Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/backref.c
49156 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2011 STRATO. All rights reserved.
4
*/
5
6
#include <linux/mm.h>
7
#include <linux/rbtree.h>
8
#include <trace/events/btrfs.h>
9
#include "ctree.h"
10
#include "disk-io.h"
11
#include "backref.h"
12
#include "ulist.h"
13
#include "transaction.h"
14
#include "delayed-ref.h"
15
#include "locking.h"
16
#include "misc.h"
17
#include "tree-mod-log.h"
18
#include "fs.h"
19
#include "accessors.h"
20
#include "extent-tree.h"
21
#include "relocation.h"
22
#include "tree-checker.h"
23
24
/* Just arbitrary numbers so we can be sure one of these happened. */
25
#define BACKREF_FOUND_SHARED 6
26
#define BACKREF_FOUND_NOT_SHARED 7
27
28
struct extent_inode_elem {
29
u64 inum;
30
u64 offset;
31
u64 num_bytes;
32
struct extent_inode_elem *next;
33
};
34
35
static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36
const struct btrfs_key *key,
37
const struct extent_buffer *eb,
38
const struct btrfs_file_extent_item *fi,
39
struct extent_inode_elem **eie)
40
{
41
const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42
u64 offset = key->offset;
43
struct extent_inode_elem *e;
44
const u64 *root_ids;
45
int root_count;
46
bool cached;
47
48
if (!ctx->ignore_extent_item_pos &&
49
!btrfs_file_extent_compression(eb, fi) &&
50
!btrfs_file_extent_encryption(eb, fi) &&
51
!btrfs_file_extent_other_encoding(eb, fi)) {
52
u64 data_offset;
53
54
data_offset = btrfs_file_extent_offset(eb, fi);
55
56
if (ctx->extent_item_pos < data_offset ||
57
ctx->extent_item_pos >= data_offset + data_len)
58
return 1;
59
offset += ctx->extent_item_pos - data_offset;
60
}
61
62
if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63
goto add_inode_elem;
64
65
cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66
&root_count);
67
if (!cached)
68
goto add_inode_elem;
69
70
for (int i = 0; i < root_count; i++) {
71
int ret;
72
73
ret = ctx->indirect_ref_iterator(key->objectid, offset,
74
data_len, root_ids[i],
75
ctx->user_ctx);
76
if (ret)
77
return ret;
78
}
79
80
add_inode_elem:
81
e = kmalloc(sizeof(*e), GFP_NOFS);
82
if (!e)
83
return -ENOMEM;
84
85
e->next = *eie;
86
e->inum = key->objectid;
87
e->offset = offset;
88
e->num_bytes = data_len;
89
*eie = e;
90
91
return 0;
92
}
93
94
static void free_inode_elem_list(struct extent_inode_elem *eie)
95
{
96
struct extent_inode_elem *eie_next;
97
98
for (; eie; eie = eie_next) {
99
eie_next = eie->next;
100
kfree(eie);
101
}
102
}
103
104
static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105
const struct extent_buffer *eb,
106
struct extent_inode_elem **eie)
107
{
108
u64 disk_byte;
109
struct btrfs_key key;
110
struct btrfs_file_extent_item *fi;
111
int slot;
112
int nritems;
113
int extent_type;
114
int ret;
115
116
/*
117
* from the shared data ref, we only have the leaf but we need
118
* the key. thus, we must look into all items and see that we
119
* find one (some) with a reference to our extent item.
120
*/
121
nritems = btrfs_header_nritems(eb);
122
for (slot = 0; slot < nritems; ++slot) {
123
btrfs_item_key_to_cpu(eb, &key, slot);
124
if (key.type != BTRFS_EXTENT_DATA_KEY)
125
continue;
126
fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127
extent_type = btrfs_file_extent_type(eb, fi);
128
if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129
continue;
130
/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131
disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
132
if (disk_byte != ctx->bytenr)
133
continue;
134
135
ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136
if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137
return ret;
138
}
139
140
return 0;
141
}
142
143
struct preftree {
144
struct rb_root_cached root;
145
unsigned int count;
146
};
147
148
#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
149
150
struct preftrees {
151
struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152
struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153
struct preftree indirect_missing_keys;
154
};
155
156
/*
157
* Checks for a shared extent during backref search.
158
*
159
* The share_count tracks prelim_refs (direct and indirect) having a
160
* ref->count >0:
161
* - incremented when a ref->count transitions to >0
162
* - decremented when a ref->count transitions to <1
163
*/
164
struct share_check {
165
struct btrfs_backref_share_check_ctx *ctx;
166
struct btrfs_root *root;
167
u64 inum;
168
u64 data_bytenr;
169
u64 data_extent_gen;
170
/*
171
* Counts number of inodes that refer to an extent (different inodes in
172
* the same root or different roots) that we could find. The sharedness
173
* check typically stops once this counter gets greater than 1, so it
174
* may not reflect the total number of inodes.
175
*/
176
int share_count;
177
/*
178
* The number of times we found our inode refers to the data extent we
179
* are determining the sharedness. In other words, how many file extent
180
* items we could find for our inode that point to our target data
181
* extent. The value we get here after finishing the extent sharedness
182
* check may be smaller than reality, but if it ends up being greater
183
* than 1, then we know for sure the inode has multiple file extent
184
* items that point to our inode, and we can safely assume it's useful
185
* to cache the sharedness check result.
186
*/
187
int self_ref_count;
188
bool have_delayed_delete_refs;
189
};
190
191
static inline int extent_is_shared(struct share_check *sc)
192
{
193
return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194
}
195
196
static struct kmem_cache *btrfs_prelim_ref_cache;
197
198
int __init btrfs_prelim_ref_init(void)
199
{
200
btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
201
sizeof(struct prelim_ref), 0, 0, NULL);
202
if (!btrfs_prelim_ref_cache)
203
return -ENOMEM;
204
return 0;
205
}
206
207
void __cold btrfs_prelim_ref_exit(void)
208
{
209
kmem_cache_destroy(btrfs_prelim_ref_cache);
210
}
211
212
static void free_pref(struct prelim_ref *ref)
213
{
214
kmem_cache_free(btrfs_prelim_ref_cache, ref);
215
}
216
217
/*
218
* Return 0 when both refs are for the same block (and can be merged).
219
* A -1 return indicates ref1 is a 'lower' block than ref2, while 1
220
* indicates a 'higher' block.
221
*/
222
static int prelim_ref_compare(const struct prelim_ref *ref1,
223
const struct prelim_ref *ref2)
224
{
225
if (ref1->level < ref2->level)
226
return -1;
227
if (ref1->level > ref2->level)
228
return 1;
229
if (ref1->root_id < ref2->root_id)
230
return -1;
231
if (ref1->root_id > ref2->root_id)
232
return 1;
233
if (ref1->key_for_search.type < ref2->key_for_search.type)
234
return -1;
235
if (ref1->key_for_search.type > ref2->key_for_search.type)
236
return 1;
237
if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
238
return -1;
239
if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
240
return 1;
241
if (ref1->key_for_search.offset < ref2->key_for_search.offset)
242
return -1;
243
if (ref1->key_for_search.offset > ref2->key_for_search.offset)
244
return 1;
245
if (ref1->parent < ref2->parent)
246
return -1;
247
if (ref1->parent > ref2->parent)
248
return 1;
249
250
return 0;
251
}
252
253
static int prelim_ref_rb_add_cmp(const struct rb_node *new,
254
const struct rb_node *exist)
255
{
256
const struct prelim_ref *ref_new =
257
rb_entry(new, struct prelim_ref, rbnode);
258
const struct prelim_ref *ref_exist =
259
rb_entry(exist, struct prelim_ref, rbnode);
260
261
/*
262
* prelim_ref_compare() expects the first parameter as the existing one,
263
* different from the rb_find_add_cached() order.
264
*/
265
return prelim_ref_compare(ref_exist, ref_new);
266
}
267
268
static void update_share_count(struct share_check *sc, int oldcount,
269
int newcount, const struct prelim_ref *newref)
270
{
271
if ((!sc) || (oldcount == 0 && newcount < 1))
272
return;
273
274
if (oldcount > 0 && newcount < 1)
275
sc->share_count--;
276
else if (oldcount < 1 && newcount > 0)
277
sc->share_count++;
278
279
if (newref->root_id == btrfs_root_id(sc->root) &&
280
newref->wanted_disk_byte == sc->data_bytenr &&
281
newref->key_for_search.objectid == sc->inum)
282
sc->self_ref_count += newref->count;
283
}
284
285
/*
286
* Add @newref to the @root rbtree, merging identical refs.
287
*
288
* Callers should assume that newref has been freed after calling.
289
*/
290
static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
291
struct preftree *preftree,
292
struct prelim_ref *newref,
293
struct share_check *sc)
294
{
295
struct rb_root_cached *root;
296
struct rb_node *exist;
297
298
root = &preftree->root;
299
exist = rb_find_add_cached(&newref->rbnode, root, prelim_ref_rb_add_cmp);
300
if (exist) {
301
struct prelim_ref *ref = rb_entry(exist, struct prelim_ref, rbnode);
302
/* Identical refs, merge them and free @newref */
303
struct extent_inode_elem *eie = ref->inode_list;
304
305
while (eie && eie->next)
306
eie = eie->next;
307
308
if (!eie)
309
ref->inode_list = newref->inode_list;
310
else
311
eie->next = newref->inode_list;
312
trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
313
preftree->count);
314
/*
315
* A delayed ref can have newref->count < 0.
316
* The ref->count is updated to follow any
317
* BTRFS_[ADD|DROP]_DELAYED_REF actions.
318
*/
319
update_share_count(sc, ref->count,
320
ref->count + newref->count, newref);
321
ref->count += newref->count;
322
free_pref(newref);
323
return;
324
}
325
326
update_share_count(sc, 0, newref->count, newref);
327
preftree->count++;
328
trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
329
}
330
331
/*
332
* Release the entire tree. We don't care about internal consistency so
333
* just free everything and then reset the tree root.
334
*/
335
static void prelim_release(struct preftree *preftree)
336
{
337
struct prelim_ref *ref, *next_ref;
338
339
rbtree_postorder_for_each_entry_safe(ref, next_ref,
340
&preftree->root.rb_root, rbnode) {
341
free_inode_elem_list(ref->inode_list);
342
free_pref(ref);
343
}
344
345
preftree->root = RB_ROOT_CACHED;
346
preftree->count = 0;
347
}
348
349
/*
350
* the rules for all callers of this function are:
351
* - obtaining the parent is the goal
352
* - if you add a key, you must know that it is a correct key
353
* - if you cannot add the parent or a correct key, then we will look into the
354
* block later to set a correct key
355
*
356
* delayed refs
357
* ============
358
* backref type | shared | indirect | shared | indirect
359
* information | tree | tree | data | data
360
* --------------------+--------+----------+--------+----------
361
* parent logical | y | - | - | -
362
* key to resolve | - | y | y | y
363
* tree block logical | - | - | - | -
364
* root for resolving | y | y | y | y
365
*
366
* - column 1: we've the parent -> done
367
* - column 2, 3, 4: we use the key to find the parent
368
*
369
* on disk refs (inline or keyed)
370
* ==============================
371
* backref type | shared | indirect | shared | indirect
372
* information | tree | tree | data | data
373
* --------------------+--------+----------+--------+----------
374
* parent logical | y | - | y | -
375
* key to resolve | - | - | - | y
376
* tree block logical | y | y | y | y
377
* root for resolving | - | y | y | y
378
*
379
* - column 1, 3: we've the parent -> done
380
* - column 2: we take the first key from the block to find the parent
381
* (see add_missing_keys)
382
* - column 4: we use the key to find the parent
383
*
384
* additional information that's available but not required to find the parent
385
* block might help in merging entries to gain some speed.
386
*/
387
static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
388
struct preftree *preftree, u64 root_id,
389
const struct btrfs_key *key, int level, u64 parent,
390
u64 wanted_disk_byte, int count,
391
struct share_check *sc, gfp_t gfp_mask)
392
{
393
struct prelim_ref *ref;
394
395
if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
396
return 0;
397
398
ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
399
if (!ref)
400
return -ENOMEM;
401
402
ref->root_id = root_id;
403
if (key)
404
ref->key_for_search = *key;
405
else
406
memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
407
408
ref->inode_list = NULL;
409
ref->level = level;
410
ref->count = count;
411
ref->parent = parent;
412
ref->wanted_disk_byte = wanted_disk_byte;
413
prelim_ref_insert(fs_info, preftree, ref, sc);
414
return extent_is_shared(sc);
415
}
416
417
/* direct refs use root == 0, key == NULL */
418
static int add_direct_ref(const struct btrfs_fs_info *fs_info,
419
struct preftrees *preftrees, int level, u64 parent,
420
u64 wanted_disk_byte, int count,
421
struct share_check *sc, gfp_t gfp_mask)
422
{
423
return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
424
parent, wanted_disk_byte, count, sc, gfp_mask);
425
}
426
427
/* indirect refs use parent == 0 */
428
static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
429
struct preftrees *preftrees, u64 root_id,
430
const struct btrfs_key *key, int level,
431
u64 wanted_disk_byte, int count,
432
struct share_check *sc, gfp_t gfp_mask)
433
{
434
struct preftree *tree = &preftrees->indirect;
435
436
if (!key)
437
tree = &preftrees->indirect_missing_keys;
438
return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
439
wanted_disk_byte, count, sc, gfp_mask);
440
}
441
442
static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
443
{
444
struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
445
struct rb_node *parent = NULL;
446
struct prelim_ref *ref = NULL;
447
struct prelim_ref target = {};
448
int result;
449
450
target.parent = bytenr;
451
452
while (*p) {
453
parent = *p;
454
ref = rb_entry(parent, struct prelim_ref, rbnode);
455
result = prelim_ref_compare(ref, &target);
456
457
if (result < 0)
458
p = &(*p)->rb_left;
459
else if (result > 0)
460
p = &(*p)->rb_right;
461
else
462
return 1;
463
}
464
return 0;
465
}
466
467
static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
468
struct btrfs_root *root, struct btrfs_path *path,
469
struct ulist *parents,
470
struct preftrees *preftrees, struct prelim_ref *ref,
471
int level)
472
{
473
int ret = 0;
474
int slot;
475
struct extent_buffer *eb;
476
struct btrfs_key key;
477
struct btrfs_key *key_for_search = &ref->key_for_search;
478
struct btrfs_file_extent_item *fi;
479
struct extent_inode_elem *eie = NULL, *old = NULL;
480
u64 disk_byte;
481
u64 wanted_disk_byte = ref->wanted_disk_byte;
482
u64 count = 0;
483
u64 data_offset;
484
u8 type;
485
486
if (level != 0) {
487
eb = path->nodes[level];
488
ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
489
if (ret < 0)
490
return ret;
491
return 0;
492
}
493
494
/*
495
* 1. We normally enter this function with the path already pointing to
496
* the first item to check. But sometimes, we may enter it with
497
* slot == nritems.
