Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/bcachefs/btree_key_cache.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
#include "bcachefs.h"
4
#include "btree_cache.h"
5
#include "btree_iter.h"
6
#include "btree_key_cache.h"
7
#include "btree_locking.h"
8
#include "btree_update.h"
9
#include "errcode.h"
10
#include "error.h"
11
#include "journal.h"
12
#include "journal_reclaim.h"
13
#include "trace.h"
14
15
#include <linux/sched/mm.h>
16
17
static inline bool btree_uses_pcpu_readers(enum btree_id id)
18
{
19
return id == BTREE_ID_subvolumes;
20
}
21
22
static struct kmem_cache *bch2_key_cache;
23
24
static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
25
const void *obj)
26
{
27
const struct bkey_cached *ck = obj;
28
const struct bkey_cached_key *key = arg->key;
29
30
return ck->key.btree_id != key->btree_id ||
31
!bpos_eq(ck->key.pos, key->pos);
32
}
33
34
static const struct rhashtable_params bch2_btree_key_cache_params = {
35
.head_offset = offsetof(struct bkey_cached, hash),
36
.key_offset = offsetof(struct bkey_cached, key),
37
.key_len = sizeof(struct bkey_cached_key),
38
.obj_cmpfn = bch2_btree_key_cache_cmp_fn,
39
.automatic_shrinking = true,
40
};
41
42
static inline void btree_path_cached_set(struct btree_trans *trans, struct btree_path *path,
43
struct bkey_cached *ck,
44
enum btree_node_locked_type lock_held)
45
{
46
path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
47
path->l[0].b = (void *) ck;
48
mark_btree_node_locked(trans, path, 0, lock_held);
49
}
50
51
__flatten
52
inline struct bkey_cached *
53
bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
54
{
55
struct bkey_cached_key key = {
56
.btree_id = btree_id,
57
.pos = pos,
58
};
59
60
return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
61
bch2_btree_key_cache_params);
62
}
63
64
static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
65
{
66
if (!six_trylock_intent(&ck->c.lock))
67
return false;
68
69
if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
70
six_unlock_intent(&ck->c.lock);
71
return false;
72
}
73
74
if (!six_trylock_write(&ck->c.lock)) {
75
six_unlock_intent(&ck->c.lock);
76
return false;
77
}
78
79
return true;
80
}
81
82
static bool bkey_cached_evict(struct btree_key_cache *c,
83
struct bkey_cached *ck)
84
{
85
bool ret = !rhashtable_remove_fast(&c->table, &ck->hash,
86
bch2_btree_key_cache_params);
87
if (ret) {
88
memset(&ck->key, ~0, sizeof(ck->key));
89
atomic_long_dec(&c->nr_keys);
90
}
91
92
return ret;
93
}
94
95
static void __bkey_cached_free(struct rcu_pending *pending, struct rcu_head *rcu)
96
{
97
struct bch_fs *c = container_of(pending->srcu, struct bch_fs, btree_trans_barrier);
98
struct bkey_cached *ck = container_of(rcu, struct bkey_cached, rcu);
99
100
this_cpu_dec(*c->btree_key_cache.nr_pending);
101
kmem_cache_free(bch2_key_cache, ck);
102
}
103
104
static inline void bkey_cached_free_noassert(struct btree_key_cache *bc,
105
struct bkey_cached *ck)
106
{
107
kfree(ck->k);
108
ck->k = NULL;
109
ck->u64s = 0;
110
111
six_unlock_write(&ck->c.lock);
112
six_unlock_intent(&ck->c.lock);
113
114
bool pcpu_readers = ck->c.lock.readers != NULL;
115
rcu_pending_enqueue(&bc->pending[pcpu_readers], &ck->rcu);
116
this_cpu_inc(*bc->nr_pending);
117
}
118
119
static void bkey_cached_free(struct btree_trans *trans,
120
struct btree_key_cache *bc,
121
struct bkey_cached *ck)
122
{
123
/*
124
* we'll hit strange issues in the SRCU code if we aren't holding an
125
* SRCU read lock...
