Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/bcachefs/bcachefs.h
26278 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef _BCACHEFS_H
3
#define _BCACHEFS_H
4
5
/*
6
* SOME HIGH LEVEL CODE DOCUMENTATION:
7
*
8
* Bcache mostly works with cache sets, cache devices, and backing devices.
9
*
10
* Support for multiple cache devices hasn't quite been finished off yet, but
11
* it's about 95% plumbed through. A cache set and its cache devices is sort of
12
* like a md raid array and its component devices. Most of the code doesn't care
13
* about individual cache devices, the main abstraction is the cache set.
14
*
15
* Multiple cache devices is intended to give us the ability to mirror dirty
16
* cached data and metadata, without mirroring clean cached data.
17
*
18
* Backing devices are different, in that they have a lifetime independent of a
19
* cache set. When you register a newly formatted backing device it'll come up
20
* in passthrough mode, and then you can attach and detach a backing device from
21
* a cache set at runtime - while it's mounted and in use. Detaching implicitly
22
* invalidates any cached data for that backing device.
23
*
24
* A cache set can have multiple (many) backing devices attached to it.
25
*
26
* There's also flash only volumes - this is the reason for the distinction
27
* between struct cached_dev and struct bcache_device. A flash only volume
28
* works much like a bcache device that has a backing device, except the
29
* "cached" data is always dirty. The end result is that we get thin
30
* provisioning with very little additional code.
31
*
32
* Flash only volumes work but they're not production ready because the moving
33
* garbage collector needs more work. More on that later.
34
*
35
* BUCKETS/ALLOCATION:
36
*
37
* Bcache is primarily designed for caching, which means that in normal
38
* operation all of our available space will be allocated. Thus, we need an
39
* efficient way of deleting things from the cache so we can write new things to
40
* it.
41
*
42
* To do this, we first divide the cache device up into buckets. A bucket is the
43
* unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
44
* works efficiently.
45
*
46
* Each bucket has a 16 bit priority, and an 8 bit generation associated with
47
* it. The gens and priorities for all the buckets are stored contiguously and
48
* packed on disk (in a linked list of buckets - aside from the superblock, all
49
* of bcache's metadata is stored in buckets).
50
*
51
* The priority is used to implement an LRU. We reset a bucket's priority when
52
* we allocate it or on cache it, and every so often we decrement the priority
53
* of each bucket. It could be used to implement something more sophisticated,
54
* if anyone ever gets around to it.
55
*
56
* The generation is used for invalidating buckets. Each pointer also has an 8
57
* bit generation embedded in it; for a pointer to be considered valid, its gen
58
* must match the gen of the bucket it points into. Thus, to reuse a bucket all
59
* we have to do is increment its gen (and write its new gen to disk; we batch
60
* this up).
61
*
62
* Bcache is entirely COW - we never write twice to a bucket, even buckets that
63
* contain metadata (including btree nodes).
64
*
65
* THE BTREE:
66
*
67
* Bcache is in large part design around the btree.
68
*
69
* At a high level, the btree is just an index of key -> ptr tuples.
70
*
71
* Keys represent extents, and thus have a size field. Keys also have a variable
72
* number of pointers attached to them (potentially zero, which is handy for
73
* invalidating the cache).
74
*
75
* The key itself is an inode:offset pair. The inode number corresponds to a
76
* backing device or a flash only volume. The offset is the ending offset of the
77
* extent within the inode - not the starting offset; this makes lookups
78
* slightly more convenient.
79
*
80
* Pointers contain the cache device id, the offset on that device, and an 8 bit
81
* generation number. More on the gen later.
82
*
83
* Index lookups are not fully abstracted - cache lookups in particular are
84
* still somewhat mixed in with the btree code, but things are headed in that
85
* direction.
86
*
87
* Updates are fairly well abstracted, though. There are two different ways of
88
* updating the btree; insert and replace.
89
*
90
* BTREE_INSERT will just take a list of keys and insert them into the btree -
91
* overwriting (possibly only partially) any extents they overlap with. This is
92
* used to update the index after a write.
93
*
94
* BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
95
* overwriting a key that matches another given key. This is used for inserting
96
* data into the cache after a cache miss, and for background writeback, and for
97
* the moving garbage collector.
98
*
99
* There is no "delete" operation; deleting things from the index is
100
* accomplished by either by invalidating pointers (by incrementing a bucket's
101
* gen) or by inserting a key with 0 pointers - which will overwrite anything
102
* previously present at that location in the index.
103
*
104
* This means that there are always stale/invalid keys in the btree. They're
105
* filtered out by the code that iterates through a btree node, and removed when
106
* a btree node is rewritten.
107
*
108
* BTREE NODES:
109
*
110
* Our unit of allocation is a bucket, and we can't arbitrarily allocate and
111
* free smaller than a bucket - so, that's how big our btree nodes are.
112
*
113
* (If buckets are really big we'll only use part of the bucket for a btree node
114
* - no less than 1/4th - but a bucket still contains no more than a single
115
* btree node. I'd actually like to change this, but for now we rely on the
116
* bucket's gen for deleting btree nodes when we rewrite/split a node.)
117
*
118
* Anyways, btree nodes are big - big enough to be inefficient with a textbook
119
* btree implementation.
120
*
121
* The way this is solved is that btree nodes are internally log structured; we
122
* can append new keys to an existing btree node without rewriting it. This
123
* means each set of keys we write is sorted, but the node is not.
124
*
125
* We maintain this log structure in memory - keeping 1Mb of keys sorted would
126
* be expensive, and we have to distinguish between the keys we have written and
127
* the keys we haven't. So to do a lookup in a btree node, we have to search
128
* each sorted set. But we do merge written sets together lazily, so the cost of
129
* these extra searches is quite low (normally most of the keys in a btree node
130
* will be in one big set, and then there'll be one or two sets that are much
131
* smaller).
132
*
133
* This log structure makes bcache's btree more of a hybrid between a
134
* conventional btree and a compacting data structure, with some of the
135
* advantages of both.
136
*
137
* GARBAGE COLLECTION:
138
*
139
* We can't just invalidate any bucket - it might contain dirty data or
140
* metadata. If it once contained dirty data, other writes might overwrite it
141
* later, leaving no valid pointers into that bucket in the index.