498
* 2. We are searching for normal backref but bytenr of this leaf
499
* matches shared data backref
500
* 3. The leaf owner is not equal to the root we are searching
501
*
502
* For these cases, go to the next leaf before we continue.
503
*/
504
eb = path->nodes[0];
505
if (path->slots[0] >= btrfs_header_nritems(eb) ||
506
is_shared_data_backref(preftrees, eb->start) ||
507
ref->root_id != btrfs_header_owner(eb)) {
508
if (ctx->time_seq == BTRFS_SEQ_LAST)
509
ret = btrfs_next_leaf(root, path);
510
else
511
ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
512
}
513
514
while (!ret && count < ref->count) {
515
eb = path->nodes[0];
516
slot = path->slots[0];
517
518
btrfs_item_key_to_cpu(eb, &key, slot);
519
520
if (key.objectid != key_for_search->objectid ||
521
key.type != BTRFS_EXTENT_DATA_KEY)
522
break;
523
524
/*
525
* We are searching for normal backref but bytenr of this leaf
526
* matches shared data backref, OR
527
* the leaf owner is not equal to the root we are searching for
528
*/
529
if (slot == 0 &&
530
(is_shared_data_backref(preftrees, eb->start) ||
531
ref->root_id != btrfs_header_owner(eb))) {
532
if (ctx->time_seq == BTRFS_SEQ_LAST)
533
ret = btrfs_next_leaf(root, path);
534
else
535
ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
536
continue;
537
}
538
fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
539
type = btrfs_file_extent_type(eb, fi);
540
if (type == BTRFS_FILE_EXTENT_INLINE)
541
goto next;
542
disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
543
data_offset = btrfs_file_extent_offset(eb, fi);
544
545
if (disk_byte == wanted_disk_byte) {
546
eie = NULL;
547
old = NULL;
548
if (ref->key_for_search.offset == key.offset - data_offset)
549
count++;
550
else
551
goto next;
552
if (!ctx->skip_inode_ref_list) {
553
ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
554
if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
555
ret < 0)
556
break;
557
}
558
if (ret > 0)
559
goto next;
560
ret = ulist_add_merge_ptr(parents, eb->start,
561
eie, (void **)&old, GFP_NOFS);
562
if (ret < 0)
563
break;
564
if (!ret && !ctx->skip_inode_ref_list) {
565
while (old->next)
566
old = old->next;
567
old->next = eie;
568
}
569
eie = NULL;
570
}
571
next:
572
if (ctx->time_seq == BTRFS_SEQ_LAST)
573
ret = btrfs_next_item(root, path);
574
else
575
ret = btrfs_next_old_item(root, path, ctx->time_seq);
576
}
577
578
if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
579
free_inode_elem_list(eie);
580
else if (ret > 0)
581
ret = 0;
582
583
return ret;
584
}
585
586
/*
587
* resolve an indirect backref in the form (root_id, key, level)
588
* to a logical address
589
*/
590
static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
591
struct btrfs_path *path,
592
struct preftrees *preftrees,
593
struct prelim_ref *ref, struct ulist *parents)
594
{
595
struct btrfs_root *root;
596
struct extent_buffer *eb;
597
int ret = 0;
598
int root_level;
599
int level = ref->level;
600
struct btrfs_key search_key = ref->key_for_search;
601
602
/*
603
* If we're search_commit_root we could possibly be holding locks on
604
* other tree nodes. This happens when qgroups does backref walks when
605
* adding new delayed refs. To deal with this we need to look in cache
606
* for the root, and if we don't find it then we need to search the
607
* tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
608
* here.
609
*/
610
if (path->search_commit_root)
611
root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
612
else
613
root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
614
if (IS_ERR(root)) {
615
ret = PTR_ERR(root);
616
goto out_free;
617
}
618
619
if (!path->search_commit_root &&
620
test_bit(BTRFS_ROOT_DELETING, &root->state)) {
621
ret = -ENOENT;
622
goto out;
623
}
624
625
if (btrfs_is_testing(ctx->fs_info)) {
626
ret = -ENOENT;
627
goto out;
628
}
629
630
if (path->search_commit_root)
631
root_level = btrfs_header_level(root->commit_root);
632
else if (ctx->time_seq == BTRFS_SEQ_LAST)
633
root_level = btrfs_header_level(root->node);
634
else
635
root_level = btrfs_old_root_level(root, ctx->time_seq);
636
637
if (root_level + 1 == level)
638
goto out;
639
640
/*
641
* We can often find data backrefs with an offset that is too large
642
* (>= LLONG_MAX, maximum allowed file offset) due to underflows when
643
* subtracting a file's offset with the data offset of its
644
* corresponding extent data item. This can happen for example in the
645
* clone ioctl.
646
*
647
* So if we detect such case we set the search key's offset to zero to
648
* make sure we will find the matching file extent item at
649
* add_all_parents(), otherwise we will miss it because the offset
650
* taken form the backref is much larger then the offset of the file
651
* extent item. This can make us scan a very large number of file
652
* extent items, but at least it will not make us miss any.
653
*
654
* This is an ugly workaround for a behaviour that should have never
655
* existed, but it does and a fix for the clone ioctl would touch a lot
656
* of places, cause backwards incompatibility and would not fix the
657
* problem for extents cloned with older kernels.
658
*/
659
if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
660
search_key.offset >= LLONG_MAX)
661
search_key.offset = 0;
662
path->lowest_level = level;
663
if (ctx->time_seq == BTRFS_SEQ_LAST)
664
ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
665
else
666
ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
667
668
btrfs_debug(ctx->fs_info,
669
"search slot in root %llu (level %d, ref count %d) returned %d for key " BTRFS_KEY_FMT,
670
ref->root_id, level, ref->count, ret,
671
BTRFS_KEY_FMT_VALUE(&ref->key_for_search));
672
if (ret < 0)
673
goto out;
674
675
eb = path->nodes[level];
676
while (!eb) {
677
if (WARN_ON(!level)) {
678
ret = 1;
679
goto out;
680
}
681
level--;
682
eb = path->nodes[level];
683
}
684
685
ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
686
out:
687
btrfs_put_root(root);
688
out_free:
689
path->lowest_level = 0;
690
btrfs_release_path(path);
691
return ret;
692
}
693
694
static struct extent_inode_elem *
695
unode_aux_to_inode_list(struct ulist_node *node)
696
{
697
if (!node)
698
return NULL;
699
return (struct extent_inode_elem *)(uintptr_t)node->aux;
700
}
701
702
static void free_leaf_list(struct ulist *ulist)
703
{
704
struct ulist_node *node;
705
struct ulist_iterator uiter;
706
707
ULIST_ITER_INIT(&uiter);
708
while ((node = ulist_next(ulist, &uiter)))
709
free_inode_elem_list(unode_aux_to_inode_list(node));
710
711
ulist_free(ulist);
712
}
713
714
/*
715
* We maintain three separate rbtrees: one for direct refs, one for
716
* indirect refs which have a key, and one for indirect refs which do not
717
* have a key. Each tree does merge on insertion.
718
*
719
* Once all of the references are located, we iterate over the tree of
720
* indirect refs with missing keys. An appropriate key is located and
721
* the ref is moved onto the tree for indirect refs. After all missing
722
* keys are thus located, we iterate over the indirect ref tree, resolve
723
* each reference, and then insert the resolved reference onto the
724
* direct tree (merging there too).
725
*
726
* New backrefs (i.e., for parent nodes) are added to the appropriate
727
* rbtree as they are encountered. The new backrefs are subsequently
728
* resolved as above.
729
*/
730
static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
731
struct btrfs_path *path,
732
struct preftrees *preftrees,
733
struct share_check *sc)
734
{
735
int ret = 0;
736
struct ulist *parents;
737
struct ulist_node *node;
738
struct ulist_iterator uiter;
739
struct rb_node *rnode;
740
741
parents = ulist_alloc(GFP_NOFS);
742
if (!parents)
743
return -ENOMEM;
744
745
/*
746
* We could trade memory usage for performance here by iterating
747
* the tree, allocating new refs for each insertion, and then
748
* freeing the entire indirect tree when we're done. In some test
749
* cases, the tree can grow quite large (~200k objects).
750
*/
751
while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
752
struct prelim_ref *ref;
753
int ret2;
754
755
ref = rb_entry(rnode, struct prelim_ref, rbnode);
756
if (WARN(ref->parent,
757
"BUG: direct ref found in indirect tree")) {
758
ret = -EINVAL;
759
goto out;
760
}
761
762
rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
763
preftrees->indirect.count--;
764
765
if (ref->count == 0) {
766
free_pref(ref);
767
continue;
768
}
769
770
if (sc && ref->root_id != btrfs_root_id(sc->root)) {
771
free_pref(ref);
772
ret = BACKREF_FOUND_SHARED;
773
goto out;
774
}
775
ret2 = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
776
/*
777
* we can only tolerate ENOENT,otherwise,we should catch error
778
* and return directly.
779
*/
780
if (ret2 == -ENOENT) {
781
prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
782
NULL);
783
continue;
784
} else if (ret2) {
785
free_pref(ref);
786
ret = ret2;
787
goto out;
788
}
789
790
/* we put the first parent into the ref at hand */
791
ULIST_ITER_INIT(&uiter);
792
node = ulist_next(parents, &uiter);
793
ref->parent = node ? node->val : 0;
794
ref->inode_list = unode_aux_to_inode_list(node);
795
796
/* Add a prelim_ref(s) for any other parent(s). */
797
while ((node = ulist_next(parents, &uiter))) {
798
struct prelim_ref *new_ref;
799
800
new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
801
GFP_NOFS);
802
if (!new_ref) {
803
free_pref(ref);
804
ret = -ENOMEM;
805
goto out;
806
}
807
memcpy(new_ref, ref, sizeof(*ref));
808
new_ref->parent = node->val;
809
new_ref->inode_list = unode_aux_to_inode_list(node);
810
prelim_ref_insert(ctx->fs_info, &preftrees->direct,
811
new_ref, NULL);
812
}
813
814
/*
815
* Now it's a direct ref, put it in the direct tree. We must
816
* do this last because the ref could be merged/freed here.
817
*/
818
prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
819
820
ulist_reinit(parents);
821
cond_resched();
822
}
823
out:
824
/*
825
* We may have inode lists attached to refs in the parents ulist, so we
826
* must free them before freeing the ulist and its refs.
827
*/
828
free_leaf_list(parents);
829
return ret;
830
}
831
832
/*
833
* read tree blocks and add keys where required.
834
*/
835
static int add_missing_keys(struct btrfs_fs_info *fs_info,
836
struct preftrees *preftrees, bool lock)
837
{
838
struct prelim_ref *ref;
839
struct extent_buffer *eb;
840
struct preftree *tree = &preftrees->indirect_missing_keys;
841
struct rb_node *node;
842
843
while ((node = rb_first_cached(&tree->root))) {
844
struct btrfs_tree_parent_check check = { 0 };
845
846
ref = rb_entry(node, struct prelim_ref, rbnode);
847
rb_erase_cached(node, &tree->root);
848
849
BUG_ON(ref->parent); /* should not be a direct ref */
850
BUG_ON(ref->key_for_search.type);
851
BUG_ON(!ref->wanted_disk_byte);
852
853
check.level = ref->level - 1;
854
check.owner_root = ref->root_id;
855
856
eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
857
if (IS_ERR(eb)) {
858
free_pref(ref);
859
return PTR_ERR(eb);
860
}
861
if (unlikely(!extent_buffer_uptodate(eb))) {
862
free_pref(ref);
863
free_extent_buffer(eb);
864
return -EIO;
865
}
866
867
if (lock)
868
btrfs_tree_read_lock(eb);
869
if (btrfs_header_level(eb) == 0)
870
btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
871
else
872
btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
873
if (lock)
874
btrfs_tree_read_unlock(eb);
875
free_extent_buffer(eb);
876
prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
877
cond_resched();
878
}
879
return 0;
880
}
881
882
/*
883
* add all currently queued delayed refs from this head whose seq nr is
884
* smaller or equal that seq to the list
885
*/
886
static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
887
struct btrfs_delayed_ref_head *head, u64 seq,
888
struct preftrees *preftrees, struct share_check *sc)
889
{
890
struct btrfs_delayed_ref_node *node;
891
struct btrfs_key key;
892
struct rb_node *n;
893
int count;
894
int ret = 0;
895
896
spin_lock(&head->lock);
897
for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
898
node = rb_entry(n, struct btrfs_delayed_ref_node,
899
ref_node);
900
if (node->seq > seq)
901
continue;
902
903
switch (node->action) {
904
case BTRFS_ADD_DELAYED_EXTENT:
905
case BTRFS_UPDATE_DELAYED_HEAD:
906
WARN_ON(1);
907
continue;
908
case BTRFS_ADD_DELAYED_REF:
909
count = node->ref_mod;
910
break;
911
case BTRFS_DROP_DELAYED_REF:
912
count = node->ref_mod * -1;
913
break;
914
default:
915
BUG();
916
}
917
switch (node->type) {
918
case BTRFS_TREE_BLOCK_REF_KEY: {
919
/* NORMAL INDIRECT METADATA backref */
920
struct btrfs_key *key_ptr = NULL;
921
/* The owner of a tree block ref is the level. */
922
int level = btrfs_delayed_ref_owner(node);
923
924
if (head->extent_op && head->extent_op->update_key) {
925
btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
926
key_ptr = &key;
927
}
928
929
ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
930
key_ptr, level + 1, node->bytenr,
931
count, sc, GFP_ATOMIC);
932
break;
933
}
934
case BTRFS_SHARED_BLOCK_REF_KEY: {
935
/*
936
* SHARED DIRECT METADATA backref
937
*
938
* The owner of a tree block ref is the level.
939
*/
940
int level = btrfs_delayed_ref_owner(node);
941
942
ret = add_direct_ref(fs_info, preftrees, level + 1,
943
node->parent, node->bytenr, count,
944
sc, GFP_ATOMIC);
945
break;
946
}
947
case BTRFS_EXTENT_DATA_REF_KEY: {
948
/* NORMAL INDIRECT DATA backref */
949
key.objectid = btrfs_delayed_ref_owner(node);
950
key.type = BTRFS_EXTENT_DATA_KEY;
951
key.offset = btrfs_delayed_ref_offset(node);
952
953
/*
954
* If we have a share check context and a reference for
955
* another inode, we can't exit immediately. This is
956
* because even if this is a BTRFS_ADD_DELAYED_REF
957
* reference we may find next a BTRFS_DROP_DELAYED_REF
958
* which cancels out this ADD reference.
