Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/afs/vlclient.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/* AFS Volume Location Service client
3
*
4
* Copyright (C) 2002 Red Hat, Inc. All Rights Reserved.
5
* Written by David Howells ([email protected])
6
*/
7
8
#include <linux/gfp.h>
9
#include <linux/init.h>
10
#include <linux/sched.h>
11
#include "afs_fs.h"
12
#include "internal.h"
13
14
/*
15
* Deliver reply data to a VL.GetEntryByNameU call.
16
*/
17
static int afs_deliver_vl_get_entry_by_name_u(struct afs_call *call)
18
{
19
struct afs_uvldbentry__xdr *uvldb;
20
struct afs_vldb_entry *entry;
21
u32 nr_servers, vlflags;
22
int i, ret;
23
24
_enter("");
25
26
ret = afs_transfer_reply(call);
27
if (ret < 0)
28
return ret;
29
30
/* unmarshall the reply once we've received all of it */
31
uvldb = call->buffer;
32
entry = call->ret_vldb;
33
34
nr_servers = ntohl(uvldb->nServers);
35
if (nr_servers > AFS_NMAXNSERVERS)
36
nr_servers = AFS_NMAXNSERVERS;
37
38
for (i = 0; i < ARRAY_SIZE(uvldb->name) - 1; i++)
39
entry->name[i] = (u8)ntohl(uvldb->name[i]);
40
entry->name[i] = 0;
41
entry->name_len = strlen(entry->name);
42
43
vlflags = ntohl(uvldb->flags);
44
for (i = 0; i < nr_servers; i++) {
45
struct afs_uuid__xdr *xdr;
46
struct afs_uuid *uuid;
47
u32 tmp = ntohl(uvldb->serverFlags[i]);
48
int j;
49
int n = entry->nr_servers;
50
51
if (tmp & AFS_VLSF_RWVOL) {
52
entry->fs_mask[n] |= AFS_VOL_VTM_RW;
53
if (vlflags & AFS_VLF_BACKEXISTS)
54
entry->fs_mask[n] |= AFS_VOL_VTM_BAK;
55
}
56
if (tmp & AFS_VLSF_ROVOL)
57
entry->fs_mask[n] |= AFS_VOL_VTM_RO;
58
if (!entry->fs_mask[n])
59
continue;
60
61
xdr = &uvldb->serverNumber[i];
62
uuid = (struct afs_uuid *)&entry->fs_server[n];
63
uuid->time_low = xdr->time_low;
64
uuid->time_mid = htons(ntohl(xdr->time_mid));
65
uuid->time_hi_and_version = htons(ntohl(xdr->time_hi_and_version));
66
uuid->clock_seq_hi_and_reserved = (u8)ntohl(xdr->clock_seq_hi_and_reserved);
67
uuid->clock_seq_low = (u8)ntohl(xdr->clock_seq_low);
68
for (j = 0; j < 6; j++)
69
uuid->node[j] = (u8)ntohl(xdr->node[j]);
70
71
entry->vlsf_flags[n] = tmp;
72
entry->addr_version[n] = ntohl(uvldb->serverUnique[i]);
73
entry->nr_servers++;
74
}
75
76
for (i = 0; i < AFS_MAXTYPES; i++)
77
entry->vid[i] = ntohl(uvldb->volumeId[i]);
78
79
if (vlflags & AFS_VLF_RWEXISTS)
80
__set_bit(AFS_VLDB_HAS_RW, &entry->flags);
81
if (vlflags & AFS_VLF_ROEXISTS)
82
__set_bit(AFS_VLDB_HAS_RO, &entry->flags);
83
if (vlflags & AFS_VLF_BACKEXISTS)
84
__set_bit(AFS_VLDB_HAS_BAK, &entry->flags);
85
86
if (!(vlflags & (AFS_VLF_RWEXISTS | AFS_VLF_ROEXISTS | AFS_VLF_BACKEXISTS))) {
87
entry->error = -ENOMEDIUM;
88
__set_bit(AFS_VLDB_QUERY_ERROR, &entry->flags);
89
}
90
91
__set_bit(AFS_VLDB_QUERY_VALID, &entry->flags);
92
_leave(" = 0 [done]");
93
return 0;
94
}
95
96
/*
97
* VL.GetEntryByNameU operation type.
