Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/afs/write.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/* handling of writes to regular files and writing back to the server
3
*
4
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5
* Written by David Howells ([email protected])
6
*/
7
8
#include <linux/backing-dev.h>
9
#include <linux/slab.h>
10
#include <linux/fs.h>
11
#include <linux/pagemap.h>
12
#include <linux/writeback.h>
13
#include <linux/pagevec.h>
14
#include <linux/netfs.h>
15
#include <trace/events/netfs.h>
16
#include "internal.h"
17
18
/*
19
* completion of write to server
20
*/
21
static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
22
{
23
_enter("{%llx:%llu},{%x @%llx}",
24
vnode->fid.vid, vnode->fid.vnode, len, start);
25
26
afs_prune_wb_keys(vnode);
27
_leave("");
28
}
29
30
/*
31
* Find a key to use for the writeback. We cached the keys used to author the
32
* writes on the vnode. wreq->netfs_priv2 will contain the last writeback key
33
* record used or NULL and we need to start from there if it's set.
34
* wreq->netfs_priv will be set to the key itself or NULL.
35
*/
36
static void afs_get_writeback_key(struct netfs_io_request *wreq)
37
{
38
struct afs_wb_key *wbk, *old = wreq->netfs_priv2;
39
struct afs_vnode *vnode = AFS_FS_I(wreq->inode);
40
41
key_put(wreq->netfs_priv);
42
wreq->netfs_priv = NULL;
43
wreq->netfs_priv2 = NULL;
44
45
spin_lock(&vnode->wb_lock);
46
if (old)
47
wbk = list_next_entry(old, vnode_link);
48
else
49
wbk = list_first_entry(&vnode->wb_keys, struct afs_wb_key, vnode_link);
50
51
list_for_each_entry_from(wbk, &vnode->wb_keys, vnode_link) {
52
_debug("wbk %u", key_serial(wbk->key));
53
if (key_validate(wbk->key) == 0) {
54
refcount_inc(&wbk->usage);
55
wreq->netfs_priv = key_get(wbk->key);
56
wreq->netfs_priv2 = wbk;
57
_debug("USE WB KEY %u", key_serial(wbk->key));
58
break;
59
}
60
}
61
62
spin_unlock(&vnode->wb_lock);
63
64
afs_put_wb_key(old);
65
}
66
67
static void afs_store_data_success(struct afs_operation *op)
68
{
69
struct afs_vnode *vnode = op->file[0].vnode;
70
71
op->ctime = op->file[0].scb.status.mtime_client;
72
afs_vnode_commit_status(op, &op->file[0]);
73
if (!afs_op_error(op)) {
74
afs_pages_written_back(vnode, op->store.pos, op->store.size);
75
afs_stat_v(vnode, n_stores);
76
atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
77
}
78
}
79
80
static const struct afs_operation_ops afs_store_data_operation = {
81
.issue_afs_rpc = afs_fs_store_data,
82
.issue_yfs_rpc = yfs_fs_store_data,
83
.success = afs_store_data_success,
84
};
85
86
/*
87
* Prepare a subrequest to write to the server. This sets the max_len
88
* parameter.
89
*/
90
void afs_prepare_write(struct netfs_io_subrequest *subreq)
91
{
92
struct netfs_io_stream *stream = &subreq->rreq->io_streams[subreq->stream_nr];
93
94
//if (test_bit(NETFS_SREQ_RETRYING, &subreq->flags))
95
// subreq->max_len = 512 * 1024;
96
//else
97
stream->sreq_max_len = 256 * 1024 * 1024;
98
}
99
100
/*
101
* Issue a subrequest to write to the server.
102
*/
103
static void afs_issue_write_worker(struct work_struct *work)
104
{
105
struct netfs_io_subrequest *subreq = container_of(work, struct netfs_io_subrequest, work);
106
struct netfs_io_request *wreq = subreq->rreq;
107
struct afs_operation *op;
108
struct afs_vnode *vnode = AFS_FS_I(wreq->inode);
109
unsigned long long pos = subreq->start + subreq->transferred;
110
size_t len = subreq->len - subreq->transferred;
111
int ret = -ENOKEY;
112
113
_enter("R=%x[%x],%s{%llx:%llu.%u},%llx,%zx",
114
wreq->debug_id, subreq->debug_index,
115
vnode->volume->name,
116
vnode->fid.vid,
117
vnode->fid.vnode,
118
vnode->fid.unique,
119
pos, len);
120
121
#if 0 // Error injection
122
if (subreq->debug_index == 3)
123
return netfs_write_subrequest_terminated(subreq, -ENOANO);
124
125
if (!subreq->retry_count) {
126
set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
127
return netfs_write_subrequest_terminated(subreq, -EAGAIN);
128
}
129
#endif
130
131
op = afs_alloc_operation(wreq->netfs_priv, vnode->volume);
132
if (IS_ERR(op))
133
return netfs_write_subrequest_terminated(subreq, -EAGAIN);
134
135
afs_op_set_vnode(op, 0, vnode);
136
op->file[0].dv_delta = 1;
137
op->file[0].modification = true;
138
op->store.pos = pos;
139
op->store.size = len;
140
op->flags |= AFS_OPERATION_UNINTR;
141
op->ops = &afs_store_data_operation;
142
143
afs_begin_vnode_operation(op);
144
145
op->store.write_iter = &subreq->io_iter;
146
op->store.i_size = umax(pos + len, vnode->netfs.remote_i_size);
147
op->mtime = inode_get_mtime(&vnode->netfs.inode);
148
149
afs_wait_for_operation(op);
150
ret = afs_put_operation(op);
151
switch (ret) {
152
case 0:
153
__set_bit(NETFS_SREQ_MADE_PROGRESS, &subreq->flags);
154
break;
155
case -EACCES:
156
case -EPERM:
157
case -ENOKEY:
158
case -EKEYEXPIRED:
159
case -EKEYREJECTED:
160
case -EKEYREVOKED:
161
/* If there are more keys we can try, use the retry algorithm
162
* to rotate the keys.