959
*
960
* If this is a DROP reference and there was no previous
961
* ADD reference, then we need to signal that when we
962
* process references from the extent tree (through
963
* add_inline_refs() and add_keyed_refs()), we should
964
* not exit early if we find a reference for another
965
* inode, because one of the delayed DROP references
966
* may cancel that reference in the extent tree.
967
*/
968
if (sc && count < 0)
969
sc->have_delayed_delete_refs = true;
970
971
ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
972
&key, 0, node->bytenr, count, sc,
973
GFP_ATOMIC);
974
break;
975
}
976
case BTRFS_SHARED_DATA_REF_KEY: {
977
/* SHARED DIRECT FULL backref */
978
ret = add_direct_ref(fs_info, preftrees, 0, node->parent,
979
node->bytenr, count, sc,
980
GFP_ATOMIC);
981
break;
982
}
983
default:
984
WARN_ON(1);
985
}
986
/*
987
* We must ignore BACKREF_FOUND_SHARED until all delayed
988
* refs have been checked.
989
*/
990
if (ret && (ret != BACKREF_FOUND_SHARED))
991
break;
992
}
993
if (!ret)
994
ret = extent_is_shared(sc);
995
996
spin_unlock(&head->lock);
997
return ret;
998
}
999
1000
/*
1001
* add all inline backrefs for bytenr to the list
1002
*
1003
* Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1004
*/
1005
static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1006
struct btrfs_path *path,
1007
int *info_level, struct preftrees *preftrees,
1008
struct share_check *sc)
1009
{
1010
int ret = 0;
1011
int slot;
1012
struct extent_buffer *leaf;
1013
struct btrfs_key key;
1014
struct btrfs_key found_key;
1015
unsigned long ptr;
1016
unsigned long end;
1017
struct btrfs_extent_item *ei;
1018
u64 flags;
1019
u64 item_size;
1020
1021
/*
1022
* enumerate all inline refs
1023
*/
1024
leaf = path->nodes[0];
1025
slot = path->slots[0];
1026
1027
item_size = btrfs_item_size(leaf, slot);
1028
ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1029
1030
if (ctx->check_extent_item) {
1031
ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1032
if (ret)
1033
return ret;
1034
}
1035
1036
flags = btrfs_extent_flags(leaf, ei);
1037
btrfs_item_key_to_cpu(leaf, &found_key, slot);
1038
1039
ptr = (unsigned long)(ei + 1);
1040
end = (unsigned long)ei + item_size;
1041
1042
if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1043
flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1044
struct btrfs_tree_block_info *info;
1045
1046
info = (struct btrfs_tree_block_info *)ptr;
1047
*info_level = btrfs_tree_block_level(leaf, info);
1048
ptr += sizeof(struct btrfs_tree_block_info);
1049
BUG_ON(ptr > end);
1050
} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1051
*info_level = found_key.offset;
1052
} else {
1053
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1054
}
1055
1056
while (ptr < end) {
1057
struct btrfs_extent_inline_ref *iref;
1058
u64 offset;
1059
int type;
1060
1061
iref = (struct btrfs_extent_inline_ref *)ptr;
1062
type = btrfs_get_extent_inline_ref_type(leaf, iref,
1063
BTRFS_REF_TYPE_ANY);
1064
if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1065
return -EUCLEAN;
1066
1067
offset = btrfs_extent_inline_ref_offset(leaf, iref);
1068
1069
switch (type) {
1070
case BTRFS_SHARED_BLOCK_REF_KEY:
1071
ret = add_direct_ref(ctx->fs_info, preftrees,
1072
*info_level + 1, offset,
1073
ctx->bytenr, 1, NULL, GFP_NOFS);
1074
break;
1075
case BTRFS_SHARED_DATA_REF_KEY: {
1076
struct btrfs_shared_data_ref *sdref;
1077
int count;
1078
1079
sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1080
count = btrfs_shared_data_ref_count(leaf, sdref);
1081
1082
ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1083
ctx->bytenr, count, sc, GFP_NOFS);
1084
break;
1085
}
1086
case BTRFS_TREE_BLOCK_REF_KEY:
1087
ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1088
NULL, *info_level + 1,
1089
ctx->bytenr, 1, NULL, GFP_NOFS);
1090
break;
1091
case BTRFS_EXTENT_DATA_REF_KEY: {
1092
struct btrfs_extent_data_ref *dref;
1093
int count;
1094
u64 root;
1095
1096
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1097
count = btrfs_extent_data_ref_count(leaf, dref);
1098
key.objectid = btrfs_extent_data_ref_objectid(leaf,
1099
dref);
1100
key.type = BTRFS_EXTENT_DATA_KEY;
1101
key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1102
1103
if (sc && key.objectid != sc->inum &&
1104
!sc->have_delayed_delete_refs) {
1105
ret = BACKREF_FOUND_SHARED;
1106
break;
1107
}
1108
1109
root = btrfs_extent_data_ref_root(leaf, dref);
1110
1111
if (!ctx->skip_data_ref ||
1112
!ctx->skip_data_ref(root, key.objectid, key.offset,
1113
ctx->user_ctx))
1114
ret = add_indirect_ref(ctx->fs_info, preftrees,
1115
root, &key, 0, ctx->bytenr,
1116
count, sc, GFP_NOFS);
1117
break;
1118
}
1119
case BTRFS_EXTENT_OWNER_REF_KEY:
1120
ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA));
1121
break;
1122
default:
1123
WARN_ON(1);
1124
}
1125
if (ret)
1126
return ret;
1127
ptr += btrfs_extent_inline_ref_size(type);
1128
}
1129
1130
return 0;
1131
}
1132
1133
/*
1134
* add all non-inline backrefs for bytenr to the list
1135
*
1136
* Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1137
*/
1138
static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1139
struct btrfs_root *extent_root,
1140
struct btrfs_path *path,
1141
int info_level, struct preftrees *preftrees,
1142
struct share_check *sc)
1143
{
1144
struct btrfs_fs_info *fs_info = extent_root->fs_info;
1145
int ret;
1146
int slot;
1147
struct extent_buffer *leaf;
1148
struct btrfs_key key;
1149
1150
while (1) {
1151
ret = btrfs_next_item(extent_root, path);
1152
if (ret < 0)
1153
break;
1154
if (ret) {
1155
ret = 0;
1156
break;
1157
}
1158
1159
slot = path->slots[0];
1160
leaf = path->nodes[0];
1161
btrfs_item_key_to_cpu(leaf, &key, slot);
1162
1163
if (key.objectid != ctx->bytenr)
1164
break;
1165
if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1166
continue;
1167
if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1168
break;
1169
1170
switch (key.type) {
1171
case BTRFS_SHARED_BLOCK_REF_KEY:
1172
/* SHARED DIRECT METADATA backref */
1173
ret = add_direct_ref(fs_info, preftrees,
1174
info_level + 1, key.offset,
1175
ctx->bytenr, 1, NULL, GFP_NOFS);
1176
break;
1177
case BTRFS_SHARED_DATA_REF_KEY: {
1178
/* SHARED DIRECT FULL backref */
1179
struct btrfs_shared_data_ref *sdref;
1180
int count;
1181
1182
sdref = btrfs_item_ptr(leaf, slot,
1183
struct btrfs_shared_data_ref);
1184
count = btrfs_shared_data_ref_count(leaf, sdref);
1185
ret = add_direct_ref(fs_info, preftrees, 0,
1186
key.offset, ctx->bytenr, count,
1187
sc, GFP_NOFS);
1188
break;
1189
}
1190
case BTRFS_TREE_BLOCK_REF_KEY:
1191
/* NORMAL INDIRECT METADATA backref */
1192
ret = add_indirect_ref(fs_info, preftrees, key.offset,
1193
NULL, info_level + 1, ctx->bytenr,
1194
1, NULL, GFP_NOFS);
1195
break;
1196
case BTRFS_EXTENT_DATA_REF_KEY: {
1197
/* NORMAL INDIRECT DATA backref */
1198
struct btrfs_extent_data_ref *dref;
1199
int count;
1200
u64 root;
1201
1202
dref = btrfs_item_ptr(leaf, slot,
1203
struct btrfs_extent_data_ref);
1204
count = btrfs_extent_data_ref_count(leaf, dref);
1205
key.objectid = btrfs_extent_data_ref_objectid(leaf,
1206
dref);
1207
key.type = BTRFS_EXTENT_DATA_KEY;
1208
key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1209
1210
if (sc && key.objectid != sc->inum &&
1211
!sc->have_delayed_delete_refs) {
1212
ret = BACKREF_FOUND_SHARED;
1213
break;
1214
}
1215
1216
root = btrfs_extent_data_ref_root(leaf, dref);
1217
1218
if (!ctx->skip_data_ref ||
1219
!ctx->skip_data_ref(root, key.objectid, key.offset,
1220
ctx->user_ctx))
1221
ret = add_indirect_ref(fs_info, preftrees, root,
1222
&key, 0, ctx->bytenr,
1223
count, sc, GFP_NOFS);
1224
break;
1225
}
1226
default:
1227
WARN_ON(1);
1228
}
1229
if (ret)
1230
return ret;
1231
1232
}
1233
1234
return ret;
1235
}
1236
1237
/*
1238
* The caller has joined a transaction or is holding a read lock on the
1239
* fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1240
* snapshot field changing while updating or checking the cache.
1241
*/
1242
static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1243
struct btrfs_root *root,
1244
u64 bytenr, int level, bool *is_shared)
1245
{
1246
const struct btrfs_fs_info *fs_info = root->fs_info;
1247
struct btrfs_backref_shared_cache_entry *entry;
1248
1249
if (!current->journal_info)
1250
lockdep_assert_held(&fs_info->commit_root_sem);
1251
1252
if (!ctx->use_path_cache)
1253
return false;
1254
1255
if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1256
return false;
1257
1258
/*
1259
* Level -1 is used for the data extent, which is not reliable to cache
1260
* because its reference count can increase or decrease without us
1261
* realizing. We cache results only for extent buffers that lead from
1262
* the root node down to the leaf with the file extent item.
1263
*/
1264
ASSERT(level >= 0);
1265
1266
entry = &ctx->path_cache_entries[level];
1267
1268
/* Unused cache entry or being used for some other extent buffer. */
1269
if (entry->bytenr != bytenr)
1270
return false;
1271
1272
/*
1273
* We cached a false result, but the last snapshot generation of the
1274
* root changed, so we now have a snapshot. Don't trust the result.
1275
*/
1276
if (!entry->is_shared &&
1277
entry->gen != btrfs_root_last_snapshot(&root->root_item))
1278
return false;
1279
1280
/*
1281
* If we cached a true result and the last generation used for dropping
1282
* a root changed, we can not trust the result, because the dropped root
1283
* could be a snapshot sharing this extent buffer.
1284
*/
1285
if (entry->is_shared &&
1286
entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1287
return false;
1288
1289
*is_shared = entry->is_shared;
1290
/*
1291
* If the node at this level is shared, than all nodes below are also
1292
* shared. Currently some of the nodes below may be marked as not shared
1293
* because we have just switched from one leaf to another, and switched
1294
* also other nodes above the leaf and below the current level, so mark
1295
* them as shared.
1296
*/
1297
if (*is_shared) {
1298
for (int i = 0; i < level; i++) {
1299
ctx->path_cache_entries[i].is_shared = true;
1300
ctx->path_cache_entries[i].gen = entry->gen;
1301
}
1302
}
1303
1304
return true;
1305
}
1306
1307
/*
1308
* The caller has joined a transaction or is holding a read lock on the
1309
* fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1310
* snapshot field changing while updating or checking the cache.
1311
*/
1312
static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1313
struct btrfs_root *root,
1314
u64 bytenr, int level, bool is_shared)
1315
{
1316
const struct btrfs_fs_info *fs_info = root->fs_info;
1317
struct btrfs_backref_shared_cache_entry *entry;
1318
u64 gen;
1319
1320
if (!current->journal_info)
1321
lockdep_assert_held(&fs_info->commit_root_sem);
1322
1323
if (!ctx->use_path_cache)
1324
return;
1325
1326
if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1327
return;
1328
1329
/*
1330
* Level -1 is used for the data extent, which is not reliable to cache
1331
* because its reference count can increase or decrease without us
1332
* realizing. We cache results only for extent buffers that lead from
1333
* the root node down to the leaf with the file extent item.
1334
*/
1335
ASSERT(level >= 0);
1336
1337
if (is_shared)
1338
gen = btrfs_get_last_root_drop_gen(fs_info);
1339
else
1340
gen = btrfs_root_last_snapshot(&root->root_item);
1341
1342
entry = &ctx->path_cache_entries[level];
1343
entry->bytenr = bytenr;
1344
entry->is_shared = is_shared;
1345
entry->gen = gen;
1346
1347
/*
1348
* If we found an extent buffer is shared, set the cache result for all
1349
* extent buffers below it to true. As nodes in the path are COWed,
1350
* their sharedness is moved to their children, and if a leaf is COWed,
1351
* then the sharedness of a data extent becomes direct, the refcount of
1352
* data extent is increased in the extent item at the extent tree.
1353
*/
1354
if (is_shared) {
1355
for (int i = 0; i < level; i++) {
1356
entry = &ctx->path_cache_entries[i];
1357
entry->is_shared = is_shared;
1358
entry->gen = gen;
1359
}
1360
}
1361
}
1362
1363
/*
1364
* this adds all existing backrefs (inline backrefs, backrefs and delayed
1365
* refs) for the given bytenr to the refs list, merges duplicates and resolves
1366
* indirect refs to their parent bytenr.
1367
* When roots are found, they're added to the roots list
1368
*
1369
* @ctx: Backref walking context object, must be not NULL.
1370
* @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1371
* shared extent is detected.
1372
*
1373
* Otherwise this returns 0 for success and <0 for an error.
1374
*
1375
* FIXME some caching might speed things up
1376
*/
1377
static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1378
struct share_check *sc)
1379
{
1380
struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1381
struct btrfs_key key;
1382
struct btrfs_path *path;
1383
struct btrfs_delayed_ref_root *delayed_refs = NULL;
1384
struct btrfs_delayed_ref_head *head;
1385
int info_level = 0;
1386
int ret;
1387
struct prelim_ref *ref;
1388
struct rb_node *node;
1389
struct extent_inode_elem *eie = NULL;
1390
struct preftrees preftrees = {
1391
.direct = PREFTREE_INIT,
1392
.indirect = PREFTREE_INIT,
1393
.indirect_missing_keys = PREFTREE_INIT
1394
};
1395
1396
/* Roots ulist is not needed when using a sharedness check context. */
1397
if (sc)
1398
ASSERT(ctx->roots == NULL);
1399
1400
key.objectid = ctx->bytenr;
1401
if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1402
key.type = BTRFS_METADATA_ITEM_KEY;
1403
else
1404
key.type = BTRFS_EXTENT_ITEM_KEY;
1405
key.offset = (u64)-1;
1406
1407
path = btrfs_alloc_path();
1408
if (!path)
1409
return -ENOMEM;
1410
if (!ctx->trans) {
1411
path->search_commit_root = true;
1412
path->skip_locking = true;
1413
}
1414
1415
if (ctx->time_seq == BTRFS_SEQ_LAST)
1416
path->skip_locking = true;
1417
1418
again:
1419
head = NULL;
1420
1421
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1422
if (ret < 0)
1423
goto out;
1424
if (unlikely(ret == 0)) {
1425
/*
1426
* Key with offset -1 found, there would have to exist an extent
1427
* item with such offset, but this is out of the valid range.
