Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/bcachefs/bcachefs_format.h
26278 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef _BCACHEFS_FORMAT_H
3
#define _BCACHEFS_FORMAT_H
4
5
/*
6
* bcachefs on disk data structures
7
*
8
* OVERVIEW:
9
*
10
* There are three main types of on disk data structures in bcachefs (this is
11
* reduced from 5 in bcache)
12
*
13
* - superblock
14
* - journal
15
* - btree
16
*
17
* The btree is the primary structure; most metadata exists as keys in the
18
* various btrees. There are only a small number of btrees, they're not
19
* sharded - we have one btree for extents, another for inodes, et cetera.
20
*
21
* SUPERBLOCK:
22
*
23
* The superblock contains the location of the journal, the list of devices in
24
* the filesystem, and in general any metadata we need in order to decide
25
* whether we can start a filesystem or prior to reading the journal/btree
26
* roots.
27
*
28
* The superblock is extensible, and most of the contents of the superblock are
29
* in variable length, type tagged fields; see struct bch_sb_field.
30
*
31
* Backup superblocks do not reside in a fixed location; also, superblocks do
32
* not have a fixed size. To locate backup superblocks we have struct
33
* bch_sb_layout; we store a copy of this inside every superblock, and also
34
* before the first superblock.
35
*
36
* JOURNAL:
37
*
38
* The journal primarily records btree updates in the order they occurred;
39
* journal replay consists of just iterating over all the keys in the open
40
* journal entries and re-inserting them into the btrees.
41
*
42
* The journal also contains entry types for the btree roots, and blacklisted
43
* journal sequence numbers (see journal_seq_blacklist.c).
44
*
45
* BTREE:
46
*
47
* bcachefs btrees are copy on write b+ trees, where nodes are big (typically
48
* 128k-256k) and log structured. We use struct btree_node for writing the first
49
* entry in a given node (offset 0), and struct btree_node_entry for all
50
* subsequent writes.
51
*
52
* After the header, btree node entries contain a list of keys in sorted order.
53
* Values are stored inline with the keys; since values are variable length (and
54
* keys effectively are variable length too, due to packing) we can't do random
55
* access without building up additional in memory tables in the btree node read
56
* path.
57
*
58
* BTREE KEYS (struct bkey):
59
*
60
* The various btrees share a common format for the key - so as to avoid
61
* switching in fastpath lookup/comparison code - but define their own
62
* structures for the key values.
63
*
64
* The size of a key/value pair is stored as a u8 in units of u64s, so the max
65
* size is just under 2k. The common part also contains a type tag for the
66
* value, and a format field indicating whether the key is packed or not (and
67
* also meant to allow adding new key fields in the future, if desired).
68
*
69
* bkeys, when stored within a btree node, may also be packed. In that case, the
70
* bkey_format in that node is used to unpack it. Packed bkeys mean that we can
71
* be generous with field sizes in the common part of the key format (64 bit
72
* inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost.
73
*/
74
75
#include <asm/types.h>
76
#include <asm/byteorder.h>
77
#include <linux/kernel.h>
78
#include <linux/uuid.h>
79
#include <uapi/linux/magic.h>
80
#include "vstructs.h"
81
82
#ifdef __KERNEL__
83
typedef uuid_t __uuid_t;
84
#endif
85
86
#define BITMASK(name, type, field, offset, end) \
87
static const __maybe_unused unsigned name##_OFFSET = offset; \
88
static const __maybe_unused unsigned name##_BITS = (end - offset); \
89
\
90
static inline __u64 name(const type *k) \
91
{ \
92
return (k->field >> offset) & ~(~0ULL << (end - offset)); \
93
} \
94
\
95
static inline void SET_##name(type *k, __u64 v) \
96
{ \
97
k->field &= ~(~(~0ULL << (end - offset)) << offset); \
98
k->field |= (v & ~(~0ULL << (end - offset))) << offset; \
99
}
100
101
#define LE_BITMASK(_bits, name, type, field, offset, end) \
102
static const __maybe_unused unsigned name##_OFFSET = offset; \
103
static const __maybe_unused unsigned name##_BITS = (end - offset); \
104
static const __maybe_unused __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;\
105
\
106
static inline __u64 name(const type *k) \
107
{ \
108
return (__le##_bits##_to_cpu(k->field) >> offset) & \
109
~(~0ULL << (end - offset)); \
110
} \
111
\
112
static inline void SET_##name(type *k, __u64 v) \
113
{ \
114
__u##_bits new = __le##_bits##_to_cpu(k->field); \
115
\
116
new &= ~(~(~0ULL << (end - offset)) << offset); \
117
new |= (v & ~(~0ULL << (end - offset))) << offset; \
118
k->field = __cpu_to_le##_bits(new); \
119
}
120
121
#define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e)
122
#define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e)
123
#define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e)
124
125
struct bkey_format {
126
__u8 key_u64s;
127
__u8 nr_fields;
128
/* One unused slot for now: */
129
__u8 bits_per_field[6];
130
__le64 field_offset[6];
131
};
132
133
/* Btree keys - all units are in sectors */
134
135
struct bpos {
136
/*
137
* Word order matches machine byte order - btree code treats a bpos as a
138
* single large integer, for search/comparison purposes
139
*
140
* Note that wherever a bpos is embedded in another on disk data
141
* structure, it has to be byte swabbed when reading in metadata that
142
* wasn't written in native endian order:
143
*/
144
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
145
__u32 snapshot;
146
__u64 offset;
147
__u64 inode;
148
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
149
__u64 inode;
150
__u64 offset; /* Points to end of extent - sectors */
151
__u32 snapshot;
152
#else
153
#error edit for your odd byteorder.
154
#endif
155
} __packed
156
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
157
__aligned(4)
158
#endif
159
;
160
161
#define KEY_INODE_MAX ((__u64)~0ULL)
162
#define KEY_OFFSET_MAX ((__u64)~0ULL)
163
#define KEY_SNAPSHOT_MAX ((__u32)~0U)
164
#define KEY_SIZE_MAX ((__u32)~0U)
165
166
static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot)
167
{
168
return (struct bpos) {
169
.inode = inode,
170
.offset = offset,
171
.snapshot = snapshot,
172
};
173
}
174
175
#define POS_MIN SPOS(0, 0, 0)
176
#define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0)
177
#define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX)
178
#define POS(_inode, _offset) SPOS(_inode, _offset, 0)
179
180
/* Empty placeholder struct, for container_of() */
181
struct bch_val {
182
__u64 __nothing[0];
183
};
184
185
struct bversion {
186
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
187
__u64 lo;
188
__u32 hi;
189
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
190
__u32 hi;
191
__u64 lo;
192
#endif
193
} __packed
194
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
195
__aligned(4)
196
#endif
197
;
198
199
struct bkey {
200
/* Size of combined key and value, in u64s */
201
__u8 u64s;
202
203
/* Format of key (0 for format local to btree node) */
204
#if defined(__LITTLE_ENDIAN_BITFIELD)
205
__u8 format:7,
206
needs_whiteout:1;
207
#elif defined (__BIG_ENDIAN_BITFIELD)
208
__u8 needs_whiteout:1,
209
format:7;
210
#else
211
#error edit for your odd byteorder.