163
*/
164
if (wreq->netfs_priv2)
165
set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
166
break;
167
}
168
169
netfs_write_subrequest_terminated(subreq, ret < 0 ? ret : subreq->len);
170
}
171
172
void afs_issue_write(struct netfs_io_subrequest *subreq)
173
{
174
subreq->work.func = afs_issue_write_worker;
175
if (!queue_work(system_unbound_wq, &subreq->work))
176
WARN_ON_ONCE(1);
177
}
178
179
/*
180
* Writeback calls this when it finds a folio that needs uploading. This isn't
181
* called if writeback only has copy-to-cache to deal with.
182
*/
183
void afs_begin_writeback(struct netfs_io_request *wreq)
184
{
185
if (S_ISREG(wreq->inode->i_mode))
186
afs_get_writeback_key(wreq);
187
}
188
189
/*
190
* Prepare to retry the writes in request. Use this to try rotating the
191
* available writeback keys.
192
*/
193
void afs_retry_request(struct netfs_io_request *wreq, struct netfs_io_stream *stream)
194
{
195
struct netfs_io_subrequest *subreq =
196
list_first_entry(&stream->subrequests,
197
struct netfs_io_subrequest, rreq_link);
198
199
switch (wreq->origin) {
200
case NETFS_READAHEAD:
201
case NETFS_READPAGE:
202
case NETFS_READ_GAPS:
203
case NETFS_READ_SINGLE:
204
case NETFS_READ_FOR_WRITE:
205
case NETFS_UNBUFFERED_READ:
206
case NETFS_DIO_READ:
207
return;
208
default:
209
break;
210
}
211
212
switch (subreq->error) {
213
case -EACCES:
214
case -EPERM:
215
case -ENOKEY:
216
case -EKEYEXPIRED:
217
case -EKEYREJECTED:
218
case -EKEYREVOKED:
219
afs_get_writeback_key(wreq);
220
if (!wreq->netfs_priv)
221
stream->failed = true;
222
break;
223
}
224
}
225
226
/*
227
* write some of the pending data back to the server
228
*/
229
int afs_writepages(struct address_space *mapping, struct writeback_control *wbc)
230
{
231
struct afs_vnode *vnode = AFS_FS_I(mapping->host);
232
int ret;
233
234
/* We have to be careful as we can end up racing with setattr()
235
* truncating the pagecache since the caller doesn't take a lock here
236
* to prevent it.
237
*/
238
if (wbc->sync_mode == WB_SYNC_ALL)
239
down_read(&vnode->validate_lock);
240
else if (!down_read_trylock(&vnode->validate_lock))
241
return 0;
242
243
ret = netfs_writepages(mapping, wbc);
244
up_read(&vnode->validate_lock);
245
return ret;
246
}
247
248
/*
249
* flush any dirty pages for this process, and check for write errors.
250
* - the return status from this call provides a reliable indication of
251
* whether any write errors occurred for this process.
252
*/
253
int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
254
{
255
struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
256
struct afs_file *af = file->private_data;
257
int ret;
258
259
_enter("{%llx:%llu},{n=%pD},%d",
260
vnode->fid.vid, vnode->fid.vnode, file,
261
datasync);
262
263
ret = afs_validate(vnode, af->key);
264
if (ret < 0)
265
return ret;
266
267
return file_write_and_wait_range(file, start, end);
268
}
269
270
/*
271
* notification that a previously read-only page is about to become writable
272
* - if it returns an error, the caller will deliver a bus error signal
273
*/
274
vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
275
{
276
struct file *file = vmf->vma->vm_file;
277
278
if (afs_validate(AFS_FS_I(file_inode(file)), afs_file_key(file)) < 0)
279
return VM_FAULT_SIGBUS;
280
return netfs_page_mkwrite(vmf, NULL);
281
}
282
283
/*
284
* Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
285
*/
286
void afs_prune_wb_keys(struct afs_vnode *vnode)
287
{
288
LIST_HEAD(graveyard);
289
struct afs_wb_key *wbk, *tmp;
290
291
/* Discard unused keys */
292
spin_lock(&vnode->wb_lock);
293
294
if (!mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
295
!mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_DIRTY)) {
296
list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
297
if (refcount_read(&wbk->usage) == 1)
298
list_move(&wbk->vnode_link, &graveyard);
299
}
300
}
301
302
spin_unlock(&vnode->wb_lock);
303
304
while (!list_empty(&graveyard)) {
305
wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
306
list_del(&wbk->vnode_link);
307
afs_put_wb_key(wbk);
308
}
309
}
310
311