Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/bcachefs/btree_io.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
#include "bcachefs.h"
4
#include "async_objs.h"
5
#include "bkey_buf.h"
6
#include "bkey_methods.h"
7
#include "bkey_sort.h"
8
#include "btree_cache.h"
9
#include "btree_io.h"
10
#include "btree_iter.h"
11
#include "btree_locking.h"
12
#include "btree_update.h"
13
#include "btree_update_interior.h"
14
#include "buckets.h"
15
#include "checksum.h"
16
#include "debug.h"
17
#include "enumerated_ref.h"
18
#include "error.h"
19
#include "extents.h"
20
#include "io_write.h"
21
#include "journal_reclaim.h"
22
#include "journal_seq_blacklist.h"
23
#include "recovery.h"
24
#include "super-io.h"
25
#include "trace.h"
26
27
#include <linux/sched/mm.h>
28
29
static void bch2_btree_node_header_to_text(struct printbuf *out, struct btree_node *bn)
30
{
31
bch2_btree_id_level_to_text(out, BTREE_NODE_ID(bn), BTREE_NODE_LEVEL(bn));
32
prt_printf(out, " seq %llx %llu\n", bn->keys.seq, BTREE_NODE_SEQ(bn));
33
prt_str(out, "min: ");
34
bch2_bpos_to_text(out, bn->min_key);
35
prt_newline(out);
36
prt_str(out, "max: ");
37
bch2_bpos_to_text(out, bn->max_key);
38
}
39
40
void bch2_btree_node_io_unlock(struct btree *b)
41
{
42
EBUG_ON(!btree_node_write_in_flight(b));
43
44
clear_btree_node_write_in_flight_inner(b);
45
clear_btree_node_write_in_flight(b);
46
smp_mb__after_atomic();
47
wake_up_bit(&b->flags, BTREE_NODE_write_in_flight);
48
}
49
50
void bch2_btree_node_io_lock(struct btree *b)
51
{
52
wait_on_bit_lock_io(&b->flags, BTREE_NODE_write_in_flight,
53
TASK_UNINTERRUPTIBLE);
54
}
55
56
void __bch2_btree_node_wait_on_read(struct btree *b)
57
{
58
wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight,
59
TASK_UNINTERRUPTIBLE);
60
}
61
62
void __bch2_btree_node_wait_on_write(struct btree *b)
63
{
64
wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight,
65
TASK_UNINTERRUPTIBLE);
66
}
67
68
void bch2_btree_node_wait_on_read(struct btree *b)
69
{
70
wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight,
71
TASK_UNINTERRUPTIBLE);
72
}
73
74
void bch2_btree_node_wait_on_write(struct btree *b)
75
{
76
wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight,
77
TASK_UNINTERRUPTIBLE);
78
}
79
80
static void verify_no_dups(struct btree *b,
81
struct bkey_packed *start,
82
struct bkey_packed *end)
83
{
84
#ifdef CONFIG_BCACHEFS_DEBUG
85
struct bkey_packed *k, *p;
86
87
if (start == end)
88
return;
89
90
for (p = start, k = bkey_p_next(start);
91
k != end;
92
p = k, k = bkey_p_next(k)) {
93
struct bkey l = bkey_unpack_key(b, p);
94
struct bkey r = bkey_unpack_key(b, k);
95
96
BUG_ON(bpos_ge(l.p, bkey_start_pos(&r)));
97
}
98
#endif
99
}
100
101
static void set_needs_whiteout(struct bset *i, int v)
102
{
103
struct bkey_packed *k;
104
105
for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k))
106
k->needs_whiteout = v;
107
}
108
109
static void btree_bounce_free(struct bch_fs *c, size_t size,
110
bool used_mempool, void *p)
111
{
112
if (used_mempool)
113
mempool_free(p, &c->btree_bounce_pool);
114
else
115
kvfree(p);
116
}
117
118
static void *btree_bounce_alloc(struct bch_fs *c, size_t size,
119
bool *used_mempool)
120
{
121
unsigned flags = memalloc_nofs_save();
122
void *p;
123
124
BUG_ON(size > c->opts.btree_node_size);
125
126
*used_mempool = false;
127
p = kvmalloc(size, __GFP_NOWARN|GFP_NOWAIT);
128
if (!p) {
129
*used_mempool = true;
130
p = mempool_alloc(&c->btree_bounce_pool, GFP_NOFS);
131
}
132
memalloc_nofs_restore(flags);
133
return p;
134
}
135
136
static void sort_bkey_ptrs(const struct btree *bt,
137
struct bkey_packed **ptrs, unsigned nr)
138
{
139
unsigned n = nr, a = nr / 2, b, c, d;
140
141
if (!a)
142
return;
143
144
/* Heap sort: see lib/sort.c: */
145
while (1) {
146
if (a)
147
a--;
148
else if (--n)
149
swap(ptrs[0], ptrs[n]);
150
else
151
break;
152
153
for (b = a; c = 2 * b + 1, (d = c + 1) < n;)
154
b = bch2_bkey_cmp_packed(bt,
155
ptrs[c],
156
ptrs[d]) >= 0 ? c : d;
157
if (d == n)
158
b = c;
159
160
while (b != a &&
161
bch2_bkey_cmp_packed(bt,
162
ptrs[a],
163
ptrs[b]) >= 0)
164
b = (b - 1) / 2;
165
c = b;
166
while (b != a) {
167
b = (b - 1) / 2;
168
swap(ptrs[b], ptrs[c]);
169
}
170
}
171
}
172
173
static void bch2_sort_whiteouts(struct bch_fs *c, struct btree *b)
174
{
175
struct bkey_packed *new_whiteouts, **ptrs, **ptrs_end, *k;
176
bool used_mempool = false;
177
size_t bytes = b->whiteout_u64s * sizeof(u64);
178
179
if (!b->whiteout_u64s)
180
return;
181
182
new_whiteouts = btree_bounce_alloc(c, bytes, &used_mempool);
183
184
ptrs = ptrs_end = ((void *) new_whiteouts + bytes);
185
186
for (k = unwritten_whiteouts_start(b);
187
k != unwritten_whiteouts_end(b);
188
k = bkey_p_next(k))
189
*--ptrs = k;
190
191
sort_bkey_ptrs(b, ptrs, ptrs_end - ptrs);
192
193
k = new_whiteouts;
194
195
while (ptrs != ptrs_end) {
196
bkey_p_copy(k, *ptrs);
197
k = bkey_p_next(k);
198
ptrs++;
199
}
200
201
verify_no_dups(b, new_whiteouts,
202
(void *) ((u64 *) new_whiteouts + b->whiteout_u64s));
203
204
memcpy_u64s(unwritten_whiteouts_start(b),
205
new_whiteouts, b->whiteout_u64s);
206
207
btree_bounce_free(c, bytes, used_mempool, new_whiteouts);
208
}
209
210
static bool should_compact_bset(struct btree *b, struct bset_tree *t,
211
bool compacting, enum compact_mode mode)
212
{
213
if (!bset_dead_u64s(b, t))
214
return false;
215
216
switch (mode) {
217
case COMPACT_LAZY:
218
return should_compact_bset_lazy(b, t) ||
219
(compacting && !bset_written(b, bset(b, t)));
220
case COMPACT_ALL:
221
return true;
222
default:
223
BUG();
224
}
225
}
226
227
static bool bch2_drop_whiteouts(struct btree *b, enum compact_mode mode)
228
{
229
bool ret = false;
230
231
for_each_bset(b, t) {
232
struct bset *i = bset(b, t);
233
struct bkey_packed *k, *n, *out, *start, *end;
234
struct btree_node_entry *src = NULL, *dst = NULL;
235
236
if (t != b->set && !bset_written(b, i)) {
237
src = container_of(i, struct btree_node_entry, keys);
238
dst = max(write_block(b),
239
(void *) btree_bkey_last(b, t - 1));
240
}
241
242
if (src != dst)
243
ret = true;
244
245
if (!should_compact_bset(b, t, ret, mode)) {
246
if (src != dst) {
247
memmove(dst, src, sizeof(*src) +
248
le16_to_cpu(src->keys.u64s) *
249
sizeof(u64));
250
i = &dst->keys;
251
set_btree_bset(b, t, i);
252
}
253
continue;
254
}
255
256
start = btree_bkey_first(b, t);
257
end = btree_bkey_last(b, t);
258
259
if (src != dst) {
260
memmove(dst, src, sizeof(*src));
261
i = &dst->keys;
262
set_btree_bset(b, t, i);
263
}
264
265
out = i->start;
266
267
for (k = start; k != end; k = n) {
268
n = bkey_p_next(k);
269
270
if (!bkey_deleted(k)) {
271
bkey_p_copy(out, k);
272
out = bkey_p_next(out);
273
} else {
274
BUG_ON(k->needs_whiteout);
275
}
276
}
277
278
i->u64s = cpu_to_le16((u64 *) out - i->_data);
279
set_btree_bset_end(b, t);
280
bch2_bset_set_no_aux_tree(b, t);
281
ret = true;
282
}
283
284
bch2_verify_btree_nr_keys(b);
285
286
bch2_btree_build_aux_trees(b);
287
288
return ret;
289
}
290
291
bool bch2_compact_whiteouts(struct bch_fs *c, struct btree *b,
292
enum compact_mode mode)
293
{
294
return bch2_drop_whiteouts(b, mode);
295
}
296
297
static void btree_node_sort(struct bch_fs *c, struct btree *b,
298
unsigned start_idx,
299
unsigned end_idx)
300
{
301
struct btree_node *out;
302
struct sort_iter_stack sort_iter;
303
struct bset_tree *t;
304
struct bset *start_bset = bset(b, &b->set[start_idx]);
305
bool used_mempool = false;
306
u64 start_time, seq = 0;
307
unsigned i, u64s = 0, bytes, shift = end_idx - start_idx - 1;
308
bool sorting_entire_node = start_idx == 0 &&
309
end_idx == b->nsets;
310
311
sort_iter_stack_init(&sort_iter, b);
312
313
for (t = b->set + start_idx;
314
t < b->set + end_idx;
315
t++) {
316
u64s += le16_to_cpu(bset(b, t)->u64s);
317
sort_iter_add(&sort_iter.iter,
318
btree_bkey_first(b, t),
319
btree_bkey_last(b, t));
320
}
321
322
bytes = sorting_entire_node
323
? btree_buf_bytes(b)
324
: __vstruct_bytes(struct btree_node, u64s);
325
326
out = btree_bounce_alloc(c, bytes, &used_mempool);
327
328
start_time = local_clock();
329
330
u64s = bch2_sort_keys(out->keys.start, &sort_iter.iter);
331
332
out->keys.u64s = cpu_to_le16(u64s);
333
334
BUG_ON(vstruct_end(&out->keys) > (void *) out + bytes);
335
336
if (sorting_entire_node)
337
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort],
338
start_time);
339
340
/* Make sure we preserve bset journal_seq: */
341
for (t = b->set + start_idx; t < b->set + end_idx; t++)
342
seq = max(seq, le64_to_cpu(bset(b, t)->journal_seq));
343
start_bset->journal_seq = cpu_to_le64(seq);
344
345
if (sorting_entire_node) {
346
u64s = le16_to_cpu(out->keys.u64s);
347
348
BUG_ON(bytes != btree_buf_bytes(b));
349
350
/*
351
* Our temporary buffer is the same size as the btree node's
352
* buffer, we can just swap buffers instead of doing a big
353
* memcpy()
354
*/
355
*out = *b->data;
356
out->keys.u64s = cpu_to_le16(u64s);
357
swap(out, b->data);
358
set_btree_bset(b, b->set, &b->data->keys);
359
} else {
360
start_bset->u64s = out->keys.u64s;
361
memcpy_u64s(start_bset->start,
362
out->keys.start,
363
le16_to_cpu(out->keys.u64s));
364
}
365
366
for (i = start_idx + 1; i < end_idx; i++)
367
b->nr.bset_u64s[start_idx] +=
368
b->nr.bset_u64s[i];
369
370
b->nsets -= shift;
371
372
for (i = start_idx + 1; i < b->nsets; i++) {
373
b->nr.bset_u64s[i] = b->nr.bset_u64s[i + shift];
374
b->set[i] = b->set[i + shift];
375
}
376
377
for (i = b->nsets; i < MAX_BSETS; i++)
378
b->nr.bset_u64s[i] = 0;
379
380
set_btree_bset_end(b, &b->set[start_idx]);
381
bch2_bset_set_no_aux_tree(b, &b->set[start_idx]);
382
383
btree_bounce_free(c, bytes, used_mempool, out);
384
385
bch2_verify_btree_nr_keys(b);
386
}
387
388
void bch2_btree_sort_into(struct bch_fs *c,
389
struct btree *dst,
390
struct btree *src)
391
{
392
struct btree_nr_keys nr;
393
struct btree_node_iter src_iter;
394
u64 start_time = local_clock();
395
396
BUG_ON(dst->nsets != 1);
397
398
bch2_bset_set_no_aux_tree(dst, dst->set);
399
400
bch2_btree_node_iter_init_from_start(&src_iter, src);
401
402
nr = bch2_sort_repack(btree_bset_first(dst),
403
src, &src_iter,
404
&dst->format,
405
true);
406
407
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort],
408
start_time);
409
410
set_btree_bset_end(dst, dst->set);
411
412
dst->nr.live_u64s += nr.live_u64s;
413
dst->nr.bset_u64s[0] += nr.bset_u64s[0];
414
dst->nr.packed_keys += nr.packed_keys;
415
dst->nr.unpacked_keys += nr.unpacked_keys;
416
417
bch2_verify_btree_nr_keys(dst);
418
}
419
420
/*
421
* We're about to add another bset to the btree node, so if there's currently
422
* too many bsets - sort some of them together:
423
*/
424
static bool btree_node_compact(struct bch_fs *c, struct btree *b)
425
{
426
unsigned unwritten_idx;
427
bool ret = false;
428
429
for (unwritten_idx = 0;
430
unwritten_idx < b->nsets;
431
unwritten_idx++)
432
if (!bset_written(b, bset(b, &b->set[unwritten_idx])))
433
break;
434
435
if (b->nsets - unwritten_idx > 1) {
436
btree_node_sort(c, b, unwritten_idx, b->nsets);
437
ret = true;
438
}
439
440
if (unwritten_idx > 1) {
441
btree_node_sort(c, b, 0, unwritten_idx);
442
ret = true;
443
}
444
445
return ret;
446
}
447
448
void bch2_btree_build_aux_trees(struct btree *b)
449
{
450
for_each_bset(b, t)
451
bch2_bset_build_aux_tree(b, t,
452
!bset_written(b, bset(b, t)) &&
453
t == bset_tree_last(b));
454
}
455
456
/*
457
* If we have MAX_BSETS (3) bsets, should we sort them all down to just one?