212
#endif
213
214
/* Type of the value */
215
__u8 type;
216
217
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
218
__u8 pad[1];
219
220
struct bversion bversion;
221
__u32 size; /* extent size, in sectors */
222
struct bpos p;
223
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
224
struct bpos p;
225
__u32 size; /* extent size, in sectors */
226
struct bversion bversion;
227
228
__u8 pad[1];
229
#endif
230
} __packed
231
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
232
/*
233
* The big-endian version of bkey can't be compiled by rustc with the "aligned"
234
* attr since it doesn't allow types to have both "packed" and "aligned" attrs.
235
* So for Rust compatibility, don't include this. It can be included in the LE
236
* version because the "packed" attr is redundant in that case.
237
*
238
* History: (quoting Kent)
239
*
240
* Specifically, when i was designing bkey, I wanted the header to be no
241
* bigger than necessary so that bkey_packed could use the rest. That means that
242
* decently offten extent keys will fit into only 8 bytes, instead of spilling over
243
* to 16.
244
*
245
* But packed_bkey treats the part after the header - the packed section -
246
* as a single multi word, variable length integer. And bkey, the unpacked
247
* version, is just a special case version of a bkey_packed; all the packed
248
* bkey code will work on keys in any packed format, the in-memory
249
* representation of an unpacked key also is just one type of packed key...
250
*
251
* So that constrains the key part of a bkig endian bkey to start right
252
* after the header.
253
*
254
* If we ever do a bkey_v2 and need to expand the hedaer by another byte for
255
* some reason - that will clean up this wart.
256
*/
257
__aligned(8)
258
#endif
259
;
260
261
struct bkey_packed {
262
__u64 _data[0];
263
264
/* Size of combined key and value, in u64s */
265
__u8 u64s;
266
267
/* Format of key (0 for format local to btree node) */
268
269
/*
270
* XXX: next incompat on disk format change, switch format and
271
* needs_whiteout - bkey_packed() will be cheaper if format is the high
272
* bits of the bitfield
273
*/
274
#if defined(__LITTLE_ENDIAN_BITFIELD)
275
__u8 format:7,
276
needs_whiteout:1;
277
#elif defined (__BIG_ENDIAN_BITFIELD)
278
__u8 needs_whiteout:1,
279
format:7;
280
#endif
281
282
/* Type of the value */
283
__u8 type;
284
__u8 key_start[0];
285
286
/*
287
* We copy bkeys with struct assignment in various places, and while
288
* that shouldn't be done with packed bkeys we can't disallow it in C,
289
* and it's legal to cast a bkey to a bkey_packed - so padding it out
290
* to the same size as struct bkey should hopefully be safest.
291
*/
292
__u8 pad[sizeof(struct bkey) - 3];
293
} __packed __aligned(8);
294
295
typedef struct {
296
__le64 lo;
297
__le64 hi;
298
} bch_le128;
299
300
#define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64))
301
#define BKEY_U64s_MAX U8_MAX
302
#define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s)
303
304
#define KEY_PACKED_BITS_START 24
305
306
#define KEY_FORMAT_LOCAL_BTREE 0
307
#define KEY_FORMAT_CURRENT 1
308
309
enum bch_bkey_fields {
310
BKEY_FIELD_INODE,
311
BKEY_FIELD_OFFSET,
312
BKEY_FIELD_SNAPSHOT,
313
BKEY_FIELD_SIZE,
314
BKEY_FIELD_VERSION_HI,
315
BKEY_FIELD_VERSION_LO,
316
BKEY_NR_FIELDS,
317
};
318
319
#define bkey_format_field(name, field) \
320
[BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)
321
322
#define BKEY_FORMAT_CURRENT \
323
((struct bkey_format) { \
324
.key_u64s = BKEY_U64s, \
325
.nr_fields = BKEY_NR_FIELDS, \
326
.bits_per_field = { \
327
bkey_format_field(INODE, p.inode), \
328
bkey_format_field(OFFSET, p.offset), \
329
bkey_format_field(SNAPSHOT, p.snapshot), \
330
bkey_format_field(SIZE, size), \
331
bkey_format_field(VERSION_HI, bversion.hi), \
332
bkey_format_field(VERSION_LO, bversion.lo), \
333
}, \
334
})
335
336
/* bkey with inline value */
337
struct bkey_i {
338
__u64 _data[0];
339
340
struct bkey k;
341
struct bch_val v;
342
};
343
344
#define POS_KEY(_pos) \
345
((struct bkey) { \
346
.u64s = BKEY_U64s, \
347
.format = KEY_FORMAT_CURRENT, \
348
.p = _pos, \
349
})
350
351
#define KEY(_inode, _offset, _size) \
352
((struct bkey) { \
353
.u64s = BKEY_U64s, \
354
.format = KEY_FORMAT_CURRENT, \
355
.p = POS(_inode, _offset), \
356
.size = _size, \
357
})
358
359
static inline void bkey_init(struct bkey *k)
360
{
361
*k = KEY(0, 0, 0);
362
}
363
364
#define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64))
365
366
#define __BKEY_PADDED(key, pad) \
367
struct bkey_i key; __u64 key ## _pad[pad]
368
369
enum bch_bkey_type_flags {
370
BKEY_TYPE_strict_btree_checks = BIT(0),
371
};
372
373
/*
374
* - DELETED keys are used internally to mark keys that should be ignored but
375
* override keys in composition order. Their version number is ignored.
376
*
377
* - DISCARDED keys indicate that the data is all 0s because it has been
378
* discarded. DISCARDs may have a version; if the version is nonzero the key
379
* will be persistent, otherwise the key will be dropped whenever the btree
380
* node is rewritten (like DELETED keys).
381
*
382
* - ERROR: any read of the data returns a read error, as the data was lost due
383
* to a failing device. Like DISCARDED keys, they can be removed (overridden)
384
* by new writes or cluster-wide GC. Node repair can also overwrite them with
385
* the same or a more recent version number, but not with an older version
386
* number.