126
*/
127
EBUG_ON(!trans->srcu_held);
128
129
bkey_cached_free_noassert(bc, ck);
130
}
131
132
static struct bkey_cached *__bkey_cached_alloc(unsigned key_u64s, gfp_t gfp)
133
{
134
gfp |= __GFP_ACCOUNT|__GFP_RECLAIMABLE;
135
136
struct bkey_cached *ck = kmem_cache_zalloc(bch2_key_cache, gfp);
137
if (unlikely(!ck))
138
return NULL;
139
ck->k = kmalloc(key_u64s * sizeof(u64), gfp);
140
if (unlikely(!ck->k)) {
141
kmem_cache_free(bch2_key_cache, ck);
142
return NULL;
143
}
144
ck->u64s = key_u64s;
145
return ck;
146
}
147
148
static struct bkey_cached *
149
bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, unsigned key_u64s)
150
{
151
struct bch_fs *c = trans->c;
152
struct btree_key_cache *bc = &c->btree_key_cache;
153
bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
154
int ret;
155
156
struct bkey_cached *ck = container_of_or_null(
157
rcu_pending_dequeue(&bc->pending[pcpu_readers]),
158
struct bkey_cached, rcu);
159
if (ck)
160
goto lock;
161
162
ck = allocate_dropping_locks(trans, ret,
163
__bkey_cached_alloc(key_u64s, _gfp));
164
if (ret) {
165
if (ck)
166
kfree(ck->k);
167
kmem_cache_free(bch2_key_cache, ck);
168
return ERR_PTR(ret);
169
}
170
171
if (ck) {
172
bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0, GFP_KERNEL);
173
ck->c.cached = true;
174
goto lock;
175
}
176
177
ck = container_of_or_null(rcu_pending_dequeue_from_all(&bc->pending[pcpu_readers]),
178
struct bkey_cached, rcu);
179
if (ck)
180
goto lock;
181
lock:
182
six_lock_intent(&ck->c.lock, NULL, NULL);
183
six_lock_write(&ck->c.lock, NULL, NULL);
184
return ck;
185
}
186
187
static struct bkey_cached *
188
bkey_cached_reuse(struct btree_key_cache *c)
189
{
190
191
guard(rcu)();
192
struct bucket_table *tbl = rht_dereference_rcu(c->table.tbl, &c->table);
193
struct rhash_head *pos;
194
struct bkey_cached *ck;
195
196
for (unsigned i = 0; i < tbl->size; i++)
197
rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
198
if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
199
bkey_cached_lock_for_evict(ck)) {
200
if (bkey_cached_evict(c, ck))
201
return ck;
202
six_unlock_write(&ck->c.lock);
203
six_unlock_intent(&ck->c.lock);
204
}
205
}
206
return NULL;
207
}
208
209
static int btree_key_cache_create(struct btree_trans *trans,
210
struct btree_path *path,
211
struct btree_path *ck_path,
212
struct bkey_s_c k)
213
{
214
struct bch_fs *c = trans->c;
215
struct btree_key_cache *bc = &c->btree_key_cache;
216
217
/*
218
* bch2_varint_decode can read past the end of the buffer by at
219
* most 7 bytes (it won't be used):
220
*/
221
unsigned key_u64s = k.k->u64s + 1;
222
223
/*
224
* Allocate some extra space so that the transaction commit path is less
225
* likely to have to reallocate, since that requires a transaction
226
* restart:
227
*/
228
key_u64s = min(256U, (key_u64s * 3) / 2);
229
key_u64s = roundup_pow_of_two(key_u64s);
230
231
struct bkey_cached *ck = bkey_cached_alloc(trans, ck_path, key_u64s);
232
int ret = PTR_ERR_OR_ZERO(ck);
233
if (ret)
234
return ret;
235
236
if (unlikely(!ck)) {
237
ck = bkey_cached_reuse(bc);
238
if (unlikely(!ck)) {
239
bch_err(c, "error allocating memory for key cache item, btree %s",
240
bch2_btree_id_str(ck_path->btree_id));
241
return bch_err_throw(c, ENOMEM_btree_key_cache_create);
242
}
243
}
244
245
ck->c.level = 0;
246
ck->c.btree_id = ck_path->btree_id;
247
ck->key.btree_id = ck_path->btree_id;
248
ck->key.pos = ck_path->pos;
249
ck->flags = 1U << BKEY_CACHED_ACCESSED;
250
251
if (unlikely(key_u64s > ck->u64s)) {
252
mark_btree_node_locked_noreset(ck_path, 0, BTREE_NODE_UNLOCKED);
