Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/befs/btree.c
26282 views
1
/*
2
* linux/fs/befs/btree.c
3
*
4
* Copyright (C) 2001-2002 Will Dyson <[email protected]>
5
*
6
* Licensed under the GNU GPL. See the file COPYING for details.
7
*
8
* 2002-02-05: Sergey S. Kostyliov added binary search within
9
* btree nodes.
10
*
11
* Many thanks to:
12
*
13
* Dominic Giampaolo, author of "Practical File System
14
* Design with the Be File System", for such a helpful book.
15
*
16
* Marcus J. Ranum, author of the b+tree package in
17
* comp.sources.misc volume 10. This code is not copied from that
18
* work, but it is partially based on it.
19
*
20
* Makoto Kato, author of the original BeFS for linux filesystem
21
* driver.
22
*/
23
24
#include <linux/kernel.h>
25
#include <linux/string.h>
26
#include <linux/slab.h>
27
#include <linux/mm.h>
28
#include <linux/buffer_head.h>
29
30
#include "befs.h"
31
#include "btree.h"
32
#include "datastream.h"
33
34
/*
35
* The btree functions in this file are built on top of the
36
* datastream.c interface, which is in turn built on top of the
37
* io.c interface.
38
*/
39
40
/* Befs B+tree structure:
41
*
42
* The first thing in the tree is the tree superblock. It tells you
43
* all kinds of useful things about the tree, like where the rootnode
44
* is located, and the size of the nodes (always 1024 with current version
45
* of BeOS).
46
*
47
* The rest of the tree consists of a series of nodes. Nodes contain a header
48
* (struct befs_btree_nodehead), the packed key data, an array of shorts
49
* containing the ending offsets for each of the keys, and an array of
50
* befs_off_t values. In interior nodes, the keys are the ending keys for
51
* the childnode they point to, and the values are offsets into the
52
* datastream containing the tree.
53
*/
54
55
/* Note:
56
*
57
* The book states 2 confusing things about befs b+trees. First,
58
* it states that the overflow field of node headers is used by internal nodes
59
* to point to another node that "effectively continues this one". Here is what
60
* I believe that means. Each key in internal nodes points to another node that
61
* contains key values less than itself. Inspection reveals that the last key
62
* in the internal node is not the last key in the index. Keys that are
63
* greater than the last key in the internal node go into the overflow node.
64
* I imagine there is a performance reason for this.
65
*
66
* Second, it states that the header of a btree node is sufficient to
67
* distinguish internal nodes from leaf nodes. Without saying exactly how.
68
* After figuring out the first, it becomes obvious that internal nodes have
69
* overflow nodes and leafnodes do not.
70
*/
71
72
/*
73
* Currently, this code is only good for directory B+trees.
74
* In order to be used for other BFS indexes, it needs to be extended to handle
75
* duplicate keys and non-string keytypes (int32, int64, float, double).
76
*/
77
78
/*
79
* In memory structure of each btree node
80
*/
81
struct befs_btree_node {
82
befs_host_btree_nodehead head; /* head of node converted to cpu byteorder */
83
struct buffer_head *bh;
84
befs_btree_nodehead *od_node; /* on disk node */
85
};
86
87
/* local constants */
88
static const befs_off_t BEFS_BT_INVAL = 0xffffffffffffffffULL;
89
90
/* local functions */
91
static int befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
92
befs_btree_super * bt_super,
93
struct befs_btree_node *this_node,
94
befs_off_t * node_off);
95
96
static int befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds,
97
befs_btree_super * sup);
98
99
static int befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds,
100
struct befs_btree_node *node,
101
befs_off_t node_off);
102
103
static int befs_leafnode(struct befs_btree_node *node);
104
105
static fs16 *befs_bt_keylen_index(struct befs_btree_node *node);
106
107
static fs64 *befs_bt_valarray(struct befs_btree_node *node);
108
109
static char *befs_bt_keydata(struct befs_btree_node *node);
110
111
static int befs_find_key(struct super_block *sb,
112
struct befs_btree_node *node,
113
const char *findkey, befs_off_t * value);
114
115
static char *befs_bt_get_key(struct super_block *sb,
116
struct befs_btree_node *node,
117
int index, u16 * keylen);
118
119
static int befs_compare_strings(const void *key1, int keylen1,
120
const void *key2, int keylen2);
121
122
/**
123
* befs_bt_read_super() - read in btree superblock convert to cpu byteorder
124
* @sb: Filesystem superblock
125
* @ds: Datastream to read from
126
* @sup: Buffer in which to place the btree superblock
127
*
128
* Calls befs_read_datastream to read in the btree superblock and
129
* makes sure it is in cpu byteorder, byteswapping if necessary.
