Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/bcachefs/bset.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Code for working with individual keys, and sorted sets of keys with in a
4
* btree node
5
*
6
* Copyright 2012 Google, Inc.
7
*/
8
9
#include "bcachefs.h"
10
#include "btree_cache.h"
11
#include "bset.h"
12
#include "eytzinger.h"
13
#include "trace.h"
14
#include "util.h"
15
16
#include <linux/unaligned.h>
17
#include <linux/console.h>
18
#include <linux/random.h>
19
#include <linux/prefetch.h>
20
21
static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *,
22
struct btree *);
23
24
static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter)
25
{
26
unsigned n = ARRAY_SIZE(iter->data);
27
28
while (n && __btree_node_iter_set_end(iter, n - 1))
29
--n;
30
31
return n;
32
}
33
34
struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k)
35
{
36
return bch2_bkey_to_bset_inlined(b, k);
37
}
38
39
/*
40
* There are never duplicate live keys in the btree - but including keys that
41
* have been flagged as deleted (and will be cleaned up later) we _will_ see
42
* duplicates.
43
*
44
* Thus the sort order is: usual key comparison first, but for keys that compare
45
* equal the deleted key(s) come first, and the (at most one) live version comes
46
* last.
47
*
48
* The main reason for this is insertion: to handle overwrites, we first iterate
49
* over keys that compare equal to our insert key, and then insert immediately
50
* prior to the first key greater than the key we're inserting - our insert
51
* position will be after all keys that compare equal to our insert key, which
52
* by the time we actually do the insert will all be deleted.
53
*/
54
55
void bch2_dump_bset(struct bch_fs *c, struct btree *b,
56
struct bset *i, unsigned set)
57
{
58
struct bkey_packed *_k, *_n;
59
struct bkey uk, n;
60
struct bkey_s_c k;
61
struct printbuf buf = PRINTBUF;
62
63
if (!i->u64s)
64
return;
65
66
for (_k = i->start;
67
_k < vstruct_last(i);
68
_k = _n) {
69
_n = bkey_p_next(_k);
70
71
if (!_k->u64s) {
72
printk(KERN_ERR "block %u key %5zu - u64s 0? aieee!\n", set,
73
_k->_data - i->_data);
74
break;
75
}
76
77
k = bkey_disassemble(b, _k, &uk);
78
79
printbuf_reset(&buf);
80
if (c)
81
bch2_bkey_val_to_text(&buf, c, k);
82
else
83
bch2_bkey_to_text(&buf, k.k);
84
printk(KERN_ERR "block %u key %5zu: %s\n", set,
85
_k->_data - i->_data, buf.buf);
86
87
if (_n == vstruct_last(i))
88
continue;
89
90
n = bkey_unpack_key(b, _n);
91
92
if (bpos_lt(n.p, k.k->p)) {
93
printk(KERN_ERR "Key skipped backwards\n");
94
continue;
95
}
96
97
if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p))
98
printk(KERN_ERR "Duplicate keys\n");
99
}
100
101
printbuf_exit(&buf);
102
}
103
104
void bch2_dump_btree_node(struct bch_fs *c, struct btree *b)
105
{
106
console_lock();
107
for_each_bset(b, t)
108
bch2_dump_bset(c, b, bset(b, t), t - b->set);
109
console_unlock();
110
}
111
112
void bch2_dump_btree_node_iter(struct btree *b,
113
struct btree_node_iter *iter)
114
{
115
struct btree_node_iter_set *set;
116
struct printbuf buf = PRINTBUF;
117
118
printk(KERN_ERR "btree node iter with %u/%u sets:\n",
119
__btree_node_iter_used(iter), b->nsets);
120
121
btree_node_iter_for_each(iter, set) {
122
struct bkey_packed *k = __btree_node_offset_to_key(b, set->k);
123
struct bset_tree *t = bch2_bkey_to_bset(b, k);
124
struct bkey uk = bkey_unpack_key(b, k);
125
126
printbuf_reset(&buf);
127
bch2_bkey_to_text(&buf, &uk);
128
printk(KERN_ERR "set %zu key %u: %s\n",
129
t - b->set, set->k, buf.buf);
130
}
131
132
printbuf_exit(&buf);
133
}
134
135
struct btree_nr_keys bch2_btree_node_count_keys(struct btree *b)
136
{
137
struct bkey_packed *k;
138
struct btree_nr_keys nr = {};
139
140
for_each_bset(b, t)
141
bset_tree_for_each_key(b, t, k)
142
if (!bkey_deleted(k))
143
btree_keys_account_key_add(&nr, t - b->set, k);
144
return nr;
145
}
146
147
void __bch2_verify_btree_nr_keys(struct btree *b)
148
{
149
struct btree_nr_keys nr = bch2_btree_node_count_keys(b);
150
151
BUG_ON(memcmp(&nr, &b->nr, sizeof(nr)));
152
}
153
154
static void __bch2_btree_node_iter_next_check(struct btree_node_iter *_iter,
155
struct btree *b)
156
{
157
struct btree_node_iter iter = *_iter;
158
const struct bkey_packed *k, *n;
159
160
k = bch2_btree_node_iter_peek_all(&iter, b);
161
__bch2_btree_node_iter_advance(&iter, b);
162
n = bch2_btree_node_iter_peek_all(&iter, b);
163
164
bkey_unpack_key(b, k);
165
166
if (n &&
167
bkey_iter_cmp(b, k, n) > 0) {
168
struct btree_node_iter_set *set;
169
struct bkey ku = bkey_unpack_key(b, k);
170
struct bkey nu = bkey_unpack_key(b, n);
171
struct printbuf buf1 = PRINTBUF;
172
struct printbuf buf2 = PRINTBUF;
173
174
bch2_dump_btree_node(NULL, b);
175
bch2_bkey_to_text(&buf1, &ku);
176
bch2_bkey_to_text(&buf2, &nu);
177
printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n",
178
buf1.buf, buf2.buf);
179
printk(KERN_ERR "iter was:");
180
181
btree_node_iter_for_each(_iter, set) {
182
struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k);
183
struct bset_tree *t = bch2_bkey_to_bset(b, k2);
184
printk(" [%zi %zi]", t - b->set,
185
k2->_data - bset(b, t)->_data);
186
}
187
panic("\n");
188
}
189
}
190
191
void __bch2_btree_node_iter_verify(struct btree_node_iter *iter,
192
struct btree *b)
193
{
194
struct btree_node_iter_set *set, *s2;
195
struct bkey_packed *k, *p;
196
197
if (bch2_btree_node_iter_end(iter))