1428
*/
1429
ret = -EUCLEAN;
1430
goto out;
1431
}
1432
1433
if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1434
ctx->time_seq != BTRFS_SEQ_LAST) {
1435
/*
1436
* We have a specific time_seq we care about and trans which
1437
* means we have the path lock, we need to grab the ref head and
1438
* lock it so we have a consistent view of the refs at the given
1439
* time.
1440
*/
1441
delayed_refs = &ctx->trans->transaction->delayed_refs;
1442
spin_lock(&delayed_refs->lock);
1443
head = btrfs_find_delayed_ref_head(ctx->fs_info, delayed_refs,
1444
ctx->bytenr);
1445
if (head) {
1446
if (!mutex_trylock(&head->mutex)) {
1447
refcount_inc(&head->refs);
1448
spin_unlock(&delayed_refs->lock);
1449
1450
btrfs_release_path(path);
1451
1452
/*
1453
* Mutex was contended, block until it's
1454
* released and try again
1455
*/
1456
mutex_lock(&head->mutex);
1457
mutex_unlock(&head->mutex);
1458
btrfs_put_delayed_ref_head(head);
1459
goto again;
1460
}
1461
spin_unlock(&delayed_refs->lock);
1462
ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1463
&preftrees, sc);
1464
mutex_unlock(&head->mutex);
1465
if (ret)
1466
goto out;
1467
} else {
1468
spin_unlock(&delayed_refs->lock);
1469
}
1470
}
1471
1472
if (path->slots[0]) {
1473
struct extent_buffer *leaf;
1474
int slot;
1475
1476
path->slots[0]--;
1477
leaf = path->nodes[0];
1478
slot = path->slots[0];
1479
btrfs_item_key_to_cpu(leaf, &key, slot);
1480
if (key.objectid == ctx->bytenr &&
1481
(key.type == BTRFS_EXTENT_ITEM_KEY ||
1482
key.type == BTRFS_METADATA_ITEM_KEY)) {
1483
ret = add_inline_refs(ctx, path, &info_level,
1484
&preftrees, sc);
1485
if (ret)
1486
goto out;
1487
ret = add_keyed_refs(ctx, root, path, info_level,
1488
&preftrees, sc);
1489
if (ret)
1490
goto out;
1491
}
1492
}
1493
1494
/*
1495
* If we have a share context and we reached here, it means the extent
1496
* is not directly shared (no multiple reference items for it),
1497
* otherwise we would have exited earlier with a return value of
1498
* BACKREF_FOUND_SHARED after processing delayed references or while
1499
* processing inline or keyed references from the extent tree.
1500
* The extent may however be indirectly shared through shared subtrees
1501
* as a result from creating snapshots, so we determine below what is
1502
* its parent node, in case we are dealing with a metadata extent, or
1503
* what's the leaf (or leaves), from a fs tree, that has a file extent
1504
* item pointing to it in case we are dealing with a data extent.
1505
*/
1506
ASSERT(extent_is_shared(sc) == 0);
1507
1508
/*
1509
* If we are here for a data extent and we have a share_check structure
1510
* it means the data extent is not directly shared (does not have
1511
* multiple reference items), so we have to check if a path in the fs
1512
* tree (going from the root node down to the leaf that has the file
1513
* extent item pointing to the data extent) is shared, that is, if any
1514
* of the extent buffers in the path is referenced by other trees.
1515
*/
1516
if (sc && ctx->bytenr == sc->data_bytenr) {
1517
/*
1518
* If our data extent is from a generation more recent than the
1519
* last generation used to snapshot the root, then we know that
1520
* it can not be shared through subtrees, so we can skip
1521
* resolving indirect references, there's no point in
1522
* determining the extent buffers for the path from the fs tree
1523
* root node down to the leaf that has the file extent item that
1524
* points to the data extent.
1525
*/
1526
if (sc->data_extent_gen >
1527
btrfs_root_last_snapshot(&sc->root->root_item)) {
1528
ret = BACKREF_FOUND_NOT_SHARED;
1529
goto out;
1530
}
1531
1532
/*
1533
* If we are only determining if a data extent is shared or not
1534
* and the corresponding file extent item is located in the same
1535
* leaf as the previous file extent item, we can skip resolving
1536
* indirect references for a data extent, since the fs tree path
1537
* is the same (same leaf, so same path). We skip as long as the
1538
* cached result for the leaf is valid and only if there's only
1539
* one file extent item pointing to the data extent, because in
1540
* the case of multiple file extent items, they may be located
1541
* in different leaves and therefore we have multiple paths.
1542
*/
1543
if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1544
sc->self_ref_count == 1) {
1545
bool cached;
1546
bool is_shared;
1547
1548
cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1549
sc->ctx->curr_leaf_bytenr,
1550
0, &is_shared);
1551
if (cached) {
1552
if (is_shared)
1553
ret = BACKREF_FOUND_SHARED;
1554
else
1555
ret = BACKREF_FOUND_NOT_SHARED;
1556
goto out;
1557
}
1558
}
1559
}
1560
1561
btrfs_release_path(path);
1562
1563
ret = add_missing_keys(ctx->fs_info, &preftrees, !path->skip_locking);
1564
if (ret)
1565
goto out;
1566
1567
WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1568
1569
ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1570
if (ret)
1571
goto out;
1572
1573
WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1574
1575
/*
1576
* This walks the tree of merged and resolved refs. Tree blocks are
1577
* read in as needed. Unique entries are added to the ulist, and
1578
* the list of found roots is updated.
1579
*
1580
* We release the entire tree in one go before returning.
1581
*/
1582
node = rb_first_cached(&preftrees.direct.root);
1583
while (node) {
1584
ref = rb_entry(node, struct prelim_ref, rbnode);
1585
node = rb_next(&ref->rbnode);
1586
/*
1587
* ref->count < 0 can happen here if there are delayed
1588
* refs with a node->action of BTRFS_DROP_DELAYED_REF.
1589
* prelim_ref_insert() relies on this when merging
1590
* identical refs to keep the overall count correct.
1591
* prelim_ref_insert() will merge only those refs
1592
* which compare identically. Any refs having
1593
* e.g. different offsets would not be merged,
1594
* and would retain their original ref->count < 0.
1595
*/
1596
if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1597
/* no parent == root of tree */
1598
ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1599
if (ret < 0)
1600
goto out;
1601
}
1602
if (ref->count && ref->parent) {
1603
if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1604
ref->level == 0) {
1605
struct btrfs_tree_parent_check check = { 0 };
1606
struct extent_buffer *eb;
1607
1608
check.level = ref->level;
1609
1610
eb = read_tree_block(ctx->fs_info, ref->parent,
1611
&check);
1612
if (IS_ERR(eb)) {
1613
ret = PTR_ERR(eb);
1614
goto out;
1615
}
1616
if (unlikely(!extent_buffer_uptodate(eb))) {
1617
free_extent_buffer(eb);
1618
ret = -EIO;
1619
goto out;
1620
}
1621
1622
if (!path->skip_locking)
1623
btrfs_tree_read_lock(eb);
1624
ret = find_extent_in_eb(ctx, eb, &eie);
1625
if (!path->skip_locking)
1626
btrfs_tree_read_unlock(eb);
1627
free_extent_buffer(eb);
1628
if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1629
ret < 0)
1630
goto out;
1631
ref->inode_list = eie;
1632
/*
1633
* We transferred the list ownership to the ref,
1634
* so set to NULL to avoid a double free in case
1635
* an error happens after this.
1636
*/
1637
eie = NULL;
1638
}
1639
ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1640
ref->inode_list,
1641
(void **)&eie, GFP_NOFS);
1642
if (ret < 0)
1643
goto out;
1644
if (!ret && !ctx->skip_inode_ref_list) {
1645
/*
1646
* We've recorded that parent, so we must extend
1647
* its inode list here.
1648
*
1649
* However if there was corruption we may not
1650
* have found an eie, return an error in this
1651
* case.
1652
*/
1653
ASSERT(eie);
1654
if (unlikely(!eie)) {
1655
ret = -EUCLEAN;
1656
goto out;
1657
}
1658
while (eie->next)
1659
eie = eie->next;
1660
eie->next = ref->inode_list;
1661
}
1662
eie = NULL;
1663
/*
1664
* We have transferred the inode list ownership from
1665
* this ref to the ref we added to the 'refs' ulist.
1666
* So set this ref's inode list to NULL to avoid
1667
* use-after-free when our caller uses it or double
1668
* frees in case an error happens before we return.
1669
*/
1670
ref->inode_list = NULL;
1671
}
1672
cond_resched();
1673
}
1674
1675
out:
1676
btrfs_free_path(path);
1677
1678
prelim_release(&preftrees.direct);
1679
prelim_release(&preftrees.indirect);
1680
prelim_release(&preftrees.indirect_missing_keys);
1681
1682
if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1683
free_inode_elem_list(eie);
1684
return ret;
1685
}
1686
1687
/*
1688
* Finds all leaves with a reference to the specified combination of
1689
* @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1690
* added to the ulist at @ctx->refs, and that ulist is allocated by this
1691
* function. The caller should free the ulist with free_leaf_list() if
1692
* @ctx->ignore_extent_item_pos is false, otherwise a simple ulist_free() is
1693
* enough.
1694
*
1695
* Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1696
*/
1697
int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1698
{
1699
int ret;
1700
1701
ASSERT(ctx->refs == NULL);
1702
1703
ctx->refs = ulist_alloc(GFP_NOFS);
1704
if (!ctx->refs)
1705
return -ENOMEM;
1706
1707
ret = find_parent_nodes(ctx, NULL);
1708
if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1709
(ret < 0 && ret != -ENOENT)) {
1710
free_leaf_list(ctx->refs);
1711
ctx->refs = NULL;
1712
return ret;
1713
}
1714
1715
return 0;
1716
}
1717
1718
/*
1719
* Walk all backrefs for a given extent to find all roots that reference this
1720
* extent. Walking a backref means finding all extents that reference this
1721
* extent and in turn walk the backrefs of those, too. Naturally this is a
1722
* recursive process, but here it is implemented in an iterative fashion: We
1723
* find all referencing extents for the extent in question and put them on a
1724
* list. In turn, we find all referencing extents for those, further appending
1725
* to the list. The way we iterate the list allows adding more elements after
1726
* the current while iterating. The process stops when we reach the end of the
1727
* list.
1728
*
1729
* Found roots are added to @ctx->roots, which is allocated by this function if
1730
* it points to NULL, in which case the caller is responsible for freeing it
1731
* after it's not needed anymore.
1732
* This function requires @ctx->refs to be NULL, as it uses it for allocating a
1733
* ulist to do temporary work, and frees it before returning.
1734
*
1735
* Returns 0 on success, < 0 on error.
1736
*/
1737
static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1738
{
1739
const u64 orig_bytenr = ctx->bytenr;
1740
const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1741
bool roots_ulist_allocated = false;
1742
struct ulist_iterator uiter;
1743
int ret = 0;
1744
1745
ASSERT(ctx->refs == NULL);
1746
1747
ctx->refs = ulist_alloc(GFP_NOFS);
1748
if (!ctx->refs)
1749
return -ENOMEM;
1750
1751
if (!ctx->roots) {
1752
ctx->roots = ulist_alloc(GFP_NOFS);
1753
if (!ctx->roots) {
1754
ulist_free(ctx->refs);
1755
ctx->refs = NULL;
1756
return -ENOMEM;
1757
}
1758
roots_ulist_allocated = true;
1759
}
1760
1761
ctx->skip_inode_ref_list = true;
1762
1763
ULIST_ITER_INIT(&uiter);
1764
while (1) {
1765
struct ulist_node *node;
1766
1767
ret = find_parent_nodes(ctx, NULL);
1768
if (ret < 0 && ret != -ENOENT) {
1769
if (roots_ulist_allocated) {
1770
ulist_free(ctx->roots);
1771
ctx->roots = NULL;
1772
}
1773
break;
1774
}
1775
ret = 0;
1776
node = ulist_next(ctx->refs, &uiter);
1777
if (!node)
1778
break;
1779
ctx->bytenr = node->val;
1780
cond_resched();
1781
}
1782
1783
ulist_free(ctx->refs);
1784
ctx->refs = NULL;
1785
ctx->bytenr = orig_bytenr;
1786
ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1787
1788
return ret;
1789
}
1790
1791
int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1792
bool skip_commit_root_sem)
1793
{
1794
int ret;
1795
1796
if (!ctx->trans && !skip_commit_root_sem)
1797
down_read(&ctx->fs_info->commit_root_sem);
1798
ret = btrfs_find_all_roots_safe(ctx);
1799
if (!ctx->trans && !skip_commit_root_sem)
1800
up_read(&ctx->fs_info->commit_root_sem);
1801
return ret;
1802
}
1803
1804
struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1805
{
1806
struct btrfs_backref_share_check_ctx *ctx;
1807
1808
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1809
if (!ctx)
1810
return NULL;
1811
1812
ulist_init(&ctx->refs);
1813
1814
return ctx;
1815
}
1816
1817
void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1818
{
1819
if (!ctx)
1820
return;
1821
1822
ulist_release(&ctx->refs);
1823
kfree(ctx);
1824
}
1825
1826
/*
1827
* Check if a data extent is shared or not.
1828
*
1829
* @inode: The inode whose extent we are checking.
1830
* @bytenr: Logical bytenr of the extent we are checking.
1831
* @extent_gen: Generation of the extent (file extent item) or 0 if it is
1832
* not known.
1833
* @ctx: A backref sharedness check context.
1834
*
1835
* btrfs_is_data_extent_shared uses the backref walking code but will short
1836
* circuit as soon as it finds a root or inode that doesn't match the
1837
* one passed in. This provides a significant performance benefit for
1838
* callers (such as fiemap) which want to know whether the extent is
1839
* shared but do not need a ref count.
1840
*
1841
* This attempts to attach to the running transaction in order to account for
1842
* delayed refs, but continues on even when no running transaction exists.
