Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/aio.c
26131 views
1
/*
2
* An async IO implementation for Linux
3
* Written by Benjamin LaHaise <[email protected]>
4
*
5
* Implements an efficient asynchronous io interface.
6
*
7
* Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8
* Copyright 2018 Christoph Hellwig.
9
*
10
* See ../COPYING for licensing terms.
11
*/
12
#define pr_fmt(fmt) "%s: " fmt, __func__
13
14
#include <linux/kernel.h>
15
#include <linux/init.h>
16
#include <linux/errno.h>
17
#include <linux/time.h>
18
#include <linux/aio_abi.h>
19
#include <linux/export.h>
20
#include <linux/syscalls.h>
21
#include <linux/backing-dev.h>
22
#include <linux/refcount.h>
23
#include <linux/uio.h>
24
25
#include <linux/sched/signal.h>
26
#include <linux/fs.h>
27
#include <linux/file.h>
28
#include <linux/mm.h>
29
#include <linux/mman.h>
30
#include <linux/percpu.h>
31
#include <linux/slab.h>
32
#include <linux/timer.h>
33
#include <linux/aio.h>
34
#include <linux/highmem.h>
35
#include <linux/workqueue.h>
36
#include <linux/security.h>
37
#include <linux/eventfd.h>
38
#include <linux/blkdev.h>
39
#include <linux/compat.h>
40
#include <linux/migrate.h>
41
#include <linux/ramfs.h>
42
#include <linux/percpu-refcount.h>
43
#include <linux/mount.h>
44
#include <linux/pseudo_fs.h>
45
46
#include <linux/uaccess.h>
47
#include <linux/nospec.h>
48
49
#include "internal.h"
50
51
#define KIOCB_KEY 0
52
53
#define AIO_RING_MAGIC 0xa10a10a1
54
#define AIO_RING_COMPAT_FEATURES 1
55
#define AIO_RING_INCOMPAT_FEATURES 0
56
struct aio_ring {
57
unsigned id; /* kernel internal index number */
58
unsigned nr; /* number of io_events */
59
unsigned head; /* Written to by userland or under ring_lock
60
* mutex by aio_read_events_ring(). */
61
unsigned tail;
62
63
unsigned magic;
64
unsigned compat_features;
65
unsigned incompat_features;
66
unsigned header_length; /* size of aio_ring */
67
68
69
struct io_event io_events[];
70
}; /* 128 bytes + ring size */
71
72
/*
73
* Plugging is meant to work with larger batches of IOs. If we don't
74
* have more than the below, then don't bother setting up a plug.
75
*/
76
#define AIO_PLUG_THRESHOLD 2
77
78
#define AIO_RING_PAGES 8
79
80
struct kioctx_table {
81
struct rcu_head rcu;
82
unsigned nr;
83
struct kioctx __rcu *table[] __counted_by(nr);
84
};
85
86
struct kioctx_cpu {
87
unsigned reqs_available;
88
};
89
90
struct ctx_rq_wait {
91
struct completion comp;
92
atomic_t count;
93
};
94
95
struct kioctx {
96
struct percpu_ref users;
97
atomic_t dead;
98
99
struct percpu_ref reqs;
100
101
unsigned long user_id;
102
103
struct kioctx_cpu __percpu *cpu;
104
105
/*
106
* For percpu reqs_available, number of slots we move to/from global
107
* counter at a time:
108
*/
109
unsigned req_batch;
110
/*
111
* This is what userspace passed to io_setup(), it's not used for
112
* anything but counting against the global max_reqs quota.
113
*
114
* The real limit is nr_events - 1, which will be larger (see
115
* aio_setup_ring())
116
*/
117
unsigned max_reqs;
118
119
/* Size of ringbuffer, in units of struct io_event */
120
unsigned nr_events;
121
122
unsigned long mmap_base;
123
unsigned long mmap_size;
124
125
struct folio **ring_folios;
126
long nr_pages;
127
128
struct rcu_work free_rwork; /* see free_ioctx() */
129
130
/*
131
* signals when all in-flight requests are done
132
*/
133
struct ctx_rq_wait *rq_wait;
134
135
struct {
136
/*
137
* This counts the number of available slots in the ringbuffer,
138
* so we avoid overflowing it: it's decremented (if positive)
139
* when allocating a kiocb and incremented when the resulting
140
* io_event is pulled off the ringbuffer.
141
*
142
* We batch accesses to it with a percpu version.
143
*/
144
atomic_t reqs_available;
145
} ____cacheline_aligned_in_smp;
146
147
struct {
148
spinlock_t ctx_lock;
149
struct list_head active_reqs; /* used for cancellation */
150
} ____cacheline_aligned_in_smp;
151
152
struct {
153
struct mutex ring_lock;
154
wait_queue_head_t wait;
155
} ____cacheline_aligned_in_smp;
156
157
struct {
158
unsigned tail;
159
unsigned completed_events;
160
spinlock_t completion_lock;
161
} ____cacheline_aligned_in_smp;
162
163
struct folio *internal_folios[AIO_RING_PAGES];
164
struct file *aio_ring_file;
165
166
unsigned id;
167
};
168
169
/*
170
* First field must be the file pointer in all the
171
* iocb unions! See also 'struct kiocb' in <linux/fs.h>
172
*/
173
struct fsync_iocb {
174
struct file *file;
175
struct work_struct work;
176
bool datasync;
177
struct cred *creds;
178
};
179
180
struct poll_iocb {
181
struct file *file;
182
struct wait_queue_head *head;
183
__poll_t events;
184
bool cancelled;
185
bool work_scheduled;
186
bool work_need_resched;
187
struct wait_queue_entry wait;
188
struct work_struct work;
189
};
190
191
/*
192
* NOTE! Each of the iocb union members has the file pointer
193
* as the first entry in their struct definition. So you can
194
* access the file pointer through any of the sub-structs,
195
* or directly as just 'ki_filp' in this struct.
196
*/
197
struct aio_kiocb {
198
union {
199
struct file *ki_filp;
200
struct kiocb rw;
201
struct fsync_iocb fsync;
202
struct poll_iocb poll;
203
};
204
205
struct kioctx *ki_ctx;
206
kiocb_cancel_fn *ki_cancel;
207
208
struct io_event ki_res;
209
210
struct list_head ki_list; /* the aio core uses this
211
* for cancellation */
212
refcount_t ki_refcnt;
213
214
/*
215
* If the aio_resfd field of the userspace iocb is not zero,
216
* this is the underlying eventfd context to deliver events to.
217
*/
218
struct eventfd_ctx *ki_eventfd;
219
};
220
221
/*------ sysctl variables----*/
222
static DEFINE_SPINLOCK(aio_nr_lock);
223
static unsigned long aio_nr; /* current system wide number of aio requests */
224
static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225
/*----end sysctl variables---*/
226
#ifdef CONFIG_SYSCTL
227
static const struct ctl_table aio_sysctls[] = {
228
{
229
.procname = "aio-nr",
230
.data = &aio_nr,
231
.maxlen = sizeof(aio_nr),
232
.mode = 0444,
233
.proc_handler = proc_doulongvec_minmax,
234
},
235
{
236
.procname = "aio-max-nr",
237
.data = &aio_max_nr,
238
.maxlen = sizeof(aio_max_nr),
239
.mode = 0644,
240
.proc_handler = proc_doulongvec_minmax,
241
},
242
};
243
244
static void __init aio_sysctl_init(void)
245
{
246
register_sysctl_init("fs", aio_sysctls);
247
}
248
#else
249
#define aio_sysctl_init() do { } while (0)
250
#endif
251
252
static struct kmem_cache *kiocb_cachep;
253
static struct kmem_cache *kioctx_cachep;
254
255
static struct vfsmount *aio_mnt;
256
257
static const struct file_operations aio_ring_fops;
258
static const struct address_space_operations aio_ctx_aops;
259
260
static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
261
{
262
struct file *file;
263
struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
264
if (IS_ERR(inode))
265
return ERR_CAST(inode);
266
267
inode->i_mapping->a_ops = &aio_ctx_aops;
268
inode->i_mapping->i_private_data = ctx;
269
inode->i_size = PAGE_SIZE * nr_pages;
270
271
file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
272
O_RDWR, &aio_ring_fops);
273
if (IS_ERR(file))
274
iput(inode);
275
return file;
276
}
277
278
static int aio_init_fs_context(struct fs_context *fc)
279
{
280
if (!init_pseudo(fc, AIO_RING_MAGIC))
281
return -ENOMEM;
282
fc->s_iflags |= SB_I_NOEXEC;
283
return 0;
284
}
285
286
/* aio_setup
287
* Creates the slab caches used by the aio routines, panic on
288
* failure as this is done early during the boot sequence.
289
*/
290
static int __init aio_setup(void)
291
{
292
static struct file_system_type aio_fs = {
293
.name = "aio",
294
.init_fs_context = aio_init_fs_context,
295
.kill_sb = kill_anon_super,
296
};
297
aio_mnt = kern_mount(&aio_fs);
298
if (IS_ERR(aio_mnt))
299
panic("Failed to create aio fs mount.");
300
301
kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
302
kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303
aio_sysctl_init();
304
return 0;
305
}
306
__initcall(aio_setup);
307
308
static void put_aio_ring_file(struct kioctx *ctx)
309
{
310
struct file *aio_ring_file = ctx->aio_ring_file;
311
struct address_space *i_mapping;
312
313
if (aio_ring_file) {
314
truncate_setsize(file_inode(aio_ring_file), 0);
315
316
/* Prevent further access to the kioctx from migratepages */
317
i_mapping = aio_ring_file->f_mapping;
318
spin_lock(&i_mapping->i_private_lock);
319
i_mapping->i_private_data = NULL;
320
ctx->aio_ring_file = NULL;
321
spin_unlock(&i_mapping->i_private_lock);
322
323
fput(aio_ring_file);
324
}
325
}
326
327
static void aio_free_ring(struct kioctx *ctx)
328
{
329
int i;
330
331
/* Disconnect the kiotx from the ring file. This prevents future
332
* accesses to the kioctx from page migration.