198
return;
199
200
/* Verify no duplicates: */
201
btree_node_iter_for_each(iter, set) {
202
BUG_ON(set->k > set->end);
203
btree_node_iter_for_each(iter, s2)
204
BUG_ON(set != s2 && set->end == s2->end);
205
}
206
207
/* Verify that set->end is correct: */
208
btree_node_iter_for_each(iter, set) {
209
for_each_bset(b, t)
210
if (set->end == t->end_offset) {
211
BUG_ON(set->k < btree_bkey_first_offset(t) ||
212
set->k >= t->end_offset);
213
goto found;
214
}
215
BUG();
216
found:
217
do {} while (0);
218
}
219
220
/* Verify iterator is sorted: */
221
btree_node_iter_for_each(iter, set)
222
BUG_ON(set != iter->data &&
223
btree_node_iter_cmp(b, set[-1], set[0]) > 0);
224
225
k = bch2_btree_node_iter_peek_all(iter, b);
226
227
for_each_bset(b, t) {
228
if (iter->data[0].end == t->end_offset)
229
continue;
230
231
p = bch2_bkey_prev_all(b, t,
232
bch2_btree_node_iter_bset_pos(iter, b, t));
233
234
BUG_ON(p && bkey_iter_cmp(b, k, p) < 0);
235
}
236
}
237
238
static void __bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where,
239
struct bkey_packed *insert, unsigned clobber_u64s)
240
{
241
struct bset_tree *t = bch2_bkey_to_bset(b, where);
242
struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where);
243
struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s);
244
struct printbuf buf1 = PRINTBUF;
245
struct printbuf buf2 = PRINTBUF;
246
#if 0
247
BUG_ON(prev &&
248
bkey_iter_cmp(b, prev, insert) > 0);
249
#else
250
if (prev &&
251
bkey_iter_cmp(b, prev, insert) > 0) {
252
struct bkey k1 = bkey_unpack_key(b, prev);
253
struct bkey k2 = bkey_unpack_key(b, insert);
254
255
bch2_dump_btree_node(NULL, b);
256
bch2_bkey_to_text(&buf1, &k1);
257
bch2_bkey_to_text(&buf2, &k2);
258
259
panic("prev > insert:\n"
260
"prev key %s\n"
261
"insert key %s\n",
262
buf1.buf, buf2.buf);
263
}
264
#endif
265
#if 0
266
BUG_ON(next != btree_bkey_last(b, t) &&
267
bkey_iter_cmp(b, insert, next) > 0);
268
#else
269
if (next != btree_bkey_last(b, t) &&
270
bkey_iter_cmp(b, insert, next) > 0) {
271
struct bkey k1 = bkey_unpack_key(b, insert);
272
struct bkey k2 = bkey_unpack_key(b, next);
273
274
bch2_dump_btree_node(NULL, b);
275
bch2_bkey_to_text(&buf1, &k1);
276
bch2_bkey_to_text(&buf2, &k2);
277
278
panic("insert > next:\n"
279
"insert key %s\n"
280
"next key %s\n",
281
buf1.buf, buf2.buf);
282
}
283
#endif
284
}
285
286
static inline void bch2_verify_insert_pos(struct btree *b,
287
struct bkey_packed *where,
288
struct bkey_packed *insert,
289
unsigned clobber_u64s)
290
{
291
if (static_branch_unlikely(&bch2_debug_check_bset_lookups))
292
__bch2_verify_insert_pos(b, where, insert, clobber_u64s);
293
}
294
295
296
/* Auxiliary search trees */
297
298
#define BFLOAT_FAILED_UNPACKED U8_MAX
299
#define BFLOAT_FAILED U8_MAX
300
301
struct bkey_float {
302
u8 exponent;
303
u8 key_offset;
304
u16 mantissa;
305
};
306
#define BKEY_MANTISSA_BITS 16
307
308
struct ro_aux_tree {
309
u8 nothing[0];
310
struct bkey_float f[];
311
};
312
313
struct rw_aux_tree {
314
u16 offset;
315
struct bpos k;
316
};
317
318
static unsigned bset_aux_tree_buf_end(const struct bset_tree *t)
319
{
320
BUG_ON(t->aux_data_offset == U16_MAX);
321
322
switch (bset_aux_tree_type(t)) {
323
case BSET_NO_AUX_TREE:
324
return t->aux_data_offset;
325
case BSET_RO_AUX_TREE:
326
return t->aux_data_offset +
327
DIV_ROUND_UP(t->size * sizeof(struct bkey_float), 8);
328
case BSET_RW_AUX_TREE:
329
return t->aux_data_offset +
330
DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8);
331
default:
332
BUG();
333
}
334
}
335
336
static unsigned bset_aux_tree_buf_start(const struct btree *b,
337
const struct bset_tree *t)
338
{
339
return t == b->set
340
? DIV_ROUND_UP(b->unpack_fn_len, 8)
341
: bset_aux_tree_buf_end(t - 1);
342
}
343
344
static void *__aux_tree_base(const struct btree *b,
345
const struct bset_tree *t)
346
{
347
return b->aux_data + t->aux_data_offset * 8;
348
}
349
350
static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b,
351
const struct bset_tree *t)
352
{
353
EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
354
355
return __aux_tree_base(b, t);
356
}
357
358
static struct bkey_float *bkey_float(const struct btree *b,
359
const struct bset_tree *t,
360
unsigned idx)
361
{
362
return ro_aux_tree_base(b, t)->f + idx;
363
}
364
365
static void __bset_aux_tree_verify(struct btree *b)
366
{
367
for_each_bset(b, t) {
368
if (t->aux_data_offset == U16_MAX)
369
continue;
370
371
BUG_ON(t != b->set &&
372
t[-1].aux_data_offset == U16_MAX);
373
374
BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t));
375
BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b));
376
BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b));
377
}
378
}
379
380
static inline void bset_aux_tree_verify(struct btree *b)
381
{
382
if (static_branch_unlikely(&bch2_debug_check_bset_lookups))
383
__bset_aux_tree_verify(b);
384
}
385
386
void bch2_btree_keys_init(struct btree *b)
387
{
388
unsigned i;
389
390
b->nsets = 0;
391
memset(&b->nr, 0, sizeof(b->nr));
392
393
for (i = 0; i < MAX_BSETS; i++)
394
b->set[i].data_offset = U16_MAX;
395
396
bch2_bset_set_no_aux_tree(b, b->set);
397
}
398
399
/* Binary tree stuff for auxiliary search trees */
400
401
/*
402
* Cacheline/offset <-> bkey pointer arithmetic:
403
*
404
* t->tree is a binary search tree in an array; each node corresponds to a key
405
* in one cacheline in t->set (BSET_CACHELINE bytes).