1843
*
1844
* Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1845
*/
1846
int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1847
u64 extent_gen,
1848
struct btrfs_backref_share_check_ctx *ctx)
1849
{
1850
struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1851
struct btrfs_root *root = inode->root;
1852
struct btrfs_fs_info *fs_info = root->fs_info;
1853
struct btrfs_trans_handle *trans;
1854
struct ulist_iterator uiter;
1855
struct ulist_node *node;
1856
struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1857
int ret = 0;
1858
struct share_check shared = {
1859
.ctx = ctx,
1860
.root = root,
1861
.inum = btrfs_ino(inode),
1862
.data_bytenr = bytenr,
1863
.data_extent_gen = extent_gen,
1864
.share_count = 0,
1865
.self_ref_count = 0,
1866
.have_delayed_delete_refs = false,
1867
};
1868
int level;
1869
bool leaf_cached;
1870
bool leaf_is_shared;
1871
1872
for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1873
if (ctx->prev_extents_cache[i].bytenr == bytenr)
1874
return ctx->prev_extents_cache[i].is_shared;
1875
}
1876
1877
ulist_init(&ctx->refs);
1878
1879
trans = btrfs_join_transaction_nostart(root);
1880
if (IS_ERR(trans)) {
1881
if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1882
ret = PTR_ERR(trans);
1883
goto out;
1884
}
1885
trans = NULL;
1886
down_read(&fs_info->commit_root_sem);
1887
} else {
1888
btrfs_get_tree_mod_seq(fs_info, &elem);
1889
walk_ctx.time_seq = elem.seq;
1890
}
1891
1892
ctx->use_path_cache = true;
1893
1894
/*
1895
* We may have previously determined that the current leaf is shared.
1896
* If it is, then we have a data extent that is shared due to a shared
1897
* subtree (caused by snapshotting) and we don't need to check for data
1898
* backrefs. If the leaf is not shared, then we must do backref walking
1899
* to determine if the data extent is shared through reflinks.
1900
*/
1901
leaf_cached = lookup_backref_shared_cache(ctx, root,
1902
ctx->curr_leaf_bytenr, 0,
1903
&leaf_is_shared);
1904
if (leaf_cached && leaf_is_shared) {
1905
ret = 1;
1906
goto out_trans;
1907
}
1908
1909
walk_ctx.skip_inode_ref_list = true;
1910
walk_ctx.trans = trans;
1911
walk_ctx.fs_info = fs_info;
1912
walk_ctx.refs = &ctx->refs;
1913
1914
/* -1 means we are in the bytenr of the data extent. */
1915
level = -1;
1916
ULIST_ITER_INIT(&uiter);
1917
while (1) {
1918
const unsigned long prev_ref_count = ctx->refs.nnodes;
1919
1920
walk_ctx.bytenr = bytenr;
1921
ret = find_parent_nodes(&walk_ctx, &shared);
1922
if (ret == BACKREF_FOUND_SHARED ||
1923
ret == BACKREF_FOUND_NOT_SHARED) {
1924
/* If shared must return 1, otherwise return 0. */
1925
ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1926
if (level >= 0)
1927
store_backref_shared_cache(ctx, root, bytenr,
1928
level, ret == 1);
1929
break;
1930
}
1931
if (ret < 0 && ret != -ENOENT)
1932
break;
1933
ret = 0;
1934
1935
/*
1936
* More than one extent buffer (bytenr) may have been added to
1937
* the ctx->refs ulist, in which case we have to check multiple
1938
* tree paths in case the first one is not shared, so we can not
1939
* use the path cache which is made for a single path. Multiple
1940
* extent buffers at the current level happen when:
1941
*
1942
* 1) level -1, the data extent: If our data extent was not
1943
* directly shared (without multiple reference items), then
1944
* it might have a single reference item with a count > 1 for
1945
* the same offset, which means there are 2 (or more) file
1946
* extent items that point to the data extent - this happens
1947
* when a file extent item needs to be split and then one
1948
* item gets moved to another leaf due to a b+tree leaf split
1949
* when inserting some item. In this case the file extent
1950
* items may be located in different leaves and therefore
1951
* some of the leaves may be referenced through shared
1952
* subtrees while others are not. Since our extent buffer
1953
* cache only works for a single path (by far the most common
1954
* case and simpler to deal with), we can not use it if we
1955
* have multiple leaves (which implies multiple paths).
1956
*
1957
* 2) level >= 0, a tree node/leaf: We can have a mix of direct
1958
* and indirect references on a b+tree node/leaf, so we have
1959
* to check multiple paths, and the extent buffer (the
1960
* current bytenr) may be shared or not. One example is
1961
* during relocation as we may get a shared tree block ref
1962
* (direct ref) and a non-shared tree block ref (indirect
1963
* ref) for the same node/leaf.
1964
*/
1965
if ((ctx->refs.nnodes - prev_ref_count) > 1)
1966
ctx->use_path_cache = false;
1967
1968
if (level >= 0)
1969
store_backref_shared_cache(ctx, root, bytenr,
1970
level, false);
1971
node = ulist_next(&ctx->refs, &uiter);
1972
if (!node)
1973
break;
1974
bytenr = node->val;
1975
if (ctx->use_path_cache) {
1976
bool is_shared;
1977
bool cached;
1978
1979
level++;
1980
cached = lookup_backref_shared_cache(ctx, root, bytenr,
1981
level, &is_shared);
1982
if (cached) {
1983
ret = (is_shared ? 1 : 0);
1984
break;
1985
}
1986
}
1987
shared.share_count = 0;
1988
shared.have_delayed_delete_refs = false;
1989
cond_resched();
1990
}
1991
1992
/*
1993
* If the path cache is disabled, then it means at some tree level we
1994
* got multiple parents due to a mix of direct and indirect backrefs or
1995
* multiple leaves with file extent items pointing to the same data
1996
* extent. We have to invalidate the cache and cache only the sharedness
1997
* result for the levels where we got only one node/reference.
1998
*/
1999
if (!ctx->use_path_cache) {
2000
int i = 0;
2001
2002
level--;
2003
if (ret >= 0 && level >= 0) {
2004
bytenr = ctx->path_cache_entries[level].bytenr;
2005
ctx->use_path_cache = true;
2006
store_backref_shared_cache(ctx, root, bytenr, level, ret);
2007
i = level + 1;
2008
}
2009
2010
for ( ; i < BTRFS_MAX_LEVEL; i++)
2011
ctx->path_cache_entries[i].bytenr = 0;
2012
}
2013
2014
/*
2015
* Cache the sharedness result for the data extent if we know our inode
2016
* has more than 1 file extent item that refers to the data extent.
2017
*/
2018
if (ret >= 0 && shared.self_ref_count > 1) {
2019
int slot = ctx->prev_extents_cache_slot;
2020
2021
ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2022
ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2023
2024
slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2025
ctx->prev_extents_cache_slot = slot;
2026
}
2027
2028
out_trans:
2029
if (trans) {
2030
btrfs_put_tree_mod_seq(fs_info, &elem);
2031
btrfs_end_transaction(trans);
2032
} else {
2033
up_read(&fs_info->commit_root_sem);
2034
}
2035
out:
2036
ulist_release(&ctx->refs);
2037
ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2038
2039
return ret;
2040
}
2041
2042
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2043
u64 start_off, struct btrfs_path *path,
2044
struct btrfs_inode_extref **ret_extref,
2045
u64 *found_off)
2046
{
2047
int ret, slot;
2048
struct btrfs_key key;
2049
struct btrfs_key found_key;
2050
struct btrfs_inode_extref *extref;
2051
const struct extent_buffer *leaf;
2052
unsigned long ptr;
2053
2054
key.objectid = inode_objectid;
2055
key.type = BTRFS_INODE_EXTREF_KEY;
2056
key.offset = start_off;
2057
2058
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2059
if (ret < 0)
2060
return ret;
2061
2062
while (1) {
2063
leaf = path->nodes[0];
2064
slot = path->slots[0];
2065
if (slot >= btrfs_header_nritems(leaf)) {
2066
/*
2067
* If the item at offset is not found,
2068
* btrfs_search_slot will point us to the slot
2069
* where it should be inserted. In our case
2070
* that will be the slot directly before the
2071
* next INODE_REF_KEY_V2 item. In the case
2072
* that we're pointing to the last slot in a
2073
* leaf, we must move one leaf over.
2074
*/
2075
ret = btrfs_next_leaf(root, path);
2076
if (ret) {
2077
if (ret >= 1)
2078
ret = -ENOENT;
2079
break;
2080
}
2081
continue;
2082
}
2083
2084
btrfs_item_key_to_cpu(leaf, &found_key, slot);
2085
2086
/*
2087
* Check that we're still looking at an extended ref key for
2088
* this particular objectid. If we have different
2089
* objectid or type then there are no more to be found
2090
* in the tree and we can exit.
2091
*/
2092
ret = -ENOENT;
2093
if (found_key.objectid != inode_objectid)
2094
break;
2095
if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2096
break;
2097
2098
ret = 0;
2099
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2100
extref = (struct btrfs_inode_extref *)ptr;
2101
*ret_extref = extref;
2102
if (found_off)
2103
*found_off = found_key.offset;
2104
break;
2105
}
2106
2107
return ret;
2108
}
2109
2110
/*
2111
* this iterates to turn a name (from iref/extref) into a full filesystem path.
2112
* Elements of the path are separated by '/' and the path is guaranteed to be
2113
* 0-terminated. the path is only given within the current file system.
2114
* Therefore, it never starts with a '/'. the caller is responsible to provide
2115
* "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2116
* the start point of the resulting string is returned. this pointer is within
2117
* dest, normally.
2118
* in case the path buffer would overflow, the pointer is decremented further
2119
* as if output was written to the buffer, though no more output is actually
2120
* generated. that way, the caller can determine how much space would be
2121
* required for the path to fit into the buffer. in that case, the returned
2122
* value will be smaller than dest. callers must check this!
2123
*/
2124
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2125
u32 name_len, unsigned long name_off,
2126
struct extent_buffer *eb_in, u64 parent,
2127
char *dest, u32 size)
2128
{
2129
int slot;
2130
u64 next_inum;
2131
int ret;
2132
s64 bytes_left = ((s64)size) - 1;
2133
struct extent_buffer *eb = eb_in;
2134
struct btrfs_key found_key;
2135
struct btrfs_inode_ref *iref;
2136
2137
if (bytes_left >= 0)
2138
dest[bytes_left] = '\0';
2139
2140
while (1) {
2141
bytes_left -= name_len;
2142
if (bytes_left >= 0)
2143
read_extent_buffer(eb, dest + bytes_left,
2144
name_off, name_len);
2145
if (eb != eb_in) {
2146
if (!path->skip_locking)
2147
btrfs_tree_read_unlock(eb);
2148
free_extent_buffer(eb);
2149
}
2150
ret = btrfs_find_item(fs_root, path, parent, 0,
2151
BTRFS_INODE_REF_KEY, &found_key);
2152
if (ret > 0)
2153
ret = -ENOENT;
2154
if (ret)
2155
break;
2156
2157
next_inum = found_key.offset;
2158
2159
/* regular exit ahead */
2160
if (parent == next_inum)
2161
break;
2162
2163
slot = path->slots[0];
2164
eb = path->nodes[0];
2165
/* make sure we can use eb after releasing the path */
2166
if (eb != eb_in) {
2167
path->nodes[0] = NULL;
2168
path->locks[0] = 0;
2169
}
2170
btrfs_release_path(path);
2171
iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2172
2173
name_len = btrfs_inode_ref_name_len(eb, iref);
2174
name_off = (unsigned long)(iref + 1);
2175
2176
parent = next_inum;
2177
--bytes_left;
2178
if (bytes_left >= 0)
2179
dest[bytes_left] = '/';
2180
}
2181
2182
btrfs_release_path(path);
2183
2184
if (ret)
2185
return ERR_PTR(ret);
2186
2187
return dest + bytes_left;
2188
}
2189
2190
/*
2191
* this makes the path point to (logical EXTENT_ITEM *)
2192
* returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2193
* tree blocks and <0 on error.
2194
*/
2195
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2196
struct btrfs_path *path, struct btrfs_key *found_key,
2197
u64 *flags_ret)
2198
{
2199
struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2200
int ret;
2201
u64 flags;
2202
u64 size = 0;
2203
const struct extent_buffer *eb;
2204
struct btrfs_extent_item *ei;
2205
struct btrfs_key key;
2206
2207
key.objectid = logical;
2208
if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2209
key.type = BTRFS_METADATA_ITEM_KEY;
2210
else
2211
key.type = BTRFS_EXTENT_ITEM_KEY;
2212
key.offset = (u64)-1;
2213
2214
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2215
if (ret < 0)
2216
return ret;
2217
if (unlikely(ret == 0)) {
2218
/*
2219
* Key with offset -1 found, there would have to exist an extent
2220
* item with such offset, but this is out of the valid range.
2221
*/
2222
return -EUCLEAN;
2223
}
2224
2225
ret = btrfs_previous_extent_item(extent_root, path, 0);
2226
if (ret) {
2227
if (ret > 0)
2228
ret = -ENOENT;
2229
return ret;
2230
}
2231
btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2232
if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2233
size = fs_info->nodesize;
2234
else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2235
size = found_key->offset;
2236
2237
if (found_key->objectid > logical ||
2238
found_key->objectid + size <= logical) {
2239
btrfs_debug(fs_info,
2240
"logical %llu is not within any extent", logical);
2241
return -ENOENT;
2242
}
2243
2244
eb = path->nodes[0];
2245
2246
ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2247
flags = btrfs_extent_flags(eb, ei);
2248
2249
btrfs_debug(fs_info,
2250
"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2251
logical, logical - found_key->objectid, found_key->objectid,
2252
found_key->offset, flags, btrfs_item_size(eb, path->slots[0]));
2253
2254
WARN_ON(!flags_ret);
2255
if (flags_ret) {
2256
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2257
*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2258
else if (flags & BTRFS_EXTENT_FLAG_DATA)
2259
*flags_ret = BTRFS_EXTENT_FLAG_DATA;
2260
else
2261
BUG();
2262
return 0;
2263
}
2264
2265
return -EIO;
2266
}
2267
2268
/*
2269
* helper function to iterate extent inline refs. ptr must point to a 0 value
2270
* for the first call and may be modified. it is used to track state.
2271
* if more refs exist, 0 is returned and the next call to
2272
* get_extent_inline_ref must pass the modified ptr parameter to get the
2273
* next ref. after the last ref was processed, 1 is returned.