333
*/
334
put_aio_ring_file(ctx);
335
336
for (i = 0; i < ctx->nr_pages; i++) {
337
struct folio *folio = ctx->ring_folios[i];
338
339
if (!folio)
340
continue;
341
342
pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i,
343
folio_ref_count(folio));
344
ctx->ring_folios[i] = NULL;
345
folio_put(folio);
346
}
347
348
if (ctx->ring_folios && ctx->ring_folios != ctx->internal_folios) {
349
kfree(ctx->ring_folios);
350
ctx->ring_folios = NULL;
351
}
352
}
353
354
static int aio_ring_mremap(struct vm_area_struct *vma)
355
{
356
struct file *file = vma->vm_file;
357
struct mm_struct *mm = vma->vm_mm;
358
struct kioctx_table *table;
359
int i, res = -EINVAL;
360
361
spin_lock(&mm->ioctx_lock);
362
rcu_read_lock();
363
table = rcu_dereference(mm->ioctx_table);
364
if (!table)
365
goto out_unlock;
366
367
for (i = 0; i < table->nr; i++) {
368
struct kioctx *ctx;
369
370
ctx = rcu_dereference(table->table[i]);
371
if (ctx && ctx->aio_ring_file == file) {
372
if (!atomic_read(&ctx->dead)) {
373
ctx->user_id = ctx->mmap_base = vma->vm_start;
374
res = 0;
375
}
376
break;
377
}
378
}
379
380
out_unlock:
381
rcu_read_unlock();
382
spin_unlock(&mm->ioctx_lock);
383
return res;
384
}
385
386
static const struct vm_operations_struct aio_ring_vm_ops = {
387
.mremap = aio_ring_mremap,
388
#if IS_ENABLED(CONFIG_MMU)
389
.fault = filemap_fault,
390
.map_pages = filemap_map_pages,
391
.page_mkwrite = filemap_page_mkwrite,
392
#endif
393
};
394
395
static int aio_ring_mmap_prepare(struct vm_area_desc *desc)
396
{
397
desc->vm_flags |= VM_DONTEXPAND;
398
desc->vm_ops = &aio_ring_vm_ops;
399
return 0;
400
}
401
402
static const struct file_operations aio_ring_fops = {
403
.mmap_prepare = aio_ring_mmap_prepare,
404
};
405
406
#if IS_ENABLED(CONFIG_MIGRATION)
407
static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
408
struct folio *src, enum migrate_mode mode)
409
{
410
struct kioctx *ctx;
411
unsigned long flags;
412
pgoff_t idx;
413
int rc = 0;
414
415
/* mapping->i_private_lock here protects against the kioctx teardown. */
416
spin_lock(&mapping->i_private_lock);
417
ctx = mapping->i_private_data;
418
if (!ctx) {
419
rc = -EINVAL;
420
goto out;
421
}
422
423
/* The ring_lock mutex. The prevents aio_read_events() from writing
424
* to the ring's head, and prevents page migration from mucking in
425
* a partially initialized kiotx.
426
*/
427
if (!mutex_trylock(&ctx->ring_lock)) {
428
rc = -EAGAIN;
429
goto out;
430
}
431
432
idx = src->index;
433
if (idx < (pgoff_t)ctx->nr_pages) {
434
/* Make sure the old folio hasn't already been changed */
435
if (ctx->ring_folios[idx] != src)
436
rc = -EAGAIN;
437
} else
438
rc = -EINVAL;
439
440
if (rc != 0)
441
goto out_unlock;
442
443
/* Writeback must be complete */
444
BUG_ON(folio_test_writeback(src));
445
folio_get(dst);
446
447
rc = folio_migrate_mapping(mapping, dst, src, 1);
448
if (rc != MIGRATEPAGE_SUCCESS) {
449
folio_put(dst);
450
goto out_unlock;
451
}
452
453
/* Take completion_lock to prevent other writes to the ring buffer
454
* while the old folio is copied to the new. This prevents new
455
* events from being lost.
456
*/
457
spin_lock_irqsave(&ctx->completion_lock, flags);
458
folio_copy(dst, src);
459
folio_migrate_flags(dst, src);
460
BUG_ON(ctx->ring_folios[idx] != src);
461
ctx->ring_folios[idx] = dst;
462
spin_unlock_irqrestore(&ctx->completion_lock, flags);
463
464
/* The old folio is no longer accessible. */
465
folio_put(src);
466
467
out_unlock:
468
mutex_unlock(&ctx->ring_lock);
469
out:
470
spin_unlock(&mapping->i_private_lock);
471
return rc;
472
}
473
#else
474
#define aio_migrate_folio NULL
475
#endif
476
477
static const struct address_space_operations aio_ctx_aops = {
478
.dirty_folio = noop_dirty_folio,
479
.migrate_folio = aio_migrate_folio,
480
};
481
482
static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
483
{
484
struct aio_ring *ring;
485
struct mm_struct *mm = current->mm;
486
unsigned long size, unused;
487
int nr_pages;
488
int i;
489
struct file *file;
490
491
/* Compensate for the ring buffer's head/tail overlap entry */
492
nr_events += 2; /* 1 is required, 2 for good luck */
493
494
size = sizeof(struct aio_ring);
495
size += sizeof(struct io_event) * nr_events;
496
497
nr_pages = PFN_UP(size);
498
if (nr_pages < 0)
499
return -EINVAL;
500
501
file = aio_private_file(ctx, nr_pages);
502
if (IS_ERR(file)) {
503
ctx->aio_ring_file = NULL;
504
return -ENOMEM;
505
}
506
507
ctx->aio_ring_file = file;
508
nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
509
/ sizeof(struct io_event);
510
511
ctx->ring_folios = ctx->internal_folios;
512
if (nr_pages > AIO_RING_PAGES) {
513
ctx->ring_folios = kcalloc(nr_pages, sizeof(struct folio *),
514
GFP_KERNEL);
515
if (!ctx->ring_folios) {
516
put_aio_ring_file(ctx);
517
return -ENOMEM;
518
}
519
}
520
521
for (i = 0; i < nr_pages; i++) {
522
struct folio *folio;
523
524
folio = __filemap_get_folio(file->f_mapping, i,
525
FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
526
GFP_USER | __GFP_ZERO);
527
if (IS_ERR(folio))
528
break;
529
530
pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i,
531
folio_ref_count(folio));
532
folio_end_read(folio, true);
533
534
ctx->ring_folios[i] = folio;
535
}
536
ctx->nr_pages = i;
537
538
if (unlikely(i != nr_pages)) {
539
aio_free_ring(ctx);
540
return -ENOMEM;
541
}
542
543
ctx->mmap_size = nr_pages * PAGE_SIZE;
544
pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
545
546
if (mmap_write_lock_killable(mm)) {
547
ctx->mmap_size = 0;
548
aio_free_ring(ctx);
549
return -EINTR;
550
}
551
552
ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
553
PROT_READ | PROT_WRITE,
554
MAP_SHARED, 0, 0, &unused, NULL);
555
mmap_write_unlock(mm);
556
if (IS_ERR((void *)ctx->mmap_base)) {
557
ctx->mmap_size = 0;
558
aio_free_ring(ctx);
559
return -ENOMEM;
560
}
561
562
pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
563
564
ctx->user_id = ctx->mmap_base;
565
ctx->nr_events = nr_events; /* trusted copy */
566
567
ring = folio_address(ctx->ring_folios[0]);
568
ring->nr = nr_events; /* user copy */
569
ring->id = ~0U;
570
ring->head = ring->tail = 0;
571
ring->magic = AIO_RING_MAGIC;
572
ring->compat_features = AIO_RING_COMPAT_FEATURES;
573
ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
574
ring->header_length = sizeof(struct aio_ring);
575
flush_dcache_folio(ctx->ring_folios[0]);
576
577
return 0;
578
}
579
580
#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
581
#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
582
#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
583
584
void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
585
{
586
struct aio_kiocb *req;
587
struct kioctx *ctx;
588
unsigned long flags;
589
590
/*
591
* kiocb didn't come from aio or is neither a read nor a write, hence
592
* ignore it.
593
*/
594
if (!(iocb->ki_flags & IOCB_AIO_RW))
595
return;
596
597
req = container_of(iocb, struct aio_kiocb, rw);
598
599
if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
600
return;
601
602
ctx = req->ki_ctx;
603
604
spin_lock_irqsave(&ctx->ctx_lock, flags);
605
list_add_tail(&req->ki_list, &ctx->active_reqs);
606
req->ki_cancel = cancel;
607
spin_unlock_irqrestore(&ctx->ctx_lock, flags);
608
}
609
EXPORT_SYMBOL(kiocb_set_cancel_fn);
610
611
/*
612
* free_ioctx() should be RCU delayed to synchronize against the RCU
613
* protected lookup_ioctx() and also needs process context to call
614
* aio_free_ring(). Use rcu_work.
615
*/
616
static void free_ioctx(struct work_struct *work)
617
{
618
struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
619
free_rwork);
620
pr_debug("freeing %p\n", ctx);
621
622
aio_free_ring(ctx);
623
free_percpu(ctx->cpu);
624
percpu_ref_exit(&ctx->reqs);
625
percpu_ref_exit(&ctx->users);
626
kmem_cache_free(kioctx_cachep, ctx);
627
}
628
629
static void free_ioctx_reqs(struct percpu_ref *ref)
630
{
631
struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
632
633
/* At this point we know that there are no any in-flight requests */
634
if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
635
complete(&ctx->rq_wait->comp);
636
637
/* Synchronize against RCU protected table->table[] dereferences */
638
INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
639
queue_rcu_work(system_wq, &ctx->free_rwork);
640
}
641
642
/*
643
* When this function runs, the kioctx has been removed from the "hash table"
644
* and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
645
* now it's safe to cancel any that need to be.
