESC_RATEVHT3SS_MCS3,
106
DESC_RATEVHT3SS_MCS4, DESC_RATEVHT3SS_MCS5,
107
DESC_RATEVHT3SS_MCS6, DESC_RATEVHT3SS_MCS7,
108
DESC_RATEVHT3SS_MCS8, DESC_RATEVHT3SS_MCS9
109
};
110
111
const u8 rtw_vht_4s_rates[] = {
112
DESC_RATEVHT4SS_MCS0, DESC_RATEVHT4SS_MCS1,
113
DESC_RATEVHT4SS_MCS2, DESC_RATEVHT4SS_MCS3,
114
DESC_RATEVHT4SS_MCS4, DESC_RATEVHT4SS_MCS5,
115
DESC_RATEVHT4SS_MCS6, DESC_RATEVHT4SS_MCS7,
116
DESC_RATEVHT4SS_MCS8, DESC_RATEVHT4SS_MCS9
117
};
118
119
const u8 * const rtw_rate_section[RTW_RATE_SECTION_NUM] = {
120
rtw_cck_rates, rtw_ofdm_rates,
121
rtw_ht_1s_rates, rtw_ht_2s_rates,
122
rtw_vht_1s_rates, rtw_vht_2s_rates,
123
rtw_ht_3s_rates, rtw_ht_4s_rates,
124
rtw_vht_3s_rates, rtw_vht_4s_rates
125
};
126
EXPORT_SYMBOL(rtw_rate_section);
127
128
const u8 rtw_rate_size[RTW_RATE_SECTION_NUM] = {
129
ARRAY_SIZE(rtw_cck_rates),
130
ARRAY_SIZE(rtw_ofdm_rates),
131
ARRAY_SIZE(rtw_ht_1s_rates),
132
ARRAY_SIZE(rtw_ht_2s_rates),
133
ARRAY_SIZE(rtw_vht_1s_rates),
134
ARRAY_SIZE(rtw_vht_2s_rates),
135
ARRAY_SIZE(rtw_ht_3s_rates),
136
ARRAY_SIZE(rtw_ht_4s_rates),
137
ARRAY_SIZE(rtw_vht_3s_rates),
138
ARRAY_SIZE(rtw_vht_4s_rates)
139
};
140
EXPORT_SYMBOL(rtw_rate_size);
141
142
enum rtw_phy_band_type {
143
PHY_BAND_2G = 0,
144
PHY_BAND_5G = 1,
145
};
146
147
static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
148
{
149
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
150
u8 i, j;
151
152
for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
153
for (j = 0; j < RTW_RF_PATH_MAX; j++)
154
dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
155
}
156
157
dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
158
}
159
160
void rtw_phy_set_edcca_th(struct rtw_dev *rtwdev, u8 l2h, u8 h2l)
161
{
162
const struct rtw_hw_reg_offset *edcca_th = rtwdev->chip->edcca_th;
163
164
rtw_write32_mask(rtwdev,
165
edcca_th[EDCCA_TH_L2H_IDX].hw_reg.addr,
166
edcca_th[EDCCA_TH_L2H_IDX].hw_reg.mask,
167
l2h + edcca_th[EDCCA_TH_L2H_IDX].offset);
168
rtw_write32_mask(rtwdev,
169
edcca_th[EDCCA_TH_H2L_IDX].hw_reg.addr,
170
edcca_th[EDCCA_TH_H2L_IDX].hw_reg.mask,
171
h2l + edcca_th[EDCCA_TH_H2L_IDX].offset);
172
}
173
EXPORT_SYMBOL(rtw_phy_set_edcca_th);
174
175
void rtw_phy_adaptivity_set_mode(struct rtw_dev *rtwdev)
176
{
177
const struct rtw_chip_info *chip = rtwdev->chip;
178
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
179
180
/* turn off in debugfs for debug usage */
181
if (!rtw_edcca_enabled) {
182
dm_info->edcca_mode = RTW_EDCCA_NORMAL;
183
rtw_dbg(rtwdev, RTW_DBG_PHY, "EDCCA disabled, cannot be set\n");
184
return;
185
}
186
187
switch (rtwdev->regd.dfs_region) {
188
case NL80211_DFS_ETSI:
189
dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
190
dm_info->l2h_th_ini = chip->l2h_th_ini_ad;
191
break;
192
case NL80211_DFS_JP:
193
dm_info->edcca_mode = RTW_EDCCA_ADAPTIVITY;
194
dm_info->l2h_th_ini = chip->l2h_th_ini_cs;
195
break;
196
default:
197
dm_info->edcca_mode = RTW_EDCCA_NORMAL;
198
break;
199
}
200
}
201
202
static void rtw_phy_adaptivity_init(struct rtw_dev *rtwdev)
203
{
204
const struct rtw_chip_info *chip = rtwdev->chip;
205
206
rtw_phy_adaptivity_set_mode(rtwdev);
207
if (chip->ops->adaptivity_init)
208
chip->ops->adaptivity_init(rtwdev);
209
}
210
211
static void rtw_phy_adaptivity(struct rtw_dev *rtwdev)
212
{
213
if (rtwdev->chip->ops->adaptivity)
214
rtwdev->chip->ops->adaptivity(rtwdev);
215
}
216
217
static void rtw_phy_cfo_init(struct rtw_dev *rtwdev)
218
{
219
const struct rtw_chip_info *chip = rtwdev->chip;
220
221
if (chip->ops->cfo_init)
222
chip->ops->cfo_init(rtwdev);
223
}
224
225
static void rtw_phy_tx_path_div_init(struct rtw_dev *rtwdev)
226
{
227
struct rtw_path_div *path_div = &rtwdev->dm_path_div;
228
229
path_div->current_tx_path = rtwdev->chip->default_1ss_tx_path;
230
path_div->path_a_cnt = 0;
231
path_div->path_a_sum = 0;
232
path_div->path_b_cnt = 0;
233
path_div->path_b_sum = 0;
234
}
235
236
void rtw_phy_init(struct rtw_dev *rtwdev)
237
{
238
const struct rtw_chip_info *chip = rtwdev->chip;
239
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
240
u32 addr, mask;
241
242
dm_info->fa_history[3] = 0;
243
dm_info->fa_history[2] = 0;
244
dm_info->fa_history[1] = 0;
245
dm_info->fa_history[0] = 0;
246
dm_info->igi_bitmap = 0;
247
dm_info->igi_history[3] = 0;
248
dm_info->igi_history[2] = 0;
249
dm_info->igi_history[1] = 0;
250
251
addr = chip->dig[0].addr;
252
mask = chip->dig[0].mask;
253
dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
254
rtw_phy_cck_pd_init(rtwdev);
255
256
dm_info->iqk.done = false;
257
rtw_phy_adaptivity_init(rtwdev);
258
rtw_phy_cfo_init(rtwdev);
259
rtw_phy_tx_path_div_init(rtwdev);
260
}
261
EXPORT_SYMBOL(rtw_phy_init);
262
263
void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
264
{
265
const struct rtw_chip_info *chip = rtwdev->chip;
266
struct rtw_hal *hal = &rtwdev->hal;
267
u32 addr, mask;
268
u8 path;
269
270
if (chip->dig_cck) {
271
const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
272
rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
273
}
274
275
for (path = 0; path < hal->rf_path_num; path++) {
276
addr = chip->dig[path].addr;
277
mask = chip->dig[path].mask;
278
rtw_write32_mask(rtwdev, addr, mask, igi);
279
}
280
}
281
282
static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
283
{
284
const struct rtw_chip_info *chip = rtwdev->chip;
285
286
chip->ops->false_alarm_statistics(rtwdev);
287
}
288
289
#define RA_FLOOR_TABLE_SIZE 7
290
#define RA_FLOOR_UP_GAP 3
291
292
static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
293
{
294
u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
295
u8 new_level = 0;
296
int i;
297
298
for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
299
if (i >= old_level)
300
table[i] += RA_FLOOR_UP_GAP;
301
302
for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
303
if (rssi < table[i]) {
304
new_level = i;
305
break;
306
}
307
}
308
309
return new_level;
310
}
311
312
struct rtw_phy_stat_iter_data {
313
struct rtw_dev *rtwdev;
314
u8 min_rssi;
315
};
316
317
static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
318
{
319
struct rtw_phy_stat_iter_data *iter_data = data;
320
struct rtw_dev *rtwdev = iter_data->rtwdev;
321
struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
322
u8 rssi;
323
324
rssi = ewma_rssi_read(&si->avg_rssi);
325
si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
326
327
rtw_fw_send_rssi_info(rtwdev, si);
328
329
iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
330
}
331
332
static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
333
{
334
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
335
struct rtw_phy_stat_iter_data data = {};
336
337
data.rtwdev = rtwdev;
338
data.min_rssi = U8_MAX;
339
rtw_iterate_stas(rtwdev, rtw_phy_stat_rssi_iter, &data);
340
341
dm_info->pre_min_rssi = dm_info->min_rssi;
342
dm_info->min_rssi = data.min_rssi;
343
}
344
345
static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
346
{
347
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
348
349
dm_info->last_pkt_count = dm_info->cur_pkt_count;
350
memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
351
}
352
353
static void rtw_phy_statistics(struct rtw_dev *rtwdev)
354
{
355
rtw_phy_stat_rssi(rtwdev);
356
rtw_phy_stat_false_alarm(rtwdev);
357
rtw_phy_stat_rate_cnt(rtwdev);
358
}
359
360
#define DIG_PERF_FA_TH_LOW 250
361
#define DIG_PERF_FA_TH_HIGH 500
362
#define DIG_PERF_FA_TH_EXTRA_HIGH 750
363
#define DIG_PERF_MAX 0x5a
364
#define DIG_PERF_MID 0x40
365
#define DIG_CVRG_FA_TH_LOW 2000
366
#define DIG_CVRG_FA_TH_HIGH 4000
367
#define DIG_CVRG_FA_TH_EXTRA_HIGH 5000
368
#define DIG_CVRG_MAX 0x2a
369
#define DIG_CVRG_MID 0x26
370
#define DIG_CVRG_MIN 0x1c
371
#define DIG_RSSI_GAIN_OFFSET 15
372
373
static bool
374
rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
375
{
376
u16 fa_lo = DIG_PERF_FA_TH_LOW;
377
u16 fa_hi = DIG_PERF_FA_TH_HIGH;
378
u16 *fa_history;
379
u8 *igi_history;
380
u8 damping_rssi;
381
u8 min_rssi;
382
u8 diff;
383
u8 igi_bitmap;
384
bool damping = false;
385
386
min_rssi = dm_info->min_rssi;
387
if (dm_info->damping) {
388
damping_rssi = dm_info->damping_rssi;
389
diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
390
damping_rssi - min_rssi;
391
if (diff > 3 || dm_info->damping_cnt++ > 20) {
392
dm_info->damping = false;
393
return false;
394
}
395
396
return true;
397
}
398
399
igi_history = dm_info->igi_history;
400
fa_history = dm_info->fa_history;
401
igi_bitmap = dm_info->igi_bitmap & 0xf;
402
switch (igi_bitmap) {
403
case 5:
404
/* down -> up -> down -> up */
405
if (igi_history[0] > igi_history[1] &&
406
igi_history[2] > igi_history[3] &&
407
igi_history[0] - igi_history[1] >= 2 &&
408
igi_history[2] - igi_history[3] >= 2 &&
409
fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
410
fa_history[2] > fa_hi && fa_history[3] < fa_lo)
411
damping = true;
412
break;
413
case 9:
414
/* up -> down -> down -> up */
415
if (igi_history[0] > igi_history[1] &&
416
igi_history[3] > igi_history[2] &&
417
igi_history[0] - igi_history[1] >= 4 &&
418
igi_history[3] - igi_history[2] >= 2 &&
419
fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
420
fa_history[2] < fa_lo && fa_history[3] > fa_hi)
421
damping = true;
422
break;
423
default:
424
return false;
425
}
426
427
if (damping) {
428
dm_info->damping = true;
429
dm_info->damping_cnt = 0;
430
dm_info->damping_rssi = min_rssi;
431
}