142
*
143
* Thus, the primary purpose of garbage collection is to find buckets to reuse.
144
* It also counts how much valid data it each bucket currently contains, so that
145
* allocation can reuse buckets sooner when they've been mostly overwritten.
146
*
147
* It also does some things that are really internal to the btree
148
* implementation. If a btree node contains pointers that are stale by more than
149
* some threshold, it rewrites the btree node to avoid the bucket's generation
150
* wrapping around. It also merges adjacent btree nodes if they're empty enough.
151
*
152
* THE JOURNAL:
153
*
154
* Bcache's journal is not necessary for consistency; we always strictly
155
* order metadata writes so that the btree and everything else is consistent on
156
* disk in the event of an unclean shutdown, and in fact bcache had writeback
157
* caching (with recovery from unclean shutdown) before journalling was
158
* implemented.
159
*
160
* Rather, the journal is purely a performance optimization; we can't complete a
161
* write until we've updated the index on disk, otherwise the cache would be
162
* inconsistent in the event of an unclean shutdown. This means that without the
163
* journal, on random write workloads we constantly have to update all the leaf
164
* nodes in the btree, and those writes will be mostly empty (appending at most
165
* a few keys each) - highly inefficient in terms of amount of metadata writes,
166
* and it puts more strain on the various btree resorting/compacting code.
167
*
168
* The journal is just a log of keys we've inserted; on startup we just reinsert
169
* all the keys in the open journal entries. That means that when we're updating
170
* a node in the btree, we can wait until a 4k block of keys fills up before
171
* writing them out.
172
*
173
* For simplicity, we only journal updates to leaf nodes; updates to parent
174
* nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
175
* the complexity to deal with journalling them (in particular, journal replay)
176
* - updates to non leaf nodes just happen synchronously (see btree_split()).
177
*/
178
179
#undef pr_fmt
180
#ifdef __KERNEL__
181
#define pr_fmt(fmt) "bcachefs: %s() " fmt "\n", __func__
182
#else
183
#define pr_fmt(fmt) "%s() " fmt "\n", __func__
184
#endif
185
186
#ifdef CONFIG_BCACHEFS_DEBUG
187
#define ENUMERATED_REF_DEBUG
188
#endif
189
190
#ifndef dynamic_fault
191
#define dynamic_fault(...) 0
192
#endif
193
194
#define race_fault(...) dynamic_fault("bcachefs:race")
195
196
#include <linux/backing-dev-defs.h>
197
#include <linux/bug.h>
198
#include <linux/bio.h>
199
#include <linux/closure.h>
200
#include <linux/kobject.h>
201
#include <linux/list.h>
202
#include <linux/math64.h>
203
#include <linux/mutex.h>
204
#include <linux/percpu-refcount.h>
205
#include <linux/percpu-rwsem.h>
206
#include <linux/refcount.h>
207
#include <linux/rhashtable.h>
208
#include <linux/rwsem.h>
209
#include <linux/semaphore.h>
210
#include <linux/seqlock.h>
211
#include <linux/shrinker.h>
212
#include <linux/srcu.h>
213
#include <linux/types.h>
214
#include <linux/workqueue.h>
215
#include <linux/zstd.h>
216
#include <linux/unicode.h>
217
218
#include "bcachefs_format.h"
219
#include "btree_journal_iter_types.h"
220
#include "disk_accounting_types.h"
221
#include "errcode.h"
222
#include "fast_list.h"
223
#include "fifo.h"
224
#include "nocow_locking_types.h"
225
#include "opts.h"
226
#include "sb-errors_types.h"
227
#include "seqmutex.h"
228
#include "snapshot_types.h"
229
#include "time_stats.h"
230
#include "util.h"
231
232
#include "alloc_types.h"
233
#include "async_objs_types.h"
234
#include "btree_gc_types.h"
235
#include "btree_types.h"
236
#include "btree_node_scan_types.h"
237
#include "btree_write_buffer_types.h"
238
#include "buckets_types.h"
239
#include "buckets_waiting_for_journal_types.h"
240
#include "clock_types.h"
241
#include "disk_groups_types.h"
242
#include "ec_types.h"
243
#include "enumerated_ref_types.h"
244
#include "journal_types.h"
245
#include "keylist_types.h"
246
#include "quota_types.h"
247
#include "rebalance_types.h"
248
#include "recovery_passes_types.h"
249
#include "replicas_types.h"
250
#include "sb-members_types.h"
251
#include "subvolume_types.h"
252
#include "super_types.h"
253
#include "thread_with_file_types.h"
254
255
#include "trace.h"
256
257
#define count_event(_c, _name) this_cpu_inc((_c)->counters[BCH_COUNTER_##_name])
258
259
#define trace_and_count(_c, _name, ...) \
260
do { \
261
count_event(_c, _name); \
262
trace_##_name(__VA_ARGS__); \
263
} while (0)
264
265
#define bch2_fs_init_fault(name) \
266
dynamic_fault("bcachefs:bch_fs_init:" name)
267
#define bch2_meta_read_fault(name) \
268
dynamic_fault("bcachefs:meta:read:" name)
269
#define bch2_meta_write_fault(name) \
270
dynamic_fault("bcachefs:meta:write:" name)
271
272
#ifdef __KERNEL__
273
#define BCACHEFS_LOG_PREFIX
274
#endif
275
276
#ifdef BCACHEFS_LOG_PREFIX
277
278
#define bch2_log_msg(_c, fmt) "bcachefs (%s): " fmt, ((_c)->name)
279
#define bch2_fmt_dev(_ca, fmt) "bcachefs (%s): " fmt "\n", ((_ca)->name)
280
#define bch2_fmt_dev_offset(_ca, _offset, fmt) "bcachefs (%s sector %llu): " fmt "\n", ((_ca)->name), (_offset)
281
#define bch2_fmt_inum(_c, _inum, fmt) "bcachefs (%s inum %llu): " fmt "\n", ((_c)->name), (_inum)
282
#define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \
283
"bcachefs (%s inum %llu offset %llu): " fmt "\n", ((_c)->name), (_inum), (_offset)
284
285
#else
286
287
#define bch2_log_msg(_c, fmt) fmt
288
#define bch2_fmt_dev(_ca, fmt) "%s: " fmt "\n", ((_ca)->name)
289
#define bch2_fmt_dev_offset(_ca, _offset, fmt) "%s sector %llu: " fmt "\n", ((_ca)->name), (_offset)