406
*
407
* This means we don't have to store the full index of the key that a node in
408
* the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and
409
* then bkey_float->m gives us the offset within that cacheline, in units of 8
410
* bytes.
411
*
412
* cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
413
* make this work.
414
*
415
* To construct the bfloat for an arbitrary key we need to know what the key
416
* immediately preceding it is: we have to check if the two keys differ in the
417
* bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
418
* of the previous key so we can walk backwards to it from t->tree[j]'s key.
419
*/
420
421
static inline void *bset_cacheline(const struct btree *b,
422
const struct bset_tree *t,
423
unsigned cacheline)
424
{
425
return (void *) round_down((unsigned long) btree_bkey_first(b, t),
426
L1_CACHE_BYTES) +
427
cacheline * BSET_CACHELINE;
428
}
429
430
static struct bkey_packed *cacheline_to_bkey(const struct btree *b,
431
const struct bset_tree *t,
432
unsigned cacheline,
433
unsigned offset)
434
{
435
return bset_cacheline(b, t, cacheline) + offset * 8;
436
}
437
438
static unsigned bkey_to_cacheline(const struct btree *b,
439
const struct bset_tree *t,
440
const struct bkey_packed *k)
441
{
442
return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE;
443
}
444
445
static ssize_t __bkey_to_cacheline_offset(const struct btree *b,
446
const struct bset_tree *t,
447
unsigned cacheline,
448
const struct bkey_packed *k)
449
{
450
return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline);
451
}
452
453
static unsigned bkey_to_cacheline_offset(const struct btree *b,
454
const struct bset_tree *t,
455
unsigned cacheline,
456
const struct bkey_packed *k)
457
{
458
size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k);
459
460
EBUG_ON(m > U8_MAX);
461
return m;
462
}
463
464
static inline struct bkey_packed *tree_to_bkey(const struct btree *b,
465
const struct bset_tree *t,
466
unsigned j)
467
{
468
return cacheline_to_bkey(b, t,
469
__eytzinger1_to_inorder(j, t->size - 1, t->extra),
470
bkey_float(b, t, j)->key_offset);
471
}
472
473
static struct rw_aux_tree *rw_aux_tree(const struct btree *b,
474
const struct bset_tree *t)
475
{
476
EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
477
478
return __aux_tree_base(b, t);
479
}
480
481
/*
482
* For the write set - the one we're currently inserting keys into - we don't
483
* maintain a full search tree, we just keep a simple lookup table in t->prev.
484
*/
485
static struct bkey_packed *rw_aux_to_bkey(const struct btree *b,
486
struct bset_tree *t,
487
unsigned j)
488
{
489
return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset);
490
}
491
492
static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t,
493
unsigned j, struct bkey_packed *k)
494
{
495
EBUG_ON(k >= btree_bkey_last(b, t));
496
497
rw_aux_tree(b, t)[j] = (struct rw_aux_tree) {
498
.offset = __btree_node_key_to_offset(b, k),
499
.k = bkey_unpack_pos(b, k),
500
};
501
}
502
503
static void __bch2_bset_verify_rw_aux_tree(struct btree *b, struct bset_tree *t)
504
{
505
struct bkey_packed *k = btree_bkey_first(b, t);
506
unsigned j = 0;
507
508
BUG_ON(bset_has_ro_aux_tree(t));
509
510
if (!bset_has_rw_aux_tree(t))
511
return;
512
513
BUG_ON(t->size < 1);
514
BUG_ON(rw_aux_to_bkey(b, t, j) != k);
515
516
goto start;
517
while (1) {
518
if (rw_aux_to_bkey(b, t, j) == k) {
519
BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k,
520
bkey_unpack_pos(b, k)));
521
start:
522
if (++j == t->size)
523
break;
524
525
BUG_ON(rw_aux_tree(b, t)[j].offset <=
526
rw_aux_tree(b, t)[j - 1].offset);
527
}
528
529
k = bkey_p_next(k);
530
BUG_ON(k >= btree_bkey_last(b, t));
531
}
532
}
533
534
static inline void bch2_bset_verify_rw_aux_tree(struct btree *b,
535
struct bset_tree *t)
536
{
537
if (static_branch_unlikely(&bch2_debug_check_bset_lookups))
538
__bch2_bset_verify_rw_aux_tree(b, t);
539
}
540
541
/* returns idx of first entry >= offset: */
542
static unsigned rw_aux_tree_bsearch(struct btree *b,
543
struct bset_tree *t,
544
unsigned offset)
545
{
546
unsigned bset_offs = offset - btree_bkey_first_offset(t);
547
unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t);
548
unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0;
549
550
EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
551
EBUG_ON(!t->size);
552
EBUG_ON(idx > t->size);
553
554
while (idx < t->size &&
555
rw_aux_tree(b, t)[idx].offset < offset)
556
idx++;
557
558
while (idx &&
559
rw_aux_tree(b, t)[idx - 1].offset >= offset)
560
idx--;
561
562
EBUG_ON(idx < t->size &&
563
rw_aux_tree(b, t)[idx].offset < offset);
564
EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset);
565
EBUG_ON(idx + 1 < t->size &&
566
rw_aux_tree(b, t)[idx].offset ==
567
rw_aux_tree(b, t)[idx + 1].offset);
568
569
return idx;
570
}
571
572
static inline unsigned bkey_mantissa(const struct bkey_packed *k,
573
const struct bkey_float *f)
574
{
575
u64 v;
576
577
EBUG_ON(!bkey_packed(k));
578
579
v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3)));
580
581
/*
582
* In little endian, we're shifting off low bits (and then the bits we
583
* want are at the low end), in big endian we're shifting off high bits
584
* (and then the bits we want are at the high end, so we shift them
585
* back down):
586
*/
587
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
588
v >>= f->exponent & 7;
589
#else
590
v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS;
591
#endif
592
return (u16) v;
593
}
594
595
static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t,
596
unsigned j,
597
struct bkey_packed *min_key,
598
struct bkey_packed *max_key)
599
{
600
struct bkey_float *f = bkey_float(b, t, j);
601
struct bkey_packed *m = tree_to_bkey(b, t, j);
602
struct bkey_packed *l = is_power_of_2(j)
603
? min_key
604
: tree_to_bkey(b, t, j >> ffs(j));
605
struct bkey_packed *r = is_power_of_2(j + 1)
606
? max_key
607
: tree_to_bkey(b, t, j >> (ffz(j) + 1));
608
unsigned mantissa;
609
int shift, exponent, high_bit;
610
611
/*
612
* for failed bfloats, the lookup code falls back to comparing against
613
* the original key.