432
433
return damping;
434
}
435
436
static void rtw_phy_dig_get_boundary(struct rtw_dev *rtwdev,
437
struct rtw_dm_info *dm_info,
438
u8 *upper, u8 *lower, bool linked)
439
{
440
u8 dig_max, dig_min, dig_mid;
441
u8 min_rssi;
442
443
if (linked) {
444
dig_max = DIG_PERF_MAX;
445
dig_mid = DIG_PERF_MID;
446
dig_min = rtwdev->chip->dig_min;
447
min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
448
} else {
449
dig_max = DIG_CVRG_MAX;
450
dig_mid = DIG_CVRG_MID;
451
dig_min = DIG_CVRG_MIN;
452
min_rssi = dig_min;
453
}
454
455
/* DIG MAX should be bounded by minimum RSSI with offset +15 */
456
dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
457
458
*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
459
*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
460
}
461
462
static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
463
u16 *fa_th, u8 *step, bool linked)
464
{
465
u8 min_rssi, pre_min_rssi;
466
467
min_rssi = dm_info->min_rssi;
468
pre_min_rssi = dm_info->pre_min_rssi;
469
step[0] = 4;
470
step[1] = 3;
471
step[2] = 2;
472
473
if (linked) {
474
fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
475
fa_th[1] = DIG_PERF_FA_TH_HIGH;
476
fa_th[2] = DIG_PERF_FA_TH_LOW;
477
if (pre_min_rssi > min_rssi) {
478
step[0] = 6;
479
step[1] = 4;
480
step[2] = 2;
481
}
482
} else {
483
fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
484
fa_th[1] = DIG_CVRG_FA_TH_HIGH;
485
fa_th[2] = DIG_CVRG_FA_TH_LOW;
486
}
487
}
488
489
static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
490
{
491
u8 *igi_history;
492
u16 *fa_history;
493
u8 igi_bitmap;
494
bool up;
495
496
igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
497
igi_history = dm_info->igi_history;
498
fa_history = dm_info->fa_history;
499
500
up = igi > igi_history[0];
501
igi_bitmap |= up;
502
503
igi_history[3] = igi_history[2];
504
igi_history[2] = igi_history[1];
505
igi_history[1] = igi_history[0];
506
igi_history[0] = igi;
507
508
fa_history[3] = fa_history[2];
509
fa_history[2] = fa_history[1];
510
fa_history[1] = fa_history[0];
511
fa_history[0] = fa;
512
513
dm_info->igi_bitmap = igi_bitmap;
514
}
515
516
static void rtw_phy_dig(struct rtw_dev *rtwdev)
517
{
518
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
519
u8 upper_bound, lower_bound;
520
u8 pre_igi, cur_igi;
521
u16 fa_th[3], fa_cnt;
522
u8 level;
523
u8 step[3];
524
bool linked;
525
526
if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
527
return;
528
529
if (rtw_phy_dig_check_damping(dm_info))
530
return;
531
532
linked = !!rtwdev->sta_cnt;
533
534
fa_cnt = dm_info->total_fa_cnt;
535
pre_igi = dm_info->igi_history[0];
536
537
rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
538
539
/* test the false alarm count from the highest threshold level first,
540
* and increase it by corresponding step size
541
*
542
* note that the step size is offset by -2, compensate it afterall
543
*/
544
cur_igi = pre_igi;
545
for (level = 0; level < 3; level++) {
546
if (fa_cnt > fa_th[level]) {
547
cur_igi += step[level];
548
break;
549
}
550
}
551
cur_igi -= 2;
552
553
/* calculate the upper/lower bound by the minimum rssi we have among
554
* the peers connected with us, meanwhile make sure the igi value does
555
* not beyond the hardware limitation
556
*/
557
rtw_phy_dig_get_boundary(rtwdev, dm_info, &upper_bound, &lower_bound,
558
linked);
559
cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
560
561
/* record current igi value and false alarm statistics for further
562
* damping checks, and record the trend of igi values
563
*/
564
rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
565
566
/* Mitigate beacon loss and connectivity issues, mainly (only?)
567
* in the 5 GHz band
568
*/
569
if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A && rtwdev->beacon_loss &&
570
linked && dm_info->total_fa_cnt < DIG_PERF_FA_TH_EXTRA_HIGH)
571
cur_igi = DIG_CVRG_MIN;
572
573
if (cur_igi != pre_igi)
574
rtw_phy_dig_write(rtwdev, cur_igi);
575
}
576
577
static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
578
{
579
struct rtw_dev *rtwdev = data;
580
struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
581
582
rtw_update_sta_info(rtwdev, si, false);
583
}
584
585
static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
586
{
587
if (rtwdev->watch_dog_cnt & 0x3)
588
return;
589
590
rtw_iterate_stas(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
591
}
592
593
static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
594
{
595
u8 rate_order;
596
597
rate_order = rate_idx;
598
599
if (rate_idx >= DESC_RATEVHT4SS_MCS0)
600
rate_order -= DESC_RATEVHT4SS_MCS0;
601
else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
602
rate_order -= DESC_RATEVHT3SS_MCS0;
603
else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
604
rate_order -= DESC_RATEVHT2SS_MCS0;
605
else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
606
rate_order -= DESC_RATEVHT1SS_MCS0;
607
else if (rate_idx >= DESC_RATEMCS24)
608
rate_order -= DESC_RATEMCS24;
609
else if (rate_idx >= DESC_RATEMCS16)
610
rate_order -= DESC_RATEMCS16;
611
else if (rate_idx >= DESC_RATEMCS8)
612
rate_order -= DESC_RATEMCS8;
613
else if (rate_idx >= DESC_RATEMCS0)
614
rate_order -= DESC_RATEMCS0;
615
else if (rate_idx >= DESC_RATE6M)
616
rate_order -= DESC_RATE6M;
617
else
618
rate_order -= DESC_RATE1M;
619
620
if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
621
rate_order++;
622
623
return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
624
}
625
626
static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
627
{
628
struct rtw_dev *rtwdev = (struct rtw_dev *)data;
629
struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
630
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
631
u32 mask = 0;
632
633
mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate);
634
if (mask < dm_info->rrsr_mask_min)
635
dm_info->rrsr_mask_min = mask;
636
}
637
638
static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
639
{
640
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
641
642
dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
643
rtw_iterate_stas(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev);
644
rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
645
}
646
647
static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
648
{
649
const struct rtw_chip_info *chip = rtwdev->chip;
650
651
if (chip->ops->dpk_track)
652
chip->ops->dpk_track(rtwdev);
653
}
654
655
struct rtw_rx_addr_match_data {
656
struct rtw_dev *rtwdev;
657
struct ieee80211_hdr *hdr;
658
struct rtw_rx_pkt_stat *pkt_stat;
659
u8 *bssid;
660
};
661
662
static void rtw_phy_parsing_cfo_iter(void *data, u8 *mac,
663
struct ieee80211_vif *vif)
664
{
665
struct rtw_rx_addr_match_data *iter_data = data;
666
struct rtw_dev *rtwdev = iter_data->rtwdev;
667
struct rtw_rx_pkt_stat *pkt_stat = iter_data->pkt_stat;
668
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
669
struct rtw_cfo_track *cfo = &dm_info->cfo_track;
670
u8 *bssid = iter_data->bssid;
671
u8 i;
672
673
if (!ether_addr_equal(vif->bss_conf.bssid, bssid))
674
return;
675
676
for (i = 0; i < rtwdev->hal.rf_path_num; i++) {
677
cfo->cfo_tail[i] += pkt_stat->cfo_tail[i];
678
cfo->cfo_cnt[i]++;
679
}
680
681
cfo->packet_count++;
682
}
683
684
void rtw_phy_parsing_cfo(struct rtw_dev *rtwdev,
685
struct rtw_rx_pkt_stat *pkt_stat)
686
{
687
struct ieee80211_hdr *hdr = pkt_stat->hdr;
688
struct rtw_rx_addr_match_data data = {};
689
690
if (pkt_stat->crc_err || pkt_stat->icv_err || !pkt_stat->phy_status ||
691
ieee80211_is_ctl(hdr->frame_control))
692
return;
693
694
data.rtwdev = rtwdev;
695
data.hdr = hdr;
696
data.pkt_stat = pkt_stat;
697
data.bssid = get_hdr_bssid(hdr);
698
699
rtw_iterate_vifs_atomic(rtwdev, rtw_phy_parsing_cfo_iter, &data);
700
}
701
EXPORT_SYMBOL(rtw_phy_parsing_cfo);
702
703
static void rtw_phy_cfo_track(struct rtw_dev *rtwdev)
704
{
705
const struct rtw_chip_info *chip = rtwdev->chip;
706
707
if (chip->ops->cfo_track)
708
chip->ops->cfo_track(rtwdev);
709
}
710
711
#define CCK_PD_FA_LV1_MIN 1000
712
#define CCK_PD_FA_LV0_MAX 500
713
714
static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
715
{
716
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
717
u32 cck_fa_avg = dm_info->cck_fa_avg;
718
719
if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
720
return CCK_PD_LV1;
721
722
if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
723
return CCK_PD_LV0;
724
725
return CCK_PD_LV_MAX;
726
}
727
728
#define CCK_PD_IGI_LV4_VAL 0x38
729
#define CCK_PD_IGI_LV3_VAL 0x2a
730
#define CCK_PD_IGI_LV2_VAL 0x24
731
#define CCK_PD_RSSI_LV4_VAL 32
732
#define CCK_PD_RSSI_LV3_VAL 32
733
#define CCK_PD_RSSI_LV2_VAL 24
734
735
static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
736
{
737
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
738
u8 igi = dm_info->igi_history[0];
739
u8 rssi = dm_info->min_rssi;
740
u32 cck_fa_avg = dm_info->cck_fa_avg;
741
742
if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
743
return CCK_PD_LV4;
744
if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
745
return CCK_PD_LV3;
746
if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
747
return CCK_PD_LV2;
748
if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
749
return CCK_PD_LV1;
750
if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
751
return CCK_PD_LV0;
752
753
return CCK_PD_LV_MAX;
754
}
755
756
