Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/backref.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2011 STRATO. All rights reserved.
4
*/
5
6
#include <linux/mm.h>
7
#include <linux/rbtree.h>
8
#include <trace/events/btrfs.h>
9
#include "ctree.h"
10
#include "disk-io.h"
11
#include "backref.h"
12
#include "ulist.h"
13
#include "transaction.h"
14
#include "delayed-ref.h"
15
#include "locking.h"
16
#include "misc.h"
17
#include "tree-mod-log.h"
18
#include "fs.h"
19
#include "accessors.h"
20
#include "extent-tree.h"
21
#include "relocation.h"
22
#include "tree-checker.h"
23
24
/* Just arbitrary numbers so we can be sure one of these happened. */
25
#define BACKREF_FOUND_SHARED 6
26
#define BACKREF_FOUND_NOT_SHARED 7
27
28
struct extent_inode_elem {
29
u64 inum;
30
u64 offset;
31
u64 num_bytes;
32
struct extent_inode_elem *next;
33
};
34
35
static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36
const struct btrfs_key *key,
37
const struct extent_buffer *eb,
38
const struct btrfs_file_extent_item *fi,
39
struct extent_inode_elem **eie)
40
{
41
const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42
u64 offset = key->offset;
43
struct extent_inode_elem *e;
44
const u64 *root_ids;
45
int root_count;
46
bool cached;
47
48
if (!ctx->ignore_extent_item_pos &&
49
!btrfs_file_extent_compression(eb, fi) &&
50
!btrfs_file_extent_encryption(eb, fi) &&
51
!btrfs_file_extent_other_encoding(eb, fi)) {
52
u64 data_offset;
53
54
data_offset = btrfs_file_extent_offset(eb, fi);
55
56
if (ctx->extent_item_pos < data_offset ||
57
ctx->extent_item_pos >= data_offset + data_len)
58
return 1;
59
offset += ctx->extent_item_pos - data_offset;
60
}
61
62
if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63
goto add_inode_elem;
64
65
cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66
&root_count);
67
if (!cached)
68
goto add_inode_elem;
69
70
for (int i = 0; i < root_count; i++) {
71
int ret;
72
73
ret = ctx->indirect_ref_iterator(key->objectid, offset,
74
data_len, root_ids[i],
75
ctx->user_ctx);
76
if (ret)
77
return ret;
78
}
79
80
add_inode_elem:
81
e = kmalloc(sizeof(*e), GFP_NOFS);
82
if (!e)
83
return -ENOMEM;
84
85
e->next = *eie;
86
e->inum = key->objectid;
87
e->offset = offset;
88
e->num_bytes = data_len;
89
*eie = e;
90
91
return 0;
92
}
93
94
static void free_inode_elem_list(struct extent_inode_elem *eie)
95
{
96
struct extent_inode_elem *eie_next;
97
98
for (; eie; eie = eie_next) {
99
eie_next = eie->next;
100
kfree(eie);
101
}
102
}
103
104
static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105
const struct extent_buffer *eb,
106
struct extent_inode_elem **eie)
107
{
108
u64 disk_byte;
109
struct btrfs_key key;
110
struct btrfs_file_extent_item *fi;
111
int slot;
112
int nritems;
113
int extent_type;
114
int ret;
115
116
/*
117
* from the shared data ref, we only have the leaf but we need
118
* the key. thus, we must look into all items and see that we
119
* find one (some) with a reference to our extent item.
120
*/
121
nritems = btrfs_header_nritems(eb);
122
for (slot = 0; slot < nritems; ++slot) {
123
btrfs_item_key_to_cpu(eb, &key, slot);
124
if (key.type != BTRFS_EXTENT_DATA_KEY)
125
continue;
126
fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127
extent_type = btrfs_file_extent_type(eb, fi);
128
if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129
continue;
130
/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131
disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
132
if (disk_byte != ctx->bytenr)
133
continue;
134
135
ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136
if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137
return ret;
138
}
139
140
return 0;
141
}
142
143
struct preftree {
144
struct rb_root_cached root;
145
unsigned int count;
146
};
147
148
#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
149
150
struct preftrees {
151
struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152
struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153
struct preftree indirect_missing_keys;
154
};
155
156
/*
157
* Checks for a shared extent during backref search.