98
*/
99
static const struct afs_call_type afs_RXVLGetEntryByNameU = {
100
.name = "VL.GetEntryByNameU",
101
.op = afs_VL_GetEntryByNameU,
102
.deliver = afs_deliver_vl_get_entry_by_name_u,
103
.destructor = afs_flat_call_destructor,
104
};
105
106
/*
107
* Dispatch a get volume entry by name or ID operation (uuid variant). If the
108
* volname is a decimal number then it's a volume ID not a volume name.
109
*/
110
struct afs_vldb_entry *afs_vl_get_entry_by_name_u(struct afs_vl_cursor *vc,
111
const char *volname,
112
int volnamesz)
113
{
114
struct afs_vldb_entry *entry;
115
struct afs_call *call;
116
struct afs_net *net = vc->cell->net;
117
size_t reqsz, padsz;
118
__be32 *bp;
119
120
_enter("");
121
122
padsz = (4 - (volnamesz & 3)) & 3;
123
reqsz = 8 + volnamesz + padsz;
124
125
entry = kzalloc(sizeof(struct afs_vldb_entry), GFP_KERNEL);
126
if (!entry)
127
return ERR_PTR(-ENOMEM);
128
129
call = afs_alloc_flat_call(net, &afs_RXVLGetEntryByNameU, reqsz,
130
sizeof(struct afs_uvldbentry__xdr));
131
if (!call) {
132
kfree(entry);
133
return ERR_PTR(-ENOMEM);
134
}
135
136
call->key = vc->key;
137
call->ret_vldb = entry;
138
call->max_lifespan = AFS_VL_MAX_LIFESPAN;
139
call->peer = rxrpc_kernel_get_peer(vc->alist->addrs[vc->addr_index].peer);
140
call->service_id = vc->server->service_id;
141
142
/* Marshall the parameters */
143
bp = call->request;
144
*bp++ = htonl(VLGETENTRYBYNAMEU);
145
*bp++ = htonl(volnamesz);
146
memcpy(bp, volname, volnamesz);
147
if (padsz > 0)
148
memset((void *)bp + volnamesz, 0, padsz);
149
150
trace_afs_make_vl_call(call);
151
afs_make_call(call, GFP_KERNEL);
152
afs_wait_for_call_to_complete(call);
153
vc->call_abort_code = call->abort_code;
154
vc->call_error = call->error;
155
vc->call_responded = call->responded;
156
afs_put_call(call);
157
if (vc->call_error) {
158
kfree(entry);
159
return ERR_PTR(vc->call_error);
160
}
161
return entry;
162
}
163
164
/*
165
* Deliver reply data to a VL.GetAddrsU call.
166
*
167
* GetAddrsU(IN ListAddrByAttributes *inaddr,
168
* OUT afsUUID *uuidp1,
169
* OUT uint32_t *uniquifier,
170
* OUT uint32_t *nentries,
171
* OUT bulkaddrs *blkaddrs);
172
*/
173
static int afs_deliver_vl_get_addrs_u(struct afs_call *call)
174
{
175
struct afs_addr_list *alist;
176
__be32 *bp;
177
u32 uniquifier, nentries, count;
178
int i, ret;
179
180
_enter("{%u,%zu/%u}",
181
call->unmarshall, iov_iter_count(call->iter), call->count);
182
183
switch (call->unmarshall) {
184
case 0:
185
afs_extract_to_buf(call,
186
sizeof(struct afs_uuid__xdr) + 3 * sizeof(__be32));
187
call->unmarshall++;
188
189
/* Extract the returned uuid, uniquifier, nentries and
190
* blkaddrs size */
191
fallthrough;
192
case 1:
193
ret = afs_extract_data(call, true);
194
if (ret < 0)
195
return ret;
196
197
bp = call->buffer + sizeof(struct afs_uuid__xdr);
198
uniquifier = ntohl(*bp++);
199
nentries = ntohl(*bp++);
200
count = ntohl(*bp);
201
202
nentries = min(nentries, count);
203
alist = afs_alloc_addrlist(nentries);
204
if (!alist)
205
return -ENOMEM;
206
alist->version = uniquifier;
207
call->ret_alist = alist;
208
call->count = count;
209
call->count2 = nentries;
210
call->unmarshall++;
211
212
more_entries:
213
count = min(call->count, 4U);
214
afs_extract_to_buf(call, count * sizeof(__be32));
215
216
fallthrough; /* and extract entries */
217
case 2:
218
ret = afs_extract_data(call, call->count > 4);
219
if (ret < 0)
220
return ret;
221
222
alist = call->ret_alist;
223
bp = call->buffer;
224
count = min(call->count, 4U);
225
for (i = 0; i < count; i++) {
226
if (alist->nr_addrs < call->count2) {
227
ret = afs_merge_fs_addr4(call->net, alist, *bp++, AFS_FS_PORT);
228
if (ret < 0)
229
return ret;
230
}
231
}
232
233
call->count -= count;
234
if (call->count > 0)
235
goto more_entries;
236
call->unmarshall++;
237
break;
238
}
239
240
_leave(" = 0 [done]");
241
return 0;
242
}
243
244
/*
245
* VL.GetAddrsU operation type.