458
*
459
* The first bset is going to be of similar order to the size of the node, the
460
* last bset is bounded by btree_write_set_buffer(), which is set to keep the
461
* memmove on insert from being too expensive: the middle bset should, ideally,
462
* be the geometric mean of the first and the last.
463
*
464
* Returns true if the middle bset is greater than that geometric mean:
465
*/
466
static inline bool should_compact_all(struct bch_fs *c, struct btree *b)
467
{
468
unsigned mid_u64s_bits =
469
(ilog2(btree_max_u64s(c)) + BTREE_WRITE_SET_U64s_BITS) / 2;
470
471
return bset_u64s(&b->set[1]) > 1U << mid_u64s_bits;
472
}
473
474
/*
475
* @bch_btree_init_next - initialize a new (unwritten) bset that can then be
476
* inserted into
477
*
478
* Safe to call if there already is an unwritten bset - will only add a new bset
479
* if @b doesn't already have one.
480
*
481
* Returns true if we sorted (i.e. invalidated iterators
482
*/
483
void bch2_btree_init_next(struct btree_trans *trans, struct btree *b)
484
{
485
struct bch_fs *c = trans->c;
486
struct btree_node_entry *bne;
487
bool reinit_iter = false;
488
489
EBUG_ON(!six_lock_counts(&b->c.lock).n[SIX_LOCK_write]);
490
BUG_ON(bset_written(b, bset(b, &b->set[1])));
491
BUG_ON(btree_node_just_written(b));
492
493
if (b->nsets == MAX_BSETS &&
494
!btree_node_write_in_flight(b) &&
495
should_compact_all(c, b)) {
496
bch2_btree_node_write_trans(trans, b, SIX_LOCK_write,
497
BTREE_WRITE_init_next_bset);
498
reinit_iter = true;
499
}
500
501
if (b->nsets == MAX_BSETS &&
502
btree_node_compact(c, b))
503
reinit_iter = true;
504
505
BUG_ON(b->nsets >= MAX_BSETS);
506
507
bne = want_new_bset(c, b);
508
if (bne)
509
bch2_bset_init_next(b, bne);
510
511
bch2_btree_build_aux_trees(b);
512
513
if (reinit_iter)
514
bch2_trans_node_reinit_iter(trans, b);
515
}
516
517
static void btree_err_msg(struct printbuf *out, struct bch_fs *c,
518
struct bch_dev *ca,
519
bool print_pos,
520
struct btree *b, struct bset *i, struct bkey_packed *k,
521
unsigned offset, int rw)
522
{
523
if (print_pos) {
524
prt_str(out, rw == READ
525
? "error validating btree node "
526
: "corrupt btree node before write ");
527
prt_printf(out, "at btree ");
528
bch2_btree_pos_to_text(out, c, b);
529
prt_newline(out);
530
}
531
532
if (ca)
533
prt_printf(out, "%s ", ca->name);
534
535
prt_printf(out, "node offset %u/%u",
536
b->written, btree_ptr_sectors_written(bkey_i_to_s_c(&b->key)));
537
if (i)
538
prt_printf(out, " bset u64s %u", le16_to_cpu(i->u64s));
539
if (k)
540
prt_printf(out, " bset byte offset %lu",
541
(unsigned long)(void *)k -
542
((unsigned long)(void *)i & ~511UL));
543
prt_str(out, ": ");
544
}
545
546
__printf(11, 12)
547
static int __btree_err(int ret,
548
struct bch_fs *c,
549
struct bch_dev *ca,
550
struct btree *b,
551
struct bset *i,
552
struct bkey_packed *k,
553
int rw,
554
enum bch_sb_error_id err_type,
555
struct bch_io_failures *failed,
556
struct printbuf *err_msg,
557
const char *fmt, ...)
558
{
559
if (c->recovery.curr_pass == BCH_RECOVERY_PASS_scan_for_btree_nodes)
560
return ret == -BCH_ERR_btree_node_read_err_fixable
561
? bch_err_throw(c, fsck_fix)
562
: ret;
563
564
bool have_retry = false;
565
int ret2;
566
567
if (ca) {
568
bch2_mark_btree_validate_failure(failed, ca->dev_idx);
569
570
struct extent_ptr_decoded pick;
571
have_retry = bch2_bkey_pick_read_device(c,
572
bkey_i_to_s_c(&b->key),
573
failed, &pick, -1) == 1;
574
}
575
576
if (!have_retry && ret == -BCH_ERR_btree_node_read_err_want_retry)
577
ret = bch_err_throw(c, btree_node_read_err_fixable);
578
if (!have_retry && ret == -BCH_ERR_btree_node_read_err_must_retry)
579
ret = bch_err_throw(c, btree_node_read_err_bad_node);
580
581
bch2_sb_error_count(c, err_type);
582
583
bool print_deferred = err_msg &&
584
rw == READ &&
585
!(test_bit(BCH_FS_in_fsck, &c->flags) &&
586
c->opts.fix_errors == FSCK_FIX_ask);
587
588
struct printbuf out = PRINTBUF;
589
bch2_log_msg_start(c, &out);
590
591
if (!print_deferred)
592
err_msg = &out;
593
594
btree_err_msg(err_msg, c, ca, !print_deferred, b, i, k, b->written, rw);
595
596
va_list args;
597
va_start(args, fmt);
598
prt_vprintf(err_msg, fmt, args);
599
va_end(args);
600
601
if (print_deferred) {
602
prt_newline(err_msg);
603
604
switch (ret) {
605
case -BCH_ERR_btree_node_read_err_fixable:
606
ret2 = bch2_fsck_err_opt(c, FSCK_CAN_FIX, err_type);
607
if (!bch2_err_matches(ret2, BCH_ERR_fsck_fix) &&
608
!bch2_err_matches(ret2, BCH_ERR_fsck_ignore)) {
609
ret = ret2;
610
goto fsck_err;
611
}
612
613
if (!have_retry)
614
ret = bch_err_throw(c, fsck_fix);
615
goto out;
616
case -BCH_ERR_btree_node_read_err_bad_node:
617
prt_str(&out, ", ");
618
break;
619
}
620
621
goto out;
622
}
623
624
if (rw == WRITE) {
625
prt_str(&out, ", ");
626
ret = __bch2_inconsistent_error(c, &out)
627
? -BCH_ERR_fsck_errors_not_fixed
628
: 0;
629
goto print;
630
}
631
632
switch (ret) {
633
case -BCH_ERR_btree_node_read_err_fixable:
634
ret2 = __bch2_fsck_err(c, NULL, FSCK_CAN_FIX, err_type, "%s", out.buf);
635
if (!bch2_err_matches(ret2, BCH_ERR_fsck_fix) &&
636
!bch2_err_matches(ret2, BCH_ERR_fsck_ignore)) {
637
ret = ret2;
638
goto fsck_err;
639
}
640
641
if (!have_retry)
642
ret = bch_err_throw(c, fsck_fix);
643
goto out;
644
case -BCH_ERR_btree_node_read_err_bad_node:
645
prt_str(&out, ", ");
646
break;
647
}
648
print:
649
bch2_print_str(c, KERN_ERR, out.buf);
650
out:
651
fsck_err:
652
printbuf_exit(&out);
653
return ret;
654
}
655
656
#define btree_err(type, c, ca, b, i, k, _err_type, msg, ...) \
657
({ \
658
int _ret = __btree_err(type, c, ca, b, i, k, write, \
659
BCH_FSCK_ERR_##_err_type, \
660
failed, err_msg, \
661
msg, ##__VA_ARGS__); \
662
\
663
if (!bch2_err_matches(_ret, BCH_ERR_fsck_fix)) { \
664
ret = _ret; \
665
goto fsck_err; \
666
} \
667
\
668
true; \
669
})
670
671
#define btree_err_on(cond, ...) ((cond) ? btree_err(__VA_ARGS__) : false)
672
673
/*
674
* When btree topology repair changes the start or end of a node, that might
675
* mean we have to drop keys that are no longer inside the node:
676
*/
677
__cold
678
void bch2_btree_node_drop_keys_outside_node(struct btree *b)
679
{
680
for_each_bset(b, t) {
681
struct bset *i = bset(b, t);
682
struct bkey_packed *k;
683
684
for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k))
685
if (bkey_cmp_left_packed(b, k, &b->data->min_key) >= 0)
686
break;
687
688
if (k != i->start) {
689
unsigned shift = (u64 *) k - (u64 *) i->start;
690
691
memmove_u64s_down(i->start, k,
692
(u64 *) vstruct_end(i) - (u64 *) k);
693
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - shift);
694
set_btree_bset_end(b, t);
695
}
696
697
for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k))
698
if (bkey_cmp_left_packed(b, k, &b->data->max_key) > 0)
699
break;
700
701
if (k != vstruct_last(i)) {
702
i->u64s = cpu_to_le16((u64 *) k - (u64 *) i->start);
703
set_btree_bset_end(b, t);
704
}
705
}
706
707
/*
708
* Always rebuild search trees: eytzinger search tree nodes directly
709
* depend on the values of min/max key:
710
*/
711
bch2_bset_set_no_aux_tree(b, b->set);
712
bch2_btree_build_aux_trees(b);
713
b->nr = bch2_btree_node_count_keys(b);
714
715
struct bkey_s_c k;
716
struct bkey unpacked;
717
struct btree_node_iter iter;
718
for_each_btree_node_key_unpack(b, k, &iter, &unpacked) {
719
BUG_ON(bpos_lt(k.k->p, b->data->min_key));
720
BUG_ON(bpos_gt(k.k->p, b->data->max_key));
721
}
722
}
723
724
static int validate_bset(struct bch_fs *c, struct bch_dev *ca,
725
struct btree *b, struct bset *i,
726
unsigned offset, int write,
727
struct bch_io_failures *failed,
728
struct printbuf *err_msg)
729
{
730
unsigned version = le16_to_cpu(i->version);
731
struct printbuf buf1 = PRINTBUF;
732
struct printbuf buf2 = PRINTBUF;
733
int ret = 0;
734
735
btree_err_on(!bch2_version_compatible(version),
736
-BCH_ERR_btree_node_read_err_incompatible,
737
c, ca, b, i, NULL,
738
btree_node_unsupported_version,
739
"unsupported bset version %u.%u",
740
BCH_VERSION_MAJOR(version),
741
BCH_VERSION_MINOR(version));
742
743
if (c->recovery.curr_pass != BCH_RECOVERY_PASS_scan_for_btree_nodes &&
744
btree_err_on(version < c->sb.version_min,
745
-BCH_ERR_btree_node_read_err_fixable,
746
c, NULL, b, i, NULL,
747
btree_node_bset_older_than_sb_min,
748
"bset version %u older than superblock version_min %u",
749
version, c->sb.version_min)) {
750
if (bch2_version_compatible(version)) {
751
mutex_lock(&c->sb_lock);
752
c->disk_sb.sb->version_min = cpu_to_le16(version);
753
bch2_write_super(c);
754
mutex_unlock(&c->sb_lock);
755
} else {
756
/* We have no idea what's going on: */
757
i->version = cpu_to_le16(c->sb.version);
758
}
759
}
760
761
if (btree_err_on(BCH_VERSION_MAJOR(version) >
762
BCH_VERSION_MAJOR(c->sb.version),
763
-BCH_ERR_btree_node_read_err_fixable,
764
c, NULL, b, i, NULL,
765
btree_node_bset_newer_than_sb,
766
"bset version %u newer than superblock version %u",
767
version, c->sb.version)) {
768
mutex_lock(&c->sb_lock);
769
c->disk_sb.sb->version = cpu_to_le16(version);
770
bch2_write_super(c);
771
mutex_unlock(&c->sb_lock);
772
}
773
774
btree_err_on(BSET_SEPARATE_WHITEOUTS(i),
775
-BCH_ERR_btree_node_read_err_incompatible,
776
c, ca, b, i, NULL,
777
btree_node_unsupported_version,
778
"BSET_SEPARATE_WHITEOUTS no longer supported");
779
780
btree_err_on(offset && !i->u64s,