614
*/
615
616
if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) ||
617
!b->nr_key_bits) {
618
f->exponent = BFLOAT_FAILED_UNPACKED;
619
return;
620
}
621
622
/*
623
* The greatest differing bit of l and r is the first bit we must
624
* include in the bfloat mantissa we're creating in order to do
625
* comparisons - that bit always becomes the high bit of
626
* bfloat->mantissa, and thus the exponent we're calculating here is
627
* the position of what will become the low bit in bfloat->mantissa:
628
*
629
* Note that this may be negative - we may be running off the low end
630
* of the key: we handle this later:
631
*/
632
high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r),
633
min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1);
634
exponent = high_bit - (BKEY_MANTISSA_BITS - 1);
635
636
/*
637
* Then we calculate the actual shift value, from the start of the key
638
* (k->_data), to get the key bits starting at exponent:
639
*/
640
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
641
shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent;
642
643
EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64);
644
#else
645
shift = high_bit_offset +
646
b->nr_key_bits -
647
exponent -
648
BKEY_MANTISSA_BITS;
649
650
EBUG_ON(shift < KEY_PACKED_BITS_START);
651
#endif
652
EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED);
653
654
f->exponent = shift;
655
mantissa = bkey_mantissa(m, f);
656
657
/*
658
* If we've got garbage bits, set them to all 1s - it's legal for the
659
* bfloat to compare larger than the original key, but not smaller:
660
*/
661
if (exponent < 0)
662
mantissa |= ~(~0U << -exponent);
663
664
f->mantissa = mantissa;
665
}
666
667
/* bytes remaining - only valid for last bset: */
668
static unsigned __bset_tree_capacity(struct btree *b, const struct bset_tree *t)
669
{
670
bset_aux_tree_verify(b);
671
672
return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64);
673
}
674
675
static unsigned bset_ro_tree_capacity(struct btree *b, const struct bset_tree *t)
676
{
677
return __bset_tree_capacity(b, t) / sizeof(struct bkey_float);
678
}
679
680
static unsigned bset_rw_tree_capacity(struct btree *b, const struct bset_tree *t)
681
{
682
return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree);
683
}
684
685
static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t)
686
{
687
struct bkey_packed *k;
688
689
t->size = 1;
690
t->extra = BSET_RW_AUX_TREE_VAL;
691
rw_aux_tree(b, t)[0].offset =
692
__btree_node_key_to_offset(b, btree_bkey_first(b, t));
693
694
bset_tree_for_each_key(b, t, k) {
695
if (t->size == bset_rw_tree_capacity(b, t))
696
break;
697
698
if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) >
699
L1_CACHE_BYTES)
700
rw_aux_tree_set(b, t, t->size++, k);
701
}
702
}
703
704
static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t)
705
{
706
struct bkey_packed *k = btree_bkey_first(b, t);
707
struct bkey_i min_key, max_key;
708
unsigned cacheline = 1;
709
710
t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)),
711
bset_ro_tree_capacity(b, t));
712
retry:
713
if (t->size < 2) {
714
t->size = 0;
715
t->extra = BSET_NO_AUX_TREE_VAL;
716
return;
717
}
718
719
t->extra = eytzinger1_extra(t->size - 1);
720
721
/* First we figure out where the first key in each cacheline is */
722
eytzinger1_for_each(j, t->size - 1) {
723
while (bkey_to_cacheline(b, t, k) < cacheline)
724
k = bkey_p_next(k);
725
726
if (k >= btree_bkey_last(b, t)) {
727
/* XXX: this path sucks */
728
t->size--;
729
goto retry;
730
}
731
732
bkey_float(b, t, j)->key_offset =
733
bkey_to_cacheline_offset(b, t, cacheline++, k);
734
735
EBUG_ON(tree_to_bkey(b, t, j) != k);
736
}
737
738
if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) {
739
bkey_init(&min_key.k);
740
min_key.k.p = b->data->min_key;
741
}
742
743
if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) {
744
bkey_init(&max_key.k);
745
max_key.k.p = b->data->max_key;
746
}
747
748
/* Then we build the tree */
749
eytzinger1_for_each(j, t->size - 1)
750
make_bfloat(b, t, j,
751
bkey_to_packed(&min_key),
752
bkey_to_packed(&max_key));
753
}
754
755
static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
756
{
757
struct bset_tree *i;
758
759
for (i = b->set; i != t; i++)
760
BUG_ON(bset_has_rw_aux_tree(i));
761
762
bch2_bset_set_no_aux_tree(b, t);
763
764
/* round up to next cacheline: */
765
t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t),
766
SMP_CACHE_BYTES / sizeof(u64));
767
768
bset_aux_tree_verify(b);
769
}
770
771
void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t,
772
bool writeable)
773
{
774
if (writeable
775
? bset_has_rw_aux_tree(t)
776
: bset_has_ro_aux_tree(t))
777
return;
778
779
bset_alloc_tree(b, t);
780
781
if (!__bset_tree_capacity(b, t))
782
return;
783
784
if (writeable)
785
__build_rw_aux_tree(b, t);
786
else
787
__build_ro_aux_tree(b, t);
788
789
bset_aux_tree_verify(b);
790
}
791
792
void bch2_bset_init_first(struct btree *b, struct bset *i)
793
{
794
struct bset_tree *t;
795
796
BUG_ON(b->nsets);
797
798
memset(i, 0, sizeof(*i));
799