387
*
388
* - WHITEOUT: for hash table btrees
389
*/
390
#define BCH_BKEY_TYPES() \
391
x(deleted, 0, 0) \
392
x(whiteout, 1, 0) \
393
x(error, 2, 0) \
394
x(cookie, 3, 0) \
395
x(hash_whiteout, 4, BKEY_TYPE_strict_btree_checks) \
396
x(btree_ptr, 5, BKEY_TYPE_strict_btree_checks) \
397
x(extent, 6, BKEY_TYPE_strict_btree_checks) \
398
x(reservation, 7, BKEY_TYPE_strict_btree_checks) \
399
x(inode, 8, BKEY_TYPE_strict_btree_checks) \
400
x(inode_generation, 9, BKEY_TYPE_strict_btree_checks) \
401
x(dirent, 10, BKEY_TYPE_strict_btree_checks) \
402
x(xattr, 11, BKEY_TYPE_strict_btree_checks) \
403
x(alloc, 12, BKEY_TYPE_strict_btree_checks) \
404
x(quota, 13, BKEY_TYPE_strict_btree_checks) \
405
x(stripe, 14, BKEY_TYPE_strict_btree_checks) \
406
x(reflink_p, 15, BKEY_TYPE_strict_btree_checks) \
407
x(reflink_v, 16, BKEY_TYPE_strict_btree_checks) \
408
x(inline_data, 17, BKEY_TYPE_strict_btree_checks) \
409
x(btree_ptr_v2, 18, BKEY_TYPE_strict_btree_checks) \
410
x(indirect_inline_data, 19, BKEY_TYPE_strict_btree_checks) \
411
x(alloc_v2, 20, BKEY_TYPE_strict_btree_checks) \
412
x(subvolume, 21, BKEY_TYPE_strict_btree_checks) \
413
x(snapshot, 22, BKEY_TYPE_strict_btree_checks) \
414
x(inode_v2, 23, BKEY_TYPE_strict_btree_checks) \
415
x(alloc_v3, 24, BKEY_TYPE_strict_btree_checks) \
416
x(set, 25, 0) \
417
x(lru, 26, BKEY_TYPE_strict_btree_checks) \
418
x(alloc_v4, 27, BKEY_TYPE_strict_btree_checks) \
419
x(backpointer, 28, BKEY_TYPE_strict_btree_checks) \
420
x(inode_v3, 29, BKEY_TYPE_strict_btree_checks) \
421
x(bucket_gens, 30, BKEY_TYPE_strict_btree_checks) \
422
x(snapshot_tree, 31, BKEY_TYPE_strict_btree_checks) \
423
x(logged_op_truncate, 32, BKEY_TYPE_strict_btree_checks) \
424
x(logged_op_finsert, 33, BKEY_TYPE_strict_btree_checks) \
425
x(accounting, 34, BKEY_TYPE_strict_btree_checks) \
426
x(inode_alloc_cursor, 35, BKEY_TYPE_strict_btree_checks)
427
428
enum bch_bkey_type {
429
#define x(name, nr, ...) KEY_TYPE_##name = nr,
430
BCH_BKEY_TYPES()
431
#undef x
432
KEY_TYPE_MAX,
433
};
434
435
struct bch_deleted {
436
struct bch_val v;
437
};
438
439
struct bch_whiteout {
440
struct bch_val v;
441
};
442
443
struct bch_error {
444
struct bch_val v;
445
};
446
447
struct bch_cookie {
448
struct bch_val v;
449
__le64 cookie;
450
};
451
452
struct bch_hash_whiteout {
453
struct bch_val v;
454
};
455
456
struct bch_set {
457
struct bch_val v;
458
};
459
460
/* 128 bits, sufficient for cryptographic MACs: */
461
struct bch_csum {
462
__le64 lo;
463
__le64 hi;
464
} __packed __aligned(8);
465
466
struct bch_backpointer {
467
struct bch_val v;
468
__u8 btree_id;
469
__u8 level;
470
__u8 data_type;
471
__u8 bucket_gen;
472
__u32 pad;
473
__u32 bucket_len;
474
struct bpos pos;
475
} __packed __aligned(8);
476
477
/* Optional/variable size superblock sections: */
478
479
struct bch_sb_field {
480
__u64 _data[0];
481
__le32 u64s;
482
__le32 type;
483
};
484
485
#define BCH_SB_FIELDS() \
486
x(journal, 0) \
487
x(members_v1, 1) \
488
x(crypt, 2) \
489
x(replicas_v0, 3) \
490
x(quota, 4) \
491
x(disk_groups, 5) \
492
x(clean, 6) \
493
x(replicas, 7) \
494
x(journal_seq_blacklist, 8) \
495
x(journal_v2, 9) \
496
x(counters, 10) \
497
x(members_v2, 11) \
498
x(errors, 12) \
499
x(ext, 13) \
500
x(downgrade, 14) \
501
x(recovery_passes, 15)
502
503
#include "alloc_background_format.h"
504
#include "dirent_format.h"
505
#include "disk_accounting_format.h"
506
#include "disk_groups_format.h"
507
#include "extents_format.h"
508
#include "ec_format.h"
509
#include "inode_format.h"
510
#include "journal_seq_blacklist_format.h"
511
#include "logged_ops_format.h"
512
#include "lru_format.h"
513
#include "quota_format.h"
514
#include "recovery_passes_format.h"
515
#include "reflink_format.h"
516
#include "replicas_format.h"
517
#include "snapshot_format.h"
518
#include "subvolume_format.h"
519
#include "sb-counters_format.h"
520
#include "sb-downgrade_format.h"
521
#include "sb-errors_format.h"
522
#include "sb-members_format.h"
523
#include "xattr_format.h"
524
525
enum bch_sb_field_type {
526
#define x(f, nr) BCH_SB_FIELD_##f = nr,
527
BCH_SB_FIELDS()
528
#undef x
529
BCH_SB_FIELD_NR
530
};
531
532
/*
533
* Most superblock fields are replicated in all device's superblocks - a few are
534
* not:
535
*/
536
#define BCH_SINGLE_DEVICE_SB_FIELDS \
537
((1U << BCH_SB_FIELD_journal)| \
538
(1U << BCH_SB_FIELD_journal_v2))
539
540
/* BCH_SB_FIELD_journal: */
541
542
struct bch_sb_field_journal {
543
struct bch_sb_field field;
544
__le64 buckets[];
545
};
546
547
struct bch_sb_field_journal_v2 {
548
struct bch_sb_field field;
549
550
struct bch_sb_field_journal_v2_entry {
551
__le64 start;
552
__le64 nr;
553
} d[];
554
};
555
556
/* BCH_SB_FIELD_crypt: */
557
558
struct nonce {
559
__le32 d[4];
560
};
561
562
struct bch_key {
563
__le64 key[4];
564
};
565
566
#define BCH_KEY_MAGIC \
567
(((__u64) 'b' << 0)|((__u64) 'c' << 8)| \
568
((__u64) 'h' << 16)|((__u64) '*' << 24)| \
569
((__u64) '*' << 32)|((__u64) 'k' << 40)| \
570
((__u64) 'e' << 48)|((__u64) 'y' << 56))
571
572
struct bch_encrypted_key {
573
__le64 magic;
574
struct bch_key key;
575
};
576
577
/*
578
* If this field is present in the superblock, it stores an encryption key which
579
* is used encrypt all other data/metadata. The key will normally be encrypted
580
* with the key userspace provides, but if encryption has been turned off we'll
581
* just store the master key unencrypted in the superblock so we can access the
582
* previously encrypted data.