253
254
struct bkey_i *new_k = allocate_dropping_locks(trans, ret,
255
kmalloc(key_u64s * sizeof(u64), _gfp));
256
if (unlikely(!new_k)) {
257
bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
258
bch2_btree_id_str(ck->key.btree_id), key_u64s);
259
ret = bch_err_throw(c, ENOMEM_btree_key_cache_fill);
260
} else if (ret) {
261
kfree(new_k);
262
goto err;
263
}
264
265
kfree(ck->k);
266
ck->k = new_k;
267
ck->u64s = key_u64s;
268
}
269
270
bkey_reassemble(ck->k, k);
271
272
ret = bch2_btree_node_lock_write(trans, path, &path_l(path)->b->c);
273
if (unlikely(ret))
274
goto err;
275
276
ret = rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params);
277
278
bch2_btree_node_unlock_write(trans, path, path_l(path)->b);
279
280
if (unlikely(ret)) /* raced with another fill? */
281
goto err;
282
283
atomic_long_inc(&bc->nr_keys);
284
six_unlock_write(&ck->c.lock);
285
286
enum six_lock_type lock_want = __btree_lock_want(ck_path, 0);
287
if (lock_want == SIX_LOCK_read)
288
six_lock_downgrade(&ck->c.lock);
289
btree_path_cached_set(trans, ck_path, ck, (enum btree_node_locked_type) lock_want);
290
ck_path->uptodate = BTREE_ITER_UPTODATE;
291
return 0;
292
err:
293
bkey_cached_free(trans, bc, ck);
294
mark_btree_node_locked_noreset(ck_path, 0, BTREE_NODE_UNLOCKED);
295
296
return ret;
297
}
298
299
static noinline_for_stack void do_trace_key_cache_fill(struct btree_trans *trans,
300
struct btree_path *ck_path,
301
struct bkey_s_c k)
302
{
303
struct printbuf buf = PRINTBUF;
304
305
bch2_bpos_to_text(&buf, ck_path->pos);
306
prt_char(&buf, ' ');
307
bch2_bkey_val_to_text(&buf, trans->c, k);
308
trace_key_cache_fill(trans, buf.buf);
309
printbuf_exit(&buf);
310
}
311
312
static noinline int btree_key_cache_fill(struct btree_trans *trans,
313
btree_path_idx_t ck_path_idx,
314
unsigned flags)
315
{
316
struct btree_path *ck_path = trans->paths + ck_path_idx;
317
318
if (flags & BTREE_ITER_cached_nofill) {
319
ck_path->l[0].b = NULL;
320
return 0;
321
}
322
323
struct bch_fs *c = trans->c;
324
struct btree_iter iter;
325
struct bkey_s_c k;
326
int ret;
327
328
bch2_trans_iter_init(trans, &iter, ck_path->btree_id, ck_path->pos,
329
BTREE_ITER_intent|
330
BTREE_ITER_key_cache_fill|
331
BTREE_ITER_cached_nofill);
332
iter.flags &= ~BTREE_ITER_with_journal;
333
k = bch2_btree_iter_peek_slot(trans, &iter);
334
ret = bkey_err(k);
335
if (ret)
336
goto err;
337
338
/* Recheck after btree lookup, before allocating: */
339
ck_path = trans->paths + ck_path_idx;
340
ret = bch2_btree_key_cache_find(c, ck_path->btree_id, ck_path->pos) ? -EEXIST : 0;
341
if (unlikely(ret))
342
goto out;
343
344
ret = btree_key_cache_create(trans, btree_iter_path(trans, &iter), ck_path, k);
345
if (ret)
346
goto err;
347
348
if (trace_key_cache_fill_enabled())
349
do_trace_key_cache_fill(trans, ck_path, k);
350
out:
351
/* We're not likely to need this iterator again: */
352
bch2_set_btree_iter_dontneed(trans, &iter);
353
err:
354
bch2_trans_iter_exit(trans, &iter);
355
return ret;
356
}
357
358
static inline int btree_path_traverse_cached_fast(struct btree_trans *trans,
359
btree_path_idx_t path_idx)
360
{
361
struct bch_fs *c = trans->c;
362
struct bkey_cached *ck;
363
struct btree_path *path = trans->paths + path_idx;
364
retry:
365
ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
366
if (!ck)
367
return -ENOENT;
368
369
enum six_lock_type lock_want = __btree_lock_want(path, 0);
370
371
int ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_);
372
if (ret)
373
return ret;
374
375