246
*/
247
static const struct afs_call_type afs_RXVLGetAddrsU = {
248
.name = "VL.GetAddrsU",
249
.op = afs_VL_GetAddrsU,
250
.deliver = afs_deliver_vl_get_addrs_u,
251
.destructor = afs_flat_call_destructor,
252
};
253
254
/*
255
* Dispatch an operation to get the addresses for a server, where the server is
256
* nominated by UUID.
257
*/
258
struct afs_addr_list *afs_vl_get_addrs_u(struct afs_vl_cursor *vc,
259
const uuid_t *uuid)
260
{
261
struct afs_ListAddrByAttributes__xdr *r;
262
struct afs_addr_list *alist;
263
const struct afs_uuid *u = (const struct afs_uuid *)uuid;
264
struct afs_call *call;
265
struct afs_net *net = vc->cell->net;
266
__be32 *bp;
267
int i;
268
269
_enter("");
270
271
call = afs_alloc_flat_call(net, &afs_RXVLGetAddrsU,
272
sizeof(__be32) + sizeof(struct afs_ListAddrByAttributes__xdr),
273
sizeof(struct afs_uuid__xdr) + 3 * sizeof(__be32));
274
if (!call)
275
return ERR_PTR(-ENOMEM);
276
277
call->key = vc->key;
278
call->ret_alist = NULL;
279
call->max_lifespan = AFS_VL_MAX_LIFESPAN;
280
call->peer = rxrpc_kernel_get_peer(vc->alist->addrs[vc->addr_index].peer);
281
call->service_id = vc->server->service_id;
282
283
/* Marshall the parameters */
284
bp = call->request;
285
*bp++ = htonl(VLGETADDRSU);
286
r = (struct afs_ListAddrByAttributes__xdr *)bp;
287
r->Mask = htonl(AFS_VLADDR_UUID);
288
r->ipaddr = 0;
289
r->index = 0;
290
r->spare = 0;
291
r->uuid.time_low = u->time_low;
292
r->uuid.time_mid = htonl(ntohs(u->time_mid));
293
r->uuid.time_hi_and_version = htonl(ntohs(u->time_hi_and_version));
294
r->uuid.clock_seq_hi_and_reserved = htonl(u->clock_seq_hi_and_reserved);
295
r->uuid.clock_seq_low = htonl(u->clock_seq_low);
296
for (i = 0; i < 6; i++)
297
r->uuid.node[i] = htonl(u->node[i]);
298
299
trace_afs_make_vl_call(call);
300
afs_make_call(call, GFP_KERNEL);
301
afs_wait_for_call_to_complete(call);
302
vc->call_abort_code = call->abort_code;
303
vc->call_error = call->error;
304
vc->call_responded = call->responded;
305
alist = call->ret_alist;
306
afs_put_call(call);
307
if (vc->call_error) {
308
afs_put_addrlist(alist, afs_alist_trace_put_getaddru);
309
return ERR_PTR(vc->call_error);
310
}
311
return alist;
312
}
313
314
/*
315
* Deliver reply data to an VL.GetCapabilities operation.