static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
757
{
758
if (!rtw_is_assoc(rtwdev))
759
return rtw_phy_cck_pd_lv_unlink(rtwdev);
760
else
761
return rtw_phy_cck_pd_lv_link(rtwdev);
762
}
763
764
static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
765
{
766
const struct rtw_chip_info *chip = rtwdev->chip;
767
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
768
u32 cck_fa = dm_info->cck_fa_cnt;
769
u8 level;
770
771
if (rtwdev->hal.current_band_type != RTW_BAND_2G)
772
return;
773
774
if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
775
dm_info->cck_fa_avg = cck_fa;
776
else
777
dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
778
779
rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
780
dm_info->igi_history[0], dm_info->min_rssi,
781
dm_info->fa_history[0]);
782
rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
783
dm_info->cck_fa_avg, dm_info->cck_pd_default);
784
785
level = rtw_phy_cck_pd_lv(rtwdev);
786
787
if (level >= CCK_PD_LV_MAX)
788
return;
789
790
if (chip->ops->cck_pd_set)
791
chip->ops->cck_pd_set(rtwdev, level);
792
}
793
794
static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
795
{
796
rtwdev->chip->ops->pwr_track(rtwdev);
797
}
798
799
static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
800
{
801
rtw_fw_update_wl_phy_info(rtwdev);
802
rtw_phy_ra_info_update(rtwdev);
803
rtw_phy_rrsr_update(rtwdev);
804
}
805
806
void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
807
{
808
/* for further calculation */
809
rtw_phy_statistics(rtwdev);
810
rtw_phy_dig(rtwdev);
811
rtw_phy_cck_pd(rtwdev);
812
rtw_phy_ra_track(rtwdev);
813
rtw_phy_tx_path_diversity(rtwdev);
814
rtw_phy_cfo_track(rtwdev);
815
rtw_phy_dpk_track(rtwdev);
816
rtw_phy_pwr_track(rtwdev);
817
818
if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_ADAPTIVITY))
819
rtw_fw_adaptivity(rtwdev);
820
else
821
rtw_phy_adaptivity(rtwdev);
822
}
823
824
#define FRAC_BITS 3
825
826
static u8 rtw_phy_power_2_db(s8 power)
827
{
828
if (power <= -100 || power >= 20)
829
return 0;
830
else if (power >= 0)
831
return 100;
832
else
833
return 100 + power;
834
}
835
836
static u64 rtw_phy_db_2_linear(u8 power_db)
837
{
838
u8 i, j;
839
u64 linear;
840
841
if (power_db > 96)
842
power_db = 96;
843
else if (power_db < 1)
844
return 1;
845
846
/* 1dB ~ 96dB */
847
i = (power_db - 1) >> 3;
848
j = (power_db - 1) - (i << 3);
849
850
linear = db_invert_table[i][j];
851
linear = i > 2 ? linear << FRAC_BITS : linear;
852
853
return linear;
854
}
855
856
static u8 rtw_phy_linear_2_db(u64 linear)
857
{
858
u8 i;
859
u8 j;
860
u32 dB;
861
862
for (i = 0; i < 12; i++) {
863
for (j = 0; j < 8; j++) {
864
if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
865
goto cnt;
866
else if (i > 2 && linear <= db_invert_table[i][j])
867
goto cnt;
868
}
869
}
870
871
return 96; /* maximum 96 dB */
872
873
cnt:
874
if (j == 0 && i == 0)
875
goto end;
876
877
if (j == 0) {
878
if (i != 3) {
879
if (db_invert_table[i][0] - linear >
880
linear - db_invert_table[i - 1][7]) {
881
i = i - 1;
882
j = 7;
883
}
884
} else {
885
if (db_invert_table[3][0] - linear >
886
linear - db_invert_table[2][7]) {
887
i = 2;
888
j = 7;
889
}
890
}
891
} else {
892
if (db_invert_table[i][j] - linear >
893
linear - db_invert_table[i][j - 1]) {
894
j = j - 1;
895
}
896
}
897
end:
898
dB = (i << 3) + j + 1;
899
900
return dB;
901
}
902
903
u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
904
{
905
s8 power;
906
u8 power_db;
907
u64 linear;
908
u64 sum = 0;
909
u8 path;
910
911
for (path = 0; path < path_num; path++) {
912
power = rf_power[path];
913
power_db = rtw_phy_power_2_db(power);
914
linear = rtw_phy_db_2_linear(power_db);
915
sum += linear;
916
}
917
918
sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
919
switch (path_num) {
920
case 2:
921
sum >>= 1;
922
break;
923
case 3:
924
sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
925
break;
926
case 4:
927
sum >>= 2;
928
break;
929
default:
930
break;
931
}
932
933
return rtw_phy_linear_2_db(sum);
934
}
935
EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
936
937
u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
938
u32 addr, u32 mask)
939
{
940
struct rtw_hal *hal = &rtwdev->hal;
941
const struct rtw_chip_info *chip = rtwdev->chip;
942
const u32 *base_addr = chip->rf_base_addr;
943
u32 val, direct_addr;
944
945
if (rf_path >= hal->rf_phy_num) {
946
rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
947
return INV_RF_DATA;
948
}
949
950
addr &= 0xff;
951
direct_addr = base_addr[rf_path] + (addr << 2);
952
mask &= RFREG_MASK;
953
954
val = rtw_read32_mask(rtwdev, direct_addr, mask);
955
956
return val;
957
}
958
EXPORT_SYMBOL(rtw_phy_read_rf);
959
960
u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
961
u32 addr, u32 mask)
962
{
963
struct rtw_hal *hal = &rtwdev->hal;
964
const struct rtw_chip_info *chip = rtwdev->chip;
965
const struct rtw_rf_sipi_addr *rf_sipi_addr;
966
const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
967
u32 val32;
968
u32 en_pi;
969
u32 r_addr;
970
u32 shift;
971
972
if (rf_path >= hal->rf_phy_num) {
973
rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
974
return INV_RF_DATA;
975
}
976
977
if (!chip->rf_sipi_read_addr) {
978
rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
979
return INV_RF_DATA;
980
}
981
982
rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
983
rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
984
985
addr &= 0xff;
986
987
val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
988
val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
989
rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
990
991
/* toggle read edge of path A */
992
val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
993
rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
994
rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
995
996
udelay(120);
997
998
en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
999
r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
1000
1001
val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
1002
1003
shift = __ffs(mask);
1004
1005
return (val32 & mask) >> shift;
1006
}
1007
EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
1008
1009
bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1010
u32 addr, u32 mask, u32 data)
1011
{
1012
struct rtw_hal *hal = &rtwdev->hal;
1013
const struct rtw_chip_info *chip = rtwdev->chip;
1014
const u32 *sipi_addr = chip->rf_sipi_addr;
1015
u32 data_and_addr;
1016
u32 old_data = 0;
1017
u32 shift;
1018
1019
if (rf_path >= hal->rf_phy_num) {
1020
rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
1021
return false;
1022
}
1023
1024
addr &= 0xff;
1025
mask &= RFREG_MASK;
1026
1027
if (mask != RFREG_MASK) {
1028
old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
1029
1030
if (old_data == INV_RF_DATA) {
1031
rtw_err(rtwdev, "Write fail, rf is disabled\n");
1032
return false;
1033
}
1034
1035
shift = __ffs(mask);
1036
data = ((old_data) & (~mask)) | (data << shift);
1037
}
1038
1039
data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
1040
1041
rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
1042
1043
udelay(13);
1044
1045
return true;
1046
}
1047
EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
1048
1049
bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1050
u32 addr, u32 mask, u32 data)
1051
{
1052
struct rtw_hal *hal = &rtwdev->hal;
1053
const struct rtw_chip_info *chip = rtwdev->chip;
1054
const u32 *base_addr = chip->rf_base_addr;
1055
u32 direct_addr;
1056
1057
if (rf_path >= hal->rf_phy_num) {
1058
rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
1059
return false;
1060
}
1061
1062
addr &= 0xff;
1063
direct_addr = base_addr[rf_path] + (addr << 2);
1064
mask &= RFREG_MASK;
1065
1066
rtw_write32_mask(rtwdev, direct_addr, mask, data);
1067
1068
udelay(1);
1069
1070
return true;
1071
}
1072
1073
bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
1074
u32 addr, u32 mask, u32 data)
1075
{
1076
if (addr != 0x00)
1077
return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
1078
1079
return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
1080
}
1081
EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
1082
1083
void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
1084
{
1085
struct rtw_hal *hal = &rtwdev->hal;
1086
struct rtw_efuse *efuse = &rtwdev->efuse;
1087
struct rtw_phy_cond cond = {};
1088
struct rtw_phy_cond2 cond2 = {};
1089
1090
cond.cut = hal->cut_version ? hal->cut_version : 15;
1091
cond.pkg = pkg ? pkg : 15;
1092
cond.plat = 0x04;
1093
cond.rfe = efuse->rfe_option;
1094
1095
switch (rtw_hci_type(rtwdev)) {
1096
case RTW_HCI_TYPE_USB:
1097
cond.intf = INTF_USB;
1098
break;
1099
case RTW_HCI_TYPE_SDIO:
1100
cond.intf = INTF_SDIO;
1101
break;
1102
case RTW_HCI_TYPE_PCIE:
1103
default:
1104
cond.intf = INTF_PCIE;
1105
break;
1106
}
1107
1108
if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A ||
1109
rtwdev->chip->id == RTW_CHIP_TYPE_8821A) {
1110
cond.rfe = 0;
1111
cond.rfe |= efuse->ext_lna_2g;
1112
cond.rfe |= efuse->ext_pa_2g << 1;
1113
cond.rfe |= efuse->ext_lna_5g << 2;
1114
cond.rfe |= efuse->ext_pa_5g << 3;
1115
cond.rfe |= efuse->btcoex << 4;
1116
1117
cond2.type_alna = efuse->alna_type;
1118
cond2.type_glna = efuse->glna_type;
1119
cond2.type_apa = efuse->apa_type;
1120
cond2.type_gpa = efuse->gpa_type;
1121
}
1122
1123
hal->phy_cond = cond;
