Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/drivers/usb/fotg210/fotg210-hcd.c
26130 views
1
// SPDX-License-Identifier: GPL-2.0+
2
/* Faraday FOTG210 EHCI-like driver
3
*
4
* Copyright (c) 2013 Faraday Technology Corporation
5
*
6
* Author: Yuan-Hsin Chen <[email protected]>
7
* Feng-Hsin Chiang <[email protected]>
8
* Po-Yu Chuang <[email protected]>
9
*
10
* Most of code borrowed from the Linux-3.7 EHCI driver
11
*/
12
#include <linux/module.h>
13
#include <linux/of.h>
14
#include <linux/device.h>
15
#include <linux/dmapool.h>
16
#include <linux/kernel.h>
17
#include <linux/delay.h>
18
#include <linux/ioport.h>
19
#include <linux/sched.h>
20
#include <linux/vmalloc.h>
21
#include <linux/errno.h>
22
#include <linux/init.h>
23
#include <linux/hrtimer.h>
24
#include <linux/list.h>
25
#include <linux/interrupt.h>
26
#include <linux/usb.h>
27
#include <linux/usb/hcd.h>
28
#include <linux/moduleparam.h>
29
#include <linux/dma-mapping.h>
30
#include <linux/debugfs.h>
31
#include <linux/slab.h>
32
#include <linux/uaccess.h>
33
#include <linux/platform_device.h>
34
#include <linux/io.h>
35
#include <linux/iopoll.h>
36
37
#include <asm/byteorder.h>
38
#include <asm/irq.h>
39
#include <linux/unaligned.h>
40
41
#include "fotg210.h"
42
43
static const char hcd_name[] = "fotg210_hcd";
44
45
#undef FOTG210_URB_TRACE
46
#define FOTG210_STATS
47
48
/* magic numbers that can affect system performance */
49
#define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
50
#define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
51
#define FOTG210_TUNE_RL_TT 0
52
#define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
53
#define FOTG210_TUNE_MULT_TT 1
54
55
/* Some drivers think it's safe to schedule isochronous transfers more than 256
56
* ms into the future (partly as a result of an old bug in the scheduling
57
* code). In an attempt to avoid trouble, we will use a minimum scheduling
58
* length of 512 frames instead of 256.
59
*/
60
#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
61
62
/* Initial IRQ latency: faster than hw default */
63
static int log2_irq_thresh; /* 0 to 6 */
64
module_param(log2_irq_thresh, int, S_IRUGO);
65
MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
66
67
/* initial park setting: slower than hw default */
68
static unsigned park;
69
module_param(park, uint, S_IRUGO);
70
MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
71
72
/* for link power management(LPM) feature */
73
static unsigned int hird;
74
module_param(hird, int, S_IRUGO);
75
MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
76
77
#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
78
79
#include "fotg210-hcd.h"
80
81
#define fotg210_dbg(fotg210, fmt, args...) \
82
dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83
#define fotg210_err(fotg210, fmt, args...) \
84
dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85
#define fotg210_info(fotg210, fmt, args...) \
86
dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
87
#define fotg210_warn(fotg210, fmt, args...) \
88
dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
89
90
/* check the values in the HCSPARAMS register (host controller _Structural_
91
* parameters) see EHCI spec, Table 2-4 for each value
92
*/
93
static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
94
{
95
u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
96
97
fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
98
HCS_N_PORTS(params));
99
}
100
101
/* check the values in the HCCPARAMS register (host controller _Capability_
102
* parameters) see EHCI Spec, Table 2-5 for each value
103
*/
104
static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
105
{
106
u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
107
108
fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
109
params,
110
HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
111
HCC_CANPARK(params) ? " park" : "");
112
}
113
114
static void __maybe_unused
115
dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
116
{
117
fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
118
hc32_to_cpup(fotg210, &qtd->hw_next),
119
hc32_to_cpup(fotg210, &qtd->hw_alt_next),
120
hc32_to_cpup(fotg210, &qtd->hw_token),
121
hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
122
if (qtd->hw_buf[1])
123
fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
124
hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
125
hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
126
hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
127
hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
128
}
129
130
static void __maybe_unused
131
dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
132
{
133
struct fotg210_qh_hw *hw = qh->hw;
134
135
fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
136
hw->hw_next, hw->hw_info1, hw->hw_info2,
137
hw->hw_current);
138
139
dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
140
}
141
142
static void __maybe_unused
143
dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
144
{
145
fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
146
itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
147
itd->urb);
148
149
fotg210_dbg(fotg210,
150
" trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
151
hc32_to_cpu(fotg210, itd->hw_transaction[0]),
152
hc32_to_cpu(fotg210, itd->hw_transaction[1]),
153
hc32_to_cpu(fotg210, itd->hw_transaction[2]),
154
hc32_to_cpu(fotg210, itd->hw_transaction[3]),
155
hc32_to_cpu(fotg210, itd->hw_transaction[4]),
156
hc32_to_cpu(fotg210, itd->hw_transaction[5]),
157
hc32_to_cpu(fotg210, itd->hw_transaction[6]),
158
hc32_to_cpu(fotg210, itd->hw_transaction[7]));
159
160
fotg210_dbg(fotg210,
161
" buf: %08x %08x %08x %08x %08x %08x %08x\n",
162
hc32_to_cpu(fotg210, itd->hw_bufp[0]),
163
hc32_to_cpu(fotg210, itd->hw_bufp[1]),
164
hc32_to_cpu(fotg210, itd->hw_bufp[2]),
165
hc32_to_cpu(fotg210, itd->hw_bufp[3]),
166
hc32_to_cpu(fotg210, itd->hw_bufp[4]),
167
hc32_to_cpu(fotg210, itd->hw_bufp[5]),
168
hc32_to_cpu(fotg210, itd->hw_bufp[6]));
169
170
fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
171
itd->index[0], itd->index[1], itd->index[2],
172
itd->index[3], itd->index[4], itd->index[5],
173
itd->index[6], itd->index[7]);
174
}
175
176
static int __maybe_unused
177
dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
178
{
179
return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
180
label, label[0] ? " " : "", status,
181
(status & STS_ASS) ? " Async" : "",
182
(status & STS_PSS) ? " Periodic" : "",
183
(status & STS_RECL) ? " Recl" : "",
184
(status & STS_HALT) ? " Halt" : "",
185
(status & STS_IAA) ? " IAA" : "",
186
(status & STS_FATAL) ? " FATAL" : "",
187
(status & STS_FLR) ? " FLR" : "",
188
(status & STS_PCD) ? " PCD" : "",
189
(status & STS_ERR) ? " ERR" : "",
190
(status & STS_INT) ? " INT" : "");
191
}
192
193
static int __maybe_unused
194
dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
195
{
196
return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
197
label, label[0] ? " " : "", enable,
198
(enable & STS_IAA) ? " IAA" : "",
199
(enable & STS_FATAL) ? " FATAL" : "",
200
(enable & STS_FLR) ? " FLR" : "",
201
(enable & STS_PCD) ? " PCD" : "",
202
(enable & STS_ERR) ? " ERR" : "",
203
(enable & STS_INT) ? " INT" : "");
204
}
205
206
static const char *const fls_strings[] = { "1024", "512", "256", "??" };
207
208
static int dbg_command_buf(char *buf, unsigned len, const char *label,
209
u32 command)
210
{
211
return scnprintf(buf, len,
212
"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
213
label, label[0] ? " " : "", command,
214
(command & CMD_PARK) ? " park" : "(park)",
215
CMD_PARK_CNT(command),
216
(command >> 16) & 0x3f,
217
(command & CMD_IAAD) ? " IAAD" : "",
218
(command & CMD_ASE) ? " Async" : "",
219
(command & CMD_PSE) ? " Periodic" : "",
220
fls_strings[(command >> 2) & 0x3],
221
(command & CMD_RESET) ? " Reset" : "",
222
(command & CMD_RUN) ? "RUN" : "HALT");
223
}
224
225
static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
226
u32 status)
227
{
228
char *sig;
229
230
/* signaling state */
231
switch (status & (3 << 10)) {
232
case 0 << 10:
233
sig = "se0";
234
break;
235
case 1 << 10:
236
sig = "k";
237
break; /* low speed */
238
case 2 << 10:
239
sig = "j";
240
break;
241
default:
242
sig = "?";
243
break;
244
}
245
246
scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
247
label, label[0] ? " " : "", port, status,
248
status >> 25, /*device address */
249
sig,
250
(status & PORT_RESET) ? " RESET" : "",
251
(status & PORT_SUSPEND) ? " SUSPEND" : "",
252
(status & PORT_RESUME) ? " RESUME" : "",
253
(status & PORT_PEC) ? " PEC" : "",
254
(status & PORT_PE) ? " PE" : "",
255
(status & PORT_CSC) ? " CSC" : "",
256
(status & PORT_CONNECT) ? " CONNECT" : "");
257
258
return buf;
259
}
260
261
/* functions have the "wrong" filename when they're output... */
262
#define dbg_status(fotg210, label, status) { \
263
char _buf[80]; \
264
dbg_status_buf(_buf, sizeof(_buf), label, status); \
265
fotg210_dbg(fotg210, "%s\n", _buf); \
266
}
267
268
#define dbg_cmd(fotg210, label, command) { \
269
char _buf[80]; \
270
dbg_command_buf(_buf, sizeof(_buf), label, command); \
271
fotg210_dbg(fotg210, "%s\n", _buf); \
272
}
273
274
#define dbg_port(fotg210, label, port, status) { \
275
char _buf[80]; \
276
fotg210_dbg(fotg210, "%s\n", \
277
dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
278
}
279
280
/* troubleshooting help: expose state in debugfs */
281
static int debug_async_open(struct inode *, struct file *);
282
static int debug_periodic_open(struct inode *, struct file *);
283
static int debug_registers_open(struct inode *, struct file *);
284
static int debug_async_open(struct inode *, struct file *);
285
286
static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
287
static int debug_close(struct inode *, struct file *);
288
289
static const struct file_operations debug_async_fops = {
290
.owner = THIS_MODULE,
291
.open = debug_async_open,
292
.read = debug_output,
293
.release = debug_close,
294
.llseek = default_llseek,
295
};
296
static const struct file_operations debug_periodic_fops = {
297
.owner = THIS_MODULE,
298
.open = debug_periodic_open,
299
.read = debug_output,
300
.release = debug_close,
301
.llseek = default_llseek,
302
};
303
static const struct file_operations debug_registers_fops = {
304
.owner = THIS_MODULE,
305
.open = debug_registers_open,
306
.read = debug_output,
307
.release = debug_close,
308
.llseek = default_llseek,
309
};
310
311
static struct dentry *fotg210_debug_root;
312
313
struct debug_buffer {
314
ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
315
struct usb_bus *bus;
316
struct mutex mutex; /* protect filling of buffer */
317
size_t count; /* number of characters filled into buffer */
318
char *output_buf;
319
size_t alloc_size;
320
};
321
322
static inline char speed_char(u32 scratch)
323
{
324
switch (scratch & (3 << 12)) {
325
case QH_FULL_SPEED:
326
return 'f';
327
328
case QH_LOW_SPEED:
329
return 'l';
330
331
case QH_HIGH_SPEED:
332
return 'h';
333
334
default:
335
return '?';
336
}
337
}
338
339
static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
340
{
341
__u32 v = hc32_to_cpu(fotg210, token);
342
343
if (v & QTD_STS_ACTIVE)
344
return '*';
345
if (v & QTD_STS_HALT)
346
return '-';
347
if (!IS_SHORT_READ(v))
348
return ' ';
349
/* tries to advance through hw_alt_next */
350
return '/';
351
}
352
353
static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
354
char **nextp, unsigned *sizep)
355
{
356
u32 scratch;
357
u32 hw_curr;
358
struct fotg210_qtd *td;
359
unsigned temp;
360
unsigned size = *sizep;
361
char *next = *nextp;
362
char mark;
363
__le32 list_end = FOTG210_LIST_END(fotg210);
364
struct fotg210_qh_hw *hw = qh->hw;
365
366
if (hw->hw_qtd_next == list_end) /* NEC does this */
367
mark = '@';
368
else
369
mark = token_mark(fotg210, hw->hw_token);
370
if (mark == '/') { /* qh_alt_next controls qh advance? */
371
if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
372
fotg210->async->hw->hw_alt_next)
373
mark = '#'; /* blocked */
374
else if (hw->hw_alt_next == list_end)
375
mark = '.'; /* use hw_qtd_next */
376
/* else alt_next points to some other qtd */
377
}
378
scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
379
hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
380
temp = scnprintf(next, size,
381
"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
382
qh, scratch & 0x007f,
383
speed_char(scratch),
384
(scratch >> 8) & 0x000f,
385
scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
386
hc32_to_cpup(fotg210, &hw->hw_token), mark,
387
(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
388
? "data1" : "data0",
389
(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
390
size -= temp;
391
next += temp;
392
393
/* hc may be modifying the list as we read it ... */
394
list_for_each_entry(td, &qh->qtd_list, qtd_list) {
395
scratch = hc32_to_cpup(fotg210, &td->hw_token);
396
mark = ' ';
397
if (hw_curr == td->qtd_dma)
398
mark = '*';
399
else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
400
mark = '+';
401
else if (QTD_LENGTH(scratch)) {
402
if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
403
mark = '#';
404
else if (td->hw_alt_next != list_end)
405
mark = '/';
406
}
407
temp = scnprintf(next, size,
408
"\n\t%p%c%s len=%d %08x urb %p",
409
td, mark, ({ char *tmp;
410
switch ((scratch>>8)&0x03) {
411
case 0:
412
tmp = "out";
413
break;
414
case 1:
415
tmp = "in";
416
break;
417
case 2:
418
tmp = "setup";
419
break;
420
default:
421
tmp = "?";
422
break;
423
} tmp; }),
424
(scratch >> 16) & 0x7fff,
425
scratch,
426
td->urb);
427
size -= temp;
428
next += temp;
429
}
430
431
temp = scnprintf(next, size, "\n");
432
433
size -= temp;
434
next += temp;
435
436
*sizep = size;
437
*nextp = next;
438
}
439
440
static ssize_t fill_async_buffer(struct debug_buffer *buf)
441
{
442
struct usb_hcd *hcd;
443
struct fotg210_hcd *fotg210;
444
unsigned long flags;
445
unsigned temp, size;
446
char *next;
447
struct fotg210_qh *qh;
448
449
hcd = bus_to_hcd(buf->bus);
450
fotg210 = hcd_to_fotg210(hcd);
451
next = buf->output_buf;
452
size = buf->alloc_size;
453
454
*next = 0;
455
456
/* dumps a snapshot of the async schedule.
457
* usually empty except for long-term bulk reads, or head.
458
* one QH per line, and TDs we know about
459
*/
460
spin_lock_irqsave(&fotg210->lock, flags);
461
for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
462
qh = qh->qh_next.qh)
463
qh_lines(fotg210, qh, &next, &size);
464
if (fotg210->async_unlink && size > 0) {
465
temp = scnprintf(next, size, "\nunlink =\n");
466
size -= temp;
467
next += temp;
468
469
for (qh = fotg210->async_unlink; size > 0 && qh;
470
qh = qh->unlink_next)
471
qh_lines(fotg210, qh, &next, &size);
472
}
473
spin_unlock_irqrestore(&fotg210->lock, flags);
474
475
return strlen(buf->output_buf);
476
}
477
478
/* count tds, get ep direction */
479
static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
480
struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
481
{
482
u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
483
struct fotg210_qtd *qtd;
484
char *type = "";
485
unsigned temp = 0;
486
487
/* count tds, get ep direction */
488
list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
489
temp++;
490
switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
491
case 0:
492
type = "out";
493
continue;
494
case 1:
495
type = "in";
496
continue;
497
}
498
}
499
500
return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
501
speed_char(scratch), scratch & 0x007f,
502
(scratch >> 8) & 0x000f, type, qh->usecs,
503
qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
504
}
505
506
#define DBG_SCHED_LIMIT 64
507
static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
508
{
509
struct usb_hcd *hcd;
510
struct fotg210_hcd *fotg210;
511
unsigned long flags;
512
union fotg210_shadow p, *seen;
513
unsigned temp, size, seen_count;
514
char *next;
515
unsigned i;
516
__hc32 tag;
517
518
seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
519
if (!seen)
520
return 0;
521
522
seen_count = 0;
523
524
hcd = bus_to_hcd(buf->bus);
525
fotg210 = hcd_to_fotg210(hcd);
526
next = buf->output_buf;
527
size = buf->alloc_size;
528
529
temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
530
size -= temp;
531
next += temp;
532
533
/* dump a snapshot of the periodic schedule.
534
* iso changes, interrupt usually doesn't.
535
*/
536
spin_lock_irqsave(&fotg210->lock, flags);
537
for (i = 0; i < fotg210->periodic_size; i++) {
538
p = fotg210->pshadow[i];
539
if (likely(!p.ptr))
540
continue;
541
542
tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
543
544
temp = scnprintf(next, size, "%4d: ", i);
545
size -= temp;
546
next += temp;
547
548
do {
549
struct fotg210_qh_hw *hw;
550
551
switch (hc32_to_cpu(fotg210, tag)) {
552
case Q_TYPE_QH:
553
hw = p.qh->hw;
554
temp = scnprintf(next, size, " qh%d-%04x/%p",
555
p.qh->period,
556
hc32_to_cpup(fotg210,
557
&hw->hw_info2)
558
/* uframe masks */
559
& (QH_CMASK | QH_SMASK),
560
p.qh);
561
size -= temp;
562
next += temp;
563
/* don't repeat what follows this qh */
564
for (temp = 0; temp < seen_count; temp++) {
565
if (seen[temp].ptr != p.ptr)
566
continue;
567
if (p.qh->qh_next.ptr) {
568
temp = scnprintf(next, size,
569
" ...");
570
size -= temp;
571
next += temp;
572
}
573
break;
574
}
575
/* show more info the first time around */
576
if (temp == seen_count) {
577
temp = output_buf_tds_dir(next,
578
fotg210, hw,
579
p.qh, size);
580
581
if (seen_count < DBG_SCHED_LIMIT)
582
seen[seen_count++].qh = p.qh;
583
} else
584
temp = 0;
585
tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
586
p = p.qh->qh_next;
587
break;
588
case Q_TYPE_FSTN:
589
temp = scnprintf(next, size,
590
" fstn-%8x/%p",
591
p.fstn->hw_prev, p.fstn);
592
tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
593
p = p.fstn->fstn_next;
594
break;
595
case Q_TYPE_ITD:
596
temp = scnprintf(next, size,
597
" itd/%p", p.itd);
598
tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
599
p = p.itd->itd_next;
600
break;
601
}
602
size -= temp;
603
next += temp;
604
} while (p.ptr);
605
606
temp = scnprintf(next, size, "\n");
607
size -= temp;
608
next += temp;
609
}
610
spin_unlock_irqrestore(&fotg210->lock, flags);
611
kfree(seen);
612
613
return buf->alloc_size - size;
614
}
615
#undef DBG_SCHED_LIMIT
616
617
static const char *rh_state_string(struct fotg210_hcd *fotg210)
618
{
619
switch (fotg210->rh_state) {
620
case FOTG210_RH_HALTED:
621
return "halted";
622
case FOTG210_RH_SUSPENDED:
623
return "suspended";
624
case FOTG210_RH_RUNNING:
625
return "running";
626
case FOTG210_RH_STOPPING:
627
return "stopping";
628
}
629
return "?";
630
}
631
632
static ssize_t fill_registers_buffer(struct debug_buffer *buf)
633
{
634
struct usb_hcd *hcd;
635
struct fotg210_hcd *fotg210;
636
unsigned long flags;
637
unsigned temp, size, i;
638
char *next, scratch[80];
639
static const char fmt[] = "%*s\n";
640
static const char label[] = "";
641
642
hcd = bus_to_hcd(buf->bus);
643
fotg210 = hcd_to_fotg210(hcd);
644
next = buf->output_buf;
645
size = buf->alloc_size;
646
647
spin_lock_irqsave(&fotg210->lock, flags);
648
649
if (!HCD_HW_ACCESSIBLE(hcd)) {
650
size = scnprintf(next, size,
651
"bus %s, device %s\n"
652
"%s\n"
653
"SUSPENDED(no register access)\n",
654
hcd->self.controller->bus->name,
655
dev_name(hcd->self.controller),
656
hcd->product_desc);
657
goto done;
658
}
659
660
/* Capability Registers */
661
i = HC_VERSION(fotg210, fotg210_readl(fotg210,
662
&fotg210->caps->hc_capbase));
663
temp = scnprintf(next, size,
664
"bus %s, device %s\n"
665
"%s\n"
666
"EHCI %x.%02x, rh state %s\n",
667
hcd->self.controller->bus->name,
668
dev_name(hcd->self.controller),
669
hcd->product_desc,
670
i >> 8, i & 0x0ff, rh_state_string(fotg210));
671
size -= temp;
672
next += temp;
673
674
/* FIXME interpret both types of params */
675
i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
676
temp = scnprintf(next, size, "structural params 0x%08x\n", i);
677
size -= temp;
678
next += temp;
679
680
i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
681
temp = scnprintf(next, size, "capability params 0x%08x\n", i);
682
size -= temp;
683
next += temp;
684
685
/* Operational Registers */
686
temp = dbg_status_buf(scratch, sizeof(scratch), label,
687
fotg210_readl(fotg210, &fotg210->regs->status));
688
temp = scnprintf(next, size, fmt, temp, scratch);
689
size -= temp;
690
next += temp;
691
692
temp = dbg_command_buf(scratch, sizeof(scratch), label,
693
fotg210_readl(fotg210, &fotg210->regs->command));
694
temp = scnprintf(next, size, fmt, temp, scratch);
695
size -= temp;
696
next += temp;
697
698
temp = dbg_intr_buf(scratch, sizeof(scratch), label,
699
fotg210_readl(fotg210, &fotg210->regs->intr_enable));
700
temp = scnprintf(next, size, fmt, temp, scratch);
701
size -= temp;
702
next += temp;
703
704
temp = scnprintf(next, size, "uframe %04x\n",
705
fotg210_read_frame_index(fotg210));
706
size -= temp;
707
next += temp;
708
709
if (fotg210->async_unlink) {
710
temp = scnprintf(next, size, "async unlink qh %p\n",
711
fotg210->async_unlink);
712
size -= temp;
713
next += temp;
714
}
715
716
#ifdef FOTG210_STATS
717
temp = scnprintf(next, size,
718
"irq normal %ld err %ld iaa %ld(lost %ld)\n",
719
fotg210->stats.normal, fotg210->stats.error,
720
fotg210->stats.iaa, fotg210->stats.lost_iaa);
721
size -= temp;
722
next += temp;
723
724
temp = scnprintf(next, size, "complete %ld unlink %ld\n",
725
fotg210->stats.complete, fotg210->stats.unlink);
726
size -= temp;
727
next += temp;
728
#endif
729
730
done:
731
spin_unlock_irqrestore(&fotg210->lock, flags);
732
733
return buf->alloc_size - size;
734
}
735
736
static struct debug_buffer
737
*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
738
{
739
struct debug_buffer *buf;
740
741
buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
742
743
if (buf) {
744
buf->bus = bus;
745
buf->fill_func = fill_func;
746
mutex_init(&buf->mutex);
747
buf->alloc_size = PAGE_SIZE;
748
}
749
750
return buf;
751
}
752
753
static int fill_buffer(struct debug_buffer *buf)
754
{
755
int ret = 0;
756
757
if (!buf->output_buf)
758
buf->output_buf = vmalloc(buf->alloc_size);
759
760
if (!buf->output_buf) {
761
ret = -ENOMEM;
762
goto out;
763
}
764
765
ret = buf->fill_func(buf);
766
767
if (ret >= 0) {
768
buf->count = ret;
769
ret = 0;
770
}
771
772
out:
773
return ret;
774
}
775
776
static ssize_t debug_output(struct file *file, char __user *user_buf,
777
size_t len, loff_t *offset)
778
{
779
struct debug_buffer *buf = file->private_data;
780
int ret = 0;
781
782
mutex_lock(&buf->mutex);
783
if (buf->count == 0) {
784
ret = fill_buffer(buf);
785
if (ret != 0) {
786
mutex_unlock(&buf->mutex);
787
goto out;
788
}
789
}
790
mutex_unlock(&buf->mutex);
791
792
ret = simple_read_from_buffer(user_buf, len, offset,
793
buf->output_buf, buf->count);
794
795
out:
796
return ret;
797
798
}
799
800
static int debug_close(struct inode *inode, struct file *file)
801
{
802
struct debug_buffer *buf = file->private_data;
803
804
if (buf) {
805
vfree(buf->output_buf);
806
kfree(buf);
807
}
808
809
return 0;
810
}
811
static int debug_async_open(struct inode *inode, struct file *file)
812
{
813
file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
814
815
return file->private_data ? 0 : -ENOMEM;
816
}
817
818
static int debug_periodic_open(struct inode *inode, struct file *file)
819
{
820
struct debug_buffer *buf;
821
822
buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
823
if (!buf)
824
return -ENOMEM;
825
826
buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
827
file->private_data = buf;
828
return 0;
829
}
830
831
static int debug_registers_open(struct inode *inode, struct file *file)
832
{
833
file->private_data = alloc_buffer(inode->i_private,
834
fill_registers_buffer);
835
836
return file->private_data ? 0 : -ENOMEM;
837
}
838
839
static inline void create_debug_files(struct fotg210_hcd *fotg210)
840
{
841
struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
842
struct dentry *root;
843
844
root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
845
846
debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
847
debugfs_create_file("periodic", S_IRUGO, root, bus,
848
&debug_periodic_fops);
849
debugfs_create_file("registers", S_IRUGO, root, bus,
850
&debug_registers_fops);
851
}
852
853
static inline void remove_debug_files(struct fotg210_hcd *fotg210)
854
{
855
struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
856
857
debugfs_lookup_and_remove(bus->bus_name, fotg210_debug_root);
858
}
859
860
/* handshake - spin reading hc until handshake completes or fails
861
* @ptr: address of hc register to be read
862
* @mask: bits to look at in result of read
863
* @done: value of those bits when handshake succeeds
864
* @usec: timeout in microseconds
865
*
866
* Returns negative errno, or zero on success
867
*
868
* Success happens when the "mask" bits have the specified value (hardware
869
* handshake done). There are two failure modes: "usec" have passed (major
870
* hardware flakeout), or the register reads as all-ones (hardware removed).