646
*/
647
static void free_ioctx_users(struct percpu_ref *ref)
648
{
649
struct kioctx *ctx = container_of(ref, struct kioctx, users);
650
struct aio_kiocb *req;
651
652
spin_lock_irq(&ctx->ctx_lock);
653
654
while (!list_empty(&ctx->active_reqs)) {
655
req = list_first_entry(&ctx->active_reqs,
656
struct aio_kiocb, ki_list);
657
req->ki_cancel(&req->rw);
658
list_del_init(&req->ki_list);
659
}
660
661
spin_unlock_irq(&ctx->ctx_lock);
662
663
percpu_ref_kill(&ctx->reqs);
664
percpu_ref_put(&ctx->reqs);
665
}
666
667
static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
668
{
669
unsigned i, new_nr;
670
struct kioctx_table *table, *old;
671
struct aio_ring *ring;
672
673
spin_lock(&mm->ioctx_lock);
674
table = rcu_dereference_raw(mm->ioctx_table);
675
676
while (1) {
677
if (table)
678
for (i = 0; i < table->nr; i++)
679
if (!rcu_access_pointer(table->table[i])) {
680
ctx->id = i;
681
rcu_assign_pointer(table->table[i], ctx);
682
spin_unlock(&mm->ioctx_lock);
683
684
/* While kioctx setup is in progress,
685
* we are protected from page migration
686
* changes ring_folios by ->ring_lock.
687
*/
688
ring = folio_address(ctx->ring_folios[0]);
689
ring->id = ctx->id;
690
return 0;
691
}
692
693
new_nr = (table ? table->nr : 1) * 4;
694
spin_unlock(&mm->ioctx_lock);
695
696
table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
697
if (!table)
698
return -ENOMEM;
699
700
table->nr = new_nr;
701
702
spin_lock(&mm->ioctx_lock);
703
old = rcu_dereference_raw(mm->ioctx_table);
704
705
if (!old) {
706
rcu_assign_pointer(mm->ioctx_table, table);
707
} else if (table->nr > old->nr) {
708
memcpy(table->table, old->table,
709
old->nr * sizeof(struct kioctx *));
710
711
rcu_assign_pointer(mm->ioctx_table, table);
712
kfree_rcu(old, rcu);
713
} else {
714
kfree(table);
715
table = old;
716
}
717
}
718
}
719
720
static void aio_nr_sub(unsigned nr)
721
{
722
spin_lock(&aio_nr_lock);
723
if (WARN_ON(aio_nr - nr > aio_nr))
724
aio_nr = 0;
725
else
726
aio_nr -= nr;
727
spin_unlock(&aio_nr_lock);
728
}
729
730
/* ioctx_alloc
731
* Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
732
*/
733
static struct kioctx *ioctx_alloc(unsigned nr_events)
734
{
735
struct mm_struct *mm = current->mm;
736
struct kioctx *ctx;
737
int err = -ENOMEM;
738
739
/*
740
* Store the original nr_events -- what userspace passed to io_setup(),
741
* for counting against the global limit -- before it changes.
742
*/
743
unsigned int max_reqs = nr_events;
744
745
/*
746
* We keep track of the number of available ringbuffer slots, to prevent
747
* overflow (reqs_available), and we also use percpu counters for this.
748
*
749
* So since up to half the slots might be on other cpu's percpu counters
750
* and unavailable, double nr_events so userspace sees what they
751
* expected: additionally, we move req_batch slots to/from percpu
752
* counters at a time, so make sure that isn't 0:
753
*/
754
nr_events = max(nr_events, num_possible_cpus() * 4);
755
nr_events *= 2;
756
757
/* Prevent overflows */
758
if (nr_events > (0x10000000U / sizeof(struct io_event))) {
759
pr_debug("ENOMEM: nr_events too high\n");
760
return ERR_PTR(-EINVAL);
761
}
762
763
if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
764
return ERR_PTR(-EAGAIN);
765
766
ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
767
if (!ctx)
768
return ERR_PTR(-ENOMEM);
769
770
ctx->max_reqs = max_reqs;
771
772
spin_lock_init(&ctx->ctx_lock);
773
spin_lock_init(&ctx->completion_lock);
774
mutex_init(&ctx->ring_lock);
775
/* Protect against page migration throughout kiotx setup by keeping
776
* the ring_lock mutex held until setup is complete. */
777
mutex_lock(&ctx->ring_lock);
778
init_waitqueue_head(&ctx->wait);
779
780
INIT_LIST_HEAD(&ctx->active_reqs);
781
782
if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
783
goto err;
784
785
if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
786
goto err;
787
788
ctx->cpu = alloc_percpu(struct kioctx_cpu);
789
if (!ctx->cpu)
790
goto err;
791
792
err = aio_setup_ring(ctx, nr_events);
793
if (err < 0)
794
goto err;
795
796
atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
797
ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
798
if (ctx->req_batch < 1)
799
ctx->req_batch = 1;
800
801
/* limit the number of system wide aios */
802
spin_lock(&aio_nr_lock);
803
if (aio_nr + ctx->max_reqs > aio_max_nr ||
804
aio_nr + ctx->max_reqs < aio_nr) {
805
spin_unlock(&aio_nr_lock);
806
err = -EAGAIN;
807
goto err_ctx;
808
}
809
aio_nr += ctx->max_reqs;
810
spin_unlock(&aio_nr_lock);
811
812
percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
813
percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
814
815
err = ioctx_add_table(ctx, mm);
816
if (err)
817
goto err_cleanup;
818
819
/* Release the ring_lock mutex now that all setup is complete. */
820
mutex_unlock(&ctx->ring_lock);
821
822
pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
823
ctx, ctx->user_id, mm, ctx->nr_events);
824
return ctx;
825
826
err_cleanup:
827
aio_nr_sub(ctx->max_reqs);
828
err_ctx:
829
atomic_set(&ctx->dead, 1);
830
if (ctx->mmap_size)
831
vm_munmap(ctx->mmap_base, ctx->mmap_size);
832
aio_free_ring(ctx);
833
err:
834
mutex_unlock(&ctx->ring_lock);
835
free_percpu(ctx->cpu);
836
percpu_ref_exit(&ctx->reqs);
837
percpu_ref_exit(&ctx->users);
838
kmem_cache_free(kioctx_cachep, ctx);
839
pr_debug("error allocating ioctx %d\n", err);
840
return ERR_PTR(err);
841
}
842
843
/* kill_ioctx
844
* Cancels all outstanding aio requests on an aio context. Used
845
* when the processes owning a context have all exited to encourage
846
* the rapid destruction of the kioctx.
847
*/
848
static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
849
struct ctx_rq_wait *wait)
850
{
851
struct kioctx_table *table;
852
853
spin_lock(&mm->ioctx_lock);
854
if (atomic_xchg(&ctx->dead, 1)) {
855
spin_unlock(&mm->ioctx_lock);
856
return -EINVAL;
857
}
858
859
table = rcu_dereference_raw(mm->ioctx_table);
860
WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
861
RCU_INIT_POINTER(table->table[ctx->id], NULL);
862
spin_unlock(&mm->ioctx_lock);
863
864
/* free_ioctx_reqs() will do the necessary RCU synchronization */
865
wake_up_all(&ctx->wait);
866
867
/*
868
* It'd be more correct to do this in free_ioctx(), after all
869
* the outstanding kiocbs have finished - but by then io_destroy
870
* has already returned, so io_setup() could potentially return
871
* -EAGAIN with no ioctxs actually in use (as far as userspace
872
* could tell).
873
*/
874
aio_nr_sub(ctx->max_reqs);
875
876
if (ctx->mmap_size)
877
vm_munmap(ctx->mmap_base, ctx->mmap_size);
878
879
ctx->rq_wait = wait;
880
percpu_ref_kill(&ctx->users);
881
return 0;
882
}
883
884
/*
885
* exit_aio: called when the last user of mm goes away. At this point, there is
886
* no way for any new requests to be submited or any of the io_* syscalls to be
887
* called on the context.
888
*
889
* There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
890
* them.
891
*/
892
void exit_aio(struct mm_struct *mm)
893
{
894
struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
895
struct ctx_rq_wait wait;
896
int i, skipped;
897
898
if (!table)
899
return;
900
901
atomic_set(&wait.count, table->nr);
902
init_completion(&wait.comp);
903
904
skipped = 0;
905
for (i = 0; i < table->nr; ++i) {
906
struct kioctx *ctx =
907
rcu_dereference_protected(table->table[i], true);
908
909
if (!ctx) {
910
skipped++;
911
continue;
912
}
913
914
/*
915
* We don't need to bother with munmap() here - exit_mmap(mm)
916
* is coming and it'll unmap everything. And we simply can't,
917
* this is not necessarily our ->mm.
918
* Since kill_ioctx() uses non-zero ->mmap_size as indicator
919
* that it needs to unmap the area, just set it to 0.