781
-BCH_ERR_btree_node_read_err_fixable,
782
c, ca, b, i, NULL,
783
bset_empty,
784
"empty bset");
785
786
btree_err_on(BSET_OFFSET(i) && BSET_OFFSET(i) != offset,
787
-BCH_ERR_btree_node_read_err_want_retry,
788
c, ca, b, i, NULL,
789
bset_wrong_sector_offset,
790
"bset at wrong sector offset");
791
792
if (!offset) {
793
struct btree_node *bn =
794
container_of(i, struct btree_node, keys);
795
/* These indicate that we read the wrong btree node: */
796
797
if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
798
struct bch_btree_ptr_v2 *bp =
799
&bkey_i_to_btree_ptr_v2(&b->key)->v;
800
801
/* XXX endianness */
802
btree_err_on(bp->seq != bn->keys.seq,
803
-BCH_ERR_btree_node_read_err_must_retry,
804
c, ca, b, NULL, NULL,
805
bset_bad_seq,
806
"incorrect sequence number (wrong btree node)");
807
}
808
809
btree_err_on(BTREE_NODE_ID(bn) != b->c.btree_id,
810
-BCH_ERR_btree_node_read_err_must_retry,
811
c, ca, b, i, NULL,
812
btree_node_bad_btree,
813
"incorrect btree id");
814
815
btree_err_on(BTREE_NODE_LEVEL(bn) != b->c.level,
816
-BCH_ERR_btree_node_read_err_must_retry,
817
c, ca, b, i, NULL,
818
btree_node_bad_level,
819
"incorrect level");
820
821
if (!write)
822
compat_btree_node(b->c.level, b->c.btree_id, version,
823
BSET_BIG_ENDIAN(i), write, bn);
824
825
if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
826
struct bch_btree_ptr_v2 *bp =
827
&bkey_i_to_btree_ptr_v2(&b->key)->v;
828
829
if (BTREE_PTR_RANGE_UPDATED(bp)) {
830
b->data->min_key = bp->min_key;
831
b->data->max_key = b->key.k.p;
832
}
833
834
btree_err_on(!bpos_eq(b->data->min_key, bp->min_key),
835
-BCH_ERR_btree_node_read_err_must_retry,
836
c, ca, b, NULL, NULL,
837
btree_node_bad_min_key,
838
"incorrect min_key: got %s should be %s",
839
(printbuf_reset(&buf1),
840
bch2_bpos_to_text(&buf1, bn->min_key), buf1.buf),
841
(printbuf_reset(&buf2),
842
bch2_bpos_to_text(&buf2, bp->min_key), buf2.buf));
843
}
844
845
btree_err_on(!bpos_eq(bn->max_key, b->key.k.p),
846
-BCH_ERR_btree_node_read_err_must_retry,
847
c, ca, b, i, NULL,
848
btree_node_bad_max_key,
849
"incorrect max key %s",
850
(printbuf_reset(&buf1),
851
bch2_bpos_to_text(&buf1, bn->max_key), buf1.buf));
852
853
if (write)
854
compat_btree_node(b->c.level, b->c.btree_id, version,
855
BSET_BIG_ENDIAN(i), write, bn);
856
857
btree_err_on(bch2_bkey_format_invalid(c, &bn->format, write, &buf1),
858
-BCH_ERR_btree_node_read_err_bad_node,
859
c, ca, b, i, NULL,
860
btree_node_bad_format,
861
"invalid bkey format: %s\n%s", buf1.buf,
862
(printbuf_reset(&buf2),
863
bch2_bkey_format_to_text(&buf2, &bn->format), buf2.buf));
864
printbuf_reset(&buf1);
865
866
compat_bformat(b->c.level, b->c.btree_id, version,
867
BSET_BIG_ENDIAN(i), write,
868
&bn->format);
869
}
870
fsck_err:
871
printbuf_exit(&buf2);
872
printbuf_exit(&buf1);
873
return ret;
874
}
875
876
static int btree_node_bkey_val_validate(struct bch_fs *c, struct btree *b,
877
struct bkey_s_c k,
878
enum bch_validate_flags flags)
879
{
880
return bch2_bkey_val_validate(c, k, (struct bkey_validate_context) {
881
.from = BKEY_VALIDATE_btree_node,
882
.level = b->c.level,
883
.btree = b->c.btree_id,
884
.flags = flags
885
});
886
}
887
888
static int bset_key_validate(struct bch_fs *c, struct btree *b,
889
struct bkey_s_c k,
890
bool updated_range,
891
enum bch_validate_flags flags)
892
{
893
struct bkey_validate_context from = (struct bkey_validate_context) {
894
.from = BKEY_VALIDATE_btree_node,
895
.level = b->c.level,
896
.btree = b->c.btree_id,
897
.flags = flags,
898
};
899
return __bch2_bkey_validate(c, k, from) ?:
900
(!updated_range ? bch2_bkey_in_btree_node(c, b, k, from) : 0) ?:
901
(flags & BCH_VALIDATE_write ? btree_node_bkey_val_validate(c, b, k, flags) : 0);
902
}
903
904
static bool bkey_packed_valid(struct bch_fs *c, struct btree *b,
905
struct bset *i, struct bkey_packed *k)
906
{
907
if (bkey_p_next(k) > vstruct_last(i))
908
return false;
909
910
if (k->format > KEY_FORMAT_CURRENT)
911
return false;
912
913
if (!bkeyp_u64s_valid(&b->format, k))
914
return false;
915
916
struct bkey tmp;
917
struct bkey_s u = __bkey_disassemble(b, k, &tmp);
918
return !__bch2_bkey_validate(c, u.s_c,
919
(struct bkey_validate_context) {
920
.from = BKEY_VALIDATE_btree_node,
921
.level = b->c.level,
922
.btree = b->c.btree_id,
923
.flags = BCH_VALIDATE_silent
924
});
925
}
926
927
static inline int btree_node_read_bkey_cmp(const struct btree *b,
928
const struct bkey_packed *l,
929
const struct bkey_packed *r)
930
{
931
return bch2_bkey_cmp_packed(b, l, r)
932
?: (int) bkey_deleted(r) - (int) bkey_deleted(l);
933
}
934
935
static int validate_bset_keys(struct bch_fs *c, struct btree *b,
936
struct bset *i, int write,
937
struct bch_io_failures *failed,
938
struct printbuf *err_msg)
939
{
940
unsigned version = le16_to_cpu(i->version);
941
struct bkey_packed *k, *prev = NULL;
942
struct printbuf buf = PRINTBUF;
943
bool updated_range = b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
944
BTREE_PTR_RANGE_UPDATED(&bkey_i_to_btree_ptr_v2(&b->key)->v);
945
int ret = 0;
946
947
for (k = i->start;
948
k != vstruct_last(i);) {
949
struct bkey_s u;
950
struct bkey tmp;
951
unsigned next_good_key;
952
953
if (btree_err_on(bkey_p_next(k) > vstruct_last(i),
954
-BCH_ERR_btree_node_read_err_fixable,
955
c, NULL, b, i, k,
956
btree_node_bkey_past_bset_end,
957
"key extends past end of bset")) {
958
i->u64s = cpu_to_le16((u64 *) k - i->_data);
959
break;
960
}
961
962
if (btree_err_on(k->format > KEY_FORMAT_CURRENT,
963
-BCH_ERR_btree_node_read_err_fixable,
964
c, NULL, b, i, k,
965
btree_node_bkey_bad_format,
966
"invalid bkey format %u", k->format))
967
goto drop_this_key;
968
969
if (btree_err_on(!bkeyp_u64s_valid(&b->format, k),
970
-BCH_ERR_btree_node_read_err_fixable,
971
c, NULL, b, i, k,
972
btree_node_bkey_bad_u64s,
973
"bad k->u64s %u (min %u max %zu)", k->u64s,
974
bkeyp_key_u64s(&b->format, k),
975
U8_MAX - BKEY_U64s + bkeyp_key_u64s(&b->format, k)))
976
goto drop_this_key;
977
978
if (!write)
979
bch2_bkey_compat(b->c.level, b->c.btree_id, version,
980
BSET_BIG_ENDIAN(i), write,
981
&b->format, k);
982
983
u = __bkey_disassemble(b, k, &tmp);
984
985
ret = bset_key_validate(c, b, u.s_c, updated_range, write);
986
if (ret == -BCH_ERR_fsck_delete_bkey)
987
goto drop_this_key;
988
if (ret)
989
goto fsck_err;
990
991
if (write)
992
bch2_bkey_compat(b->c.level, b->c.btree_id, version,
993
BSET_BIG_ENDIAN(i), write,
994
&b->format, k);
995
996
if (prev && btree_node_read_bkey_cmp(b, prev, k) >= 0) {
997
struct bkey up = bkey_unpack_key(b, prev);
998
999
printbuf_reset(&buf);
1000
prt_printf(&buf, "keys out of order: ");
1001
bch2_bkey_to_text(&buf, &up);
1002
prt_printf(&buf, " > ");
1003
bch2_bkey_to_text(&buf, u.k);
1004
1005
if (btree_err(-BCH_ERR_btree_node_read_err_fixable,
1006
c, NULL, b, i, k,
1007
btree_node_bkey_out_of_order,
1008
"%s", buf.buf))
1009
goto drop_this_key;
1010
}
1011
1012
prev = k;
1013
k = bkey_p_next(k);
1014
continue;
1015
drop_this_key:
1016
next_good_key = k->u64s;
1017
1018
if (!next_good_key ||
1019
(BSET_BIG_ENDIAN(i) == CPU_BIG_ENDIAN &&
1020
version >= bcachefs_metadata_version_snapshot)) {
1021
/*
1022
* only do scanning if bch2_bkey_compat() has nothing to
1023
* do
1024
*/
1025
1026
if (!bkey_packed_valid(c, b, i, (void *) ((u64 *) k + next_good_key))) {
1027
for (next_good_key = 1;
1028
next_good_key < (u64 *) vstruct_last(i) - (u64 *) k;
1029
next_good_key++)
1030
if (bkey_packed_valid(c, b, i, (void *) ((u64 *) k + next_good_key)))
1031
goto got_good_key;
1032
}
1033
1034
/*
1035
* didn't find a good key, have to truncate the rest of
1036
* the bset
1037
*/
1038
next_good_key = (u64 *) vstruct_last(i) - (u64 *) k;
1039
}
1040
got_good_key:
1041
le16_add_cpu(&i->u64s, -next_good_key);
1042
memmove_u64s_down(k, (u64 *) k + next_good_key, (u64 *) vstruct_end(i) - (u64 *) k);
1043
set_btree_node_need_rewrite(b);
1044
set_btree_node_need_rewrite_error(b);
1045
}
1046
fsck_err:
1047
printbuf_exit(&buf);
1048
return ret;
1049
}
1050
1051
int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
1052
struct btree *b,
1053
struct bch_io_failures *failed,
1054
struct printbuf *err_msg)
1055
{
1056
struct btree_node_entry *bne;
1057
struct sort_iter *iter;
1058
struct btree_node *sorted;
1059
struct bkey_packed *k;
1060
struct bset *i;
1061
bool used_mempool, blacklisted;
1062
bool updated_range = b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
1063
BTREE_PTR_RANGE_UPDATED(&bkey_i_to_btree_ptr_v2(&b->key)->v);
1064
unsigned ptr_written = btree_ptr_sectors_written(bkey_i_to_s_c(&b->key));
1065
u64 max_journal_seq = 0;
1066
struct printbuf buf = PRINTBUF;
1067
int ret = 0, write = READ;
1068
u64 start_time = local_clock();
1069
1070
b->version_ondisk = U16_MAX;
1071
/* We might get called multiple times on read retry: */
1072
b->written = 0;
1073
1074
iter = mempool_alloc(&c->fill_iter, GFP_NOFS);
1075
sort_iter_init(iter, b, (btree_blocks(c) + 1) * 2);
1076
1077
if (bch2_meta_read_fault("btree"))
1078
btree_err(-BCH_ERR_btree_node_read_err_must_retry,
1079
c, ca, b, NULL, NULL,
1080
btree_node_fault_injected,
1081
"dynamic fault");
1082
1083
btree_err_on(le64_to_cpu(b->data->magic) != bset_magic(c),
1084
-BCH_ERR_btree_node_read_err_must_retry,
1085
c, ca, b, NULL, NULL,
1086
btree_node_bad_magic,
1087