871
*
872
* That last failure should_only happen in cases like physical cardbus eject
873
* before driver shutdown. But it also seems to be caused by bugs in cardbus
874
* bridge shutdown: shutting down the bridge before the devices using it.
875
*/
876
static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
877
u32 mask, u32 done, int usec)
878
{
879
u32 result;
880
int ret;
881
882
ret = readl_poll_timeout_atomic(ptr, result,
883
((result & mask) == done ||
884
result == U32_MAX), 1, usec);
885
if (result == U32_MAX) /* card removed */
886
return -ENODEV;
887
888
return ret;
889
}
890
891
/* Force HC to halt state from unknown (EHCI spec section 2.3).
892
* Must be called with interrupts enabled and the lock not held.
893
*/
894
static int fotg210_halt(struct fotg210_hcd *fotg210)
895
{
896
u32 temp;
897
898
spin_lock_irq(&fotg210->lock);
899
900
/* disable any irqs left enabled by previous code */
901
fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
902
903
/*
904
* This routine gets called during probe before fotg210->command
905
* has been initialized, so we can't rely on its value.
906
*/
907
fotg210->command &= ~CMD_RUN;
908
temp = fotg210_readl(fotg210, &fotg210->regs->command);
909
temp &= ~(CMD_RUN | CMD_IAAD);
910
fotg210_writel(fotg210, temp, &fotg210->regs->command);
911
912
spin_unlock_irq(&fotg210->lock);
913
synchronize_irq(fotg210_to_hcd(fotg210)->irq);
914
915
return handshake(fotg210, &fotg210->regs->status,
916
STS_HALT, STS_HALT, 16 * 125);
917
}
918
919
/* Reset a non-running (STS_HALT == 1) controller.
920
* Must be called with interrupts enabled and the lock not held.
921
*/
922
static int fotg210_reset(struct fotg210_hcd *fotg210)
923
{
924
int retval;
925
u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
926
927
/* If the EHCI debug controller is active, special care must be
928
* taken before and after a host controller reset
929
*/
930
if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
931
fotg210->debug = NULL;
932
933
command |= CMD_RESET;
934
dbg_cmd(fotg210, "reset", command);
935
fotg210_writel(fotg210, command, &fotg210->regs->command);
936
fotg210->rh_state = FOTG210_RH_HALTED;
937
fotg210->next_statechange = jiffies;
938
retval = handshake(fotg210, &fotg210->regs->command,
939
CMD_RESET, 0, 250 * 1000);
940
941
if (retval)
942
return retval;
943
944
if (fotg210->debug)
945
dbgp_external_startup(fotg210_to_hcd(fotg210));
946
947
fotg210->port_c_suspend = fotg210->suspended_ports =
948
fotg210->resuming_ports = 0;
949
return retval;
950
}
951
952
/* Idle the controller (turn off the schedules).
953
* Must be called with interrupts enabled and the lock not held.
954
*/
955
static void fotg210_quiesce(struct fotg210_hcd *fotg210)
956
{
957
u32 temp;
958
959
if (fotg210->rh_state != FOTG210_RH_RUNNING)
960
return;
961
962
/* wait for any schedule enables/disables to take effect */
963
temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
964
handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
965
16 * 125);
966
967
/* then disable anything that's still active */
968
spin_lock_irq(&fotg210->lock);
969
fotg210->command &= ~(CMD_ASE | CMD_PSE);
970
fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
971
spin_unlock_irq(&fotg210->lock);
972
973
/* hardware can take 16 microframes to turn off ... */
974
handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
975
16 * 125);
976
}
977
978
static void end_unlink_async(struct fotg210_hcd *fotg210);
979
static void unlink_empty_async(struct fotg210_hcd *fotg210);
980
static void fotg210_work(struct fotg210_hcd *fotg210);
981
static void start_unlink_intr(struct fotg210_hcd *fotg210,
982
struct fotg210_qh *qh);
983
static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
984
985
/* Set a bit in the USBCMD register */
986
static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
987
{
988
fotg210->command |= bit;
989
fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
990
991
/* unblock posted write */
992
fotg210_readl(fotg210, &fotg210->regs->command);
993
}
994
995
/* Clear a bit in the USBCMD register */
996
static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
997
{
998
fotg210->command &= ~bit;
999
fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1000
1001
/* unblock posted write */
1002
fotg210_readl(fotg210, &fotg210->regs->command);
1003
}
1004
1005
/* EHCI timer support... Now using hrtimers.
1006
*
1007
* Lots of different events are triggered from fotg210->hrtimer. Whenever
1008
* the timer routine runs, it checks each possible event; events that are
1009
* currently enabled and whose expiration time has passed get handled.
1010
* The set of enabled events is stored as a collection of bitflags in
1011
* fotg210->enabled_hrtimer_events, and they are numbered in order of
1012
* increasing delay values (ranging between 1 ms and 100 ms).
1013
*
1014
* Rather than implementing a sorted list or tree of all pending events,
1015
* we keep track only of the lowest-numbered pending event, in
1016
* fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1017
* expiration time is set to the timeout value for this event.
1018
*
1019
* As a result, events might not get handled right away; the actual delay
1020
* could be anywhere up to twice the requested delay. This doesn't
1021
* matter, because none of the events are especially time-critical. The
1022
* ones that matter most all have a delay of 1 ms, so they will be
1023
* handled after 2 ms at most, which is okay. In addition to this, we
1024
* allow for an expiration range of 1 ms.
1025
*/
1026
1027
/* Delay lengths for the hrtimer event types.
1028
* Keep this list sorted by delay length, in the same order as
1029
* the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1030
*/
1031
static unsigned event_delays_ns[] = {
1032
1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1033
1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1034
1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1035
1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1036
2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1037
6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1038
10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1039
10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1040
15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1041
100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1042
};
1043
1044
/* Enable a pending hrtimer event */
1045
static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1046
bool resched)
1047
{
1048
ktime_t *timeout = &fotg210->hr_timeouts[event];
1049
1050
if (resched)
1051
*timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1052
fotg210->enabled_hrtimer_events |= (1 << event);
1053
1054
/* Track only the lowest-numbered pending event */
1055
if (event < fotg210->next_hrtimer_event) {
1056
fotg210->next_hrtimer_event = event;
1057
hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1058
NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1059
}
1060
}
1061
1062
1063
/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1064
static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1065
{
1066
unsigned actual, want;
1067
1068
/* Don't enable anything if the controller isn't running (e.g., died) */
1069
if (fotg210->rh_state != FOTG210_RH_RUNNING)
1070
return;
1071
1072
want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1073
actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1074
1075
if (want != actual) {
1076
1077
/* Poll again later, but give up after about 20 ms */
1078
if (fotg210->ASS_poll_count++ < 20) {
1079
fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1080
true);
1081
return;
1082
}
1083
fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1084
want, actual);
1085
}
1086
fotg210->ASS_poll_count = 0;
1087
1088
/* The status is up-to-date; restart or stop the schedule as needed */
1089
if (want == 0) { /* Stopped */
1090
if (fotg210->async_count > 0)
1091
fotg210_set_command_bit(fotg210, CMD_ASE);
1092
1093
} else { /* Running */
1094
if (fotg210->async_count == 0) {
1095
1096
/* Turn off the schedule after a while */
1097
fotg210_enable_event(fotg210,
1098
FOTG210_HRTIMER_DISABLE_ASYNC,
1099
true);
1100
}
1101
}
1102
}
1103
1104
/* Turn off the async schedule after a brief delay */
1105
static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1106
{
1107
fotg210_clear_command_bit(fotg210, CMD_ASE);
1108
}
1109
1110
1111
/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1112
static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1113
{
1114
unsigned actual, want;
1115
1116
/* Don't do anything if the controller isn't running (e.g., died) */
1117
if (fotg210->rh_state != FOTG210_RH_RUNNING)
1118
return;
1119
1120
want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1121
actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1122
1123
if (want != actual) {
1124
1125
/* Poll again later, but give up after about 20 ms */
1126
if (fotg210->PSS_poll_count++ < 20) {
1127
fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1128
true);
1129
return;
1130
}
1131
fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1132
want, actual);
1133
}
1134
fotg210->PSS_poll_count = 0;
1135
1136
/* The status is up-to-date; restart or stop the schedule as needed */
1137
if (want == 0) { /* Stopped */
1138
if (fotg210->periodic_count > 0)
1139
fotg210_set_command_bit(fotg210, CMD_PSE);
1140
1141
} else { /* Running */
1142
if (fotg210->periodic_count == 0) {
1143
1144
/* Turn off the schedule after a while */
1145
fotg210_enable_event(fotg210,
1146
FOTG210_HRTIMER_DISABLE_PERIODIC,
1147
true);
1148
}
1149
}
1150
}
1151
1152
/* Turn off the periodic schedule after a brief delay */
1153
static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1154
{
1155
fotg210_clear_command_bit(fotg210, CMD_PSE);
1156
}
1157
1158
1159
/* Poll the STS_HALT status bit; see when a dead controller stops */
1160
static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1161
{
1162
if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1163
1164
/* Give up after a few milliseconds */
1165
if (fotg210->died_poll_count++ < 5) {
1166
/* Try again later */
1167
fotg210_enable_event(fotg210,
1168
FOTG210_HRTIMER_POLL_DEAD, true);
1169
return;
1170
}
1171
fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1172
}
1173
1174
/* Clean up the mess */
1175
fotg210->rh_state = FOTG210_RH_HALTED;
1176
fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1177
fotg210_work(fotg210);
1178
end_unlink_async(fotg210);
1179
1180
/* Not in process context, so don't try to reset the controller */
1181
}
1182
1183
1184
/* Handle unlinked interrupt QHs once they are gone from the hardware */
1185
static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1186
{
1187
bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1188
1189
/*
1190
* Process all the QHs on the intr_unlink list that were added
1191
* before the current unlink cycle began. The list is in
1192
* temporal order, so stop when we reach the first entry in the
1193
* current cycle. But if the root hub isn't running then
1194
* process all the QHs on the list.
1195
*/
1196
fotg210->intr_unlinking = true;
1197
while (fotg210->intr_unlink) {
1198
struct fotg210_qh *qh = fotg210->intr_unlink;
1199
1200
if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1201
break;
1202
fotg210->intr_unlink = qh->unlink_next;
1203
qh->unlink_next = NULL;
1204
end_unlink_intr(fotg210, qh);
1205
}
1206
1207
/* Handle remaining entries later */
1208
if (fotg210->intr_unlink) {
1209
fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1210
true);
1211
++fotg210->intr_unlink_cycle;
1212
}
1213
fotg210->intr_unlinking = false;
1214
}
1215
1216
1217
/* Start another free-iTDs/siTDs cycle */
1218
static void start_free_itds(struct fotg210_hcd *fotg210)
1219
{
1220
if (!(fotg210->enabled_hrtimer_events &
1221
BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1222
fotg210->last_itd_to_free = list_entry(
1223
fotg210->cached_itd_list.prev,
1224
struct fotg210_itd, itd_list);
1225
fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1226
}
1227
}
1228
1229
/* Wait for controller to stop using old iTDs and siTDs */
1230
static void end_free_itds(struct fotg210_hcd *fotg210)
1231
{
1232
struct fotg210_itd *itd, *n;
1233
1234
if (fotg210->rh_state < FOTG210_RH_RUNNING)
1235
fotg210->last_itd_to_free = NULL;
1236
1237
list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1238
list_del(&itd->itd_list);
1239
dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1240
if (itd == fotg210->last_itd_to_free)
1241
break;
1242
}
1243
1244
if (!list_empty(&fotg210->cached_itd_list))
1245
start_free_itds(fotg210);
1246
}
1247
1248
1249
/* Handle lost (or very late) IAA interrupts */
1250
static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1251
{
1252
if (fotg210->rh_state != FOTG210_RH_RUNNING)
1253
return;
1254
1255
/*
1256
* Lost IAA irqs wedge things badly; seen first with a vt8235.
1257
* So we need this watchdog, but must protect it against both
1258
* (a) SMP races against real IAA firing and retriggering, and
1259
* (b) clean HC shutdown, when IAA watchdog was pending.
1260
*/
1261
if (fotg210->async_iaa) {
1262
u32 cmd, status;
1263
1264
/* If we get here, IAA is *REALLY* late. It's barely
1265
* conceivable that the system is so busy that CMD_IAAD
1266
* is still legitimately set, so let's be sure it's
1267
* clear before we read STS_IAA. (The HC should clear
1268
* CMD_IAAD when it sets STS_IAA.)
1269
*/
1270
cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1271
1272
/*
1273
* If IAA is set here it either legitimately triggered
1274
* after the watchdog timer expired (_way_ late, so we'll
1275
* still count it as lost) ... or a silicon erratum:
1276
* - VIA seems to set IAA without triggering the IRQ;
1277
* - IAAD potentially cleared without setting IAA.
1278
*/
1279
status = fotg210_readl(fotg210, &fotg210->regs->status);
1280
if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1281
INCR(fotg210->stats.lost_iaa);
1282
fotg210_writel(fotg210, STS_IAA,
1283
&fotg210->regs->status);
1284
}
1285
1286
fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1287
status, cmd);
1288
end_unlink_async(fotg210);
1289
}
1290
}
1291
1292
1293
/* Enable the I/O watchdog, if appropriate */
1294
static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1295
{
1296
/* Not needed if the controller isn't running or it's already enabled */
1297
if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1298
(fotg210->enabled_hrtimer_events &
1299
BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1300
return;
1301
1302
/*
1303
* Isochronous transfers always need the watchdog.
1304
* For other sorts we use it only if the flag is set.
1305
*/
1306
if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1307
fotg210->async_count + fotg210->intr_count > 0))
1308
fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1309
true);
1310
}
1311
1312
1313
/* Handler functions for the hrtimer event types.
1314
* Keep this array in the same order as the event types indexed by
1315
* enum fotg210_hrtimer_event in fotg210.h.
1316
*/
1317
static void (*event_handlers[])(struct fotg210_hcd *) = {
1318
fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1319
fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1320
fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1321
fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1322
end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1323
unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1324
fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1325
fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1326
fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1327
fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1328
};
1329
1330
static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1331
{
1332
struct fotg210_hcd *fotg210 =
1333
container_of(t, struct fotg210_hcd, hrtimer);
1334
ktime_t now;
1335
unsigned long events;
1336
unsigned long flags;
1337
unsigned e;
1338
1339
spin_lock_irqsave(&fotg210->lock, flags);
1340
1341
events = fotg210->enabled_hrtimer_events;
1342
fotg210->enabled_hrtimer_events = 0;
1343
fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1344
1345
/*
1346
* Check each pending event. If its time has expired, handle
1347
* the event; otherwise re-enable it.
1348
*/
1349
now = ktime_get();
1350
for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1351
if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1352
event_handlers[e](fotg210);
1353
else
1354
fotg210_enable_event(fotg210, e, false);
1355
}
1356
1357
spin_unlock_irqrestore(&fotg210->lock, flags);
1358
return HRTIMER_NORESTART;
1359
}
1360
1361
#define fotg210_bus_suspend NULL
1362
#define fotg210_bus_resume NULL
1363
1364
static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1365
u32 __iomem *status_reg, int port_status)
1366
{
1367
if (!(port_status & PORT_CONNECT))
1368
return port_status;
1369
1370
/* if reset finished and it's still not enabled -- handoff */
1371
if (!(port_status & PORT_PE))
1372
/* with integrated TT, there's nobody to hand it to! */
1373
fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1374
index + 1);
1375
else
1376
fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1377
index + 1);
1378
1379
return port_status;
1380
}
1381
1382
1383
/* build "status change" packet (one or two bytes) from HC registers */
1384
1385
static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1386
{
1387
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1388
u32 temp, status;
1389
u32 mask;
1390
int retval = 1;
1391
unsigned long flags;
1392
1393
/* init status to no-changes */
1394
buf[0] = 0;
1395
1396
/* Inform the core about resumes-in-progress by returning
1397
* a non-zero value even if there are no status changes.
1398
*/
1399
status = fotg210->resuming_ports;
1400
1401
mask = PORT_CSC | PORT_PEC;
1402
/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1403
1404
/* no hub change reports (bit 0) for now (power, ...) */
1405
1406
/* port N changes (bit N)? */
1407
spin_lock_irqsave(&fotg210->lock, flags);
1408
1409
temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1410
1411
/*
1412
* Return status information even for ports with OWNER set.
1413
* Otherwise hub_wq wouldn't see the disconnect event when a
1414
* high-speed device is switched over to the companion
1415
* controller by the user.
1416
*/
1417
1418
if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1419
(fotg210->reset_done[0] &&
1420
time_after_eq(jiffies, fotg210->reset_done[0]))) {
1421
buf[0] |= 1 << 1;
1422
status = STS_PCD;
1423
}
1424
/* FIXME autosuspend idle root hubs */
1425
spin_unlock_irqrestore(&fotg210->lock, flags);
1426
return status ? retval : 0;
1427
}
1428
1429
static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1430
struct usb_hub_descriptor *desc)
1431
{
1432
int ports = HCS_N_PORTS(fotg210->hcs_params);
1433
u16 temp;
1434
1435
desc->bDescriptorType = USB_DT_HUB;
1436
desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1437
desc->bHubContrCurrent = 0;
1438
1439
desc->bNbrPorts = ports;
1440
temp = 1 + (ports / 8);
1441
desc->bDescLength = 7 + 2 * temp;
1442
1443
/* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1444
memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1445
memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1446
1447
temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1448
temp |= HUB_CHAR_NO_LPSM; /* no power switching */
1449
desc->wHubCharacteristics = cpu_to_le16(temp);
1450
}
1451
1452
static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1453
u16 wIndex, char *buf, u16 wLength)
1454
{
1455
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1456
int ports = HCS_N_PORTS(fotg210->hcs_params);
1457
u32 __iomem *status_reg = &fotg210->regs->port_status;
1458
u32 temp, temp1, status;
1459
unsigned long flags;
1460
int retval = 0;
1461
unsigned selector;
1462
1463
/*
1464
* FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1465
* HCS_INDICATOR may say we can change LEDs to off/amber/green.
1466
* (track current state ourselves) ... blink for diagnostics,
1467
* power, "this is the one", etc. EHCI spec supports this.
1468
*/
1469
1470
spin_lock_irqsave(&fotg210->lock, flags);
1471
switch (typeReq) {
1472
case ClearHubFeature:
1473
switch (wValue) {
1474
case C_HUB_LOCAL_POWER:
1475
case C_HUB_OVER_CURRENT:
1476
/* no hub-wide feature/status flags */
1477
break;
1478
default:
1479
goto error;
1480
}
1481
break;
1482
case ClearPortFeature:
1483
if (!wIndex || wIndex > ports)
1484
goto error;
1485
wIndex--;
1486
temp = fotg210_readl(fotg210, status_reg);
1487
temp &= ~PORT_RWC_BITS;
1488
1489
/*
1490
* Even if OWNER is set, so the port is owned by the
1491
* companion controller, hub_wq needs to be able to clear
1492
* the port-change status bits (especially
1493
* USB_PORT_STAT_C_CONNECTION).