130
* Return: BEFS_OK on success and if *@sup contains the btree superblock in cpu
131
* byte order. Otherwise return BEFS_ERR on error.
132
*/
133
static int
134
befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds,
135
befs_btree_super * sup)
136
{
137
struct buffer_head *bh;
138
befs_disk_btree_super *od_sup;
139
140
befs_debug(sb, "---> %s", __func__);
141
142
bh = befs_read_datastream(sb, ds, 0, NULL);
143
144
if (!bh) {
145
befs_error(sb, "Couldn't read index header.");
146
goto error;
147
}
148
od_sup = (befs_disk_btree_super *) bh->b_data;
149
befs_dump_index_entry(sb, od_sup);
150
151
sup->magic = fs32_to_cpu(sb, od_sup->magic);
152
sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
153
sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
154
sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
155
sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
156
157
brelse(bh);
158
if (sup->magic != BEFS_BTREE_MAGIC) {
159
befs_error(sb, "Index header has bad magic.");
160
goto error;
161
}
162
163
befs_debug(sb, "<--- %s", __func__);
164
return BEFS_OK;
165
166
error:
167
befs_debug(sb, "<--- %s ERROR", __func__);
168
return BEFS_ERR;
169
}
170
171
/**
172
* befs_bt_read_node - read in btree node and convert to cpu byteorder
173
* @sb: Filesystem superblock
174
* @ds: Datastream to read from
175
* @node: Buffer in which to place the btree node
176
* @node_off: Starting offset (in bytes) of the node in @ds
177
*
178
* Calls befs_read_datastream to read in the indicated btree node and
179
* makes sure its header fields are in cpu byteorder, byteswapping if
180
* necessary.
181
* Note: node->bh must be NULL when this function is called the first time.
182
* Don't forget brelse(node->bh) after last call.
183
*
184
* On success, returns BEFS_OK and *@node contains the btree node that
185
* starts at @node_off, with the node->head fields in cpu byte order.
186
*
187
* On failure, BEFS_ERR is returned.
188
*/
189
190
static int
191
befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds,
192
struct befs_btree_node *node, befs_off_t node_off)
193
{
194
uint off = 0;
195
196
befs_debug(sb, "---> %s", __func__);
197
198
if (node->bh)
199
brelse(node->bh);
200
201
node->bh = befs_read_datastream(sb, ds, node_off, &off);
202
if (!node->bh) {
203
befs_error(sb, "%s failed to read "
204
"node at %llu", __func__, node_off);
205
befs_debug(sb, "<--- %s ERROR", __func__);
206
207
return BEFS_ERR;
208
}
209
node->od_node =
210
(befs_btree_nodehead *) ((void *) node->bh->b_data + off);
211
212
befs_dump_index_node(sb, node->od_node);
213
214
node->head.left = fs64_to_cpu(sb, node->od_node->left);
215
node->head.right = fs64_to_cpu(sb, node->od_node->right);
216
node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
217
node->head.all_key_count =
218
fs16_to_cpu(sb, node->od_node->all_key_count);
219
node->head.all_key_length =
220
fs16_to_cpu(sb, node->od_node->all_key_length);
221
222
befs_debug(sb, "<--- %s", __func__);
223
return BEFS_OK;
224
}
225
226
/**
227
* befs_btree_find - Find a key in a befs B+tree
228
* @sb: Filesystem superblock
229
* @ds: Datastream containing btree
230
* @key: Key string to lookup in btree
231
* @value: Value stored with @key
232
*
233
* On success, returns BEFS_OK and sets *@value to the value stored
234
* with @key (usually the disk block number of an inode).
235
*
236
* On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
237
*
238
* Algorithm:
239
* Read the superblock and rootnode of the b+tree.