158
*
159
* The share_count tracks prelim_refs (direct and indirect) having a
160
* ref->count >0:
161
* - incremented when a ref->count transitions to >0
162
* - decremented when a ref->count transitions to <1
163
*/
164
struct share_check {
165
struct btrfs_backref_share_check_ctx *ctx;
166
struct btrfs_root *root;
167
u64 inum;
168
u64 data_bytenr;
169
u64 data_extent_gen;
170
/*
171
* Counts number of inodes that refer to an extent (different inodes in
172
* the same root or different roots) that we could find. The sharedness
173
* check typically stops once this counter gets greater than 1, so it
174
* may not reflect the total number of inodes.
175
*/
176
int share_count;
177
/*
178
* The number of times we found our inode refers to the data extent we
179
* are determining the sharedness. In other words, how many file extent
180
* items we could find for our inode that point to our target data
181
* extent. The value we get here after finishing the extent sharedness
182
* check may be smaller than reality, but if it ends up being greater
183
* than 1, then we know for sure the inode has multiple file extent
184
* items that point to our inode, and we can safely assume it's useful
185
* to cache the sharedness check result.
186
*/
187
int self_ref_count;
188
bool have_delayed_delete_refs;
189
};
190
191
static inline int extent_is_shared(struct share_check *sc)
192
{
193
return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194
}
195
196
static struct kmem_cache *btrfs_prelim_ref_cache;
197
198
int __init btrfs_prelim_ref_init(void)
199
{
200
btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
201
sizeof(struct prelim_ref), 0, 0, NULL);
202
if (!btrfs_prelim_ref_cache)
203
return -ENOMEM;
204
return 0;
205
}
206
207
void __cold btrfs_prelim_ref_exit(void)
208
{
209
kmem_cache_destroy(btrfs_prelim_ref_cache);
210
}
211
212
static void free_pref(struct prelim_ref *ref)
213
{
214
kmem_cache_free(btrfs_prelim_ref_cache, ref);
215
}
216
217
/*
218
* Return 0 when both refs are for the same block (and can be merged).
219
* A -1 return indicates ref1 is a 'lower' block than ref2, while 1
220
* indicates a 'higher' block.
221
*/
222
static int prelim_ref_compare(const struct prelim_ref *ref1,
223
const struct prelim_ref *ref2)
224
{
225
if (ref1->level < ref2->level)
226
return -1;
227
if (ref1->level > ref2->level)
228
return 1;
229
if (ref1->root_id < ref2->root_id)
230
return -1;
231
if (ref1->root_id > ref2->root_id)
232
return 1;
233
if (ref1->key_for_search.type < ref2->key_for_search.type)
234
return -1;
235
if (ref1->key_for_search.type > ref2->key_for_search.type)
236
return 1;
237
if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
238
return -1;
239
if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
240
return 1;
241
if (ref1->key_for_search.offset < ref2->key_for_search.offset)
242
return -1;
243
if (ref1->key_for_search.offset > ref2->key_for_search.offset)
244
return 1;
245
if (ref1->parent < ref2->parent)
246
return -1;
247
if (ref1->parent > ref2->parent)
248
return 1;
249
250
return 0;
251
}
252
253
static int prelim_ref_rb_add_cmp(const struct rb_node *new,
254
const struct rb_node *exist)
255
{
256
const struct prelim_ref *ref_new =
257
rb_entry(new, struct prelim_ref, rbnode);
258
const struct prelim_ref *ref_exist =
259
rb_entry(exist, struct prelim_ref, rbnode);
260
261
/*
262
* prelim_ref_compare() expects the first parameter as the existing one,
263
* different from the rb_find_add_cached() order.