316
*/
317
static int afs_deliver_vl_get_capabilities(struct afs_call *call)
318
{
319
u32 count;
320
int ret;
321
322
_enter("{%u,%zu/%u}",
323
call->unmarshall, iov_iter_count(call->iter), call->count);
324
325
switch (call->unmarshall) {
326
case 0:
327
afs_extract_to_tmp(call);
328
call->unmarshall++;
329
330
fallthrough; /* and extract the capabilities word count */
331
case 1:
332
ret = afs_extract_data(call, true);
333
if (ret < 0)
334
return ret;
335
336
count = ntohl(call->tmp);
337
call->count = count;
338
call->count2 = count;
339
340
call->unmarshall++;
341
afs_extract_discard(call, count * sizeof(__be32));
342
343
fallthrough; /* and extract capabilities words */
344
case 2:
345
ret = afs_extract_data(call, false);
346
if (ret < 0)
347
return ret;
348
349
/* TODO: Examine capabilities */
350
351
call->unmarshall++;
352
break;
353
}
354
355
_leave(" = 0 [done]");
356
return 0;
357
}
358
359
static void afs_destroy_vl_get_capabilities(struct afs_call *call)
360
{
361
afs_put_addrlist(call->vl_probe, afs_alist_trace_put_vlgetcaps);
362
afs_put_vlserver(call->net, call->vlserver);
363
afs_flat_call_destructor(call);
364
}
365
366
/*
367
* VL.GetCapabilities operation type
368
*/
369
static const struct afs_call_type afs_RXVLGetCapabilities = {
370
.name = "VL.GetCapabilities",
371
.op = afs_VL_GetCapabilities,
372
.deliver = afs_deliver_vl_get_capabilities,
373
.immediate_cancel = afs_vlserver_probe_result,
374
.done = afs_vlserver_probe_result,
375
.destructor = afs_destroy_vl_get_capabilities,
376
};
377
378
/*
379
* Probe a volume server for the capabilities that it supports. This can
380
* return up to 196 words.
381
*
382
* We use this to probe for service upgrade to determine what the server at the
383
* other end supports.
384
*/
385
struct afs_call *afs_vl_get_capabilities(struct afs_net *net,
386
struct afs_addr_list *alist,
387
unsigned int addr_index,
388
struct key *key,
389
struct afs_vlserver *server,
390
unsigned int server_index)
391
{
392
struct afs_call *call;
393
__be32 *bp;
394
395
_enter("");
396
397
call = afs_alloc_flat_call(net, &afs_RXVLGetCapabilities, 1 * 4, 16 * 4);
398
if (!call)
399
return ERR_PTR(-ENOMEM);
400
401
call->key = key;
402
call->vlserver = afs_get_vlserver(server);
403
call->server_index = server_index;
404
call->peer = rxrpc_kernel_get_peer(alist->addrs[addr_index].peer);
405
call->vl_probe = afs_get_addrlist(alist, afs_alist_trace_get_vlgetcaps);
406
call->probe_index = addr_index;
407
call->service_id = server->service_id;
408
call->upgrade = true;
409
call->async = true;
410
call->max_lifespan = AFS_PROBE_MAX_LIFESPAN;
411
412
/* marshall the parameters */
413
bp = call->request;
414
*bp++ = htonl(VLGETCAPABILITIES);
415
416
/* Can't take a ref on server */
417
trace_afs_make_vl_call(call);
418
afs_make_call(call, GFP_KERNEL);
419
return call;
420
}
421
422
/*
423
* Deliver reply data to a YFSVL.GetEndpoints call.