"bad magic: want %llx, got %llx",
1088
bset_magic(c), le64_to_cpu(b->data->magic));
1089
1090
if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
1091
struct bch_btree_ptr_v2 *bp =
1092
&bkey_i_to_btree_ptr_v2(&b->key)->v;
1093
1094
bch2_bpos_to_text(&buf, b->data->min_key);
1095
prt_str(&buf, "-");
1096
bch2_bpos_to_text(&buf, b->data->max_key);
1097
1098
btree_err_on(b->data->keys.seq != bp->seq,
1099
-BCH_ERR_btree_node_read_err_must_retry,
1100
c, ca, b, NULL, NULL,
1101
btree_node_bad_seq,
1102
"got wrong btree node: got\n%s",
1103
(printbuf_reset(&buf),
1104
bch2_btree_node_header_to_text(&buf, b->data),
1105
buf.buf));
1106
} else {
1107
btree_err_on(!b->data->keys.seq,
1108
-BCH_ERR_btree_node_read_err_must_retry,
1109
c, ca, b, NULL, NULL,
1110
btree_node_bad_seq,
1111
"bad btree header: seq 0\n%s",
1112
(printbuf_reset(&buf),
1113
bch2_btree_node_header_to_text(&buf, b->data),
1114
buf.buf));
1115
}
1116
1117
while (b->written < (ptr_written ?: btree_sectors(c))) {
1118
unsigned sectors;
1119
bool first = !b->written;
1120
1121
if (first) {
1122
bne = NULL;
1123
i = &b->data->keys;
1124
} else {
1125
bne = write_block(b);
1126
i = &bne->keys;
1127
1128
if (i->seq != b->data->keys.seq)
1129
break;
1130
}
1131
1132
struct nonce nonce = btree_nonce(i, b->written << 9);
1133
bool good_csum_type = bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i));
1134
1135
btree_err_on(!good_csum_type,
1136
bch2_csum_type_is_encryption(BSET_CSUM_TYPE(i))
1137
? -BCH_ERR_btree_node_read_err_must_retry
1138
: -BCH_ERR_btree_node_read_err_want_retry,
1139
c, ca, b, i, NULL,
1140
bset_unknown_csum,
1141
"unknown checksum type %llu", BSET_CSUM_TYPE(i));
1142
1143
if (first) {
1144
sectors = vstruct_sectors(b->data, c->block_bits);
1145
if (btree_err_on(b->written + sectors > (ptr_written ?: btree_sectors(c)),
1146
-BCH_ERR_btree_node_read_err_fixable,
1147
c, ca, b, i, NULL,
1148
bset_past_end_of_btree_node,
1149
"bset past end of btree node (offset %u len %u but written %zu)",
1150
b->written, sectors, ptr_written ?: btree_sectors(c)))
1151
i->u64s = 0;
1152
if (good_csum_type) {
1153
struct bch_csum csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, b->data);
1154
bool csum_bad = bch2_crc_cmp(b->data->csum, csum);
1155
if (csum_bad)
1156
bch2_io_error(ca, BCH_MEMBER_ERROR_checksum);
1157
1158
btree_err_on(csum_bad,
1159
-BCH_ERR_btree_node_read_err_want_retry,
1160
c, ca, b, i, NULL,
1161
bset_bad_csum,
1162
"%s",
1163
(printbuf_reset(&buf),
1164
bch2_csum_err_msg(&buf, BSET_CSUM_TYPE(i), b->data->csum, csum),
1165
buf.buf));
1166
1167
ret = bset_encrypt(c, i, b->written << 9);
1168
if (bch2_fs_fatal_err_on(ret, c,
1169
"decrypting btree node: %s", bch2_err_str(ret)))
1170
goto fsck_err;
1171
}
1172
1173
btree_err_on(btree_node_type_is_extents(btree_node_type(b)) &&
1174
!BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data),
1175
-BCH_ERR_btree_node_read_err_incompatible,
1176
c, NULL, b, NULL, NULL,
1177
btree_node_unsupported_version,
1178
"btree node does not have NEW_EXTENT_OVERWRITE set");
1179
} else {
1180
sectors = vstruct_sectors(bne, c->block_bits);
1181
if (btree_err_on(b->written + sectors > (ptr_written ?: btree_sectors(c)),
1182
-BCH_ERR_btree_node_read_err_fixable,
1183
c, ca, b, i, NULL,
1184
bset_past_end_of_btree_node,
1185
"bset past end of btree node (offset %u len %u but written %zu)",
1186
b->written, sectors, ptr_written ?: btree_sectors(c)))
1187
i->u64s = 0;
1188
if (good_csum_type) {
1189
struct bch_csum csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
1190
bool csum_bad = bch2_crc_cmp(bne->csum, csum);
1191
if (ca && csum_bad)
1192
bch2_io_error(ca, BCH_MEMBER_ERROR_checksum);
1193
1194
btree_err_on(csum_bad,
1195
-BCH_ERR_btree_node_read_err_want_retry,
1196
c, ca, b, i, NULL,
1197
bset_bad_csum,
1198
"%s",
1199
(printbuf_reset(&buf),
1200
bch2_csum_err_msg(&buf, BSET_CSUM_TYPE(i), bne->csum, csum),
1201
buf.buf));
1202
1203
ret = bset_encrypt(c, i, b->written << 9);
1204
if (bch2_fs_fatal_err_on(ret, c,
1205
"decrypting btree node: %s", bch2_err_str(ret)))
1206
goto fsck_err;
1207
}
1208
}
1209
1210
b->version_ondisk = min(b->version_ondisk,
1211
le16_to_cpu(i->version));
1212
1213
ret = validate_bset(c, ca, b, i, b->written, READ, failed, err_msg);
1214
if (ret)
1215
goto fsck_err;
1216
1217
if (!b->written)
1218
btree_node_set_format(b, b->data->format);
1219
1220
ret = validate_bset_keys(c, b, i, READ, failed, err_msg);
1221
if (ret)
1222
goto fsck_err;
1223
1224
SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
1225
1226
blacklisted = bch2_journal_seq_is_blacklisted(c,
1227
le64_to_cpu(i->journal_seq),
1228
true);
1229
1230
btree_err_on(blacklisted && first,
1231
-BCH_ERR_btree_node_read_err_fixable,
1232
c, ca, b, i, NULL,
1233
bset_blacklisted_journal_seq,
1234
"first btree node bset has blacklisted journal seq (%llu)",
1235
le64_to_cpu(i->journal_seq));
1236
1237
btree_err_on(blacklisted && ptr_written,
1238
-BCH_ERR_btree_node_read_err_fixable,
1239
c, ca, b, i, NULL,
1240
first_bset_blacklisted_journal_seq,
1241
"found blacklisted bset (journal seq %llu) in btree node at offset %u-%u/%u",
1242
le64_to_cpu(i->journal_seq),
1243
b->written, b->written + sectors, ptr_written);
1244
1245
b->written = min(b->written + sectors, btree_sectors(c));
1246
1247
if (blacklisted && !first)
1248
continue;
1249
1250
sort_iter_add(iter,
1251
vstruct_idx(i, 0),
1252
vstruct_last(i));
1253
1254
max_journal_seq = max(max_journal_seq, le64_to_cpu(i->journal_seq));
1255
}
1256
1257
if (ptr_written) {
1258
btree_err_on(b->written < ptr_written,
1259
-BCH_ERR_btree_node_read_err_want_retry,
1260
c, ca, b, NULL, NULL,
1261
btree_node_data_missing,
1262
"btree node data missing: expected %u sectors, found %u",
1263
ptr_written, b->written);
1264
} else {
1265
for (bne = write_block(b);
1266
bset_byte_offset(b, bne) < btree_buf_bytes(b);
1267
bne = (void *) bne + block_bytes(c))
1268
btree_err_on(bne->keys.seq == b->data->keys.seq &&
1269
!bch2_journal_seq_is_blacklisted(c,
1270
le64_to_cpu(bne->keys.journal_seq),
1271
true),
1272
-BCH_ERR_btree_node_read_err_want_retry,
1273
c, ca, b, NULL, NULL,
1274
btree_node_bset_after_end,
1275
"found bset signature after last bset");
1276
}
1277
1278
sorted = btree_bounce_alloc(c, btree_buf_bytes(b), &used_mempool);
1279
sorted->keys.u64s = 0;
1280
1281
b->nr = bch2_key_sort_fix_overlapping(c, &sorted->keys, iter);
1282
memset((uint8_t *)(sorted + 1) + b->nr.live_u64s * sizeof(u64), 0,
1283
btree_buf_bytes(b) -
1284
sizeof(struct btree_node) -
1285
b->nr.live_u64s * sizeof(u64));
1286
1287
b->data->keys.u64s = sorted->keys.u64s;
1288
*sorted = *b->data;
1289
swap(sorted, b->data);
1290
set_btree_bset(b, b->set, &b->data->keys);
1291
b->nsets = 1;
1292
b->data->keys.journal_seq = cpu_to_le64(max_journal_seq);
1293
1294
BUG_ON(b->nr.live_u64s != le16_to_cpu(b->data->keys.u64s));
1295
1296
btree_bounce_free(c, btree_buf_bytes(b), used_mempool, sorted);
1297
1298
i = &b->data->keys;
1299
for (k = i->start; k != vstruct_last(i);) {
1300
struct bkey tmp;
1301
struct bkey_s u = __bkey_disassemble(b, k, &tmp);
1302
1303
ret = btree_node_bkey_val_validate(c, b, u.s_c, READ);
1304
if (ret == -BCH_ERR_fsck_delete_bkey ||
1305
(static_branch_unlikely(&bch2_inject_invalid_keys) &&
1306
!bversion_cmp(u.k->bversion, MAX_VERSION))) {
1307
btree_keys_account_key_drop(&b->nr, 0, k);
1308
1309
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
1310
memmove_u64s_down(k, bkey_p_next(k),
1311
(u64 *) vstruct_end(i) - (u64 *) k);
1312
set_btree_bset_end(b, b->set);
1313
set_btree_node_need_rewrite(b);
1314
set_btree_node_need_rewrite_error(b);
1315
continue;
1316
}
1317
if (ret)
1318
goto fsck_err;
1319
1320
if (u.k->type == KEY_TYPE_btree_ptr_v2) {
1321
struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(u);
1322
1323
bp.v->mem_ptr = 0;
1324
}
1325
1326
k = bkey_p_next(k);
1327
}
1328
1329
bch2_bset_build_aux_tree(b, b->set, false);
1330
1331
set_needs_whiteout(btree_bset_first(b), true);
1332
1333
btree_node_reset_sib_u64s(b);
1334
1335
if (updated_range)
1336
bch2_btree_node_drop_keys_outside_node(b);
1337
1338
/*
1339
* XXX:
1340
*
1341
* We deadlock if too many btree updates require node rewrites while
1342
* we're still in journal replay.
1343
*
1344
* This is because btree node rewrites generate more updates for the
1345
* interior updates (alloc, backpointers), and if those updates touch
1346
* new nodes and generate more rewrites - well, you see the problem.
1347
*
1348
* The biggest cause is that we don't use the btree write buffer (for
1349
* the backpointer updates - this needs some real thought on locking in
1350
* order to fix.
1351
*
1352
* The problem with this workaround (not doing the rewrite for degraded
1353
* nodes in journal replay) is that those degraded nodes persist, and we
1354
* don't want that (this is a real bug when a btree node write completes
1355
* with fewer replicas than we wanted and leaves a degraded node due to
1356
* device _removal_, i.e. the device went away mid write).
1357
*
1358
* It's less of a bug here, but still a problem because we don't yet
1359
* have a way of tracking degraded data - we another index (all
1360
* extents/btree nodes, by replicas entry) in order to fix properly
1361
* (re-replicate degraded data at the earliest possible time).