1124
hal->phy_cond2 = cond2;
1125
1126
rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x cond2=0x%08x\n",
1127
*((u32 *)&hal->phy_cond), *((u32 *)&hal->phy_cond2));
1128
}
1129
1130
static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond,
1131
struct rtw_phy_cond2 cond2)
1132
{
1133
struct rtw_hal *hal = &rtwdev->hal;
1134
struct rtw_phy_cond drv_cond = hal->phy_cond;
1135
struct rtw_phy_cond2 drv_cond2 = hal->phy_cond2;
1136
1137
if (cond.cut && cond.cut != drv_cond.cut)
1138
return false;
1139
1140
if (cond.pkg && cond.pkg != drv_cond.pkg)
1141
return false;
1142
1143
if (cond.intf && cond.intf != drv_cond.intf)
1144
return false;
1145
1146
if (rtwdev->chip->id == RTW_CHIP_TYPE_8812A ||
1147
rtwdev->chip->id == RTW_CHIP_TYPE_8821A) {
1148
if (!(cond.rfe & 0x0f))
1149
return true;
1150
1151
if ((cond.rfe & drv_cond.rfe) != cond.rfe)
1152
return false;
1153
1154
if ((cond.rfe & BIT(0)) && cond2.type_glna != drv_cond2.type_glna)
1155
return false;
1156
1157
if ((cond.rfe & BIT(1)) && cond2.type_gpa != drv_cond2.type_gpa)
1158
return false;
1159
1160
if ((cond.rfe & BIT(2)) && cond2.type_alna != drv_cond2.type_alna)
1161
return false;
1162
1163
if ((cond.rfe & BIT(3)) && cond2.type_apa != drv_cond2.type_apa)
1164
return false;
1165
} else {
1166
if (cond.rfe != drv_cond.rfe)
1167
return false;
1168
}
1169
1170
return true;
1171
}
1172
1173
void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1174
{
1175
const union phy_table_tile *p = tbl->data;
1176
const union phy_table_tile *end = p + tbl->size / 2;
1177
struct rtw_phy_cond pos_cond = {};
1178
struct rtw_phy_cond2 pos_cond2 = {};
1179
bool is_matched = true, is_skipped = false;
1180
1181
BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
1182
1183
for (; p < end; p++) {
1184
if (p->cond.pos) {
1185
switch (p->cond.branch) {
1186
case BRANCH_ENDIF:
1187
is_matched = true;
1188
is_skipped = false;
1189
break;
1190
case BRANCH_ELSE:
1191
is_matched = is_skipped ? false : true;
1192
break;
1193
case BRANCH_IF:
1194
case BRANCH_ELIF:
1195
default:
1196
pos_cond = p->cond;
1197
pos_cond2 = p->cond2;
1198
break;
1199
}
1200
} else if (p->cond.neg) {
1201
if (!is_skipped) {
1202
if (check_positive(rtwdev, pos_cond, pos_cond2)) {
1203
is_matched = true;
1204
is_skipped = true;
1205
} else {
1206
is_matched = false;
1207
is_skipped = false;
1208
}
1209
} else {
1210
is_matched = false;
1211
}
1212
} else if (is_matched) {
1213
(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
1214
}
1215
}
1216
}
1217
EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
1218
1219
#define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
1220
1221
static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
1222
{
1223
if (rtwdev->chip->is_pwr_by_rate_dec)
1224
return bcd_to_dec_pwr_by_rate(hex, i);
1225
1226
return (hex >> (i * 8)) & 0xFF;
1227
}
1228
1229
static void
1230
rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
1231
u32 addr, u32 mask, u32 val, u8 *rate,
1232
u8 *pwr_by_rate, u8 *rate_num)
1233
{
1234
int i;
1235
1236
switch (addr) {
1237
case 0xE00:
1238
case 0x830:
1239
rate[0] = DESC_RATE6M;
1240
rate[1] = DESC_RATE9M;
1241
rate[2] = DESC_RATE12M;
1242
rate[3] = DESC_RATE18M;
1243
for (i = 0; i < 4; ++i)
1244
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1245
*rate_num = 4;
1246
break;
1247
case 0xE04:
1248
case 0x834:
1249
rate[0] = DESC_RATE24M;
1250
rate[1] = DESC_RATE36M;
1251
rate[2] = DESC_RATE48M;
1252
rate[3] = DESC_RATE54M;
1253
for (i = 0; i < 4; ++i)
1254
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1255
*rate_num = 4;
1256
break;
1257
case 0xE08:
1258
rate[0] = DESC_RATE1M;
1259
pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
1260
*rate_num = 1;
1261
break;
1262
case 0x86C:
1263
if (mask == 0xffffff00) {
1264
rate[0] = DESC_RATE2M;
1265
rate[1] = DESC_RATE5_5M;
1266
rate[2] = DESC_RATE11M;
1267
for (i = 1; i < 4; ++i)
1268
pwr_by_rate[i - 1] =
1269
tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1270
*rate_num = 3;
1271
} else if (mask == 0x000000ff) {
1272
rate[0] = DESC_RATE11M;
1273
pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
1274
*rate_num = 1;
1275
}
1276
break;
1277
case 0xE10:
1278
case 0x83C:
1279
rate[0] = DESC_RATEMCS0;
1280
rate[1] = DESC_RATEMCS1;
1281
rate[2] = DESC_RATEMCS2;
1282
rate[3] = DESC_RATEMCS3;
1283
for (i = 0; i < 4; ++i)
1284
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1285
*rate_num = 4;
1286
break;
1287
case 0xE14:
1288
case 0x848:
1289
rate[0] = DESC_RATEMCS4;
1290
rate[1] = DESC_RATEMCS5;
1291
rate[2] = DESC_RATEMCS6;
1292
rate[3] = DESC_RATEMCS7;
1293
for (i = 0; i < 4; ++i)
1294
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1295
*rate_num = 4;
1296
break;
1297
case 0xE18:
1298
case 0x84C:
1299
rate[0] = DESC_RATEMCS8;
1300
rate[1] = DESC_RATEMCS9;
1301
rate[2] = DESC_RATEMCS10;
1302
rate[3] = DESC_RATEMCS11;
1303
for (i = 0; i < 4; ++i)
1304
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1305
*rate_num = 4;
1306
break;
1307
case 0xE1C:
1308
case 0x868:
1309
rate[0] = DESC_RATEMCS12;
1310
rate[1] = DESC_RATEMCS13;
1311
rate[2] = DESC_RATEMCS14;
1312
rate[3] = DESC_RATEMCS15;
1313
for (i = 0; i < 4; ++i)
1314
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1315
*rate_num = 4;
1316
break;
1317
case 0x838:
1318
rate[0] = DESC_RATE1M;
1319
rate[1] = DESC_RATE2M;
1320
rate[2] = DESC_RATE5_5M;
1321
for (i = 1; i < 4; ++i)
1322
pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1323
val, i);
1324
*rate_num = 3;
1325
break;
1326
case 0xC20:
1327
case 0xE20:
1328
case 0x1820:
1329
case 0x1A20:
1330
rate[0] = DESC_RATE1M;
1331
rate[1] = DESC_RATE2M;
1332
rate[2] = DESC_RATE5_5M;
1333
rate[3] = DESC_RATE11M;
1334
for (i = 0; i < 4; ++i)
1335
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1336
*rate_num = 4;
1337
break;
1338
case 0xC24:
1339
case 0xE24:
1340
case 0x1824:
1341
case 0x1A24:
1342
rate[0] = DESC_RATE6M;
1343
rate[1] = DESC_RATE9M;
1344
rate[2] = DESC_RATE12M;
1345
rate[3] = DESC_RATE18M;
1346
for (i = 0; i < 4; ++i)
1347
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1348
*rate_num = 4;
1349
break;
1350
case 0xC28:
1351
case 0xE28:
1352
case 0x1828:
1353
case 0x1A28:
1354
rate[0] = DESC_RATE24M;
1355
rate[1] = DESC_RATE36M;
1356
rate[2] = DESC_RATE48M;
1357
rate[3] = DESC_RATE54M;
1358
for (i = 0; i < 4; ++i)
1359
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1360
*rate_num = 4;
1361
break;
1362
case 0xC2C:
1363
case 0xE2C:
1364
case 0x182C:
1365
case 0x1A2C:
1366
rate[0] = DESC_RATEMCS0;
1367
rate[1] = DESC_RATEMCS1;
1368
rate[2] = DESC_RATEMCS2;
1369
rate[3] = DESC_RATEMCS3;
1370
for (i = 0; i < 4; ++i)
1371
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1372
*rate_num = 4;
1373
break;
1374
case 0xC30:
1375
case 0xE30:
1376
case 0x1830:
1377
case 0x1A30:
1378
rate[0] = DESC_RATEMCS4;
1379
rate[1] = DESC_RATEMCS5;
1380
rate[2] = DESC_RATEMCS6;
1381
rate[3] = DESC_RATEMCS7;
1382
for (i = 0; i < 4; ++i)
1383
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1384
*rate_num = 4;
1385
break;
1386
case 0xC34:
1387
case 0xE34:
1388
case 0x1834:
1389
case 0x1A34:
1390
rate[0] = DESC_RATEMCS8;
1391
rate[1] = DESC_RATEMCS9;
1392
rate[2] = DESC_RATEMCS10;
1393
rate[3] = DESC_RATEMCS11;
1394
for (i = 0; i < 4; ++i)
1395
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1396
*rate_num = 4;
1397
break;
1398
case 0xC38:
1399
case 0xE38:
1400
case 0x1838:
1401
case 0x1A38:
1402
rate[0] = DESC_RATEMCS12;
1403
rate[1] = DESC_RATEMCS13;
1404
rate[2] = DESC_RATEMCS14;
1405
rate[3] = DESC_RATEMCS15;
1406
for (i = 0; i < 4; ++i)
1407
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1408
*rate_num = 4;
1409
break;
1410
case 0xC3C:
1411
case 0xE3C:
1412
case 0x183C:
1413
case 0x1A3C:
1414
rate[0] = DESC_RATEVHT1SS_MCS0;
1415
rate[1] = DESC_RATEVHT1SS_MCS1;
1416
rate[2] = DESC_RATEVHT1SS_MCS2;
1417
rate[3] = DESC_RATEVHT1SS_MCS3;
1418
for (i = 0; i < 4; ++i)
1419
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1420
*rate_num = 4;
1421
break;
1422
case 0xC40:
1423
case 0xE40:
1424
case 0x1840:
1425
case 0x1A40:
1426
rate[0] = DESC_RATEVHT1SS_MCS4;
1427
rate[1] = DESC_RATEVHT1SS_MCS5;
1428
rate[2] = DESC_RATEVHT1SS_MCS6;
1429
rate[3] = DESC_RATEVHT1SS_MCS7;
1430
for (i = 0; i < 4; ++i)
1431
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1432
*rate_num = 4;
1433
break;
1434
case 0xC44:
1435
case 0xE44:
1436
case 0x1844:
1437
case 0x1A44:
1438
rate[0] = DESC_RATEVHT1SS_MCS8;
1439
rate[1] = DESC_RATEVHT1SS_MCS9;
1440
rate[2] = DESC_RATEVHT2SS_MCS0;
1441
rate[3] = DESC_RATEVHT2SS_MCS1;
1442
for (i = 0; i < 4; ++i)
1443
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1444
*rate_num = 4;
1445
break;
1446
case 0xC48:
1447
case 0xE48:
1448
case 0x1848:
1449
case 0x1A48:
1450
rate[0] = DESC_RATEVHT2SS_MCS2;
1451
rate[1] = DESC_RATEVHT2SS_MCS3;
1452
rate[2] = DESC_RATEVHT2SS_MCS4;
1453
rate[3] = DESC_RATEVHT2SS_MCS5;
1454
for (i = 0; i < 4; ++i)
1455
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1456
*rate_num = 4;
1457
break;
1458
case 0xC4C:
1459
case 0xE4C:
1460
case 0x184C:
1461
case 0x1A4C:
1462
rate[0] = DESC_RATEVHT2SS_MCS6;
1463
rate[1] = DESC_RATEVHT2SS_MCS7;
1464
rate[2] = DESC_RATEVHT2SS_MCS8;
1465
rate[3] = DESC_RATEVHT2SS_MCS9;
1466
for (i = 0; i < 4; ++i)
1467
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1468
*rate_num = 4;
1469
break;
1470
case 0xCD8:
1471
case 0xED8:
1472
case 0x18D8:
1473
case 0x1AD8:
1474
rate[0] = DESC_RATEMCS16;
1475
rate[1] = DESC_RATEMCS17;
1476
rate[2] = DESC_RATEMCS18;
1477
rate[3] = DESC_RATEMCS19;
1478
for (i = 0; i < 4; ++i)
1479
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1480
*rate_num = 4;
1481
break;
1482
case 0xCDC:
1483
case 0xEDC:
1484
case 0x18DC:
1485
case 0x1ADC:
1486
rate[0] = DESC_RATEMCS20;
1487
rate[1] = DESC_RATEMCS21;
1488
rate[2] = DESC_RATEMCS22;
1489
rate[3] = DESC_RATEMCS23;
1490
for (i = 0; i < 4; ++i)
1491
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1492
*rate_num = 4;
1493
break;
1494
case 0xCE0:
1495
case 0xEE0:
1496
case 0x18E0:
1497
case 0x1AE0:
1498
rate[0] = DESC_RATEVHT3SS_MCS0;
1499
rate[1] = DESC_RATEVHT3SS_MCS1;
1500
rate[2] = DESC_RATEVHT3SS_MCS2;
1501
rate[3] = DESC_RATEVHT3SS_MCS3;
1502
for (i = 0; i < 4; ++i)
1503
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1504
*rate_num = 4;
1505
break;
1506
case 0xCE4:
1507
case 0xEE4:
1508
case 0x18E4:
1509
case 0x1AE4:
1510
rate[0] = DESC_RATEVHT3SS_MCS4;
1511
rate[1] = DESC_RATEVHT3SS_MCS5;
1512
rate[2] = DESC_RATEVHT3SS_MCS6;
1513
rate[3] = DESC_RATEVHT3SS_MCS7;
1514
for (i = 0; i < 4; ++i)
1515
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1516
*rate_num = 4;
1517
break;
1518
case 0xCE8:
1519
case 0xEE8:
1520
case 0x18E8:
1521
case 0x1AE8:
1522
rate[0] = DESC_RATEVHT3SS_MCS8;
1523
rate[1] = DESC_RATEVHT3SS_MCS9;
1524
for (i = 0; i < 2; ++i)
1525
pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1526
*rate_num = 2;
1527
break;
1528
default:
1529
rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1530
break;
1531
}
1532
}
1533
1534
static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1535
u32 band, u32 rfpath, u32 txnum,
1536
u32 regaddr, u32 bitmask, u32 data)
1537
{
1538
struct rtw_hal *hal = &rtwdev->hal;
1539
u8 rate_num = 0;
1540
u8 rate;
1541
u8 rates[RTW_RF_PATH_MAX] = {0};
1542
s8 offset;
1543
s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1544
int i;
1545
1546
rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1547
rates, pwr_by_rate, &rate_num);
1548
1549
if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1550
(band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1551
rate_num > RTW_RF_PATH_MAX))
1552
return;
1553
1554
for (i = 0; i < rate_num; i++) {
1555
offset = pwr_by_rate[i];
1556
rate = rates[i];
1557
if (band == PHY_BAND_2G)
1558
hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1559
else
1560
hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1561
}
1562
}
1563
1564
void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1565
{
1566
const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1567
const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1568
1569
for (; p < end; p++) {
1570
if (p->addr == 0xfe || p->addr == 0xffe) {
1571
msleep(50);
1572
continue;
1573
}
1574
rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1575
p->tx_num, p->addr, p->bitmask,
1576
p->data);
1577
}
1578
}
1579
EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1580
1581
static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1582
36, 38, 40, 42, 44, 46, 48, /* Band 1 */
1583
52, 54, 56, 58, 60, 62, 64, /* Band 2 */
1584
100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1585
116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1586
132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1587
149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1588
165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1589
1590
static int rtw_channel_to_idx(u8 band, u8 channel)
1591
{
1592
int ch_idx;
1593
u8 n_channel;
1594
1595
if (band == PHY_BAND_2G) {
1596
ch_idx = channel - 1;
1597
n_channel = RTW_MAX_CHANNEL_NUM_2G;
1598
} else if (band == PHY_BAND_5G) {
1599
n_channel = RTW_MAX_CHANNEL_NUM_5G;
1600
for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1601
if (rtw_channel_idx_5g[ch_idx] == channel)
1602
break;
1603
} else {
1604
return -1;
1605
}
1606
1607
if (ch_idx >= n_channel)
1608
return -1;
1609
1610
return ch_idx;
1611
}
1612
1613
static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1614
u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1615
{
1616
struct rtw_hal *hal = &rtwdev->hal;
1617
u8 max_power_index = rtwdev->chip->max_power_index;
1618
s8 ww;
1619
int ch_idx;
1620
1621
pwr_limit = clamp_t(s8, pwr_limit,
1622
-max_power_index, max_power_index);
1623
ch_idx = rtw_channel_to_idx(band, ch);
1624
1625
if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1626
rs >= RTW_RATE_SECTION_NUM || ch_idx < 0) {
1627
WARN(1,
1628
"wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1629
regd, band, bw, rs, ch_idx, pwr_limit);
1630
return;
1631
}
1632
1633
if (band == PHY_BAND_2G) {
1634
hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1635
ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1636
ww = min_t(s8, ww, pwr_limit);
1637
hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1638
} else if (band == PHY_BAND_5G) {
1639
hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1640
ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1641
ww = min_t(s8, ww, pwr_limit);
1642
hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1643
}
1644
}
1645
1646
/* cross-reference 5G power limits if values are not assigned */
1647
static void
1648
rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1649
u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1650
{
1651
struct rtw_hal *hal = &rtwdev->hal;
1652
u8 max_power_index = rtwdev->chip->max_power_index;
1653
s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1654
s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1655
1656
if (lmt_ht == lmt_vht)
1657
return;
1658
1659
if (lmt_ht == max_power_index)
1660
hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1661
1662
else if (lmt_vht == max_power_index)
1663
hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1664
}
1665
1666
/* cross-reference power limits for ht and vht */
1667
static void
1668
rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1669
{
1670
static const u8 rs_cmp[4][2] = {
1671
{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1672
{RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S},
1673
{RTW_RATE_SECTION_HT_3S, RTW_RATE_SECTION_VHT_3S},
1674
{RTW_RATE_SECTION_HT_4S, RTW_RATE_SECTION_VHT_4S}
1675
};
1676
u8 rs_idx, rs_ht, rs_vht;
1677
1678
for (rs_idx = 0; rs_idx < 4; rs_idx++) {
1679
rs_ht = rs_cmp[rs_idx][0];
1680
rs_vht = rs_cmp[rs_idx][1];
1681
1682
rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1683
}
1684
}
1685
1686
/* cross-reference power limits for 5G channels */
1687
static void
1688
rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1689
{
1690
u8 ch_idx;
1691
1692
for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1693
rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1694
}
1695
1696
/* cross-reference power limits for 20/40M bandwidth */
1697
static void
1698
rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1699
{
1700
u8 bw;
1701
1702
for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1703
rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1704
}
1705
1706
/* cross-reference power limits */
1707
static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1708
{
1709
u8 regd;
1710
1711
for (regd = 0; regd < RTW_REGD_MAX; regd++)
1712
rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1713
}
1714
1715
static void
1716
__cfg_txpwr_lmt_by_alt(struct rtw_hal *hal, u8 regd, u8 regd_alt, u8 bw, u8 rs)
1717
{
1718
u8 ch;
1719
1720
for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1721
hal->tx_pwr_limit_2g[regd][bw][rs][ch] =
1722
hal->tx_pwr_limit_2g[regd_alt][bw][rs][ch];
1723
1724
for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1725
hal->tx_pwr_limit_5g[regd][bw][rs][ch] =
1726
hal->tx_pwr_limit_5g[regd_alt][bw][rs][ch];
1727
}
1728
1729
static void
1730
rtw_cfg_txpwr_lmt_by_alt(struct rtw_dev *rtwdev, u8 regd, u8 regd_alt)
1731
{
1732
u8 bw, rs;
1733
1734
for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1735
for (rs = 0; rs < RTW_RATE_SECTION_NUM; rs++)
1736
__cfg_txpwr_lmt_by_alt(&rtwdev->hal, regd, regd_alt,
1737
bw, rs);
1738
}
1739
1740
void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1741
const struct rtw_table *tbl)
1742
{
1743
const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1744
const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1745
u32 regd_cfg_flag = 0;
1746
u8 regd_alt;
1747
u8 i;
1748
1749
for (; p < end; p++) {
1750
regd_cfg_flag |= BIT(p->regd);
1751
rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1752
p->bw, p->rs, p->ch, p->txpwr_lmt);
1753
}
1754
1755
for (i = 0; i < RTW_REGD_MAX; i++) {
1756
if (i == RTW_REGD_WW)
1757
continue;
1758
1759
if (regd_cfg_flag & BIT(i))
1760
continue;
1761
1762
rtw_dbg(rtwdev, RTW_DBG_REGD,
1763
"txpwr regd %d does not be configured\n", i);
1764
1765
if (rtw_regd_has_alt(i, &regd_alt) &&
1766
regd_cfg_flag & BIT(regd_alt)) {
1767
rtw_dbg(rtwdev, RTW_DBG_REGD,
1768
"cfg txpwr regd %d by regd %d as alternative\n",
1769
i, regd_alt);
1770
1771
rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, regd_alt);
1772
continue;
1773
}
1774
1775
rtw_dbg(rtwdev, RTW_DBG_REGD, "cfg txpwr regd %d by WW\n", i);
1776
rtw_cfg_txpwr_lmt_by_alt(rtwdev, i, RTW_REGD_WW);
1777
}
1778
1779
rtw_xref_txpwr_lmt(rtwdev);
1780
}
1781
EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1782
1783
void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1784