424
*
425
* GetEndpoints(IN yfsServerAttributes *attr,
426
* OUT opr_uuid *uuid,
427
* OUT afs_int32 *uniquifier,
428
* OUT endpoints *fsEndpoints,
429
* OUT endpoints *volEndpoints)
430
*/
431
static int afs_deliver_yfsvl_get_endpoints(struct afs_call *call)
432
{
433
struct afs_addr_list *alist;
434
__be32 *bp;
435
u32 uniquifier, size;
436
int ret;
437
438
_enter("{%u,%zu,%u}",
439
call->unmarshall, iov_iter_count(call->iter), call->count2);
440
441
switch (call->unmarshall) {
442
case 0:
443
afs_extract_to_buf(call, sizeof(uuid_t) + 3 * sizeof(__be32));
444
call->unmarshall = 1;
445
446
/* Extract the returned uuid, uniquifier, fsEndpoints count and
447
* either the first fsEndpoint type or the volEndpoints
448
* count if there are no fsEndpoints. */
449
fallthrough;
450
case 1:
451
ret = afs_extract_data(call, true);
452
if (ret < 0)
453
return ret;
454
455
bp = call->buffer + sizeof(uuid_t);
456
uniquifier = ntohl(*bp++);
457
call->count = ntohl(*bp++);
458
call->count2 = ntohl(*bp); /* Type or next count */
459
460
if (call->count > YFS_MAXENDPOINTS)
461
return afs_protocol_error(call, afs_eproto_yvl_fsendpt_num);
462
463
alist = afs_alloc_addrlist(call->count);
464
if (!alist)
465
return -ENOMEM;
466
alist->version = uniquifier;
467
call->ret_alist = alist;
468
469
if (call->count == 0)
470
goto extract_volendpoints;
471
472
next_fsendpoint:
473
switch (call->count2) {
474
case YFS_ENDPOINT_IPV4:
475
size = sizeof(__be32) * (1 + 1 + 1);
476
break;
477
case YFS_ENDPOINT_IPV6:
478
size = sizeof(__be32) * (1 + 4 + 1);
479
break;
480
default:
481
return afs_protocol_error(call, afs_eproto_yvl_fsendpt_type);
482
}
483
484
size += sizeof(__be32);
485
afs_extract_to_buf(call, size);
486
call->unmarshall = 2;
487
488
fallthrough; /* and extract fsEndpoints[] entries */
489
case 2:
490
ret = afs_extract_data(call, true);
491
if (ret < 0)
492
return ret;
493
494
alist = call->ret_alist;
495
bp = call->buffer;
496
switch (call->count2) {
497
case YFS_ENDPOINT_IPV4:
498
if (ntohl(bp[0]) != sizeof(__be32) * 2)
499
return afs_protocol_error(
500
call, afs_eproto_yvl_fsendpt4_len);
501
ret = afs_merge_fs_addr4(call->net, alist, bp[1], ntohl(bp[2]));
502
if (ret < 0)
503
return ret;
504
bp += 3;
505
break;
506
case YFS_ENDPOINT_IPV6:
507
if (ntohl(bp[0]) != sizeof(__be32) * 5)
508
return afs_protocol_error(
509
call, afs_eproto_yvl_fsendpt6_len);
510
ret = afs_merge_fs_addr6(call->net, alist, bp + 1, ntohl(bp[5]));
511
if (ret < 0)
512
return ret;
513
bp += 6;
514
break;
515
default:
516
return afs_protocol_error(call, afs_eproto_yvl_fsendpt_type);
517
}
518
519
/* Got either the type of the next entry or the count of
520
* volEndpoints if no more fsEndpoints.
521
*/
522
call->count2 = ntohl(*bp++);
523
524
call->count--;
525
if (call->count > 0)
526
goto next_fsendpoint;
527
528
extract_volendpoints:
529
/* Extract the list of volEndpoints. */
530
call->count = call->count2;
531
if (!call->count)
532
goto end;
533
if (call->count > YFS_MAXENDPOINTS)
534
return afs_protocol_error(call, afs_eproto_yvl_vlendpt_type);
535
536
afs_extract_to_buf(call, 1 * sizeof(__be32));
537
call->unmarshall = 3;
538
539
/* Extract the type of volEndpoints[0]. Normally we would
540
* extract the type of the next endpoint when we extract the
541
* data of the current one, but this is the first...