920
*/
921
ctx->mmap_size = 0;
922
kill_ioctx(mm, ctx, &wait);
923
}
924
925
if (!atomic_sub_and_test(skipped, &wait.count)) {
926
/* Wait until all IO for the context are done. */
927
wait_for_completion(&wait.comp);
928
}
929
930
RCU_INIT_POINTER(mm->ioctx_table, NULL);
931
kfree(table);
932
}
933
934
static void put_reqs_available(struct kioctx *ctx, unsigned nr)
935
{
936
struct kioctx_cpu *kcpu;
937
unsigned long flags;
938
939
local_irq_save(flags);
940
kcpu = this_cpu_ptr(ctx->cpu);
941
kcpu->reqs_available += nr;
942
943
while (kcpu->reqs_available >= ctx->req_batch * 2) {
944
kcpu->reqs_available -= ctx->req_batch;
945
atomic_add(ctx->req_batch, &ctx->reqs_available);
946
}
947
948
local_irq_restore(flags);
949
}
950
951
static bool __get_reqs_available(struct kioctx *ctx)
952
{
953
struct kioctx_cpu *kcpu;
954
bool ret = false;
955
unsigned long flags;
956
957
local_irq_save(flags);
958
kcpu = this_cpu_ptr(ctx->cpu);
959
if (!kcpu->reqs_available) {
960
int avail = atomic_read(&ctx->reqs_available);
961
962
do {
963
if (avail < ctx->req_batch)
964
goto out;
965
} while (!atomic_try_cmpxchg(&ctx->reqs_available,
966
&avail, avail - ctx->req_batch));
967
968
kcpu->reqs_available += ctx->req_batch;
969
}
970
971
ret = true;
972
kcpu->reqs_available--;
973
out:
974
local_irq_restore(flags);
975
return ret;
976
}
977
978
/* refill_reqs_available
979
* Updates the reqs_available reference counts used for tracking the
980
* number of free slots in the completion ring. This can be called
981
* from aio_complete() (to optimistically update reqs_available) or
982
* from aio_get_req() (the we're out of events case). It must be
983
* called holding ctx->completion_lock.
984
*/
985
static void refill_reqs_available(struct kioctx *ctx, unsigned head,
986
unsigned tail)
987
{
988
unsigned events_in_ring, completed;
989
990
/* Clamp head since userland can write to it. */
991
head %= ctx->nr_events;
992
if (head <= tail)
993
events_in_ring = tail - head;
994
else
995
events_in_ring = ctx->nr_events - (head - tail);
996
997
completed = ctx->completed_events;
998
if (events_in_ring < completed)
999
completed -= events_in_ring;
1000
else
1001
completed = 0;
1002
1003
if (!completed)
1004
return;
1005
1006
ctx->completed_events -= completed;
1007
put_reqs_available(ctx, completed);
1008
}
1009
1010
/* user_refill_reqs_available
1011
* Called to refill reqs_available when aio_get_req() encounters an
1012
* out of space in the completion ring.
1013
*/
1014
static void user_refill_reqs_available(struct kioctx *ctx)
1015
{
1016
spin_lock_irq(&ctx->completion_lock);
1017
if (ctx->completed_events) {
1018
struct aio_ring *ring;
1019
unsigned head;
1020
1021
/* Access of ring->head may race with aio_read_events_ring()
1022
* here, but that's okay since whether we read the old version
1023
* or the new version, and either will be valid. The important
1024
* part is that head cannot pass tail since we prevent
1025
* aio_complete() from updating tail by holding
1026
* ctx->completion_lock. Even if head is invalid, the check
1027
* against ctx->completed_events below will make sure we do the
1028
* safe/right thing.
1029
*/
1030
ring = folio_address(ctx->ring_folios[0]);
1031
head = ring->head;
1032
1033
refill_reqs_available(ctx, head, ctx->tail);
1034
}
1035
1036
spin_unlock_irq(&ctx->completion_lock);
1037
}
1038
1039
static bool get_reqs_available(struct kioctx *ctx)
1040
{
1041
if (__get_reqs_available(ctx))
1042
return true;
1043
user_refill_reqs_available(ctx);
1044
return __get_reqs_available(ctx);
1045
}
1046
1047
/* aio_get_req
1048
* Allocate a slot for an aio request.
1049
* Returns NULL if no requests are free.
1050
*
1051
* The refcount is initialized to 2 - one for the async op completion,
1052
* one for the synchronous code that does this.
1053
*/
1054
static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1055
{
1056
struct aio_kiocb *req;
1057
1058
req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1059
if (unlikely(!req))
1060
return NULL;
1061
1062
if (unlikely(!get_reqs_available(ctx))) {
1063
kmem_cache_free(kiocb_cachep, req);
1064
return NULL;
1065
}
1066
1067
percpu_ref_get(&ctx->reqs);
1068
req->ki_ctx = ctx;
1069
INIT_LIST_HEAD(&req->ki_list);
1070
refcount_set(&req->ki_refcnt, 2);
1071
req->ki_eventfd = NULL;
1072
return req;
1073
}
1074
1075
static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1076
{
1077
struct aio_ring __user *ring = (void __user *)ctx_id;
1078
struct mm_struct *mm = current->mm;
1079
struct kioctx *ctx, *ret = NULL;
1080
struct kioctx_table *table;
1081
unsigned id;
1082
1083
if (get_user(id, &ring->id))
1084
return NULL;
1085
1086
rcu_read_lock();
1087
table = rcu_dereference(mm->ioctx_table);
1088
1089
if (!table || id >= table->nr)
1090
goto out;
1091
1092
id = array_index_nospec(id, table->nr);
1093
ctx = rcu_dereference(table->table[id]);
1094
if (ctx && ctx->user_id == ctx_id) {
1095
if (percpu_ref_tryget_live(&ctx->users))
1096
ret = ctx;
1097
}
1098
out:
1099
rcu_read_unlock();
1100
return ret;
1101
}
1102
1103
static inline void iocb_destroy(struct aio_kiocb *iocb)
1104
{
1105
if (iocb->ki_eventfd)
1106
eventfd_ctx_put(iocb->ki_eventfd);
1107
if (iocb->ki_filp)
1108
fput(iocb->ki_filp);
1109
percpu_ref_put(&iocb->ki_ctx->reqs);
1110
kmem_cache_free(kiocb_cachep, iocb);
1111
}
1112
1113
struct aio_waiter {
1114
struct wait_queue_entry w;
1115
size_t min_nr;
1116
};
1117
1118
/* aio_complete
1119
* Called when the io request on the given iocb is complete.
1120
*/
1121
static void aio_complete(struct aio_kiocb *iocb)
1122
{
1123
struct kioctx *ctx = iocb->ki_ctx;
1124
struct aio_ring *ring;
1125
struct io_event *ev_page, *event;
1126
unsigned tail, pos, head, avail;
1127
unsigned long flags;
1128
1129
/*
1130
* Add a completion event to the ring buffer. Must be done holding
1131
* ctx->completion_lock to prevent other code from messing with the tail
1132
* pointer since we might be called from irq context.
1133
*/
1134
spin_lock_irqsave(&ctx->completion_lock, flags);
1135
1136
tail = ctx->tail;
1137
pos = tail + AIO_EVENTS_OFFSET;
1138
1139
if (++tail >= ctx->nr_events)
1140
tail = 0;
1141
1142
ev_page = folio_address(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]);
1143
event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1144
1145
*event = iocb->ki_res;
1146
1147
flush_dcache_folio(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]);
1148
1149
pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1150
(void __user *)(unsigned long)iocb->ki_res.obj,
1151
iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1152
1153
/* after flagging the request as done, we
1154
* must never even look at it again
1155
*/
1156
smp_wmb(); /* make event visible before updating tail */
1157
1158
ctx->tail = tail;
1159
1160
ring = folio_address(ctx->ring_folios[0]);
1161
head = ring->head;
1162
ring->tail = tail;
1163
flush_dcache_folio(ctx->ring_folios[0]);
1164
1165
ctx->completed_events++;
1166
if (ctx->completed_events > 1)
1167
refill_reqs_available(ctx, head, tail);
1168
1169
avail = tail > head
1170
? tail - head
1171
: tail + ctx->nr_events - head;
1172
spin_unlock_irqrestore(&ctx->completion_lock, flags);
1173
1174
pr_debug("added to ring %p at [%u]\n", iocb, tail);
1175
1176
/*
1177
* Check if the user asked us to deliver the result through an
1178
* eventfd. The eventfd_signal() function is safe to be called
1179
* from IRQ context.
1180
*/
1181
if (iocb->ki_eventfd)
1182
eventfd_signal(iocb->ki_eventfd);
1183
1184
/*
1185
* We have to order our ring_info tail store above and test
1186
* of the wait list below outside the wait lock. This is
1187
* like in wake_up_bit() where clearing a bit has to be
1188
* ordered with the unlocked test.
1189
*/
1190
smp_mb();
1191
1192
if (waitqueue_active(&ctx->wait)) {
1193
struct aio_waiter *curr, *next;
1194
unsigned long flags;
1195
1196
spin_lock_irqsave(&ctx->wait.lock, flags);
1197
list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1198
if (avail >= curr->min_nr) {
1199
wake_up_process(curr->w.private);
1200
list_del_init_careful(&curr->w.entry);
1201
}
1202
spin_unlock_irqrestore(&ctx->wait.lock, flags);
1203
}
1204
}
1205
1206
static inline void iocb_put(struct aio_kiocb *iocb)
1207
{
1208
if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1209
aio_complete(iocb);
1210
iocb_destroy(iocb);
1211
}
1212
}
1213
1214
/* aio_read_events_ring
1215
* Pull an event off of the ioctx's event ring. Returns the number of
1216
* events fetched
1217
*/
1218
static long aio_read_events_ring(struct kioctx *ctx,
1219
struct io_event __user *event, long nr)
1220
{
1221
struct aio_ring *ring;
1222
unsigned head, tail, pos;
1223
long ret = 0;
1224
int copy_ret;
1225
1226
/*
1227
* The mutex can block and wake us up and that will cause
1228
* wait_event_interruptible_hrtimeout() to schedule without sleeping
1229
* and repeat. This should be rare enough that it doesn't cause
1230
* peformance issues. See the comment in read_events() for more detail.