2274
* returns <0 on error
2275
*/
2276
static int get_extent_inline_ref(unsigned long *ptr,
2277
const struct extent_buffer *eb,
2278
const struct btrfs_key *key,
2279
const struct btrfs_extent_item *ei,
2280
u32 item_size,
2281
struct btrfs_extent_inline_ref **out_eiref,
2282
int *out_type)
2283
{
2284
unsigned long end;
2285
u64 flags;
2286
struct btrfs_tree_block_info *info;
2287
2288
if (!*ptr) {
2289
/* first call */
2290
flags = btrfs_extent_flags(eb, ei);
2291
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2292
if (key->type == BTRFS_METADATA_ITEM_KEY) {
2293
/* a skinny metadata extent */
2294
*out_eiref =
2295
(struct btrfs_extent_inline_ref *)(ei + 1);
2296
} else {
2297
WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2298
info = (struct btrfs_tree_block_info *)(ei + 1);
2299
*out_eiref =
2300
(struct btrfs_extent_inline_ref *)(info + 1);
2301
}
2302
} else {
2303
*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2304
}
2305
*ptr = (unsigned long)*out_eiref;
2306
if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2307
return -ENOENT;
2308
}
2309
2310
end = (unsigned long)ei + item_size;
2311
*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2312
*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2313
BTRFS_REF_TYPE_ANY);
2314
if (unlikely(*out_type == BTRFS_REF_TYPE_INVALID))
2315
return -EUCLEAN;
2316
2317
*ptr += btrfs_extent_inline_ref_size(*out_type);
2318
WARN_ON(*ptr > end);
2319
if (*ptr == end)
2320
return 1; /* last */
2321
2322
return 0;
2323
}
2324
2325
/*
2326
* reads the tree block backref for an extent. tree level and root are returned
2327
* through out_level and out_root. ptr must point to a 0 value for the first
2328
* call and may be modified (see get_extent_inline_ref comment).
2329
* returns 0 if data was provided, 1 if there was no more data to provide or
2330
* <0 on error.
2331
*/
2332
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2333
struct btrfs_key *key, struct btrfs_extent_item *ei,
2334
u32 item_size, u64 *out_root, u8 *out_level)
2335
{
2336
int ret;
2337
int type;
2338
struct btrfs_extent_inline_ref *eiref;
2339
2340
if (*ptr == (unsigned long)-1)
2341
return 1;
2342
2343
while (1) {
2344
ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2345
&eiref, &type);
2346
if (ret < 0)
2347
return ret;
2348
2349
if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2350
type == BTRFS_SHARED_BLOCK_REF_KEY)
2351
break;
2352
2353
if (ret == 1)
2354
return 1;
2355
}
2356
2357
/* we can treat both ref types equally here */
2358
*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2359
2360
if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2361
struct btrfs_tree_block_info *info;
2362
2363
info = (struct btrfs_tree_block_info *)(ei + 1);
2364
*out_level = btrfs_tree_block_level(eb, info);
2365
} else {
2366
ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2367
*out_level = (u8)key->offset;
2368
}
2369
2370
if (ret == 1)
2371
*ptr = (unsigned long)-1;
2372
2373
return 0;
2374
}
2375
2376
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2377
struct extent_inode_elem *inode_list,
2378
u64 root, u64 extent_item_objectid,
2379
iterate_extent_inodes_t *iterate, void *ctx)
2380
{
2381
struct extent_inode_elem *eie;
2382
int ret = 0;
2383
2384
for (eie = inode_list; eie; eie = eie->next) {
2385
btrfs_debug(fs_info,
2386
"ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2387
extent_item_objectid, eie->inum,
2388
eie->offset, root);
2389
ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2390
if (ret) {
2391
btrfs_debug(fs_info,
2392
"stopping iteration for %llu due to ret=%d",
2393
extent_item_objectid, ret);
2394
break;
2395
}
2396
}
2397
2398
return ret;
2399
}
2400
2401
/*
2402
* calls iterate() for every inode that references the extent identified by
2403
* the given parameters.
2404
* when the iterator function returns a non-zero value, iteration stops.
2405
*/
2406
int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2407
bool search_commit_root,
2408
iterate_extent_inodes_t *iterate, void *user_ctx)
2409
{
2410
int ret;
2411
struct ulist *refs;
2412
struct ulist_node *ref_node;
2413
struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2414
struct ulist_iterator ref_uiter;
2415
2416
btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2417
ctx->bytenr);
2418
2419
ASSERT(ctx->trans == NULL);
2420
ASSERT(ctx->roots == NULL);
2421
2422
if (!search_commit_root) {
2423
struct btrfs_trans_handle *trans;
2424
2425
trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2426
if (IS_ERR(trans)) {
2427
if (PTR_ERR(trans) != -ENOENT &&
2428
PTR_ERR(trans) != -EROFS)
2429
return PTR_ERR(trans);
2430
trans = NULL;
2431
}
2432
ctx->trans = trans;
2433
}
2434
2435
if (ctx->trans) {
2436
btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2437
ctx->time_seq = seq_elem.seq;
2438
} else {
2439
down_read(&ctx->fs_info->commit_root_sem);
2440
}
2441
2442
ret = btrfs_find_all_leafs(ctx);
2443
if (ret)
2444
goto out;
2445
refs = ctx->refs;
2446
ctx->refs = NULL;
2447
2448
ULIST_ITER_INIT(&ref_uiter);
2449
while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2450
const u64 leaf_bytenr = ref_node->val;
2451
struct ulist_node *root_node;
2452
struct ulist_iterator root_uiter;
2453
struct extent_inode_elem *inode_list;
2454
2455
inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2456
2457
if (ctx->cache_lookup) {
2458
const u64 *root_ids;
2459
int root_count;
2460
bool cached;
2461
2462
cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2463
&root_ids, &root_count);
2464
if (cached) {
2465
for (int i = 0; i < root_count; i++) {
2466
ret = iterate_leaf_refs(ctx->fs_info,
2467
inode_list,
2468
root_ids[i],
2469
leaf_bytenr,
2470
iterate,
2471
user_ctx);
2472
if (ret)
2473
break;
2474
}
2475
continue;
2476
}
2477
}
2478
2479
if (!ctx->roots) {
2480
ctx->roots = ulist_alloc(GFP_NOFS);
2481
if (!ctx->roots) {
2482
ret = -ENOMEM;
2483
break;
2484
}
2485
}
2486
2487
ctx->bytenr = leaf_bytenr;
2488
ret = btrfs_find_all_roots_safe(ctx);
2489
if (ret)
2490
break;
2491
2492
if (ctx->cache_store)
2493
ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2494
2495
ULIST_ITER_INIT(&root_uiter);
2496
while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2497
btrfs_debug(ctx->fs_info,
2498
"root %llu references leaf %llu, data list %#llx",
2499
root_node->val, ref_node->val,
2500
ref_node->aux);
2501
ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2502
root_node->val, ctx->bytenr,
2503
iterate, user_ctx);
2504
}
2505
ulist_reinit(ctx->roots);
2506
}
2507
2508
free_leaf_list(refs);
2509
out:
2510
if (ctx->trans) {
2511
btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2512
btrfs_end_transaction(ctx->trans);
2513
ctx->trans = NULL;
2514
} else {
2515
up_read(&ctx->fs_info->commit_root_sem);
2516
}
2517
2518
ulist_free(ctx->roots);
2519
ctx->roots = NULL;
2520
2521
if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2522
ret = 0;
2523
2524
return ret;
2525
}
2526
2527
static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2528
{
2529
struct btrfs_data_container *inodes = ctx;
2530
const size_t c = 3 * sizeof(u64);
2531
2532
if (inodes->bytes_left >= c) {
2533
inodes->bytes_left -= c;
2534
inodes->val[inodes->elem_cnt] = inum;
2535
inodes->val[inodes->elem_cnt + 1] = offset;
2536
inodes->val[inodes->elem_cnt + 2] = root;
2537
inodes->elem_cnt += 3;
2538
} else {
2539
inodes->bytes_missing += c - inodes->bytes_left;
2540
inodes->bytes_left = 0;
2541
inodes->elem_missed += 3;
2542
}
2543
2544
return 0;
2545
}
2546
2547
int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2548
void *ctx, bool ignore_offset)
2549
{
2550
struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2551
int ret;
2552
u64 flags = 0;
2553
struct btrfs_key found_key;
2554
struct btrfs_path *path;
2555
2556
path = btrfs_alloc_path();
2557
if (!path)
2558
return -ENOMEM;
2559
2560
ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2561
btrfs_free_path(path);
2562
if (ret < 0)
2563
return ret;
2564
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2565
return -EINVAL;
2566
2567
walk_ctx.bytenr = found_key.objectid;
2568
if (ignore_offset)
2569
walk_ctx.ignore_extent_item_pos = true;
2570
else
2571
walk_ctx.extent_item_pos = logical - found_key.objectid;
2572
walk_ctx.fs_info = fs_info;
2573
2574
return iterate_extent_inodes(&walk_ctx, false, build_ino_list, ctx);
2575
}
2576
2577
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2578
struct extent_buffer *eb, struct inode_fs_paths *ipath);
2579
2580
static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2581
{
2582
int ret = 0;
2583
int slot;
2584
u32 cur;
2585
u32 len;
2586
u32 name_len;
2587
u64 parent = 0;
2588
int found = 0;
2589
struct btrfs_root *fs_root = ipath->fs_root;
2590
struct btrfs_path *path = ipath->btrfs_path;
2591
struct extent_buffer *eb;
2592
struct btrfs_inode_ref *iref;
2593
struct btrfs_key found_key;
2594
2595
while (!ret) {
2596
ret = btrfs_find_item(fs_root, path, inum,
2597
parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2598
&found_key);
2599
2600
if (ret < 0)
2601
break;
2602
if (ret) {
2603
ret = found ? 0 : -ENOENT;
2604
break;
2605
}
2606
++found;
2607
2608
parent = found_key.offset;
2609
slot = path->slots[0];
2610
eb = btrfs_clone_extent_buffer(path->nodes[0]);
2611
if (!eb) {
2612
ret = -ENOMEM;
2613
break;
2614
}
2615
btrfs_release_path(path);
2616
2617
iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2618
2619
for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2620
name_len = btrfs_inode_ref_name_len(eb, iref);
2621
/* path must be released before calling iterate()! */
2622
btrfs_debug(fs_root->fs_info,
2623
"following ref at offset %u for inode %llu in tree %llu",
2624
cur, found_key.objectid,
2625
btrfs_root_id(fs_root));
2626
ret = inode_to_path(parent, name_len,
2627
(unsigned long)(iref + 1), eb, ipath);
2628
if (ret)
2629
break;
2630
len = sizeof(*iref) + name_len;
2631
iref = (struct btrfs_inode_ref *)((char *)iref + len);
2632
}
2633
free_extent_buffer(eb);
2634
}
2635
2636
btrfs_release_path(path);
2637
2638
return ret;
2639
}
2640
2641
static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2642
{
2643
int ret;
2644
int slot;
2645
u64 offset = 0;
2646
u64 parent;
2647
int found = 0;
2648
struct btrfs_root *fs_root = ipath->fs_root;
2649
struct btrfs_path *path = ipath->btrfs_path;
2650
struct extent_buffer *eb;
2651
struct btrfs_inode_extref *extref;
2652
u32 item_size;
2653
u32 cur_offset;
2654
unsigned long ptr;
2655
2656
while (1) {
2657
ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2658
&offset);
2659
if (ret < 0)
2660
break;
2661
if (ret) {
2662
ret = found ? 0 : -ENOENT;
2663
break;
2664
}
2665
++found;
2666
2667
slot = path->slots[0];
2668
eb = btrfs_clone_extent_buffer(path->nodes[0]);
2669
if (!eb) {
2670
ret = -ENOMEM;
2671
break;
2672
}
2673
btrfs_release_path(path);
2674
2675
item_size = btrfs_item_size(eb, slot);
2676
ptr = btrfs_item_ptr_offset(eb, slot);
2677
cur_offset = 0;
2678
2679
while (cur_offset < item_size) {
2680
u32 name_len;
2681
2682
extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2683
parent = btrfs_inode_extref_parent(eb, extref);
2684
name_len = btrfs_inode_extref_name_len(eb, extref);
2685
ret = inode_to_path(parent, name_len,
2686
(unsigned long)&extref->name, eb, ipath);
2687
if (ret)
2688
break;
2689
2690
cur_offset += btrfs_inode_extref_name_len(eb, extref);
2691
cur_offset += sizeof(*extref);
2692
}
2693
free_extent_buffer(eb);
2694
2695
offset++;
2696
}
2697
2698
btrfs_release_path(path);
2699
2700
return ret;
2701
}
2702
2703
/*
2704
* returns 0 if the path could be dumped (probably truncated)
2705
* returns <0 in case of an error
2706
*/
2707
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2708
struct extent_buffer *eb, struct inode_fs_paths *ipath)
2709
{
2710
char *fspath;
2711
char *fspath_min;
2712
int i = ipath->fspath->elem_cnt;
2713
const int s_ptr = sizeof(char *);
2714
u32 bytes_left;
2715
2716
bytes_left = ipath->fspath->bytes_left > s_ptr ?
2717
ipath->fspath->bytes_left - s_ptr : 0;
2718
2719
fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2720
fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2721
name_off, eb, inum, fspath_min, bytes_left);
2722
if (IS_ERR(fspath))
2723
return PTR_ERR(fspath);
2724
2725
if (fspath > fspath_min) {
2726
ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2727
++ipath->fspath->elem_cnt;
2728
ipath->fspath->bytes_left = fspath - fspath_min;
2729
} else {
2730
++ipath->fspath->elem_missed;
2731
ipath->fspath->bytes_missing += fspath_min - fspath;
2732
ipath->fspath->bytes_left = 0;
2733
}
2734
2735
return 0;
2736
}
2737
2738
/*
2739
* this dumps all file system paths to the inode into the ipath struct, provided
2740
* is has been created large enough. each path is zero-terminated and accessed
2741
* from ipath->fspath->val[i].
2742
* when it returns, there are ipath->fspath->elem_cnt number of paths available
2743
* in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2744
* number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2745
* it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2746
* have been needed to return all paths.
2747
*/
2748
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2749
{
2750
int ret;
2751
int found_refs = 0;
2752
2753
ret = iterate_inode_refs(inum, ipath);
2754
if (!ret)
2755
++found_refs;
2756
else if (ret != -ENOENT)
2757
return ret;
2758
2759
ret = iterate_inode_extrefs(inum, ipath);
2760
if (ret == -ENOENT && found_refs)
2761
return 0;
2762
2763
return ret;
2764
}
2765
2766
struct btrfs_data_container *init_data_container(u32 total_bytes)
2767
{
2768
struct btrfs_data_container *data;
2769
size_t alloc_bytes;
2770
2771
alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2772
data = kvzalloc(alloc_bytes, GFP_KERNEL);
2773
if (!data)
2774
return ERR_PTR(-ENOMEM);
2775
2776
if (total_bytes >= sizeof(*data))
2777
data->bytes_left = total_bytes - sizeof(*data);
2778
else
2779
data->bytes_missing = sizeof(*data) - total_bytes;
2780
2781
return data;
2782
}
2783
2784
/*
2785
* allocates space to return multiple file system paths for an inode.
