Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/afs/file.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/* AFS filesystem file handling
3
*
4
* Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved.
5
* Written by David Howells ([email protected])
6
*/
7
8
#include <linux/kernel.h>
9
#include <linux/module.h>
10
#include <linux/init.h>
11
#include <linux/fs.h>
12
#include <linux/pagemap.h>
13
#include <linux/writeback.h>
14
#include <linux/gfp.h>
15
#include <linux/task_io_accounting_ops.h>
16
#include <linux/mm.h>
17
#include <linux/swap.h>
18
#include <linux/netfs.h>
19
#include <trace/events/netfs.h>
20
#include "internal.h"
21
22
static int afs_file_mmap_prepare(struct vm_area_desc *desc);
23
24
static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter);
25
static ssize_t afs_file_splice_read(struct file *in, loff_t *ppos,
26
struct pipe_inode_info *pipe,
27
size_t len, unsigned int flags);
28
static void afs_vm_open(struct vm_area_struct *area);
29
static void afs_vm_close(struct vm_area_struct *area);
30
static vm_fault_t afs_vm_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff);
31
32
const struct file_operations afs_file_operations = {
33
.open = afs_open,
34
.release = afs_release,
35
.llseek = generic_file_llseek,
36
.read_iter = afs_file_read_iter,
37
.write_iter = netfs_file_write_iter,
38
.mmap_prepare = afs_file_mmap_prepare,
39
.splice_read = afs_file_splice_read,
40
.splice_write = iter_file_splice_write,
41
.fsync = afs_fsync,
42
.lock = afs_lock,
43
.flock = afs_flock,
44
};
45
46
const struct inode_operations afs_file_inode_operations = {
47
.getattr = afs_getattr,
48
.setattr = afs_setattr,
49
.permission = afs_permission,
50
};
51
52
const struct address_space_operations afs_file_aops = {
53
.direct_IO = noop_direct_IO,
54
.read_folio = netfs_read_folio,
55
.readahead = netfs_readahead,
56
.dirty_folio = netfs_dirty_folio,
57
.release_folio = netfs_release_folio,
58
.invalidate_folio = netfs_invalidate_folio,
59
.migrate_folio = filemap_migrate_folio,
60
.writepages = afs_writepages,
61
};
62
63
static const struct vm_operations_struct afs_vm_ops = {
64
.open = afs_vm_open,
65
.close = afs_vm_close,
66
.fault = filemap_fault,
67
.map_pages = afs_vm_map_pages,
68
.page_mkwrite = afs_page_mkwrite,
69
};
70
71
/*
72
* Discard a pin on a writeback key.
73
*/
74
void afs_put_wb_key(struct afs_wb_key *wbk)
75
{
76
if (wbk && refcount_dec_and_test(&wbk->usage)) {
77
key_put(wbk->key);
78
kfree(wbk);
79
}
80
}
81
82
/*
83
* Cache key for writeback.
84
*/
85
int afs_cache_wb_key(struct afs_vnode *vnode, struct afs_file *af)
86
{
87
struct afs_wb_key *wbk, *p;
88
89
wbk = kzalloc(sizeof(struct afs_wb_key), GFP_KERNEL);
90
if (!wbk)
91
return -ENOMEM;
92
refcount_set(&wbk->usage, 2);
93
wbk->key = af->key;
94
95
spin_lock(&vnode->wb_lock);
96
list_for_each_entry(p, &vnode->wb_keys, vnode_link) {
97
if (p->key == wbk->key)
98
goto found;
99
}
100
101
key_get(wbk->key);
102
list_add_tail(&wbk->vnode_link, &vnode->wb_keys);
103
spin_unlock(&vnode->wb_lock);
104
af->wb = wbk;
105
return 0;
106
107
found:
108
refcount_inc(&p->usage);
109
spin_unlock(&vnode->wb_lock);
110
af->wb = p;
111
kfree(wbk);
112
return 0;
113
}
114
115
/*
116
* open an AFS file or directory and attach a key to it
117
*/
118
int afs_open(struct inode *inode, struct file *file)
119
{
120
struct afs_vnode *vnode = AFS_FS_I(inode);
121
struct afs_file *af;
122
struct key *key;
123
int ret;
124
125
_enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode);
126
127
key = afs_request_key(vnode->volume->cell);
128
if (IS_ERR(key)) {
129
ret = PTR_ERR(key);
130
goto error;
131
}
132
133
af = kzalloc(sizeof(*af), GFP_KERNEL);
134
if (!af) {
135
ret = -ENOMEM;
136
goto error_key;
137
}
138
af->key = key;
139
140
ret = afs_validate(vnode, key);
141
if (ret < 0)
142
goto error_af;
143
144
if (file->f_mode & FMODE_WRITE) {
145
ret = afs_cache_wb_key(vnode, af);
146
if (ret < 0)
147
goto error_af;
148
}
149
150
if (file->f_flags & O_TRUNC)
151
set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
152
153