240
* Drill down through the interior nodes using befs_find_key().
241
* Once at the correct leaf node, use befs_find_key() again to get the
242
* actual value stored with the key.
243
*/
244
int
245
befs_btree_find(struct super_block *sb, const befs_data_stream *ds,
246
const char *key, befs_off_t * value)
247
{
248
struct befs_btree_node *this_node;
249
befs_btree_super bt_super;
250
befs_off_t node_off;
251
int res;
252
253
befs_debug(sb, "---> %s Key: %s", __func__, key);
254
255
if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
256
befs_error(sb,
257
"befs_btree_find() failed to read index superblock");
258
goto error;
259
}
260
261
this_node = kmalloc(sizeof(struct befs_btree_node),
262
GFP_NOFS);
263
if (!this_node) {
264
befs_error(sb, "befs_btree_find() failed to allocate %zu "
265
"bytes of memory", sizeof(struct befs_btree_node));
266
goto error;
267
}
268
269
this_node->bh = NULL;
270
271
/* read in root node */
272
node_off = bt_super.root_node_ptr;
273
if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
274
befs_error(sb, "befs_btree_find() failed to read "
275
"node at %llu", node_off);
276
goto error_alloc;
277
}
278
279
while (!befs_leafnode(this_node)) {
280
res = befs_find_key(sb, this_node, key, &node_off);
281
/* if no key set, try the overflow node */
282
if (res == BEFS_BT_OVERFLOW)
283
node_off = this_node->head.overflow;
284
if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
285
befs_error(sb, "befs_btree_find() failed to read "
286
"node at %llu", node_off);
287
goto error_alloc;
288
}
289
}
290
291
/* at a leaf node now, check if it is correct */
292
res = befs_find_key(sb, this_node, key, value);
293
294
brelse(this_node->bh);
295
kfree(this_node);
296
297
if (res != BEFS_BT_MATCH) {
298
befs_error(sb, "<--- %s Key %s not found", __func__, key);
299
befs_debug(sb, "<--- %s ERROR", __func__);
300
*value = 0;
301
return BEFS_BT_NOT_FOUND;
302
}
303
befs_debug(sb, "<--- %s Found key %s, value %llu", __func__,
304
key, *value);
305
return BEFS_OK;
306
307
error_alloc:
308
kfree(this_node);
309
error:
310
*value = 0;
311
befs_debug(sb, "<--- %s ERROR", __func__);
312
return BEFS_ERR;
313
}
314
315
/**
316
* befs_find_key - Search for a key within a node
317
* @sb: Filesystem superblock
318
* @node: Node to find the key within
319
* @findkey: Keystring to search for
320
* @value: If key is found, the value stored with the key is put here
321
*
322
* Finds exact match if one exists, and returns BEFS_BT_MATCH.
323
* If there is no match and node's value array is too small for key, return
324
* BEFS_BT_OVERFLOW.
325
* If no match and node should countain this key, return BEFS_BT_NOT_FOUND.
326
*
327
* Uses binary search instead of a linear.