get_random_bytes(&i->seq, sizeof(i->seq));
800
SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
801
802
t = &b->set[b->nsets++];
803
set_btree_bset(b, t, i);
804
}
805
806
void bch2_bset_init_next(struct btree *b, struct btree_node_entry *bne)
807
{
808
struct bset *i = &bne->keys;
809
struct bset_tree *t;
810
811
BUG_ON(bset_byte_offset(b, bne) >= btree_buf_bytes(b));
812
BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b)));
813
BUG_ON(b->nsets >= MAX_BSETS);
814
815
memset(i, 0, sizeof(*i));
816
i->seq = btree_bset_first(b)->seq;
817
SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
818
819
t = &b->set[b->nsets++];
820
set_btree_bset(b, t, i);
821
}
822
823
/*
824
* find _some_ key in the same bset as @k that precedes @k - not necessarily the
825
* immediate predecessor:
826
*/
827
static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t,
828
struct bkey_packed *k)
829
{
830
struct bkey_packed *p;
831
unsigned offset;
832
int j;
833
834
EBUG_ON(k < btree_bkey_first(b, t) ||
835
k > btree_bkey_last(b, t));
836
837
if (k == btree_bkey_first(b, t))
838
return NULL;
839
840
switch (bset_aux_tree_type(t)) {
841
case BSET_NO_AUX_TREE:
842
p = btree_bkey_first(b, t);
843
break;
844
case BSET_RO_AUX_TREE:
845
j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k));
846
847
do {
848
p = j ? tree_to_bkey(b, t,
849
__inorder_to_eytzinger1(j--,
850
t->size - 1, t->extra))
851
: btree_bkey_first(b, t);
852
} while (p >= k);
853
break;
854
case BSET_RW_AUX_TREE:
855
offset = __btree_node_key_to_offset(b, k);
856
j = rw_aux_tree_bsearch(b, t, offset);
857
p = j ? rw_aux_to_bkey(b, t, j - 1)
858
: btree_bkey_first(b, t);
859
break;
860
}
861
862
return p;
863
}
864
865
struct bkey_packed *bch2_bkey_prev_filter(struct btree *b,
866
struct bset_tree *t,
867
struct bkey_packed *k,
868
unsigned min_key_type)
869
{
870
struct bkey_packed *p, *i, *ret = NULL, *orig_k = k;
871
872
while ((p = __bkey_prev(b, t, k)) && !ret) {
873
for (i = p; i != k; i = bkey_p_next(i))
874
if (i->type >= min_key_type)
875
ret = i;
876
877
k = p;
878
}
879
880
if (static_branch_unlikely(&bch2_debug_check_bset_lookups)) {
881
BUG_ON(ret >= orig_k);
882
883
for (i = ret
884
? bkey_p_next(ret)
885
: btree_bkey_first(b, t);
886
i != orig_k;
887
i = bkey_p_next(i))
888
BUG_ON(i->type >= min_key_type);
889
}
890
891
return ret;
892
}
893
894
/* Insert */
895
896
static void rw_aux_tree_insert_entry(struct btree *b,
897
struct bset_tree *t,
898
unsigned idx)
899
{
900
EBUG_ON(!idx || idx > t->size);
901
struct bkey_packed *start = rw_aux_to_bkey(b, t, idx - 1);
902
struct bkey_packed *end = idx < t->size
903
? rw_aux_to_bkey(b, t, idx)
904
: btree_bkey_last(b, t);
905
906
if (t->size < bset_rw_tree_capacity(b, t) &&
907
(void *) end - (void *) start > L1_CACHE_BYTES) {
908
struct bkey_packed *k = start;
909
910
while (1) {
911
k = bkey_p_next(k);
912
if (k == end)
913
break;
914
915
if ((void *) k - (void *) start >= L1_CACHE_BYTES) {
916
memmove(&rw_aux_tree(b, t)[idx + 1],
917
&rw_aux_tree(b, t)[idx],
918
(void *) &rw_aux_tree(b, t)[t->size] -
919
(void *) &rw_aux_tree(b, t)[idx]);
920
t->size++;
921
rw_aux_tree_set(b, t, idx, k);
922
break;
923
}
924
}
925
}
926
}
927
928
static void bch2_bset_fix_lookup_table(struct btree *b,
929
struct bset_tree *t,
930
struct bkey_packed *_where,
931
unsigned clobber_u64s,
932
unsigned new_u64s)
933
{
934
int shift = new_u64s - clobber_u64s;
935
unsigned idx, j, where = __btree_node_key_to_offset(b, _where);
936
937
EBUG_ON(bset_has_ro_aux_tree(t));
938
939
if (!bset_has_rw_aux_tree(t))
940
return;
941
942
if (where > rw_aux_tree(b, t)[t->size - 1].offset) {
943
rw_aux_tree_insert_entry(b, t, t->size);
944
goto verify;
945
}
946
947
/* returns first entry >= where */
948
idx = rw_aux_tree_bsearch(b, t, where);
949
950
if (rw_aux_tree(b, t)[idx].offset == where) {
951
if (!idx) { /* never delete first entry */
952
idx++;
953
} else if (where < t->end_offset) {
954
rw_aux_tree_set(b, t, idx++, _where);
955
} else {
956
EBUG_ON(where != t->end_offset);
957
rw_aux_tree_insert_entry(b, t, --t->size);
958
goto verify;
959
}
960
}
961
962
EBUG_ON(idx < t->size && rw_aux_tree(b, t)[idx].offset <= where);
963
if (idx < t->size &&
964
rw_aux_tree(b, t)[idx].offset + shift ==
965
rw_aux_tree(b, t)[idx - 1].offset) {
966
memmove(&rw_aux_tree(b, t)[idx],
967
&rw_aux_tree(b, t)[idx + 1],
968
(void *) &rw_aux_tree(b, t)[t->size] -
969
(void *) &rw_aux_tree(b, t)[idx + 1]);
970
t->size -= 1;
971
}
972
973
for (j = idx; j < t->size; j++)
974
rw_aux_tree(b, t)[j].offset += shift;
975
976
EBUG_ON(idx < t->size &&
977
rw_aux_tree(b, t)[idx].offset ==
978
rw_aux_tree(b, t)[idx - 1].offset);
979
980
rw_aux_tree_insert_entry(b, t, idx);
981
982
verify:
983
bch2_bset_verify_rw_aux_tree(b, t);
984
bset_aux_tree_verify(b);
985
}
986
987
void bch2_bset_insert(struct btree *b,
988
struct bkey_packed *where,
989
struct bkey_i *insert,
990
unsigned clobber_u64s)
991
{
992
struct bkey_format *f = &b->format;
993
struct bset_tree *t = bset_tree_last(b);
994
struct bkey_packed packed, *src = bkey_to_packed(insert);
995
996