if (ck->key.btree_id != path->btree_id ||
376
!bpos_eq(ck->key.pos, path->pos)) {
377
six_unlock_type(&ck->c.lock, lock_want);
378
goto retry;
379
}
380
381
if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
382
set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
383
384
btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
385
path->uptodate = BTREE_ITER_UPTODATE;
386
return 0;
387
}
388
389
int bch2_btree_path_traverse_cached(struct btree_trans *trans,
390
btree_path_idx_t path_idx,
391
unsigned flags)
392
{
393
EBUG_ON(trans->paths[path_idx].level);
394
395
int ret;
396
do {
397
ret = btree_path_traverse_cached_fast(trans, path_idx);
398
if (unlikely(ret == -ENOENT))
399
ret = btree_key_cache_fill(trans, path_idx, flags);
400
} while (ret == -EEXIST);
401
402
struct btree_path *path = trans->paths + path_idx;
403
404
if (unlikely(ret)) {
405
path->uptodate = BTREE_ITER_NEED_TRAVERSE;
406
if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
407
btree_node_unlock(trans, path, 0);
408
path->l[0].b = ERR_PTR(ret);
409
}
410
} else {
411
BUG_ON(path->uptodate);
412
BUG_ON(!path->nodes_locked);
413
}
414
415
return ret;
416
}
417
418
static int btree_key_cache_flush_pos(struct btree_trans *trans,
419
struct bkey_cached_key key,
420
u64 journal_seq,
421
unsigned commit_flags,
422
bool evict)
423
{
424
struct bch_fs *c = trans->c;
425
struct journal *j = &c->journal;
426
struct btree_iter c_iter, b_iter;
427
struct bkey_cached *ck = NULL;
428
int ret;
429
430
bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
431
BTREE_ITER_slots|
432
BTREE_ITER_intent|
433
BTREE_ITER_all_snapshots);
434
bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
435
BTREE_ITER_cached|
436
BTREE_ITER_intent);
437
b_iter.flags &= ~BTREE_ITER_with_key_cache;
438
439
ret = bch2_btree_iter_traverse(trans, &c_iter);
440
if (ret)
441
goto out;
442
443
ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
444
if (!ck)
445
goto out;
446
447
if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
448
if (evict)
449
goto evict;
450
goto out;
451
}
452
453
if (journal_seq && ck->journal.seq != journal_seq)
454
goto out;
455
456
trans->journal_res.seq = ck->journal.seq;
457
458
/*
459
* If we're at the end of the journal, we really want to free up space
460
* in the journal right away - we don't want to pin that old journal
461
* sequence number with a new btree node write, we want to re-journal
462
* the update
463
*/
464
if (ck->journal.seq == journal_last_seq(j))
465
commit_flags |= BCH_WATERMARK_reclaim;
466
467
if (ck->journal.seq != journal_last_seq(j) ||
468
!test_bit(JOURNAL_space_low, &c->journal.flags))
469
commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
470
471
struct bkey_s_c btree_k = bch2_btree_iter_peek_slot(trans, &b_iter);
472
ret = bkey_err(btree_k);
473
if (ret)
474
goto err;
475
476
/* * Check that we're not violating cache coherency rules: */
477
BUG_ON(bkey_deleted(btree_k.k));
478
479
ret = bch2_trans_update(trans, &b_iter, ck->k,
480
BTREE_UPDATE_key_cache_reclaim|
481
BTREE_UPDATE_internal_snapshot_node|
482
BTREE_TRIGGER_norun) ?:
483
bch2_trans_commit(trans, NULL, NULL,
484
BCH_TRANS_COMMIT_no_check_rw|
485
BCH_TRANS_COMMIT_no_enospc|
486
commit_flags);
487
err:
488
bch2_fs_fatal_err_on(ret &&
489
!bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
490
!bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
491
!bch2_journal_error(j), c,
492
"flushing key cache: %s", bch2_err_str(ret));
493
if (ret)
494
goto out;
495
496
bch2_journal_pin_drop(j, &ck->journal);
497
498