290
#define bch2_fmt_inum(_c, _inum, fmt) "inum %llu: " fmt "\n", (_inum)
291
#define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \
292
"inum %llu offset %llu: " fmt "\n", (_inum), (_offset)
293
294
#endif
295
296
#define bch2_fmt(_c, fmt) bch2_log_msg(_c, fmt "\n")
297
298
void bch2_print_str(struct bch_fs *, const char *, const char *);
299
300
__printf(2, 3)
301
void bch2_print_opts(struct bch_opts *, const char *, ...);
302
303
__printf(2, 3)
304
void __bch2_print(struct bch_fs *c, const char *fmt, ...);
305
306
#define maybe_dev_to_fs(_c) _Generic((_c), \
307
struct bch_dev *: ((struct bch_dev *) (_c))->fs, \
308
struct bch_fs *: (_c))
309
310
#define bch2_print(_c, ...) __bch2_print(maybe_dev_to_fs(_c), __VA_ARGS__)
311
312
#define bch2_print_ratelimited(_c, ...) \
313
do { \
314
static DEFINE_RATELIMIT_STATE(_rs, \
315
DEFAULT_RATELIMIT_INTERVAL, \
316
DEFAULT_RATELIMIT_BURST); \
317
\
318
if (__ratelimit(&_rs)) \
319
bch2_print(_c, __VA_ARGS__); \
320
} while (0)
321
322
#define bch2_print_str_ratelimited(_c, ...) \
323
do { \
324
static DEFINE_RATELIMIT_STATE(_rs, \
325
DEFAULT_RATELIMIT_INTERVAL, \
326
DEFAULT_RATELIMIT_BURST); \
327
\
328
if (__ratelimit(&_rs)) \
329
bch2_print_str(_c, __VA_ARGS__); \
330
} while (0)
331
332
#define bch_info(c, fmt, ...) \
333
bch2_print(c, KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__)
334
#define bch_info_ratelimited(c, fmt, ...) \
335
bch2_print_ratelimited(c, KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__)
336
#define bch_notice(c, fmt, ...) \
337
bch2_print(c, KERN_NOTICE bch2_fmt(c, fmt), ##__VA_ARGS__)
338
#define bch_warn(c, fmt, ...) \
339
bch2_print(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__)
340
#define bch_warn_ratelimited(c, fmt, ...) \
341
bch2_print_ratelimited(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__)
342
343
#define bch_err(c, fmt, ...) \
344
bch2_print(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__)
345
#define bch_err_dev(ca, fmt, ...) \
346
bch2_print(c, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__)
347
#define bch_err_dev_offset(ca, _offset, fmt, ...) \
348
bch2_print(c, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__)
349
#define bch_err_inum(c, _inum, fmt, ...) \
350
bch2_print(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__)
351
#define bch_err_inum_offset(c, _inum, _offset, fmt, ...) \
352
bch2_print(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__)
353
354
#define bch_err_ratelimited(c, fmt, ...) \
355
bch2_print_ratelimited(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__)
356
#define bch_err_dev_ratelimited(ca, fmt, ...) \
357
bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__)
358
#define bch_err_dev_offset_ratelimited(ca, _offset, fmt, ...) \
359
bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__)
360
#define bch_err_inum_ratelimited(c, _inum, fmt, ...) \
361
bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__)
362
#define bch_err_inum_offset_ratelimited(c, _inum, _offset, fmt, ...) \
363
bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__)
364
365
static inline bool should_print_err(int err)
366
{
367
return err && !bch2_err_matches(err, BCH_ERR_transaction_restart);
368
}
369
370
#define bch_err_fn(_c, _ret) \
371
do { \
372
if (should_print_err(_ret)) \
373
bch_err(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\
374
} while (0)
375
376
#define bch_err_fn_ratelimited(_c, _ret) \
377
do { \
378
if (should_print_err(_ret)) \
379
bch_err_ratelimited(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\
380
} while (0)
381
382
#define bch_err_msg(_c, _ret, _msg, ...) \
383
do { \
384
if (should_print_err(_ret)) \
385
bch_err(_c, "%s(): error " _msg " %s", __func__, \
386
##__VA_ARGS__, bch2_err_str(_ret)); \
387
} while (0)
388
389
#define bch_verbose(c, fmt, ...) \
390
do { \
391
if ((c)->opts.verbose) \
392
bch_info(c, fmt, ##__VA_ARGS__); \
393
} while (0)
394
395
#define bch_verbose_ratelimited(c, fmt, ...) \
396
do { \
397
if ((c)->opts.verbose) \
398
bch_info_ratelimited(c, fmt, ##__VA_ARGS__); \
399
} while (0)
400
401
#define pr_verbose_init(opts, fmt, ...) \
402
do { \
403
if (opt_get(opts, verbose)) \
404
pr_info(fmt, ##__VA_ARGS__); \
405
} while (0)
406
407
static inline int __bch2_err_trace(struct bch_fs *c, int err)
408
{
409
trace_error_throw(c, err, _THIS_IP_);
410
return err;
411
}
412
413
#define bch_err_throw(_c, _err) __bch2_err_trace(_c, -BCH_ERR_##_err)
414
415
/* Parameters that are useful for debugging, but should always be compiled in: */
416
#define BCH_DEBUG_PARAMS_ALWAYS() \
417
BCH_DEBUG_PARAM(key_merging_disabled, \
418
"Disables merging of extents") \
419
BCH_DEBUG_PARAM(btree_node_merging_disabled, \
420
"Disables merging of btree nodes") \
421
BCH_DEBUG_PARAM(btree_gc_always_rewrite, \
422
"Causes mark and sweep to compact and rewrite every " \
423
"btree node it traverses") \
424
BCH_DEBUG_PARAM(btree_gc_rewrite_disabled, \
425
"Disables rewriting of btree nodes during mark and sweep")\
426
BCH_DEBUG_PARAM(btree_shrinker_disabled, \
427
"Disables the shrinker callback for the btree node cache")\
428
BCH_DEBUG_PARAM(verify_btree_ondisk, \
429
"Reread btree nodes at various points to verify the " \
430
"mergesort in the read path against modifications " \
431
"done in memory") \
432
BCH_DEBUG_PARAM(verify_all_btree_replicas, \
433
"When reading btree nodes, read all replicas and " \
434
"compare them") \
435
BCH_DEBUG_PARAM(backpointers_no_use_write_buffer, \
436
"Don't use the write buffer for backpointers, enabling "\
437
"extra runtime checks") \
438
BCH_DEBUG_PARAM(debug_check_btree_locking, \