1231
*/
1232
sched_annotate_sleep();
1233
mutex_lock(&ctx->ring_lock);
1234
1235
/* Access to ->ring_folios here is protected by ctx->ring_lock. */
1236
ring = folio_address(ctx->ring_folios[0]);
1237
head = ring->head;
1238
tail = ring->tail;
1239
1240
/*
1241
* Ensure that once we've read the current tail pointer, that
1242
* we also see the events that were stored up to the tail.
1243
*/
1244
smp_rmb();
1245
1246
pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1247
1248
if (head == tail)
1249
goto out;
1250
1251
head %= ctx->nr_events;
1252
tail %= ctx->nr_events;
1253
1254
while (ret < nr) {
1255
long avail;
1256
struct io_event *ev;
1257
struct folio *folio;
1258
1259
avail = (head <= tail ? tail : ctx->nr_events) - head;
1260
if (head == tail)
1261
break;
1262
1263
pos = head + AIO_EVENTS_OFFSET;
1264
folio = ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE];
1265
pos %= AIO_EVENTS_PER_PAGE;
1266
1267
avail = min(avail, nr - ret);
1268
avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1269
1270
ev = folio_address(folio);
1271
copy_ret = copy_to_user(event + ret, ev + pos,
1272
sizeof(*ev) * avail);
1273
1274
if (unlikely(copy_ret)) {
1275
ret = -EFAULT;
1276
goto out;
1277
}
1278
1279
ret += avail;
1280
head += avail;
1281
head %= ctx->nr_events;
1282
}
1283
1284
ring = folio_address(ctx->ring_folios[0]);
1285
ring->head = head;
1286
flush_dcache_folio(ctx->ring_folios[0]);
1287
1288
pr_debug("%li h%u t%u\n", ret, head, tail);
1289
out:
1290
mutex_unlock(&ctx->ring_lock);
1291
1292
return ret;
1293
}
1294
1295
static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1296
struct io_event __user *event, long *i)
1297
{
1298
long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1299
1300
if (ret > 0)
1301
*i += ret;
1302
1303
if (unlikely(atomic_read(&ctx->dead)))
1304
ret = -EINVAL;
1305
1306
if (!*i)
1307
*i = ret;
1308
1309
return ret < 0 || *i >= min_nr;
1310
}
1311
1312
static long read_events(struct kioctx *ctx, long min_nr, long nr,
1313
struct io_event __user *event,
1314
ktime_t until)
1315
{
1316
struct hrtimer_sleeper t;
1317
struct aio_waiter w;
1318
long ret = 0, ret2 = 0;
1319
1320
/*
1321
* Note that aio_read_events() is being called as the conditional - i.e.
1322
* we're calling it after prepare_to_wait() has set task state to
1323
* TASK_INTERRUPTIBLE.
1324
*
1325
* But aio_read_events() can block, and if it blocks it's going to flip
1326
* the task state back to TASK_RUNNING.
1327
*
1328
* This should be ok, provided it doesn't flip the state back to
1329
* TASK_RUNNING and return 0 too much - that causes us to spin. That
1330
* will only happen if the mutex_lock() call blocks, and we then find
1331
* the ringbuffer empty. So in practice we should be ok, but it's
1332
* something to be aware of when touching this code.
1333
*/
1334
aio_read_events(ctx, min_nr, nr, event, &ret);
1335
if (until == 0 || ret < 0 || ret >= min_nr)
1336
return ret;
1337
1338
hrtimer_setup_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1339
if (until != KTIME_MAX) {
1340
hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1341
hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1342
}
1343
1344
init_wait(&w.w);
1345
1346
while (1) {
1347
unsigned long nr_got = ret;
1348
1349
w.min_nr = min_nr - ret;
1350
1351
ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1352
if (!ret2 && !t.task)
1353
ret2 = -ETIME;
1354
1355
if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1356
break;
1357
1358
if (nr_got == ret)
1359
schedule();
1360
}
1361
1362
finish_wait(&ctx->wait, &w.w);
1363
hrtimer_cancel(&t.timer);
1364
destroy_hrtimer_on_stack(&t.timer);
1365
1366
return ret;
1367
}
1368
1369
/* sys_io_setup:
1370
* Create an aio_context capable of receiving at least nr_events.
1371
* ctxp must not point to an aio_context that already exists, and
1372
* must be initialized to 0 prior to the call. On successful
1373
* creation of the aio_context, *ctxp is filled in with the resulting
1374
* handle. May fail with -EINVAL if *ctxp is not initialized,
1375
* if the specified nr_events exceeds internal limits. May fail
1376
* with -EAGAIN if the specified nr_events exceeds the user's limit
1377
* of available events. May fail with -ENOMEM if insufficient kernel
1378
* resources are available. May fail with -EFAULT if an invalid
1379
* pointer is passed for ctxp. Will fail with -ENOSYS if not
1380
* implemented.
1381
*/
1382
SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1383
{
1384
struct kioctx *ioctx = NULL;
1385
unsigned long ctx;
1386
long ret;
1387
1388
ret = get_user(ctx, ctxp);
1389
if (unlikely(ret))
1390
goto out;
1391
1392
ret = -EINVAL;
1393
if (unlikely(ctx || nr_events == 0)) {
1394
pr_debug("EINVAL: ctx %lu nr_events %u\n",
1395
ctx, nr_events);
1396
goto out;
1397
}
1398
1399
ioctx = ioctx_alloc(nr_events);
1400
ret = PTR_ERR(ioctx);
1401
if (!IS_ERR(ioctx)) {
1402
ret = put_user(ioctx->user_id, ctxp);
1403
if (ret)
1404
kill_ioctx(current->mm, ioctx, NULL);
1405
percpu_ref_put(&ioctx->users);
1406
}
1407
1408
out:
1409
return ret;
1410
}
1411
1412
#ifdef CONFIG_COMPAT
1413
COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1414
{
1415
struct kioctx *ioctx = NULL;
1416
unsigned long ctx;
1417
long ret;
1418
1419
ret = get_user(ctx, ctx32p);
1420
if (unlikely(ret))
1421
goto out;
1422
1423
ret = -EINVAL;
1424
if (unlikely(ctx || nr_events == 0)) {
1425
pr_debug("EINVAL: ctx %lu nr_events %u\n",
1426
ctx, nr_events);
1427
goto out;
1428
}
1429
1430
ioctx = ioctx_alloc(nr_events);
1431
ret = PTR_ERR(ioctx);
1432
if (!IS_ERR(ioctx)) {
1433
/* truncating is ok because it's a user address */
1434
ret = put_user((u32)ioctx->user_id, ctx32p);
1435
if (ret)
1436
kill_ioctx(current->mm, ioctx, NULL);
1437
percpu_ref_put(&ioctx->users);
1438
}
1439
1440
out:
1441
return ret;
1442
}
1443
#endif
1444
1445
/* sys_io_destroy:
1446
* Destroy the aio_context specified. May cancel any outstanding
1447
* AIOs and block on completion. Will fail with -ENOSYS if not
1448
* implemented. May fail with -EINVAL if the context pointed to
1449
* is invalid.
1450
*/
1451
SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1452
{
1453
struct kioctx *ioctx = lookup_ioctx(ctx);
1454
if (likely(NULL != ioctx)) {
1455
struct ctx_rq_wait wait;
1456
int ret;
1457
1458
init_completion(&wait.comp);
1459
atomic_set(&wait.count, 1);
1460
1461
/* Pass requests_done to kill_ioctx() where it can be set
1462
* in a thread-safe way. If we try to set it here then we have
1463
* a race condition if two io_destroy() called simultaneously.
1464
*/
1465
ret = kill_ioctx(current->mm, ioctx, &wait);
1466
percpu_ref_put(&ioctx->users);
1467
1468
/* Wait until all IO for the context are done. Otherwise kernel
1469
* keep using user-space buffers even if user thinks the context
1470
* is destroyed.
1471
*/
1472
if (!ret)
1473
wait_for_completion(&wait.comp);
1474
1475
return ret;
1476
}
1477
pr_debug("EINVAL: invalid context id\n");
1478
return -EINVAL;
1479
}
1480
1481
static void aio_remove_iocb(struct aio_kiocb *iocb)
1482
{
1483
struct kioctx *ctx = iocb->ki_ctx;
1484
unsigned long flags;
1485
1486
spin_lock_irqsave(&ctx->ctx_lock, flags);
1487
list_del(&iocb->ki_list);
1488
spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1489
}
1490
1491
static void aio_complete_rw(struct kiocb *kiocb, long res)
1492
{
1493
struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1494
1495
if (!list_empty_careful(&iocb->ki_list))
1496
aio_remove_iocb(iocb);
1497
1498
if (kiocb->ki_flags & IOCB_WRITE) {
1499
struct inode *inode = file_inode(kiocb->ki_filp);
1500
1501
if (S_ISREG(inode->i_mode))
1502
kiocb_end_write(kiocb);
1503
}
1504
1505
iocb->ki_res.res = res;
1506
iocb->ki_res.res2 = 0;
1507
iocb_put(iocb);
1508
}
1509
1510
static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb, int rw_type)
1511
{
1512
int ret;
1513
1514
req->ki_write_stream = 0;
1515
req->ki_complete = aio_complete_rw;
1516
req->private = NULL;
1517
req->ki_pos = iocb->aio_offset;
1518
req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW;
1519
if (iocb->aio_flags & IOCB_FLAG_RESFD)
1520
req->ki_flags |= IOCB_EVENTFD;
1521
if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1522
/*
1523
* If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1524
* aio_reqprio is interpreted as an I/O scheduling
1525
* class and priority.