struct btree_path *path = btree_iter_path(trans, &c_iter);
499
BUG_ON(!btree_node_locked(path, 0));
500
501
if (!evict) {
502
if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
503
clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
504
atomic_long_dec(&c->btree_key_cache.nr_dirty);
505
}
506
} else {
507
struct btree_path *path2;
508
unsigned i;
509
evict:
510
trans_for_each_path(trans, path2, i)
511
if (path2 != path)
512
__bch2_btree_path_unlock(trans, path2);
513
514
bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
515
516
if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
517
clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
518
atomic_long_dec(&c->btree_key_cache.nr_dirty);
519
}
520
521
mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
522
if (bkey_cached_evict(&c->btree_key_cache, ck)) {
523
bkey_cached_free(trans, &c->btree_key_cache, ck);
524
} else {
525
six_unlock_write(&ck->c.lock);
526
six_unlock_intent(&ck->c.lock);
527
}
528
}
529
out:
530
bch2_trans_iter_exit(trans, &b_iter);
531
bch2_trans_iter_exit(trans, &c_iter);
532
return ret;
533
}
534
535
int bch2_btree_key_cache_journal_flush(struct journal *j,
536
struct journal_entry_pin *pin, u64 seq)
537
{
538
struct bch_fs *c = container_of(j, struct bch_fs, journal);
539
struct bkey_cached *ck =
540
container_of(pin, struct bkey_cached, journal);
541
struct bkey_cached_key key;
542
struct btree_trans *trans = bch2_trans_get(c);
543
int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
544
int ret = 0;
545
546
btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
547
key = ck->key;
548
549
if (ck->journal.seq != seq ||
550
!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
551
six_unlock_read(&ck->c.lock);
552
goto unlock;
553
}
554
555
if (ck->seq != seq) {
556
bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
557
bch2_btree_key_cache_journal_flush);
558
six_unlock_read(&ck->c.lock);
559
goto unlock;
560
}
561
six_unlock_read(&ck->c.lock);
562
563
ret = lockrestart_do(trans,
564
btree_key_cache_flush_pos(trans, key, seq,
565
BCH_TRANS_COMMIT_journal_reclaim, false));
566
unlock:
567
srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
568
569
bch2_trans_put(trans);
570
return ret;
571
}
572
573
bool bch2_btree_insert_key_cached(struct btree_trans *trans,
574
unsigned flags,
575
struct btree_insert_entry *insert_entry)
576
{
577
struct bch_fs *c = trans->c;
578
struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
579
struct bkey_i *insert = insert_entry->k;
580
bool kick_reclaim = false;
581
582
BUG_ON(insert->k.u64s > ck->u64s);
583
584
bkey_copy(ck->k, insert);
585
586
if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
587
EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
588
set_bit(BKEY_CACHED_DIRTY, &ck->flags);
589
atomic_long_inc(&c->btree_key_cache.nr_dirty);
590
591
if (bch2_nr_btree_keys_need_flush(c))
592
kick_reclaim = true;
593
}
594
595
/*
596
* To minimize lock contention, we only add the journal pin here and
597
* defer pin updates to the flush callback via ->seq. Be careful not to
598
* update ->seq on nojournal commits because we don't want to update the
599
* pin to a seq that doesn't include journal updates on disk. Otherwise
600
* we risk losing the update after a crash.
601
*
602
* The only exception is if the pin is not active in the first place. We
603
* have to add the pin because journal reclaim drives key cache
604
* flushing. The flush callback will not proceed unless ->seq matches
605
* the latest pin, so make sure it starts with a consistent value.