439
"Enable additional asserts for btree locking") \
440
BCH_DEBUG_PARAM(debug_check_iterators, \
441
"Enables extra verification for btree iterators") \
442
BCH_DEBUG_PARAM(debug_check_bset_lookups, \
443
"Enables extra verification for bset lookups") \
444
BCH_DEBUG_PARAM(debug_check_btree_accounting, \
445
"Verify btree accounting for keys within a node") \
446
BCH_DEBUG_PARAM(debug_check_bkey_unpack, \
447
"Enables extra verification for bkey unpack")
448
449
/* Parameters that should only be compiled in debug mode: */
450
#define BCH_DEBUG_PARAMS_DEBUG() \
451
BCH_DEBUG_PARAM(journal_seq_verify, \
452
"Store the journal sequence number in the version " \
453
"number of every btree key, and verify that btree " \
454
"update ordering is preserved during recovery") \
455
BCH_DEBUG_PARAM(inject_invalid_keys, \
456
"Store the journal sequence number in the version " \
457
"number of every btree key, and verify that btree " \
458
"update ordering is preserved during recovery") \
459
BCH_DEBUG_PARAM(test_alloc_startup, \
460
"Force allocator startup to use the slowpath where it" \
461
"can't find enough free buckets without invalidating" \
462
"cached data") \
463
BCH_DEBUG_PARAM(force_reconstruct_read, \
464
"Force reads to use the reconstruct path, when reading" \
465
"from erasure coded extents") \
466
BCH_DEBUG_PARAM(test_restart_gc, \
467
"Test restarting mark and sweep gc when bucket gens change")
468
469
#define BCH_DEBUG_PARAMS_ALL() BCH_DEBUG_PARAMS_ALWAYS() BCH_DEBUG_PARAMS_DEBUG()
470
471
#ifdef CONFIG_BCACHEFS_DEBUG
472
#define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALL()
473
#else
474
#define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALWAYS()
475
#endif
476
477
#define BCH_DEBUG_PARAM(name, description) extern struct static_key_false bch2_##name;
478
BCH_DEBUG_PARAMS_ALL()
479
#undef BCH_DEBUG_PARAM
480
481
#define BCH_TIME_STATS() \
482
x(btree_node_mem_alloc) \
483
x(btree_node_split) \
484
x(btree_node_compact) \
485
x(btree_node_merge) \
486
x(btree_node_sort) \
487
x(btree_node_get) \
488
x(btree_node_read) \
489
x(btree_node_read_done) \
490
x(btree_node_write) \
491
x(btree_interior_update_foreground) \
492
x(btree_interior_update_total) \
493
x(btree_gc) \
494
x(data_write) \
495
x(data_write_to_submit) \
496
x(data_write_to_queue) \
497
x(data_write_to_btree_update) \
498
x(data_write_btree_update) \
499
x(data_read) \
500
x(data_promote) \
501
x(journal_flush_write) \
502
x(journal_noflush_write) \
503
x(journal_flush_seq) \
504
x(blocked_journal_low_on_space) \
505
x(blocked_journal_low_on_pin) \
506
x(blocked_journal_max_in_flight) \
507
x(blocked_journal_max_open) \
508
x(blocked_key_cache_flush) \
509
x(blocked_allocate) \
510
x(blocked_allocate_open_bucket) \
511
x(blocked_write_buffer_full) \
512
x(nocow_lock_contended)
513
514
enum bch_time_stats {
515
#define x(name) BCH_TIME_##name,
516
BCH_TIME_STATS()
517
#undef x
518
BCH_TIME_STAT_NR
519
};
520
521
/* Number of nodes btree coalesce will try to coalesce at once */
522
#define GC_MERGE_NODES 4U
523
524
/* Maximum number of nodes we might need to allocate atomically: */
525
#define BTREE_RESERVE_MAX (BTREE_MAX_DEPTH + (BTREE_MAX_DEPTH - 1))
526
527
/* Size of the freelist we allocate btree nodes from: */
528
#define BTREE_NODE_RESERVE (BTREE_RESERVE_MAX * 4)
529
530
#define BTREE_NODE_OPEN_BUCKET_RESERVE (BTREE_RESERVE_MAX * BCH_REPLICAS_MAX)
531
532
struct btree;
533
534
struct io_count {
535
u64 sectors[2][BCH_DATA_NR];
536
};
537
538
struct discard_in_flight {
539
bool in_progress:1;
540
u64 bucket:63;
541
};
542
543
#define BCH_DEV_READ_REFS() \
544
x(bch2_online_devs) \
545
x(trans_mark_dev_sbs) \
546
x(read_fua_test) \
547
x(sb_field_resize) \
548
x(write_super) \
549
x(journal_read) \
550
x(fs_journal_alloc) \
551
x(fs_resize_on_mount) \
552
x(btree_node_read) \
553
x(btree_node_read_all_replicas) \
554
x(btree_node_scrub) \
555
x(btree_node_write) \
556
x(btree_node_scan) \
557
x(btree_verify_replicas) \
558
x(btree_node_ondisk_to_text) \
559
x(io_read) \
560
x(check_extent_checksums) \
561
x(ec_block)
562
563
enum bch_dev_read_ref {
564
#define x(n) BCH_DEV_READ_REF_##n,
565
BCH_DEV_READ_REFS()
566
#undef x
567
BCH_DEV_READ_REF_NR,
568
};
569
570
#define BCH_DEV_WRITE_REFS() \
571
x(journal_write) \
572
x(journal_do_discards) \
573
x(dev_do_discards) \
574
x(discard_one_bucket_fast) \
575
x(do_invalidates) \
576
x(nocow_flush) \
577
x(io_write) \
578
x(ec_block) \
579
x(ec_bucket_zero)
580
581
enum bch_dev_write_ref {
582
#define x(n) BCH_DEV_WRITE_REF_##n,
583
BCH_DEV_WRITE_REFS()
584
#undef x
585
BCH_DEV_WRITE_REF_NR,
586
};
587
588
struct bucket_bitmap {
589
unsigned long *buckets;
590
u64 nr;
591
struct mutex lock;
592
};
593
594
struct bch_dev {
595
struct kobject kobj;
596
#ifdef CONFIG_BCACHEFS_DEBUG
597
atomic_long_t ref;
598
bool dying;
599
unsigned long last_put;
600
#else
601
struct percpu_ref ref;
602
#endif
603
struct completion ref_completion;
604
struct enumerated_ref io_ref[2];
605
606
struct bch_fs *fs;
607
608
u8 dev_idx;
609
/*
610
* Cached version of this device's member info from superblock
611
* Committed by bch2_write_super() -> bch_fs_mi_update()
612
*/
613
struct bch_member_cpu mi;
614
atomic64_t errors[BCH_MEMBER_ERROR_NR];
615
unsigned long write_errors_start;
616
617
__uuid_t uuid;
618
char name[BDEVNAME_SIZE];
619
620
struct bch_sb_handle disk_sb;
621
struct bch_sb *sb_read_scratch;
622
int sb_write_error;
623
dev_t dev;
624
atomic_t flush_seq;
625
626
struct bch_devs_mask self;
627
628
/*
629
* Buckets:
630
* Per-bucket arrays are protected by either rcu_read_lock or
631
* state_lock, for device resize.