1526
*/
1527
ret = ioprio_check_cap(iocb->aio_reqprio);
1528
if (ret) {
1529
pr_debug("aio ioprio check cap error: %d\n", ret);
1530
return ret;
1531
}
1532
1533
req->ki_ioprio = iocb->aio_reqprio;
1534
} else
1535
req->ki_ioprio = get_current_ioprio();
1536
1537
ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags, rw_type);
1538
if (unlikely(ret))
1539
return ret;
1540
1541
req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1542
return 0;
1543
}
1544
1545
static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1546
struct iovec **iovec, bool vectored, bool compat,
1547
struct iov_iter *iter)
1548
{
1549
void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1550
size_t len = iocb->aio_nbytes;
1551
1552
if (!vectored) {
1553
ssize_t ret = import_ubuf(rw, buf, len, iter);
1554
*iovec = NULL;
1555
return ret;
1556
}
1557
1558
return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1559
}
1560
1561
static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1562
{
1563
switch (ret) {
1564
case -EIOCBQUEUED:
1565
break;
1566
case -ERESTARTSYS:
1567
case -ERESTARTNOINTR:
1568
case -ERESTARTNOHAND:
1569
case -ERESTART_RESTARTBLOCK:
1570
/*
1571
* There's no easy way to restart the syscall since other AIO's
1572
* may be already running. Just fail this IO with EINTR.
1573
*/
1574
ret = -EINTR;
1575
fallthrough;
1576
default:
1577
req->ki_complete(req, ret);
1578
}
1579
}
1580
1581
static int aio_read(struct kiocb *req, const struct iocb *iocb,
1582
bool vectored, bool compat)
1583
{
1584
struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1585
struct iov_iter iter;
1586
struct file *file;
1587
int ret;
1588
1589
ret = aio_prep_rw(req, iocb, READ);
1590
if (ret)
1591
return ret;
1592
file = req->ki_filp;
1593
if (unlikely(!(file->f_mode & FMODE_READ)))
1594
return -EBADF;
1595
if (unlikely(!file->f_op->read_iter))
1596
return -EINVAL;
1597
1598
ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1599
if (ret < 0)
1600
return ret;
1601
ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1602
if (!ret)
1603
aio_rw_done(req, file->f_op->read_iter(req, &iter));
1604
kfree(iovec);
1605
return ret;
1606
}
1607
1608
static int aio_write(struct kiocb *req, const struct iocb *iocb,
1609
bool vectored, bool compat)
1610
{
1611
struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1612
struct iov_iter iter;
1613
struct file *file;
1614
int ret;
1615
1616
ret = aio_prep_rw(req, iocb, WRITE);
1617
if (ret)
1618
return ret;
1619
file = req->ki_filp;
1620
1621
if (unlikely(!(file->f_mode & FMODE_WRITE)))
1622
return -EBADF;
1623
if (unlikely(!file->f_op->write_iter))
1624
return -EINVAL;
1625
1626
ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1627
if (ret < 0)
1628
return ret;
1629
ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1630
if (!ret) {
1631
if (S_ISREG(file_inode(file)->i_mode))
1632
kiocb_start_write(req);
1633
req->ki_flags |= IOCB_WRITE;
1634
aio_rw_done(req, file->f_op->write_iter(req, &iter));
1635
}
1636
kfree(iovec);
1637
return ret;
1638
}
1639
1640
static void aio_fsync_work(struct work_struct *work)
1641
{
1642
struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1643
const struct cred *old_cred = override_creds(iocb->fsync.creds);
1644
1645
iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1646
revert_creds(old_cred);
1647
put_cred(iocb->fsync.creds);
1648
iocb_put(iocb);
1649
}
1650
1651
static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1652
bool datasync)
1653
{
1654
if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1655
iocb->aio_rw_flags))
1656
return -EINVAL;
1657
1658
if (unlikely(!req->file->f_op->fsync))
1659
return -EINVAL;
1660
1661
req->creds = prepare_creds();
1662
if (!req->creds)
1663
return -ENOMEM;
1664
1665
req->datasync = datasync;
1666
INIT_WORK(&req->work, aio_fsync_work);
1667
schedule_work(&req->work);
1668
return 0;
1669
}
1670
1671
static void aio_poll_put_work(struct work_struct *work)
1672
{
1673
struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1674
struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1675
1676
iocb_put(iocb);
1677
}
1678
1679
/*
1680
* Safely lock the waitqueue which the request is on, synchronizing with the
1681
* case where the ->poll() provider decides to free its waitqueue early.
1682
*
1683
* Returns true on success, meaning that req->head->lock was locked, req->wait
1684
* is on req->head, and an RCU read lock was taken. Returns false if the
1685
* request was already removed from its waitqueue (which might no longer exist).
1686
*/
1687
static bool poll_iocb_lock_wq(struct poll_iocb *req)
1688
{
1689
wait_queue_head_t *head;
1690
1691
/*
1692
* While we hold the waitqueue lock and the waitqueue is nonempty,
1693
* wake_up_pollfree() will wait for us. However, taking the waitqueue
1694
* lock in the first place can race with the waitqueue being freed.
1695
*
1696
* We solve this as eventpoll does: by taking advantage of the fact that
1697
* all users of wake_up_pollfree() will RCU-delay the actual free. If
1698
* we enter rcu_read_lock() and see that the pointer to the queue is
1699
* non-NULL, we can then lock it without the memory being freed out from
1700
* under us, then check whether the request is still on the queue.
1701
*
1702
* Keep holding rcu_read_lock() as long as we hold the queue lock, in
1703
* case the caller deletes the entry from the queue, leaving it empty.
1704
* In that case, only RCU prevents the queue memory from being freed.
1705
*/
1706
rcu_read_lock();
1707
head = smp_load_acquire(&req->head);
1708
if (head) {
1709
spin_lock(&head->lock);
1710
if (!list_empty(&req->wait.entry))
1711
return true;
1712
spin_unlock(&head->lock);
1713
}
1714
rcu_read_unlock();
1715
return false;
1716
}
1717
1718
static void poll_iocb_unlock_wq(struct poll_iocb *req)
1719
{
1720
spin_unlock(&req->head->lock);
1721
rcu_read_unlock();
1722
}
1723
1724
static void aio_poll_complete_work(struct work_struct *work)
1725
{
1726
struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1727
struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1728
struct poll_table_struct pt = { ._key = req->events };
1729
struct kioctx *ctx = iocb->ki_ctx;
1730
__poll_t mask = 0;
1731
1732
if (!READ_ONCE(req->cancelled))
1733
mask = vfs_poll(req->file, &pt) & req->events;
1734
1735
/*
1736
* Note that ->ki_cancel callers also delete iocb from active_reqs after
1737
* calling ->ki_cancel. We need the ctx_lock roundtrip here to
1738
* synchronize with them. In the cancellation case the list_del_init
1739
* itself is not actually needed, but harmless so we keep it in to
1740
* avoid further branches in the fast path.
1741
*/
1742
spin_lock_irq(&ctx->ctx_lock);
1743
if (poll_iocb_lock_wq(req)) {
1744
if (!mask && !READ_ONCE(req->cancelled)) {
1745
/*
1746
* The request isn't actually ready to be completed yet.
1747
* Reschedule completion if another wakeup came in.
1748
*/
1749
if (req->work_need_resched) {
1750
schedule_work(&req->work);
1751
req->work_need_resched = false;
1752
} else {
1753
req->work_scheduled = false;
1754
}
1755
poll_iocb_unlock_wq(req);
1756
spin_unlock_irq(&ctx->ctx_lock);
1757
return;
1758
}
1759
list_del_init(&req->wait.entry);
1760
poll_iocb_unlock_wq(req);
1761
} /* else, POLLFREE has freed the waitqueue, so we must complete */
1762
list_del_init(&iocb->ki_list);
1763
iocb->ki_res.res = mangle_poll(mask);
1764
spin_unlock_irq(&ctx->ctx_lock);
1765
1766
iocb_put(iocb);
1767
}
1768
1769
/* assumes we are called with irqs disabled */
1770
static int aio_poll_cancel(struct kiocb *iocb)
1771
{
1772
struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1773
struct poll_iocb *req = &aiocb->poll;
1774
1775
if (poll_iocb_lock_wq(req)) {
1776
WRITE_ONCE(req->cancelled, true);
1777
if (!req->work_scheduled) {
1778
schedule_work(&aiocb->poll.work);
1779
req->work_scheduled = true;
1780
}
1781
poll_iocb_unlock_wq(req);
1782
} /* else, the request was force-cancelled by POLLFREE already */
1783
1784
return 0;
1785
}
1786
1787
static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1788
void *key)
1789
{
1790
struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1791
struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1792
__poll_t mask = key_to_poll(key);
1793
unsigned long flags;
1794
1795
/* for instances that support it check for an event match first: */
1796
if (mask && !(mask & req->events))
1797
return 0;
1798
1799
/*
1800
* Complete the request inline if possible. This requires that three
1801
* conditions be met:
1802
* 1. An event mask must have been passed. If a plain wakeup was done
1803
* instead, then mask == 0 and we have to call vfs_poll() to get
1804
* the events, so inline completion isn't possible.
1805
* 2. The completion work must not have already been scheduled.
1806
* 3. ctx_lock must not be busy. We have to use trylock because we
1807
* already hold the waitqueue lock, so this inverts the normal
1808
* locking order. Use irqsave/irqrestore because not all
1809
* filesystems (e.g. fuse) call this function with IRQs disabled,
1810
* yet IRQs have to be disabled before ctx_lock is obtained.
1811
*/
1812
if (mask && !req->work_scheduled &&
1813
spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1814
struct kioctx *ctx = iocb->ki_ctx;
1815
1816
list_del_init(&req->wait.entry);
1817
list_del(&iocb->ki_list);
1818
iocb->ki_res.res = mangle_poll(mask);
1819
if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1820
iocb = NULL;
1821
INIT_WORK(&req->work, aio_poll_put_work);
1822
schedule_work(&req->work);
1823
}
1824
spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1825
if (iocb)
1826
iocb_put(iocb);
1827
} else {
1828
/*
1829
* Schedule the completion work if needed. If it was already
1830
* scheduled, record that another wakeup came in.