542
*/
543
fallthrough;
544
case 3:
545
ret = afs_extract_data(call, true);
546
if (ret < 0)
547
return ret;
548
549
bp = call->buffer;
550
551
next_volendpoint:
552
call->count2 = ntohl(*bp++);
553
switch (call->count2) {
554
case YFS_ENDPOINT_IPV4:
555
size = sizeof(__be32) * (1 + 1 + 1);
556
break;
557
case YFS_ENDPOINT_IPV6:
558
size = sizeof(__be32) * (1 + 4 + 1);
559
break;
560
default:
561
return afs_protocol_error(call, afs_eproto_yvl_vlendpt_type);
562
}
563
564
if (call->count > 1)
565
size += sizeof(__be32); /* Get next type too */
566
afs_extract_to_buf(call, size);
567
call->unmarshall = 4;
568
569
fallthrough; /* and extract volEndpoints[] entries */
570
case 4:
571
ret = afs_extract_data(call, true);
572
if (ret < 0)
573
return ret;
574
575
bp = call->buffer;
576
switch (call->count2) {
577
case YFS_ENDPOINT_IPV4:
578
if (ntohl(bp[0]) != sizeof(__be32) * 2)
579
return afs_protocol_error(
580
call, afs_eproto_yvl_vlendpt4_len);
581
bp += 3;
582
break;
583
case YFS_ENDPOINT_IPV6:
584
if (ntohl(bp[0]) != sizeof(__be32) * 5)
585
return afs_protocol_error(
586
call, afs_eproto_yvl_vlendpt6_len);
587
bp += 6;
588
break;
589
default:
590
return afs_protocol_error(call, afs_eproto_yvl_vlendpt_type);
591
}
592
593
/* Got either the type of the next entry or the count of
594
* volEndpoints if no more fsEndpoints.
595
*/
596
call->count--;
597
if (call->count > 0)
598
goto next_volendpoint;
599
600
end:
601
afs_extract_discard(call, 0);
602
call->unmarshall = 5;
603
604
fallthrough; /* Done */
605
case 5:
606
ret = afs_extract_data(call, false);
607
if (ret < 0)
608
return ret;
609
call->unmarshall = 6;
610
fallthrough;
611
612
case 6:
613
break;
614
}
615
616
_leave(" = 0 [done]");
617
return 0;
618
}
619
620
/*
621
* YFSVL.GetEndpoints operation type.
622
*/
623
static const struct afs_call_type afs_YFSVLGetEndpoints = {
624
.name = "YFSVL.GetEndpoints",
625
.op = afs_YFSVL_GetEndpoints,
626
.deliver = afs_deliver_yfsvl_get_endpoints,
627
.destructor = afs_flat_call_destructor,
628
};
629
630
/*
631
* Dispatch an operation to get the addresses for a server, where the server is
632
* nominated by UUID.
633
*/
634
struct afs_addr_list *afs_yfsvl_get_endpoints(struct afs_vl_cursor *vc,
635
const uuid_t *uuid)
636
{
637
struct afs_addr_list *alist;
638
struct afs_call *call;
639
struct afs_net *net = vc->cell->net;
640
__be32 *bp;
641
642
_enter("");
643
644
call = afs_alloc_flat_call(net, &afs_YFSVLGetEndpoints,
645
sizeof(__be32) * 2 + sizeof(*uuid),
646
sizeof(struct in6_addr) + sizeof(__be32) * 3);
647
if (!call)
648
return ERR_PTR(-ENOMEM);
649
650
call->key = vc->key;
651
call->ret_alist = NULL;
652
call->max_lifespan = AFS_VL_MAX_LIFESPAN;
653
call->peer = rxrpc_kernel_get_peer(vc->alist->addrs[vc->addr_index].peer);
654
call->service_id = vc->server->service_id;
655
656
/* Marshall the parameters */
657
bp = call->request;
658
*bp++ = htonl(YVLGETENDPOINTS);
659
*bp++ = htonl(YFS_SERVER_UUID);
660
memcpy(bp, uuid, sizeof(*uuid)); /* Type opr_uuid */
661
662
trace_afs_make_vl_call(call);
663
afs_make_call(call, GFP_KERNEL);
664
afs_wait_for_call_to_complete(call);
665
vc->call_abort_code = call->abort_code;
666
vc->call_error = call->error;
667
vc->call_responded = call->responded;
668
alist = call->ret_alist;
669
afs_put_call(call);
670
if (vc->call_error) {
671
afs_put_addrlist(alist, afs_alist_trace_put_getaddru);
672
return ERR_PTR(vc->call_error);
673
}
674
return alist;
675
}
676
677
/*
678
* Deliver reply data to a YFSVL.GetCellName operation.