328
*/
329
static int
330
befs_find_key(struct super_block *sb, struct befs_btree_node *node,
331
const char *findkey, befs_off_t * value)
332
{
333
int first, last, mid;
334
int eq;
335
u16 keylen;
336
int findkey_len;
337
char *thiskey;
338
fs64 *valarray;
339
340
befs_debug(sb, "---> %s %s", __func__, findkey);
341
342
findkey_len = strlen(findkey);
343
344
/* if node can not contain key, just skip this node */
345
last = node->head.all_key_count - 1;
346
thiskey = befs_bt_get_key(sb, node, last, &keylen);
347
348
eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
349
if (eq < 0) {
350
befs_debug(sb, "<--- node can't contain %s", findkey);
351
return BEFS_BT_OVERFLOW;
352
}
353
354
valarray = befs_bt_valarray(node);
355
356
/* simple binary search */
357
first = 0;
358
mid = 0;
359
while (last >= first) {
360
mid = (last + first) / 2;
361
befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
362
mid);
363
thiskey = befs_bt_get_key(sb, node, mid, &keylen);
364
eq = befs_compare_strings(thiskey, keylen, findkey,
365
findkey_len);
366
367
if (eq == 0) {
368
befs_debug(sb, "<--- %s found %s at %d",
369
__func__, thiskey, mid);
370
371
*value = fs64_to_cpu(sb, valarray[mid]);
372
return BEFS_BT_MATCH;
373
}
374
if (eq > 0)
375
last = mid - 1;
376
else
377
first = mid + 1;
378
}
379
380
/* return an existing value so caller can arrive to a leaf node */
381
if (eq < 0)
382
*value = fs64_to_cpu(sb, valarray[mid + 1]);
383
else
384
*value = fs64_to_cpu(sb, valarray[mid]);
385
befs_error(sb, "<--- %s %s not found", __func__, findkey);
386
befs_debug(sb, "<--- %s ERROR", __func__);
387
return BEFS_BT_NOT_FOUND;
388
}
389
390
/**
391
* befs_btree_read - Traverse leafnodes of a btree
392
* @sb: Filesystem superblock
393
* @ds: Datastream containing btree
394
* @key_no: Key number (alphabetical order) of key to read
395
* @bufsize: Size of the buffer to return key in
396
* @keybuf: Pointer to a buffer to put the key in
397
* @keysize: Length of the returned key
398
* @value: Value stored with the returned key
399
*
400
* Here's how it works: Key_no is the index of the key/value pair to
401
* return in keybuf/value.
402
* Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is
403
* the number of characters in the key (just a convenience).
404
*
405
* Algorithm:
406
* Get the first leafnode of the tree. See if the requested key is in that
407
* node. If not, follow the node->right link to the next leafnode. Repeat
408
* until the (key_no)th key is found or the tree is out of keys.
409
*/
410
int
411
befs_btree_read(struct super_block *sb, const befs_data_stream *ds,
412
loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
413
befs_off_t * value)
414
{
415
struct befs_btree_node *this_node;
416
befs_btree_super bt_super;
417
befs_off_t node_off;
418
int cur_key;
419
fs64 *valarray;
420
char *keystart;
421
u16 keylen;
422
int res;
423
424
uint key_sum = 0;
425
426
befs_debug(sb, "---> %s", __func__);
427
428
if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
429
befs_error(sb,
430
"befs_btree_read() failed to read index superblock");
431
goto error;
432
}
433
434
this_node = kmalloc(sizeof(struct befs_btree_node), GFP_NOFS);
435
if (this_node == NULL) {
436
befs_error(sb, "befs_btree_read() failed to allocate %zu "
437
"bytes of memory", sizeof(struct befs_btree_node));
438
goto error;
439
}
440
441
node_off = bt_super.root_node_ptr;
442
this_node->bh = NULL;
443
444
/* seeks down to first leafnode, reads it into this_node */
445
res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
446
if (res == BEFS_BT_EMPTY) {
447
brelse(this_node->bh);
448
kfree(this_node);
449
*value = 0;
450
*keysize = 0;
451
befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
452
return BEFS_BT_EMPTY;
453
} else if (res == BEFS_ERR) {
454
goto error_alloc;
455
}
456
457
/* find the leaf node containing the key_no key */
458
459
while (key_sum + this_node->head.all_key_count <= key_no) {
460
461
/* no more nodes to look in: key_no is too large */
462
if (this_node->head.right == BEFS_BT_INVAL) {
463
*keysize = 0;
464
*value = 0;
465
befs_debug(sb,
466
"<--- %s END of keys at %llu", __func__,
467
(unsigned long long)
468
key_sum + this_node->head.all_key_count);
469
brelse(this_node->bh);
470
kfree(this_node);
471
return BEFS_BT_END;
472
}
473
474