1362
*/
1363
if (c->recovery.passes_complete & BIT_ULL(BCH_RECOVERY_PASS_journal_replay)) {
1364
scoped_guard(rcu)
1365
bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&b->key)), ptr) {
1366
struct bch_dev *ca2 = bch2_dev_rcu(c, ptr->dev);
1367
1368
if (!ca2 || ca2->mi.state != BCH_MEMBER_STATE_rw) {
1369
set_btree_node_need_rewrite(b);
1370
set_btree_node_need_rewrite_degraded(b);
1371
}
1372
}
1373
}
1374
1375
if (!ptr_written) {
1376
set_btree_node_need_rewrite(b);
1377
set_btree_node_need_rewrite_ptr_written_zero(b);
1378
}
1379
fsck_err:
1380
mempool_free(iter, &c->fill_iter);
1381
printbuf_exit(&buf);
1382
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_read_done], start_time);
1383
return ret;
1384
}
1385
1386
static void btree_node_read_work(struct work_struct *work)
1387
{
1388
struct btree_read_bio *rb =
1389
container_of(work, struct btree_read_bio, work);
1390
struct bch_fs *c = rb->c;
1391
struct bch_dev *ca = rb->have_ioref ? bch2_dev_have_ref(c, rb->pick.ptr.dev) : NULL;
1392
struct btree *b = rb->b;
1393
struct bio *bio = &rb->bio;
1394
struct bch_io_failures failed = { .nr = 0 };
1395
int ret = 0;
1396
1397
struct printbuf buf = PRINTBUF;
1398
bch2_log_msg_start(c, &buf);
1399
1400
prt_printf(&buf, "btree node read error at btree ");
1401
bch2_btree_pos_to_text(&buf, c, b);
1402
prt_newline(&buf);
1403
1404
goto start;
1405
while (1) {
1406
ret = bch2_bkey_pick_read_device(c,
1407
bkey_i_to_s_c(&b->key),
1408
&failed, &rb->pick, -1);
1409
if (ret <= 0) {
1410
set_btree_node_read_error(b);
1411
break;
1412
}
1413
1414
ca = bch2_dev_get_ioref(c, rb->pick.ptr.dev, READ, BCH_DEV_READ_REF_btree_node_read);
1415
rb->have_ioref = ca != NULL;
1416
rb->start_time = local_clock();
1417
bio_reset(bio, NULL, REQ_OP_READ|REQ_SYNC|REQ_META);
1418
bio->bi_iter.bi_sector = rb->pick.ptr.offset;
1419
bio->bi_iter.bi_size = btree_buf_bytes(b);
1420
1421
if (rb->have_ioref) {
1422
bio_set_dev(bio, ca->disk_sb.bdev);
1423
submit_bio_wait(bio);
1424
} else {
1425
bio->bi_status = BLK_STS_REMOVED;
1426
}
1427
1428
bch2_account_io_completion(ca, BCH_MEMBER_ERROR_read,
1429
rb->start_time, !bio->bi_status);
1430
start:
1431
if (rb->have_ioref)
1432
enumerated_ref_put(&ca->io_ref[READ], BCH_DEV_READ_REF_btree_node_read);
1433
rb->have_ioref = false;
1434
1435
if (bio->bi_status) {
1436
bch2_mark_io_failure(&failed, &rb->pick, false);
1437
continue;
1438
}
1439
1440
ret = bch2_btree_node_read_done(c, ca, b, &failed, &buf);
1441
if (ret == -BCH_ERR_btree_node_read_err_want_retry ||
1442
ret == -BCH_ERR_btree_node_read_err_must_retry)
1443
continue;
1444
1445
if (ret)
1446
set_btree_node_read_error(b);
1447
1448
break;
1449
}
1450
1451
bch2_io_failures_to_text(&buf, c, &failed);
1452
1453
if (btree_node_read_error(b))
1454
bch2_btree_lost_data(c, &buf, b->c.btree_id);
1455
1456
/*
1457
* only print retry success if we read from a replica with no errors
1458
*/
1459
if (btree_node_read_error(b))
1460
prt_printf(&buf, "ret %s", bch2_err_str(ret));
1461
else if (failed.nr) {
1462
if (!bch2_dev_io_failures(&failed, rb->pick.ptr.dev))
1463
prt_printf(&buf, "retry success");
1464
else
1465
prt_printf(&buf, "repair success");
1466
}
1467
1468
if ((failed.nr ||
1469
btree_node_need_rewrite(b)) &&
1470
!btree_node_read_error(b) &&
1471
c->recovery.curr_pass != BCH_RECOVERY_PASS_scan_for_btree_nodes) {
1472
prt_printf(&buf, " (rewriting node)");
1473
bch2_btree_node_rewrite_async(c, b);
1474
}
1475
prt_newline(&buf);
1476
1477
if (failed.nr)
1478
bch2_print_str_ratelimited(c, KERN_ERR, buf.buf);
1479
1480
async_object_list_del(c, btree_read_bio, rb->list_idx);
1481
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_read],
1482
rb->start_time);
1483
bio_put(&rb->bio);
1484
printbuf_exit(&buf);
1485
clear_btree_node_read_in_flight(b);
1486
smp_mb__after_atomic();
1487
wake_up_bit(&b->flags, BTREE_NODE_read_in_flight);
1488
}
1489
1490
static void btree_node_read_endio(struct bio *bio)
1491
{
1492
struct btree_read_bio *rb =
1493
container_of(bio, struct btree_read_bio, bio);
1494
struct bch_fs *c = rb->c;
1495
struct bch_dev *ca = rb->have_ioref
1496
? bch2_dev_have_ref(c, rb->pick.ptr.dev) : NULL;
1497
1498
bch2_account_io_completion(ca, BCH_MEMBER_ERROR_read,
1499
rb->start_time, !bio->bi_status);
1500
1501
queue_work(c->btree_read_complete_wq, &rb->work);
1502
}
1503
1504
void bch2_btree_read_bio_to_text(struct printbuf *out, struct btree_read_bio *rbio)
1505
{
1506
bch2_bio_to_text(out, &rbio->bio);
1507
}
1508
1509
struct btree_node_read_all {
1510
struct closure cl;
1511
struct bch_fs *c;
1512
struct btree *b;
1513
unsigned nr;
1514
void *buf[BCH_REPLICAS_MAX];
1515
struct bio *bio[BCH_REPLICAS_MAX];
1516
blk_status_t err[BCH_REPLICAS_MAX];
1517
};
1518
1519
static unsigned btree_node_sectors_written(struct bch_fs *c, void *data)
1520
{
1521
struct btree_node *bn = data;
1522
struct btree_node_entry *bne;
1523
unsigned offset = 0;
1524
1525
if (le64_to_cpu(bn->magic) != bset_magic(c))
1526
return 0;
1527
1528
while (offset < btree_sectors(c)) {
1529
if (!offset) {
1530
offset += vstruct_sectors(bn, c->block_bits);
1531
} else {
1532
bne = data + (offset << 9);
1533
if (bne->keys.seq != bn->keys.seq)
1534
break;
1535
offset += vstruct_sectors(bne, c->block_bits);
1536
}
1537
}
1538
1539
return offset;
1540
}
1541
1542
static bool btree_node_has_extra_bsets(struct bch_fs *c, unsigned offset, void *data)
1543
{
1544
struct btree_node *bn = data;
1545
struct btree_node_entry *bne;
1546
1547
if (!offset)
1548
return false;
1549
1550
while (offset < btree_sectors(c)) {
1551
bne = data + (offset << 9);
1552
if (bne->keys.seq == bn->keys.seq)
1553
return true;
1554
offset++;
1555
}
1556
1557
return false;
1558
return offset;
1559
}
1560
1561
static CLOSURE_CALLBACK(btree_node_read_all_replicas_done)
1562
{
1563
closure_type(ra, struct btree_node_read_all, cl);
1564
struct bch_fs *c = ra->c;
1565
struct btree *b = ra->b;
1566
struct printbuf buf = PRINTBUF;
1567
bool dump_bset_maps = false;
1568
int ret = 0, best = -1, write = READ;
1569
unsigned i, written = 0, written2 = 0;
1570
__le64 seq = b->key.k.type == KEY_TYPE_btree_ptr_v2
1571
? bkey_i_to_btree_ptr_v2(&b->key)->v.seq : 0;
1572
bool _saw_error = false, *saw_error = &_saw_error;
1573
struct printbuf *err_msg = NULL;
1574
struct bch_io_failures *failed = NULL;
1575
1576
for (i = 0; i < ra->nr; i++) {
1577
struct btree_node *bn = ra->buf[i];
1578
1579
if (ra->err[i])
1580
continue;
1581
1582
if (le64_to_cpu(bn->magic) != bset_magic(c) ||
1583
(seq && seq != bn->keys.seq))
1584
continue;
1585
1586
if (best < 0) {
1587
best = i;
1588
written = btree_node_sectors_written(c, bn);
1589
continue;
1590
}
1591
1592
written2 = btree_node_sectors_written(c, ra->buf[i]);
1593
if (btree_err_on(written2 != written, -BCH_ERR_btree_node_read_err_fixable,
1594
c, NULL, b, NULL, NULL,
1595
btree_node_replicas_sectors_written_mismatch,
1596
"btree node sectors written mismatch: %u != %u",
1597
written, written2) ||
1598
btree_err_on(btree_node_has_extra_bsets(c, written2, ra->buf[i]),
1599
-BCH_ERR_btree_node_read_err_fixable,
1600
c, NULL, b, NULL, NULL,
1601
btree_node_bset_after_end,
1602
"found bset signature after last bset") ||
1603
btree_err_on(memcmp(ra->buf[best], ra->buf[i], written << 9),
1604
-BCH_ERR_btree_node_read_err_fixable,
1605
c, NULL, b, NULL, NULL,
1606
btree_node_replicas_data_mismatch,
1607
"btree node replicas content mismatch"))
1608
dump_bset_maps = true;
1609
1610
if (written2 > written) {
1611
written = written2;
1612
best = i;
1613
}
1614
}
1615
fsck_err:
1616
if (dump_bset_maps) {
1617
for (i = 0; i < ra->nr; i++) {
1618
struct btree_node *bn = ra->buf[i];
1619
struct btree_node_entry *bne = NULL;
1620
unsigned offset = 0, sectors;
1621
bool gap = false;
1622
1623
if (ra->err[i])
1624
continue;
1625
1626
printbuf_reset(&buf);
1627
1628
while (offset < btree_sectors(c)) {
1629
if (!offset) {
1630
sectors = vstruct_sectors(bn, c->block_bits);
1631
} else {
1632
bne = ra->buf[i] + (offset << 9);
1633
if (bne->keys.seq != bn->keys.seq)
1634
break;
1635
sectors = vstruct_sectors(bne, c->block_bits);
1636
}
1637
1638
prt_printf(&buf, " %u-%u", offset, offset + sectors);
1639
if (bne && bch2_journal_seq_is_blacklisted(c,
1640
le64_to_cpu(bne->keys.journal_seq), false))
1641
prt_printf(&buf, "*");
1642
offset += sectors;
1643
}
1644
1645
while (offset < btree_sectors(c)) {
1646
bne = ra->buf[i] + (offset << 9);
1647
if (bne->keys.seq == bn->keys.seq) {
1648
if (!gap)
1649
prt_printf(&buf, " GAP");
1650
gap = true;
1651
1652
sectors = vstruct_sectors(bne, c->block_bits);
1653
prt_printf(&buf, " %u-%u", offset, offset + sectors);
1654
if (bch2_journal_seq_is_blacklisted(c,
1655
le64_to_cpu(bne->keys.journal_seq), false))
1656
prt_printf(&buf, "*");
1657
}
1658
offset++;
1659
}
1660
1661
bch_err(c, "replica %u:%s", i, buf.buf);
1662
}
1663
}
1664
1665
if (best >= 0) {
1666
memcpy(b->data, ra->buf[best], btree_buf_bytes(b));
1667
ret = bch2_btree_node_read_done(c, NULL, b, NULL, NULL);
1668
} else {
1669
ret = -1;
1670
}
1671
1672
if (ret) {
1673
set_btree_node_read_error(b);
1674
1675
struct printbuf buf = PRINTBUF;
1676
bch2_btree_lost_data(c, &buf, b->c.btree_id);
1677
if (buf.pos)
1678
bch_err(c, "%s", buf.buf);
1679
printbuf_exit(&buf);
1680
} else if (*saw_error)
1681
bch2_btree_node_rewrite_async(c, b);
1682
1683
for (i = 0; i < ra->nr; i++) {
1684
mempool_free(ra->buf[i], &c->btree_bounce_pool);
1685
bio_put(ra->bio[i]);
1686
}
1687
1688
closure_debug_destroy(&ra->cl);
1689
kfree(ra);
1690
printbuf_exit(&buf);
1691
1692
clear_btree_node_read_in_flight(b);
1693
smp_mb__after_atomic();
1694
wake_up_bit(&b->flags, BTREE_NODE_read_in_flight);
1695
}
1696
1697
static void btree_node_read_all_replicas_endio(struct bio *bio)
1698
{
1699
struct btree_read_bio *rb =
1700
container_of(bio, struct btree_read_bio, bio);
1701
struct bch_fs *c = rb->c;
1702
struct btree_node_read_all *ra = rb->ra;
1703
1704
if (rb->have_ioref) {
1705
struct bch_dev *ca = bch2_dev_have_ref(c, rb->pick.ptr.dev);
1706
1707
bch2_latency_acct(ca, rb->start_time, READ);
1708
enumerated_ref_put(&ca->io_ref[READ],
1709
BCH_DEV_READ_REF_btree_node_read_all_replicas);
1710
}
1711
1712
ra->err[rb->idx] = bio->bi_status;
1713
closure_put(&ra->cl);
1714
}
1715
1716
/*
1717
* XXX This allocates multiple times from the same mempools, and can deadlock
1718
* under sufficient memory pressure (but is only a debug path)