bch2_bset_verify_rw_aux_tree(b, t);
997
bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s);
998
999
if (bch2_bkey_pack_key(&packed, &insert->k, f))
1000
src = &packed;
1001
1002
if (!bkey_deleted(&insert->k))
1003
btree_keys_account_key_add(&b->nr, t - b->set, src);
1004
1005
if (src->u64s != clobber_u64s) {
1006
u64 *src_p = (u64 *) where->_data + clobber_u64s;
1007
u64 *dst_p = (u64 *) where->_data + src->u64s;
1008
1009
EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) <
1010
(int) clobber_u64s - src->u64s);
1011
1012
memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1013
le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s);
1014
set_btree_bset_end(b, t);
1015
}
1016
1017
memcpy_u64s_small(where, src,
1018
bkeyp_key_u64s(f, src));
1019
memcpy_u64s(bkeyp_val(f, where), &insert->v,
1020
bkeyp_val_u64s(f, src));
1021
1022
if (src->u64s != clobber_u64s)
1023
bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s);
1024
1025
bch2_verify_btree_nr_keys(b);
1026
}
1027
1028
void bch2_bset_delete(struct btree *b,
1029
struct bkey_packed *where,
1030
unsigned clobber_u64s)
1031
{
1032
struct bset_tree *t = bset_tree_last(b);
1033
u64 *src_p = (u64 *) where->_data + clobber_u64s;
1034
u64 *dst_p = where->_data;
1035
1036
bch2_bset_verify_rw_aux_tree(b, t);
1037
1038
EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s);
1039
1040
memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1041
le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s);
1042
set_btree_bset_end(b, t);
1043
1044
bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0);
1045
}
1046
1047
/* Lookup */
1048
1049
__flatten
1050
static struct bkey_packed *bset_search_write_set(const struct btree *b,
1051
struct bset_tree *t,
1052
struct bpos *search)
1053
{
1054
unsigned l = 0, r = t->size;
1055
1056
while (l + 1 != r) {
1057
unsigned m = (l + r) >> 1;
1058
1059
if (bpos_lt(rw_aux_tree(b, t)[m].k, *search))
1060
l = m;
1061
else
1062
r = m;
1063
}
1064
1065
return rw_aux_to_bkey(b, t, l);
1066
}
1067
1068
static inline void prefetch_four_cachelines(void *p)
1069
{
1070
#ifdef CONFIG_X86_64
1071
asm("prefetcht0 (-127 + 64 * 0)(%0);"
1072
"prefetcht0 (-127 + 64 * 1)(%0);"
1073
"prefetcht0 (-127 + 64 * 2)(%0);"
1074
"prefetcht0 (-127 + 64 * 3)(%0);"
1075
:
1076
: "r" (p + 127));
1077
#else
1078
prefetch(p + L1_CACHE_BYTES * 0);
1079
prefetch(p + L1_CACHE_BYTES * 1);
1080
prefetch(p + L1_CACHE_BYTES * 2);
1081
prefetch(p + L1_CACHE_BYTES * 3);
1082
#endif
1083
}
1084
1085
static inline bool bkey_mantissa_bits_dropped(const struct btree *b,
1086
const struct bkey_float *f)
1087
{
1088
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1089
unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits;
1090
1091
return f->exponent > key_bits_start;
1092
#else
1093
unsigned key_bits_end = high_bit_offset + b->nr_key_bits;
1094
1095
return f->exponent + BKEY_MANTISSA_BITS < key_bits_end;
1096
#endif
1097
}
1098
1099
__flatten
1100
static struct bkey_packed *bset_search_tree(const struct btree *b,
1101
const struct bset_tree *t,
1102
const struct bpos *search,
1103
const struct bkey_packed *packed_search)
1104
{
1105
struct ro_aux_tree *base = ro_aux_tree_base(b, t);
1106
struct bkey_float *f;
1107
struct bkey_packed *k;
1108
unsigned inorder, n = 1, l, r;
1109
int cmp;
1110
1111
do {
1112
if (likely(n << 4 < t->size))
1113
prefetch(&base->f[n << 4]);
1114
1115
f = &base->f[n];
1116
if (unlikely(f->exponent >= BFLOAT_FAILED))
1117
goto slowpath;
1118
1119
l = f->mantissa;
1120
r = bkey_mantissa(packed_search, f);
1121
1122
if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f))
1123
goto slowpath;
1124
1125
n = n * 2 + (l < r);
1126
continue;
1127
slowpath:
1128
k = tree_to_bkey(b, t, n);
1129
cmp = bkey_cmp_p_or_unp(b, k, packed_search, search);
1130
if (!cmp)
1131
return k;
1132
1133
n = n * 2 + (cmp < 0);
1134
} while (n < t->size);
1135
1136
inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra);
1137
1138
/*
1139
* n would have been the node we recursed to - the low bit tells us if
1140
* we recursed left or recursed right.
1141
*/
1142
if (likely(!(n & 1))) {
1143
--inorder;
1144
if (unlikely(!inorder))
1145
return btree_bkey_first(b, t);
1146
1147
f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)];
1148
}
1149
1150
return cacheline_to_bkey(b, t, inorder, f->key_offset);
1151
}
1152
1153
static __always_inline __flatten
1154
struct bkey_packed *__bch2_bset_search(struct btree *b,
1155
struct bset_tree *t,
1156
struct bpos *search,
1157
const struct bkey_packed *lossy_packed_search)
1158
{
1159
1160
/*
1161
* First, we search for a cacheline, then lastly we do a linear search
1162
* within that cacheline.
1163
*
1164
* To search for the cacheline, there's three different possibilities:
1165
* * The set is too small to have a search tree, so we just do a linear
1166
* search over the whole set.
1167
* * The set is the one we're currently inserting into; keeping a full
1168
* auxiliary search tree up to date would be too expensive, so we
1169
* use a much simpler lookup table to do a binary search -
1170
* bset_search_write_set().