u32 addr, u32 data)
1785
{
1786
rtw_write8(rtwdev, addr, data);
1787
}
1788
EXPORT_SYMBOL(rtw_phy_cfg_mac);
1789
1790
void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1791
u32 addr, u32 data)
1792
{
1793
rtw_write32(rtwdev, addr, data);
1794
}
1795
EXPORT_SYMBOL(rtw_phy_cfg_agc);
1796
1797
void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1798
u32 addr, u32 data)
1799
{
1800
if (addr == 0xfe)
1801
msleep(50);
1802
else if (addr == 0xfd)
1803
mdelay(5);
1804
else if (addr == 0xfc)
1805
mdelay(1);
1806
else if (addr == 0xfb)
1807
usleep_range(50, 60);
1808
else if (addr == 0xfa)
1809
udelay(5);
1810
else if (addr == 0xf9)
1811
udelay(1);
1812
else
1813
rtw_write32(rtwdev, addr, data);
1814
}
1815
EXPORT_SYMBOL(rtw_phy_cfg_bb);
1816
1817
void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1818
u32 addr, u32 data)
1819
{
1820
if (addr == 0xffe) {
1821
msleep(50);
1822
} else if (addr == 0xfe) {
1823
usleep_range(100, 110);
1824
} else {
1825
rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1826
udelay(1);
1827
}
1828
}
1829
EXPORT_SYMBOL(rtw_phy_cfg_rf);
1830
1831
static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1832
{
1833
const struct rtw_chip_info *chip = rtwdev->chip;
1834
struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1835
1836
if (!chip->rfk_init_tbl)
1837
return;
1838
1839
rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1840
rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1841
rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1842
rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1843
rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1844
1845
rtw_load_table(rtwdev, chip->rfk_init_tbl);
1846
1847
dpk_info->is_dpk_pwr_on = true;
1848
}
1849
1850
void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1851
{
1852
const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1853
const struct rtw_chip_info *chip = rtwdev->chip;
1854
u8 rf_path;
1855
1856
rtw_load_table(rtwdev, chip->mac_tbl);
1857
rtw_load_table(rtwdev, chip->bb_tbl);
1858
rtw_load_table(rtwdev, chip->agc_tbl);
1859
if (rfe_def->agc_btg_tbl)
1860
rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
1861
rtw_load_rfk_table(rtwdev);
1862
1863
for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1864
const struct rtw_table *tbl;
1865
1866
tbl = chip->rf_tbl[rf_path];
1867
rtw_load_table(rtwdev, tbl);
1868
}
1869
}
1870
EXPORT_SYMBOL(rtw_phy_load_tables);
1871
1872
static u8 rtw_get_channel_group(u8 channel, u8 rate)
1873
{
1874
switch (channel) {
1875
default:
1876
WARN_ON(1);
1877
fallthrough;
1878
case 1:
1879
case 2:
1880
case 36:
1881
case 38:
1882
case 40:
1883
case 42:
1884
return 0;
1885
case 3:
1886
case 4:
1887
case 5:
1888
case 44:
1889
case 46:
1890
case 48:
1891
case 50:
1892
return 1;
1893
case 6:
1894
case 7:
1895
case 8:
1896
case 52:
1897
case 54:
1898
case 56:
1899
case 58:
1900
return 2;
1901
case 9:
1902
case 10:
1903
case 11:
1904
case 60:
1905
case 62:
1906
case 64:
1907
return 3;
1908
case 12:
1909
case 13:
1910
case 100:
1911
case 102:
1912
case 104:
1913
case 106:
1914
return 4;
1915
case 14:
1916
return rate <= DESC_RATE11M ? 5 : 4;
1917
case 108:
1918
case 110:
1919
case 112:
1920
case 114:
1921
return 5;
1922
case 116:
1923
case 118:
1924
case 120:
1925
case 122:
1926
return 6;
1927
case 124:
1928
case 126:
1929
case 128:
1930
case 130:
1931
return 7;
1932
case 132:
1933
case 134:
1934
case 136:
1935
case 138:
1936
return 8;
1937
case 140:
1938
case 142:
1939
case 144:
1940
return 9;
1941
case 149:
1942
case 151:
1943
case 153:
1944
case 155:
1945
return 10;
1946
case 157:
1947
case 159:
1948
case 161:
1949
return 11;
1950
case 165:
1951
case 167:
1952
case 169:
1953
case 171:
1954
return 12;
1955
case 173:
1956
case 175:
1957
case 177:
1958
return 13;
1959
}
1960
}
1961
1962
static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1963
{
1964
const struct rtw_chip_info *chip = rtwdev->chip;
1965
s8 dpd_diff = 0;
1966
1967
if (!chip->en_dis_dpd)
1968
return 0;
1969
1970
#define RTW_DPD_RATE_CHECK(_rate) \
1971
case DESC_RATE ## _rate: \
1972
if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask) \
1973
dpd_diff = -6 * chip->txgi_factor; \
1974
break
1975
1976
switch (rate) {
1977
RTW_DPD_RATE_CHECK(6M);
1978
RTW_DPD_RATE_CHECK(9M);
1979
RTW_DPD_RATE_CHECK(MCS0);
1980
RTW_DPD_RATE_CHECK(MCS1);
1981
RTW_DPD_RATE_CHECK(MCS8);
1982
RTW_DPD_RATE_CHECK(MCS9);
1983
RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1984
RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1985
RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1986
RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1987
}
1988
#undef RTW_DPD_RATE_CHECK
1989
1990
return dpd_diff;
1991
}
1992
1993
static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1994
struct rtw_2g_txpwr_idx *pwr_idx_2g,
1995
enum rtw_bandwidth bandwidth,
1996
u8 rate, u8 group)
1997
{
1998
const struct rtw_chip_info *chip = rtwdev->chip;
1999
bool above_2ss, above_3ss, above_4ss;
2000
u8 factor = chip->txgi_factor;
2001
bool mcs_rate;
2002
u8 tx_power;
2003
2004
if (rate <= DESC_RATE11M)
2005
tx_power = pwr_idx_2g->cck_base[group];
2006
else
2007
tx_power = pwr_idx_2g->bw40_base[group];
2008
2009
if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
2010
tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
2011
2012
mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS31) ||
2013
(rate >= DESC_RATEVHT1SS_MCS0 &&
2014
rate <= DESC_RATEVHT4SS_MCS9);
2015
above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS31) ||
2016
(rate >= DESC_RATEVHT2SS_MCS0);
2017
above_3ss = (rate >= DESC_RATEMCS16 && rate <= DESC_RATEMCS31) ||
2018
(rate >= DESC_RATEVHT3SS_MCS0);
2019
above_4ss = (rate >= DESC_RATEMCS24 && rate <= DESC_RATEMCS31) ||
2020
(rate >= DESC_RATEVHT4SS_MCS0);
2021
2022
if (!mcs_rate)
2023
return tx_power;
2024
2025
switch (bandwidth) {
2026
default:
2027
WARN_ON(1);
2028
fallthrough;
2029
case RTW_CHANNEL_WIDTH_20:
2030
tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
2031
if (above_2ss)
2032
tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
2033
if (above_3ss)
2034
tx_power += pwr_idx_2g->ht_3s_diff.bw20 * factor;
2035
if (above_4ss)
2036
tx_power += pwr_idx_2g->ht_4s_diff.bw20 * factor;
2037
break;
2038
case RTW_CHANNEL_WIDTH_40:
2039
/* bw40 is the base power */
2040
if (above_2ss)
2041
tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
2042
if (above_3ss)
2043
tx_power += pwr_idx_2g->ht_3s_diff.bw40 * factor;
2044
if (above_4ss)
2045
tx_power += pwr_idx_2g->ht_4s_diff.bw40 * factor;
2046
break;
2047
}
2048
2049
return tx_power;
2050
}
2051
2052
static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
2053
struct rtw_5g_txpwr_idx *pwr_idx_5g,
2054
enum rtw_bandwidth bandwidth,
2055
u8 rate, u8 group)
2056
{
2057
const struct rtw_chip_info *chip = rtwdev->chip;
2058
bool above_2ss, above_3ss, above_4ss;
2059
u8 factor = chip->txgi_factor;
2060
u8 upper, lower;
2061
bool mcs_rate;
2062
u8 tx_power;
2063
2064
tx_power = pwr_idx_5g->bw40_base[group];
2065
2066
mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS31) ||
2067
(rate >= DESC_RATEVHT1SS_MCS0 &&
2068
rate <= DESC_RATEVHT4SS_MCS9);
2069
above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS31) ||
2070
(rate >= DESC_RATEVHT2SS_MCS0);
2071
above_3ss = (rate >= DESC_RATEMCS16 && rate <= DESC_RATEMCS31) ||
2072
(rate >= DESC_RATEVHT3SS_MCS0);
2073
above_4ss = (rate >= DESC_RATEMCS24 && rate <= DESC_RATEMCS31) ||
2074
(rate >= DESC_RATEVHT4SS_MCS0);
2075
2076
if (!mcs_rate) {
2077
tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
2078
return tx_power;
2079
}
2080
2081
switch (bandwidth) {
2082
default:
2083
WARN_ON(1);
2084
fallthrough;
2085
case RTW_CHANNEL_WIDTH_20:
2086
tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
2087
if (above_2ss)
2088
tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
2089
if (above_3ss)
2090
tx_power += pwr_idx_5g->ht_3s_diff.bw20 * factor;
2091
if (above_4ss)
2092
tx_power += pwr_idx_5g->ht_4s_diff.bw20 * factor;
2093
break;
2094
case RTW_CHANNEL_WIDTH_40:
2095
/* bw40 is the base power */
2096
if (above_2ss)
2097
tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
2098
if (above_3ss)
2099
tx_power += pwr_idx_5g->ht_3s_diff.bw40 * factor;
2100
if (above_4ss)
2101
tx_power += pwr_idx_5g->ht_4s_diff.bw40 * factor;
2102
break;
2103
case RTW_CHANNEL_WIDTH_80:
2104
/* the base idx of bw80 is the average of bw40+/bw40- */
2105
lower = pwr_idx_5g->bw40_base[group];
2106
upper = pwr_idx_5g->bw40_base[group + 1];
2107
2108
tx_power = (lower + upper) / 2;
2109
tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
2110
if (above_2ss)
2111
tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
2112
if (above_3ss)
2113
tx_power += pwr_idx_5g->vht_3s_diff.bw80 * factor;
2114
if (above_4ss)
2115
tx_power += pwr_idx_5g->vht_4s_diff.bw80 * factor;
2116
break;
2117
}
2118
2119
return tx_power;
2120
}
2121
2122
/* return RTW_RATE_SECTION_NUM to indicate rate is invalid */
2123
static u8 rtw_phy_rate_to_rate_section(u8 rate)
2124
{
2125
if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
2126
return RTW_RATE_SECTION_CCK;
2127
else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
2128
return RTW_RATE_SECTION_OFDM;
2129
else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
2130
return RTW_RATE_SECTION_HT_1S;
2131
else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