1494
*/
1495
1496
switch (wValue) {
1497
case USB_PORT_FEAT_ENABLE:
1498
fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1499
break;
1500
case USB_PORT_FEAT_C_ENABLE:
1501
fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1502
break;
1503
case USB_PORT_FEAT_SUSPEND:
1504
if (temp & PORT_RESET)
1505
goto error;
1506
if (!(temp & PORT_SUSPEND))
1507
break;
1508
if ((temp & PORT_PE) == 0)
1509
goto error;
1510
1511
/* resume signaling for 20 msec */
1512
fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1513
fotg210->reset_done[wIndex] = jiffies
1514
+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1515
break;
1516
case USB_PORT_FEAT_C_SUSPEND:
1517
clear_bit(wIndex, &fotg210->port_c_suspend);
1518
break;
1519
case USB_PORT_FEAT_C_CONNECTION:
1520
fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1521
break;
1522
case USB_PORT_FEAT_C_OVER_CURRENT:
1523
fotg210_writel(fotg210, temp | OTGISR_OVC,
1524
&fotg210->regs->otgisr);
1525
break;
1526
case USB_PORT_FEAT_C_RESET:
1527
/* GetPortStatus clears reset */
1528
break;
1529
default:
1530
goto error;
1531
}
1532
fotg210_readl(fotg210, &fotg210->regs->command);
1533
break;
1534
case GetHubDescriptor:
1535
fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1536
buf);
1537
break;
1538
case GetHubStatus:
1539
/* no hub-wide feature/status flags */
1540
memset(buf, 0, 4);
1541
/*cpu_to_le32s ((u32 *) buf); */
1542
break;
1543
case GetPortStatus:
1544
if (!wIndex || wIndex > ports)
1545
goto error;
1546
wIndex--;
1547
status = 0;
1548
temp = fotg210_readl(fotg210, status_reg);
1549
1550
/* wPortChange bits */
1551
if (temp & PORT_CSC)
1552
status |= USB_PORT_STAT_C_CONNECTION << 16;
1553
if (temp & PORT_PEC)
1554
status |= USB_PORT_STAT_C_ENABLE << 16;
1555
1556
temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1557
if (temp1 & OTGISR_OVC)
1558
status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1559
1560
/* whoever resumes must GetPortStatus to complete it!! */
1561
if (temp & PORT_RESUME) {
1562
1563
/* Remote Wakeup received? */
1564
if (!fotg210->reset_done[wIndex]) {
1565
/* resume signaling for 20 msec */
1566
fotg210->reset_done[wIndex] = jiffies
1567
+ msecs_to_jiffies(20);
1568
/* check the port again */
1569
mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1570
fotg210->reset_done[wIndex]);
1571
}
1572
1573
/* resume completed? */
1574
else if (time_after_eq(jiffies,
1575
fotg210->reset_done[wIndex])) {
1576
clear_bit(wIndex, &fotg210->suspended_ports);
1577
set_bit(wIndex, &fotg210->port_c_suspend);
1578
fotg210->reset_done[wIndex] = 0;
1579
1580
/* stop resume signaling */
1581
temp = fotg210_readl(fotg210, status_reg);
1582
fotg210_writel(fotg210, temp &
1583
~(PORT_RWC_BITS | PORT_RESUME),
1584
status_reg);
1585
clear_bit(wIndex, &fotg210->resuming_ports);
1586
retval = handshake(fotg210, status_reg,
1587
PORT_RESUME, 0, 2000);/* 2ms */
1588
if (retval != 0) {
1589
fotg210_err(fotg210,
1590
"port %d resume error %d\n",
1591
wIndex + 1, retval);
1592
goto error;
1593
}
1594
temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1595
}
1596
}
1597
1598
/* whoever resets must GetPortStatus to complete it!! */
1599
if ((temp & PORT_RESET) && time_after_eq(jiffies,
1600
fotg210->reset_done[wIndex])) {
1601
status |= USB_PORT_STAT_C_RESET << 16;
1602
fotg210->reset_done[wIndex] = 0;
1603
clear_bit(wIndex, &fotg210->resuming_ports);
1604
1605
/* force reset to complete */
1606
fotg210_writel(fotg210,
1607
temp & ~(PORT_RWC_BITS | PORT_RESET),
1608
status_reg);
1609
/* REVISIT: some hardware needs 550+ usec to clear
1610
* this bit; seems too long to spin routinely...
1611
*/
1612
retval = handshake(fotg210, status_reg,
1613
PORT_RESET, 0, 1000);
1614
if (retval != 0) {
1615
fotg210_err(fotg210, "port %d reset error %d\n",
1616
wIndex + 1, retval);
1617
goto error;
1618
}
1619
1620
/* see what we found out */
1621
temp = check_reset_complete(fotg210, wIndex, status_reg,
1622
fotg210_readl(fotg210, status_reg));
1623
1624
/* restart schedule */
1625
fotg210->command |= CMD_RUN;
1626
fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1627
}
1628
1629
if (!(temp & (PORT_RESUME|PORT_RESET))) {
1630
fotg210->reset_done[wIndex] = 0;
1631
clear_bit(wIndex, &fotg210->resuming_ports);
1632
}
1633
1634
/* transfer dedicated ports to the companion hc */
1635
if ((temp & PORT_CONNECT) &&
1636
test_bit(wIndex, &fotg210->companion_ports)) {
1637
temp &= ~PORT_RWC_BITS;
1638
fotg210_writel(fotg210, temp, status_reg);
1639
fotg210_dbg(fotg210, "port %d --> companion\n",
1640
wIndex + 1);
1641
temp = fotg210_readl(fotg210, status_reg);
1642
}
1643
1644
/*
1645
* Even if OWNER is set, there's no harm letting hub_wq
1646
* see the wPortStatus values (they should all be 0 except
1647
* for PORT_POWER anyway).
1648
*/
1649
1650
if (temp & PORT_CONNECT) {
1651
status |= USB_PORT_STAT_CONNECTION;
1652
status |= fotg210_port_speed(fotg210, temp);
1653
}
1654
if (temp & PORT_PE)
1655
status |= USB_PORT_STAT_ENABLE;
1656
1657
/* maybe the port was unsuspended without our knowledge */
1658
if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1659
status |= USB_PORT_STAT_SUSPEND;
1660
} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1661
clear_bit(wIndex, &fotg210->suspended_ports);
1662
clear_bit(wIndex, &fotg210->resuming_ports);
1663
fotg210->reset_done[wIndex] = 0;
1664
if (temp & PORT_PE)
1665
set_bit(wIndex, &fotg210->port_c_suspend);
1666
}
1667
1668
temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1669
if (temp1 & OTGISR_OVC)
1670
status |= USB_PORT_STAT_OVERCURRENT;
1671
if (temp & PORT_RESET)
1672
status |= USB_PORT_STAT_RESET;
1673
if (test_bit(wIndex, &fotg210->port_c_suspend))
1674
status |= USB_PORT_STAT_C_SUSPEND << 16;
1675
1676
if (status & ~0xffff) /* only if wPortChange is interesting */
1677
dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1678
put_unaligned_le32(status, buf);
1679
break;
1680
case SetHubFeature:
1681
switch (wValue) {
1682
case C_HUB_LOCAL_POWER:
1683
case C_HUB_OVER_CURRENT:
1684
/* no hub-wide feature/status flags */
1685
break;
1686
default:
1687
goto error;
1688
}
1689
break;
1690
case SetPortFeature:
1691
selector = wIndex >> 8;
1692
wIndex &= 0xff;
1693
1694
if (!wIndex || wIndex > ports)
1695
goto error;
1696
wIndex--;
1697
temp = fotg210_readl(fotg210, status_reg);
1698
temp &= ~PORT_RWC_BITS;
1699
switch (wValue) {
1700
case USB_PORT_FEAT_SUSPEND:
1701
if ((temp & PORT_PE) == 0
1702
|| (temp & PORT_RESET) != 0)
1703
goto error;
1704
1705
/* After above check the port must be connected.
1706
* Set appropriate bit thus could put phy into low power
1707
* mode if we have hostpc feature
1708
*/
1709
fotg210_writel(fotg210, temp | PORT_SUSPEND,
1710
status_reg);
1711
set_bit(wIndex, &fotg210->suspended_ports);
1712
break;
1713
case USB_PORT_FEAT_RESET:
1714
if (temp & PORT_RESUME)
1715
goto error;
1716
/* line status bits may report this as low speed,
1717
* which can be fine if this root hub has a
1718
* transaction translator built in.
1719
*/
1720
fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1721
temp |= PORT_RESET;
1722
temp &= ~PORT_PE;
1723
1724
/*
1725
* caller must wait, then call GetPortStatus
1726
* usb 2.0 spec says 50 ms resets on root
1727
*/
1728
fotg210->reset_done[wIndex] = jiffies
1729
+ msecs_to_jiffies(50);
1730
fotg210_writel(fotg210, temp, status_reg);
1731
break;
1732
1733
/* For downstream facing ports (these): one hub port is put
1734
* into test mode according to USB2 11.24.2.13, then the hub
1735
* must be reset (which for root hub now means rmmod+modprobe,
1736
* or else system reboot). See EHCI 2.3.9 and 4.14 for info
1737
* about the EHCI-specific stuff.
1738
*/
1739
case USB_PORT_FEAT_TEST:
1740
if (!selector || selector > 5)
1741
goto error;
1742
spin_unlock_irqrestore(&fotg210->lock, flags);
1743
fotg210_quiesce(fotg210);
1744
spin_lock_irqsave(&fotg210->lock, flags);
1745
1746
/* Put all enabled ports into suspend */
1747
temp = fotg210_readl(fotg210, status_reg) &
1748
~PORT_RWC_BITS;
1749
if (temp & PORT_PE)
1750
fotg210_writel(fotg210, temp | PORT_SUSPEND,
1751
status_reg);
1752
1753
spin_unlock_irqrestore(&fotg210->lock, flags);
1754
fotg210_halt(fotg210);
1755
spin_lock_irqsave(&fotg210->lock, flags);
1756
1757
temp = fotg210_readl(fotg210, status_reg);
1758
temp |= selector << 16;
1759
fotg210_writel(fotg210, temp, status_reg);
1760
break;
1761
1762
default:
1763
goto error;
1764
}
1765
fotg210_readl(fotg210, &fotg210->regs->command);
1766
break;
1767
1768
default:
1769
error:
1770
/* "stall" on error */
1771
retval = -EPIPE;
1772
}
1773
spin_unlock_irqrestore(&fotg210->lock, flags);
1774
return retval;
1775
}
1776
1777
static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1778
int portnum)
1779
{
1780
return;
1781
}
1782
1783
static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1784
int portnum)
1785
{
1786
return 0;
1787
}
1788
1789
/* There's basically three types of memory:
1790
* - data used only by the HCD ... kmalloc is fine
1791
* - async and periodic schedules, shared by HC and HCD ... these
1792
* need to use dma_pool or dma_alloc_coherent
1793
* - driver buffers, read/written by HC ... single shot DMA mapped
1794
*
1795
* There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1796
* No memory seen by this driver is pageable.
1797
*/
1798
1799
/* Allocate the key transfer structures from the previously allocated pool */
1800
static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1801
struct fotg210_qtd *qtd, dma_addr_t dma)
1802
{
1803
memset(qtd, 0, sizeof(*qtd));
1804
qtd->qtd_dma = dma;
1805
qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1806
qtd->hw_next = FOTG210_LIST_END(fotg210);
1807
qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1808
INIT_LIST_HEAD(&qtd->qtd_list);
1809
}
1810
1811
static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1812
gfp_t flags)
1813
{
1814
struct fotg210_qtd *qtd;
1815
dma_addr_t dma;
1816
1817
qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1818
if (qtd != NULL)
1819
fotg210_qtd_init(fotg210, qtd, dma);
1820
1821
return qtd;
1822
}
1823
1824
static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1825
struct fotg210_qtd *qtd)
1826
{
1827
dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1828
}
1829
1830
1831
static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1832
{
1833
/* clean qtds first, and know this is not linked */
1834
if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1835
fotg210_dbg(fotg210, "unused qh not empty!\n");
1836
BUG();
1837
}
1838
if (qh->dummy)
1839
fotg210_qtd_free(fotg210, qh->dummy);
1840
dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1841
kfree(qh);
1842
}
1843
1844
static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1845
gfp_t flags)
1846
{
1847
struct fotg210_qh *qh;
1848
dma_addr_t dma;
1849
1850
qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1851
if (!qh)
1852
goto done;
1853
qh->hw = (struct fotg210_qh_hw *)
1854
dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1855
if (!qh->hw)
1856
goto fail;
1857
qh->qh_dma = dma;
1858
INIT_LIST_HEAD(&qh->qtd_list);
1859
1860
/* dummy td enables safe urb queuing */
1861
qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1862
if (qh->dummy == NULL) {
1863
fotg210_dbg(fotg210, "no dummy td\n");
1864
goto fail1;
1865
}
1866
done:
1867
return qh;
1868
fail1:
1869
dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1870
fail:
1871
kfree(qh);
1872
return NULL;
1873
}
1874
1875
/* The queue heads and transfer descriptors are managed from pools tied
1876
* to each of the "per device" structures.
1877
* This is the initialisation and cleanup code.
1878
*/
1879
1880
static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1881
{
1882
if (fotg210->async)
1883
qh_destroy(fotg210, fotg210->async);
1884
fotg210->async = NULL;
1885
1886
if (fotg210->dummy)
1887
qh_destroy(fotg210, fotg210->dummy);
1888
fotg210->dummy = NULL;
1889
1890
/* DMA consistent memory and pools */
1891
dma_pool_destroy(fotg210->qtd_pool);
1892
fotg210->qtd_pool = NULL;
1893
1894
dma_pool_destroy(fotg210->qh_pool);
1895
fotg210->qh_pool = NULL;
1896
1897
dma_pool_destroy(fotg210->itd_pool);
1898
fotg210->itd_pool = NULL;
1899
1900
if (fotg210->periodic)
1901
dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1902
fotg210->periodic_size * sizeof(u32),
1903
fotg210->periodic, fotg210->periodic_dma);
1904
fotg210->periodic = NULL;
1905
1906
/* shadow periodic table */
1907
kfree(fotg210->pshadow);
1908
fotg210->pshadow = NULL;
1909
}
1910
1911
/* remember to add cleanup code (above) if you add anything here */
1912
static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1913
{
1914
int i;
1915
1916
/* QTDs for control/bulk/intr transfers */
1917
fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1918
fotg210_to_hcd(fotg210)->self.controller,
1919
sizeof(struct fotg210_qtd),
1920
32 /* byte alignment (for hw parts) */,
1921
4096 /* can't cross 4K */);
1922
if (!fotg210->qtd_pool)
1923
goto fail;
1924
1925
/* QHs for control/bulk/intr transfers */
1926
fotg210->qh_pool = dma_pool_create("fotg210_qh",
1927
fotg210_to_hcd(fotg210)->self.controller,
1928
sizeof(struct fotg210_qh_hw),
1929
32 /* byte alignment (for hw parts) */,
1930
4096 /* can't cross 4K */);
1931
if (!fotg210->qh_pool)
1932
goto fail;
1933
1934
fotg210->async = fotg210_qh_alloc(fotg210, flags);
1935
if (!fotg210->async)
1936
goto fail;
1937
1938
/* ITD for high speed ISO transfers */
1939
fotg210->itd_pool = dma_pool_create("fotg210_itd",
1940
fotg210_to_hcd(fotg210)->self.controller,
1941
sizeof(struct fotg210_itd),
1942
64 /* byte alignment (for hw parts) */,
1943
4096 /* can't cross 4K */);
1944
if (!fotg210->itd_pool)
1945
goto fail;
1946
1947
/* Hardware periodic table */
1948
fotg210->periodic =
1949
dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1950
fotg210->periodic_size * sizeof(__le32),
1951
&fotg210->periodic_dma, 0);
1952
if (fotg210->periodic == NULL)
1953
goto fail;
1954
1955
for (i = 0; i < fotg210->periodic_size; i++)
1956
fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1957
1958
/* software shadow of hardware table */
1959
fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1960
flags);
1961
if (fotg210->pshadow != NULL)
1962
return 0;
1963
1964
fail:
1965
fotg210_dbg(fotg210, "couldn't init memory\n");
1966
fotg210_mem_cleanup(fotg210);
1967
return -ENOMEM;
1968
}
1969
/* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1970
*
1971
* Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1972
* entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1973
* buffers needed for the larger number). We use one QH per endpoint, queue
1974
* multiple urbs (all three types) per endpoint. URBs may need several qtds.
1975
*
1976
* ISO traffic uses "ISO TD" (itd) records, and (along with
1977
* interrupts) needs careful scheduling. Performance improvements can be
1978
* an ongoing challenge. That's in "ehci-sched.c".
1979
*
1980
* USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1981
* or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1982
* (b) special fields in qh entries or (c) split iso entries. TTs will
1983
* buffer low/full speed data so the host collects it at high speed.
1984
*/
1985
1986
/* fill a qtd, returning how much of the buffer we were able to queue up */
1987
static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1988
dma_addr_t buf, size_t len, int token, int maxpacket)
1989
{
1990
int i, count;
1991
u64 addr = buf;
1992
1993
/* one buffer entry per 4K ... first might be short or unaligned */
1994
qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
1995
qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
1996
count = 0x1000 - (buf & 0x0fff); /* rest of that page */
1997
if (likely(len < count)) /* ... iff needed */
1998
count = len;
1999
else {
2000
buf += 0x1000;
2001
buf &= ~0x0fff;
2002
2003
/* per-qtd limit: from 16K to 20K (best alignment) */
2004
for (i = 1; count < len && i < 5; i++) {
2005
addr = buf;
2006
qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2007
qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2008
(u32)(addr >> 32));
2009
buf += 0x1000;
2010
if ((count + 0x1000) < len)
2011
count += 0x1000;
2012
else
2013
count = len;
2014
}
2015
2016
/* short packets may only terminate transfers */
2017
if (count != len)
2018
count -= (count % maxpacket);
2019
}
2020
qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2021
qtd->length = count;
2022
2023
return count;
2024
}
2025
2026
static inline void qh_update(struct fotg210_hcd *fotg210,
2027
struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2028
{
2029
struct fotg210_qh_hw *hw = qh->hw;
2030
2031
/* writes to an active overlay are unsafe */
2032
BUG_ON(qh->qh_state != QH_STATE_IDLE);
2033
2034
hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2035
hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2036
2037
/* Except for control endpoints, we make hardware maintain data
2038
* toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2039
* and set the pseudo-toggle in udev. Only usb_clear_halt() will
2040
* ever clear it.
2041
*/
2042
if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2043
unsigned is_out, epnum;
2044
2045
is_out = qh->is_out;
2046
epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2047
if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2048
hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2049
usb_settoggle(qh->dev, epnum, is_out, 1);
2050
}
2051
}
2052
2053
hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2054
}
2055
2056
/* if it weren't for a common silicon quirk (writing the dummy into the qh
2057
* overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2058
* recovery (including urb dequeue) would need software changes to a QH...
2059
*/
2060
static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2061
{
2062
struct fotg210_qtd *qtd;
2063
2064
if (list_empty(&qh->qtd_list))
2065
qtd = qh->dummy;
2066
else {
2067
qtd = list_entry(qh->qtd_list.next,
2068
struct fotg210_qtd, qtd_list);
2069
/*
2070
* first qtd may already be partially processed.
2071
* If we come here during unlink, the QH overlay region
2072
* might have reference to the just unlinked qtd. The
2073
* qtd is updated in qh_completions(). Update the QH
2074
* overlay here.
2075
*/
2076
if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2077
qh->hw->hw_qtd_next = qtd->hw_next;
2078
qtd = NULL;
2079
}
2080
}
2081
2082
if (qtd)
2083
qh_update(fotg210, qh, qtd);
2084
}
2085
2086
static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2087
2088
static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2089
struct usb_host_endpoint *ep)
2090
{
2091
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2092
struct fotg210_qh *qh = ep->hcpriv;
2093
unsigned long flags;
2094
2095
spin_lock_irqsave(&fotg210->lock, flags);
2096
qh->clearing_tt = 0;
2097
if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2098
&& fotg210->rh_state == FOTG210_RH_RUNNING)
2099
qh_link_async(fotg210, qh);
2100
spin_unlock_irqrestore(&fotg210->lock, flags);
2101
}
2102
2103
static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2104
struct fotg210_qh *qh, struct urb *urb, u32 token)
2105
{
2106
2107
/* If an async split transaction gets an error or is unlinked,
2108
* the TT buffer may be left in an indeterminate state. We
2109
* have to clear the TT buffer.
2110
*
2111
* Note: this routine is never called for Isochronous transfers.
2112
*/
2113
if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2114
struct usb_device *tt = urb->dev->tt->hub;
2115
2116
dev_dbg(&tt->dev,
2117
"clear tt buffer port %d, a%d ep%d t%08x\n",
2118
urb->dev->ttport, urb->dev->devnum,
2119
usb_pipeendpoint(urb->pipe), token);
2120
2121
if (urb->dev->tt->hub !=
2122
fotg210_to_hcd(fotg210)->self.root_hub) {
2123
if (usb_hub_clear_tt_buffer(urb) == 0)
2124
qh->clearing_tt = 1;
2125
}
2126
}
2127
}
2128
2129
static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2130
size_t length, u32 token)
2131
{
2132
int status = -EINPROGRESS;
2133
2134
/* count IN/OUT bytes, not SETUP (even short packets) */
2135
if (likely(QTD_PID(token) != 2))
2136
urb->actual_length += length - QTD_LENGTH(token);
2137
2138
/* don't modify error codes */
2139
if (unlikely(urb->unlinked))
2140
return status;
2141
2142
/* force cleanup after short read; not always an error */
2143
if (unlikely(IS_SHORT_READ(token)))
2144
status = -EREMOTEIO;
2145
2146
/* serious "can't proceed" faults reported by the hardware */
2147
if (token & QTD_STS_HALT) {
2148
if (token & QTD_STS_BABBLE) {
2149
/* FIXME "must" disable babbling device's port too */
2150
status = -EOVERFLOW;
2151
/* CERR nonzero + halt --> stall */
2152
} else if (QTD_CERR(token)) {
2153
status = -EPIPE;
2154
2155
/* In theory, more than one of the following bits can be set
2156
* since they are sticky and the transaction is retried.
2157
* Which to test first is rather arbitrary.
2158
*/
2159
} else if (token & QTD_STS_MMF) {
2160
/* fs/ls interrupt xfer missed the complete-split */
2161
status = -EPROTO;
2162
} else if (token & QTD_STS_DBE) {
2163
status = (QTD_PID(token) == 1) /* IN ? */
2164
? -ENOSR /* hc couldn't read data */
2165
: -ECOMM; /* hc couldn't write data */
2166
} else if (token & QTD_STS_XACT) {
2167
/* timeout, bad CRC, wrong PID, etc */
2168
fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2169
urb->dev->devpath,
2170
usb_pipeendpoint(urb->pipe),
2171
usb_pipein(urb->pipe) ? "in" : "out");
2172
status = -EPROTO;
2173
} else { /* unknown */
2174
status = -EPROTO;
2175
}
2176
2177
fotg210_dbg(fotg210,
2178
"dev%d ep%d%s qtd token %08x --> status %d\n",
2179
usb_pipedevice(urb->pipe),
2180
usb_pipeendpoint(urb->pipe),
2181
usb_pipein(urb->pipe) ? "in" : "out",
2182
token, status);
2183
}
2184
2185
return status;
2186
}
2187
2188
static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2189
int status)
2190
__releases(fotg210->lock)
2191
__acquires(fotg210->lock)
2192
{
2193
if (likely(urb->hcpriv != NULL)) {
2194
struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2195
2196
/* S-mask in a QH means it's an interrupt urb */
2197
if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2198
2199
/* ... update hc-wide periodic stats (for usbfs) */
2200
fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2201
}
2202
}
2203
2204
if (unlikely(urb->unlinked)) {
2205
INCR(fotg210->stats.unlink);
2206
} else {
2207
/* report non-error and short read status as zero */
2208
if (status == -EINPROGRESS || status == -EREMOTEIO)
2209
status = 0;
2210
INCR(fotg210->stats.complete);
2211
}
2212
2213
#ifdef FOTG210_URB_TRACE
2214
fotg210_dbg(fotg210,
2215
"%s %s urb %p ep%d%s status %d len %d/%d\n",
2216
__func__, urb->dev->devpath, urb,
2217
usb_pipeendpoint(urb->pipe),
2218
usb_pipein(urb->pipe) ? "in" : "out",
2219
status,
2220
urb->actual_length, urb->transfer_buffer_length);
2221
#endif
2222
2223
/* complete() can reenter this HCD */
2224
usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2225
spin_unlock(&fotg210->lock);
2226
usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2227
spin_lock(&fotg210->lock);
2228
}
2229
2230
static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2231
2232
/* Process and free completed qtds for a qh, returning URBs to drivers.