632
*/
633
GENRADIX(struct bucket) buckets_gc;
634
struct bucket_gens __rcu *bucket_gens;
635
u8 *oldest_gen;
636
unsigned long *buckets_nouse;
637
638
struct bucket_bitmap bucket_backpointer_mismatch;
639
struct bucket_bitmap bucket_backpointer_empty;
640
641
struct bch_dev_usage_full __percpu
642
*usage;
643
644
/* Allocator: */
645
u64 alloc_cursor[3];
646
647
unsigned nr_open_buckets;
648
unsigned nr_partial_buckets;
649
unsigned nr_btree_reserve;
650
651
struct work_struct invalidate_work;
652
struct work_struct discard_work;
653
struct mutex discard_buckets_in_flight_lock;
654
DARRAY(struct discard_in_flight) discard_buckets_in_flight;
655
struct work_struct discard_fast_work;
656
657
atomic64_t rebalance_work;
658
659
struct journal_device journal;
660
u64 prev_journal_sector;
661
662
struct work_struct io_error_work;
663
664
/* The rest of this all shows up in sysfs */
665
atomic64_t cur_latency[2];
666
struct bch2_time_stats_quantiles io_latency[2];
667
668
#define CONGESTED_MAX 1024
669
atomic_t congested;
670
u64 congested_last;
671
672
struct io_count __percpu *io_done;
673
};
674
675
/*
676
* initial_gc_unfixed
677
* error
678
* topology error
679
*/
680
681
#define BCH_FS_FLAGS() \
682
x(new_fs) \
683
x(started) \
684
x(clean_recovery) \
685
x(btree_running) \
686
x(accounting_replay_done) \
687
x(may_go_rw) \
688
x(rw) \
689
x(rw_init_done) \
690
x(was_rw) \
691
x(stopping) \
692
x(emergency_ro) \
693
x(going_ro) \
694
x(write_disable_complete) \
695
x(clean_shutdown) \
696
x(in_recovery) \
697
x(in_fsck) \
698
x(initial_gc_unfixed) \
699
x(need_delete_dead_snapshots) \
700
x(error) \
701
x(topology_error) \
702
x(errors_fixed) \
703
x(errors_not_fixed) \
704
x(no_invalid_checks) \
705
x(discard_mount_opt_set) \
706
707
enum bch_fs_flags {
708
#define x(n) BCH_FS_##n,
709
BCH_FS_FLAGS()
710
#undef x
711
};
712
713
struct btree_debug {
714
unsigned id;
715
};
716
717
#define BCH_TRANSACTIONS_NR 128
718
719
struct btree_transaction_stats {
720
struct bch2_time_stats duration;
721
struct bch2_time_stats lock_hold_times;
722
struct mutex lock;
723
unsigned nr_max_paths;
724
unsigned max_mem;
725
#ifdef CONFIG_BCACHEFS_TRANS_KMALLOC_TRACE
726
darray_trans_kmalloc_trace trans_kmalloc_trace;
727
#endif
728
char *max_paths_text;
729
};
730
731
struct bch_fs_pcpu {
732
u64 sectors_available;
733
};
734
735
struct journal_seq_blacklist_table {
736
size_t nr;
737
struct journal_seq_blacklist_table_entry {
738
u64 start;
739
u64 end;
740
bool dirty;
741
} entries[];
742
};
743
744
struct btree_trans_buf {
745
struct btree_trans *trans;
746
};
747
748
#define BCH_WRITE_REFS() \
749
x(journal) \
750
x(trans) \
751
x(write) \
752
x(promote) \
753
x(node_rewrite) \
754
x(stripe_create) \
755
x(stripe_delete) \
756
x(reflink) \
757
x(fallocate) \
758
x(fsync) \
759
x(dio_write) \
760
x(discard) \
761
x(discard_fast) \
762
x(check_discard_freespace_key) \
763
x(invalidate) \
764
x(delete_dead_snapshots) \
765
x(gc_gens) \
766
x(snapshot_delete_pagecache) \
767
x(sysfs) \
768
x(btree_write_buffer) \
769
x(btree_node_scrub) \
770
x(async_recovery_passes) \
771
x(ioctl_data)
772
773
enum bch_write_ref {
774
#define x(n) BCH_WRITE_REF_##n,
775
BCH_WRITE_REFS()
776
#undef x
777
BCH_WRITE_REF_NR,
778
};
779
780
#define BCH_FS_DEFAULT_UTF8_ENCODING UNICODE_AGE(12, 1, 0)
781
782
struct bch_fs {
783
struct closure cl;
784
785
struct list_head list;
786
struct kobject kobj;
787
struct kobject counters_kobj;
788
struct kobject internal;
789
struct kobject opts_dir;
790
struct kobject time_stats;
791
unsigned long flags;
792
793
int minor;
794
struct device *chardev;
795
struct super_block *vfs_sb;
796
dev_t dev;
797
char name[40];
798
struct stdio_redirect *stdio;
799
struct task_struct *stdio_filter;
800
801
/* ro/rw, add/remove/resize devices: */
802
struct rw_semaphore state_lock;
803
804
/* Counts outstanding writes, for clean transition to read-only */
805
struct enumerated_ref writes;
806
/*
807
* Certain operations are only allowed in single threaded mode, during
808
* recovery, and we want to assert that this is the case:
809
*/
810
struct task_struct *recovery_task;
811
812
/*
813
* Analagous to c->writes, for asynchronous ops that don't necessarily
814
* need fs to be read-write
815
*/
816
refcount_t ro_ref;
817