2132
return RTW_RATE_SECTION_HT_2S;
2133
else if (rate >= DESC_RATEMCS16 && rate <= DESC_RATEMCS23)
2134
return RTW_RATE_SECTION_HT_3S;
2135
else if (rate >= DESC_RATEMCS24 && rate <= DESC_RATEMCS31)
2136
return RTW_RATE_SECTION_HT_4S;
2137
else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
2138
return RTW_RATE_SECTION_VHT_1S;
2139
else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
2140
return RTW_RATE_SECTION_VHT_2S;
2141
else if (rate >= DESC_RATEVHT3SS_MCS0 && rate <= DESC_RATEVHT3SS_MCS9)
2142
return RTW_RATE_SECTION_VHT_3S;
2143
else if (rate >= DESC_RATEVHT4SS_MCS0 && rate <= DESC_RATEVHT4SS_MCS9)
2144
return RTW_RATE_SECTION_VHT_4S;
2145
else
2146
return RTW_RATE_SECTION_NUM;
2147
}
2148
2149
static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
2150
enum rtw_bandwidth bw, u8 rf_path,
2151
u8 rate, u8 channel, u8 regd)
2152
{
2153
struct rtw_hal *hal = &rtwdev->hal;
2154
u8 *cch_by_bw = hal->cch_by_bw;
2155
s8 power_limit = (s8)rtwdev->chip->max_power_index;
2156
u8 rs = rtw_phy_rate_to_rate_section(rate);
2157
int ch_idx;
2158
u8 cur_bw, cur_ch;
2159
s8 cur_lmt;
2160
2161
if (regd > RTW_REGD_WW)
2162
return power_limit;
2163
2164
if (rs == RTW_RATE_SECTION_NUM)
2165
goto err;
2166
2167
/* only 20M BW with cck and ofdm */
2168
if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
2169
bw = RTW_CHANNEL_WIDTH_20;
2170
2171
/* only 20/40M BW with ht */
2172
if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS31)
2173
bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
2174
2175
/* select min power limit among [20M BW ~ current BW] */
2176
for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
2177
cur_ch = cch_by_bw[cur_bw];
2178
2179
ch_idx = rtw_channel_to_idx(band, cur_ch);
2180
if (ch_idx < 0)
2181
goto err;
2182
2183
cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
2184
hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
2185
hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
2186
2187
power_limit = min_t(s8, cur_lmt, power_limit);
2188
}
2189
2190
return power_limit;
2191
2192
err:
2193
WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
2194
band, bw, rf_path, rate, channel);
2195
return (s8)rtwdev->chip->max_power_index;
2196
}
2197
2198
static s8 rtw_phy_get_tx_power_sar(struct rtw_dev *rtwdev, u8 sar_band,
2199
u8 rf_path, u8 rate)
2200
{
2201
u8 rs = rtw_phy_rate_to_rate_section(rate);
2202
struct rtw_sar_arg arg = {
2203
.sar_band = sar_band,
2204
.path = rf_path,
2205
.rs = rs,
2206
};
2207
2208
if (rs == RTW_RATE_SECTION_NUM)
2209
goto err;
2210
2211
return rtw_query_sar(rtwdev, &arg);
2212
2213
err:
2214
WARN(1, "invalid arguments, sar_band=%d, path=%d, rate=%d\n",
2215
sar_band, rf_path, rate);
2216
return (s8)rtwdev->chip->max_power_index;
2217
}
2218
2219
void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
2220
u8 ch, u8 regd, struct rtw_power_params *pwr_param)
2221
{
2222
struct rtw_hal *hal = &rtwdev->hal;
2223
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2224
struct rtw_txpwr_idx *pwr_idx;
2225
u8 group, band;
2226
u8 *base = &pwr_param->pwr_base;
2227
s8 *offset = &pwr_param->pwr_offset;
2228
s8 *limit = &pwr_param->pwr_limit;
2229
s8 *remnant = &pwr_param->pwr_remnant;
2230
s8 *sar = &pwr_param->pwr_sar;
2231
2232
pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
2233
group = rtw_get_channel_group(ch, rate);
2234
2235
/* base power index for 2.4G/5G */
2236
if (IS_CH_2G_BAND(ch)) {
2237
band = PHY_BAND_2G;
2238
*base = rtw_phy_get_2g_tx_power_index(rtwdev,
2239
&pwr_idx->pwr_idx_2g,
2240
bw, rate, group);
2241
*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
2242
} else {
2243
band = PHY_BAND_5G;
2244
*base = rtw_phy_get_5g_tx_power_index(rtwdev,
2245
&pwr_idx->pwr_idx_5g,
2246
bw, rate, group);
2247
*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
2248
}
2249
2250
*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
2251
rate, ch, regd);
2252
*remnant = rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
2253
dm_info->txagc_remnant_ofdm[path];
2254
*sar = rtw_phy_get_tx_power_sar(rtwdev, hal->sar_band, path, rate);
2255
}
2256
2257
u8
2258
rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
2259
enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
2260
{
2261
struct rtw_power_params pwr_param = {0};
2262
u8 tx_power;
2263
s8 offset;
2264
2265
rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
2266
channel, regd, &pwr_param);
2267
2268
tx_power = pwr_param.pwr_base;
2269
offset = min3(pwr_param.pwr_offset,
2270
pwr_param.pwr_limit,
2271
pwr_param.pwr_sar);
2272
2273
if (rtwdev->chip->en_dis_dpd)
2274
offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
2275
2276
tx_power += offset + pwr_param.pwr_remnant;
2277
2278
if (tx_power > rtwdev->chip->max_power_index)
2279
tx_power = rtwdev->chip->max_power_index;
2280
2281
return tx_power;
2282
}
2283
EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
2284
2285
static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
2286
u8 ch, u8 path, u8 rs)
2287
{
2288
struct rtw_hal *hal = &rtwdev->hal;
2289
u8 regd = rtw_regd_get(rtwdev);
2290
const u8 *rates;
2291
u8 size;
2292
u8 rate;
2293
u8 pwr_idx;
2294
u8 bw;
2295
int i;
2296
2297
if (rs >= RTW_RATE_SECTION_NUM)
2298
return;
2299
2300
rates = rtw_rate_section[rs];
2301
size = rtw_rate_size[rs];
2302
bw = hal->current_band_width;
2303
for (i = 0; i < size; i++) {
2304
rate = rates[i];
2305
pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
2306
bw, ch, regd);
2307
hal->tx_pwr_tbl[path][rate] = pwr_idx;
2308
}
2309
}
2310
2311
/* set tx power level by path for each rates, note that the order of the rates
2312
* are *very* important, bacause 8822B/8821C combines every four bytes of tx
2313
* power index into a four-byte power index register, and calls set_tx_agc to
2314
* write these values into hardware
2315
*/
2316
static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
2317
u8 ch, u8 path)
2318
{
2319
struct rtw_hal *hal = &rtwdev->hal;
2320
u8 rs;
2321
2322
/* do not need cck rates if we are not in 2.4G */
2323
if (hal->current_band_type == RTW_BAND_2G)
2324
rs = RTW_RATE_SECTION_CCK;
2325
else
2326
rs = RTW_RATE_SECTION_OFDM;
2327
2328
for (; rs < RTW_RATE_SECTION_NUM; rs++)
2329
rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
2330
}
2331
2332
void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
2333
{
2334
const struct rtw_chip_info *chip = rtwdev->chip;
2335
struct rtw_hal *hal = &rtwdev->hal;
2336
u8 path;
2337
2338
mutex_lock(&hal->tx_power_mutex);
2339
2340
for (path = 0; path < hal->rf_path_num; path++)
2341
rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
2342
2343
chip->ops->set_tx_power_index(rtwdev);
2344
mutex_unlock(&hal->tx_power_mutex);
2345
}
2346
EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
2347
2348
static void
2349
rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
2350
u8 rs, u8 size, const u8 *rates)
2351
{
2352
u8 rate;
2353
u8 base_idx, rate_idx;
2354
s8 base_2g, base_5g;
2355
2356
if (size == 10) /* VHT rates */
2357
base_idx = rates[size - 3];
2358
else
2359
base_idx = rates[size - 1];
2360
base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
2361
base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
2362
hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
2363
hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
2364
for (rate = 0; rate < size; rate++) {
2365
rate_idx = rates[rate];
2366
hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
2367
hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
2368
}
2369
}
2370
2371
void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
2372
{
2373
u8 path, rs;
2374
2375
for (path = 0; path < RTW_RF_PATH_MAX; path++)
2376
for (rs = 0; rs < RTW_RATE_SECTION_NUM; rs++)
2377
rtw_phy_tx_power_by_rate_config_by_path(hal, path, rs,
2378
rtw_rate_size[rs], rtw_rate_section[rs]);
2379
}
2380
2381
static void
2382
__rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
2383
{
2384
s8 base;
2385
u8 ch;
2386
2387
for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
2388
base = hal->tx_pwr_by_rate_base_2g[0][rs];
2389
hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
2390
}
2391
2392
for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
2393
base = hal->tx_pwr_by_rate_base_5g[0][rs];
2394
hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
2395
}
2396
}
2397
2398
void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
2399
{
2400
u8 regd, bw, rs;
2401
2402
/* default at channel 1 */
2403
hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2404
2405
for (regd = 0; regd < RTW_REGD_MAX; regd++)
2406
for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2407
for (rs = 0; rs < RTW_RATE_SECTION_NUM; rs++)
2408
__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2409
}
2410
2411
static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2412
u8 regd, u8 bw, u8 rs)
2413
{
2414
struct rtw_hal *hal = &rtwdev->hal;
2415
s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2416
u8 ch;
2417
2418
/* 2.4G channels */
2419
for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2420
hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2421
2422
/* 5G channels */
2423
for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2424
hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2425
}
2426
2427
void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2428