606
*/
607
if (!(insert_entry->flags & BTREE_UPDATE_nojournal) ||
608
!journal_pin_active(&ck->journal)) {
609
ck->seq = trans->journal_res.seq;
610
}
611
bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
612
&ck->journal, bch2_btree_key_cache_journal_flush);
613
614
if (kick_reclaim)
615
journal_reclaim_kick(&c->journal);
616
return true;
617
}
618
619
void bch2_btree_key_cache_drop(struct btree_trans *trans,
620
struct btree_path *path)
621
{
622
struct bch_fs *c = trans->c;
623
struct btree_key_cache *bc = &c->btree_key_cache;
624
struct bkey_cached *ck = (void *) path->l[0].b;
625
626
/*
627
* We just did an update to the btree, bypassing the key cache: the key
628
* cache key is now stale and must be dropped, even if dirty:
629
*/
630
if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
631
clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
632
atomic_long_dec(&c->btree_key_cache.nr_dirty);
633
bch2_journal_pin_drop(&c->journal, &ck->journal);
634
}
635
636
bkey_cached_evict(bc, ck);
637
bkey_cached_free(trans, bc, ck);
638
639
mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
640
641
struct btree_path *path2;
642
unsigned i;
643
trans_for_each_path(trans, path2, i)
644
if (path2->l[0].b == (void *) ck) {
645
/*
646
* It's safe to clear should_be_locked here because
647
* we're evicting from the key cache, and we still have
648
* the underlying btree locked: filling into the key
649
* cache would require taking a write lock on the btree
650
* node
651
*/
652
path2->should_be_locked = false;
653
__bch2_btree_path_unlock(trans, path2);
654
path2->l[0].b = ERR_PTR(-BCH_ERR_no_btree_node_drop);
655
btree_path_set_dirty(trans, path2, BTREE_ITER_NEED_TRAVERSE);
656
}
657
658
bch2_trans_verify_locks(trans);
659
}
660
661
static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
662
struct shrink_control *sc)
663
{
664
struct bch_fs *c = shrink->private_data;
665
struct btree_key_cache *bc = &c->btree_key_cache;
666
struct bucket_table *tbl;
667
struct bkey_cached *ck;
668
size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
669
unsigned iter, start;
670
int srcu_idx;
671
672
srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
673
rcu_read_lock();
674
675
tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
676
677
/*
678
* Scanning is expensive while a rehash is in progress - most elements
679
* will be on the new hashtable, if it's in progress
680
*
681
* A rehash could still start while we're scanning - that's ok, we'll
682
* still see most elements.
683
*/
684
if (unlikely(tbl->nest)) {
685
rcu_read_unlock();
686
srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
687
return SHRINK_STOP;
688
}
689
690
iter = bc->shrink_iter;
691
if (iter >= tbl->size)
692
iter = 0;
693
start = iter;
694
695
do {
696
struct rhash_head *pos, *next;
697
698
pos = rht_ptr_rcu(&tbl->buckets[iter]);
699
700
while (!rht_is_a_nulls(pos)) {
701
next = rht_dereference_bucket_rcu(pos->next, tbl, iter);
702
ck = container_of(pos, struct bkey_cached, hash);
703
704
if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
705
bc->skipped_dirty++;
706
} else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) {
707
clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
708
bc->skipped_accessed++;
709
} else if (!bkey_cached_lock_for_evict(ck)) {
710
bc->skipped_lock_fail++;
711
} else if (bkey_cached_evict(bc, ck)) {
712
bkey_cached_free_noassert(bc, ck);
713
bc->freed++;
714
freed++;
715
} else {
716
six_unlock_write(&ck->c.lock);
717
six_unlock_intent(&ck->c.lock);
718
}
719
720
scanned++;
721
if (scanned >= nr)
722
goto out;
723
724
pos = next;
725
}
726
727
iter++;
728
if (iter >= tbl->size)
729
iter = 0;
730
} while (scanned < nr && iter != start);
731
out:
732
bc->shrink_iter = iter;
733
734
rcu_read_unlock();
735
srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
736
737
return freed;
738
}
739
740
static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
741
struct shrink_control *sc)
742
{
743
struct bch_fs *c = shrink->private_data;
744
struct btree_key_cache *bc = &c->btree_key_cache;
745
long nr = atomic_long_read(&bc->nr_keys) -
746
atomic_long_read(&bc->nr_dirty);
747