wait_queue_head_t ro_ref_wait;
818
819
struct work_struct read_only_work;
820
821
struct bch_dev __rcu *devs[BCH_SB_MEMBERS_MAX];
822
823
struct bch_accounting_mem accounting;
824
825
struct bch_replicas_cpu replicas;
826
struct bch_replicas_cpu replicas_gc;
827
struct mutex replicas_gc_lock;
828
829
struct journal_entry_res btree_root_journal_res;
830
struct journal_entry_res clock_journal_res;
831
832
struct bch_disk_groups_cpu __rcu *disk_groups;
833
834
struct bch_opts opts;
835
836
/* Updated by bch2_sb_update():*/
837
struct {
838
__uuid_t uuid;
839
__uuid_t user_uuid;
840
841
u16 version;
842
u16 version_incompat;
843
u16 version_incompat_allowed;
844
u16 version_min;
845
u16 version_upgrade_complete;
846
847
u8 nr_devices;
848
u8 clean;
849
bool multi_device; /* true if we've ever had more than one device */
850
851
u8 encryption_type;
852
853
u64 time_base_lo;
854
u32 time_base_hi;
855
unsigned time_units_per_sec;
856
unsigned nsec_per_time_unit;
857
u64 features;
858
u64 compat;
859
u64 recovery_passes_required;
860
unsigned long errors_silent[BITS_TO_LONGS(BCH_FSCK_ERR_MAX)];
861
u64 btrees_lost_data;
862
} sb;
863
DARRAY(enum bcachefs_metadata_version)
864
incompat_versions_requested;
865
866
struct unicode_map *cf_encoding;
867
868
struct bch_sb_handle disk_sb;
869
870
unsigned short block_bits; /* ilog2(block_size) */
871
872
u16 btree_foreground_merge_threshold;
873
874
struct closure sb_write;
875
struct mutex sb_lock;
876
877
/* snapshot.c: */
878
struct snapshot_table __rcu *snapshots;
879
struct mutex snapshot_table_lock;
880
struct rw_semaphore snapshot_create_lock;
881
882
struct snapshot_delete snapshot_delete;
883
struct work_struct snapshot_wait_for_pagecache_and_delete_work;
884
snapshot_id_list snapshots_unlinked;
885
struct mutex snapshots_unlinked_lock;
886
887
/* BTREE CACHE */
888
struct bio_set btree_bio;
889
struct workqueue_struct *btree_read_complete_wq;
890
struct workqueue_struct *btree_write_submit_wq;
891
892
struct btree_root btree_roots_known[BTREE_ID_NR];
893
DARRAY(struct btree_root) btree_roots_extra;
894
struct mutex btree_root_lock;
895
896
struct btree_cache btree_cache;
897
898
/*
899
* Cache of allocated btree nodes - if we allocate a btree node and
900
* don't use it, if we free it that space can't be reused until going
901
* _all_ the way through the allocator (which exposes us to a livelock
902
* when allocating btree reserves fail halfway through) - instead, we
903
* can stick them here:
904
*/
905
struct btree_alloc btree_reserve_cache[BTREE_NODE_RESERVE * 2];
906
unsigned btree_reserve_cache_nr;
907
struct mutex btree_reserve_cache_lock;
908
909
mempool_t btree_interior_update_pool;
910
struct list_head btree_interior_update_list;
911
struct list_head btree_interior_updates_unwritten;
912
struct mutex btree_interior_update_lock;
913
struct closure_waitlist btree_interior_update_wait;
914
915
struct workqueue_struct *btree_interior_update_worker;
916
struct work_struct btree_interior_update_work;
917
918
struct workqueue_struct *btree_node_rewrite_worker;
919
struct list_head btree_node_rewrites;
920
struct list_head btree_node_rewrites_pending;
921
spinlock_t btree_node_rewrites_lock;
922
struct closure_waitlist btree_node_rewrites_wait;
923
924
/* btree_io.c: */
925
spinlock_t btree_write_error_lock;
926
struct btree_write_stats {
927
atomic64_t nr;
928
atomic64_t bytes;
929
} btree_write_stats[BTREE_WRITE_TYPE_NR];
930
931
/* btree_iter.c: */
932
struct seqmutex btree_trans_lock;
933
struct list_head btree_trans_list;
934
mempool_t btree_trans_pool;
935
mempool_t btree_trans_mem_pool;
936
struct btree_trans_buf __percpu *btree_trans_bufs;
937
938
struct srcu_struct btree_trans_barrier;
939
bool btree_trans_barrier_initialized;
940
941
struct btree_key_cache btree_key_cache;
942
unsigned btree_key_cache_btrees;
943
944
struct btree_write_buffer btree_write_buffer;
945
946
struct workqueue_struct *btree_update_wq;
947
struct workqueue_struct *btree_write_complete_wq;
948
/* copygc needs its own workqueue for index updates.. */
949
struct workqueue_struct *copygc_wq;
950
/*
951
* Use a dedicated wq for write ref holder tasks. Required to avoid
952
* dependency problems with other wq tasks that can block on ref
953
* draining, such as read-only transition.