1719
*/
1720
static int btree_node_read_all_replicas(struct bch_fs *c, struct btree *b, bool sync)
1721
{
1722
struct bkey_s_c k = bkey_i_to_s_c(&b->key);
1723
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
1724
const union bch_extent_entry *entry;
1725
struct extent_ptr_decoded pick;
1726
struct btree_node_read_all *ra;
1727
unsigned i;
1728
1729
ra = kzalloc(sizeof(*ra), GFP_NOFS);
1730
if (!ra)
1731
return bch_err_throw(c, ENOMEM_btree_node_read_all_replicas);
1732
1733
closure_init(&ra->cl, NULL);
1734
ra->c = c;
1735
ra->b = b;
1736
ra->nr = bch2_bkey_nr_ptrs(k);
1737
1738
for (i = 0; i < ra->nr; i++) {
1739
ra->buf[i] = mempool_alloc(&c->btree_bounce_pool, GFP_NOFS);
1740
ra->bio[i] = bio_alloc_bioset(NULL,
1741
buf_pages(ra->buf[i], btree_buf_bytes(b)),
1742
REQ_OP_READ|REQ_SYNC|REQ_META,
1743
GFP_NOFS,
1744
&c->btree_bio);
1745
}
1746
1747
i = 0;
1748
bkey_for_each_ptr_decode(k.k, ptrs, pick, entry) {
1749
struct bch_dev *ca = bch2_dev_get_ioref(c, pick.ptr.dev, READ,
1750
BCH_DEV_READ_REF_btree_node_read_all_replicas);
1751
struct btree_read_bio *rb =
1752
container_of(ra->bio[i], struct btree_read_bio, bio);
1753
rb->c = c;
1754
rb->b = b;
1755
rb->ra = ra;
1756
rb->start_time = local_clock();
1757
rb->have_ioref = ca != NULL;
1758
rb->idx = i;
1759
rb->pick = pick;
1760
rb->bio.bi_iter.bi_sector = pick.ptr.offset;
1761
rb->bio.bi_end_io = btree_node_read_all_replicas_endio;
1762
bch2_bio_map(&rb->bio, ra->buf[i], btree_buf_bytes(b));
1763
1764
if (rb->have_ioref) {
1765
this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_btree],
1766
bio_sectors(&rb->bio));
1767
bio_set_dev(&rb->bio, ca->disk_sb.bdev);
1768
1769
closure_get(&ra->cl);
1770
submit_bio(&rb->bio);
1771
} else {
1772
ra->err[i] = BLK_STS_REMOVED;
1773
}
1774
1775
i++;
1776
}
1777
1778
if (sync) {
1779
closure_sync(&ra->cl);
1780
btree_node_read_all_replicas_done(&ra->cl.work);
1781
} else {
1782
continue_at(&ra->cl, btree_node_read_all_replicas_done,
1783
c->btree_read_complete_wq);
1784
}
1785
1786
return 0;
1787
}
1788
1789
void bch2_btree_node_read(struct btree_trans *trans, struct btree *b,
1790
bool sync)
1791
{
1792
struct bch_fs *c = trans->c;
1793
struct extent_ptr_decoded pick;
1794
struct btree_read_bio *rb;
1795
struct bch_dev *ca;
1796
struct bio *bio;
1797
int ret;
1798
1799
trace_and_count(c, btree_node_read, trans, b);
1800
1801
if (static_branch_unlikely(&bch2_verify_all_btree_replicas) &&
1802
!btree_node_read_all_replicas(c, b, sync))
1803
return;
1804
1805
ret = bch2_bkey_pick_read_device(c, bkey_i_to_s_c(&b->key),
1806
NULL, &pick, -1);
1807
1808
if (ret <= 0) {
1809
bool ratelimit = true;
1810
struct printbuf buf = PRINTBUF;
1811
bch2_log_msg_start(c, &buf);
1812
1813
prt_str(&buf, "btree node read error: no device to read from\n at ");
1814
bch2_btree_pos_to_text(&buf, c, b);
1815
prt_newline(&buf);
1816
bch2_btree_lost_data(c, &buf, b->c.btree_id);
1817
1818
if (c->recovery.passes_complete & BIT_ULL(BCH_RECOVERY_PASS_check_topology) &&
1819
bch2_fs_emergency_read_only2(c, &buf))
1820
ratelimit = false;
1821
1822
static DEFINE_RATELIMIT_STATE(rs,
1823
DEFAULT_RATELIMIT_INTERVAL,
1824
DEFAULT_RATELIMIT_BURST);
1825
if (!ratelimit || __ratelimit(&rs))
1826
bch2_print_str(c, KERN_ERR, buf.buf);
1827
printbuf_exit(&buf);
1828
1829
set_btree_node_read_error(b);
1830
clear_btree_node_read_in_flight(b);
1831
smp_mb__after_atomic();
1832
wake_up_bit(&b->flags, BTREE_NODE_read_in_flight);
1833
return;
1834
}
1835
1836
ca = bch2_dev_get_ioref(c, pick.ptr.dev, READ, BCH_DEV_READ_REF_btree_node_read);
1837
1838
bio = bio_alloc_bioset(NULL,
1839
buf_pages(b->data, btree_buf_bytes(b)),
1840
REQ_OP_READ|REQ_SYNC|REQ_META,
1841
GFP_NOFS,
1842
&c->btree_bio);
1843
rb = container_of(bio, struct btree_read_bio, bio);
1844
rb->c = c;
1845
rb->b = b;
1846
rb->ra = NULL;
1847
rb->start_time = local_clock();
1848
rb->have_ioref = ca != NULL;
1849
rb->pick = pick;
1850
INIT_WORK(&rb->work, btree_node_read_work);
1851
bio->bi_iter.bi_sector = pick.ptr.offset;
1852
bio->bi_end_io = btree_node_read_endio;
1853
bch2_bio_map(bio, b->data, btree_buf_bytes(b));
1854
1855
async_object_list_add(c, btree_read_bio, rb, &rb->list_idx);
1856
1857
if (rb->have_ioref) {
1858
this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_btree],
1859
bio_sectors(bio));
1860
bio_set_dev(bio, ca->disk_sb.bdev);
1861
1862
if (sync) {
1863
submit_bio_wait(bio);
1864
bch2_latency_acct(ca, rb->start_time, READ);
1865
btree_node_read_work(&rb->work);
1866
} else {
1867
submit_bio(bio);
1868
}
1869
} else {
1870
bio->bi_status = BLK_STS_REMOVED;
1871
1872
if (sync)
1873
btree_node_read_work(&rb->work);
1874
else
1875
queue_work(c->btree_read_complete_wq, &rb->work);
1876
}
1877
}
1878
1879
static int __bch2_btree_root_read(struct btree_trans *trans, enum btree_id id,
1880
const struct bkey_i *k, unsigned level)
1881
{
1882
struct bch_fs *c = trans->c;
1883
struct closure cl;
1884
struct btree *b;
1885
int ret;
1886
1887
closure_init_stack(&cl);
1888
1889
do {
1890
ret = bch2_btree_cache_cannibalize_lock(trans, &cl);
1891
closure_sync(&cl);
1892
} while (ret);
1893
1894
b = bch2_btree_node_mem_alloc(trans, level != 0);
1895
bch2_btree_cache_cannibalize_unlock(trans);
1896
1897
BUG_ON(IS_ERR(b));
1898
1899
bkey_copy(&b->key, k);
1900
BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, id));
1901
1902
set_btree_node_read_in_flight(b);
1903
1904
/* we can't pass the trans to read_done() for fsck errors, so it must be unlocked */
1905
bch2_trans_unlock(trans);
1906
bch2_btree_node_read(trans, b, true);
1907
1908
if (btree_node_read_error(b)) {
1909
mutex_lock(&c->btree_cache.lock);
1910
bch2_btree_node_hash_remove(&c->btree_cache, b);
1911
mutex_unlock(&c->btree_cache.lock);
1912
1913
ret = bch_err_throw(c, btree_node_read_error);
1914
goto err;
1915
}
1916
1917
bch2_btree_set_root_for_read(c, b);
1918
err:
1919
six_unlock_write(&b->c.lock);
1920
six_unlock_intent(&b->c.lock);
1921
1922
return ret;
1923
}
1924
1925
int bch2_btree_root_read(struct bch_fs *c, enum btree_id id,
1926
const struct bkey_i *k, unsigned level)
1927
{
1928
return bch2_trans_run(c, __bch2_btree_root_read(trans, id, k, level));
1929
}
1930
1931
struct btree_node_scrub {
1932
struct bch_fs *c;
1933
struct bch_dev *ca;
1934
void *buf;
1935
bool used_mempool;
1936
unsigned written;
1937
1938
enum btree_id btree;
1939
unsigned level;
1940
struct bkey_buf key;
1941
__le64 seq;
1942
1943
struct work_struct work;
1944
struct bio bio;
1945
};
1946
1947
static bool btree_node_scrub_check(struct bch_fs *c, struct btree_node *data, unsigned ptr_written,
1948
struct printbuf *err)
1949
{
1950
unsigned written = 0;
1951
1952
if (le64_to_cpu(data->magic) != bset_magic(c)) {
1953
prt_printf(err, "bad magic: want %llx, got %llx",
1954
bset_magic(c), le64_to_cpu(data->magic));
1955
return false;
1956
}
1957
1958
while (written < (ptr_written ?: btree_sectors(c))) {
1959
struct btree_node_entry *bne;
1960
struct bset *i;
1961
bool first = !written;
1962
1963
if (first) {
1964
bne = NULL;
1965
i = &data->keys;
1966
} else {
1967
bne = (void *) data + (written << 9);
1968
i = &bne->keys;
1969
1970
if (!ptr_written && i->seq != data->keys.seq)
1971
break;
1972
}
1973
1974
struct nonce nonce = btree_nonce(i, written << 9);
1975
bool good_csum_type = bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i));
1976
1977
if (first) {
1978
if (good_csum_type) {
1979
struct bch_csum csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, data);
1980
if (bch2_crc_cmp(data->csum, csum)) {
1981
bch2_csum_err_msg(err, BSET_CSUM_TYPE(i), data->csum, csum);
1982
return false;
1983
}
1984
}
1985
1986
written += vstruct_sectors(data, c->block_bits);
1987
} else {
1988
if (good_csum_type) {
1989
struct bch_csum csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
1990
if (bch2_crc_cmp(bne->csum, csum)) {
1991
bch2_csum_err_msg(err, BSET_CSUM_TYPE(i), bne->csum, csum);
1992
return false;
1993
}
1994
}
1995
1996
written += vstruct_sectors(bne, c->block_bits);
1997
}
1998
}
1999
2000
return true;
2001
}
2002
2003
static void btree_node_scrub_work(struct work_struct *work)
2004
{
2005
struct btree_node_scrub *scrub = container_of(work, struct btree_node_scrub, work);
2006
struct bch_fs *c = scrub->c;
2007
struct printbuf err = PRINTBUF;
2008
2009
__bch2_btree_pos_to_text(&err, c, scrub->btree, scrub->level,
2010
bkey_i_to_s_c(scrub->key.k));
2011
prt_newline(&err);
2012
2013
if (!btree_node_scrub_check(c, scrub->buf, scrub->written, &err)) {
2014
int ret = bch2_trans_do(c,
2015
bch2_btree_node_rewrite_key(trans, scrub->btree, scrub->level - 1,
2016
scrub->key.k, 0));
2017
if (!bch2_err_matches(ret, ENOENT) &&
2018
!bch2_err_matches(ret, EROFS))
2019
bch_err_fn_ratelimited(c, ret);
2020
}
2021
2022
printbuf_exit(&err);
2023
bch2_bkey_buf_exit(&scrub->key, c);;
2024
btree_bounce_free(c, c->opts.btree_node_size, scrub->used_mempool, scrub->buf);
2025
enumerated_ref_put(&scrub->ca->io_ref[READ], BCH_DEV_READ_REF_btree_node_scrub);
2026
kfree(scrub);
2027
enumerated_ref_put(&c->writes, BCH_WRITE_REF_btree_node_scrub);
2028
}
2029
2030
static void btree_node_scrub_endio(struct bio *bio)
2031
{
2032
struct btree_node_scrub *scrub = container_of(bio, struct btree_node_scrub, bio);
2033
2034
queue_work(scrub->c->btree_read_complete_wq, &scrub->work);
2035
}
2036
2037
int bch2_btree_node_scrub(struct btree_trans *trans,
2038
enum btree_id btree, unsigned level,
2039
struct bkey_s_c k, unsigned dev)
2040
{
2041
if (k.k->type != KEY_TYPE_btree_ptr_v2)
2042
return 0;
2043
2044
struct bch_fs *c = trans->c;
2045
2046
if (!enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_btree_node_scrub))
2047
return bch_err_throw(c, erofs_no_writes);
2048
2049
struct extent_ptr_decoded pick;
2050
int ret = bch2_bkey_pick_read_device(c, k, NULL, &pick, dev);
2051
if (ret <= 0)
2052
goto err;
2053
2054
struct bch_dev *ca = bch2_dev_get_ioref(c, pick.ptr.dev, READ,
2055
BCH_DEV_READ_REF_btree_node_scrub);
2056
if (!ca) {
2057
ret = bch_err_throw(c, device_offline);
2058
goto err;
2059
}
2060
2061
bool used_mempool = false;
2062
void *buf = btree_bounce_alloc(c, c->opts.btree_node_size, &used_mempool);
2063
2064
unsigned vecs = buf_pages(buf, c->opts.btree_node_size);
2065
2066
struct btree_node_scrub *scrub =
2067
kzalloc(sizeof(*scrub) + sizeof(struct bio_vec) * vecs, GFP_KERNEL);
2068
if (!scrub) {
2069
ret = -ENOMEM;
2070
goto err_free;
2071
}
2072