264
*/
265
return prelim_ref_compare(ref_exist, ref_new);
266
}
267
268
static void update_share_count(struct share_check *sc, int oldcount,
269
int newcount, const struct prelim_ref *newref)
270
{
271
if ((!sc) || (oldcount == 0 && newcount < 1))
272
return;
273
274
if (oldcount > 0 && newcount < 1)
275
sc->share_count--;
276
else if (oldcount < 1 && newcount > 0)
277
sc->share_count++;
278
279
if (newref->root_id == btrfs_root_id(sc->root) &&
280
newref->wanted_disk_byte == sc->data_bytenr &&
281
newref->key_for_search.objectid == sc->inum)
282
sc->self_ref_count += newref->count;
283
}
284
285
/*
286
* Add @newref to the @root rbtree, merging identical refs.
287
*
288
* Callers should assume that newref has been freed after calling.
289
*/
290
static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
291
struct preftree *preftree,
292
struct prelim_ref *newref,
293
struct share_check *sc)
294
{
295
struct rb_root_cached *root;
296
struct rb_node *exist;
297
298
root = &preftree->root;
299
exist = rb_find_add_cached(&newref->rbnode, root, prelim_ref_rb_add_cmp);
300
if (exist) {
301
struct prelim_ref *ref = rb_entry(exist, struct prelim_ref, rbnode);
302
/* Identical refs, merge them and free @newref */
303
struct extent_inode_elem *eie = ref->inode_list;
304
305
while (eie && eie->next)
306
eie = eie->next;
307
308
if (!eie)
309
ref->inode_list = newref->inode_list;
310
else
311
eie->next = newref->inode_list;
312
trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
313
preftree->count);
314
/*
315
* A delayed ref can have newref->count < 0.
316
* The ref->count is updated to follow any
317
* BTRFS_[ADD|DROP]_DELAYED_REF actions.
318
*/
319
update_share_count(sc, ref->count,
320
ref->count + newref->count, newref);
321
ref->count += newref->count;
322
free_pref(newref);
323
return;
324
}
325
326
update_share_count(sc, 0, newref->count, newref);
327
preftree->count++;
328
trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
329
}
330
331
/*
332
* Release the entire tree. We don't care about internal consistency so
333
* just free everything and then reset the tree root.
334
*/
335
static void prelim_release(struct preftree *preftree)
336
{
337
struct prelim_ref *ref, *next_ref;
338
339
rbtree_postorder_for_each_entry_safe(ref, next_ref,
340
&preftree->root.rb_root, rbnode) {
341
free_inode_elem_list(ref->inode_list);
342
free_pref(ref);
343
}
344
345
preftree->root = RB_ROOT_CACHED;
346
preftree->count = 0;
347
}
348
349
/*
350
* the rules for all callers of this function are:
351
* - obtaining the parent is the goal
352
* - if you add a key, you must know that it is a correct key
353
* - if you cannot add the parent or a correct key, then we will look into the
354
* block later to set a correct key
355
*
356
* delayed refs
357
* ============
358
* backref type | shared | indirect | shared | indirect
359
* information | tree | tree | data | data
360
* --------------------+--------+----------+--------+----------
361
* parent logical | y | - | - | -
362
* key to resolve | - | y | y | y
363
* tree block logical | - | - | - | -
364
* root for resolving | y | y | y | y
365
*
366
* - column 1: we've the parent -> done
367
* - column 2, 3, 4: we use the key to find the parent
368
*
369
* on disk refs (inline or keyed)
370
* ==============================
371
* backref type | shared | indirect | shared | indirect
372
* information | tree | tree | data | data
373
* --------------------+--------+----------+--------+----------
374
* parent logical | y | - | y | -
375
* key to resolve | - | - | - | y
376
* tree block logical | y | y | y | y
377
* root for resolving | - | y | y | y
378
*
379
* - column 1, 3: we've the parent -> done
380
* - column 2: we take the first key from the block to find the parent
381
* (see add_missing_keys)
382
* - column 4: we use the key to find the parent
383
*
384
* additional information that's available but not required to find the parent
385
* block might help in merging entries to gain some speed.