2233
* Chases up to qh->hw_current. Returns number of completions called,
2234
* indicating how much "real" work we did.
2235
*/
2236
static unsigned qh_completions(struct fotg210_hcd *fotg210,
2237
struct fotg210_qh *qh)
2238
{
2239
struct fotg210_qtd *last, *end = qh->dummy;
2240
struct fotg210_qtd *qtd, *tmp;
2241
int last_status;
2242
int stopped;
2243
unsigned count = 0;
2244
u8 state;
2245
struct fotg210_qh_hw *hw = qh->hw;
2246
2247
if (unlikely(list_empty(&qh->qtd_list)))
2248
return count;
2249
2250
/* completions (or tasks on other cpus) must never clobber HALT
2251
* till we've gone through and cleaned everything up, even when
2252
* they add urbs to this qh's queue or mark them for unlinking.
2253
*
2254
* NOTE: unlinking expects to be done in queue order.
2255
*
2256
* It's a bug for qh->qh_state to be anything other than
2257
* QH_STATE_IDLE, unless our caller is scan_async() or
2258
* scan_intr().
2259
*/
2260
state = qh->qh_state;
2261
qh->qh_state = QH_STATE_COMPLETING;
2262
stopped = (state == QH_STATE_IDLE);
2263
2264
rescan:
2265
last = NULL;
2266
last_status = -EINPROGRESS;
2267
qh->needs_rescan = 0;
2268
2269
/* remove de-activated QTDs from front of queue.
2270
* after faults (including short reads), cleanup this urb
2271
* then let the queue advance.
2272
* if queue is stopped, handles unlinks.
2273
*/
2274
list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2275
struct urb *urb;
2276
u32 token = 0;
2277
2278
urb = qtd->urb;
2279
2280
/* clean up any state from previous QTD ...*/
2281
if (last) {
2282
if (likely(last->urb != urb)) {
2283
fotg210_urb_done(fotg210, last->urb,
2284
last_status);
2285
count++;
2286
last_status = -EINPROGRESS;
2287
}
2288
fotg210_qtd_free(fotg210, last);
2289
last = NULL;
2290
}
2291
2292
/* ignore urbs submitted during completions we reported */
2293
if (qtd == end)
2294
break;
2295
2296
/* hardware copies qtd out of qh overlay */
2297
rmb();
2298
token = hc32_to_cpu(fotg210, qtd->hw_token);
2299
2300
/* always clean up qtds the hc de-activated */
2301
retry_xacterr:
2302
if ((token & QTD_STS_ACTIVE) == 0) {
2303
2304
/* Report Data Buffer Error: non-fatal but useful */
2305
if (token & QTD_STS_DBE)
2306
fotg210_dbg(fotg210,
2307
"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2308
urb, usb_endpoint_num(&urb->ep->desc),
2309
usb_endpoint_dir_in(&urb->ep->desc)
2310
? "in" : "out",
2311
urb->transfer_buffer_length, qtd, qh);
2312
2313
/* on STALL, error, and short reads this urb must
2314
* complete and all its qtds must be recycled.
2315
*/
2316
if ((token & QTD_STS_HALT) != 0) {
2317
2318
/* retry transaction errors until we
2319
* reach the software xacterr limit
2320
*/
2321
if ((token & QTD_STS_XACT) &&
2322
QTD_CERR(token) == 0 &&
2323
++qh->xacterrs < QH_XACTERR_MAX &&
2324
!urb->unlinked) {
2325
fotg210_dbg(fotg210,
2326
"detected XactErr len %zu/%zu retry %d\n",
2327
qtd->length - QTD_LENGTH(token),
2328
qtd->length,
2329
qh->xacterrs);
2330
2331
/* reset the token in the qtd and the
2332
* qh overlay (which still contains
2333
* the qtd) so that we pick up from
2334
* where we left off
2335
*/
2336
token &= ~QTD_STS_HALT;
2337
token |= QTD_STS_ACTIVE |
2338
(FOTG210_TUNE_CERR << 10);
2339
qtd->hw_token = cpu_to_hc32(fotg210,
2340
token);
2341
wmb();
2342
hw->hw_token = cpu_to_hc32(fotg210,
2343
token);
2344
goto retry_xacterr;
2345
}
2346
stopped = 1;
2347
2348
/* magic dummy for some short reads; qh won't advance.
2349
* that silicon quirk can kick in with this dummy too.
2350
*
2351
* other short reads won't stop the queue, including
2352
* control transfers (status stage handles that) or
2353
* most other single-qtd reads ... the queue stops if
2354
* URB_SHORT_NOT_OK was set so the driver submitting
2355
* the urbs could clean it up.
2356
*/
2357
} else if (IS_SHORT_READ(token) &&
2358
!(qtd->hw_alt_next &
2359
FOTG210_LIST_END(fotg210))) {
2360
stopped = 1;
2361
}
2362
2363
/* stop scanning when we reach qtds the hc is using */
2364
} else if (likely(!stopped
2365
&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2366
break;
2367
2368
/* scan the whole queue for unlinks whenever it stops */
2369
} else {
2370
stopped = 1;
2371
2372
/* cancel everything if we halt, suspend, etc */
2373
if (fotg210->rh_state < FOTG210_RH_RUNNING)
2374
last_status = -ESHUTDOWN;
2375
2376
/* this qtd is active; skip it unless a previous qtd
2377
* for its urb faulted, or its urb was canceled.
2378
*/
2379
else if (last_status == -EINPROGRESS && !urb->unlinked)
2380
continue;
2381
2382
/* qh unlinked; token in overlay may be most current */
2383
if (state == QH_STATE_IDLE &&
2384
cpu_to_hc32(fotg210, qtd->qtd_dma)
2385
== hw->hw_current) {
2386
token = hc32_to_cpu(fotg210, hw->hw_token);
2387
2388
/* An unlink may leave an incomplete
2389
* async transaction in the TT buffer.
2390
* We have to clear it.
2391
*/
2392
fotg210_clear_tt_buffer(fotg210, qh, urb,
2393
token);
2394
}
2395
}
2396
2397
/* unless we already know the urb's status, collect qtd status
2398
* and update count of bytes transferred. in common short read
2399
* cases with only one data qtd (including control transfers),
2400
* queue processing won't halt. but with two or more qtds (for
2401
* example, with a 32 KB transfer), when the first qtd gets a
2402
* short read the second must be removed by hand.
2403
*/
2404
if (last_status == -EINPROGRESS) {
2405
last_status = qtd_copy_status(fotg210, urb,
2406
qtd->length, token);
2407
if (last_status == -EREMOTEIO &&
2408
(qtd->hw_alt_next &
2409
FOTG210_LIST_END(fotg210)))
2410
last_status = -EINPROGRESS;
2411
2412
/* As part of low/full-speed endpoint-halt processing
2413
* we must clear the TT buffer (11.17.5).
2414
*/
2415
if (unlikely(last_status != -EINPROGRESS &&
2416
last_status != -EREMOTEIO)) {
2417
/* The TT's in some hubs malfunction when they
2418
* receive this request following a STALL (they
2419
* stop sending isochronous packets). Since a
2420
* STALL can't leave the TT buffer in a busy
2421
* state (if you believe Figures 11-48 - 11-51
2422
* in the USB 2.0 spec), we won't clear the TT
2423
* buffer in this case. Strictly speaking this
2424
* is a violation of the spec.
2425
*/
2426
if (last_status != -EPIPE)
2427
fotg210_clear_tt_buffer(fotg210, qh,
2428
urb, token);
2429
}
2430
}
2431
2432
/* if we're removing something not at the queue head,
2433
* patch the hardware queue pointer.
2434
*/
2435
if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2436
last = list_entry(qtd->qtd_list.prev,
2437
struct fotg210_qtd, qtd_list);
2438
last->hw_next = qtd->hw_next;
2439
}
2440
2441
/* remove qtd; it's recycled after possible urb completion */
2442
list_del(&qtd->qtd_list);
2443
last = qtd;
2444
2445
/* reinit the xacterr counter for the next qtd */
2446
qh->xacterrs = 0;
2447
}
2448
2449
/* last urb's completion might still need calling */
2450
if (likely(last != NULL)) {
2451
fotg210_urb_done(fotg210, last->urb, last_status);
2452
count++;
2453
fotg210_qtd_free(fotg210, last);
2454
}
2455
2456
/* Do we need to rescan for URBs dequeued during a giveback? */
2457
if (unlikely(qh->needs_rescan)) {
2458
/* If the QH is already unlinked, do the rescan now. */
2459
if (state == QH_STATE_IDLE)
2460
goto rescan;
2461
2462
/* Otherwise we have to wait until the QH is fully unlinked.
2463
* Our caller will start an unlink if qh->needs_rescan is
2464
* set. But if an unlink has already started, nothing needs
2465
* to be done.
2466
*/
2467
if (state != QH_STATE_LINKED)
2468
qh->needs_rescan = 0;
2469
}
2470
2471
/* restore original state; caller must unlink or relink */
2472
qh->qh_state = state;
2473
2474
/* be sure the hardware's done with the qh before refreshing
2475
* it after fault cleanup, or recovering from silicon wrongly
2476
* overlaying the dummy qtd (which reduces DMA chatter).
2477
*/
2478
if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2479
switch (state) {
2480
case QH_STATE_IDLE:
2481
qh_refresh(fotg210, qh);
2482
break;
2483
case QH_STATE_LINKED:
2484
/* We won't refresh a QH that's linked (after the HC
2485
* stopped the queue). That avoids a race:
2486
* - HC reads first part of QH;
2487
* - CPU updates that first part and the token;
2488
* - HC reads rest of that QH, including token
2489
* Result: HC gets an inconsistent image, and then
2490
* DMAs to/from the wrong memory (corrupting it).
2491
*
2492
* That should be rare for interrupt transfers,
2493
* except maybe high bandwidth ...
2494
*/
2495
2496
/* Tell the caller to start an unlink */
2497
qh->needs_rescan = 1;
2498
break;
2499
/* otherwise, unlink already started */
2500
}
2501
}
2502
2503
return count;
2504
}
2505
2506
/* reverse of qh_urb_transaction: free a list of TDs.
2507
* used for cleanup after errors, before HC sees an URB's TDs.
2508
*/
2509
static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2510
struct list_head *head)
2511
{
2512
struct fotg210_qtd *qtd, *temp;
2513
2514
list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2515
list_del(&qtd->qtd_list);
2516
fotg210_qtd_free(fotg210, qtd);
2517
}
2518
}
2519
2520
/* create a list of filled qtds for this URB; won't link into qh.
2521
*/
2522
static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2523
struct urb *urb, struct list_head *head, gfp_t flags)
2524
{
2525
struct fotg210_qtd *qtd, *qtd_prev;
2526
dma_addr_t buf;
2527
int len, this_sg_len, maxpacket;
2528
int is_input;
2529
u32 token;
2530
int i;
2531
struct scatterlist *sg;
2532
2533
/*
2534
* URBs map to sequences of QTDs: one logical transaction
2535
*/
2536
qtd = fotg210_qtd_alloc(fotg210, flags);
2537
if (unlikely(!qtd))
2538
return NULL;
2539
list_add_tail(&qtd->qtd_list, head);
2540
qtd->urb = urb;
2541
2542
token = QTD_STS_ACTIVE;
2543
token |= (FOTG210_TUNE_CERR << 10);
2544
/* for split transactions, SplitXState initialized to zero */
2545
2546
len = urb->transfer_buffer_length;
2547
is_input = usb_pipein(urb->pipe);
2548
if (usb_pipecontrol(urb->pipe)) {
2549
/* SETUP pid */
2550
qtd_fill(fotg210, qtd, urb->setup_dma,
2551
sizeof(struct usb_ctrlrequest),
2552
token | (2 /* "setup" */ << 8), 8);
2553
2554
/* ... and always at least one more pid */
2555
token ^= QTD_TOGGLE;
2556
qtd_prev = qtd;
2557
qtd = fotg210_qtd_alloc(fotg210, flags);
2558
if (unlikely(!qtd))
2559
goto cleanup;
2560
qtd->urb = urb;
2561
qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2562
list_add_tail(&qtd->qtd_list, head);
2563
2564
/* for zero length DATA stages, STATUS is always IN */
2565
if (len == 0)
2566
token |= (1 /* "in" */ << 8);
2567
}
2568
2569
/*
2570
* data transfer stage: buffer setup
2571
*/
2572
i = urb->num_mapped_sgs;
2573
if (len > 0 && i > 0) {
2574
sg = urb->sg;
2575
buf = sg_dma_address(sg);
2576
2577
/* urb->transfer_buffer_length may be smaller than the
2578
* size of the scatterlist (or vice versa)
2579
*/
2580
this_sg_len = min_t(int, sg_dma_len(sg), len);
2581
} else {
2582
sg = NULL;
2583
buf = urb->transfer_dma;
2584
this_sg_len = len;
2585
}
2586
2587
if (is_input)
2588
token |= (1 /* "in" */ << 8);
2589
/* else it's already initted to "out" pid (0 << 8) */
2590
2591
maxpacket = usb_maxpacket(urb->dev, urb->pipe);
2592
2593
/*
2594
* buffer gets wrapped in one or more qtds;
2595
* last one may be "short" (including zero len)
2596
* and may serve as a control status ack
2597
*/
2598
for (;;) {
2599
int this_qtd_len;
2600
2601
this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2602
maxpacket);
2603
this_sg_len -= this_qtd_len;
2604
len -= this_qtd_len;
2605
buf += this_qtd_len;
2606
2607
/*
2608
* short reads advance to a "magic" dummy instead of the next
2609
* qtd ... that forces the queue to stop, for manual cleanup.
2610
* (this will usually be overridden later.)
2611
*/
2612
if (is_input)
2613
qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2614
2615
/* qh makes control packets use qtd toggle; maybe switch it */
2616
if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2617
token ^= QTD_TOGGLE;
2618
2619
if (likely(this_sg_len <= 0)) {
2620
if (--i <= 0 || len <= 0)
2621
break;
2622
sg = sg_next(sg);
2623
buf = sg_dma_address(sg);
2624
this_sg_len = min_t(int, sg_dma_len(sg), len);
2625
}
2626
2627
qtd_prev = qtd;
2628
qtd = fotg210_qtd_alloc(fotg210, flags);
2629
if (unlikely(!qtd))
2630
goto cleanup;
2631
qtd->urb = urb;
2632
qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2633
list_add_tail(&qtd->qtd_list, head);
2634
}
2635
2636
/*
2637
* unless the caller requires manual cleanup after short reads,
2638
* have the alt_next mechanism keep the queue running after the
2639
* last data qtd (the only one, for control and most other cases).
2640
*/
2641
if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2642
usb_pipecontrol(urb->pipe)))
2643
qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2644
2645
/*
2646
* control requests may need a terminating data "status" ack;
2647
* other OUT ones may need a terminating short packet
2648
* (zero length).
2649
*/
2650
if (likely(urb->transfer_buffer_length != 0)) {
2651
int one_more = 0;
2652
2653
if (usb_pipecontrol(urb->pipe)) {
2654
one_more = 1;
2655
token ^= 0x0100; /* "in" <--> "out" */
2656
token |= QTD_TOGGLE; /* force DATA1 */
2657
} else if (usb_pipeout(urb->pipe)
2658
&& (urb->transfer_flags & URB_ZERO_PACKET)
2659
&& !(urb->transfer_buffer_length % maxpacket)) {
2660
one_more = 1;
2661
}
2662
if (one_more) {
2663
qtd_prev = qtd;
2664
qtd = fotg210_qtd_alloc(fotg210, flags);
2665
if (unlikely(!qtd))
2666
goto cleanup;
2667
qtd->urb = urb;
2668
qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2669
list_add_tail(&qtd->qtd_list, head);
2670
2671
/* never any data in such packets */
2672
qtd_fill(fotg210, qtd, 0, 0, token, 0);
2673
}
2674
}
2675
2676
/* by default, enable interrupt on urb completion */
2677
if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2678
qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2679
return head;
2680
2681
cleanup:
2682
qtd_list_free(fotg210, urb, head);
2683
return NULL;
2684
}
2685
2686
/* Would be best to create all qh's from config descriptors,
2687
* when each interface/altsetting is established. Unlink
2688
* any previous qh and cancel its urbs first; endpoints are
2689
* implicitly reset then (data toggle too).
2690
* That'd mean updating how usbcore talks to HCDs. (2.7?)
2691
*/
2692
2693
2694
/* Each QH holds a qtd list; a QH is used for everything except iso.
2695
*
2696
* For interrupt urbs, the scheduler must set the microframe scheduling
2697
* mask(s) each time the QH gets scheduled. For highspeed, that's
2698
* just one microframe in the s-mask. For split interrupt transactions
2699
* there are additional complications: c-mask, maybe FSTNs.
2700
*/
2701
static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2702
gfp_t flags)
2703
{
2704
struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2705
struct usb_host_endpoint *ep;
2706
u32 info1 = 0, info2 = 0;
2707
int is_input, type;
2708
int maxp = 0;
2709
int mult;
2710
struct usb_tt *tt = urb->dev->tt;
2711
struct fotg210_qh_hw *hw;
2712
2713
if (!qh)
2714
return qh;
2715
2716
/*
2717
* init endpoint/device data for this QH
2718
*/
2719
info1 |= usb_pipeendpoint(urb->pipe) << 8;
2720
info1 |= usb_pipedevice(urb->pipe) << 0;
2721
2722
is_input = usb_pipein(urb->pipe);
2723
type = usb_pipetype(urb->pipe);
2724
ep = usb_pipe_endpoint(urb->dev, urb->pipe);
2725
maxp = usb_endpoint_maxp(&ep->desc);
2726
mult = usb_endpoint_maxp_mult(&ep->desc);
2727
2728
/* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2729
* acts like up to 3KB, but is built from smaller packets.
2730
*/
2731
if (maxp > 1024) {
2732
fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
2733
goto done;
2734
}
2735
2736
/* Compute interrupt scheduling parameters just once, and save.
2737
* - allowing for high bandwidth, how many nsec/uframe are used?
2738
* - split transactions need a second CSPLIT uframe; same question
2739
* - splits also need a schedule gap (for full/low speed I/O)
2740
* - qh has a polling interval
2741
*
2742
* For control/bulk requests, the HC or TT handles these.
2743
*/
2744
if (type == PIPE_INTERRUPT) {
2745
qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2746
is_input, 0, mult * maxp));
2747
qh->start = NO_FRAME;
2748
2749
if (urb->dev->speed == USB_SPEED_HIGH) {
2750
qh->c_usecs = 0;
2751
qh->gap_uf = 0;
2752
2753
qh->period = urb->interval >> 3;
2754
if (qh->period == 0 && urb->interval != 1) {
2755
/* NOTE interval 2 or 4 uframes could work.
2756
* But interval 1 scheduling is simpler, and
2757
* includes high bandwidth.
2758
*/
2759
urb->interval = 1;
2760
} else if (qh->period > fotg210->periodic_size) {
2761
qh->period = fotg210->periodic_size;
2762
urb->interval = qh->period << 3;
2763
}
2764
} else {
2765
int think_time;
2766
2767
/* gap is f(FS/LS transfer times) */
2768
qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2769
is_input, 0, maxp) / (125 * 1000);
2770
2771
/* FIXME this just approximates SPLIT/CSPLIT times */
2772
if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2773
qh->c_usecs = qh->usecs + HS_USECS(0);
2774
qh->usecs = HS_USECS(1);
2775
} else { /* SPLIT+DATA, gap, CSPLIT */
2776
qh->usecs += HS_USECS(1);
2777
qh->c_usecs = HS_USECS(0);
2778
}
2779
2780
think_time = tt ? tt->think_time : 0;
2781
qh->tt_usecs = NS_TO_US(think_time +
2782
usb_calc_bus_time(urb->dev->speed,
2783
is_input, 0, maxp));
2784
qh->period = urb->interval;
2785
if (qh->period > fotg210->periodic_size) {
2786
qh->period = fotg210->periodic_size;
2787
urb->interval = qh->period;
2788
}
2789
}
2790
}
2791
2792
/* support for tt scheduling, and access to toggles */
2793
qh->dev = urb->dev;
2794
2795
/* using TT? */
2796
switch (urb->dev->speed) {
2797
case USB_SPEED_LOW:
2798
info1 |= QH_LOW_SPEED;
2799
fallthrough;
2800
2801
case USB_SPEED_FULL:
2802
/* EPS 0 means "full" */
2803
if (type != PIPE_INTERRUPT)
2804
info1 |= (FOTG210_TUNE_RL_TT << 28);
2805
if (type == PIPE_CONTROL) {
2806
info1 |= QH_CONTROL_EP; /* for TT */
2807
info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2808
}
2809
info1 |= maxp << 16;
2810
2811
info2 |= (FOTG210_TUNE_MULT_TT << 30);
2812
2813
/* Some Freescale processors have an erratum in which the
2814
* port number in the queue head was 0..N-1 instead of 1..N.
2815
*/
2816
if (fotg210_has_fsl_portno_bug(fotg210))
2817
info2 |= (urb->dev->ttport-1) << 23;
2818
else
2819
info2 |= urb->dev->ttport << 23;
2820
2821
/* set the address of the TT; for TDI's integrated
2822
* root hub tt, leave it zeroed.
2823
*/
2824
if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2825
info2 |= tt->hub->devnum << 16;
2826
2827
/* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2828
2829
break;
2830
2831
case USB_SPEED_HIGH: /* no TT involved */
2832
info1 |= QH_HIGH_SPEED;
2833
if (type == PIPE_CONTROL) {
2834
info1 |= (FOTG210_TUNE_RL_HS << 28);
2835
info1 |= 64 << 16; /* usb2 fixed maxpacket */
2836
info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2837
info2 |= (FOTG210_TUNE_MULT_HS << 30);
2838
} else if (type == PIPE_BULK) {
2839
info1 |= (FOTG210_TUNE_RL_HS << 28);
2840
/* The USB spec says that high speed bulk endpoints
2841
* always use 512 byte maxpacket. But some device
2842
* vendors decided to ignore that, and MSFT is happy
2843
* to help them do so. So now people expect to use
2844
* such nonconformant devices with Linux too; sigh.