954
*/
955
struct workqueue_struct *write_ref_wq;
956
957
/* ALLOCATION */
958
struct bch_devs_mask online_devs;
959
struct bch_devs_mask rw_devs[BCH_DATA_NR];
960
unsigned long rw_devs_change_count;
961
962
u64 capacity; /* sectors */
963
u64 reserved; /* sectors */
964
965
/*
966
* When capacity _decreases_ (due to a disk being removed), we
967
* increment capacity_gen - this invalidates outstanding reservations
968
* and forces them to be revalidated
969
*/
970
u32 capacity_gen;
971
unsigned bucket_size_max;
972
973
atomic64_t sectors_available;
974
struct mutex sectors_available_lock;
975
976
struct bch_fs_pcpu __percpu *pcpu;
977
978
struct percpu_rw_semaphore mark_lock;
979
980
seqcount_t usage_lock;
981
struct bch_fs_usage_base __percpu *usage;
982
u64 __percpu *online_reserved;
983
984
unsigned long allocator_last_stuck;
985
986
struct io_clock io_clock[2];
987
988
/* JOURNAL SEQ BLACKLIST */
989
struct journal_seq_blacklist_table *
990
journal_seq_blacklist_table;
991
992
/* ALLOCATOR */
993
spinlock_t freelist_lock;
994
struct closure_waitlist freelist_wait;
995
996
open_bucket_idx_t open_buckets_freelist;
997
open_bucket_idx_t open_buckets_nr_free;
998
struct closure_waitlist open_buckets_wait;
999
struct open_bucket open_buckets[OPEN_BUCKETS_COUNT];
1000
open_bucket_idx_t open_buckets_hash[OPEN_BUCKETS_COUNT];
1001
1002
open_bucket_idx_t open_buckets_partial[OPEN_BUCKETS_COUNT];
1003
open_bucket_idx_t open_buckets_partial_nr;
1004
1005
struct write_point btree_write_point;
1006
struct write_point rebalance_write_point;
1007
1008
struct write_point write_points[WRITE_POINT_MAX];
1009
struct hlist_head write_points_hash[WRITE_POINT_HASH_NR];
1010
struct mutex write_points_hash_lock;
1011
unsigned write_points_nr;
1012
1013
struct buckets_waiting_for_journal buckets_waiting_for_journal;
1014
1015
/* GARBAGE COLLECTION */
1016
struct work_struct gc_gens_work;
1017
unsigned long gc_count;
1018
1019
enum btree_id gc_gens_btree;
1020
struct bpos gc_gens_pos;
1021
1022
/*
1023
* Tracks GC's progress - everything in the range [ZERO_KEY..gc_cur_pos]
1024
* has been marked by GC.
1025
*
1026
* gc_cur_phase is a superset of btree_ids (BTREE_ID_extents etc.)
1027
*
1028
* Protected by gc_pos_lock. Only written to by GC thread, so GC thread
1029
* can read without a lock.
1030
*/
1031
seqcount_t gc_pos_lock;
1032
struct gc_pos gc_pos;
1033
1034
/*
1035
* The allocation code needs gc_mark in struct bucket to be correct, but
1036
* it's not while a gc is in progress.
1037
*/
1038
struct rw_semaphore gc_lock;
1039
struct mutex gc_gens_lock;
1040
1041
/* IO PATH */
1042
struct semaphore io_in_flight;
1043
struct bio_set bio_read;
1044
struct bio_set bio_read_split;
1045
struct bio_set bio_write;
1046
struct bio_set replica_set;
1047
struct mutex bio_bounce_pages_lock;
1048
mempool_t bio_bounce_pages;
1049
struct bucket_nocow_lock_table
1050
nocow_locks;
1051
struct rhashtable promote_table;
1052
1053
#ifdef CONFIG_BCACHEFS_ASYNC_OBJECT_LISTS
1054
struct async_obj_list async_objs[BCH_ASYNC_OBJ_NR];
1055
#endif
1056
1057
mempool_t compression_bounce[2];
1058
mempool_t compress_workspace[BCH_COMPRESSION_OPT_NR];
1059
size_t zstd_workspace_size;
1060
1061
struct bch_key chacha20_key;
1062
bool chacha20_key_set;
1063
1064
atomic64_t key_version;
1065
1066
mempool_t large_bkey_pool;
1067
1068
/* MOVE.C */
1069
struct list_head moving_context_list;
1070
struct mutex moving_context_lock;
1071
1072
/* REBALANCE */
1073
struct bch_fs_rebalance rebalance;
1074
1075
/* COPYGC */
1076
struct task_struct *copygc_thread;
1077
struct write_point copygc_write_point;
1078
s64 copygc_wait_at;
1079
s64 copygc_wait;
1080
bool copygc_running;
1081
wait_queue_head_t copygc_running_wq;
1082
1083
/* STRIPES: */
1084
GENRADIX(struct gc_stripe) gc_stripes;
1085
1086
struct hlist_head ec_stripes_new[32];
1087
spinlock_t ec_stripes_new_lock;
1088
1089
/* ERASURE CODING */
1090
struct list_head ec_stripe_head_list;
1091
struct mutex ec_stripe_head_lock;
1092
1093
struct list_head ec_stripe_new_list;
1094
struct mutex ec_stripe_new_lock;
1095
wait_queue_head_t ec_stripe_new_wait;
1096
1097
struct work_struct ec_stripe_create_work;
1098
u64 ec_stripe_hint;
1099
1100
struct work_struct ec_stripe_delete_work;
1101
1102
struct bio_set ec_bioset;
1103
1104
/* REFLINK */
1105
reflink_gc_table reflink_gc_table;
1106
size_t reflink_gc_nr;
1107
1108
/* fs.c */
1109
struct list_head vfs_inodes_list;
1110
struct mutex vfs_inodes_lock;
1111
struct rhashtable vfs_inodes_table;
1112
struct rhltable vfs_inodes_by_inum_table;
1113
1114
/* VFS IO PATH - fs-io.c */
1115
struct bio_set writepage_bioset;
1116
struct bio_set dio_write_bioset;
1117
struct bio_set dio_read_bioset;
1118
struct bio_set nocow_flush_bioset;
1119
1120
/* QUOTAS */
1121
struct bch_memquota_type quotas[QTYP_NR];
1122
1123
/* RECOVERY */
1124
u64 journal_replay_seq_start;