1171
* * Or we use the auxiliary search tree we constructed earlier -
1172
* bset_search_tree()
1173
*/
1174
1175
switch (bset_aux_tree_type(t)) {
1176
case BSET_NO_AUX_TREE:
1177
return btree_bkey_first(b, t);
1178
case BSET_RW_AUX_TREE:
1179
return bset_search_write_set(b, t, search);
1180
case BSET_RO_AUX_TREE:
1181
return bset_search_tree(b, t, search, lossy_packed_search);
1182
default:
1183
BUG();
1184
}
1185
}
1186
1187
static __always_inline __flatten
1188
struct bkey_packed *bch2_bset_search_linear(struct btree *b,
1189
struct bset_tree *t,
1190
struct bpos *search,
1191
struct bkey_packed *packed_search,
1192
const struct bkey_packed *lossy_packed_search,
1193
struct bkey_packed *m)
1194
{
1195
if (lossy_packed_search)
1196
while (m != btree_bkey_last(b, t) &&
1197
bkey_iter_cmp_p_or_unp(b, m,
1198
lossy_packed_search, search) < 0)
1199
m = bkey_p_next(m);
1200
1201
if (!packed_search)
1202
while (m != btree_bkey_last(b, t) &&
1203
bkey_iter_pos_cmp(b, m, search) < 0)
1204
m = bkey_p_next(m);
1205
1206
if (static_branch_unlikely(&bch2_debug_check_bset_lookups)) {
1207
struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
1208
1209
BUG_ON(prev &&
1210
bkey_iter_cmp_p_or_unp(b, prev,
1211
packed_search, search) >= 0);
1212
}
1213
1214
return m;
1215
}
1216
1217
/* Btree node iterator */
1218
1219
static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter,
1220
struct btree *b,
1221
const struct bkey_packed *k,
1222
const struct bkey_packed *end)
1223
{
1224
if (k != end) {
1225
struct btree_node_iter_set *pos;
1226
1227
btree_node_iter_for_each(iter, pos)
1228
;
1229
1230
BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data));
1231
*pos = (struct btree_node_iter_set) {
1232
__btree_node_key_to_offset(b, k),
1233
__btree_node_key_to_offset(b, end)
1234
};
1235
}
1236
}
1237
1238
void bch2_btree_node_iter_push(struct btree_node_iter *iter,
1239
struct btree *b,
1240
const struct bkey_packed *k,
1241
const struct bkey_packed *end)
1242
{
1243
__bch2_btree_node_iter_push(iter, b, k, end);
1244
bch2_btree_node_iter_sort(iter, b);
1245
}
1246
1247
noinline __flatten __cold
1248
static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter,
1249
struct btree *b, struct bpos *search)
1250
{
1251
struct bkey_packed *k;
1252
1253
trace_bkey_pack_pos_fail(search);
1254
1255
bch2_btree_node_iter_init_from_start(iter, b);
1256
1257
while ((k = bch2_btree_node_iter_peek(iter, b)) &&
1258
bkey_iter_pos_cmp(b, k, search) < 0)
1259
bch2_btree_node_iter_advance(iter, b);
1260
}
1261
1262
/**
1263
* bch2_btree_node_iter_init - initialize a btree node iterator, starting from a
1264
* given position
1265
*
1266
* @iter: iterator to initialize
1267
* @b: btree node to search
1268
* @search: search key
1269
*
1270
* Main entry point to the lookup code for individual btree nodes:
1271
*
1272
* NOTE:
1273
*
1274
* When you don't filter out deleted keys, btree nodes _do_ contain duplicate
1275
* keys. This doesn't matter for most code, but it does matter for lookups.
1276
*
1277
* Some adjacent keys with a string of equal keys:
1278
* i j k k k k l m
1279
*
1280
* If you search for k, the lookup code isn't guaranteed to return you any
1281
* specific k. The lookup code is conceptually doing a binary search and
1282
* iterating backwards is very expensive so if the pivot happens to land at the
1283
* last k that's what you'll get.
1284
*
1285
* This works out ok, but it's something to be aware of:
1286
*
1287
* - For non extents, we guarantee that the live key comes last - see
1288
* btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't
1289
* see will only be deleted keys you don't care about.
1290
*
1291
* - For extents, deleted keys sort last (see the comment at the top of this
1292
* file). But when you're searching for extents, you actually want the first
1293
* key strictly greater than your search key - an extent that compares equal
1294
* to the search key is going to have 0 sectors after the search key.
1295
*
1296
* But this does mean that we can't just search for
1297
* bpos_successor(start_of_range) to get the first extent that overlaps with
1298
* the range we want - if we're unlucky and there's an extent that ends
1299
* exactly where we searched, then there could be a deleted key at the same
1300
* position and we'd get that when we search instead of the preceding extent
1301
* we needed.
1302
*
1303
* So we've got to search for start_of_range, then after the lookup iterate
1304
* past any extents that compare equal to the position we searched for.
1305
*/
1306
__flatten
1307
void bch2_btree_node_iter_init(struct btree_node_iter *iter,
1308
struct btree *b, struct bpos *search)
1309
{
1310
struct bkey_packed p, *packed_search = NULL;
1311
struct btree_node_iter_set *pos = iter->data;
1312
struct bkey_packed *k[MAX_BSETS];
1313
unsigned i;
1314
1315
EBUG_ON(bpos_lt(*search, b->data->min_key));
1316
EBUG_ON(bpos_gt(*search, b->data->max_key));
1317
bset_aux_tree_verify(b);
1318
1319
memset(iter, 0, sizeof(*iter));
1320
1321
switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) {
1322
case BKEY_PACK_POS_EXACT:
1323
packed_search = &p;
1324
break;
1325
case BKEY_PACK_POS_SMALLER:
1326
packed_search = NULL;
1327
break;
1328
case BKEY_PACK_POS_FAIL:
1329
btree_node_iter_init_pack_failed(iter, b, search);
1330
return;
1331
}
1332
1333
for (i = 0; i < b->nsets; i++) {
1334
k[i] = __bch2_bset_search(b, b->set + i, search, &p);
1335
prefetch_four_cachelines(k[i]);
1336
}
1337
1338
for (i = 0; i < b->nsets; i++) {
1339
struct bset_tree *t = b->set + i;
1340
struct bkey_packed *end = btree_bkey_last(b, t);
1341
1342
k[i] = bch2_bset_search_linear(b, t, search,
1343
packed_search, &p, k[i]);
1344
if (k[i] != end)
1345
*pos++ = (struct btree_node_iter_set) {
1346
__btree_node_key_to_offset(b, k[i]),
1347
__btree_node_key_to_offset(b, end)
1348
};
1349
}
1350
1351