key_sum += this_node->head.all_key_count;
475
node_off = this_node->head.right;
476
477
if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
478
befs_error(sb, "%s failed to read node at %llu",
479
__func__, (unsigned long long)node_off);
480
goto error_alloc;
481
}
482
}
483
484
/* how many keys into this_node is key_no */
485
cur_key = key_no - key_sum;
486
487
/* get pointers to datastructures within the node body */
488
valarray = befs_bt_valarray(this_node);
489
490
keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
491
492
befs_debug(sb, "Read [%llu,%d]: keysize %d",
493
(long long unsigned int)node_off, (int)cur_key,
494
(int)keylen);
495
496
if (bufsize < keylen + 1) {
497
befs_error(sb, "%s keybuf too small (%zu) "
498
"for key of size %d", __func__, bufsize, keylen);
499
brelse(this_node->bh);
500
goto error_alloc;
501
}
502
503
strscpy(keybuf, keystart, keylen + 1);
504
*value = fs64_to_cpu(sb, valarray[cur_key]);
505
*keysize = keylen;
506
507
befs_debug(sb, "Read [%llu,%d]: Key \"%.*s\", Value %llu", node_off,
508
cur_key, keylen, keybuf, *value);
509
510
brelse(this_node->bh);
511
kfree(this_node);
512
513
befs_debug(sb, "<--- %s", __func__);
514
515
return BEFS_OK;
516
517
error_alloc:
518
kfree(this_node);
519
520
error:
521
*keysize = 0;
522
*value = 0;
523
befs_debug(sb, "<--- %s ERROR", __func__);
524
return BEFS_ERR;
525
}
526
527
/**
528
* befs_btree_seekleaf - Find the first leafnode in the btree
529
* @sb: Filesystem superblock
530
* @ds: Datastream containing btree
531
* @bt_super: Pointer to the superblock of the btree
532
* @this_node: Buffer to return the leafnode in
533
* @node_off: Pointer to offset of current node within datastream. Modified
534
* by the function.
535
*
536
* Helper function for btree traverse. Moves the current position to the
537
* start of the first leaf node.
538
*
539
* Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
540
*/
541
static int
542
befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
543
befs_btree_super *bt_super,
544
struct befs_btree_node *this_node,
545
befs_off_t * node_off)
546
{
547
548
befs_debug(sb, "---> %s", __func__);
549
550
if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
551
befs_error(sb, "%s failed to read "
552
"node at %llu", __func__, *node_off);
553
goto error;
554
}
555
befs_debug(sb, "Seekleaf to root node %llu", *node_off);
556
557
if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
558
befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
559
return BEFS_BT_EMPTY;
560
}
561
562
while (!befs_leafnode(this_node)) {
563
564
if (this_node->head.all_key_count == 0) {
565
befs_debug(sb, "%s encountered "
566
"an empty interior node: %llu. Using Overflow "
567
"node: %llu", __func__, *node_off,
568
this_node->head.overflow);
569
*node_off = this_node->head.overflow;
570
} else {
571
fs64 *valarray = befs_bt_valarray(this_node);
572
*node_off = fs64_to_cpu(sb, valarray[0]);
573
}
574
if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
575
befs_error(sb, "%s failed to read "
576
"node at %llu", __func__, *node_off);
577
goto error;
578
}
579
580
befs_debug(sb, "Seekleaf to child node %llu", *node_off);
581
}
582
befs_debug(sb, "Node %llu is a leaf node", *node_off);
583
584
return BEFS_OK;
585
586
error:
587
befs_debug(sb, "<--- %s ERROR", __func__);
588
return BEFS_ERR;
589
}
590
591
/**
592
* befs_leafnode - Determine if the btree node is a leaf node or an
593
* interior node
594
* @node: Pointer to node structure to test
595
*
596
* Return 1 if leaf, 0 if interior
597
*/
598
static int
599
befs_leafnode(struct befs_btree_node *node)
600
{
601
/* all interior nodes (and only interior nodes) have an overflow node */
602
if (node->head.overflow == BEFS_BT_INVAL)
603
return 1;
604
else
605
return 0;
606
}
607
608
/**
609
* befs_bt_keylen_index - Finds start of keylen index in a node
610
* @node: Pointer to the node structure to find the keylen index within
611
*
612
* Returns a pointer to the start of the key length index array
613
* of the B+tree node *@node
614
*
615
* "The length of all the keys in the node is added to the size of the
616
* header and then rounded up to a multiple of four to get the beginning
617
* of the key length index" (p.88, practical filesystem design).
618
*
619
* Except that rounding up to 8 works, and rounding up to 4 doesn't.