583
*/
584
struct bch_sb_field_crypt {
585
struct bch_sb_field field;
586
587
__le64 flags;
588
__le64 kdf_flags;
589
struct bch_encrypted_key key;
590
};
591
592
LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4);
593
594
enum bch_kdf_types {
595
BCH_KDF_SCRYPT = 0,
596
BCH_KDF_NR = 1,
597
};
598
599
/* stored as base 2 log of scrypt params: */
600
LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16);
601
LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32);
602
LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48);
603
604
/*
605
* On clean shutdown, store btree roots and current journal sequence number in
606
* the superblock:
607
*/
608
struct jset_entry {
609
__le16 u64s;
610
__u8 btree_id;
611
__u8 level;
612
__u8 type; /* designates what this jset holds */
613
__u8 pad[3];
614
615
struct bkey_i start[0];
616
__u64 _data[];
617
};
618
619
struct bch_sb_field_clean {
620
struct bch_sb_field field;
621
622
__le32 flags;
623
__le16 _read_clock; /* no longer used */
624
__le16 _write_clock;
625
__le64 journal_seq;
626
627
struct jset_entry start[0];
628
__u64 _data[];
629
};
630
631
struct bch_sb_field_ext {
632
struct bch_sb_field field;
633
__le64 recovery_passes_required[2];
634
__le64 errors_silent[8];
635
__le64 btrees_lost_data;
636
};
637
638
/* Superblock: */
639
640
/*
641
* New versioning scheme:
642
* One common version number for all on disk data structures - superblock, btree
643
* nodes, journal entries
644
*/
645
#define BCH_VERSION_MAJOR(_v) ((__u16) ((_v) >> 10))
646
#define BCH_VERSION_MINOR(_v) ((__u16) ((_v) & ~(~0U << 10)))
647
#define BCH_VERSION(_major, _minor) (((_major) << 10)|(_minor) << 0)
648
649
/*
650
* field 1: version name
651
* field 2: BCH_VERSION(major, minor)
652
* field 3: recovery passess required on upgrade
653
*/
654
#define BCH_METADATA_VERSIONS() \
655
x(bkey_renumber, BCH_VERSION(0, 10)) \
656
x(inode_btree_change, BCH_VERSION(0, 11)) \
657
x(snapshot, BCH_VERSION(0, 12)) \
658
x(inode_backpointers, BCH_VERSION(0, 13)) \
659
x(btree_ptr_sectors_written, BCH_VERSION(0, 14)) \
660
x(snapshot_2, BCH_VERSION(0, 15)) \
661
x(reflink_p_fix, BCH_VERSION(0, 16)) \
662
x(subvol_dirent, BCH_VERSION(0, 17)) \
663
x(inode_v2, BCH_VERSION(0, 18)) \
664
x(freespace, BCH_VERSION(0, 19)) \
665
x(alloc_v4, BCH_VERSION(0, 20)) \
666
x(new_data_types, BCH_VERSION(0, 21)) \
667
x(backpointers, BCH_VERSION(0, 22)) \
668
x(inode_v3, BCH_VERSION(0, 23)) \
669
x(unwritten_extents, BCH_VERSION(0, 24)) \
670
x(bucket_gens, BCH_VERSION(0, 25)) \
671
x(lru_v2, BCH_VERSION(0, 26)) \
672
x(fragmentation_lru, BCH_VERSION(0, 27)) \
673
x(no_bps_in_alloc_keys, BCH_VERSION(0, 28)) \
674
x(snapshot_trees, BCH_VERSION(0, 29)) \
675
x(major_minor, BCH_VERSION(1, 0)) \
676
x(snapshot_skiplists, BCH_VERSION(1, 1)) \
677
x(deleted_inodes, BCH_VERSION(1, 2)) \
678
x(rebalance_work, BCH_VERSION(1, 3)) \
679
x(member_seq, BCH_VERSION(1, 4)) \
680
x(subvolume_fs_parent, BCH_VERSION(1, 5)) \
681
x(btree_subvolume_children, BCH_VERSION(1, 6)) \
682
x(mi_btree_bitmap, BCH_VERSION(1, 7)) \
683
x(bucket_stripe_sectors, BCH_VERSION(1, 8)) \
684
x(disk_accounting_v2, BCH_VERSION(1, 9)) \
685
x(disk_accounting_v3, BCH_VERSION(1, 10)) \
686
x(disk_accounting_inum, BCH_VERSION(1, 11)) \
687
x(rebalance_work_acct_fix, BCH_VERSION(1, 12)) \
688
x(inode_has_child_snapshots, BCH_VERSION(1, 13)) \
689
x(backpointer_bucket_gen, BCH_VERSION(1, 14)) \
690
x(disk_accounting_big_endian, BCH_VERSION(1, 15)) \
691
x(reflink_p_may_update_opts, BCH_VERSION(1, 16)) \
692
x(inode_depth, BCH_VERSION(1, 17)) \
693
x(persistent_inode_cursors, BCH_VERSION(1, 18)) \
694
x(autofix_errors, BCH_VERSION(1, 19)) \
695
x(directory_size, BCH_VERSION(1, 20)) \
696
x(cached_backpointers, BCH_VERSION(1, 21)) \
697
x(stripe_backpointers, BCH_VERSION(1, 22)) \
698
x(stripe_lru, BCH_VERSION(1, 23)) \
699
x(casefolding, BCH_VERSION(1, 24)) \
700
x(extent_flags, BCH_VERSION(1, 25)) \
701
x(snapshot_deletion_v2, BCH_VERSION(1, 26)) \
702
x(fast_device_removal, BCH_VERSION(1, 27)) \
703
x(inode_has_case_insensitive, BCH_VERSION(1, 28))
704
705
enum bcachefs_metadata_version {
706
bcachefs_metadata_version_min = 9,
707
#define x(t, n) bcachefs_metadata_version_##t = n,
708
BCH_METADATA_VERSIONS()
709
#undef x
710
bcachefs_metadata_version_max
711
};
712
713
static const __maybe_unused
714
unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_rebalance_work;
715
716
#define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1)
717
718
#define BCH_SB_SECTOR 8
719
720
#define BCH_SB_LAYOUT_SIZE_BITS_MAX 16 /* 32 MB */
721
722
struct bch_sb_layout {
723
__uuid_t magic; /* bcachefs superblock UUID */
724
__u8 layout_type;
725
__u8 sb_max_size_bits; /* base 2 of 512 byte sectors */
726
__u8 nr_superblocks;
727
__u8 pad[5];
728
__le64 sb_offset[61];
729
} __packed __aligned(8);
730
731
#define BCH_SB_LAYOUT_SECTOR 7
732
733
/*
734
* @offset - sector where this sb was written
735
* @version - on disk format version
736
* @version_min - Oldest metadata version this filesystem contains; so we can
737
* safely drop compatibility code and refuse to mount filesystems
738
* we'd need it for
739
* @magic - identifies as a bcachefs superblock (BCHFS_MAGIC)
740
* @seq - incremented each time superblock is written
741
* @uuid - used for generating various magic numbers and identifying
742
* member devices, never changes
743
* @user_uuid - user visible UUID, may be changed
744
* @label - filesystem label
745
* @seq - identifies most recent superblock, incremented each time
746
* superblock is written
747
* @features - enabled incompatible features
748
*/
749
struct bch_sb {
750
struct bch_csum csum;
751
__le16 version;
752
__le16 version_min;
753
__le16 pad[2];
754
__uuid_t magic;
755
__uuid_t uuid;
756
__uuid_t user_uuid;
757
__u8 label[BCH_SB_LABEL_SIZE];
758
__le64 offset;
759
__le64 seq;
760
761
__le16 block_size;
762
__u8 dev_idx;
763
__u8 nr_devices;
764
__le32 u64s;
765
766
__le64 time_base_lo;
767
__le32 time_base_hi;
768
__le32 time_precision;
769
770
__le64 flags[7];
771
__le64 write_time;
772
__le64 features[2];
773
__le64 compat[2];
774
775
struct bch_sb_layout layout;
776
777
struct bch_sb_field start[0];
778
__le64 _data[];
779
} __packed __aligned(8);
780
781
/*
782
* Flags:
783
* BCH_SB_INITALIZED - set on first mount
784
* BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect
785
* behaviour of mount/recovery path:
786
* BCH_SB_INODE_32BIT - limit inode numbers to 32 bits
787
* BCH_SB_128_BIT_MACS - 128 bit macs instead of 80
788
* BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides
789
* DATA/META_CSUM_TYPE. Also indicates encryption
790
* algorithm in use, if/when we get more than one
791
*/
792
793
LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16);
794
795
LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1);
796
LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2);
797
LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8);
798
LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12);
799
800
LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28);
801
802
LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33);
803
LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40);
804
805
LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44);
806
LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48);
807
808
LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52);
809
LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56);
810
811
LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57);
812
LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58);
813
LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59);
814
LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60);
815
816
LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61);
817
LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62);
818
819
LE64_BITMASK(BCH_SB_BIG_ENDIAN, struct bch_sb, flags[0], 62, 63);
820
LE64_BITMASK(BCH_SB_PROMOTE_WHOLE_EXTENTS,
821
struct bch_sb, flags[0], 63, 64);
822
823
LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4);
824
LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1], 4, 8);
825
LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9);
826
827
LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10);
828
LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14);
829
830
/*
831
* Max size of an extent that may require bouncing to read or write
832
* (checksummed, compressed): 64k
833
*/
834
LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS,
835
struct bch_sb, flags[1], 14, 20);
836
837
LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24);
838
LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28);
839
840
LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40);
841
LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52);
842
LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64);
843
844
LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO,
845
struct bch_sb, flags[2], 0, 4);
846
LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64);
847
848
LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16);
849
LE64_BITMASK(BCH_SB_METADATA_TARGET, struct bch_sb, flags[3], 16, 28);
850
LE64_BITMASK(BCH_SB_SHARD_INUMS, struct bch_sb, flags[3], 28, 29);
851
LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30);
852
LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62);
853
LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63);
854
LE64_BITMASK(BCH_SB_MULTI_DEVICE, struct bch_sb, flags[3], 63, 64);
855
LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32);
856
LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33);
857
LE64_BITMASK(BCH_SB_NOCOW, struct bch_sb, flags[4], 33, 34);
858
LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE, struct bch_sb, flags[4], 34, 54);
859
LE64_BITMASK(BCH_SB_VERSION_UPGRADE, struct bch_sb, flags[4], 54, 56);
860
861
LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60);
862
LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI,
863
struct bch_sb, flags[4], 60, 64);
864
865
LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE,
866
struct bch_sb, flags[5], 0, 16);
867
LE64_BITMASK(BCH_SB_ALLOCATOR_STUCK_TIMEOUT,
868
struct bch_sb, flags[5], 16, 32);
869
LE64_BITMASK(BCH_SB_VERSION_INCOMPAT, struct bch_sb, flags[5], 32, 48);
870
LE64_BITMASK(BCH_SB_VERSION_INCOMPAT_ALLOWED,
871
struct bch_sb, flags[5], 48, 64);
872
LE64_BITMASK(BCH_SB_SHARD_INUMS_NBITS, struct bch_sb, flags[6], 0, 4);
873
LE64_BITMASK(BCH_SB_WRITE_ERROR_TIMEOUT,struct bch_sb, flags[6], 4, 14);
874
LE64_BITMASK(BCH_SB_CSUM_ERR_RETRY_NR, struct bch_sb, flags[6], 14, 20);
875
LE64_BITMASK(BCH_SB_DEGRADED_ACTION, struct bch_sb, flags[6], 20, 22);
876
LE64_BITMASK(BCH_SB_CASEFOLD, struct bch_sb, flags[6], 22, 23);
877
LE64_BITMASK(BCH_SB_REBALANCE_AC_ONLY, struct bch_sb, flags[6], 23, 24);
878
879
static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb)
880
{
881
return BCH_SB_COMPRESSION_TYPE_LO(sb) | (BCH_SB_COMPRESSION_TYPE_HI(sb) << 4);
882
}
883
884
static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v)
885
{
886
SET_BCH_SB_COMPRESSION_TYPE_LO(sb, v);
887
SET_BCH_SB_COMPRESSION_TYPE_HI(sb, v >> 4);
888
}
889
890
static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb)
891
{
892
return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb) |
893
(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb) << 4);
894
}
895
896
static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v)
897
{
898
SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb, v);
899
SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb, v >> 4);
900
}
901
902
/*
903
* Features:
904
*
905
* journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist
906
* reflink: gates KEY_TYPE_reflink
907
* inline_data: gates KEY_TYPE_inline_data
908
* new_siphash: gates BCH_STR_HASH_siphash
909
* new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE
910
*/
911
#define BCH_SB_FEATURES() \
912
x(lz4, 0) \
913
x(gzip, 1) \
914
x(zstd, 2) \
915
x(atomic_nlink, 3) \
916
x(ec, 4) \
917
x(journal_seq_blacklist_v3, 5) \
918
x(reflink, 6) \
919
x(new_siphash, 7) \
920
x(inline_data, 8) \
921
x(new_extent_overwrite, 9) \
922
x(incompressible, 10) \
923
x(btree_ptr_v2, 11) \
924
x(extents_above_btree_updates, 12) \
925
x(btree_updates_journalled, 13) \
926
x(reflink_inline_data, 14) \
927
x(new_varint, 15) \
928
x(journal_no_flush, 16) \
929
x(alloc_v2, 17) \
930
x(extents_across_btree_nodes, 18) \
931
x(incompat_version_field, 19) \
932
x(casefolding, 20) \
933
x(no_alloc_info, 21) \
934
x(small_image, 22)
935
936
#define BCH_SB_FEATURES_ALWAYS \
937
(BIT_ULL(BCH_FEATURE_new_extent_overwrite)| \
938
BIT_ULL(BCH_FEATURE_extents_above_btree_updates)|\