386
*/
387
static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
388
struct preftree *preftree, u64 root_id,
389
const struct btrfs_key *key, int level, u64 parent,
390
u64 wanted_disk_byte, int count,
391
struct share_check *sc, gfp_t gfp_mask)
392
{
393
struct prelim_ref *ref;
394
395
if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
396
return 0;
397
398
ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
399
if (!ref)
400
return -ENOMEM;
401
402
ref->root_id = root_id;
403
if (key)
404
ref->key_for_search = *key;
405
else
406
memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
407
408
ref->inode_list = NULL;
409
ref->level = level;
410
ref->count = count;
411
ref->parent = parent;
412
ref->wanted_disk_byte = wanted_disk_byte;
413
prelim_ref_insert(fs_info, preftree, ref, sc);
414
return extent_is_shared(sc);
415
}
416
417
/* direct refs use root == 0, key == NULL */
418
static int add_direct_ref(const struct btrfs_fs_info *fs_info,
419
struct preftrees *preftrees, int level, u64 parent,
420
u64 wanted_disk_byte, int count,
421
struct share_check *sc, gfp_t gfp_mask)
422
{
423
return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
424
parent, wanted_disk_byte, count, sc, gfp_mask);
425
}
426
427
/* indirect refs use parent == 0 */
428
static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
429
struct preftrees *preftrees, u64 root_id,
430
const struct btrfs_key *key, int level,
431
u64 wanted_disk_byte, int count,
432
struct share_check *sc, gfp_t gfp_mask)
433
{
434
struct preftree *tree = &preftrees->indirect;
435
436
if (!key)
437
tree = &preftrees->indirect_missing_keys;
438
return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
439
wanted_disk_byte, count, sc, gfp_mask);
440
}
441
442
static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
443
{
444
struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
445
struct rb_node *parent = NULL;
446
struct prelim_ref *ref = NULL;
447
struct prelim_ref target = {};
448
int result;
449
450
target.parent = bytenr;
451
452
while (*p) {
453
parent = *p;
454
ref = rb_entry(parent, struct prelim_ref, rbnode);
455
result = prelim_ref_compare(ref, &target);
456
457
if (result < 0)
458
p = &(*p)->rb_left;
459
else if (result > 0)
460
p = &(*p)->rb_right;
461
else
462
return 1;
463
}
464
return 0;
465
}
466
467
static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
468
struct btrfs_root *root, struct btrfs_path *path,
469
struct ulist *parents,
470
struct preftrees *preftrees, struct prelim_ref *ref,
471
int level)
472
{
473
int ret = 0;
474
int slot;
475
struct extent_buffer *eb;
476
struct btrfs_key key;
477
struct btrfs_key *key_for_search = &ref->key_for_search;
478
struct btrfs_file_extent_item *fi;
479
struct extent_inode_elem *eie = NULL, *old = NULL;
480
u64 disk_byte;
481
u64 wanted_disk_byte = ref->wanted_disk_byte;
482
u64 count = 0;
483
u64 data_offset;
484
u8 type;
485
486
if (level != 0) {
487
eb = path->nodes[level];
488
ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
489
if (ret < 0)
490
return ret;
491
return 0;
492
}
493
494
/*
495
* 1. We normally enter this function with the path already pointing to
496
* the first item to check. But sometimes, we may enter it with
497
* slot == nritems.
498
* 2. We are searching for normal backref but bytenr of this leaf
499
* matches shared data backref
500
* 3. The leaf owner is not equal to the root we are searching
501
*
502
* For these cases, go to the next leaf before we continue.