bch2_btree_node_iter_sort(iter, b);
1352
}
1353
1354
void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter,
1355
struct btree *b)
1356
{
1357
memset(iter, 0, sizeof(*iter));
1358
1359
for_each_bset(b, t)
1360
__bch2_btree_node_iter_push(iter, b,
1361
btree_bkey_first(b, t),
1362
btree_bkey_last(b, t));
1363
bch2_btree_node_iter_sort(iter, b);
1364
}
1365
1366
struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter,
1367
struct btree *b,
1368
struct bset_tree *t)
1369
{
1370
struct btree_node_iter_set *set;
1371
1372
btree_node_iter_for_each(iter, set)
1373
if (set->end == t->end_offset)
1374
return __btree_node_offset_to_key(b, set->k);
1375
1376
return btree_bkey_last(b, t);
1377
}
1378
1379
static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter,
1380
struct btree *b,
1381
unsigned first)
1382
{
1383
bool ret;
1384
1385
if ((ret = (btree_node_iter_cmp(b,
1386
iter->data[first],
1387
iter->data[first + 1]) > 0)))
1388
swap(iter->data[first], iter->data[first + 1]);
1389
return ret;
1390
}
1391
1392
void bch2_btree_node_iter_sort(struct btree_node_iter *iter,
1393
struct btree *b)
1394
{
1395
/* unrolled bubble sort: */
1396
1397
if (!__btree_node_iter_set_end(iter, 2)) {
1398
btree_node_iter_sort_two(iter, b, 0);
1399
btree_node_iter_sort_two(iter, b, 1);
1400
}
1401
1402
if (!__btree_node_iter_set_end(iter, 1))
1403
btree_node_iter_sort_two(iter, b, 0);
1404
}
1405
1406
void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter,
1407
struct btree_node_iter_set *set)
1408
{
1409
struct btree_node_iter_set *last =
1410
iter->data + ARRAY_SIZE(iter->data) - 1;
1411
1412
memmove(&set[0], &set[1], (void *) last - (void *) set);
1413
*last = (struct btree_node_iter_set) { 0, 0 };
1414
}
1415
1416
static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1417
struct btree *b)
1418
{
1419
iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s;
1420
1421
EBUG_ON(iter->data->k > iter->data->end);
1422
1423
if (unlikely(__btree_node_iter_set_end(iter, 0))) {
1424
/* avoid an expensive memmove call: */
1425
iter->data[0] = iter->data[1];
1426
iter->data[1] = iter->data[2];
1427
iter->data[2] = (struct btree_node_iter_set) { 0, 0 };
1428
return;
1429
}
1430
1431
if (__btree_node_iter_set_end(iter, 1))
1432
return;
1433
1434
if (!btree_node_iter_sort_two(iter, b, 0))
1435
return;
1436
1437
if (__btree_node_iter_set_end(iter, 2))
1438
return;
1439
1440
btree_node_iter_sort_two(iter, b, 1);
1441
}
1442
1443
void bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1444
struct btree *b)
1445
{
1446
if (static_branch_unlikely(&bch2_debug_check_bset_lookups)) {
1447
__bch2_btree_node_iter_verify(iter, b);
1448
__bch2_btree_node_iter_next_check(iter, b);
1449
}
1450
1451
__bch2_btree_node_iter_advance(iter, b);
1452
}
1453
1454
/*
1455
* Expensive:
1456
*/
1457
struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter,
1458
struct btree *b)
1459
{
1460
struct bkey_packed *k, *prev = NULL;
1461
struct btree_node_iter_set *set;
1462
unsigned end = 0;
1463
1464
bch2_btree_node_iter_verify(iter, b);
1465
1466
for_each_bset(b, t) {
1467
k = bch2_bkey_prev_all(b, t,
1468
bch2_btree_node_iter_bset_pos(iter, b, t));
1469
if (k &&
1470
(!prev || bkey_iter_cmp(b, k, prev) > 0)) {
1471
prev = k;
1472
end = t->end_offset;
1473
}
1474
}
1475
1476
if (!prev)
1477
return NULL;
1478
1479
/*
1480
* We're manually memmoving instead of just calling sort() to ensure the
1481
* prev we picked ends up in slot 0 - sort won't necessarily put it
1482
* there because of duplicate deleted keys:
1483
*/
1484
btree_node_iter_for_each(iter, set)
1485
if (set->end == end)
1486
goto found;
1487
1488
BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]);
1489
found:
1490
BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data));
1491
1492
memmove(&iter->data[1],
1493
&iter->data[0],
1494
(void *) set - (void *) &iter->data[0]);
1495
1496
iter->data[0].k = __btree_node_key_to_offset(b, prev);
1497
iter->data[0].end = end;
1498
1499
bch2_btree_node_iter_verify(iter, b);
1500
return prev;
1501
}
1502
1503
struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter,
1504
struct btree *b)
1505
{
1506
struct bkey_packed *prev;
1507
1508
do {
1509
prev = bch2_btree_node_iter_prev_all(iter, b);
1510
} while (prev && bkey_deleted(prev));
1511
1512
return prev;
1513
}
1514
1515
struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter,
1516
struct btree *b,
1517
struct bkey *u)
1518
{
1519
struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b);
1520
1521
return k ? bkey_disassemble(b, k, u) : bkey_s_c_null;
1522
}
1523
1524
/* Mergesort */
1525
1526
void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats)
1527
{
1528
for_each_bset_c(b, t) {
1529
enum bset_aux_tree_type type = bset_aux_tree_type(t);
1530
size_t j;
1531
1532
stats->sets[type].nr++;
1533
stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) *
1534
sizeof(u64);
1535
1536
if (bset_has_ro_aux_tree(t)) {
1537
stats->floats += t->size - 1;
1538
1539
for (j = 1; j < t->size; j++)
1540
stats->failed +=
1541
bkey_float(b, t, j)->exponent ==
1542
BFLOAT_FAILED;
1543
}
1544
}
1545
}
1546
1547
void bch2_bfloat_to_text(struct printbuf *out, struct btree *b,
1548
struct bkey_packed *k)
1549
{
1550
struct bset_tree *t = bch2_bkey_to_bset(b, k);
1551
struct bkey uk;
1552
unsigned j, inorder;
1553
1554
if (!bset_has_ro_aux_tree(t))
1555
return;
1556
1557
inorder = bkey_to_cacheline(b, t, k);
1558
if (!inorder || inorder >= t->size)
1559
return;
1560
1561
j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra);
1562
if (k != tree_to_bkey(b, t, j))
1563
return;
1564
1565
switch (bkey_float(b, t, j)->exponent) {
1566
case BFLOAT_FAILED:
1567
uk = bkey_unpack_key(b, k);
1568
prt_printf(out,
1569
" failed unpacked at depth %u\n"
1570
"\t",
1571
ilog2(j));
1572
bch2_bpos_to_text(out, uk.p);
1573
prt_printf(out, "\n");
1574
break;
1575
}
1576
}
1577
1578