2786
* total_bytes to allocate are passed, note that space usable for actual path
2787
* information will be total_bytes - sizeof(struct inode_fs_paths).
2788
* the returned pointer must be freed with __free_inode_fs_paths() in the end.
2789
*/
2790
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2791
struct btrfs_path *path)
2792
{
2793
struct inode_fs_paths *ifp;
2794
struct btrfs_data_container *fspath;
2795
2796
fspath = init_data_container(total_bytes);
2797
if (IS_ERR(fspath))
2798
return ERR_CAST(fspath);
2799
2800
ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2801
if (!ifp) {
2802
kvfree(fspath);
2803
return ERR_PTR(-ENOMEM);
2804
}
2805
2806
ifp->btrfs_path = path;
2807
ifp->fspath = fspath;
2808
ifp->fs_root = fs_root;
2809
2810
return ifp;
2811
}
2812
2813
struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2814
{
2815
struct btrfs_backref_iter *ret;
2816
2817
ret = kzalloc(sizeof(*ret), GFP_NOFS);
2818
if (!ret)
2819
return NULL;
2820
2821
ret->path = btrfs_alloc_path();
2822
if (!ret->path) {
2823
kfree(ret);
2824
return NULL;
2825
}
2826
2827
/* Current backref iterator only supports iteration in commit root */
2828
ret->path->search_commit_root = true;
2829
ret->path->skip_locking = true;
2830
ret->fs_info = fs_info;
2831
2832
return ret;
2833
}
2834
2835
static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
2836
{
2837
iter->bytenr = 0;
2838
iter->item_ptr = 0;
2839
iter->cur_ptr = 0;
2840
iter->end_ptr = 0;
2841
btrfs_release_path(iter->path);
2842
memset(&iter->cur_key, 0, sizeof(iter->cur_key));
2843
}
2844
2845
int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2846
{
2847
struct btrfs_fs_info *fs_info = iter->fs_info;
2848
struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2849
struct btrfs_path *path = iter->path;
2850
struct btrfs_extent_item *ei;
2851
struct btrfs_key key;
2852
int ret;
2853
2854
key.objectid = bytenr;
2855
key.type = BTRFS_METADATA_ITEM_KEY;
2856
key.offset = (u64)-1;
2857
iter->bytenr = bytenr;
2858
2859
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2860
if (ret < 0)
2861
return ret;
2862
if (unlikely(ret == 0)) {
2863
/*
2864
* Key with offset -1 found, there would have to exist an extent
2865
* item with such offset, but this is out of the valid range.
2866
*/
2867
ret = -EUCLEAN;
2868
goto release;
2869
}
2870
if (unlikely(path->slots[0] == 0)) {
2871
DEBUG_WARN();
2872
ret = -EUCLEAN;
2873
goto release;
2874
}
2875
path->slots[0]--;
2876
2877
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2878
if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2879
key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2880
ret = -ENOENT;
2881
goto release;
2882
}
2883
memcpy(&iter->cur_key, &key, sizeof(key));
2884
iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2885
path->slots[0]);
2886
iter->end_ptr = (u32)(iter->item_ptr +
2887
btrfs_item_size(path->nodes[0], path->slots[0]));
2888
ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2889
struct btrfs_extent_item);
2890
2891
/*
2892
* Only support iteration on tree backref yet.
2893
*
2894
* This is an extra precaution for non skinny-metadata, where
2895
* EXTENT_ITEM is also used for tree blocks, that we can only use
2896
* extent flags to determine if it's a tree block.
2897
*/
2898
if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2899
ret = -ENOTSUPP;
2900
goto release;
2901
}
2902
iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2903
2904
/* If there is no inline backref, go search for keyed backref */
2905
if (iter->cur_ptr >= iter->end_ptr) {
2906
ret = btrfs_next_item(extent_root, path);
2907
2908
/* No inline nor keyed ref */
2909
if (ret > 0) {
2910
ret = -ENOENT;
2911
goto release;
2912
}
2913
if (ret < 0)
2914
goto release;
2915
2916
btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2917
path->slots[0]);
2918
if (iter->cur_key.objectid != bytenr ||
2919
(iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2920
iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2921
ret = -ENOENT;
2922
goto release;
2923
}
2924
iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2925
path->slots[0]);
2926
iter->item_ptr = iter->cur_ptr;
2927
iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2928
path->nodes[0], path->slots[0]));
2929
}
2930
2931
return 0;
2932
release:
2933
btrfs_backref_iter_release(iter);
2934
return ret;
2935
}
2936
2937
static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter)
2938
{
2939
if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
2940
iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
2941
return true;
2942
return false;
2943
}
2944
2945
/*
2946
* Go to the next backref item of current bytenr, can be either inlined or
2947
* keyed.
2948
*
2949
* Caller needs to check whether it's inline ref or not by iter->cur_key.
2950
*
2951
* Return 0 if we get next backref without problem.
2952
* Return >0 if there is no extra backref for this bytenr.
2953
* Return <0 if there is something wrong happened.
2954
*/
2955
int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2956
{
2957
struct extent_buffer *eb = iter->path->nodes[0];
2958
struct btrfs_root *extent_root;
2959
struct btrfs_path *path = iter->path;
2960
struct btrfs_extent_inline_ref *iref;
2961
int ret;
2962
u32 size;
2963
2964
if (btrfs_backref_iter_is_inline_ref(iter)) {
2965
/* We're still inside the inline refs */
2966
ASSERT(iter->cur_ptr < iter->end_ptr);
2967
2968
if (btrfs_backref_has_tree_block_info(iter)) {
2969
/* First tree block info */
2970
size = sizeof(struct btrfs_tree_block_info);
2971
} else {
2972
/* Use inline ref type to determine the size */
2973
int type;
2974
2975
iref = (struct btrfs_extent_inline_ref *)
2976
((unsigned long)iter->cur_ptr);
2977
type = btrfs_extent_inline_ref_type(eb, iref);
2978
2979
size = btrfs_extent_inline_ref_size(type);
2980
}
2981
iter->cur_ptr += size;
2982
if (iter->cur_ptr < iter->end_ptr)
2983
return 0;
2984
2985
/* All inline items iterated, fall through */
2986
}
2987
2988
/* We're at keyed items, there is no inline item, go to the next one */
2989
extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2990
ret = btrfs_next_item(extent_root, iter->path);
2991
if (ret)
2992
return ret;
2993
2994
btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2995
if (iter->cur_key.objectid != iter->bytenr ||
2996
(iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2997
iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2998
return 1;
2999
iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
3000
path->slots[0]);
3001
iter->cur_ptr = iter->item_ptr;
3002
iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
3003
path->slots[0]);
3004
return 0;
3005
}
3006
3007
void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3008
struct btrfs_backref_cache *cache, bool is_reloc)
3009
{
3010
int i;
3011
3012
cache->rb_root = RB_ROOT;
3013
for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3014
INIT_LIST_HEAD(&cache->pending[i]);
3015
INIT_LIST_HEAD(&cache->pending_edge);
3016
INIT_LIST_HEAD(&cache->useless_node);
3017
cache->fs_info = fs_info;
3018
cache->is_reloc = is_reloc;
3019
}
3020
3021
struct btrfs_backref_node *btrfs_backref_alloc_node(
3022
struct btrfs_backref_cache *cache, u64 bytenr, int level)
3023
{
3024
struct btrfs_backref_node *node;
3025
3026
ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3027
node = kzalloc(sizeof(*node), GFP_NOFS);
3028
if (!node)
3029
return node;
3030
3031
INIT_LIST_HEAD(&node->list);
3032
INIT_LIST_HEAD(&node->upper);
3033
INIT_LIST_HEAD(&node->lower);
3034
RB_CLEAR_NODE(&node->rb_node);
3035
cache->nr_nodes++;
3036
node->level = level;
3037
node->bytenr = bytenr;
3038
3039
return node;
3040
}
3041
3042
void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
3043
struct btrfs_backref_node *node)
3044
{
3045
if (node) {
3046
ASSERT(list_empty(&node->list));
3047
ASSERT(list_empty(&node->lower));
3048
ASSERT(node->eb == NULL);
3049
cache->nr_nodes--;
3050
btrfs_put_root(node->root);
3051
kfree(node);
3052
}
3053
}
3054
3055
struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3056
struct btrfs_backref_cache *cache)
3057
{
3058
struct btrfs_backref_edge *edge;
3059
3060
edge = kzalloc(sizeof(*edge), GFP_NOFS);
3061
if (edge)
3062
cache->nr_edges++;
3063
return edge;
3064
}
3065
3066
void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
3067
struct btrfs_backref_edge *edge)
3068
{
3069
if (edge) {
3070
cache->nr_edges--;
3071
kfree(edge);
3072
}
3073
}
3074
3075
void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node)
3076
{
3077
if (node->locked) {
3078
btrfs_tree_unlock(node->eb);
3079
node->locked = 0;
3080
}
3081
}
3082
3083
void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node)
3084
{
3085
if (node->eb) {
3086
btrfs_backref_unlock_node_buffer(node);
3087
free_extent_buffer(node->eb);
3088
node->eb = NULL;
3089
}
3090
}
3091
3092
/*
3093
* Drop the backref node from cache without cleaning up its children
3094
* edges.
3095
*
3096
* This can only be called on node without parent edges.
3097
* The children edges are still kept as is.
3098
*/
3099
void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
3100
struct btrfs_backref_node *node)
3101
{
3102
ASSERT(list_empty(&node->upper));
3103
3104
btrfs_backref_drop_node_buffer(node);
3105
list_del_init(&node->list);
3106
list_del_init(&node->lower);
3107
if (!RB_EMPTY_NODE(&node->rb_node))
3108
rb_erase(&node->rb_node, &tree->rb_root);
3109
btrfs_backref_free_node(tree, node);
3110
}
3111
3112
/*
3113
* Drop the backref node from cache, also cleaning up all its
3114
* upper edges and any uncached nodes in the path.
3115
*
3116
* This cleanup happens bottom up, thus the node should either
3117
* be the lowest node in the cache or a detached node.
3118
*/
3119
void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3120
struct btrfs_backref_node *node)
3121
{
3122
struct btrfs_backref_edge *edge;
3123
3124
if (!node)
3125
return;
3126
3127
while (!list_empty(&node->upper)) {
3128
edge = list_first_entry(&node->upper, struct btrfs_backref_edge,
3129
list[LOWER]);
3130
list_del(&edge->list[LOWER]);
3131
list_del(&edge->list[UPPER]);
3132
btrfs_backref_free_edge(cache, edge);
3133
}
3134
3135
btrfs_backref_drop_node(cache, node);
3136
}
3137
3138
/*
3139
* Release all nodes/edges from current cache
3140
*/
3141
void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3142
{
3143
struct btrfs_backref_node *node;
3144
3145
while ((node = rb_entry_safe(rb_first(&cache->rb_root),
3146
struct btrfs_backref_node, rb_node)))
3147
btrfs_backref_cleanup_node(cache, node);
3148
3149
ASSERT(list_empty(&cache->pending_edge));
3150
ASSERT(list_empty(&cache->useless_node));
3151
ASSERT(!cache->nr_nodes);
3152
ASSERT(!cache->nr_edges);
3153
}
3154
3155
static void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
3156
struct btrfs_backref_node *lower,
3157
struct btrfs_backref_node *upper)
3158
{
3159
ASSERT(upper && lower && upper->level == lower->level + 1);
3160
edge->node[LOWER] = lower;
3161
edge->node[UPPER] = upper;
3162
list_add_tail(&edge->list[LOWER], &lower->upper);
3163
}
3164
/*
3165
* Handle direct tree backref
3166
*
3167
* Direct tree backref means, the backref item shows its parent bytenr
3168
* directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3169
*
3170
* @ref_key: The converted backref key.
3171
* For keyed backref, it's the item key.
3172
* For inlined backref, objectid is the bytenr,
3173
* type is btrfs_inline_ref_type, offset is
3174
* btrfs_inline_ref_offset.
3175
*/
3176
static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3177
struct btrfs_key *ref_key,
3178
struct btrfs_backref_node *cur)
3179
{
3180
struct btrfs_backref_edge *edge;
3181
struct btrfs_backref_node *upper;
3182
struct rb_node *rb_node;
3183
3184
ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3185
3186
/* Only reloc root uses backref pointing to itself */
3187
if (ref_key->objectid == ref_key->offset) {
3188
struct btrfs_root *root;
3189
3190
cur->is_reloc_root = 1;
3191
/* Only reloc backref cache cares about a specific root */
3192
if (cache->is_reloc) {
3193
root = find_reloc_root(cache->fs_info, cur->bytenr);
3194
if (!root)
3195
return -ENOENT;
3196
cur->root = root;
3197
} else {
3198
/*
3199
* For generic purpose backref cache, reloc root node
3200
* is useless.
3201
*/
3202
list_add(&cur->list, &cache->useless_node);
3203
}
3204
return 0;
3205
}
3206
3207
edge = btrfs_backref_alloc_edge(cache);
3208
if (!edge)
3209
return -ENOMEM;
3210
3211
rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3212
if (!rb_node) {
3213
/* Parent node not yet cached */
3214
upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3215
cur->level + 1);
3216
if (!upper) {
3217
btrfs_backref_free_edge(cache, edge);
3218
return -ENOMEM;
3219
}
3220
3221
/*
3222
* Backrefs for the upper level block isn't cached, add the
3223
* block to pending list
3224
*/
3225
list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3226
} else {
3227
/* Parent node already cached */
3228
upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3229
ASSERT(upper->checked);
3230
INIT_LIST_HEAD(&edge->list[UPPER]);
3231
}
3232
btrfs_backref_link_edge(edge, cur, upper);
3233
return 0;
3234
}
3235
3236
/*
3237
* Handle indirect tree backref
3238
*
3239
* Indirect tree backref means, we only know which tree the node belongs to.
3240
* We still need to do a tree search to find out the parents. This is for
3241
* TREE_BLOCK_REF backref (keyed or inlined).
3242
*
3243
* @trans: Transaction handle.
3244
* @ref_key: The same as @ref_key in handle_direct_tree_backref()
3245
* @tree_key: The first key of this tree block.
3246
* @path: A clean (released) path, to avoid allocating path every time
3247
* the function get called.