2845
*/
2846
info1 |= maxp << 16;
2847
info2 |= (FOTG210_TUNE_MULT_HS << 30);
2848
} else { /* PIPE_INTERRUPT */
2849
info1 |= maxp << 16;
2850
info2 |= mult << 30;
2851
}
2852
break;
2853
default:
2854
fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2855
urb->dev->speed);
2856
done:
2857
qh_destroy(fotg210, qh);
2858
return NULL;
2859
}
2860
2861
/* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2862
2863
/* init as live, toggle clear, advance to dummy */
2864
qh->qh_state = QH_STATE_IDLE;
2865
hw = qh->hw;
2866
hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2867
hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2868
qh->is_out = !is_input;
2869
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2870
qh_refresh(fotg210, qh);
2871
return qh;
2872
}
2873
2874
static void enable_async(struct fotg210_hcd *fotg210)
2875
{
2876
if (fotg210->async_count++)
2877
return;
2878
2879
/* Stop waiting to turn off the async schedule */
2880
fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2881
2882
/* Don't start the schedule until ASS is 0 */
2883
fotg210_poll_ASS(fotg210);
2884
turn_on_io_watchdog(fotg210);
2885
}
2886
2887
static void disable_async(struct fotg210_hcd *fotg210)
2888
{
2889
if (--fotg210->async_count)
2890
return;
2891
2892
/* The async schedule and async_unlink list are supposed to be empty */
2893
WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2894
2895
/* Don't turn off the schedule until ASS is 1 */
2896
fotg210_poll_ASS(fotg210);
2897
}
2898
2899
/* move qh (and its qtds) onto async queue; maybe enable queue. */
2900
2901
static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2902
{
2903
__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2904
struct fotg210_qh *head;
2905
2906
/* Don't link a QH if there's a Clear-TT-Buffer pending */
2907
if (unlikely(qh->clearing_tt))
2908
return;
2909
2910
WARN_ON(qh->qh_state != QH_STATE_IDLE);
2911
2912
/* clear halt and/or toggle; and maybe recover from silicon quirk */
2913
qh_refresh(fotg210, qh);
2914
2915
/* splice right after start */
2916
head = fotg210->async;
2917
qh->qh_next = head->qh_next;
2918
qh->hw->hw_next = head->hw->hw_next;
2919
wmb();
2920
2921
head->qh_next.qh = qh;
2922
head->hw->hw_next = dma;
2923
2924
qh->xacterrs = 0;
2925
qh->qh_state = QH_STATE_LINKED;
2926
/* qtd completions reported later by interrupt */
2927
2928
enable_async(fotg210);
2929
}
2930
2931
/* For control/bulk/interrupt, return QH with these TDs appended.
2932
* Allocates and initializes the QH if necessary.
2933
* Returns null if it can't allocate a QH it needs to.
2934
* If the QH has TDs (urbs) already, that's great.
2935
*/
2936
static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2937
struct urb *urb, struct list_head *qtd_list,
2938
int epnum, void **ptr)
2939
{
2940
struct fotg210_qh *qh = NULL;
2941
__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2942
2943
qh = (struct fotg210_qh *) *ptr;
2944
if (unlikely(qh == NULL)) {
2945
/* can't sleep here, we have fotg210->lock... */
2946
qh = qh_make(fotg210, urb, GFP_ATOMIC);
2947
*ptr = qh;
2948
}
2949
if (likely(qh != NULL)) {
2950
struct fotg210_qtd *qtd;
2951
2952
if (unlikely(list_empty(qtd_list)))
2953
qtd = NULL;
2954
else
2955
qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2956
qtd_list);
2957
2958
/* control qh may need patching ... */
2959
if (unlikely(epnum == 0)) {
2960
/* usb_reset_device() briefly reverts to address 0 */
2961
if (usb_pipedevice(urb->pipe) == 0)
2962
qh->hw->hw_info1 &= ~qh_addr_mask;
2963
}
2964
2965
/* just one way to queue requests: swap with the dummy qtd.
2966
* only hc or qh_refresh() ever modify the overlay.
2967
*/
2968
if (likely(qtd != NULL)) {
2969
struct fotg210_qtd *dummy;
2970
dma_addr_t dma;
2971
__hc32 token;
2972
2973
/* to avoid racing the HC, use the dummy td instead of
2974
* the first td of our list (becomes new dummy). both
2975
* tds stay deactivated until we're done, when the
2976
* HC is allowed to fetch the old dummy (4.10.2).
2977
*/
2978
token = qtd->hw_token;
2979
qtd->hw_token = HALT_BIT(fotg210);
2980
2981
dummy = qh->dummy;
2982
2983
dma = dummy->qtd_dma;
2984
*dummy = *qtd;
2985
dummy->qtd_dma = dma;
2986
2987
list_del(&qtd->qtd_list);
2988
list_add(&dummy->qtd_list, qtd_list);
2989
list_splice_tail(qtd_list, &qh->qtd_list);
2990
2991
fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2992
qh->dummy = qtd;
2993
2994
/* hc must see the new dummy at list end */
2995
dma = qtd->qtd_dma;
2996
qtd = list_entry(qh->qtd_list.prev,
2997
struct fotg210_qtd, qtd_list);
2998
qtd->hw_next = QTD_NEXT(fotg210, dma);
2999
3000
/* let the hc process these next qtds */
3001
wmb();
3002
dummy->hw_token = token;
3003
3004
urb->hcpriv = qh;
3005
}
3006
}
3007
return qh;
3008
}
3009
3010
static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3011
struct list_head *qtd_list, gfp_t mem_flags)
3012
{
3013
int epnum;
3014
unsigned long flags;
3015
struct fotg210_qh *qh = NULL;
3016
int rc;
3017
3018
epnum = urb->ep->desc.bEndpointAddress;
3019
3020
#ifdef FOTG210_URB_TRACE
3021
{
3022
struct fotg210_qtd *qtd;
3023
3024
qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3025
fotg210_dbg(fotg210,
3026
"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3027
__func__, urb->dev->devpath, urb,
3028
epnum & 0x0f, (epnum & USB_DIR_IN)
3029
? "in" : "out",
3030
urb->transfer_buffer_length,
3031
qtd, urb->ep->hcpriv);
3032
}
3033
#endif
3034
3035
spin_lock_irqsave(&fotg210->lock, flags);
3036
if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3037
rc = -ESHUTDOWN;
3038
goto done;
3039
}
3040
rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3041
if (unlikely(rc))
3042
goto done;
3043
3044
qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3045
if (unlikely(qh == NULL)) {
3046
usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3047
rc = -ENOMEM;
3048
goto done;
3049
}
3050
3051
/* Control/bulk operations through TTs don't need scheduling,
3052
* the HC and TT handle it when the TT has a buffer ready.
3053
*/
3054
if (likely(qh->qh_state == QH_STATE_IDLE))
3055
qh_link_async(fotg210, qh);
3056
done:
3057
spin_unlock_irqrestore(&fotg210->lock, flags);
3058
if (unlikely(qh == NULL))
3059
qtd_list_free(fotg210, urb, qtd_list);
3060
return rc;
3061
}
3062
3063
static void single_unlink_async(struct fotg210_hcd *fotg210,
3064
struct fotg210_qh *qh)
3065
{
3066
struct fotg210_qh *prev;
3067
3068
/* Add to the end of the list of QHs waiting for the next IAAD */
3069
qh->qh_state = QH_STATE_UNLINK;
3070
if (fotg210->async_unlink)
3071
fotg210->async_unlink_last->unlink_next = qh;
3072
else
3073
fotg210->async_unlink = qh;
3074
fotg210->async_unlink_last = qh;
3075
3076
/* Unlink it from the schedule */
3077
prev = fotg210->async;
3078
while (prev->qh_next.qh != qh)
3079
prev = prev->qh_next.qh;
3080
3081
prev->hw->hw_next = qh->hw->hw_next;
3082
prev->qh_next = qh->qh_next;
3083
if (fotg210->qh_scan_next == qh)
3084
fotg210->qh_scan_next = qh->qh_next.qh;
3085
}
3086
3087
static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3088
{
3089
/*
3090
* Do nothing if an IAA cycle is already running or
3091
* if one will be started shortly.
3092
*/
3093
if (fotg210->async_iaa || fotg210->async_unlinking)
3094
return;
3095
3096
/* Do all the waiting QHs at once */
3097
fotg210->async_iaa = fotg210->async_unlink;
3098
fotg210->async_unlink = NULL;
3099
3100
/* If the controller isn't running, we don't have to wait for it */
3101
if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3102
if (!nested) /* Avoid recursion */
3103
end_unlink_async(fotg210);
3104
3105
/* Otherwise start a new IAA cycle */
3106
} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3107
/* Make sure the unlinks are all visible to the hardware */
3108
wmb();
3109
3110
fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3111
&fotg210->regs->command);
3112
fotg210_readl(fotg210, &fotg210->regs->command);
3113
fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3114
true);
3115
}
3116
}
3117
3118
/* the async qh for the qtds being unlinked are now gone from the HC */
3119
3120
static void end_unlink_async(struct fotg210_hcd *fotg210)
3121
{
3122
struct fotg210_qh *qh;
3123
3124
/* Process the idle QHs */
3125
restart:
3126
fotg210->async_unlinking = true;
3127
while (fotg210->async_iaa) {
3128
qh = fotg210->async_iaa;
3129
fotg210->async_iaa = qh->unlink_next;
3130
qh->unlink_next = NULL;
3131
3132
qh->qh_state = QH_STATE_IDLE;
3133
qh->qh_next.qh = NULL;
3134
3135
qh_completions(fotg210, qh);
3136
if (!list_empty(&qh->qtd_list) &&
3137
fotg210->rh_state == FOTG210_RH_RUNNING)
3138
qh_link_async(fotg210, qh);
3139
disable_async(fotg210);
3140
}
3141
fotg210->async_unlinking = false;
3142
3143
/* Start a new IAA cycle if any QHs are waiting for it */
3144
if (fotg210->async_unlink) {
3145
start_iaa_cycle(fotg210, true);
3146
if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3147
goto restart;
3148
}
3149
}
3150
3151
static void unlink_empty_async(struct fotg210_hcd *fotg210)
3152
{
3153
struct fotg210_qh *qh, *next;
3154
bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3155
bool check_unlinks_later = false;
3156
3157
/* Unlink all the async QHs that have been empty for a timer cycle */
3158
next = fotg210->async->qh_next.qh;
3159
while (next) {
3160
qh = next;
3161
next = qh->qh_next.qh;
3162
3163
if (list_empty(&qh->qtd_list) &&
3164
qh->qh_state == QH_STATE_LINKED) {
3165
if (!stopped && qh->unlink_cycle ==
3166
fotg210->async_unlink_cycle)
3167
check_unlinks_later = true;
3168
else
3169
single_unlink_async(fotg210, qh);
3170
}
3171
}
3172
3173
/* Start a new IAA cycle if any QHs are waiting for it */
3174
if (fotg210->async_unlink)
3175
start_iaa_cycle(fotg210, false);
3176
3177
/* QHs that haven't been empty for long enough will be handled later */
3178
if (check_unlinks_later) {
3179
fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3180
true);
3181
++fotg210->async_unlink_cycle;
3182
}
3183
}
3184
3185
/* makes sure the async qh will become idle */
3186
/* caller must own fotg210->lock */
3187
3188
static void start_unlink_async(struct fotg210_hcd *fotg210,
3189
struct fotg210_qh *qh)
3190
{
3191
/*
3192
* If the QH isn't linked then there's nothing we can do
3193
* unless we were called during a giveback, in which case
3194
* qh_completions() has to deal with it.
3195
*/
3196
if (qh->qh_state != QH_STATE_LINKED) {
3197
if (qh->qh_state == QH_STATE_COMPLETING)
3198
qh->needs_rescan = 1;
3199
return;
3200
}
3201
3202
single_unlink_async(fotg210, qh);
3203
start_iaa_cycle(fotg210, false);
3204
}
3205
3206
static void scan_async(struct fotg210_hcd *fotg210)
3207
{
3208
struct fotg210_qh *qh;
3209
bool check_unlinks_later = false;
3210
3211
fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3212
while (fotg210->qh_scan_next) {
3213
qh = fotg210->qh_scan_next;
3214
fotg210->qh_scan_next = qh->qh_next.qh;
3215
rescan:
3216
/* clean any finished work for this qh */
3217
if (!list_empty(&qh->qtd_list)) {
3218
int temp;
3219
3220
/*
3221
* Unlinks could happen here; completion reporting
3222
* drops the lock. That's why fotg210->qh_scan_next
3223
* always holds the next qh to scan; if the next qh
3224
* gets unlinked then fotg210->qh_scan_next is adjusted
3225
* in single_unlink_async().
3226
*/
3227
temp = qh_completions(fotg210, qh);
3228
if (qh->needs_rescan) {
3229
start_unlink_async(fotg210, qh);
3230
} else if (list_empty(&qh->qtd_list)
3231
&& qh->qh_state == QH_STATE_LINKED) {
3232
qh->unlink_cycle = fotg210->async_unlink_cycle;
3233
check_unlinks_later = true;
3234
} else if (temp != 0)
3235
goto rescan;
3236
}
3237
}
3238
3239
/*
3240
* Unlink empty entries, reducing DMA usage as well
3241
* as HCD schedule-scanning costs. Delay for any qh
3242
* we just scanned, there's a not-unusual case that it
3243
* doesn't stay idle for long.
3244
*/
3245
if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3246
!(fotg210->enabled_hrtimer_events &
3247
BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3248
fotg210_enable_event(fotg210,
3249
FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3250
++fotg210->async_unlink_cycle;
3251
}
3252
}
3253
/* EHCI scheduled transaction support: interrupt, iso, split iso
3254
* These are called "periodic" transactions in the EHCI spec.
3255
*
3256
* Note that for interrupt transfers, the QH/QTD manipulation is shared
3257
* with the "asynchronous" transaction support (control/bulk transfers).
3258
* The only real difference is in how interrupt transfers are scheduled.
3259
*
3260
* For ISO, we make an "iso_stream" head to serve the same role as a QH.
3261
* It keeps track of every ITD (or SITD) that's linked, and holds enough
3262
* pre-calculated schedule data to make appending to the queue be quick.
3263
*/
3264
static int fotg210_get_frame(struct usb_hcd *hcd);
3265
3266
/* periodic_next_shadow - return "next" pointer on shadow list
3267
* @periodic: host pointer to qh/itd
3268
* @tag: hardware tag for type of this record
3269
*/
3270
static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3271
union fotg210_shadow *periodic, __hc32 tag)
3272
{
3273
switch (hc32_to_cpu(fotg210, tag)) {
3274
case Q_TYPE_QH:
3275
return &periodic->qh->qh_next;
3276
case Q_TYPE_FSTN:
3277
return &periodic->fstn->fstn_next;
3278
default:
3279
return &periodic->itd->itd_next;
3280
}
3281
}
3282
3283
static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3284
union fotg210_shadow *periodic, __hc32 tag)
3285
{
3286
switch (hc32_to_cpu(fotg210, tag)) {
3287
/* our fotg210_shadow.qh is actually software part */
3288
case Q_TYPE_QH:
3289
return &periodic->qh->hw->hw_next;
3290
/* others are hw parts */
3291
default:
3292
return periodic->hw_next;
3293
}
3294
}
3295
3296
/* caller must hold fotg210->lock */
3297
static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3298
void *ptr)
3299
{
3300
union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3301
__hc32 *hw_p = &fotg210->periodic[frame];
3302
union fotg210_shadow here = *prev_p;
3303
3304
/* find predecessor of "ptr"; hw and shadow lists are in sync */
3305
while (here.ptr && here.ptr != ptr) {
3306
prev_p = periodic_next_shadow(fotg210, prev_p,
3307
Q_NEXT_TYPE(fotg210, *hw_p));
3308
hw_p = shadow_next_periodic(fotg210, &here,
3309
Q_NEXT_TYPE(fotg210, *hw_p));
3310
here = *prev_p;
3311
}
3312
/* an interrupt entry (at list end) could have been shared */
3313
if (!here.ptr)
3314
return;
3315
3316
/* update shadow and hardware lists ... the old "next" pointers
3317
* from ptr may still be in use, the caller updates them.
3318
*/
3319
*prev_p = *periodic_next_shadow(fotg210, &here,
3320
Q_NEXT_TYPE(fotg210, *hw_p));
3321
3322
*hw_p = *shadow_next_periodic(fotg210, &here,
3323
Q_NEXT_TYPE(fotg210, *hw_p));
3324
}
3325
3326
/* how many of the uframe's 125 usecs are allocated? */
3327
static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3328
unsigned frame, unsigned uframe)
3329
{
3330
__hc32 *hw_p = &fotg210->periodic[frame];
3331
union fotg210_shadow *q = &fotg210->pshadow[frame];
3332
unsigned usecs = 0;
3333
struct fotg210_qh_hw *hw;
3334
3335
while (q->ptr) {
3336
switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3337
case Q_TYPE_QH:
3338
hw = q->qh->hw;
3339
/* is it in the S-mask? */
3340
if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3341
usecs += q->qh->usecs;
3342
/* ... or C-mask? */
3343
if (hw->hw_info2 & cpu_to_hc32(fotg210,
3344
1 << (8 + uframe)))
3345
usecs += q->qh->c_usecs;
3346
hw_p = &hw->hw_next;
3347
q = &q->qh->qh_next;
3348
break;
3349
/* case Q_TYPE_FSTN: */
3350
default:
3351
/* for "save place" FSTNs, count the relevant INTR
3352
* bandwidth from the previous frame
3353
*/
3354
if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3355
fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3356
3357
hw_p = &q->fstn->hw_next;
3358
q = &q->fstn->fstn_next;
3359
break;
3360
case Q_TYPE_ITD:
3361
if (q->itd->hw_transaction[uframe])
3362
usecs += q->itd->stream->usecs;
3363
hw_p = &q->itd->hw_next;
3364
q = &q->itd->itd_next;
3365
break;
3366
}
3367
}
3368
if (usecs > fotg210->uframe_periodic_max)
3369
fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3370
frame * 8 + uframe, usecs);
3371
return usecs;
3372
}
3373
3374
static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3375
{
3376
if (!dev1->tt || !dev2->tt)
3377
return 0;
3378
if (dev1->tt != dev2->tt)
3379
return 0;
3380
if (dev1->tt->multi)
3381
return dev1->ttport == dev2->ttport;
3382
else
3383
return 1;
3384
}
3385
3386
/* return true iff the device's transaction translator is available
3387
* for a periodic transfer starting at the specified frame, using
3388
* all the uframes in the mask.
3389
*/
3390
static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3391
struct usb_device *dev, unsigned frame, u32 uf_mask)
3392
{
3393
if (period == 0) /* error */
3394
return 0;
3395
3396
/* note bandwidth wastage: split never follows csplit
3397
* (different dev or endpoint) until the next uframe.
3398
* calling convention doesn't make that distinction.
3399
*/
3400
for (; frame < fotg210->periodic_size; frame += period) {
3401
union fotg210_shadow here;
3402
__hc32 type;
3403
struct fotg210_qh_hw *hw;
3404
3405
here = fotg210->pshadow[frame];
3406
type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3407
while (here.ptr) {
3408
switch (hc32_to_cpu(fotg210, type)) {
3409
case Q_TYPE_ITD:
3410
type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3411
here = here.itd->itd_next;
3412
continue;
3413
case Q_TYPE_QH:
3414
hw = here.qh->hw;
3415
if (same_tt(dev, here.qh->dev)) {
3416
u32 mask;
3417
3418
mask = hc32_to_cpu(fotg210,
3419
hw->hw_info2);
3420
/* "knows" no gap is needed */
3421
mask |= mask >> 8;
3422
if (mask & uf_mask)
3423
break;
3424
}
3425
type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3426
here = here.qh->qh_next;
3427
continue;
3428
/* case Q_TYPE_FSTN: */
3429
default:
3430
fotg210_dbg(fotg210,
3431
"periodic frame %d bogus type %d\n",
3432
frame, type);
3433
}
3434
3435
/* collision or error */
3436
return 0;
3437
}
3438
}
3439
3440
/* no collision */
3441
return 1;
3442
}
3443
3444
static void enable_periodic(struct fotg210_hcd *fotg210)
3445
{
3446
if (fotg210->periodic_count++)
3447
return;
3448
3449
/* Stop waiting to turn off the periodic schedule */
3450
fotg210->enabled_hrtimer_events &=
3451
~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3452
3453
/* Don't start the schedule until PSS is 0 */
3454
fotg210_poll_PSS(fotg210);
3455
turn_on_io_watchdog(fotg210);
3456
}
3457
3458
static void disable_periodic(struct fotg210_hcd *fotg210)
3459
{
3460
if (--fotg210->periodic_count)
3461
return;
3462
3463
/* Don't turn off the schedule until PSS is 1 */
3464
fotg210_poll_PSS(fotg210);
3465
}
3466
3467
/* periodic schedule slots have iso tds (normal or split) first, then a
3468
* sparse tree for active interrupt transfers.
3469
*
3470
* this just links in a qh; caller guarantees uframe masks are set right.
3471
* no FSTN support (yet; fotg210 0.96+)
3472
*/
3473
static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3474
{
3475
unsigned i;
3476
unsigned period = qh->period;
3477
3478
dev_dbg(&qh->dev->dev,
3479
"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3480
hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3481
(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3482
qh->c_usecs);
3483
3484
/* high bandwidth, or otherwise every microframe */
3485
if (period == 0)
3486
period = 1;
3487
3488
for (i = qh->start; i < fotg210->periodic_size; i += period) {
3489
union fotg210_shadow *prev = &fotg210->pshadow[i];
3490
__hc32 *hw_p = &fotg210->periodic[i];
3491
union fotg210_shadow here = *prev;
3492
__hc32 type = 0;
3493
3494
/* skip the iso nodes at list head */
3495
while (here.ptr) {
3496
type = Q_NEXT_TYPE(fotg210, *hw_p);
3497
if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3498
break;
3499
prev = periodic_next_shadow(fotg210, prev, type);
3500
hw_p = shadow_next_periodic(fotg210, &here, type);
3501
here = *prev;
3502
}
3503
3504
/* sorting each branch by period (slow-->fast)
3505
* enables sharing interior tree nodes
3506
*/
3507
while (here.ptr && qh != here.qh) {
3508
if (qh->period > here.qh->period)
3509
break;
3510
prev = &here.qh->qh_next;
3511
hw_p = &here.qh->hw->hw_next;
3512
here = *prev;
3513
}
3514
/* link in this qh, unless some earlier pass did that */
3515
if (qh != here.qh) {
3516
qh->qh_next = here;
3517
if (here.qh)
3518
qh->hw->hw_next = *hw_p;
3519
wmb();
3520
prev->qh = qh;
3521
*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3522
}
3523
}
3524
qh->qh_state = QH_STATE_LINKED;
3525
qh->xacterrs = 0;
3526
3527
/* update per-qh bandwidth for usbfs */
3528
fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3529
? ((qh->usecs + qh->c_usecs) / qh->period)
3530
: (qh->usecs * 8);
3531
3532
list_add(&qh->intr_node, &fotg210->intr_qh_list);
3533
3534
/* maybe enable periodic schedule processing */
3535
++fotg210->intr_count;
3536
enable_periodic(fotg210);
3537
}
3538
3539
static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3540
struct fotg210_qh *qh)
3541
{
3542
unsigned i;
3543
unsigned period;
3544
3545
/*
3546
* If qh is for a low/full-speed device, simply unlinking it
3547
* could interfere with an ongoing split transaction. To unlink
3548
* it safely would require setting the QH_INACTIVATE bit and
3549
* waiting at least one frame, as described in EHCI 4.12.2.5.