748
/*
749
* Avoid hammering our shrinker too much if it's nearly empty - the
750
* shrinker code doesn't take into account how big our cache is, if it's
751
* mostly empty but the system is under memory pressure it causes nasty
752
* lock contention:
753
*/
754
nr -= 128;
755
756
return max(0L, nr);
757
}
758
759
void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
760
{
761
struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
762
struct bucket_table *tbl;
763
struct bkey_cached *ck;
764
struct rhash_head *pos;
765
LIST_HEAD(items);
766
unsigned i;
767
768
shrinker_free(bc->shrink);
769
770
/*
771
* The loop is needed to guard against racing with rehash:
772
*/
773
while (atomic_long_read(&bc->nr_keys)) {
774
rcu_read_lock();
775
tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
776
if (tbl) {
777
if (tbl->nest) {
778
/* wait for in progress rehash */
779
rcu_read_unlock();
780
mutex_lock(&bc->table.mutex);
781
mutex_unlock(&bc->table.mutex);
782
continue;
783
}
784
for (i = 0; i < tbl->size; i++)
785
while (pos = rht_ptr_rcu(&tbl->buckets[i]), !rht_is_a_nulls(pos)) {
786
ck = container_of(pos, struct bkey_cached, hash);
787
BUG_ON(!bkey_cached_evict(bc, ck));
788
kfree(ck->k);
789
kmem_cache_free(bch2_key_cache, ck);
790
}
791
}
792
rcu_read_unlock();
793
}
794
795
if (atomic_long_read(&bc->nr_dirty) &&
796
!bch2_journal_error(&c->journal) &&
797
test_bit(BCH_FS_was_rw, &c->flags))
798
panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
799
atomic_long_read(&bc->nr_dirty));
800
801
if (atomic_long_read(&bc->nr_keys))
802
panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
803
atomic_long_read(&bc->nr_keys));
804
805
if (bc->table_init_done)
806
rhashtable_destroy(&bc->table);
807
808
rcu_pending_exit(&bc->pending[0]);
809
rcu_pending_exit(&bc->pending[1]);
810
811
free_percpu(bc->nr_pending);
812
}
813
814
void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
815
{
816
}
817
818
int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
819
{
820
struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
821
struct shrinker *shrink;
822
823
bc->nr_pending = alloc_percpu(size_t);
824
if (!bc->nr_pending)
825
return bch_err_throw(c, ENOMEM_fs_btree_cache_init);
826
827
if (rcu_pending_init(&bc->pending[0], &c->btree_trans_barrier, __bkey_cached_free) ||
828
rcu_pending_init(&bc->pending[1], &c->btree_trans_barrier, __bkey_cached_free))
829
return bch_err_throw(c, ENOMEM_fs_btree_cache_init);
830
831
if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
832
return bch_err_throw(c, ENOMEM_fs_btree_cache_init);
833
834
bc->table_init_done = true;
835
836
shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
837
if (!shrink)
838
return bch_err_throw(c, ENOMEM_fs_btree_cache_init);
839
bc->shrink = shrink;
840
shrink->count_objects = bch2_btree_key_cache_count;
841
shrink->scan_objects = bch2_btree_key_cache_scan;
842
shrink->batch = 1 << 14;
843
shrink->seeks = 0;
844
shrink->private_data = c;
845
shrinker_register(shrink);
846
return 0;
847
}
848
849
void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc)
850
{
851
printbuf_tabstop_push(out, 24);
852
printbuf_tabstop_push(out, 12);
853
854
prt_printf(out, "keys:\t%lu\r\n", atomic_long_read(&bc->nr_keys));
855
prt_printf(out, "dirty:\t%lu\r\n", atomic_long_read(&bc->nr_dirty));
856
prt_printf(out, "table size:\t%u\r\n", bc->table.tbl->size);
857
prt_newline(out);
858
prt_printf(out, "shrinker:\n");
859
prt_printf(out, "requested_to_free:\t%lu\r\n", bc->requested_to_free);
860
prt_printf(out, "freed:\t%lu\r\n", bc->freed);
861
prt_printf(out, "skipped_dirty:\t%lu\r\n", bc->skipped_dirty);
862
prt_printf(out, "skipped_accessed:\t%lu\r\n", bc->skipped_accessed);
863
prt_printf(out, "skipped_lock_fail:\t%lu\r\n", bc->skipped_lock_fail);
864
prt_newline(out);
865
prt_printf(out, "pending:\t%zu\r\n", per_cpu_sum(bc->nr_pending));
866
}
867
868
void bch2_btree_key_cache_exit(void)
869
{
870
kmem_cache_destroy(bch2_key_cache);
871
}
872
873
int __init bch2_btree_key_cache_init(void)
874
{
875
bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
876
if (!bch2_key_cache)
877
return -ENOMEM;
878
879
return 0;
880
}
881
882