2073
scrub->c = c;
2074
scrub->ca = ca;
2075
scrub->buf = buf;
2076
scrub->used_mempool = used_mempool;
2077
scrub->written = btree_ptr_sectors_written(k);
2078
2079
scrub->btree = btree;
2080
scrub->level = level;
2081
bch2_bkey_buf_init(&scrub->key);
2082
bch2_bkey_buf_reassemble(&scrub->key, c, k);
2083
scrub->seq = bkey_s_c_to_btree_ptr_v2(k).v->seq;
2084
2085
INIT_WORK(&scrub->work, btree_node_scrub_work);
2086
2087
bio_init(&scrub->bio, ca->disk_sb.bdev, scrub->bio.bi_inline_vecs, vecs, REQ_OP_READ);
2088
bch2_bio_map(&scrub->bio, scrub->buf, c->opts.btree_node_size);
2089
scrub->bio.bi_iter.bi_sector = pick.ptr.offset;
2090
scrub->bio.bi_end_io = btree_node_scrub_endio;
2091
submit_bio(&scrub->bio);
2092
return 0;
2093
err_free:
2094
btree_bounce_free(c, c->opts.btree_node_size, used_mempool, buf);
2095
enumerated_ref_put(&ca->io_ref[READ], BCH_DEV_READ_REF_btree_node_scrub);
2096
err:
2097
enumerated_ref_put(&c->writes, BCH_WRITE_REF_btree_node_scrub);
2098
return ret;
2099
}
2100
2101
static void bch2_btree_complete_write(struct bch_fs *c, struct btree *b,
2102
struct btree_write *w)
2103
{
2104
unsigned long old, new;
2105
2106
old = READ_ONCE(b->will_make_reachable);
2107
do {
2108
new = old;
2109
if (!(old & 1))
2110
break;
2111
2112
new &= ~1UL;
2113
} while (!try_cmpxchg(&b->will_make_reachable, &old, new));
2114
2115
if (old & 1)
2116
closure_put(&((struct btree_update *) new)->cl);
2117
2118
bch2_journal_pin_drop(&c->journal, &w->journal);
2119
}
2120
2121
static void __btree_node_write_done(struct bch_fs *c, struct btree *b, u64 start_time)
2122
{
2123
struct btree_write *w = btree_prev_write(b);
2124
unsigned long old, new;
2125
unsigned type = 0;
2126
2127
bch2_btree_complete_write(c, b, w);
2128
2129
if (start_time)
2130
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_write], start_time);
2131
2132
old = READ_ONCE(b->flags);
2133
do {
2134
new = old;
2135
2136
if ((old & (1U << BTREE_NODE_dirty)) &&
2137
(old & (1U << BTREE_NODE_need_write)) &&
2138
!(old & (1U << BTREE_NODE_never_write)) &&
2139
!(old & (1U << BTREE_NODE_write_blocked)) &&
2140
!(old & (1U << BTREE_NODE_will_make_reachable))) {
2141
new &= ~(1U << BTREE_NODE_dirty);
2142
new &= ~(1U << BTREE_NODE_need_write);
2143
new |= (1U << BTREE_NODE_write_in_flight);
2144
new |= (1U << BTREE_NODE_write_in_flight_inner);
2145
new |= (1U << BTREE_NODE_just_written);
2146
new ^= (1U << BTREE_NODE_write_idx);
2147
2148
type = new & BTREE_WRITE_TYPE_MASK;
2149
new &= ~BTREE_WRITE_TYPE_MASK;
2150
} else {
2151
new &= ~(1U << BTREE_NODE_write_in_flight);
2152
new &= ~(1U << BTREE_NODE_write_in_flight_inner);
2153
}
2154
} while (!try_cmpxchg(&b->flags, &old, new));
2155
2156
if (new & (1U << BTREE_NODE_write_in_flight))
2157
__bch2_btree_node_write(c, b, BTREE_WRITE_ALREADY_STARTED|type);
2158
else {
2159
smp_mb__after_atomic();
2160
wake_up_bit(&b->flags, BTREE_NODE_write_in_flight);
2161
}
2162
}
2163
2164
static void btree_node_write_done(struct bch_fs *c, struct btree *b, u64 start_time)
2165
{
2166
struct btree_trans *trans = bch2_trans_get(c);
2167
2168
btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
2169
2170
/* we don't need transaction context anymore after we got the lock. */
2171
bch2_trans_put(trans);
2172
__btree_node_write_done(c, b, start_time);
2173
six_unlock_read(&b->c.lock);
2174
}
2175
2176
static void btree_node_write_work(struct work_struct *work)
2177
{
2178
struct btree_write_bio *wbio =
2179
container_of(work, struct btree_write_bio, work);
2180
struct bch_fs *c = wbio->wbio.c;
2181
struct btree *b = wbio->wbio.bio.bi_private;
2182
u64 start_time = wbio->start_time;
2183
int ret = 0;
2184
2185
btree_bounce_free(c,
2186
wbio->data_bytes,
2187
wbio->wbio.used_mempool,
2188
wbio->data);
2189
2190
bch2_bkey_drop_ptrs(bkey_i_to_s(&wbio->key), ptr,
2191
bch2_dev_list_has_dev(wbio->wbio.failed, ptr->dev));
2192
2193
if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(&wbio->key))) {
2194
ret = bch_err_throw(c, btree_node_write_all_failed);
2195
goto err;
2196
}
2197
2198
if (wbio->wbio.first_btree_write) {
2199
if (wbio->wbio.failed.nr) {
2200
2201
}
2202
} else {
2203
ret = bch2_trans_do(c,
2204
bch2_btree_node_update_key_get_iter(trans, b, &wbio->key,
2205
BCH_WATERMARK_interior_updates|
2206
BCH_TRANS_COMMIT_journal_reclaim|
2207
BCH_TRANS_COMMIT_no_enospc|
2208
BCH_TRANS_COMMIT_no_check_rw,
2209
!wbio->wbio.failed.nr));
2210
if (ret)
2211
goto err;
2212
}
2213
out:
2214
async_object_list_del(c, btree_write_bio, wbio->list_idx);
2215
bio_put(&wbio->wbio.bio);
2216
btree_node_write_done(c, b, start_time);
2217
return;
2218
err:
2219
set_btree_node_noevict(b);
2220
2221
if (!bch2_err_matches(ret, EROFS)) {
2222
struct printbuf buf = PRINTBUF;
2223
prt_printf(&buf, "writing btree node: %s\n ", bch2_err_str(ret));
2224
bch2_btree_pos_to_text(&buf, c, b);
2225
bch2_fs_fatal_error(c, "%s", buf.buf);
2226
printbuf_exit(&buf);
2227
}
2228
goto out;
2229
}
2230
2231
static void btree_node_write_endio(struct bio *bio)
2232
{
2233
struct bch_write_bio *wbio = to_wbio(bio);
2234
struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
2235
struct bch_write_bio *orig = parent ?: wbio;
2236
struct btree_write_bio *wb = container_of(orig, struct btree_write_bio, wbio);
2237
struct bch_fs *c = wbio->c;
2238
struct btree *b = wbio->bio.bi_private;
2239
struct bch_dev *ca = wbio->have_ioref ? bch2_dev_have_ref(c, wbio->dev) : NULL;
2240
2241
bch2_account_io_completion(ca, BCH_MEMBER_ERROR_write,
2242
wbio->submit_time, !bio->bi_status);
2243
2244
if (ca && bio->bi_status) {
2245
struct printbuf buf = PRINTBUF;
2246
buf.atomic++;
2247
prt_printf(&buf, "btree write error: %s\n ",
2248
bch2_blk_status_to_str(bio->bi_status));
2249
bch2_btree_pos_to_text(&buf, c, b);
2250
bch_err_dev_ratelimited(ca, "%s", buf.buf);
2251
printbuf_exit(&buf);
2252
}
2253
2254
if (bio->bi_status) {
2255
unsigned long flags;
2256
spin_lock_irqsave(&c->btree_write_error_lock, flags);
2257
bch2_dev_list_add_dev(&orig->failed, wbio->dev);
2258
spin_unlock_irqrestore(&c->btree_write_error_lock, flags);
2259
}
2260
2261
/*
2262
* XXX: we should be using io_ref[WRITE], but we aren't retrying failed
2263
* btree writes yet (due to device removal/ro):
2264
*/
2265
if (wbio->have_ioref)
2266
enumerated_ref_put(&ca->io_ref[READ],
2267
BCH_DEV_READ_REF_btree_node_write);
2268
2269
if (parent) {
2270
bio_put(bio);
2271
bio_endio(&parent->bio);
2272
return;
2273
}
2274
2275
clear_btree_node_write_in_flight_inner(b);
2276
smp_mb__after_atomic();
2277
wake_up_bit(&b->flags, BTREE_NODE_write_in_flight_inner);
2278
INIT_WORK(&wb->work, btree_node_write_work);
2279
queue_work(c->btree_write_complete_wq, &wb->work);
2280
}
2281
2282
static int validate_bset_for_write(struct bch_fs *c, struct btree *b,
2283
struct bset *i)
2284
{
2285
int ret = bch2_bkey_validate(c, bkey_i_to_s_c(&b->key),
2286
(struct bkey_validate_context) {
2287
.from = BKEY_VALIDATE_btree_node,
2288
.level = b->c.level + 1,
2289
.btree = b->c.btree_id,
2290
.flags = BCH_VALIDATE_write,
2291
});
2292
if (ret) {
2293
bch2_fs_inconsistent(c, "invalid btree node key before write");
2294
return ret;
2295
}
2296
2297
ret = validate_bset_keys(c, b, i, WRITE, NULL, NULL) ?:
2298
validate_bset(c, NULL, b, i, b->written, WRITE, NULL, NULL);
2299
if (ret) {
2300
bch2_inconsistent_error(c);
2301
dump_stack();
2302
}
2303
2304
return ret;
2305
}
2306
2307
static void btree_write_submit(struct work_struct *work)
2308
{
2309
struct btree_write_bio *wbio = container_of(work, struct btree_write_bio, work);
2310
BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
2311
2312
bkey_copy(&tmp.k, &wbio->key);
2313
2314
bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&tmp.k)), ptr)
2315
ptr->offset += wbio->sector_offset;
2316
2317
bch2_submit_wbio_replicas(&wbio->wbio, wbio->wbio.c, BCH_DATA_btree,
2318
&tmp.k, false);
2319
}
2320
2321
void __bch2_btree_node_write(struct bch_fs *c, struct btree *b, unsigned flags)
2322
{
2323
struct btree_write_bio *wbio;
2324
struct bset *i;
2325
struct btree_node *bn = NULL;
2326
struct btree_node_entry *bne = NULL;
2327
struct sort_iter_stack sort_iter;
2328
struct nonce nonce;
2329
unsigned bytes_to_write, sectors_to_write, bytes, u64s;
2330
u64 seq = 0;
2331
bool used_mempool;
2332
unsigned long old, new;
2333
bool validate_before_checksum = false;
2334
enum btree_write_type type = flags & BTREE_WRITE_TYPE_MASK;
2335
void *data;
2336
u64 start_time = local_clock();
2337
int ret;
2338
2339
if (flags & BTREE_WRITE_ALREADY_STARTED)
2340
goto do_write;
2341
2342
/*
2343
* We may only have a read lock on the btree node - the dirty bit is our
2344
* "lock" against racing with other threads that may be trying to start
2345
* a write, we do a write iff we clear the dirty bit. Since setting the
2346
* dirty bit requires a write lock, we can't race with other threads
2347
* redirtying it:
2348
*/
2349
old = READ_ONCE(b->flags);
2350
do {
2351
new = old;
2352
2353
if (!(old & (1 << BTREE_NODE_dirty)))
2354
return;
2355
2356
if ((flags & BTREE_WRITE_ONLY_IF_NEED) &&
2357
!(old & (1 << BTREE_NODE_need_write)))
2358
return;
2359
2360
if (old &
2361
((1 << BTREE_NODE_never_write)|
2362
(1 << BTREE_NODE_write_blocked)))
2363
return;
2364
2365
if (b->written &&
2366
(old & (1 << BTREE_NODE_will_make_reachable)))
2367
return;
2368
2369
if (old & (1 << BTREE_NODE_write_in_flight))
2370
return;
2371
2372
if (flags & BTREE_WRITE_ONLY_IF_NEED)
2373
type = new & BTREE_WRITE_TYPE_MASK;
2374
new &= ~BTREE_WRITE_TYPE_MASK;
2375
2376
new &= ~(1 << BTREE_NODE_dirty);
2377
new &= ~(1 << BTREE_NODE_need_write);
2378
new |= (1 << BTREE_NODE_write_in_flight);
2379
new |= (1 << BTREE_NODE_write_in_flight_inner);
2380
new |= (1 << BTREE_NODE_just_written);
2381
new ^= (1 << BTREE_NODE_write_idx);
2382
} while (!try_cmpxchg_acquire(&b->flags, &old, new));
2383
2384
if (new & (1U << BTREE_NODE_need_write))
2385
return;
2386
do_write:
2387
BUG_ON((type == BTREE_WRITE_initial) != (b->written == 0));
2388
2389
atomic_long_dec(&c->btree_cache.nr_dirty);
2390
2391
BUG_ON(btree_node_fake(b));
2392
BUG_ON((b->will_make_reachable != 0) != !b->written);
2393
2394
BUG_ON(b->written >= btree_sectors(c));
2395
BUG_ON(b->written & (block_sectors(c) - 1));
2396
BUG_ON(bset_written(b, btree_bset_last(b)));
2397
BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(c));
2398
BUG_ON(memcmp(&b->data->format, &b->format, sizeof(b->format)));