3550
*
3551
* We won't bother with any of this. Instead, we assume that the
3552
* only reason for unlinking an interrupt QH while the current URB
3553
* is still active is to dequeue all the URBs (flush the whole
3554
* endpoint queue).
3555
*
3556
* If rebalancing the periodic schedule is ever implemented, this
3557
* approach will no longer be valid.
3558
*/
3559
3560
/* high bandwidth, or otherwise part of every microframe */
3561
period = qh->period;
3562
if (!period)
3563
period = 1;
3564
3565
for (i = qh->start; i < fotg210->periodic_size; i += period)
3566
periodic_unlink(fotg210, i, qh);
3567
3568
/* update per-qh bandwidth for usbfs */
3569
fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3570
? ((qh->usecs + qh->c_usecs) / qh->period)
3571
: (qh->usecs * 8);
3572
3573
dev_dbg(&qh->dev->dev,
3574
"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3575
qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3576
(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3577
qh->c_usecs);
3578
3579
/* qh->qh_next still "live" to HC */
3580
qh->qh_state = QH_STATE_UNLINK;
3581
qh->qh_next.ptr = NULL;
3582
3583
if (fotg210->qh_scan_next == qh)
3584
fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3585
struct fotg210_qh, intr_node);
3586
list_del(&qh->intr_node);
3587
}
3588
3589
static void start_unlink_intr(struct fotg210_hcd *fotg210,
3590
struct fotg210_qh *qh)
3591
{
3592
/* If the QH isn't linked then there's nothing we can do
3593
* unless we were called during a giveback, in which case
3594
* qh_completions() has to deal with it.
3595
*/
3596
if (qh->qh_state != QH_STATE_LINKED) {
3597
if (qh->qh_state == QH_STATE_COMPLETING)
3598
qh->needs_rescan = 1;
3599
return;
3600
}
3601
3602
qh_unlink_periodic(fotg210, qh);
3603
3604
/* Make sure the unlinks are visible before starting the timer */
3605
wmb();
3606
3607
/*
3608
* The EHCI spec doesn't say how long it takes the controller to
3609
* stop accessing an unlinked interrupt QH. The timer delay is
3610
* 9 uframes; presumably that will be long enough.
3611
*/
3612
qh->unlink_cycle = fotg210->intr_unlink_cycle;
3613
3614
/* New entries go at the end of the intr_unlink list */
3615
if (fotg210->intr_unlink)
3616
fotg210->intr_unlink_last->unlink_next = qh;
3617
else
3618
fotg210->intr_unlink = qh;
3619
fotg210->intr_unlink_last = qh;
3620
3621
if (fotg210->intr_unlinking)
3622
; /* Avoid recursive calls */
3623
else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3624
fotg210_handle_intr_unlinks(fotg210);
3625
else if (fotg210->intr_unlink == qh) {
3626
fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3627
true);
3628
++fotg210->intr_unlink_cycle;
3629
}
3630
}
3631
3632
static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3633
{
3634
struct fotg210_qh_hw *hw = qh->hw;
3635
int rc;
3636
3637
qh->qh_state = QH_STATE_IDLE;
3638
hw->hw_next = FOTG210_LIST_END(fotg210);
3639
3640
qh_completions(fotg210, qh);
3641
3642
/* reschedule QH iff another request is queued */
3643
if (!list_empty(&qh->qtd_list) &&
3644
fotg210->rh_state == FOTG210_RH_RUNNING) {
3645
rc = qh_schedule(fotg210, qh);
3646
3647
/* An error here likely indicates handshake failure
3648
* or no space left in the schedule. Neither fault
3649
* should happen often ...
3650
*
3651
* FIXME kill the now-dysfunctional queued urbs
3652
*/
3653
if (rc != 0)
3654
fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3655
qh, rc);
3656
}
3657
3658
/* maybe turn off periodic schedule */
3659
--fotg210->intr_count;
3660
disable_periodic(fotg210);
3661
}
3662
3663
static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3664
unsigned uframe, unsigned period, unsigned usecs)
3665
{
3666
int claimed;
3667
3668
/* complete split running into next frame?
3669
* given FSTN support, we could sometimes check...
3670
*/
3671
if (uframe >= 8)
3672
return 0;
3673
3674
/* convert "usecs we need" to "max already claimed" */
3675
usecs = fotg210->uframe_periodic_max - usecs;
3676
3677
/* we "know" 2 and 4 uframe intervals were rejected; so
3678
* for period 0, check _every_ microframe in the schedule.
3679
*/
3680
if (unlikely(period == 0)) {
3681
do {
3682
for (uframe = 0; uframe < 7; uframe++) {
3683
claimed = periodic_usecs(fotg210, frame,
3684
uframe);
3685
if (claimed > usecs)
3686
return 0;
3687
}
3688
} while ((frame += 1) < fotg210->periodic_size);
3689
3690
/* just check the specified uframe, at that period */
3691
} else {
3692
do {
3693
claimed = periodic_usecs(fotg210, frame, uframe);
3694
if (claimed > usecs)
3695
return 0;
3696
} while ((frame += period) < fotg210->periodic_size);
3697
}
3698
3699
/* success! */
3700
return 1;
3701
}
3702
3703
static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3704
unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3705
{
3706
int retval = -ENOSPC;
3707
u8 mask = 0;
3708
3709
if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3710
goto done;
3711
3712
if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3713
goto done;
3714
if (!qh->c_usecs) {
3715
retval = 0;
3716
*c_maskp = 0;
3717
goto done;
3718
}
3719
3720
/* Make sure this tt's buffer is also available for CSPLITs.
3721
* We pessimize a bit; probably the typical full speed case
3722
* doesn't need the second CSPLIT.
3723
*
3724
* NOTE: both SPLIT and CSPLIT could be checked in just
3725
* one smart pass...
3726
*/
3727
mask = 0x03 << (uframe + qh->gap_uf);
3728
*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3729
3730
mask |= 1 << uframe;
3731
if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3732
if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3733
qh->period, qh->c_usecs))
3734
goto done;
3735
if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3736
qh->period, qh->c_usecs))
3737
goto done;
3738
retval = 0;
3739
}
3740
done:
3741
return retval;
3742
}
3743
3744
/* "first fit" scheduling policy used the first time through,
3745
* or when the previous schedule slot can't be re-used.
3746
*/
3747
static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3748
{
3749
int status;
3750
unsigned uframe;
3751
__hc32 c_mask;
3752
unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3753
struct fotg210_qh_hw *hw = qh->hw;
3754
3755
qh_refresh(fotg210, qh);
3756
hw->hw_next = FOTG210_LIST_END(fotg210);
3757
frame = qh->start;
3758
3759
/* reuse the previous schedule slots, if we can */
3760
if (frame < qh->period) {
3761
uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3762
status = check_intr_schedule(fotg210, frame, --uframe,
3763
qh, &c_mask);
3764
} else {
3765
uframe = 0;
3766
c_mask = 0;
3767
status = -ENOSPC;
3768
}
3769
3770
/* else scan the schedule to find a group of slots such that all
3771
* uframes have enough periodic bandwidth available.
3772
*/
3773
if (status) {
3774
/* "normal" case, uframing flexible except with splits */
3775
if (qh->period) {
3776
int i;
3777
3778
for (i = qh->period; status && i > 0; --i) {
3779
frame = ++fotg210->random_frame % qh->period;
3780
for (uframe = 0; uframe < 8; uframe++) {
3781
status = check_intr_schedule(fotg210,
3782
frame, uframe, qh,
3783
&c_mask);
3784
if (status == 0)
3785
break;
3786
}
3787
}
3788
3789
/* qh->period == 0 means every uframe */
3790
} else {
3791
frame = 0;
3792
status = check_intr_schedule(fotg210, 0, 0, qh,
3793
&c_mask);
3794
}
3795
if (status)
3796
goto done;
3797
qh->start = frame;
3798
3799
/* reset S-frame and (maybe) C-frame masks */
3800
hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3801
hw->hw_info2 |= qh->period
3802
? cpu_to_hc32(fotg210, 1 << uframe)
3803
: cpu_to_hc32(fotg210, QH_SMASK);
3804
hw->hw_info2 |= c_mask;
3805
} else
3806
fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3807
3808
/* stuff into the periodic schedule */
3809
qh_link_periodic(fotg210, qh);
3810
done:
3811
return status;
3812
}
3813
3814
static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3815
struct list_head *qtd_list, gfp_t mem_flags)
3816
{
3817
unsigned epnum;
3818
unsigned long flags;
3819
struct fotg210_qh *qh;
3820
int status;
3821
struct list_head empty;
3822
3823
/* get endpoint and transfer/schedule data */
3824
epnum = urb->ep->desc.bEndpointAddress;
3825
3826
spin_lock_irqsave(&fotg210->lock, flags);
3827
3828
if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3829
status = -ESHUTDOWN;
3830
goto done_not_linked;
3831
}
3832
status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3833
if (unlikely(status))
3834
goto done_not_linked;
3835
3836
/* get qh and force any scheduling errors */
3837
INIT_LIST_HEAD(&empty);
3838
qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3839
if (qh == NULL) {
3840
status = -ENOMEM;
3841
goto done;
3842
}
3843
if (qh->qh_state == QH_STATE_IDLE) {
3844
status = qh_schedule(fotg210, qh);
3845
if (status)
3846
goto done;
3847
}
3848
3849
/* then queue the urb's tds to the qh */
3850
qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3851
BUG_ON(qh == NULL);
3852
3853
/* ... update usbfs periodic stats */
3854
fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3855
3856
done:
3857
if (unlikely(status))
3858
usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3859
done_not_linked:
3860
spin_unlock_irqrestore(&fotg210->lock, flags);
3861
if (status)
3862
qtd_list_free(fotg210, urb, qtd_list);
3863
3864
return status;
3865
}
3866
3867
static void scan_intr(struct fotg210_hcd *fotg210)
3868
{
3869
struct fotg210_qh *qh;
3870
3871
list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3872
&fotg210->intr_qh_list, intr_node) {
3873
rescan:
3874
/* clean any finished work for this qh */
3875
if (!list_empty(&qh->qtd_list)) {
3876
int temp;
3877
3878
/*
3879
* Unlinks could happen here; completion reporting
3880
* drops the lock. That's why fotg210->qh_scan_next
3881
* always holds the next qh to scan; if the next qh
3882
* gets unlinked then fotg210->qh_scan_next is adjusted
3883
* in qh_unlink_periodic().
3884
*/
3885
temp = qh_completions(fotg210, qh);
3886
if (unlikely(qh->needs_rescan ||
3887
(list_empty(&qh->qtd_list) &&
3888
qh->qh_state == QH_STATE_LINKED)))
3889
start_unlink_intr(fotg210, qh);
3890
else if (temp != 0)
3891
goto rescan;
3892
}
3893
}
3894
}
3895
3896
/* fotg210_iso_stream ops work with both ITD and SITD */
3897
3898
static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3899
{
3900
struct fotg210_iso_stream *stream;
3901
3902
stream = kzalloc(sizeof(*stream), mem_flags);
3903
if (likely(stream != NULL)) {
3904
INIT_LIST_HEAD(&stream->td_list);
3905
INIT_LIST_HEAD(&stream->free_list);
3906
stream->next_uframe = -1;
3907
}
3908
return stream;
3909
}
3910
3911
static void iso_stream_init(struct fotg210_hcd *fotg210,
3912
struct fotg210_iso_stream *stream, struct usb_device *dev,
3913
int pipe, unsigned interval)
3914
{
3915
u32 buf1;
3916
unsigned epnum, maxp;
3917
int is_input;
3918
long bandwidth;
3919
unsigned multi;
3920
struct usb_host_endpoint *ep;
3921
3922
/*
3923
* this might be a "high bandwidth" highspeed endpoint,
3924
* as encoded in the ep descriptor's wMaxPacket field
3925
*/
3926
epnum = usb_pipeendpoint(pipe);
3927
is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3928
ep = usb_pipe_endpoint(dev, pipe);
3929
maxp = usb_endpoint_maxp(&ep->desc);
3930
if (is_input)
3931
buf1 = (1 << 11);
3932
else
3933
buf1 = 0;
3934
3935
multi = usb_endpoint_maxp_mult(&ep->desc);
3936
buf1 |= maxp;
3937
maxp *= multi;
3938
3939
stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3940
stream->buf1 = cpu_to_hc32(fotg210, buf1);
3941
stream->buf2 = cpu_to_hc32(fotg210, multi);
3942
3943
/* usbfs wants to report the average usecs per frame tied up
3944
* when transfers on this endpoint are scheduled ...
3945
*/
3946
if (dev->speed == USB_SPEED_FULL) {
3947
interval <<= 3;
3948
stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3949
is_input, 1, maxp));
3950
stream->usecs /= 8;
3951
} else {
3952
stream->highspeed = 1;
3953
stream->usecs = HS_USECS_ISO(maxp);
3954
}
3955
bandwidth = stream->usecs * 8;
3956
bandwidth /= interval;
3957
3958
stream->bandwidth = bandwidth;
3959
stream->udev = dev;
3960
stream->bEndpointAddress = is_input | epnum;
3961
stream->interval = interval;
3962
stream->maxp = maxp;
3963
}
3964
3965
static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3966
struct urb *urb)
3967
{
3968
unsigned epnum;
3969
struct fotg210_iso_stream *stream;
3970
struct usb_host_endpoint *ep;
3971
unsigned long flags;
3972
3973
epnum = usb_pipeendpoint(urb->pipe);
3974
if (usb_pipein(urb->pipe))
3975
ep = urb->dev->ep_in[epnum];
3976
else
3977
ep = urb->dev->ep_out[epnum];
3978
3979
spin_lock_irqsave(&fotg210->lock, flags);
3980
stream = ep->hcpriv;
3981
3982
if (unlikely(stream == NULL)) {
3983
stream = iso_stream_alloc(GFP_ATOMIC);
3984
if (likely(stream != NULL)) {
3985
ep->hcpriv = stream;
3986
stream->ep = ep;
3987
iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3988
urb->interval);
3989
}
3990
3991
/* if dev->ep[epnum] is a QH, hw is set */
3992
} else if (unlikely(stream->hw != NULL)) {
3993
fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
3994
urb->dev->devpath, epnum,
3995
usb_pipein(urb->pipe) ? "in" : "out");
3996
stream = NULL;
3997
}
3998
3999
spin_unlock_irqrestore(&fotg210->lock, flags);
4000
return stream;
4001
}
4002
4003
/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4004
4005
static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4006
gfp_t mem_flags)
4007
{
4008
struct fotg210_iso_sched *iso_sched;
4009
4010
iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags);
4011
if (likely(iso_sched != NULL))
4012
INIT_LIST_HEAD(&iso_sched->td_list);
4013
4014
return iso_sched;
4015
}
4016
4017
static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4018
struct fotg210_iso_sched *iso_sched,
4019
struct fotg210_iso_stream *stream, struct urb *urb)
4020
{
4021
unsigned i;
4022
dma_addr_t dma = urb->transfer_dma;
4023
4024
/* how many uframes are needed for these transfers */
4025
iso_sched->span = urb->number_of_packets * stream->interval;
4026
4027
/* figure out per-uframe itd fields that we'll need later
4028
* when we fit new itds into the schedule.
4029
*/
4030
for (i = 0; i < urb->number_of_packets; i++) {
4031
struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4032
unsigned length;
4033
dma_addr_t buf;
4034
u32 trans;
4035
4036
length = urb->iso_frame_desc[i].length;
4037
buf = dma + urb->iso_frame_desc[i].offset;
4038
4039
trans = FOTG210_ISOC_ACTIVE;
4040
trans |= buf & 0x0fff;
4041
if (unlikely(((i + 1) == urb->number_of_packets))
4042
&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4043
trans |= FOTG210_ITD_IOC;
4044
trans |= length << 16;
4045
uframe->transaction = cpu_to_hc32(fotg210, trans);
4046
4047
/* might need to cross a buffer page within a uframe */
4048
uframe->bufp = (buf & ~(u64)0x0fff);
4049
buf += length;
4050
if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4051
uframe->cross = 1;
4052
}
4053
}
4054
4055
static void iso_sched_free(struct fotg210_iso_stream *stream,
4056
struct fotg210_iso_sched *iso_sched)
4057
{
4058
if (!iso_sched)
4059
return;
4060
/* caller must hold fotg210->lock!*/
4061
list_splice(&iso_sched->td_list, &stream->free_list);
4062
kfree(iso_sched);
4063
}
4064
4065
static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4066
struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4067
{
4068
struct fotg210_itd *itd;
4069
dma_addr_t itd_dma;
4070
int i;
4071
unsigned num_itds;
4072
struct fotg210_iso_sched *sched;
4073
unsigned long flags;
4074
4075
sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4076
if (unlikely(sched == NULL))
4077
return -ENOMEM;
4078
4079
itd_sched_init(fotg210, sched, stream, urb);
4080
4081
if (urb->interval < 8)
4082
num_itds = 1 + (sched->span + 7) / 8;
4083
else
4084
num_itds = urb->number_of_packets;
4085
4086
/* allocate/init ITDs */
4087
spin_lock_irqsave(&fotg210->lock, flags);
4088
for (i = 0; i < num_itds; i++) {
4089
4090
/*
4091
* Use iTDs from the free list, but not iTDs that may
4092
* still be in use by the hardware.
4093
*/
4094
if (likely(!list_empty(&stream->free_list))) {
4095
itd = list_first_entry(&stream->free_list,
4096
struct fotg210_itd, itd_list);
4097
if (itd->frame == fotg210->now_frame)
4098
goto alloc_itd;
4099
list_del(&itd->itd_list);
4100
itd_dma = itd->itd_dma;
4101
} else {
4102
alloc_itd:
4103
spin_unlock_irqrestore(&fotg210->lock, flags);
4104
itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4105
&itd_dma);
4106
spin_lock_irqsave(&fotg210->lock, flags);
4107
if (!itd) {
4108
iso_sched_free(stream, sched);
4109
spin_unlock_irqrestore(&fotg210->lock, flags);
4110
return -ENOMEM;
4111
}
4112
}
4113
4114
memset(itd, 0, sizeof(*itd));
4115
itd->itd_dma = itd_dma;
4116
list_add(&itd->itd_list, &sched->td_list);
4117
}
4118
spin_unlock_irqrestore(&fotg210->lock, flags);
4119
4120
/* temporarily store schedule info in hcpriv */
4121
urb->hcpriv = sched;
4122
urb->error_count = 0;
4123
return 0;
4124
}
4125
4126
static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4127
u8 usecs, u32 period)
4128
{
4129
uframe %= period;
4130
do {
4131
/* can't commit more than uframe_periodic_max usec */
4132
if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4133
> (fotg210->uframe_periodic_max - usecs))
4134
return 0;
4135
4136
/* we know urb->interval is 2^N uframes */
4137
uframe += period;
4138
} while (uframe < mod);
4139
return 1;
4140
}
4141
4142
/* This scheduler plans almost as far into the future as it has actual
4143
* periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4144
* "as small as possible" to be cache-friendlier.) That limits the size
4145
* transfers you can stream reliably; avoid more than 64 msec per urb.
4146
* Also avoid queue depths of less than fotg210's worst irq latency (affected
4147
* by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4148
* and other factors); or more than about 230 msec total (for portability,
4149
* given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4150
*/
4151
4152
#define SCHEDULE_SLOP 80 /* microframes */
4153
4154
static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4155
struct fotg210_iso_stream *stream)
4156
{
4157
u32 now, next, start, period, span;
4158
int status;
4159
unsigned mod = fotg210->periodic_size << 3;
4160
struct fotg210_iso_sched *sched = urb->hcpriv;
4161
4162
period = urb->interval;
4163
span = sched->span;
4164
4165
if (span > mod - SCHEDULE_SLOP) {
4166
fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4167
status = -EFBIG;
4168
goto fail;
4169
}
4170
4171
now = fotg210_read_frame_index(fotg210) & (mod - 1);
4172
4173
/* Typical case: reuse current schedule, stream is still active.
4174
* Hopefully there are no gaps from the host falling behind
4175
* (irq delays etc), but if there are we'll take the next
4176
* slot in the schedule, implicitly assuming URB_ISO_ASAP.
4177
*/
4178
if (likely(!list_empty(&stream->td_list))) {
4179
u32 excess;
4180
4181
/* For high speed devices, allow scheduling within the
4182
* isochronous scheduling threshold. For full speed devices
4183
* and Intel PCI-based controllers, don't (work around for
4184
* Intel ICH9 bug).
4185
*/
4186
if (!stream->highspeed && fotg210->fs_i_thresh)
4187
next = now + fotg210->i_thresh;
4188
else
4189
next = now;
4190
4191
/* Fell behind (by up to twice the slop amount)?
4192
* We decide based on the time of the last currently-scheduled
4193
* slot, not the time of the next available slot.
4194
*/
4195
excess = (stream->next_uframe - period - next) & (mod - 1);
4196
if (excess >= mod - 2 * SCHEDULE_SLOP)
4197
start = next + excess - mod + period *
4198
DIV_ROUND_UP(mod - excess, period);
4199
else
4200
start = next + excess + period;
4201
if (start - now >= mod) {
4202
fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4203
urb, start - now - period, period,
4204
mod);
4205
status = -EFBIG;
4206
goto fail;
4207
}
4208
}
4209
4210
/* need to schedule; when's the next (u)frame we could start?
4211
* this is bigger than fotg210->i_thresh allows; scheduling itself
4212
* isn't free, the slop should handle reasonably slow cpus. it
4213
* can also help high bandwidth if the dma and irq loads don't
4214
* jump until after the queue is primed.
4215
*/
4216
else {
4217
int done = 0;
4218
4219
start = SCHEDULE_SLOP + (now & ~0x07);
4220
4221
/* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4222
4223
/* find a uframe slot with enough bandwidth.
4224
* Early uframes are more precious because full-speed
4225
* iso IN transfers can't use late uframes,
4226
* and therefore they should be allocated last.