939
BIT_ULL(BCH_FEATURE_btree_updates_journalled)|\
940
BIT_ULL(BCH_FEATURE_alloc_v2)|\
941
BIT_ULL(BCH_FEATURE_extents_across_btree_nodes))
942
943
#define BCH_SB_FEATURES_ALL \
944
(BCH_SB_FEATURES_ALWAYS| \
945
BIT_ULL(BCH_FEATURE_new_siphash)| \
946
BIT_ULL(BCH_FEATURE_btree_ptr_v2)| \
947
BIT_ULL(BCH_FEATURE_new_varint)| \
948
BIT_ULL(BCH_FEATURE_journal_no_flush)| \
949
BIT_ULL(BCH_FEATURE_incompat_version_field))
950
951
enum bch_sb_feature {
952
#define x(f, n) BCH_FEATURE_##f,
953
BCH_SB_FEATURES()
954
#undef x
955
BCH_FEATURE_NR,
956
};
957
958
#define BCH_SB_COMPAT() \
959
x(alloc_info, 0) \
960
x(alloc_metadata, 1) \
961
x(extents_above_btree_updates_done, 2) \
962
x(bformat_overflow_done, 3)
963
964
enum bch_sb_compat {
965
#define x(f, n) BCH_COMPAT_##f,
966
BCH_SB_COMPAT()
967
#undef x
968
BCH_COMPAT_NR,
969
};
970
971
/* options: */
972
973
#define BCH_VERSION_UPGRADE_OPTS() \
974
x(compatible, 0) \
975
x(incompatible, 1) \
976
x(none, 2)
977
978
enum bch_version_upgrade_opts {
979
#define x(t, n) BCH_VERSION_UPGRADE_##t = n,
980
BCH_VERSION_UPGRADE_OPTS()
981
#undef x
982
};
983
984
#define BCH_REPLICAS_MAX 4U
985
986
#define BCH_BKEY_PTRS_MAX 16U
987
988
#define BCH_ERROR_ACTIONS() \
989
x(continue, 0) \
990
x(fix_safe, 1) \
991
x(panic, 2) \
992
x(ro, 3)
993
994
enum bch_error_actions {
995
#define x(t, n) BCH_ON_ERROR_##t = n,
996
BCH_ERROR_ACTIONS()
997
#undef x
998
BCH_ON_ERROR_NR
999
};
1000
1001
#define BCH_DEGRADED_ACTIONS() \
1002
x(ask, 0) \
1003
x(yes, 1) \
1004
x(very, 2) \
1005
x(no, 3)
1006
1007
enum bch_degraded_actions {
1008
#define x(t, n) BCH_DEGRADED_##t = n,
1009
BCH_DEGRADED_ACTIONS()
1010
#undef x
1011
BCH_DEGRADED_ACTIONS_NR
1012
};
1013
1014
#define BCH_STR_HASH_TYPES() \
1015
x(crc32c, 0) \
1016
x(crc64, 1) \
1017
x(siphash_old, 2) \
1018
x(siphash, 3)
1019
1020
enum bch_str_hash_type {
1021
#define x(t, n) BCH_STR_HASH_##t = n,
1022
BCH_STR_HASH_TYPES()
1023
#undef x
1024
BCH_STR_HASH_NR
1025
};
1026
1027
#define BCH_STR_HASH_OPTS() \
1028
x(crc32c, 0) \
1029
x(crc64, 1) \
1030
x(siphash, 2)
1031
1032
enum bch_str_hash_opts {
1033
#define x(t, n) BCH_STR_HASH_OPT_##t = n,
1034
BCH_STR_HASH_OPTS()
1035
#undef x
1036
BCH_STR_HASH_OPT_NR
1037
};
1038
1039
#define BCH_CSUM_TYPES() \
1040
x(none, 0) \
1041
x(crc32c_nonzero, 1) \
1042
x(crc64_nonzero, 2) \
1043
x(chacha20_poly1305_80, 3) \
1044
x(chacha20_poly1305_128, 4) \
1045
x(crc32c, 5) \
1046
x(crc64, 6) \
1047
x(xxhash, 7)
1048
1049
enum bch_csum_type {
1050
#define x(t, n) BCH_CSUM_##t = n,
1051
BCH_CSUM_TYPES()
1052
#undef x
1053
BCH_CSUM_NR
1054
};
1055
1056
static const __maybe_unused unsigned bch_crc_bytes[] = {
1057
[BCH_CSUM_none] = 0,
1058
[BCH_CSUM_crc32c_nonzero] = 4,
1059
[BCH_CSUM_crc32c] = 4,
1060
[BCH_CSUM_crc64_nonzero] = 8,
1061
[BCH_CSUM_crc64] = 8,
1062
[BCH_CSUM_xxhash] = 8,
1063
[BCH_CSUM_chacha20_poly1305_80] = 10,
1064
[BCH_CSUM_chacha20_poly1305_128] = 16,
1065
};
1066
1067
static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type)
1068
{
1069
switch (type) {
1070
case BCH_CSUM_chacha20_poly1305_80:
1071
case BCH_CSUM_chacha20_poly1305_128:
1072
return true;
1073
default:
1074
return false;
1075
}
1076
}
1077
1078
#define BCH_CSUM_OPTS() \
1079
x(none, 0) \
1080
x(crc32c, 1) \
1081
x(crc64, 2) \
1082
x(xxhash, 3)
1083
1084
enum bch_csum_opt {
1085
#define x(t, n) BCH_CSUM_OPT_##t = n,
1086
BCH_CSUM_OPTS()
1087
#undef x
1088
BCH_CSUM_OPT_NR
1089
};
1090
1091
#define BCH_COMPRESSION_TYPES() \
1092
x(none, 0) \
1093
x(lz4_old, 1) \
1094
x(gzip, 2) \
1095
x(lz4, 3) \
1096
x(zstd, 4) \
1097
x(incompressible, 5)
1098
1099
enum bch_compression_type {
1100
#define x(t, n) BCH_COMPRESSION_TYPE_##t = n,
1101
BCH_COMPRESSION_TYPES()
1102
#undef x
1103
BCH_COMPRESSION_TYPE_NR
1104
};
1105
1106
#define BCH_COMPRESSION_OPTS() \
1107
x(none, 0) \
1108
x(lz4, 1) \
1109
x(gzip, 2) \
1110
x(zstd, 3)
1111
1112
enum bch_compression_opts {
1113
#define x(t, n) BCH_COMPRESSION_OPT_##t = n,
1114
BCH_COMPRESSION_OPTS()
1115
#undef x
1116
BCH_COMPRESSION_OPT_NR
1117
};
1118
1119
/*
1120
* Magic numbers
1121
*
1122
* The various other data structures have their own magic numbers, which are
1123
* xored with the first part of the cache set's UUID
1124
*/
1125
1126
#define BCACHE_MAGIC \
1127
UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \
1128
0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
1129
#define BCHFS_MAGIC \
1130
UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \
1131
0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef)
1132
1133
#define BCACHEFS_STATFS_MAGIC BCACHEFS_SUPER_MAGIC
1134
1135
#define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL)
1136
#define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL)
1137
1138
static inline __le64 __bch2_sb_magic(struct bch_sb *sb)
1139
{
1140
__le64 ret;
1141
1142
memcpy(&ret, &sb->uuid, sizeof(ret));
1143
return ret;
1144
}
1145
1146
static inline __u64 __jset_magic(struct bch_sb *sb)
1147
{
1148
return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC);
1149
}
1150
1151
static inline __u64 __bset_magic(struct bch_sb *sb)
1152
{
1153
return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC);
1154
}
1155
1156
/* Journal */
1157
1158
#define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64))
1159
1160
#define BCH_JSET_ENTRY_TYPES() \
1161
x(btree_keys, 0) \
1162
x(btree_root, 1) \
1163
x(prio_ptrs, 2) \
1164
x(blacklist, 3) \
1165
x(blacklist_v2, 4) \
1166
x(usage, 5) \
1167
x(data_usage, 6) \
1168
x(clock, 7) \
1169
x(dev_usage, 8) \
1170
x(log, 9) \
1171
x(overwrite, 10) \
1172
x(write_buffer_keys, 11) \
1173
x(datetime, 12) \
1174
x(log_bkey, 13)
1175
1176
enum bch_jset_entry_type {
1177
#define x(f, nr) BCH_JSET_ENTRY_##f = nr,
1178
BCH_JSET_ENTRY_TYPES()
1179
#undef x
1180
BCH_JSET_ENTRY_NR
1181
};
1182
1183
static inline bool jset_entry_is_key(struct jset_entry *e)
1184
{
1185
switch (e->type) {
1186
case BCH_JSET_ENTRY_btree_keys:
1187
case BCH_JSET_ENTRY_btree_root:
1188
case BCH_JSET_ENTRY_write_buffer_keys:
1189
return true;
1190
}
1191
1192
return false;
1193
}
1194
1195
/*
1196
* Journal sequence numbers can be blacklisted: bsets record the max sequence
1197
* number of all the journal entries they contain updates for, so that on
1198
* recovery we can ignore those bsets that contain index updates newer that what
1199
* made it into the journal.