3248
*/
3249
static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3250
struct btrfs_backref_cache *cache,
3251
struct btrfs_path *path,
3252
struct btrfs_key *ref_key,
3253
struct btrfs_key *tree_key,
3254
struct btrfs_backref_node *cur)
3255
{
3256
struct btrfs_fs_info *fs_info = cache->fs_info;
3257
struct btrfs_backref_node *upper;
3258
struct btrfs_backref_node *lower;
3259
struct btrfs_backref_edge *edge;
3260
struct extent_buffer *eb;
3261
struct btrfs_root *root;
3262
struct rb_node *rb_node;
3263
int level;
3264
bool need_check = true;
3265
int ret;
3266
3267
root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3268
if (IS_ERR(root))
3269
return PTR_ERR(root);
3270
3271
/* We shouldn't be using backref cache for non-shareable roots. */
3272
if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
3273
btrfs_put_root(root);
3274
return -EUCLEAN;
3275
}
3276
3277
if (btrfs_root_level(&root->root_item) == cur->level) {
3278
/* Tree root */
3279
ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3280
/*
3281
* For reloc backref cache, we may ignore reloc root. But for
3282
* general purpose backref cache, we can't rely on
3283
* btrfs_should_ignore_reloc_root() as it may conflict with
3284
* current running relocation and lead to missing root.
3285
*
3286
* For general purpose backref cache, reloc root detection is
3287
* completely relying on direct backref (key->offset is parent
3288
* bytenr), thus only do such check for reloc cache.
3289
*/
3290
if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3291
btrfs_put_root(root);
3292
list_add(&cur->list, &cache->useless_node);
3293
} else {
3294
cur->root = root;
3295
}
3296
return 0;
3297
}
3298
3299
level = cur->level + 1;
3300
3301
/* Search the tree to find parent blocks referring to the block */
3302
path->search_commit_root = true;
3303
path->skip_locking = true;
3304
path->lowest_level = level;
3305
ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3306
path->lowest_level = 0;
3307
if (ret < 0) {
3308
btrfs_put_root(root);
3309
return ret;
3310
}
3311
if (ret > 0 && path->slots[level] > 0)
3312
path->slots[level]--;
3313
3314
eb = path->nodes[level];
3315
if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3316
btrfs_err(fs_info,
3317
"couldn't find block (%llu) (level %d) in tree (%llu) with key " BTRFS_KEY_FMT,
3318
cur->bytenr, level - 1, btrfs_root_id(root),
3319
BTRFS_KEY_FMT_VALUE(tree_key));
3320
btrfs_put_root(root);
3321
ret = -ENOENT;
3322
goto out;
3323
}
3324
lower = cur;
3325
3326
/* Add all nodes and edges in the path */
3327
for (; level < BTRFS_MAX_LEVEL; level++) {
3328
if (!path->nodes[level]) {
3329
ASSERT(btrfs_root_bytenr(&root->root_item) ==
3330
lower->bytenr);
3331
/* Same as previous should_ignore_reloc_root() call */
3332
if (btrfs_should_ignore_reloc_root(root) &&
3333
cache->is_reloc) {
3334
btrfs_put_root(root);
3335
list_add(&lower->list, &cache->useless_node);
3336
} else {
3337
lower->root = root;
3338
}
3339
break;
3340
}
3341
3342
edge = btrfs_backref_alloc_edge(cache);
3343
if (!edge) {
3344
btrfs_put_root(root);
3345
ret = -ENOMEM;
3346
goto out;
3347
}
3348
3349
eb = path->nodes[level];
3350
rb_node = rb_simple_search(&cache->rb_root, eb->start);
3351
if (!rb_node) {
3352
upper = btrfs_backref_alloc_node(cache, eb->start,
3353
lower->level + 1);
3354
if (!upper) {
3355
btrfs_put_root(root);
3356
btrfs_backref_free_edge(cache, edge);
3357
ret = -ENOMEM;
3358
goto out;
3359
}
3360
upper->owner = btrfs_header_owner(eb);
3361
3362
/* We shouldn't be using backref cache for non shareable roots. */
3363
if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
3364
btrfs_put_root(root);
3365
btrfs_backref_free_edge(cache, edge);
3366
btrfs_backref_free_node(cache, upper);
3367
ret = -EUCLEAN;
3368
goto out;
3369
}
3370
3371
/*
3372
* If we know the block isn't shared we can avoid
3373
* checking its backrefs.
3374
*/
3375
if (btrfs_block_can_be_shared(trans, root, eb))
3376
upper->checked = 0;
3377
else
3378
upper->checked = 1;
3379
3380
/*
3381
* Add the block to pending list if we need to check its
3382
* backrefs, we only do this once while walking up a
3383
* tree as we will catch anything else later on.
3384
*/
3385
if (!upper->checked && need_check) {
3386
need_check = false;
3387
list_add_tail(&edge->list[UPPER],
3388
&cache->pending_edge);
3389
} else {
3390
if (upper->checked)
3391
need_check = true;
3392
INIT_LIST_HEAD(&edge->list[UPPER]);
3393
}
3394
} else {
3395
upper = rb_entry(rb_node, struct btrfs_backref_node,
3396
rb_node);
3397
ASSERT(upper->checked);
3398
INIT_LIST_HEAD(&edge->list[UPPER]);
3399
if (!upper->owner)
3400
upper->owner = btrfs_header_owner(eb);
3401
}
3402
btrfs_backref_link_edge(edge, lower, upper);
3403
3404
if (rb_node) {
3405
btrfs_put_root(root);
3406
break;
3407
}
3408
lower = upper;
3409
upper = NULL;
3410
}
3411
out:
3412
btrfs_release_path(path);
3413
return ret;
3414
}
3415
3416
/*
3417
* Add backref node @cur into @cache.
3418
*
3419
* NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3420
* links aren't yet bi-directional. Needs to finish such links.
3421
* Use btrfs_backref_finish_upper_links() to finish such linkage.
3422
*
3423
* @trans: Transaction handle.
3424
* @path: Released path for indirect tree backref lookup
3425
* @iter: Released backref iter for extent tree search
3426
* @node_key: The first key of the tree block
3427
*/
3428
int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3429
struct btrfs_backref_cache *cache,
3430
struct btrfs_path *path,
3431
struct btrfs_backref_iter *iter,
3432
struct btrfs_key *node_key,
3433
struct btrfs_backref_node *cur)
3434
{
3435
struct btrfs_backref_edge *edge;
3436
struct btrfs_backref_node *exist;
3437
int ret;
3438
3439
ret = btrfs_backref_iter_start(iter, cur->bytenr);
3440
if (ret < 0)
3441
return ret;
3442
/*
3443
* We skip the first btrfs_tree_block_info, as we don't use the key
3444
* stored in it, but fetch it from the tree block
3445
*/
3446
if (btrfs_backref_has_tree_block_info(iter)) {
3447
ret = btrfs_backref_iter_next(iter);
3448
if (ret < 0)
3449
goto out;
3450
/* No extra backref? This means the tree block is corrupted */
3451
if (unlikely(ret > 0)) {
3452
ret = -EUCLEAN;
3453
goto out;
3454
}
3455
}
3456
WARN_ON(cur->checked);
3457
if (!list_empty(&cur->upper)) {
3458
/*
3459
* The backref was added previously when processing backref of
3460
* type BTRFS_TREE_BLOCK_REF_KEY
3461
*/
3462
ASSERT(list_is_singular(&cur->upper));
3463
edge = list_first_entry(&cur->upper, struct btrfs_backref_edge,
3464
list[LOWER]);
3465
ASSERT(list_empty(&edge->list[UPPER]));
3466
exist = edge->node[UPPER];
3467
/*
3468
* Add the upper level block to pending list if we need check
3469
* its backrefs
3470
*/
3471
if (!exist->checked)
3472
list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3473
} else {
3474
exist = NULL;
3475
}
3476
3477
for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3478
struct extent_buffer *eb;
3479
struct btrfs_key key;
3480
int type;
3481
3482
cond_resched();
3483
eb = iter->path->nodes[0];
3484
3485
key.objectid = iter->bytenr;
3486
if (btrfs_backref_iter_is_inline_ref(iter)) {
3487
struct btrfs_extent_inline_ref *iref;
3488
3489
/* Update key for inline backref */
3490
iref = (struct btrfs_extent_inline_ref *)
3491
((unsigned long)iter->cur_ptr);
3492
type = btrfs_get_extent_inline_ref_type(eb, iref,
3493
BTRFS_REF_TYPE_BLOCK);
3494
if (unlikely(type == BTRFS_REF_TYPE_INVALID)) {
3495
ret = -EUCLEAN;
3496
goto out;
3497
}
3498
key.type = type;
3499
key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3500
} else {
3501
key.type = iter->cur_key.type;
3502
key.offset = iter->cur_key.offset;
3503
}
3504
3505
/*
3506
* Parent node found and matches current inline ref, no need to
3507
* rebuild this node for this inline ref
3508
*/
3509
if (exist &&
3510
((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3511
exist->owner == key.offset) ||
3512
(key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3513
exist->bytenr == key.offset))) {
3514
exist = NULL;
3515
continue;
3516
}
3517
3518
/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3519
if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3520
ret = handle_direct_tree_backref(cache, &key, cur);
3521
if (ret < 0)
3522
goto out;
3523
} else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3524
/*
3525
* key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3526
* offset means the root objectid. We need to search
3527
* the tree to get its parent bytenr.
3528
*/
3529
ret = handle_indirect_tree_backref(trans, cache, path,
3530
&key, node_key, cur);
3531
if (ret < 0)
3532
goto out;
3533
}
3534
/*
3535
* Unrecognized tree backref items (if it can pass tree-checker)
3536
* would be ignored.
3537
*/
3538
}
3539
ret = 0;
3540
cur->checked = 1;
3541
WARN_ON(exist);
3542
out:
3543
btrfs_backref_iter_release(iter);
3544
return ret;
3545
}
3546
3547
/*
3548
* Finish the upwards linkage created by btrfs_backref_add_tree_node()
3549
*/
3550
int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3551
struct btrfs_backref_node *start)
3552
{
3553
struct list_head *useless_node = &cache->useless_node;
3554
struct btrfs_backref_edge *edge;
3555
struct rb_node *rb_node;
3556
LIST_HEAD(pending_edge);
3557
3558
ASSERT(start->checked);
3559
3560
rb_node = rb_simple_insert(&cache->rb_root, &start->simple_node);
3561
if (rb_node)
3562
btrfs_backref_panic(cache->fs_info, start->bytenr, -EEXIST);
3563
3564
/*
3565
* Use breadth first search to iterate all related edges.
3566
*
3567
* The starting points are all the edges of this node
3568
*/
3569
list_for_each_entry(edge, &start->upper, list[LOWER])
3570
list_add_tail(&edge->list[UPPER], &pending_edge);
3571
3572
while (!list_empty(&pending_edge)) {
3573
struct btrfs_backref_node *upper;
3574
struct btrfs_backref_node *lower;
3575
3576
edge = list_first_entry(&pending_edge,
3577
struct btrfs_backref_edge, list[UPPER]);
3578
list_del_init(&edge->list[UPPER]);
3579
upper = edge->node[UPPER];
3580
lower = edge->node[LOWER];
3581
3582
/* Parent is detached, no need to keep any edges */
3583
if (upper->detached) {
3584
list_del(&edge->list[LOWER]);
3585
btrfs_backref_free_edge(cache, edge);
3586
3587
/* Lower node is orphan, queue for cleanup */
3588
if (list_empty(&lower->upper))
3589
list_add(&lower->list, useless_node);
3590
continue;
3591
}
3592
3593
/*
3594
* All new nodes added in current build_backref_tree() haven't
3595
* been linked to the cache rb tree.
3596
* So if we have upper->rb_node populated, this means a cache
3597
* hit. We only need to link the edge, as @upper and all its
3598
* parents have already been linked.
3599
*/
3600
if (!RB_EMPTY_NODE(&upper->rb_node)) {
3601
list_add_tail(&edge->list[UPPER], &upper->lower);
3602
continue;
3603
}
3604
3605
/* Sanity check, we shouldn't have any unchecked nodes */
3606
if (unlikely(!upper->checked)) {
3607
DEBUG_WARN("we should not have any unchecked nodes");
3608
return -EUCLEAN;
3609
}
3610
3611
rb_node = rb_simple_insert(&cache->rb_root, &upper->simple_node);
3612
if (unlikely(rb_node)) {
3613
btrfs_backref_panic(cache->fs_info, upper->bytenr, -EEXIST);
3614
return -EUCLEAN;
3615
}
3616
3617
list_add_tail(&edge->list[UPPER], &upper->lower);
3618
3619
/*
3620
* Also queue all the parent edges of this uncached node
3621
* to finish the upper linkage
3622
*/
3623
list_for_each_entry(edge, &upper->upper, list[LOWER])
3624
list_add_tail(&edge->list[UPPER], &pending_edge);
3625
}
3626
return 0;
3627
}
3628
3629
void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3630
struct btrfs_backref_node *node)
3631
{
3632
struct btrfs_backref_node *lower;
3633
struct btrfs_backref_node *upper;
3634
struct btrfs_backref_edge *edge;
3635
3636
while (!list_empty(&cache->useless_node)) {
3637
lower = list_first_entry(&cache->useless_node,
3638
struct btrfs_backref_node, list);
3639
list_del_init(&lower->list);
3640
}
3641
while (!list_empty(&cache->pending_edge)) {
3642
edge = list_first_entry(&cache->pending_edge,
3643
struct btrfs_backref_edge, list[UPPER]);
3644
list_del(&edge->list[UPPER]);
3645
list_del(&edge->list[LOWER]);
3646
lower = edge->node[LOWER];
3647
upper = edge->node[UPPER];
3648
btrfs_backref_free_edge(cache, edge);
3649
3650
/*
3651
* Lower is no longer linked to any upper backref nodes and
3652
* isn't in the cache, we can free it ourselves.
3653
*/
3654
if (list_empty(&lower->upper) &&
3655
RB_EMPTY_NODE(&lower->rb_node))
3656
list_add(&lower->list, &cache->useless_node);
3657
3658
if (!RB_EMPTY_NODE(&upper->rb_node))
3659
continue;
3660
3661
/* Add this guy's upper edges to the list to process */
3662
list_for_each_entry(edge, &upper->upper, list[LOWER])
3663
list_add_tail(&edge->list[UPPER],
3664
&cache->pending_edge);
3665
if (list_empty(&upper->upper))
3666
list_add(&upper->list, &cache->useless_node);
3667
}
3668
3669
while (!list_empty(&cache->useless_node)) {
3670
lower = list_first_entry(&cache->useless_node,
3671
struct btrfs_backref_node, list);
3672
list_del_init(&lower->list);
3673
if (lower == node)
3674
node = NULL;
3675
btrfs_backref_drop_node(cache, lower);
3676
}
3677
3678
btrfs_backref_cleanup_node(cache, node);
3679
ASSERT(list_empty(&cache->useless_node) &&
3680
list_empty(&cache->pending_edge));
3681
}
3682
3683