fscache_use_cookie(afs_vnode_cache(vnode), file->f_mode & FMODE_WRITE);
154
155
file->private_data = af;
156
_leave(" = 0");
157
return 0;
158
159
error_af:
160
kfree(af);
161
error_key:
162
key_put(key);
163
error:
164
_leave(" = %d", ret);
165
return ret;
166
}
167
168
/*
169
* release an AFS file or directory and discard its key
170
*/
171
int afs_release(struct inode *inode, struct file *file)
172
{
173
struct afs_vnode_cache_aux aux;
174
struct afs_vnode *vnode = AFS_FS_I(inode);
175
struct afs_file *af = file->private_data;
176
loff_t i_size;
177
int ret = 0;
178
179
_enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode);
180
181
if ((file->f_mode & FMODE_WRITE))
182
ret = vfs_fsync(file, 0);
183
184
file->private_data = NULL;
185
if (af->wb)
186
afs_put_wb_key(af->wb);
187
188
if ((file->f_mode & FMODE_WRITE)) {
189
i_size = i_size_read(&vnode->netfs.inode);
190
afs_set_cache_aux(vnode, &aux);
191
fscache_unuse_cookie(afs_vnode_cache(vnode), &aux, &i_size);
192
} else {
193
fscache_unuse_cookie(afs_vnode_cache(vnode), NULL, NULL);
194
}
195
196
key_put(af->key);
197
kfree(af);
198
afs_prune_wb_keys(vnode);
199
_leave(" = %d", ret);
200
return ret;
201
}
202
203
static void afs_fetch_data_notify(struct afs_operation *op)
204
{
205
struct netfs_io_subrequest *subreq = op->fetch.subreq;
206
207
subreq->error = afs_op_error(op);
208
netfs_read_subreq_terminated(subreq);
209
}
210
211
static void afs_fetch_data_success(struct afs_operation *op)
212
{
213
struct afs_vnode *vnode = op->file[0].vnode;
214
215
_enter("op=%08x", op->debug_id);
216
afs_vnode_commit_status(op, &op->file[0]);
217
afs_stat_v(vnode, n_fetches);
218
atomic_long_add(op->fetch.subreq->transferred, &op->net->n_fetch_bytes);
219
afs_fetch_data_notify(op);
220
}
221
222
static void afs_fetch_data_aborted(struct afs_operation *op)
223
{
224
afs_check_for_remote_deletion(op);
225
afs_fetch_data_notify(op);
226
}
227
228
const struct afs_operation_ops afs_fetch_data_operation = {
229
.issue_afs_rpc = afs_fs_fetch_data,
230
.issue_yfs_rpc = yfs_fs_fetch_data,
231
.success = afs_fetch_data_success,
232
.aborted = afs_fetch_data_aborted,
233
.failed = afs_fetch_data_notify,
234
};
235
236
static void afs_issue_read_call(struct afs_operation *op)
237
{
238
op->call_responded = false;
239
op->call_error = 0;
240
op->call_abort_code = 0;
241
if (test_bit(AFS_SERVER_FL_IS_YFS, &op->server->flags))
242
yfs_fs_fetch_data(op);
243
else
244
afs_fs_fetch_data(op);
245
}
246
247
static void afs_end_read(struct afs_operation *op)
248
{
249
if (op->call_responded && op->server)
250
set_bit(AFS_SERVER_FL_RESPONDING, &op->server->flags);
251
252
if (!afs_op_error(op))
253
afs_fetch_data_success(op);
254
else if (op->cumul_error.aborted)
255
afs_fetch_data_aborted(op);
256
else
257
afs_fetch_data_notify(op);
258
259
afs_end_vnode_operation(op);
260
afs_put_operation(op);
261
}
262
263
/*
264
* Perform I/O processing on an asynchronous call. The work item carries a ref
265
* to the call struct that we either need to release or to pass on.
266
*/
267
static void afs_read_receive(struct afs_call *call)
268
{
269
struct afs_operation *op = call->op;
270
enum afs_call_state state;
271
272
_enter("");
273
274
state = READ_ONCE(call->state);
275
if (state == AFS_CALL_COMPLETE)
276
return;
277
trace_afs_read_recv(op, call);
278
279
while (state < AFS_CALL_COMPLETE && READ_ONCE(call->need_attention)) {
280
WRITE_ONCE(call->need_attention, false);
281
afs_deliver_to_call(call);
282
state = READ_ONCE(call->state);
283
}
284
285
if (state < AFS_CALL_COMPLETE) {
286
netfs_read_subreq_progress(op->fetch.subreq);
287
if (rxrpc_kernel_check_life(call->net->socket, call->rxcall))
288
return;
289
/* rxrpc terminated the call. */
290
afs_set_call_complete(call, call->error, call->abort_code);
291
}
292
293
op->call_abort_code = call->abort_code;
294
op->call_error = call->error;
295
op->call_responded = call->responded;
296
op->call = NULL;
297
call->op = NULL;
298
afs_put_call(call);
299
300
/* If the call failed, then we need to crank the server rotation
301
* handle and try the next.