620
*/
621
static fs16 *
622
befs_bt_keylen_index(struct befs_btree_node *node)
623
{
624
const int keylen_align = 8;
625
unsigned long int off =
626
(sizeof (befs_btree_nodehead) + node->head.all_key_length);
627
ulong tmp = off % keylen_align;
628
629
if (tmp)
630
off += keylen_align - tmp;
631
632
return (fs16 *) ((void *) node->od_node + off);
633
}
634
635
/**
636
* befs_bt_valarray - Finds the start of value array in a node
637
* @node: Pointer to the node structure to find the value array within
638
*
639
* Returns a pointer to the start of the value array
640
* of the node pointed to by the node header
641
*/
642
static fs64 *
643
befs_bt_valarray(struct befs_btree_node *node)
644
{
645
void *keylen_index_start = (void *) befs_bt_keylen_index(node);
646
size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
647
648
return (fs64 *) (keylen_index_start + keylen_index_size);
649
}
650
651
/**
652
* befs_bt_keydata - Finds start of keydata array in a node
653
* @node: Pointer to the node structure to find the keydata array within
654
*
655
* Returns a pointer to the start of the keydata array
656
* of the node pointed to by the node header
657
*/
658
static char *
659
befs_bt_keydata(struct befs_btree_node *node)
660
{
661
return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
662
}
663
664
/**
665
* befs_bt_get_key - returns a pointer to the start of a key
666
* @sb: filesystem superblock
667
* @node: node in which to look for the key
668
* @index: the index of the key to get
669
* @keylen: modified to be the length of the key at @index
670
*
671
* Returns a valid pointer into @node on success.
672
* Returns NULL on failure (bad input) and sets *@keylen = 0
673
*/
674
static char *
675
befs_bt_get_key(struct super_block *sb, struct befs_btree_node *node,
676
int index, u16 * keylen)
677
{
678
int prev_key_end;
679
char *keystart;
680
fs16 *keylen_index;
681
682
if (index < 0 || index > node->head.all_key_count) {
683
*keylen = 0;
684
return NULL;
685
}
686
687
keystart = befs_bt_keydata(node);
688
keylen_index = befs_bt_keylen_index(node);
689
690
if (index == 0)
691
prev_key_end = 0;
692
else
693
prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
694
695
*keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
696
697
return keystart + prev_key_end;
698
}
699
700
/**
701
* befs_compare_strings - compare two strings
702
* @key1: pointer to the first key to be compared
703
* @keylen1: length in bytes of key1
704
* @key2: pointer to the second key to be compared
705
* @keylen2: length in bytes of key2
706
*
707
* Returns 0 if @key1 and @key2 are equal.
708
* Returns >0 if @key1 is greater.
709
* Returns <0 if @key2 is greater.
710
*/
711
static int
712
befs_compare_strings(const void *key1, int keylen1,
713
const void *key2, int keylen2)
714
{
715
int len = min_t(int, keylen1, keylen2);
716
int result = strncmp(key1, key2, len);
717
if (result == 0)
718
result = keylen1 - keylen2;
719
return result;
720
}
721
722
/* These will be used for non-string keyed btrees */
723
#if 0
724
static int
725
btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
726
{
727
return *(int32_t *) key1 - *(int32_t *) key2;
728
}
729
730
static int
731
btree_compare_uint32(cont void *key1, int keylen1,
732
const void *key2, int keylen2)
733
{
734
if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
735
return 0;
736
else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
737
return 1;
738
739
return -1;
740
}
741
static int
742
btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
743
{
744
if (*(int64_t *) key1 == *(int64_t *) key2)
745
return 0;
746
else if (*(int64_t *) key1 > *(int64_t *) key2)
747
return 1;
748
749
return -1;
750
}
751
752
static int
753
btree_compare_uint64(cont void *key1, int keylen1,
754
const void *key2, int keylen2)
755
{
756
if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
757
return 0;
758
else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
759
return 1;
760
761
return -1;
762
}
763
764
static int
765
btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
766
{
767
float result = *(float *) key1 - *(float *) key2;
768
if (result == 0.0f)
769
return 0;
770
771
return (result < 0.0f) ? -1 : 1;
772
}
773
774
static int
775
btree_compare_double(cont void *key1, int keylen1,
776
const void *key2, int keylen2)
777
{
778
double result = *(double *) key1 - *(double *) key2;
779
if (result == 0.0)
780
return 0;
781
782
return (result < 0.0) ? -1 : 1;
783
}
784
#endif //0
785
786