2399
2400
bch2_sort_whiteouts(c, b);
2401
2402
sort_iter_stack_init(&sort_iter, b);
2403
2404
bytes = !b->written
2405
? sizeof(struct btree_node)
2406
: sizeof(struct btree_node_entry);
2407
2408
bytes += b->whiteout_u64s * sizeof(u64);
2409
2410
for_each_bset(b, t) {
2411
i = bset(b, t);
2412
2413
if (bset_written(b, i))
2414
continue;
2415
2416
bytes += le16_to_cpu(i->u64s) * sizeof(u64);
2417
sort_iter_add(&sort_iter.iter,
2418
btree_bkey_first(b, t),
2419
btree_bkey_last(b, t));
2420
seq = max(seq, le64_to_cpu(i->journal_seq));
2421
}
2422
2423
BUG_ON(b->written && !seq);
2424
2425
/* bch2_varint_decode may read up to 7 bytes past the end of the buffer: */
2426
bytes += 8;
2427
2428
/* buffer must be a multiple of the block size */
2429
bytes = round_up(bytes, block_bytes(c));
2430
2431
data = btree_bounce_alloc(c, bytes, &used_mempool);
2432
2433
if (!b->written) {
2434
bn = data;
2435
*bn = *b->data;
2436
i = &bn->keys;
2437
} else {
2438
bne = data;
2439
bne->keys = b->data->keys;
2440
i = &bne->keys;
2441
}
2442
2443
i->journal_seq = cpu_to_le64(seq);
2444
i->u64s = 0;
2445
2446
sort_iter_add(&sort_iter.iter,
2447
unwritten_whiteouts_start(b),
2448
unwritten_whiteouts_end(b));
2449
SET_BSET_SEPARATE_WHITEOUTS(i, false);
2450
2451
u64s = bch2_sort_keys_keep_unwritten_whiteouts(i->start, &sort_iter.iter);
2452
le16_add_cpu(&i->u64s, u64s);
2453
2454
b->whiteout_u64s = 0;
2455
2456
BUG_ON(!b->written && i->u64s != b->data->keys.u64s);
2457
2458
set_needs_whiteout(i, false);
2459
2460
/* do we have data to write? */
2461
if (b->written && !i->u64s)
2462
goto nowrite;
2463
2464
bytes_to_write = vstruct_end(i) - data;
2465
sectors_to_write = round_up(bytes_to_write, block_bytes(c)) >> 9;
2466
2467
if (!b->written &&
2468
b->key.k.type == KEY_TYPE_btree_ptr_v2)
2469
BUG_ON(btree_ptr_sectors_written(bkey_i_to_s_c(&b->key)) != sectors_to_write);
2470
2471
memset(data + bytes_to_write, 0,
2472
(sectors_to_write << 9) - bytes_to_write);
2473
2474
BUG_ON(b->written + sectors_to_write > btree_sectors(c));
2475
BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN);
2476
BUG_ON(i->seq != b->data->keys.seq);
2477
2478
i->version = cpu_to_le16(c->sb.version);
2479
SET_BSET_OFFSET(i, b->written);
2480
SET_BSET_CSUM_TYPE(i, bch2_meta_checksum_type(c));
2481
2482
if (bch2_csum_type_is_encryption(BSET_CSUM_TYPE(i)))
2483
validate_before_checksum = true;
2484
2485
/* validate_bset will be modifying: */
2486
if (le16_to_cpu(i->version) < bcachefs_metadata_version_current)
2487
validate_before_checksum = true;
2488
2489
/* if we're going to be encrypting, check metadata validity first: */
2490
if (validate_before_checksum &&
2491
validate_bset_for_write(c, b, i))
2492
goto err;
2493
2494
ret = bset_encrypt(c, i, b->written << 9);
2495
if (bch2_fs_fatal_err_on(ret, c,
2496
"encrypting btree node: %s", bch2_err_str(ret)))
2497
goto err;
2498
2499
nonce = btree_nonce(i, b->written << 9);
2500
2501
if (bn)
2502
bn->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bn);
2503
else
2504
bne->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
2505
2506
/* if we're not encrypting, check metadata after checksumming: */
2507
if (!validate_before_checksum &&
2508
validate_bset_for_write(c, b, i))
2509
goto err;
2510
2511
/*
2512
* We handle btree write errors by immediately halting the journal -
2513
* after we've done that, we can't issue any subsequent btree writes
2514
* because they might have pointers to new nodes that failed to write.
2515
*
2516
* Furthermore, there's no point in doing any more btree writes because
2517
* with the journal stopped, we're never going to update the journal to
2518
* reflect that those writes were done and the data flushed from the
2519
* journal:
2520
*
2521
* Also on journal error, the pending write may have updates that were
2522
* never journalled (interior nodes, see btree_update_nodes_written()) -
2523
* it's critical that we don't do the write in that case otherwise we
2524
* will have updates visible that weren't in the journal:
2525
*
2526
* Make sure to update b->written so bch2_btree_init_next() doesn't
2527
* break:
2528
*/
2529
if (bch2_journal_error(&c->journal) ||
2530
c->opts.nochanges)
2531
goto err;
2532
2533
trace_and_count(c, btree_node_write, b, bytes_to_write, sectors_to_write);
2534
2535
wbio = container_of(bio_alloc_bioset(NULL,
2536
buf_pages(data, sectors_to_write << 9),
2537
REQ_OP_WRITE|REQ_META,
2538
GFP_NOFS,
2539
&c->btree_bio),
2540
struct btree_write_bio, wbio.bio);
2541
wbio_init(&wbio->wbio.bio);
2542
wbio->data = data;
2543
wbio->data_bytes = bytes;
2544
wbio->sector_offset = b->written;
2545
wbio->start_time = start_time;
2546
wbio->wbio.c = c;
2547
wbio->wbio.used_mempool = used_mempool;
2548
wbio->wbio.first_btree_write = !b->written;
2549
wbio->wbio.bio.bi_end_io = btree_node_write_endio;
2550
wbio->wbio.bio.bi_private = b;
2551
2552
bch2_bio_map(&wbio->wbio.bio, data, sectors_to_write << 9);
2553
2554
bkey_copy(&wbio->key, &b->key);
2555
2556
b->written += sectors_to_write;
2557
2558
if (wbio->key.k.type == KEY_TYPE_btree_ptr_v2)
2559
bkey_i_to_btree_ptr_v2(&wbio->key)->v.sectors_written =
2560
cpu_to_le16(b->written);
2561
2562
atomic64_inc(&c->btree_write_stats[type].nr);
2563
atomic64_add(bytes_to_write, &c->btree_write_stats[type].bytes);
2564
2565
async_object_list_add(c, btree_write_bio, wbio, &wbio->list_idx);
2566
2567
INIT_WORK(&wbio->work, btree_write_submit);
2568
queue_work(c->btree_write_submit_wq, &wbio->work);
2569
return;
2570
err:
2571
set_btree_node_noevict(b);
2572
b->written += sectors_to_write;
2573
nowrite:
2574
btree_bounce_free(c, bytes, used_mempool, data);
2575
__btree_node_write_done(c, b, 0);
2576
}
2577
2578
/*
2579
* Work that must be done with write lock held:
2580
*/
2581
bool bch2_btree_post_write_cleanup(struct bch_fs *c, struct btree *b)
2582
{
2583
bool invalidated_iter = false;
2584
struct btree_node_entry *bne;
2585
2586
if (!btree_node_just_written(b))
2587
return false;
2588
2589
BUG_ON(b->whiteout_u64s);
2590
2591
clear_btree_node_just_written(b);
2592
2593
/*
2594
* Note: immediately after write, bset_written() doesn't work - the
2595
* amount of data we had to write after compaction might have been
2596
* smaller than the offset of the last bset.
2597
*
2598
* However, we know that all bsets have been written here, as long as
2599
* we're still holding the write lock:
2600
*/
2601
2602
/*
2603
* XXX: decide if we really want to unconditionally sort down to a
2604
* single bset:
2605
*/
2606
if (b->nsets > 1) {
2607
btree_node_sort(c, b, 0, b->nsets);
2608
invalidated_iter = true;
2609
} else {
2610
invalidated_iter = bch2_drop_whiteouts(b, COMPACT_ALL);
2611
}
2612
2613
for_each_bset(b, t)
2614
set_needs_whiteout(bset(b, t), true);
2615
2616
bch2_btree_verify(c, b);
2617
2618
/*
2619
* If later we don't unconditionally sort down to a single bset, we have
2620
* to ensure this is still true:
2621
*/
2622
BUG_ON((void *) btree_bkey_last(b, bset_tree_last(b)) > write_block(b));
2623
2624
bne = want_new_bset(c, b);
2625
if (bne)
2626
bch2_bset_init_next(b, bne);
2627
2628
bch2_btree_build_aux_trees(b);
2629
2630
return invalidated_iter;
2631
}
2632
2633
/*
2634
* Use this one if the node is intent locked:
2635
*/
2636
void bch2_btree_node_write(struct bch_fs *c, struct btree *b,
2637
enum six_lock_type lock_type_held,
2638
unsigned flags)
2639
{
2640
if (lock_type_held == SIX_LOCK_intent ||
2641
(lock_type_held == SIX_LOCK_read &&
2642
six_lock_tryupgrade(&b->c.lock))) {
2643
__bch2_btree_node_write(c, b, flags);
2644
2645
/* don't cycle lock unnecessarily: */
2646
if (btree_node_just_written(b) &&
2647
six_trylock_write(&b->c.lock)) {
2648
bch2_btree_post_write_cleanup(c, b);
2649
six_unlock_write(&b->c.lock);
2650
}
2651
2652
if (lock_type_held == SIX_LOCK_read)
2653
six_lock_downgrade(&b->c.lock);
2654
} else {
2655
__bch2_btree_node_write(c, b, flags);
2656
if (lock_type_held == SIX_LOCK_write &&
2657
btree_node_just_written(b))
2658
bch2_btree_post_write_cleanup(c, b);
2659
}
2660
}
2661
2662
void bch2_btree_node_write_trans(struct btree_trans *trans, struct btree *b,
2663
enum six_lock_type lock_type_held,
2664
unsigned flags)
2665
{
2666
struct bch_fs *c = trans->c;
2667
2668
if (lock_type_held == SIX_LOCK_intent ||
2669
(lock_type_held == SIX_LOCK_read &&
2670
six_lock_tryupgrade(&b->c.lock))) {
2671
__bch2_btree_node_write(c, b, flags);
2672
2673
/* don't cycle lock unnecessarily: */
2674
if (btree_node_just_written(b) &&
2675
six_trylock_write(&b->c.lock)) {
2676
bch2_btree_post_write_cleanup(c, b);
2677
__bch2_btree_node_unlock_write(trans, b);
2678
}
2679
2680
if (lock_type_held == SIX_LOCK_read)
2681
six_lock_downgrade(&b->c.lock);
2682
} else {
2683
__bch2_btree_node_write(c, b, flags);
2684
if (lock_type_held == SIX_LOCK_write &&
2685
btree_node_just_written(b))
2686
bch2_btree_post_write_cleanup(c, b);
2687
}
2688
}
2689
2690
static bool __bch2_btree_flush_all(struct bch_fs *c, unsigned flag)
2691
{
2692
struct bucket_table *tbl;
2693
struct rhash_head *pos;
2694
struct btree *b;
2695
unsigned i;
2696
bool ret = false;
2697
restart:
2698
rcu_read_lock();
2699
for_each_cached_btree(b, c, tbl, i, pos)
2700
if (test_bit(flag, &b->flags)) {
2701
rcu_read_unlock();
2702
wait_on_bit_io(&b->flags, flag, TASK_UNINTERRUPTIBLE);
2703
ret = true;
2704
goto restart;
2705
}
2706
rcu_read_unlock();
2707
2708
return ret;
2709
}
2710
2711
bool bch2_btree_flush_all_reads(struct bch_fs *c)
2712
{
2713
return __bch2_btree_flush_all(c, BTREE_NODE_read_in_flight);
2714
}
2715
2716
bool bch2_btree_flush_all_writes(struct bch_fs *c)
2717
{
2718
return __bch2_btree_flush_all(c, BTREE_NODE_write_in_flight);
2719
}
2720
2721
static const char * const bch2_btree_write_types[] = {
2722
#define x(t, n) [n] = #t,
2723
BCH_BTREE_WRITE_TYPES()
2724
NULL
2725
};
2726
2727
void bch2_btree_write_stats_to_text(struct printbuf *out, struct bch_fs *c)
2728
{
2729
printbuf_tabstop_push(out, 20);
2730
printbuf_tabstop_push(out, 10);
2731
2732
prt_printf(out, "\tnr\tsize\n");
2733
2734
for (unsigned i = 0; i < BTREE_WRITE_TYPE_NR; i++) {
2735
u64 nr = atomic64_read(&c->btree_write_stats[i].nr);
2736
u64 bytes = atomic64_read(&c->btree_write_stats[i].bytes);
2737
2738
prt_printf(out, "%s:\t%llu\t", bch2_btree_write_types[i], nr);
2739
prt_human_readable_u64(out, nr ? div64_u64(bytes, nr) : 0);
2740
prt_newline(out);
2741
}
2742
}
2743
2744