302
*/
303
if (afs_select_fileserver(op)) {
304
afs_issue_read_call(op);
305
return;
306
}
307
308
afs_end_read(op);
309
}
310
311
void afs_fetch_data_async_rx(struct work_struct *work)
312
{
313
struct afs_call *call = container_of(work, struct afs_call, async_work);
314
315
afs_read_receive(call);
316
afs_put_call(call);
317
}
318
319
void afs_fetch_data_immediate_cancel(struct afs_call *call)
320
{
321
if (call->async) {
322
afs_get_call(call, afs_call_trace_wake);
323
if (!queue_work(afs_async_calls, &call->async_work))
324
afs_deferred_put_call(call);
325
flush_work(&call->async_work);
326
}
327
}
328
329
/*
330
* Fetch file data from the volume.
331
*/
332
static void afs_issue_read(struct netfs_io_subrequest *subreq)
333
{
334
struct afs_operation *op;
335
struct afs_vnode *vnode = AFS_FS_I(subreq->rreq->inode);
336
struct key *key = subreq->rreq->netfs_priv;
337
338
_enter("%s{%llx:%llu.%u},%x,,,",
339
vnode->volume->name,
340
vnode->fid.vid,
341
vnode->fid.vnode,
342
vnode->fid.unique,
343
key_serial(key));
344
345
op = afs_alloc_operation(key, vnode->volume);
346
if (IS_ERR(op)) {
347
subreq->error = PTR_ERR(op);
348
netfs_read_subreq_terminated(subreq);
349
return;
350
}
351
352
afs_op_set_vnode(op, 0, vnode);
353
354
op->fetch.subreq = subreq;
355
op->ops = &afs_fetch_data_operation;
356
357
trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
358
359
if (subreq->rreq->origin == NETFS_READAHEAD ||
360
subreq->rreq->iocb) {
361
op->flags |= AFS_OPERATION_ASYNC;
362
363
if (!afs_begin_vnode_operation(op)) {
364
subreq->error = afs_put_operation(op);
365
netfs_read_subreq_terminated(subreq);
366
return;
367
}
368
369
if (!afs_select_fileserver(op)) {
370
afs_end_read(op);
371
return;
372
}
373
374
afs_issue_read_call(op);
375
} else {
376
afs_do_sync_operation(op);
377
}
378
}
379
380
static int afs_init_request(struct netfs_io_request *rreq, struct file *file)
381
{
382
struct afs_vnode *vnode = AFS_FS_I(rreq->inode);
383
384
if (file)
385
rreq->netfs_priv = key_get(afs_file_key(file));
386
rreq->rsize = 256 * 1024;
387
rreq->wsize = 256 * 1024 * 1024;
388
389
switch (rreq->origin) {
390
case NETFS_READ_SINGLE:
391
if (!file) {
392
struct key *key = afs_request_key(vnode->volume->cell);
393
394
if (IS_ERR(key))
395
return PTR_ERR(key);
396
rreq->netfs_priv = key;
397
}
398
break;
399
case NETFS_WRITEBACK:
400
case NETFS_WRITETHROUGH:
401
case NETFS_UNBUFFERED_WRITE:
402
case NETFS_DIO_WRITE:
403
if (S_ISREG(rreq->inode->i_mode))
404
rreq->io_streams[0].avail = true;
405
break;
406
case NETFS_WRITEBACK_SINGLE:
407
default:
408
break;
409
}
410
return 0;
411
}
412
413
static int afs_check_write_begin(struct file *file, loff_t pos, unsigned len,
414
struct folio **foliop, void **_fsdata)
415
{
416
struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
417
418
return test_bit(AFS_VNODE_DELETED, &vnode->flags) ? -ESTALE : 0;
419
}
420
421
static void afs_free_request(struct netfs_io_request *rreq)
422
{
423
key_put(rreq->netfs_priv);
424
afs_put_wb_key(rreq->netfs_priv2);
425
}
426
427
static void afs_update_i_size(struct inode *inode, loff_t new_i_size)
428
{
429
struct afs_vnode *vnode = AFS_FS_I(inode);
430
loff_t i_size;
431
432
write_seqlock(&vnode->cb_lock);
433
i_size = i_size_read(&vnode->netfs.inode);
434
if (new_i_size > i_size) {
435
i_size_write(&vnode->netfs.inode, new_i_size);
436
inode_set_bytes(&vnode->netfs.inode, new_i_size);
437
}
438
write_sequnlock(&vnode->cb_lock);
439
fscache_update_cookie(afs_vnode_cache(vnode), NULL, &new_i_size);
440
}
441
442
static void afs_netfs_invalidate_cache(struct netfs_io_request *wreq)