503
*/
504
eb = path->nodes[0];
505
if (path->slots[0] >= btrfs_header_nritems(eb) ||
506
is_shared_data_backref(preftrees, eb->start) ||
507
ref->root_id != btrfs_header_owner(eb)) {
508
if (ctx->time_seq == BTRFS_SEQ_LAST)
509
ret = btrfs_next_leaf(root, path);
510
else
511
ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
512
}
513
514
while (!ret && count < ref->count) {
515
eb = path->nodes[0];
516
slot = path->slots[0];
517
518
btrfs_item_key_to_cpu(eb, &key, slot);
519
520
if (key.objectid != key_for_search->objectid ||
521
key.type != BTRFS_EXTENT_DATA_KEY)
522
break;
523
524
/*
525
* We are searching for normal backref but bytenr of this leaf
526
* matches shared data backref, OR
527
* the leaf owner is not equal to the root we are searching for
528
*/
529
if (slot == 0 &&
530
(is_shared_data_backref(preftrees, eb->start) ||
531
ref->root_id != btrfs_header_owner(eb))) {
532
if (ctx->time_seq == BTRFS_SEQ_LAST)
533
ret = btrfs_next_leaf(root, path);
534
else
535
ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
536
continue;
537
}
538
fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
539
type = btrfs_file_extent_type(eb, fi);
540
if (type == BTRFS_FILE_EXTENT_INLINE)
541
goto next;
542
disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
543
data_offset = btrfs_file_extent_offset(eb, fi);
544
545
if (disk_byte == wanted_disk_byte) {
546
eie = NULL;
547
old = NULL;
548
if (ref->key_for_search.offset == key.offset - data_offset)
549
count++;
550
else
551
goto next;
552
if (!ctx->skip_inode_ref_list) {
553
ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
554
if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
555
ret < 0)
556
break;
557
}
558
if (ret > 0)
559
goto next;
560
ret = ulist_add_merge_ptr(parents, eb->start,
561
eie, (void **)&old, GFP_NOFS);
562
if (ret < 0)
563
break;
564
if (!ret && !ctx->skip_inode_ref_list) {
565
while (old->next)
566
old = old->next;
567
old->next = eie;
568
}
569
eie = NULL;
570
}
571
next:
572
if (ctx->time_seq == BTRFS_SEQ_LAST)
573
ret = btrfs_next_item(root, path);
574
else
575
ret = btrfs_next_old_item(root, path, ctx->time_seq);
576
}
577
578
if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
579
free_inode_elem_list(eie);
580
else if (ret > 0)
581
ret = 0;
582
583
return ret;
584
}
585
586
/*
587
* resolve an indirect backref in the form (root_id, key, level)
588
* to a logical address
589
*/
590
static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
591
struct btrfs_path *path,
592
struct preftrees *preftrees,
593
struct prelim_ref *ref, struct ulist *parents)
594
{
595
struct btrfs_root *root;
596
struct extent_buffer *eb;
597
int ret = 0;
598
int root_level;
599
int level = ref->level;
600
struct btrfs_key search_key = ref->key_for_search;
601
602
/*
603
* If we're search_commit_root we could possibly be holding locks on
604
* other tree nodes. This happens when qgroups does backref walks when
605
* adding new delayed refs. To deal with this we need to look in cache
606
* for the root, and if we don't find it then we need to search the
607
* tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
608
* here.
609
*/
610
if (path->search_commit_root)
611
root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
612
else
613
root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
614
if (IS_ERR(root)) {
615
ret = PTR_ERR(root);
616
goto out_free;
617
}
618
619
if (!path->search_commit_root &&
620
test_bit(BTRFS_ROOT_DELETING, &root->state)) {
621
ret = -ENOENT;
622
goto out;
623
}
624
625
if (btrfs_is_testing(ctx->fs_info)) {
626
ret = -ENOENT;
627
goto out;
628
}
629
630
if (path->search_commit_root)
631
root_level = btrfs_header_level(root->commit_root);
632
else if (ctx->time_seq == BTRFS_SEQ_LAST)
633
root_level = btrfs_header_level(root->node);
634
else
635
root_level = btrfs_old_root_level(root, ctx->time_seq);
636
637
if (root_level + 1 == level)
638
goto out;
639
640
/*
641
* We can often find data backrefs with an offset that is too large
642
* (>= LLONG_MAX, maximum allowed file offset) due to underflows when
643
* subtracting a file's offset with the data offset of its
644
* corresponding extent data item. This can happen for example in the
645
* clone ioctl.