4227
*/
4228
next = start;
4229
start += period;
4230
do {
4231
start--;
4232
/* check schedule: enough space? */
4233
if (itd_slot_ok(fotg210, mod, start,
4234
stream->usecs, period))
4235
done = 1;
4236
} while (start > next && !done);
4237
4238
/* no room in the schedule */
4239
if (!done) {
4240
fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4241
urb, now, now + mod);
4242
status = -ENOSPC;
4243
goto fail;
4244
}
4245
}
4246
4247
/* Tried to schedule too far into the future? */
4248
if (unlikely(start - now + span - period >=
4249
mod - 2 * SCHEDULE_SLOP)) {
4250
fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4251
urb, start - now, span - period,
4252
mod - 2 * SCHEDULE_SLOP);
4253
status = -EFBIG;
4254
goto fail;
4255
}
4256
4257
stream->next_uframe = start & (mod - 1);
4258
4259
/* report high speed start in uframes; full speed, in frames */
4260
urb->start_frame = stream->next_uframe;
4261
if (!stream->highspeed)
4262
urb->start_frame >>= 3;
4263
4264
/* Make sure scan_isoc() sees these */
4265
if (fotg210->isoc_count == 0)
4266
fotg210->next_frame = now >> 3;
4267
return 0;
4268
4269
fail:
4270
iso_sched_free(stream, sched);
4271
urb->hcpriv = NULL;
4272
return status;
4273
}
4274
4275
static inline void itd_init(struct fotg210_hcd *fotg210,
4276
struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4277
{
4278
int i;
4279
4280
/* it's been recently zeroed */
4281
itd->hw_next = FOTG210_LIST_END(fotg210);
4282
itd->hw_bufp[0] = stream->buf0;
4283
itd->hw_bufp[1] = stream->buf1;
4284
itd->hw_bufp[2] = stream->buf2;
4285
4286
for (i = 0; i < 8; i++)
4287
itd->index[i] = -1;
4288
4289
/* All other fields are filled when scheduling */
4290
}
4291
4292
static inline void itd_patch(struct fotg210_hcd *fotg210,
4293
struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4294
unsigned index, u16 uframe)
4295
{
4296
struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4297
unsigned pg = itd->pg;
4298
4299
uframe &= 0x07;
4300
itd->index[uframe] = index;
4301
4302
itd->hw_transaction[uframe] = uf->transaction;
4303
itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4304
itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4305
itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4306
4307
/* iso_frame_desc[].offset must be strictly increasing */
4308
if (unlikely(uf->cross)) {
4309
u64 bufp = uf->bufp + 4096;
4310
4311
itd->pg = ++pg;
4312
itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4313
itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4314
}
4315
}
4316
4317
static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4318
struct fotg210_itd *itd)
4319
{
4320
union fotg210_shadow *prev = &fotg210->pshadow[frame];
4321
__hc32 *hw_p = &fotg210->periodic[frame];
4322
union fotg210_shadow here = *prev;
4323
__hc32 type = 0;
4324
4325
/* skip any iso nodes which might belong to previous microframes */
4326
while (here.ptr) {
4327
type = Q_NEXT_TYPE(fotg210, *hw_p);
4328
if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4329
break;
4330
prev = periodic_next_shadow(fotg210, prev, type);
4331
hw_p = shadow_next_periodic(fotg210, &here, type);
4332
here = *prev;
4333
}
4334
4335
itd->itd_next = here;
4336
itd->hw_next = *hw_p;
4337
prev->itd = itd;
4338
itd->frame = frame;
4339
wmb();
4340
*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4341
}
4342
4343
/* fit urb's itds into the selected schedule slot; activate as needed */
4344
static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4345
unsigned mod, struct fotg210_iso_stream *stream)
4346
{
4347
int packet;
4348
unsigned next_uframe, uframe, frame;
4349
struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4350
struct fotg210_itd *itd;
4351
4352
next_uframe = stream->next_uframe & (mod - 1);
4353
4354
if (unlikely(list_empty(&stream->td_list))) {
4355
fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4356
+= stream->bandwidth;
4357
fotg210_dbg(fotg210,
4358
"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4359
urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4360
(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4361
urb->interval,
4362
next_uframe >> 3, next_uframe & 0x7);
4363
}
4364
4365
/* fill iTDs uframe by uframe */
4366
for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4367
if (itd == NULL) {
4368
/* ASSERT: we have all necessary itds */
4369
4370
/* ASSERT: no itds for this endpoint in this uframe */
4371
4372
itd = list_entry(iso_sched->td_list.next,
4373
struct fotg210_itd, itd_list);
4374
list_move_tail(&itd->itd_list, &stream->td_list);
4375
itd->stream = stream;
4376
itd->urb = urb;
4377
itd_init(fotg210, stream, itd);
4378
}
4379
4380
uframe = next_uframe & 0x07;
4381
frame = next_uframe >> 3;
4382
4383
itd_patch(fotg210, itd, iso_sched, packet, uframe);
4384
4385
next_uframe += stream->interval;
4386
next_uframe &= mod - 1;
4387
packet++;
4388
4389
/* link completed itds into the schedule */
4390
if (((next_uframe >> 3) != frame)
4391
|| packet == urb->number_of_packets) {
4392
itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4393
itd);
4394
itd = NULL;
4395
}
4396
}
4397
stream->next_uframe = next_uframe;
4398
4399
/* don't need that schedule data any more */
4400
iso_sched_free(stream, iso_sched);
4401
urb->hcpriv = NULL;
4402
4403
++fotg210->isoc_count;
4404
enable_periodic(fotg210);
4405
}
4406
4407
#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4408
FOTG210_ISOC_XACTERR)
4409
4410
/* Process and recycle a completed ITD. Return true iff its urb completed,
4411
* and hence its completion callback probably added things to the hardware
4412
* schedule.
4413
*
4414
* Note that we carefully avoid recycling this descriptor until after any
4415
* completion callback runs, so that it won't be reused quickly. That is,
4416
* assuming (a) no more than two urbs per frame on this endpoint, and also
4417
* (b) only this endpoint's completions submit URBs. It seems some silicon
4418
* corrupts things if you reuse completed descriptors very quickly...
4419
*/
4420
static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4421
{
4422
struct urb *urb = itd->urb;
4423
struct usb_iso_packet_descriptor *desc;
4424
u32 t;
4425
unsigned uframe;
4426
int urb_index = -1;
4427
struct fotg210_iso_stream *stream = itd->stream;
4428
struct usb_device *dev;
4429
bool retval = false;
4430
4431
/* for each uframe with a packet */
4432
for (uframe = 0; uframe < 8; uframe++) {
4433
if (likely(itd->index[uframe] == -1))
4434
continue;
4435
urb_index = itd->index[uframe];
4436
desc = &urb->iso_frame_desc[urb_index];
4437
4438
t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4439
itd->hw_transaction[uframe] = 0;
4440
4441
/* report transfer status */
4442
if (unlikely(t & ISO_ERRS)) {
4443
urb->error_count++;
4444
if (t & FOTG210_ISOC_BUF_ERR)
4445
desc->status = usb_pipein(urb->pipe)
4446
? -ENOSR /* hc couldn't read */
4447
: -ECOMM; /* hc couldn't write */
4448
else if (t & FOTG210_ISOC_BABBLE)
4449
desc->status = -EOVERFLOW;
4450
else /* (t & FOTG210_ISOC_XACTERR) */
4451
desc->status = -EPROTO;
4452
4453
/* HC need not update length with this error */
4454
if (!(t & FOTG210_ISOC_BABBLE)) {
4455
desc->actual_length = FOTG210_ITD_LENGTH(t);
4456
urb->actual_length += desc->actual_length;
4457
}
4458
} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4459
desc->status = 0;
4460
desc->actual_length = FOTG210_ITD_LENGTH(t);
4461
urb->actual_length += desc->actual_length;
4462
} else {
4463
/* URB was too late */
4464
desc->status = -EXDEV;
4465
}
4466
}
4467
4468
/* handle completion now? */
4469
if (likely((urb_index + 1) != urb->number_of_packets))
4470
goto done;
4471
4472
/* ASSERT: it's really the last itd for this urb
4473
* list_for_each_entry (itd, &stream->td_list, itd_list)
4474
* BUG_ON (itd->urb == urb);
4475
*/
4476
4477
/* give urb back to the driver; completion often (re)submits */
4478
dev = urb->dev;
4479
fotg210_urb_done(fotg210, urb, 0);
4480
retval = true;
4481
urb = NULL;
4482
4483
--fotg210->isoc_count;
4484
disable_periodic(fotg210);
4485
4486
if (unlikely(list_is_singular(&stream->td_list))) {
4487
fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4488
-= stream->bandwidth;
4489
fotg210_dbg(fotg210,
4490
"deschedule devp %s ep%d%s-iso\n",
4491
dev->devpath, stream->bEndpointAddress & 0x0f,
4492
(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4493
}
4494
4495
done:
4496
itd->urb = NULL;
4497
4498
/* Add to the end of the free list for later reuse */
4499
list_move_tail(&itd->itd_list, &stream->free_list);
4500
4501
/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4502
if (list_empty(&stream->td_list)) {
4503
list_splice_tail_init(&stream->free_list,
4504
&fotg210->cached_itd_list);
4505
start_free_itds(fotg210);
4506
}
4507
4508
return retval;
4509
}
4510
4511
static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4512
gfp_t mem_flags)
4513
{
4514
int status = -EINVAL;
4515
unsigned long flags;
4516
struct fotg210_iso_stream *stream;
4517
4518
/* Get iso_stream head */
4519
stream = iso_stream_find(fotg210, urb);
4520
if (unlikely(stream == NULL)) {
4521
fotg210_dbg(fotg210, "can't get iso stream\n");
4522
return -ENOMEM;
4523
}
4524
if (unlikely(urb->interval != stream->interval &&
4525
fotg210_port_speed(fotg210, 0) ==
4526
USB_PORT_STAT_HIGH_SPEED)) {
4527
fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4528
stream->interval, urb->interval);
4529
goto done;
4530
}
4531
4532
#ifdef FOTG210_URB_TRACE
4533
fotg210_dbg(fotg210,
4534
"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4535
__func__, urb->dev->devpath, urb,
4536
usb_pipeendpoint(urb->pipe),
4537
usb_pipein(urb->pipe) ? "in" : "out",
4538
urb->transfer_buffer_length,
4539
urb->number_of_packets, urb->interval,
4540
stream);
4541
#endif
4542
4543
/* allocate ITDs w/o locking anything */
4544
status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4545
if (unlikely(status < 0)) {
4546
fotg210_dbg(fotg210, "can't init itds\n");
4547
goto done;
4548
}
4549
4550
/* schedule ... need to lock */
4551
spin_lock_irqsave(&fotg210->lock, flags);
4552
if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4553
status = -ESHUTDOWN;
4554
goto done_not_linked;
4555
}
4556
status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4557
if (unlikely(status))
4558
goto done_not_linked;
4559
status = iso_stream_schedule(fotg210, urb, stream);
4560
if (likely(status == 0))
4561
itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4562
else
4563
usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4564
done_not_linked:
4565
spin_unlock_irqrestore(&fotg210->lock, flags);
4566
done:
4567
return status;
4568
}
4569
4570
static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4571
unsigned now_frame, bool live)
4572
{
4573
unsigned uf;
4574
bool modified;
4575
union fotg210_shadow q, *q_p;
4576
__hc32 type, *hw_p;
4577
4578
/* scan each element in frame's queue for completions */
4579
q_p = &fotg210->pshadow[frame];
4580
hw_p = &fotg210->periodic[frame];
4581
q.ptr = q_p->ptr;
4582
type = Q_NEXT_TYPE(fotg210, *hw_p);
4583
modified = false;
4584
4585
while (q.ptr) {
4586
switch (hc32_to_cpu(fotg210, type)) {
4587
case Q_TYPE_ITD:
4588
/* If this ITD is still active, leave it for
4589
* later processing ... check the next entry.
4590
* No need to check for activity unless the
4591
* frame is current.
4592
*/
4593
if (frame == now_frame && live) {
4594
rmb();
4595
for (uf = 0; uf < 8; uf++) {
4596
if (q.itd->hw_transaction[uf] &
4597
ITD_ACTIVE(fotg210))
4598
break;
4599
}
4600
if (uf < 8) {
4601
q_p = &q.itd->itd_next;
4602
hw_p = &q.itd->hw_next;
4603
type = Q_NEXT_TYPE(fotg210,
4604
q.itd->hw_next);
4605
q = *q_p;
4606
break;
4607
}
4608
}
4609
4610
/* Take finished ITDs out of the schedule
4611
* and process them: recycle, maybe report
4612
* URB completion. HC won't cache the
4613
* pointer for much longer, if at all.
4614
*/
4615
*q_p = q.itd->itd_next;
4616
*hw_p = q.itd->hw_next;
4617
type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4618
wmb();
4619
modified = itd_complete(fotg210, q.itd);
4620
q = *q_p;
4621
break;
4622
default:
4623
fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4624
type, frame, q.ptr);
4625
fallthrough;
4626
case Q_TYPE_QH:
4627
case Q_TYPE_FSTN:
4628
/* End of the iTDs and siTDs */
4629
q.ptr = NULL;
4630
break;
4631
}
4632
4633
/* assume completion callbacks modify the queue */
4634
if (unlikely(modified && fotg210->isoc_count > 0))
4635
return -EINVAL;
4636
}
4637
return 0;
4638
}
4639
4640
static void scan_isoc(struct fotg210_hcd *fotg210)
4641
{
4642
unsigned uf, now_frame, frame, ret;
4643
unsigned fmask = fotg210->periodic_size - 1;
4644
bool live;
4645
4646
/*
4647
* When running, scan from last scan point up to "now"
4648
* else clean up by scanning everything that's left.
4649
* Touches as few pages as possible: cache-friendly.
4650
*/
4651
if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4652
uf = fotg210_read_frame_index(fotg210);
4653
now_frame = (uf >> 3) & fmask;
4654
live = true;
4655
} else {
4656
now_frame = (fotg210->next_frame - 1) & fmask;
4657
live = false;
4658
}
4659
fotg210->now_frame = now_frame;
4660
4661
frame = fotg210->next_frame;
4662
for (;;) {
4663
ret = 1;
4664
while (ret != 0)
4665
ret = scan_frame_queue(fotg210, frame,
4666
now_frame, live);
4667
4668
/* Stop when we have reached the current frame */
4669
if (frame == now_frame)
4670
break;
4671
frame = (frame + 1) & fmask;
4672
}
4673
fotg210->next_frame = now_frame;
4674
}
4675
4676
/* Display / Set uframe_periodic_max
4677
*/
4678
static ssize_t uframe_periodic_max_show(struct device *dev,
4679
struct device_attribute *attr, char *buf)
4680
{
4681
struct fotg210_hcd *fotg210;
4682
4683
fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4684
return sysfs_emit(buf, "%d\n", fotg210->uframe_periodic_max);
4685
}
4686
4687
static ssize_t uframe_periodic_max_store(struct device *dev,
4688
struct device_attribute *attr, const char *buf, size_t count)
4689
{
4690
struct fotg210_hcd *fotg210;
4691
unsigned uframe_periodic_max;
4692
unsigned frame, uframe;
4693
unsigned short allocated_max;
4694
unsigned long flags;
4695
ssize_t ret;
4696
4697
fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4698
4699
ret = kstrtouint(buf, 0, &uframe_periodic_max);
4700
if (ret)
4701
return ret;
4702
4703
if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4704
fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4705
uframe_periodic_max);
4706
return -EINVAL;
4707
}
4708
4709
ret = -EINVAL;
4710
4711
/*
4712
* lock, so that our checking does not race with possible periodic
4713
* bandwidth allocation through submitting new urbs.
4714
*/
4715
spin_lock_irqsave(&fotg210->lock, flags);
4716
4717
/*
4718
* for request to decrease max periodic bandwidth, we have to check
4719
* every microframe in the schedule to see whether the decrease is
4720
* possible.
4721
*/
4722
if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4723
allocated_max = 0;
4724
4725
for (frame = 0; frame < fotg210->periodic_size; ++frame)
4726
for (uframe = 0; uframe < 7; ++uframe)
4727
allocated_max = max(allocated_max,
4728
periodic_usecs(fotg210, frame,
4729
uframe));
4730
4731
if (allocated_max > uframe_periodic_max) {
4732
fotg210_info(fotg210,
4733
"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4734
allocated_max, uframe_periodic_max);
4735
goto out_unlock;
4736
}
4737
}
4738
4739
/* increasing is always ok */
4740
4741
fotg210_info(fotg210,
4742
"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4743
100 * uframe_periodic_max/125, uframe_periodic_max);
4744
4745
if (uframe_periodic_max != 100)
4746
fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4747
4748
fotg210->uframe_periodic_max = uframe_periodic_max;
4749
ret = count;
4750
4751
out_unlock:
4752
spin_unlock_irqrestore(&fotg210->lock, flags);
4753
return ret;
4754
}
4755
4756
static DEVICE_ATTR_RW(uframe_periodic_max);
4757
4758
static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4759
{
4760
struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4761
4762
return device_create_file(controller, &dev_attr_uframe_periodic_max);
4763
}
4764
4765
static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4766
{
4767
struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4768
4769
device_remove_file(controller, &dev_attr_uframe_periodic_max);
4770
}
4771
/* On some systems, leaving remote wakeup enabled prevents system shutdown.
4772
* The firmware seems to think that powering off is a wakeup event!
4773
* This routine turns off remote wakeup and everything else, on all ports.
4774
*/
4775
static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4776
{
4777
u32 __iomem *status_reg = &fotg210->regs->port_status;
4778
4779
fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4780
}
4781
4782
/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4783
* Must be called with interrupts enabled and the lock not held.
4784
*/
4785
static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4786
{
4787
fotg210_halt(fotg210);
4788
4789
spin_lock_irq(&fotg210->lock);
4790
fotg210->rh_state = FOTG210_RH_HALTED;
4791
fotg210_turn_off_all_ports(fotg210);
4792
spin_unlock_irq(&fotg210->lock);
4793
}
4794
4795
/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4796
* This forcibly disables dma and IRQs, helping kexec and other cases
4797
* where the next system software may expect clean state.
4798
*/
4799
static void fotg210_shutdown(struct usb_hcd *hcd)
4800
{
4801
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4802
4803
spin_lock_irq(&fotg210->lock);
4804
fotg210->shutdown = true;
4805
fotg210->rh_state = FOTG210_RH_STOPPING;
4806
fotg210->enabled_hrtimer_events = 0;
4807
spin_unlock_irq(&fotg210->lock);
4808
4809
fotg210_silence_controller(fotg210);
4810
4811
hrtimer_cancel(&fotg210->hrtimer);
4812
}
4813
4814
/* fotg210_work is called from some interrupts, timers, and so on.
4815
* it calls driver completion functions, after dropping fotg210->lock.
4816
*/
4817
static void fotg210_work(struct fotg210_hcd *fotg210)
4818
{
4819
/* another CPU may drop fotg210->lock during a schedule scan while
4820
* it reports urb completions. this flag guards against bogus
4821
* attempts at re-entrant schedule scanning.
4822
*/
4823
if (fotg210->scanning) {
4824
fotg210->need_rescan = true;
4825
return;
4826
}
4827
fotg210->scanning = true;
4828
4829
rescan:
4830
fotg210->need_rescan = false;
4831
if (fotg210->async_count)
4832
scan_async(fotg210);
4833
if (fotg210->intr_count > 0)
4834
scan_intr(fotg210);
4835
if (fotg210->isoc_count > 0)
4836
scan_isoc(fotg210);
4837
if (fotg210->need_rescan)
4838
goto rescan;
4839
fotg210->scanning = false;
4840
4841
/* the IO watchdog guards against hardware or driver bugs that
4842
* misplace IRQs, and should let us run completely without IRQs.
4843
* such lossage has been observed on both VT6202 and VT8235.
4844
*/
4845
turn_on_io_watchdog(fotg210);
4846
}
4847
4848
/* Called when the fotg210_hcd module is removed.
4849
*/
4850
static void fotg210_stop(struct usb_hcd *hcd)
4851
{
4852
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4853
4854
fotg210_dbg(fotg210, "stop\n");
4855
4856
/* no more interrupts ... */
4857
4858
spin_lock_irq(&fotg210->lock);
4859
fotg210->enabled_hrtimer_events = 0;
4860
spin_unlock_irq(&fotg210->lock);
4861
4862
fotg210_quiesce(fotg210);
4863
fotg210_silence_controller(fotg210);
4864
fotg210_reset(fotg210);
4865
4866
hrtimer_cancel(&fotg210->hrtimer);
4867
remove_sysfs_files(fotg210);
4868
remove_debug_files(fotg210);
4869
4870
/* root hub is shut down separately (first, when possible) */
4871
spin_lock_irq(&fotg210->lock);
4872
end_free_itds(fotg210);
4873
spin_unlock_irq(&fotg210->lock);
4874
fotg210_mem_cleanup(fotg210);
4875
4876
#ifdef FOTG210_STATS
4877
fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4878
fotg210->stats.normal, fotg210->stats.error,
4879
fotg210->stats.iaa, fotg210->stats.lost_iaa);
4880
fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4881
fotg210->stats.complete, fotg210->stats.unlink);
4882
#endif
4883
4884
dbg_status(fotg210, "fotg210_stop completed",
4885
fotg210_readl(fotg210, &fotg210->regs->status));
4886
}
4887
4888
/* one-time init, only for memory state */
4889
static int hcd_fotg210_init(struct usb_hcd *hcd)
4890
{
4891
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4892
u32 temp;
4893
int retval;
4894
u32 hcc_params;
4895
struct fotg210_qh_hw *hw;
4896
4897
spin_lock_init(&fotg210->lock);
4898
4899
/*
4900
* keep io watchdog by default, those good HCDs could turn off it later
4901
*/
4902
fotg210->need_io_watchdog = 1;
4903
4904
hrtimer_setup(&fotg210->hrtimer, fotg210_hrtimer_func, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4905
fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4906
4907
hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4908
4909
/*
4910
* by default set standard 80% (== 100 usec/uframe) max periodic
4911
* bandwidth as required by USB 2.0
4912
*/
4913
fotg210->uframe_periodic_max = 100;
4914
4915
/*
4916
* hw default: 1K periodic list heads, one per frame.
4917
* periodic_size can shrink by USBCMD update if hcc_params allows.
4918
*/
4919
fotg210->periodic_size = DEFAULT_I_TDPS;
4920
INIT_LIST_HEAD(&fotg210->intr_qh_list);
4921
INIT_LIST_HEAD(&fotg210->cached_itd_list);
4922
4923
if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4924
/* periodic schedule size can be smaller than default */
4925
switch (FOTG210_TUNE_FLS) {
4926
case 0:
4927
fotg210->periodic_size = 1024;
4928
break;
4929
case 1:
4930
fotg210->periodic_size = 512;
4931
break;
4932
case 2:
4933
fotg210->periodic_size = 256;
4934
break;
4935
default:
4936
BUG();
4937
}
4938
}
4939
retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4940
if (retval < 0)
4941
return retval;
4942
4943
/* controllers may cache some of the periodic schedule ... */
4944
fotg210->i_thresh = 2;
4945
4946
/*
4947
* dedicate a qh for the async ring head, since we couldn't unlink
4948
* a 'real' qh without stopping the async schedule [4.8]. use it
4949
* as the 'reclamation list head' too.