1200
*
1201
* This means that we can't reuse that journal_seq - we have to skip it, and
1202
* then record that we skipped it so that the next time we crash and recover we
1203
* don't think there was a missing journal entry.
1204
*/
1205
struct jset_entry_blacklist {
1206
struct jset_entry entry;
1207
__le64 seq;
1208
};
1209
1210
struct jset_entry_blacklist_v2 {
1211
struct jset_entry entry;
1212
__le64 start;
1213
__le64 end;
1214
};
1215
1216
#define BCH_FS_USAGE_TYPES() \
1217
x(reserved, 0) \
1218
x(inodes, 1) \
1219
x(key_version, 2)
1220
1221
enum bch_fs_usage_type {
1222
#define x(f, nr) BCH_FS_USAGE_##f = nr,
1223
BCH_FS_USAGE_TYPES()
1224
#undef x
1225
BCH_FS_USAGE_NR
1226
};
1227
1228
struct jset_entry_usage {
1229
struct jset_entry entry;
1230
__le64 v;
1231
} __packed;
1232
1233
struct jset_entry_data_usage {
1234
struct jset_entry entry;
1235
__le64 v;
1236
struct bch_replicas_entry_v1 r;
1237
} __packed;
1238
1239
struct jset_entry_clock {
1240
struct jset_entry entry;
1241
__u8 rw;
1242
__u8 pad[7];
1243
__le64 time;
1244
} __packed;
1245
1246
struct jset_entry_dev_usage_type {
1247
__le64 buckets;
1248
__le64 sectors;
1249
__le64 fragmented;
1250
} __packed;
1251
1252
struct jset_entry_dev_usage {
1253
struct jset_entry entry;
1254
__le32 dev;
1255
__u32 pad;
1256
1257
__le64 _buckets_ec; /* No longer used */
1258
__le64 _buckets_unavailable; /* No longer used */
1259
1260
struct jset_entry_dev_usage_type d[];
1261
};
1262
1263
static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u)
1264
{
1265
return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) /
1266
sizeof(struct jset_entry_dev_usage_type);
1267
}
1268
1269
struct jset_entry_log {
1270
struct jset_entry entry;
1271
u8 d[];
1272
} __packed __aligned(8);
1273
1274
static inline unsigned jset_entry_log_msg_bytes(struct jset_entry_log *l)
1275
{
1276
unsigned b = vstruct_bytes(&l->entry) - offsetof(struct jset_entry_log, d);
1277
1278
while (b && !l->d[b - 1])
1279
--b;
1280
return b;
1281
}
1282
1283
struct jset_entry_datetime {
1284
struct jset_entry entry;
1285
__le64 seconds;
1286
} __packed __aligned(8);
1287
1288
/*
1289
* On disk format for a journal entry:
1290
* seq is monotonically increasing; every journal entry has its own unique
1291
* sequence number.
1292
*
1293
* last_seq is the oldest journal entry that still has keys the btree hasn't
1294
* flushed to disk yet.
1295
*
1296
* version is for on disk format changes.
1297
*/
1298
struct jset {
1299
struct bch_csum csum;
1300
1301
__le64 magic;
1302
__le64 seq;
1303
__le32 version;
1304
__le32 flags;
1305
1306
__le32 u64s; /* size of d[] in u64s */
1307
1308
__u8 encrypted_start[0];
1309
1310
__le16 _read_clock; /* no longer used */
1311
__le16 _write_clock;
1312
1313
/* Sequence number of oldest dirty journal entry */
1314
__le64 last_seq;
1315
1316
1317
struct jset_entry start[0];
1318
__u64 _data[];
1319
} __packed __aligned(8);
1320
1321
LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4);
1322
LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5);
1323
LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6);
1324
1325
#define BCH_JOURNAL_BUCKETS_MIN 8
1326
1327
/* Btree: */
1328
1329
enum btree_id_flags {
1330
BTREE_IS_extents = BIT(0),
1331
BTREE_IS_snapshots = BIT(1),
1332
BTREE_IS_snapshot_field = BIT(2),
1333
BTREE_IS_data = BIT(3),
1334
BTREE_IS_write_buffer = BIT(4),
1335
};
1336
1337
#define BCH_BTREE_IDS() \
1338
x(extents, 0, \
1339
BTREE_IS_extents| \
1340
BTREE_IS_snapshots| \
1341
BTREE_IS_data, \
1342
BIT_ULL(KEY_TYPE_whiteout)| \
1343
BIT_ULL(KEY_TYPE_error)| \
1344
BIT_ULL(KEY_TYPE_cookie)| \
1345
BIT_ULL(KEY_TYPE_extent)| \
1346
BIT_ULL(KEY_TYPE_reservation)| \
1347
BIT_ULL(KEY_TYPE_reflink_p)| \
1348
BIT_ULL(KEY_TYPE_inline_data)) \
1349
x(inodes, 1, \
1350
BTREE_IS_snapshots, \
1351
BIT_ULL(KEY_TYPE_whiteout)| \
1352
BIT_ULL(KEY_TYPE_inode)| \
1353
BIT_ULL(KEY_TYPE_inode_v2)| \
1354
BIT_ULL(KEY_TYPE_inode_v3)| \
1355
BIT_ULL(KEY_TYPE_inode_generation)) \
1356
x(dirents, 2, \
1357
BTREE_IS_snapshots, \
1358
BIT_ULL(KEY_TYPE_whiteout)| \
1359
BIT_ULL(KEY_TYPE_hash_whiteout)| \
1360
BIT_ULL(KEY_TYPE_dirent)) \
1361
x(xattrs, 3, \
1362
BTREE_IS_snapshots, \
1363
BIT_ULL(KEY_TYPE_whiteout)| \
1364
BIT_ULL(KEY_TYPE_cookie)| \
1365
BIT_ULL(KEY_TYPE_hash_whiteout)| \
1366
BIT_ULL(KEY_TYPE_xattr)) \
1367
x(alloc, 4, 0, \
1368
BIT_ULL(KEY_TYPE_alloc)| \
1369
BIT_ULL(KEY_TYPE_alloc_v2)| \
1370
BIT_ULL(KEY_TYPE_alloc_v3)| \
1371
BIT_ULL(KEY_TYPE_alloc_v4)) \
1372
x(quotas, 5, 0, \
1373
BIT_ULL(KEY_TYPE_quota)) \
1374
x(stripes, 6, 0, \
1375
BIT_ULL(KEY_TYPE_stripe)) \
1376
x(reflink, 7, \
1377
BTREE_IS_extents| \
1378
BTREE_IS_data, \