443
{
444
struct afs_vnode *vnode = AFS_FS_I(wreq->inode);
445
446
afs_invalidate_cache(vnode, 0);
447
}
448
449
const struct netfs_request_ops afs_req_ops = {
450
.init_request = afs_init_request,
451
.free_request = afs_free_request,
452
.check_write_begin = afs_check_write_begin,
453
.issue_read = afs_issue_read,
454
.update_i_size = afs_update_i_size,
455
.invalidate_cache = afs_netfs_invalidate_cache,
456
.begin_writeback = afs_begin_writeback,
457
.prepare_write = afs_prepare_write,
458
.issue_write = afs_issue_write,
459
.retry_request = afs_retry_request,
460
};
461
462
static void afs_add_open_mmap(struct afs_vnode *vnode)
463
{
464
if (atomic_inc_return(&vnode->cb_nr_mmap) == 1) {
465
down_write(&vnode->volume->open_mmaps_lock);
466
467
if (list_empty(&vnode->cb_mmap_link))
468
list_add_tail(&vnode->cb_mmap_link, &vnode->volume->open_mmaps);
469
470
up_write(&vnode->volume->open_mmaps_lock);
471
}
472
}
473
474
static void afs_drop_open_mmap(struct afs_vnode *vnode)
475
{
476
if (atomic_add_unless(&vnode->cb_nr_mmap, -1, 1))
477
return;
478
479
down_write(&vnode->volume->open_mmaps_lock);
480
481
read_seqlock_excl(&vnode->cb_lock);
482
// the only place where ->cb_nr_mmap may hit 0
483
// see __afs_break_callback() for the other side...
484
if (atomic_dec_and_test(&vnode->cb_nr_mmap))
485
list_del_init(&vnode->cb_mmap_link);
486
read_sequnlock_excl(&vnode->cb_lock);
487
488
up_write(&vnode->volume->open_mmaps_lock);
489
flush_work(&vnode->cb_work);
490
}
491
492
/*
493
* Handle setting up a memory mapping on an AFS file.
494
*/
495
static int afs_file_mmap_prepare(struct vm_area_desc *desc)
496
{
497
struct afs_vnode *vnode = AFS_FS_I(file_inode(desc->file));
498
int ret;
499
500
afs_add_open_mmap(vnode);
501
502
ret = generic_file_mmap_prepare(desc);
503
if (ret == 0)
504
desc->vm_ops = &afs_vm_ops;
505
else
506
afs_drop_open_mmap(vnode);
507
return ret;
508
}
509
510
static void afs_vm_open(struct vm_area_struct *vma)
511
{
512
afs_add_open_mmap(AFS_FS_I(file_inode(vma->vm_file)));
513
}
514
515
static void afs_vm_close(struct vm_area_struct *vma)
516
{
517
afs_drop_open_mmap(AFS_FS_I(file_inode(vma->vm_file)));
518
}
519
520
static vm_fault_t afs_vm_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff)
521
{
522
struct afs_vnode *vnode = AFS_FS_I(file_inode(vmf->vma->vm_file));
523
524
if (afs_check_validity(vnode))
525
return filemap_map_pages(vmf, start_pgoff, end_pgoff);
526
return 0;
527
}
528
529
static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
530
{
531
struct inode *inode = file_inode(iocb->ki_filp);
532
struct afs_vnode *vnode = AFS_FS_I(inode);
533
struct afs_file *af = iocb->ki_filp->private_data;
534
ssize_t ret;
535
536
if (iocb->ki_flags & IOCB_DIRECT)
537
return netfs_unbuffered_read_iter(iocb, iter);
538
539
ret = netfs_start_io_read(inode);
540
if (ret < 0)
541
return ret;
542
ret = afs_validate(vnode, af->key);
543
if (ret == 0)
544
ret = filemap_read(iocb, iter, 0);
545
netfs_end_io_read(inode);
546
return ret;
547
}
548
549
static ssize_t afs_file_splice_read(struct file *in, loff_t *ppos,
550
struct pipe_inode_info *pipe,
551
size_t len, unsigned int flags)
552
{
553
struct inode *inode = file_inode(in);
554
struct afs_vnode *vnode = AFS_FS_I(inode);
555
struct afs_file *af = in->private_data;
556
ssize_t ret;
557
558
ret = netfs_start_io_read(inode);
559
if (ret < 0)
560
return ret;
561
ret = afs_validate(vnode, af->key);
562
if (ret == 0)
563
ret = filemap_splice_read(in, ppos, pipe, len, flags);
564
netfs_end_io_read(inode);
565
return ret;
566
}
567
568