4950
* its dummy is used in hw_alt_next of many tds, to prevent the qh
4951
* from automatically advancing to the next td after short reads.
4952
*/
4953
fotg210->async->qh_next.qh = NULL;
4954
hw = fotg210->async->hw;
4955
hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4956
hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4957
hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4958
hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4959
fotg210->async->qh_state = QH_STATE_LINKED;
4960
hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4961
4962
/* clear interrupt enables, set irq latency */
4963
if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4964
log2_irq_thresh = 0;
4965
temp = 1 << (16 + log2_irq_thresh);
4966
if (HCC_CANPARK(hcc_params)) {
4967
/* HW default park == 3, on hardware that supports it (like
4968
* NVidia and ALI silicon), maximizes throughput on the async
4969
* schedule by avoiding QH fetches between transfers.
4970
*
4971
* With fast usb storage devices and NForce2, "park" seems to
4972
* make problems: throughput reduction (!), data errors...
4973
*/
4974
if (park) {
4975
park = min_t(unsigned, park, 3);
4976
temp |= CMD_PARK;
4977
temp |= park << 8;
4978
}
4979
fotg210_dbg(fotg210, "park %d\n", park);
4980
}
4981
if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4982
/* periodic schedule size can be smaller than default */
4983
temp &= ~(3 << 2);
4984
temp |= (FOTG210_TUNE_FLS << 2);
4985
}
4986
fotg210->command = temp;
4987
4988
/* Accept arbitrarily long scatter-gather lists */
4989
if (!hcd->localmem_pool)
4990
hcd->self.sg_tablesize = ~0;
4991
return 0;
4992
}
4993
4994
/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
4995
static int fotg210_run(struct usb_hcd *hcd)
4996
{
4997
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4998
u32 temp;
4999
5000
hcd->uses_new_polling = 1;
5001
5002
/* EHCI spec section 4.1 */
5003
5004
fotg210_writel(fotg210, fotg210->periodic_dma,
5005
&fotg210->regs->frame_list);
5006
fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5007
&fotg210->regs->async_next);
5008
5009
/*
5010
* hcc_params controls whether fotg210->regs->segment must (!!!)
5011
* be used; it constrains QH/ITD/SITD and QTD locations.
5012
* dma_pool consistent memory always uses segment zero.
5013
* streaming mappings for I/O buffers, like dma_map_single(),
5014
* can return segments above 4GB, if the device allows.
5015
*
5016
* NOTE: the dma mask is visible through dev->dma_mask, so
5017
* drivers can pass this info along ... like NETIF_F_HIGHDMA,
5018
* Scsi_Host.highmem_io, and so forth. It's readonly to all
5019
* host side drivers though.
5020
*/
5021
fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5022
5023
/*
5024
* Philips, Intel, and maybe others need CMD_RUN before the
5025
* root hub will detect new devices (why?); NEC doesn't
5026
*/
5027
fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5028
fotg210->command |= CMD_RUN;
5029
fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5030
dbg_cmd(fotg210, "init", fotg210->command);
5031
5032
/*
5033
* Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5034
* are explicitly handed to companion controller(s), so no TT is
5035
* involved with the root hub. (Except where one is integrated,
5036
* and there's no companion controller unless maybe for USB OTG.)
5037
*
5038
* Turning on the CF flag will transfer ownership of all ports
5039
* from the companions to the EHCI controller. If any of the
5040
* companions are in the middle of a port reset at the time, it
5041
* could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5042
* guarantees that no resets are in progress. After we set CF,
5043
* a short delay lets the hardware catch up; new resets shouldn't
5044
* be started before the port switching actions could complete.
5045
*/
5046
down_write(&ehci_cf_port_reset_rwsem);
5047
fotg210->rh_state = FOTG210_RH_RUNNING;
5048
/* unblock posted writes */
5049
fotg210_readl(fotg210, &fotg210->regs->command);
5050
usleep_range(5000, 10000);
5051
up_write(&ehci_cf_port_reset_rwsem);
5052
fotg210->last_periodic_enable = ktime_get_real();
5053
5054
temp = HC_VERSION(fotg210,
5055
fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5056
fotg210_info(fotg210,
5057
"USB %x.%x started, EHCI %x.%02x\n",
5058
((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5059
temp >> 8, temp & 0xff);
5060
5061
fotg210_writel(fotg210, INTR_MASK,
5062
&fotg210->regs->intr_enable); /* Turn On Interrupts */
5063
5064
/* GRR this is run-once init(), being done every time the HC starts.
5065
* So long as they're part of class devices, we can't do it init()
5066
* since the class device isn't created that early.
5067
*/
5068
create_debug_files(fotg210);
5069
create_sysfs_files(fotg210);
5070
5071
return 0;
5072
}
5073
5074
static int fotg210_setup(struct usb_hcd *hcd)
5075
{
5076
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5077
int retval;
5078
5079
fotg210->regs = (void __iomem *)fotg210->caps +
5080
HC_LENGTH(fotg210,
5081
fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5082
dbg_hcs_params(fotg210, "reset");
5083
dbg_hcc_params(fotg210, "reset");
5084
5085
/* cache this readonly data; minimize chip reads */
5086
fotg210->hcs_params = fotg210_readl(fotg210,
5087
&fotg210->caps->hcs_params);
5088
5089
fotg210->sbrn = HCD_USB2;
5090
5091
/* data structure init */
5092
retval = hcd_fotg210_init(hcd);
5093
if (retval)
5094
return retval;
5095
5096
retval = fotg210_halt(fotg210);
5097
if (retval)
5098
return retval;
5099
5100
fotg210_reset(fotg210);
5101
5102
return 0;
5103
}
5104
5105
static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5106
{
5107
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5108
u32 status, masked_status, pcd_status = 0, cmd;
5109
int bh;
5110
5111
spin_lock(&fotg210->lock);
5112
5113
status = fotg210_readl(fotg210, &fotg210->regs->status);
5114
5115
/* e.g. cardbus physical eject */
5116
if (status == ~(u32) 0) {
5117
fotg210_dbg(fotg210, "device removed\n");
5118
goto dead;
5119
}
5120
5121
/*
5122
* We don't use STS_FLR, but some controllers don't like it to
5123
* remain on, so mask it out along with the other status bits.
5124
*/
5125
masked_status = status & (INTR_MASK | STS_FLR);
5126
5127
/* Shared IRQ? */
5128
if (!masked_status ||
5129
unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5130
spin_unlock(&fotg210->lock);
5131
return IRQ_NONE;
5132
}
5133
5134
/* clear (just) interrupts */
5135
fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5136
cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5137
bh = 0;
5138
5139
/* unrequested/ignored: Frame List Rollover */
5140
dbg_status(fotg210, "irq", status);
5141
5142
/* INT, ERR, and IAA interrupt rates can be throttled */
5143
5144
/* normal [4.15.1.2] or error [4.15.1.1] completion */
5145
if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5146
if (likely((status & STS_ERR) == 0))
5147
INCR(fotg210->stats.normal);
5148
else
5149
INCR(fotg210->stats.error);
5150
bh = 1;
5151
}
5152
5153
/* complete the unlinking of some qh [4.15.2.3] */
5154
if (status & STS_IAA) {
5155
5156
/* Turn off the IAA watchdog */
5157
fotg210->enabled_hrtimer_events &=
5158
~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5159
5160
/*
5161
* Mild optimization: Allow another IAAD to reset the
5162
* hrtimer, if one occurs before the next expiration.
5163
* In theory we could always cancel the hrtimer, but
5164
* tests show that about half the time it will be reset
5165
* for some other event anyway.
5166
*/
5167
if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5168
++fotg210->next_hrtimer_event;
5169
5170
/* guard against (alleged) silicon errata */
5171
if (cmd & CMD_IAAD)
5172
fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5173
if (fotg210->async_iaa) {
5174
INCR(fotg210->stats.iaa);
5175
end_unlink_async(fotg210);
5176
} else
5177
fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5178
}
5179
5180
/* remote wakeup [4.3.1] */
5181
if (status & STS_PCD) {
5182
int pstatus;
5183
u32 __iomem *status_reg = &fotg210->regs->port_status;
5184
5185
/* kick root hub later */
5186
pcd_status = status;
5187
5188
/* resume root hub? */
5189
if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5190
usb_hcd_resume_root_hub(hcd);
5191
5192
pstatus = fotg210_readl(fotg210, status_reg);
5193
5194
if (test_bit(0, &fotg210->suspended_ports) &&
5195
((pstatus & PORT_RESUME) ||
5196
!(pstatus & PORT_SUSPEND)) &&
5197
(pstatus & PORT_PE) &&
5198
fotg210->reset_done[0] == 0) {
5199
5200
/* start 20 msec resume signaling from this port,
5201
* and make hub_wq collect PORT_STAT_C_SUSPEND to
5202
* stop that signaling. Use 5 ms extra for safety,
5203
* like usb_port_resume() does.
5204
*/
5205
fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5206
set_bit(0, &fotg210->resuming_ports);
5207
fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5208
mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5209
}
5210
}
5211
5212
/* PCI errors [4.15.2.4] */
5213
if (unlikely((status & STS_FATAL) != 0)) {
5214
fotg210_err(fotg210, "fatal error\n");
5215
dbg_cmd(fotg210, "fatal", cmd);
5216
dbg_status(fotg210, "fatal", status);
5217
dead:
5218
usb_hc_died(hcd);
5219
5220
/* Don't let the controller do anything more */
5221
fotg210->shutdown = true;
5222
fotg210->rh_state = FOTG210_RH_STOPPING;
5223
fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5224
fotg210_writel(fotg210, fotg210->command,
5225
&fotg210->regs->command);
5226
fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5227
fotg210_handle_controller_death(fotg210);
5228
5229
/* Handle completions when the controller stops */
5230
bh = 0;
5231
}
5232
5233
if (bh)
5234
fotg210_work(fotg210);
5235
spin_unlock(&fotg210->lock);
5236
if (pcd_status)
5237
usb_hcd_poll_rh_status(hcd);
5238
return IRQ_HANDLED;
5239
}
5240
5241
/* non-error returns are a promise to giveback() the urb later
5242
* we drop ownership so next owner (or urb unlink) can get it
5243
*
5244
* urb + dev is in hcd.self.controller.urb_list
5245
* we're queueing TDs onto software and hardware lists
5246
*
5247
* hcd-specific init for hcpriv hasn't been done yet
5248
*
5249
* NOTE: control, bulk, and interrupt share the same code to append TDs
5250
* to a (possibly active) QH, and the same QH scanning code.
5251
*/
5252
static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5253
gfp_t mem_flags)
5254
{
5255
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5256
struct list_head qtd_list;
5257
5258
INIT_LIST_HEAD(&qtd_list);
5259
5260
switch (usb_pipetype(urb->pipe)) {
5261
case PIPE_CONTROL:
5262
/* qh_completions() code doesn't handle all the fault cases
5263
* in multi-TD control transfers. Even 1KB is rare anyway.
5264
*/
5265
if (urb->transfer_buffer_length > (16 * 1024))
5266
return -EMSGSIZE;
5267
fallthrough;
5268
/* case PIPE_BULK: */
5269
default:
5270
if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5271
return -ENOMEM;
5272
return submit_async(fotg210, urb, &qtd_list, mem_flags);
5273
5274
case PIPE_INTERRUPT:
5275
if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5276
return -ENOMEM;
5277
return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5278
5279
case PIPE_ISOCHRONOUS:
5280
return itd_submit(fotg210, urb, mem_flags);
5281
}
5282
}
5283
5284
/* remove from hardware lists
5285
* completions normally happen asynchronously
5286
*/
5287
5288
static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5289
{
5290
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5291
struct fotg210_qh *qh;
5292
unsigned long flags;
5293
int rc;
5294
5295
spin_lock_irqsave(&fotg210->lock, flags);
5296
rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5297
if (rc)
5298
goto done;
5299
5300
switch (usb_pipetype(urb->pipe)) {
5301
/* case PIPE_CONTROL: */
5302
/* case PIPE_BULK:*/
5303
default:
5304
qh = (struct fotg210_qh *) urb->hcpriv;
5305
if (!qh)
5306
break;
5307
switch (qh->qh_state) {
5308
case QH_STATE_LINKED:
5309
case QH_STATE_COMPLETING:
5310
start_unlink_async(fotg210, qh);
5311
break;
5312
case QH_STATE_UNLINK:
5313
case QH_STATE_UNLINK_WAIT:
5314
/* already started */
5315
break;
5316
case QH_STATE_IDLE:
5317
/* QH might be waiting for a Clear-TT-Buffer */
5318
qh_completions(fotg210, qh);
5319
break;
5320
}
5321
break;
5322
5323
case PIPE_INTERRUPT:
5324
qh = (struct fotg210_qh *) urb->hcpriv;
5325
if (!qh)
5326
break;
5327
switch (qh->qh_state) {
5328
case QH_STATE_LINKED:
5329
case QH_STATE_COMPLETING:
5330
start_unlink_intr(fotg210, qh);
5331
break;
5332
case QH_STATE_IDLE:
5333
qh_completions(fotg210, qh);
5334
break;
5335
default:
5336
fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5337
qh, qh->qh_state);
5338
goto done;
5339
}
5340
break;
5341
5342
case PIPE_ISOCHRONOUS:
5343
/* itd... */
5344
5345
/* wait till next completion, do it then. */
5346
/* completion irqs can wait up to 1024 msec, */
5347
break;
5348
}
5349
done:
5350
spin_unlock_irqrestore(&fotg210->lock, flags);
5351
return rc;
5352
}
5353
5354
/* bulk qh holds the data toggle */
5355
5356
static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5357
struct usb_host_endpoint *ep)
5358
{
5359
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5360
unsigned long flags;
5361
struct fotg210_qh *qh, *tmp;
5362
5363
/* ASSERT: any requests/urbs are being unlinked */
5364
/* ASSERT: nobody can be submitting urbs for this any more */
5365
5366
rescan:
5367
spin_lock_irqsave(&fotg210->lock, flags);
5368
qh = ep->hcpriv;
5369
if (!qh)
5370
goto done;
5371
5372
/* endpoints can be iso streams. for now, we don't
5373
* accelerate iso completions ... so spin a while.
5374
*/
5375
if (qh->hw == NULL) {
5376
struct fotg210_iso_stream *stream = ep->hcpriv;
5377
5378
if (!list_empty(&stream->td_list))
5379
goto idle_timeout;
5380
5381
/* BUG_ON(!list_empty(&stream->free_list)); */
5382
kfree(stream);
5383
goto done;
5384
}
5385
5386
if (fotg210->rh_state < FOTG210_RH_RUNNING)
5387
qh->qh_state = QH_STATE_IDLE;
5388
switch (qh->qh_state) {
5389
case QH_STATE_LINKED:
5390
case QH_STATE_COMPLETING:
5391
for (tmp = fotg210->async->qh_next.qh;
5392
tmp && tmp != qh;
5393
tmp = tmp->qh_next.qh)
5394
continue;
5395
/* periodic qh self-unlinks on empty, and a COMPLETING qh
5396
* may already be unlinked.
5397
*/
5398
if (tmp)
5399
start_unlink_async(fotg210, qh);
5400
fallthrough;
5401
case QH_STATE_UNLINK: /* wait for hw to finish? */
5402
case QH_STATE_UNLINK_WAIT:
5403
idle_timeout:
5404
spin_unlock_irqrestore(&fotg210->lock, flags);
5405
schedule_timeout_uninterruptible(1);
5406
goto rescan;
5407
case QH_STATE_IDLE: /* fully unlinked */
5408
if (qh->clearing_tt)
5409
goto idle_timeout;
5410
if (list_empty(&qh->qtd_list)) {
5411
qh_destroy(fotg210, qh);
5412
break;
5413
}
5414
fallthrough;
5415
default:
5416
/* caller was supposed to have unlinked any requests;
5417
* that's not our job. just leak this memory.
5418
*/
5419
fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5420
qh, ep->desc.bEndpointAddress, qh->qh_state,
5421
list_empty(&qh->qtd_list) ? "" : "(has tds)");
5422
break;
5423
}
5424
done:
5425
ep->hcpriv = NULL;
5426
spin_unlock_irqrestore(&fotg210->lock, flags);
5427
}
5428
5429
static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5430
struct usb_host_endpoint *ep)
5431
{
5432
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5433
struct fotg210_qh *qh;
5434
int eptype = usb_endpoint_type(&ep->desc);
5435
int epnum = usb_endpoint_num(&ep->desc);
5436
int is_out = usb_endpoint_dir_out(&ep->desc);
5437
unsigned long flags;
5438
5439
if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5440
return;
5441
5442
spin_lock_irqsave(&fotg210->lock, flags);
5443
qh = ep->hcpriv;
5444
5445
/* For Bulk and Interrupt endpoints we maintain the toggle state
5446
* in the hardware; the toggle bits in udev aren't used at all.
5447
* When an endpoint is reset by usb_clear_halt() we must reset
5448
* the toggle bit in the QH.
5449
*/
5450
if (qh) {
5451
usb_settoggle(qh->dev, epnum, is_out, 0);
5452
if (!list_empty(&qh->qtd_list)) {
5453
WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5454
} else if (qh->qh_state == QH_STATE_LINKED ||
5455
qh->qh_state == QH_STATE_COMPLETING) {
5456
5457
/* The toggle value in the QH can't be updated
5458
* while the QH is active. Unlink it now;
5459
* re-linking will call qh_refresh().
5460
*/
5461
if (eptype == USB_ENDPOINT_XFER_BULK)
5462
start_unlink_async(fotg210, qh);
5463
else
5464
start_unlink_intr(fotg210, qh);
5465
}
5466
}
5467
spin_unlock_irqrestore(&fotg210->lock, flags);
5468
}
5469
5470
static int fotg210_get_frame(struct usb_hcd *hcd)
5471
{
5472
struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5473
5474
return (fotg210_read_frame_index(fotg210) >> 3) %
5475
fotg210->periodic_size;
5476
}
5477
5478
/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5479
* because its registers (and irq) are shared between host/gadget/otg
5480
* functions and in order to facilitate role switching we cannot
5481
* give the fotg210 driver exclusive access to those.
5482
*/
5483
5484
static const struct hc_driver fotg210_fotg210_hc_driver = {
5485
.description = hcd_name,
5486
.product_desc = "Faraday USB2.0 Host Controller",
5487
.hcd_priv_size = sizeof(struct fotg210_hcd),
5488
5489
/*
5490
* generic hardware linkage
5491
*/
5492
.irq = fotg210_irq,
5493
.flags = HCD_MEMORY | HCD_DMA | HCD_USB2,
5494
5495
/*
5496
* basic lifecycle operations
5497
*/
5498
.reset = hcd_fotg210_init,
5499
.start = fotg210_run,
5500
.stop = fotg210_stop,
5501
.shutdown = fotg210_shutdown,
5502
5503
/*
5504
* managing i/o requests and associated device resources
5505
*/
5506
.urb_enqueue = fotg210_urb_enqueue,
5507
.urb_dequeue = fotg210_urb_dequeue,
5508
.endpoint_disable = fotg210_endpoint_disable,
5509
.endpoint_reset = fotg210_endpoint_reset,
5510
5511
/*
5512
* scheduling support
5513
*/
5514
.get_frame_number = fotg210_get_frame,
5515
5516
/*
5517
* root hub support
5518
*/
5519
.hub_status_data = fotg210_hub_status_data,
5520
.hub_control = fotg210_hub_control,
5521
.bus_suspend = fotg210_bus_suspend,
5522
.bus_resume = fotg210_bus_resume,
5523
5524
.relinquish_port = fotg210_relinquish_port,
5525
.port_handed_over = fotg210_port_handed_over,
5526
5527
.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5528
};
5529
5530
static void fotg210_init(struct fotg210_hcd *fotg210)
5531
{
5532
u32 value;
5533
5534
iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5535
&fotg210->regs->gmir);
5536
5537
value = ioread32(&fotg210->regs->otgcsr);
5538
value &= ~OTGCSR_A_BUS_DROP;
5539
value |= OTGCSR_A_BUS_REQ;
5540
iowrite32(value, &fotg210->regs->otgcsr);
5541
}
5542
5543
/*
5544
* fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5545
*
5546
* Allocates basic resources for this USB host controller, and
5547
* then invokes the start() method for the HCD associated with it
5548
* through the hotplug entry's driver_data.
5549
*/
5550
int fotg210_hcd_probe(struct platform_device *pdev, struct fotg210 *fotg)
5551
{
5552
struct device *dev = &pdev->dev;
5553
struct usb_hcd *hcd;
5554
int irq;
5555
int retval;
5556
struct fotg210_hcd *fotg210;
5557
5558
if (usb_disabled())
5559
return -ENODEV;
5560
5561
pdev->dev.power.power_state = PMSG_ON;
5562
5563
irq = platform_get_irq(pdev, 0);
5564
if (irq < 0)
5565
return irq;
5566
5567
hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5568
dev_name(dev));
5569
if (!hcd) {
5570
retval = dev_err_probe(dev, -ENOMEM, "failed to create hcd\n");
5571
goto fail_create_hcd;
5572
}
5573
5574
hcd->has_tt = 1;
5575
5576
hcd->regs = fotg->base;
5577
5578
hcd->rsrc_start = fotg->res->start;
5579
hcd->rsrc_len = resource_size(fotg->res);
5580
5581
fotg210 = hcd_to_fotg210(hcd);
5582
5583
fotg210->fotg = fotg;
5584
fotg210->caps = hcd->regs;
5585
5586
retval = fotg210_setup(hcd);
5587
if (retval)
5588
goto failed_put_hcd;
5589
5590
fotg210_init(fotg210);
5591
5592
retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5593
if (retval) {
5594
dev_err_probe(dev, retval, "failed to add hcd\n");
5595
goto failed_put_hcd;
5596
}
5597
device_wakeup_enable(hcd->self.controller);
5598
platform_set_drvdata(pdev, hcd);
5599
5600
return retval;
5601
5602
failed_put_hcd:
5603
usb_put_hcd(hcd);
5604
fail_create_hcd:
5605
return dev_err_probe(dev, retval, "init %s fail\n", dev_name(dev));
5606
}
5607
5608
/*
5609
* fotg210_hcd_remove - shutdown processing for EHCI HCDs
5610
* @dev: USB Host Controller being removed
5611
*
5612
*/
5613
int fotg210_hcd_remove(struct platform_device *pdev)
5614
{
5615
struct usb_hcd *hcd = platform_get_drvdata(pdev);
5616
5617
usb_remove_hcd(hcd);
5618
usb_put_hcd(hcd);
5619
5620
return 0;
5621
}
5622
5623
int __init fotg210_hcd_init(void)
5624
{
5625
if (usb_disabled())
5626
return -ENODEV;
5627
5628
set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5629
if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5630
test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5631
pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5632
5633
pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5634
hcd_name, sizeof(struct fotg210_qh),
5635
sizeof(struct fotg210_qtd),
5636
sizeof(struct fotg210_itd));
5637
5638
fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5639
5640
return 0;
5641
}
5642
5643
void __exit fotg210_hcd_cleanup(void)
5644
{
5645
debugfs_remove(fotg210_debug_root);
5646
clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5647
}
5648
5649