679
*/
680
static int afs_deliver_yfsvl_get_cell_name(struct afs_call *call)
681
{
682
char *cell_name;
683
u32 namesz, paddedsz;
684
int ret;
685
686
_enter("{%u,%zu/%u}",
687
call->unmarshall, iov_iter_count(call->iter), call->count);
688
689
switch (call->unmarshall) {
690
case 0:
691
afs_extract_to_tmp(call);
692
call->unmarshall++;
693
694
fallthrough; /* and extract the cell name length */
695
case 1:
696
ret = afs_extract_data(call, true);
697
if (ret < 0)
698
return ret;
699
700
namesz = ntohl(call->tmp);
701
if (namesz > YFS_VL_MAXCELLNAME)
702
return afs_protocol_error(call, afs_eproto_cellname_len);
703
paddedsz = (namesz + 3) & ~3;
704
call->count = namesz;
705
call->count2 = paddedsz - namesz;
706
707
cell_name = kmalloc(namesz + 1, GFP_KERNEL);
708
if (!cell_name)
709
return -ENOMEM;
710
cell_name[namesz] = 0;
711
call->ret_str = cell_name;
712
713
afs_extract_begin(call, cell_name, namesz);
714
call->unmarshall++;
715
716
fallthrough; /* and extract cell name */
717
case 2:
718
ret = afs_extract_data(call, true);
719
if (ret < 0)
720
return ret;
721
722
afs_extract_discard(call, call->count2);
723
call->unmarshall++;
724
725
fallthrough; /* and extract padding */
726
case 3:
727
ret = afs_extract_data(call, false);
728
if (ret < 0)
729
return ret;
730
731
call->unmarshall++;
732
break;
733
}
734
735
_leave(" = 0 [done]");
736
return 0;
737
}
738
739
/*
740
* VL.GetCapabilities operation type
741
*/
742
static const struct afs_call_type afs_YFSVLGetCellName = {
743
.name = "YFSVL.GetCellName",
744
.op = afs_YFSVL_GetCellName,
745
.deliver = afs_deliver_yfsvl_get_cell_name,
746
.destructor = afs_flat_call_destructor,
747
};
748
749
/*
750
* Probe a volume server for the capabilities that it supports. This can
751
* return up to 196 words.
752
*
753
* We use this to probe for service upgrade to determine what the server at the
754
* other end supports.
755
*/
756
char *afs_yfsvl_get_cell_name(struct afs_vl_cursor *vc)
757
{
758
struct afs_call *call;
759
struct afs_net *net = vc->cell->net;
760
__be32 *bp;
761
char *cellname;
762
763
_enter("");
764
765
call = afs_alloc_flat_call(net, &afs_YFSVLGetCellName, 1 * 4, 0);
766
if (!call)
767
return ERR_PTR(-ENOMEM);
768
769
call->key = vc->key;
770
call->ret_str = NULL;
771
call->max_lifespan = AFS_VL_MAX_LIFESPAN;
772
call->peer = rxrpc_kernel_get_peer(vc->alist->addrs[vc->addr_index].peer);
773
call->service_id = vc->server->service_id;
774
775
/* marshall the parameters */
776
bp = call->request;
777
*bp++ = htonl(YVLGETCELLNAME);
778
779
/* Can't take a ref on server */
780
trace_afs_make_vl_call(call);
781
afs_make_call(call, GFP_KERNEL);
782
afs_wait_for_call_to_complete(call);
783
vc->call_abort_code = call->abort_code;
784
vc->call_error = call->error;
785
vc->call_responded = call->responded;
786
cellname = call->ret_str;
787
afs_put_call(call);
788
if (vc->call_error) {
789
kfree(cellname);
790
return ERR_PTR(vc->call_error);
791
}
792
return cellname;
793
}
794
795