1379
BIT_ULL(KEY_TYPE_reflink_v)| \
1380
BIT_ULL(KEY_TYPE_indirect_inline_data)| \
1381
BIT_ULL(KEY_TYPE_error)) \
1382
x(subvolumes, 8, 0, \
1383
BIT_ULL(KEY_TYPE_subvolume)) \
1384
x(snapshots, 9, 0, \
1385
BIT_ULL(KEY_TYPE_snapshot)) \
1386
x(lru, 10, \
1387
BTREE_IS_write_buffer, \
1388
BIT_ULL(KEY_TYPE_set)) \
1389
x(freespace, 11, \
1390
BTREE_IS_extents, \
1391
BIT_ULL(KEY_TYPE_set)) \
1392
x(need_discard, 12, 0, \
1393
BIT_ULL(KEY_TYPE_set)) \
1394
x(backpointers, 13, \
1395
BTREE_IS_write_buffer, \
1396
BIT_ULL(KEY_TYPE_backpointer)) \
1397
x(bucket_gens, 14, 0, \
1398
BIT_ULL(KEY_TYPE_bucket_gens)) \
1399
x(snapshot_trees, 15, 0, \
1400
BIT_ULL(KEY_TYPE_snapshot_tree)) \
1401
x(deleted_inodes, 16, \
1402
BTREE_IS_snapshot_field| \
1403
BTREE_IS_write_buffer, \
1404
BIT_ULL(KEY_TYPE_set)) \
1405
x(logged_ops, 17, 0, \
1406
BIT_ULL(KEY_TYPE_logged_op_truncate)| \
1407
BIT_ULL(KEY_TYPE_logged_op_finsert)| \
1408
BIT_ULL(KEY_TYPE_inode_alloc_cursor)) \
1409
x(rebalance_work, 18, \
1410
BTREE_IS_snapshot_field| \
1411
BTREE_IS_write_buffer, \
1412
BIT_ULL(KEY_TYPE_set)|BIT_ULL(KEY_TYPE_cookie)) \
1413
x(subvolume_children, 19, 0, \
1414
BIT_ULL(KEY_TYPE_set)) \
1415
x(accounting, 20, \
1416
BTREE_IS_snapshot_field| \
1417
BTREE_IS_write_buffer, \
1418
BIT_ULL(KEY_TYPE_accounting)) \
1419
1420
enum btree_id {
1421
#define x(name, nr, ...) BTREE_ID_##name = nr,
1422
BCH_BTREE_IDS()
1423
#undef x
1424
BTREE_ID_NR
1425
};
1426
1427
/*
1428
* Maximum number of btrees that we will _ever_ have under the current scheme,
1429
* where we refer to them with 64 bit bitfields - and we also need a bit for
1430
* the interior btree node type:
1431
*/
1432
#define BTREE_ID_NR_MAX 63
1433
1434
static inline bool btree_id_is_alloc(enum btree_id id)
1435
{
1436
switch (id) {
1437
case BTREE_ID_alloc:
1438
case BTREE_ID_backpointers:
1439
case BTREE_ID_need_discard:
1440
case BTREE_ID_freespace:
1441
case BTREE_ID_bucket_gens:
1442
case BTREE_ID_lru:
1443
case BTREE_ID_accounting:
1444
return true;
1445
default:
1446
return false;
1447
}
1448
}
1449
1450
#define BTREE_MAX_DEPTH 4U
1451
1452
/* Btree nodes */
1453
1454
/*
1455
* Btree nodes
1456
*
1457
* On disk a btree node is a list/log of these; within each set the keys are
1458
* sorted
1459
*/
1460
struct bset {
1461
__le64 seq;
1462
1463
/*
1464
* Highest journal entry this bset contains keys for.
1465
* If on recovery we don't see that journal entry, this bset is ignored:
1466
* this allows us to preserve the order of all index updates after a
1467
* crash, since the journal records a total order of all index updates
1468
* and anything that didn't make it to the journal doesn't get used.
1469
*/
1470
__le64 journal_seq;
1471
1472
__le32 flags;
1473
__le16 version;
1474
__le16 u64s; /* count of d[] in u64s */
1475
1476
struct bkey_packed start[0];
1477
__u64 _data[];
1478
} __packed __aligned(8);
1479
1480
LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4);
1481
1482
LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5);
1483
LE32_BITMASK(BSET_SEPARATE_WHITEOUTS,
1484
struct bset, flags, 5, 6);
1485
1486
/* Sector offset within the btree node: */
1487
LE32_BITMASK(BSET_OFFSET, struct bset, flags, 16, 32);
1488
1489
struct btree_node {
1490
struct bch_csum csum;
1491
__le64 magic;
1492
1493
/* this flags field is encrypted, unlike bset->flags: */
1494
__le64 flags;
1495
1496
/* Closed interval: */
1497
struct bpos min_key;
1498
struct bpos max_key;
1499
struct bch_extent_ptr _ptr; /* not used anymore */
1500
struct bkey_format format;
1501
1502
union {
1503
struct bset keys;
1504
struct {
1505
__u8 pad[22];
1506
__le16 u64s;
1507
__u64 _data[0];
1508
1509
};
1510
};
1511
} __packed __aligned(8);
1512
1513
LE64_BITMASK(BTREE_NODE_ID_LO, struct btree_node, flags, 0, 4);
1514
LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8);
1515
LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE,
1516
struct btree_node, flags, 8, 9);
1517
LE64_BITMASK(BTREE_NODE_ID_HI, struct btree_node, flags, 9, 25);
1518
/* 25-32 unused */
1519
LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64);
1520
1521
static inline __u64 BTREE_NODE_ID(struct btree_node *n)
1522
{
1523
return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4);
1524
}
1525
1526
static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v)
1527
{
1528
SET_BTREE_NODE_ID_LO(n, v);
1529
SET_BTREE_NODE_ID_HI(n, v >> 4);
1530
}
1531
1532
struct btree_node_entry {
1533
struct bch_csum csum;
1534
1535
union {
1536
struct bset keys;
1537
struct {
1538
__u8 pad[22];
1539
__le16 u64s;
1540
__u64 _data[0];
1541
};
1542
};
1543
} __packed __aligned(8);
1544
1545
#endif /* _BCACHEFS_FORMAT_H */
1546
1547