1831
*
1832
* Don't remove the request from the waitqueue here, as it might
1833
* not actually be complete yet (we won't know until vfs_poll()
1834
* is called), and we must not miss any wakeups. POLLFREE is an
1835
* exception to this; see below.
1836
*/
1837
if (req->work_scheduled) {
1838
req->work_need_resched = true;
1839
} else {
1840
schedule_work(&req->work);
1841
req->work_scheduled = true;
1842
}
1843
1844
/*
1845
* If the waitqueue is being freed early but we can't complete
1846
* the request inline, we have to tear down the request as best
1847
* we can. That means immediately removing the request from its
1848
* waitqueue and preventing all further accesses to the
1849
* waitqueue via the request. We also need to schedule the
1850
* completion work (done above). Also mark the request as
1851
* cancelled, to potentially skip an unneeded call to ->poll().
1852
*/
1853
if (mask & POLLFREE) {
1854
WRITE_ONCE(req->cancelled, true);
1855
list_del_init(&req->wait.entry);
1856
1857
/*
1858
* Careful: this *must* be the last step, since as soon
1859
* as req->head is NULL'ed out, the request can be
1860
* completed and freed, since aio_poll_complete_work()
1861
* will no longer need to take the waitqueue lock.
1862
*/
1863
smp_store_release(&req->head, NULL);
1864
}
1865
}
1866
return 1;
1867
}
1868
1869
struct aio_poll_table {
1870
struct poll_table_struct pt;
1871
struct aio_kiocb *iocb;
1872
bool queued;
1873
int error;
1874
};
1875
1876
static void
1877
aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1878
struct poll_table_struct *p)
1879
{
1880
struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1881
1882
/* multiple wait queues per file are not supported */
1883
if (unlikely(pt->queued)) {
1884
pt->error = -EINVAL;
1885
return;
1886
}
1887
1888
pt->queued = true;
1889
pt->error = 0;
1890
pt->iocb->poll.head = head;
1891
add_wait_queue(head, &pt->iocb->poll.wait);
1892
}
1893
1894
static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1895
{
1896
struct kioctx *ctx = aiocb->ki_ctx;
1897
struct poll_iocb *req = &aiocb->poll;
1898
struct aio_poll_table apt;
1899
bool cancel = false;
1900
__poll_t mask;
1901
1902
/* reject any unknown events outside the normal event mask. */
1903
if ((u16)iocb->aio_buf != iocb->aio_buf)
1904
return -EINVAL;
1905
/* reject fields that are not defined for poll */
1906
if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1907
return -EINVAL;
1908
1909
INIT_WORK(&req->work, aio_poll_complete_work);
1910
req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1911
1912
req->head = NULL;
1913
req->cancelled = false;
1914
req->work_scheduled = false;
1915
req->work_need_resched = false;
1916
1917
apt.pt._qproc = aio_poll_queue_proc;
1918
apt.pt._key = req->events;
1919
apt.iocb = aiocb;
1920
apt.queued = false;
1921
apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1922
1923
/* initialized the list so that we can do list_empty checks */
1924
INIT_LIST_HEAD(&req->wait.entry);
1925
init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1926
1927
mask = vfs_poll(req->file, &apt.pt) & req->events;
1928
spin_lock_irq(&ctx->ctx_lock);
1929
if (likely(apt.queued)) {
1930
bool on_queue = poll_iocb_lock_wq(req);
1931
1932
if (!on_queue || req->work_scheduled) {
1933
/*
1934
* aio_poll_wake() already either scheduled the async
1935
* completion work, or completed the request inline.
1936
*/
1937
if (apt.error) /* unsupported case: multiple queues */
1938
cancel = true;
1939
apt.error = 0;
1940
mask = 0;
1941
}
1942
if (mask || apt.error) {
1943
/* Steal to complete synchronously. */
1944
list_del_init(&req->wait.entry);
1945
} else if (cancel) {
1946
/* Cancel if possible (may be too late though). */
1947
WRITE_ONCE(req->cancelled, true);
1948
} else if (on_queue) {
1949
/*
1950
* Actually waiting for an event, so add the request to
1951
* active_reqs so that it can be cancelled if needed.
1952
*/
1953
list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1954
aiocb->ki_cancel = aio_poll_cancel;
1955
}
1956
if (on_queue)
1957
poll_iocb_unlock_wq(req);
1958
}
1959
if (mask) { /* no async, we'd stolen it */
1960
aiocb->ki_res.res = mangle_poll(mask);
1961
apt.error = 0;
1962
}
1963
spin_unlock_irq(&ctx->ctx_lock);
1964
if (mask)
1965
iocb_put(aiocb);
1966
return apt.error;
1967
}
1968
1969
static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1970
struct iocb __user *user_iocb, struct aio_kiocb *req,
1971
bool compat)
1972
{
1973
req->ki_filp = fget(iocb->aio_fildes);
1974
if (unlikely(!req->ki_filp))
1975
return -EBADF;
1976
1977
if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1978
struct eventfd_ctx *eventfd;
1979
/*
1980
* If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1981
* instance of the file* now. The file descriptor must be
1982
* an eventfd() fd, and will be signaled for each completed
1983
* event using the eventfd_signal() function.
1984
*/
1985
eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1986
if (IS_ERR(eventfd))
1987
return PTR_ERR(eventfd);
1988
1989
req->ki_eventfd = eventfd;
1990
}
1991
1992
if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1993
pr_debug("EFAULT: aio_key\n");
1994
return -EFAULT;
1995
}
1996
1997
req->ki_res.obj = (u64)(unsigned long)user_iocb;
1998
req->ki_res.data = iocb->aio_data;
1999
req->ki_res.res = 0;
2000
req->ki_res.res2 = 0;
2001
2002
switch (iocb->aio_lio_opcode) {
2003
case IOCB_CMD_PREAD:
2004
return aio_read(&req->rw, iocb, false, compat);
2005
case IOCB_CMD_PWRITE:
2006
return aio_write(&req->rw, iocb, false, compat);
2007
case IOCB_CMD_PREADV:
2008
return aio_read(&req->rw, iocb, true, compat);
2009
case IOCB_CMD_PWRITEV:
2010
return aio_write(&req->rw, iocb, true, compat);
2011
case IOCB_CMD_FSYNC:
2012
return aio_fsync(&req->fsync, iocb, false);
2013
case IOCB_CMD_FDSYNC:
2014
return aio_fsync(&req->fsync, iocb, true);
2015
case IOCB_CMD_POLL:
2016
return aio_poll(req, iocb);
2017
default:
2018
pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
2019
return -EINVAL;
2020
}
2021
}
2022
2023
static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2024
bool compat)
2025
{
2026
struct aio_kiocb *req;
2027
struct iocb iocb;
2028
int err;
2029
2030
if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2031
return -EFAULT;
2032
2033
/* enforce forwards compatibility on users */
2034
if (unlikely(iocb.aio_reserved2)) {
2035
pr_debug("EINVAL: reserve field set\n");
2036
return -EINVAL;
2037
}
2038
2039
/* prevent overflows */
2040
if (unlikely(
2041
(iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2042
(iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2043
((ssize_t)iocb.aio_nbytes < 0)
2044
)) {
2045
pr_debug("EINVAL: overflow check\n");
2046
return -EINVAL;
2047
}
2048
2049
req = aio_get_req(ctx);
2050
if (unlikely(!req))
2051
return -EAGAIN;
2052
2053
err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2054
2055
/* Done with the synchronous reference */
2056
iocb_put(req);
2057
2058
/*
2059
* If err is 0, we'd either done aio_complete() ourselves or have
2060
* arranged for that to be done asynchronously. Anything non-zero
2061
* means that we need to destroy req ourselves.
2062
*/
2063
if (unlikely(err)) {
2064
iocb_destroy(req);
2065
put_reqs_available(ctx, 1);
2066
}
2067
return err;
2068
}
2069
2070
/* sys_io_submit:
2071
* Queue the nr iocbs pointed to by iocbpp for processing. Returns
2072
* the number of iocbs queued. May return -EINVAL if the aio_context
2073
* specified by ctx_id is invalid, if nr is < 0, if the iocb at
2074
* *iocbpp[0] is not properly initialized, if the operation specified
2075
* is invalid for the file descriptor in the iocb. May fail with
2076
* -EFAULT if any of the data structures point to invalid data. May
2077
* fail with -EBADF if the file descriptor specified in the first
2078
* iocb is invalid. May fail with -EAGAIN if insufficient resources
2079
* are available to queue any iocbs. Will return 0 if nr is 0. Will
2080
* fail with -ENOSYS if not implemented.