646
*
647
* So if we detect such case we set the search key's offset to zero to
648
* make sure we will find the matching file extent item at
649
* add_all_parents(), otherwise we will miss it because the offset
650
* taken form the backref is much larger then the offset of the file
651
* extent item. This can make us scan a very large number of file
652
* extent items, but at least it will not make us miss any.
653
*
654
* This is an ugly workaround for a behaviour that should have never
655
* existed, but it does and a fix for the clone ioctl would touch a lot
656
* of places, cause backwards incompatibility and would not fix the
657
* problem for extents cloned with older kernels.
658
*/
659
if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
660
search_key.offset >= LLONG_MAX)
661
search_key.offset = 0;
662
path->lowest_level = level;
663
if (ctx->time_seq == BTRFS_SEQ_LAST)
664
ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
665
else
666
ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
667
668
btrfs_debug(ctx->fs_info,
669
"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
670
ref->root_id, level, ref->count, ret,
671
ref->key_for_search.objectid, ref->key_for_search.type,
672
ref->key_for_search.offset);
673
if (ret < 0)
674
goto out;
675
676
eb = path->nodes[level];
677
while (!eb) {
678
if (WARN_ON(!level)) {
679
ret = 1;
680
goto out;
681
}
682
level--;
683
eb = path->nodes[level];
684
}
685
686
ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
687
out:
688
btrfs_put_root(root);
689
out_free:
690
path->lowest_level = 0;
691
btrfs_release_path(path);
692
return ret;
693
}
694
695
static struct extent_inode_elem *
696
unode_aux_to_inode_list(struct ulist_node *node)
697
{
698
if (!node)
699
return NULL;
700
return (struct extent_inode_elem *)(uintptr_t)node->aux;
701
}
702
703
static void free_leaf_list(struct ulist *ulist)
704
{
705
struct ulist_node *node;
706
struct ulist_iterator uiter;
707
708
ULIST_ITER_INIT(&uiter);
709
while ((node = ulist_next(ulist, &uiter)))
710
free_inode_elem_list(unode_aux_to_inode_list(node));
711
712
ulist_free(ulist);
713
}
714
715
/*
716
* We maintain three separate rbtrees: one for direct refs, one for
717
* indirect refs which have a key, and one for indirect refs which do not
718
* have a key. Each tree does merge on insertion.
719
*
720
* Once all of the references are located, we iterate over the tree of
721
* indirect refs with missing keys. An appropriate key is located and
722
* the ref is moved onto the tree for indirect refs. After all missing
723
* keys are thus located, we iterate over the indirect ref tree, resolve
724
* each reference, and then insert the resolved reference onto the
725
* direct tree (merging there too).
726
*
727
* New backrefs (i.e., for parent nodes) are added to the appropriate
728
* rbtree as they are encountered. The new backrefs are subsequently
729
* resolved as above.
730
*/
731
static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
732
struct btrfs_path *path,
733
struct preftrees *preftrees,
734
struct share_check *sc)
735
{
736
int ret = 0;
737
struct ulist *parents;
738
struct ulist_node *node;
739
struct ulist_iterator uiter;
740
struct rb_node *rnode;
741
742
parents = ulist_alloc(GFP_NOFS);
743
if (!parents)
744
return -ENOMEM;
745
746
/*
747
* We could trade memory usage for performance here by iterating
748
* the tree, allocating new refs for each insertion, and then
749
* freeing the entire indirect tree when we're done. In some test
750
* cases, the tree can grow quite large (~200k objects).
751
*/
752
while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
753
struct prelim_ref *ref;
754
int ret2;
755
756
ref = rb_entry(rnode, struct prelim_ref, rbnode);
757
if (WARN(ref->parent,
758
"BUG: direct ref found in indirect tree")) {
759
ret = -EINVAL;
760
goto out;
761
}
762
763
rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
764
preftrees->indirect.count--;
765
766
if (ref->count == 0) {
767
free_pref(ref);
768
continue;
769
}
770
771
if (sc && ref->root_id != btrfs_root_id(sc->root)) {
772
free_pref(ref);
773
ret = BACKREF_FOUND_SHARED;
774
goto out;
775
}
776
ret2 = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
777
/*
778
* we can only tolerate ENOENT,otherwise,we should catch error
779
* and return directly.