{
2429
struct rtw_hal *hal = &rtwdev->hal;
2430
u8 regd, path, rate, rs, bw;
2431
2432
/* init tx power by rate offset */
2433
for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2434
for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2435
hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2436
hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2437
}
2438
}
2439
2440
/* init tx power limit */
2441
for (regd = 0; regd < RTW_REGD_MAX; regd++)
2442
for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2443
for (rs = 0; rs < RTW_RATE_SECTION_NUM; rs++)
2444
rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2445
rs);
2446
}
2447
2448
void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2449
struct rtw_swing_table *swing_table)
2450
{
2451
const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2452
const struct rtw_pwr_track_tbl *tbl = rfe_def->pwr_track_tbl;
2453
u8 channel = rtwdev->hal.current_channel;
2454
2455
if (IS_CH_2G_BAND(channel)) {
2456
if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2457
swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2458
swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2459
swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2460
swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2461
swing_table->p[RF_PATH_C] = tbl->pwrtrk_2g_cckc_p;
2462
swing_table->n[RF_PATH_C] = tbl->pwrtrk_2g_cckc_n;
2463
swing_table->p[RF_PATH_D] = tbl->pwrtrk_2g_cckd_p;
2464
swing_table->n[RF_PATH_D] = tbl->pwrtrk_2g_cckd_n;
2465
} else {
2466
swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2467
swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2468
swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2469
swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2470
swing_table->p[RF_PATH_C] = tbl->pwrtrk_2gc_p;
2471
swing_table->n[RF_PATH_C] = tbl->pwrtrk_2gc_n;
2472
swing_table->p[RF_PATH_D] = tbl->pwrtrk_2gd_p;
2473
swing_table->n[RF_PATH_D] = tbl->pwrtrk_2gd_n;
2474
}
2475
} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2476
swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2477
swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2478
swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2479
swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2480
swing_table->p[RF_PATH_C] = tbl->pwrtrk_5gc_p[RTW_PWR_TRK_5G_1];
2481
swing_table->n[RF_PATH_C] = tbl->pwrtrk_5gc_n[RTW_PWR_TRK_5G_1];
2482
swing_table->p[RF_PATH_D] = tbl->pwrtrk_5gd_p[RTW_PWR_TRK_5G_1];
2483
swing_table->n[RF_PATH_D] = tbl->pwrtrk_5gd_n[RTW_PWR_TRK_5G_1];
2484
} else if (IS_CH_5G_BAND_3(channel)) {
2485
swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2486
swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2487
swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2488
swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2489
swing_table->p[RF_PATH_C] = tbl->pwrtrk_5gc_p[RTW_PWR_TRK_5G_2];
2490
swing_table->n[RF_PATH_C] = tbl->pwrtrk_5gc_n[RTW_PWR_TRK_5G_2];
2491
swing_table->p[RF_PATH_D] = tbl->pwrtrk_5gd_p[RTW_PWR_TRK_5G_2];
2492
swing_table->n[RF_PATH_D] = tbl->pwrtrk_5gd_n[RTW_PWR_TRK_5G_2];
2493
} else if (IS_CH_5G_BAND_4(channel)) {
2494
swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2495
swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2496
swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2497
swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2498
swing_table->p[RF_PATH_C] = tbl->pwrtrk_5gc_p[RTW_PWR_TRK_5G_3];
2499
swing_table->n[RF_PATH_C] = tbl->pwrtrk_5gc_n[RTW_PWR_TRK_5G_3];
2500
swing_table->p[RF_PATH_D] = tbl->pwrtrk_5gd_p[RTW_PWR_TRK_5G_3];
2501
swing_table->n[RF_PATH_D] = tbl->pwrtrk_5gd_n[RTW_PWR_TRK_5G_3];
2502
} else {
2503
swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2504
swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2505
swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2506
swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2507
swing_table->p[RF_PATH_C] = tbl->pwrtrk_2gc_p;
2508
swing_table->n[RF_PATH_C] = tbl->pwrtrk_2gc_n;
2509
swing_table->p[RF_PATH_D] = tbl->pwrtrk_2gd_p;
2510
swing_table->n[RF_PATH_D] = tbl->pwrtrk_2gd_n;
2511
}
2512
}
2513
EXPORT_SYMBOL(rtw_phy_config_swing_table);
2514
2515
void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2516
{
2517
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2518
2519
ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2520
dm_info->thermal_avg[path] =
2521
ewma_thermal_read(&dm_info->avg_thermal[path]);
2522
}
2523
EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2524
2525
bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2526
u8 path)
2527
{
2528
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2529
u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2530
2531
if (avg == thermal)
2532
return false;
2533
2534
return true;
2535
}
2536
EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2537
2538
u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2539
{
2540
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2541
u8 therm_avg, therm_efuse, therm_delta;
2542
2543
therm_avg = dm_info->thermal_avg[path];
2544
therm_efuse = rtwdev->efuse.thermal_meter[path];
2545
therm_delta = abs(therm_avg - therm_efuse);
2546
2547
return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2548
}
2549
EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2550
2551
s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2552
struct rtw_swing_table *swing_table,
2553
u8 tbl_path, u8 therm_path, u8 delta)
2554
{
2555
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2556
const u8 *delta_swing_table_idx_pos;
2557
const u8 *delta_swing_table_idx_neg;
2558
2559
if (delta >= RTW_PWR_TRK_TBL_SZ) {
2560
rtw_warn(rtwdev, "power track table overflow\n");
2561
return 0;
2562
}
2563
2564
if (!swing_table) {
2565
rtw_warn(rtwdev, "swing table not configured\n");
2566
return 0;
2567
}
2568
2569
delta_swing_table_idx_pos = swing_table->p[tbl_path];
2570
delta_swing_table_idx_neg = swing_table->n[tbl_path];
2571
2572
if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2573
rtw_warn(rtwdev, "invalid swing table index\n");
2574
return 0;
2575
}
2576
2577
if (dm_info->thermal_avg[therm_path] >
2578
rtwdev->efuse.thermal_meter[therm_path])
2579
return delta_swing_table_idx_pos[delta];
2580
else
2581
return -delta_swing_table_idx_neg[delta];
2582
}
2583
EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2584
2585
bool rtw_phy_pwrtrack_need_lck(struct rtw_dev *rtwdev)
2586
{
2587
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2588
u8 delta_lck;
2589
2590
delta_lck = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_lck);
2591
if (delta_lck >= rtwdev->chip->lck_threshold) {
2592
dm_info->thermal_meter_lck = dm_info->thermal_avg[0];
2593
return true;
2594
}
2595
return false;
2596
}
2597
EXPORT_SYMBOL(rtw_phy_pwrtrack_need_lck);
2598
2599
bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2600
{
2601
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2602
u8 delta_iqk;
2603
2604
delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2605
if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2606
dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2607
return true;
2608
}
2609
return false;
2610
}
2611
EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
2612
2613
static void rtw_phy_set_tx_path_by_reg(struct rtw_dev *rtwdev,
2614
enum rtw_bb_path tx_path_sel_1ss)
2615
{
2616
struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2617
enum rtw_bb_path tx_path_sel_cck = tx_path_sel_1ss;
2618
const struct rtw_chip_info *chip = rtwdev->chip;
2619
2620
if (tx_path_sel_1ss == path_div->current_tx_path)
2621
return;
2622
2623
path_div->current_tx_path = tx_path_sel_1ss;
2624
rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "Switch TX path=%s\n",
2625
tx_path_sel_1ss == BB_PATH_A ? "A" : "B");
2626
chip->ops->config_tx_path(rtwdev, rtwdev->hal.antenna_tx,
2627
tx_path_sel_1ss, tx_path_sel_cck, false);
2628
}
2629
2630
static void rtw_phy_tx_path_div_select(struct rtw_dev *rtwdev)
2631
{
2632
struct rtw_path_div *path_div = &rtwdev->dm_path_div;
2633
enum rtw_bb_path path = path_div->current_tx_path;
2634
s32 rssi_a = 0, rssi_b = 0;
2635
2636
if (path_div->path_a_cnt)
2637
rssi_a = path_div->path_a_sum / path_div->path_a_cnt;
2638
else
2639
rssi_a = 0;
2640
if (path_div->path_b_cnt)
2641
rssi_b = path_div->path_b_sum / path_div->path_b_cnt;
2642
else
2643
rssi_b = 0;
2644
2645
if (rssi_a != rssi_b)
2646
path = (rssi_a > rssi_b) ? BB_PATH_A : BB_PATH_B;
2647
2648
path_div->path_a_cnt = 0;
2649
path_div->path_a_sum = 0;
2650
path_div->path_b_cnt = 0;
2651
path_div->path_b_sum = 0;
2652
rtw_phy_set_tx_path_by_reg(rtwdev, path);
2653
}
2654
2655
static void rtw_phy_tx_path_diversity_2ss(struct rtw_dev *rtwdev)
2656
{
2657
if (rtwdev->hal.antenna_rx != BB_PATH_AB) {
2658
rtw_dbg(rtwdev, RTW_DBG_PATH_DIV,
2659
"[Return] tx_Path_en=%d, rx_Path_en=%d\n",
2660
rtwdev->hal.antenna_tx, rtwdev->hal.antenna_rx);
2661
return;
2662
}
2663
if (rtwdev->sta_cnt == 0) {
2664
rtw_dbg(rtwdev, RTW_DBG_PATH_DIV, "No Link\n");
2665
return;
2666
}
2667
2668
rtw_phy_tx_path_div_select(rtwdev);
2669
}
2670
2671
void rtw_phy_tx_path_diversity(struct rtw_dev *rtwdev)
2672
{
2673
const struct rtw_chip_info *chip = rtwdev->chip;
2674
2675
if (!chip->path_div_supported)
2676
return;
2677
2678
rtw_phy_tx_path_diversity_2ss(rtwdev);
2679
}
2680
2681