2081
*/
2082
SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2083
struct iocb __user * __user *, iocbpp)
2084
{
2085
struct kioctx *ctx;
2086
long ret = 0;
2087
int i = 0;
2088
struct blk_plug plug;
2089
2090
if (unlikely(nr < 0))
2091
return -EINVAL;
2092
2093
ctx = lookup_ioctx(ctx_id);
2094
if (unlikely(!ctx)) {
2095
pr_debug("EINVAL: invalid context id\n");
2096
return -EINVAL;
2097
}
2098
2099
if (nr > ctx->nr_events)
2100
nr = ctx->nr_events;
2101
2102
if (nr > AIO_PLUG_THRESHOLD)
2103
blk_start_plug(&plug);
2104
for (i = 0; i < nr; i++) {
2105
struct iocb __user *user_iocb;
2106
2107
if (unlikely(get_user(user_iocb, iocbpp + i))) {
2108
ret = -EFAULT;
2109
break;
2110
}
2111
2112
ret = io_submit_one(ctx, user_iocb, false);
2113
if (ret)
2114
break;
2115
}
2116
if (nr > AIO_PLUG_THRESHOLD)
2117
blk_finish_plug(&plug);
2118
2119
percpu_ref_put(&ctx->users);
2120
return i ? i : ret;
2121
}
2122
2123
#ifdef CONFIG_COMPAT
2124
COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2125
int, nr, compat_uptr_t __user *, iocbpp)
2126
{
2127
struct kioctx *ctx;
2128
long ret = 0;
2129
int i = 0;
2130
struct blk_plug plug;
2131
2132
if (unlikely(nr < 0))
2133
return -EINVAL;
2134
2135
ctx = lookup_ioctx(ctx_id);
2136
if (unlikely(!ctx)) {
2137
pr_debug("EINVAL: invalid context id\n");
2138
return -EINVAL;
2139
}
2140
2141
if (nr > ctx->nr_events)
2142
nr = ctx->nr_events;
2143
2144
if (nr > AIO_PLUG_THRESHOLD)
2145
blk_start_plug(&plug);
2146
for (i = 0; i < nr; i++) {
2147
compat_uptr_t user_iocb;
2148
2149
if (unlikely(get_user(user_iocb, iocbpp + i))) {
2150
ret = -EFAULT;
2151
break;
2152
}
2153
2154
ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2155
if (ret)
2156
break;
2157
}
2158
if (nr > AIO_PLUG_THRESHOLD)
2159
blk_finish_plug(&plug);
2160
2161
percpu_ref_put(&ctx->users);
2162
return i ? i : ret;
2163
}
2164
#endif
2165
2166
/* sys_io_cancel:
2167
* Attempts to cancel an iocb previously passed to io_submit. If
2168
* the operation is successfully cancelled, the resulting event is
2169
* copied into the memory pointed to by result without being placed
2170
* into the completion queue and 0 is returned. May fail with
2171
* -EFAULT if any of the data structures pointed to are invalid.
2172
* May fail with -EINVAL if aio_context specified by ctx_id is
2173
* invalid. May fail with -EAGAIN if the iocb specified was not
2174
* cancelled. Will fail with -ENOSYS if not implemented.
2175
*/
2176
SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2177
struct io_event __user *, result)
2178
{
2179
struct kioctx *ctx;
2180
struct aio_kiocb *kiocb;
2181
int ret = -EINVAL;
2182
u32 key;
2183
u64 obj = (u64)(unsigned long)iocb;
2184
2185
if (unlikely(get_user(key, &iocb->aio_key)))
2186
return -EFAULT;
2187
if (unlikely(key != KIOCB_KEY))
2188
return -EINVAL;
2189
2190
ctx = lookup_ioctx(ctx_id);
2191
if (unlikely(!ctx))
2192
return -EINVAL;
2193
2194
spin_lock_irq(&ctx->ctx_lock);
2195
list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2196
if (kiocb->ki_res.obj == obj) {
2197
ret = kiocb->ki_cancel(&kiocb->rw);
2198
list_del_init(&kiocb->ki_list);
2199
break;
2200
}
2201
}
2202
spin_unlock_irq(&ctx->ctx_lock);
2203
2204
if (!ret) {
2205
/*
2206
* The result argument is no longer used - the io_event is
2207
* always delivered via the ring buffer. -EINPROGRESS indicates
2208
* cancellation is progress:
2209
*/
2210
ret = -EINPROGRESS;
2211
}
2212
2213
percpu_ref_put(&ctx->users);
2214
2215
return ret;
2216
}
2217
2218
static long do_io_getevents(aio_context_t ctx_id,
2219
long min_nr,
2220
long nr,
2221
struct io_event __user *events,
2222
struct timespec64 *ts)
2223
{
2224
ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2225
struct kioctx *ioctx = lookup_ioctx(ctx_id);
2226
long ret = -EINVAL;
2227
2228
if (likely(ioctx)) {
2229
if (likely(min_nr <= nr && min_nr >= 0))
2230
ret = read_events(ioctx, min_nr, nr, events, until);
2231
percpu_ref_put(&ioctx->users);
2232
}
2233
2234
return ret;
2235
}
2236
2237
/* io_getevents:
2238
* Attempts to read at least min_nr events and up to nr events from
2239
* the completion queue for the aio_context specified by ctx_id. If
2240
* it succeeds, the number of read events is returned. May fail with
2241
* -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2242
* out of range, if timeout is out of range. May fail with -EFAULT
2243
* if any of the memory specified is invalid. May return 0 or
2244
* < min_nr if the timeout specified by timeout has elapsed
2245
* before sufficient events are available, where timeout == NULL
2246
* specifies an infinite timeout. Note that the timeout pointed to by
2247
* timeout is relative. Will fail with -ENOSYS if not implemented.
2248
*/
2249
#ifdef CONFIG_64BIT
2250
2251
SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2252
long, min_nr,
2253
long, nr,
2254
struct io_event __user *, events,
2255
struct __kernel_timespec __user *, timeout)
2256
{
2257
struct timespec64 ts;
2258
int ret;
2259
2260
if (timeout && unlikely(get_timespec64(&ts, timeout)))
2261
return -EFAULT;
2262
2263
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2264
if (!ret && signal_pending(current))
2265
ret = -EINTR;
2266
return ret;
2267
}
2268
2269
#endif
2270
2271
struct __aio_sigset {
2272
const sigset_t __user *sigmask;
2273
size_t sigsetsize;
2274
};
2275
2276
SYSCALL_DEFINE6(io_pgetevents,
2277
aio_context_t, ctx_id,
2278
long, min_nr,
2279
long, nr,
2280
struct io_event __user *, events,
2281
struct __kernel_timespec __user *, timeout,
2282
const struct __aio_sigset __user *, usig)
2283
{
2284
struct __aio_sigset ksig = { NULL, };
2285
struct timespec64 ts;
2286
bool interrupted;
2287
int ret;
2288
2289
if (timeout && unlikely(get_timespec64(&ts, timeout)))
2290
return -EFAULT;
2291
2292
if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2293
return -EFAULT;
2294
2295
ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2296
if (ret)
2297
return ret;
2298
2299
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2300
2301
interrupted = signal_pending(current);
2302
restore_saved_sigmask_unless(interrupted);
2303
if (interrupted && !ret)
2304
ret = -ERESTARTNOHAND;
2305
2306
return ret;
2307
}
2308
2309
#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2310
2311
SYSCALL_DEFINE6(io_pgetevents_time32,
2312
aio_context_t, ctx_id,
2313
long, min_nr,
2314
long, nr,
2315
struct io_event __user *, events,
2316
struct old_timespec32 __user *, timeout,
2317
const struct __aio_sigset __user *, usig)
2318
{
2319
struct __aio_sigset ksig = { NULL, };
2320
struct timespec64 ts;
2321
bool interrupted;
2322
int ret;
2323
2324
if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2325
return -EFAULT;
2326
2327
if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2328
return -EFAULT;
2329
2330
2331
ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2332
if (ret)
2333
return ret;
2334
2335
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2336
2337
interrupted = signal_pending(current);
2338
restore_saved_sigmask_unless(interrupted);
2339
if (interrupted && !ret)
2340
ret = -ERESTARTNOHAND;
2341
2342
return ret;
2343
}
2344
2345
#endif
2346
2347
#if defined(CONFIG_COMPAT_32BIT_TIME)
2348
2349
SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2350
__s32, min_nr,
2351
__s32, nr,
2352
struct io_event __user *, events,
2353
struct old_timespec32 __user *, timeout)
2354
{
2355
struct timespec64 t;
2356
int ret;
2357
2358
if (timeout && get_old_timespec32(&t, timeout))
2359
return -EFAULT;
2360
2361
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2362
if (!ret && signal_pending(current))
2363
ret = -EINTR;
2364
return ret;
2365
}
2366
2367
#endif
2368
2369
#ifdef CONFIG_COMPAT
2370
2371
struct __compat_aio_sigset {
2372
compat_uptr_t sigmask;
2373
compat_size_t sigsetsize;
2374
};
2375
2376
#if defined(CONFIG_COMPAT_32BIT_TIME)
2377
2378
COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2379
compat_aio_context_t, ctx_id,
2380
compat_long_t, min_nr,
2381
compat_long_t, nr,
2382
struct io_event __user *, events,
2383
struct old_timespec32 __user *, timeout,
2384
const struct __compat_aio_sigset __user *, usig)
2385
{
2386
struct __compat_aio_sigset ksig = { 0, };
2387
struct timespec64 t;
2388
bool interrupted;
2389
int ret;
2390
2391
if (timeout && get_old_timespec32(&t, timeout))
2392
return -EFAULT;
2393
2394
if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2395
return -EFAULT;
2396
2397
ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2398
if (ret)
2399
return ret;
2400
2401
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2402
2403
interrupted = signal_pending(current);
2404
restore_saved_sigmask_unless(interrupted);
2405
if (interrupted && !ret)
2406
ret = -ERESTARTNOHAND;
2407
2408
return ret;
2409
}
2410
2411
#endif
2412
2413
COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2414
compat_aio_context_t, ctx_id,
2415
compat_long_t, min_nr,
2416
compat_long_t, nr,
2417
struct io_event __user *, events,
2418
struct __kernel_timespec __user *, timeout,
2419
const struct __compat_aio_sigset __user *, usig)
2420
{
2421
struct __compat_aio_sigset ksig = { 0, };
2422
struct timespec64 t;
2423
bool interrupted;
2424
int ret;
2425
2426
if (timeout && get_timespec64(&t, timeout))
2427
return -EFAULT;
2428
2429
if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2430
return -EFAULT;
2431
2432
ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2433
if (ret)
2434
return ret;
2435
2436
ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2437
2438
interrupted = signal_pending(current);
2439
restore_saved_sigmask_unless(interrupted);
2440
if (interrupted && !ret)
2441
ret = -ERESTARTNOHAND;
2442
2443
return ret;
2444
}
2445
#endif
2446
2447