1125
u64 journal_replay_seq_end;
1126
struct bch_fs_recovery recovery;
1127
1128
/* DEBUG JUNK */
1129
struct dentry *fs_debug_dir;
1130
struct dentry *btree_debug_dir;
1131
struct dentry *async_obj_dir;
1132
struct btree_debug btree_debug[BTREE_ID_NR];
1133
struct btree *verify_data;
1134
struct btree_node *verify_ondisk;
1135
struct mutex verify_lock;
1136
1137
/*
1138
* A btree node on disk could have too many bsets for an iterator to fit
1139
* on the stack - have to dynamically allocate them
1140
*/
1141
mempool_t fill_iter;
1142
1143
mempool_t btree_bounce_pool;
1144
1145
struct journal journal;
1146
GENRADIX(struct journal_replay *) journal_entries;
1147
u64 journal_entries_base_seq;
1148
struct journal_keys journal_keys;
1149
struct list_head journal_iters;
1150
1151
struct find_btree_nodes found_btree_nodes;
1152
1153
u64 last_bucket_seq_cleanup;
1154
1155
u64 counters_on_mount[BCH_COUNTER_NR];
1156
u64 __percpu *counters;
1157
1158
struct bch2_time_stats times[BCH_TIME_STAT_NR];
1159
1160
struct btree_transaction_stats btree_transaction_stats[BCH_TRANSACTIONS_NR];
1161
1162
/* ERRORS */
1163
struct list_head fsck_error_msgs;
1164
struct mutex fsck_error_msgs_lock;
1165
bool fsck_alloc_msgs_err;
1166
1167
bch_sb_errors_cpu fsck_error_counts;
1168
struct mutex fsck_error_counts_lock;
1169
};
1170
1171
extern struct wait_queue_head bch2_read_only_wait;
1172
1173
static inline bool bch2_ro_ref_tryget(struct bch_fs *c)
1174
{
1175
if (test_bit(BCH_FS_stopping, &c->flags))
1176
return false;
1177
1178
return refcount_inc_not_zero(&c->ro_ref);
1179
}
1180
1181
static inline void bch2_ro_ref_put(struct bch_fs *c)
1182
{
1183
if (refcount_dec_and_test(&c->ro_ref))
1184
wake_up(&c->ro_ref_wait);
1185
}
1186
1187
static inline void bch2_set_ra_pages(struct bch_fs *c, unsigned ra_pages)
1188
{
1189
#ifndef NO_BCACHEFS_FS
1190
if (c->vfs_sb)
1191
c->vfs_sb->s_bdi->ra_pages = ra_pages;
1192
#endif
1193
}
1194
1195
static inline unsigned bucket_bytes(const struct bch_dev *ca)
1196
{
1197
return ca->mi.bucket_size << 9;
1198
}
1199
1200
static inline unsigned block_bytes(const struct bch_fs *c)
1201
{
1202
return c->opts.block_size;
1203
}
1204
1205
static inline unsigned block_sectors(const struct bch_fs *c)
1206
{
1207
return c->opts.block_size >> 9;
1208
}
1209
1210
static inline bool btree_id_cached(const struct bch_fs *c, enum btree_id btree)
1211
{
1212
return c->btree_key_cache_btrees & (1U << btree);
1213
}
1214
1215
static inline struct timespec64 bch2_time_to_timespec(const struct bch_fs *c, s64 time)
1216
{
1217
struct timespec64 t;
1218
s64 sec;
1219
s32 rem;
1220
1221
time += c->sb.time_base_lo;
1222
1223
sec = div_s64_rem(time, c->sb.time_units_per_sec, &rem);
1224
1225
set_normalized_timespec64(&t, sec, rem * (s64)c->sb.nsec_per_time_unit);
1226
1227
return t;
1228
}
1229
1230
static inline s64 timespec_to_bch2_time(const struct bch_fs *c, struct timespec64 ts)
1231
{
1232
return (ts.tv_sec * c->sb.time_units_per_sec +
1233
(int) ts.tv_nsec / c->sb.nsec_per_time_unit) - c->sb.time_base_lo;
1234
}
1235
1236
static inline s64 bch2_current_time(const struct bch_fs *c)
1237
{
1238
struct timespec64 now;
1239
1240
ktime_get_coarse_real_ts64(&now);
1241
return timespec_to_bch2_time(c, now);
1242
}
1243
1244
static inline u64 bch2_current_io_time(const struct bch_fs *c, int rw)
1245
{
1246
return max(1ULL, (u64) atomic64_read(&c->io_clock[rw].now) & LRU_TIME_MAX);
1247
}
1248
1249
static inline struct stdio_redirect *bch2_fs_stdio_redirect(struct bch_fs *c)
1250
{
1251
struct stdio_redirect *stdio = c->stdio;
1252
1253
if (c->stdio_filter && c->stdio_filter != current)
1254
stdio = NULL;
1255
return stdio;
1256
}
1257
1258
static inline unsigned metadata_replicas_required(struct bch_fs *c)
1259
{
1260
return min(c->opts.metadata_replicas,
1261
c->opts.metadata_replicas_required);
1262
}
1263
1264
static inline unsigned data_replicas_required(struct bch_fs *c)
1265
{
1266
return min(c->opts.data_replicas,
1267
c->opts.data_replicas_required);
1268
}
1269
1270
#define BKEY_PADDED_ONSTACK(key, pad) \
1271
struct { struct bkey_i key; __u64 key ## _pad[pad]; }
1272
1273
/*
1274
* This is needed because discard is both a filesystem option and a device
1275
* option, and mount options are supposed to apply to that mount and not be
1276
* persisted, i.e. if it's set as a mount option we can't propagate it to the
1277
* device.
1278
*/
1279
static inline bool bch2_discard_opt_enabled(struct bch_fs *c, struct bch_dev *ca)
1280
{
1281
return test_bit(BCH_FS_discard_mount_opt_set, &c->flags)
1282
? c->opts.discard
1283
: ca->mi.discard;
1284
}
1285
1286
static inline bool bch2_fs_casefold_enabled(struct bch_fs *c)
1287
{
1288
#ifdef CONFIG_UNICODE
1289
return !c->opts.casefold_disabled;
1290
#else
1291
return false;
1292
#endif
1293
}
1294
1295
#endif /* _BCACHEFS_H */
1296
1297