780
*/
781
if (ret2 == -ENOENT) {
782
prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
783
NULL);
784
continue;
785
} else if (ret2) {
786
free_pref(ref);
787
ret = ret2;
788
goto out;
789
}
790
791
/* we put the first parent into the ref at hand */
792
ULIST_ITER_INIT(&uiter);
793
node = ulist_next(parents, &uiter);
794
ref->parent = node ? node->val : 0;
795
ref->inode_list = unode_aux_to_inode_list(node);
796
797
/* Add a prelim_ref(s) for any other parent(s). */
798
while ((node = ulist_next(parents, &uiter))) {
799
struct prelim_ref *new_ref;
800
801
new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
802
GFP_NOFS);
803
if (!new_ref) {
804
free_pref(ref);
805
ret = -ENOMEM;
806
goto out;
807
}
808
memcpy(new_ref, ref, sizeof(*ref));
809
new_ref->parent = node->val;
810
new_ref->inode_list = unode_aux_to_inode_list(node);
811
prelim_ref_insert(ctx->fs_info, &preftrees->direct,
812
new_ref, NULL);
813
}
814
815
/*
816
* Now it's a direct ref, put it in the direct tree. We must
817
* do this last because the ref could be merged/freed here.
818
*/
819
prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
820
821
ulist_reinit(parents);
822
cond_resched();
823
}
824
out:
825
/*
826
* We may have inode lists attached to refs in the parents ulist, so we
827
* must free them before freeing the ulist and its refs.
828
*/
829
free_leaf_list(parents);
830
return ret;
831
}
832
833
/*
834
* read tree blocks and add keys where required.
835
*/
836
static int add_missing_keys(struct btrfs_fs_info *fs_info,
837
struct preftrees *preftrees, bool lock)
838
{
839
struct prelim_ref *ref;
840
struct extent_buffer *eb;
841
struct preftree *tree = &preftrees->indirect_missing_keys;
842
struct rb_node *node;
843
844
while ((node = rb_first_cached(&tree->root))) {
845
struct btrfs_tree_parent_check check = { 0 };
846
847
ref = rb_entry(node, struct prelim_ref, rbnode);
848
rb_erase_cached(node, &tree->root);
849
850
BUG_ON(ref->parent); /* should not be a direct ref */
851
BUG_ON(ref->key_for_search.type);
852
BUG_ON(!ref->wanted_disk_byte);
853
854
check.level = ref->level - 1;
855
check.owner_root = ref->root_id;
856
857
eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
858
if (IS_ERR(eb)) {
859
free_pref(ref);
860
return PTR_ERR(eb);
861
}
862
if (!extent_buffer_uptodate(eb)) {
863
free_pref(ref);
864
free_extent_buffer(eb);
865
return -EIO;
866
}
867
868
if (lock)
869
btrfs_tree_read_lock(eb);
870
if (btrfs_header_level(eb) == 0)
871
btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
872
else
873
btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
874
if (lock)
875
btrfs_tree_read_unlock(eb);
876
free_extent_buffer(eb);
877
prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
878
cond_resched();
879
}
880
return 0;
881
}
882
883
/*
884
* add all currently queued delayed refs from this head whose seq nr is
885
* smaller or equal that seq to the list
886
*/
887
static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
888
struct btrfs_delayed_ref_head *head, u64 seq,
889
struct preftrees *preftrees, struct share_check *sc)
890
{
891
struct btrfs_delayed_ref_node *node;
892
struct btrfs_key key;
893
struct rb_node *n;
894
int count;
895
int ret = 0;
896
897
spin_lock(&head->lock);
898
for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
899
node = rb_entry(n, struct btrfs_delayed_ref_node,
900
ref_node);
901
if (node->seq > seq)
902
continue;
903
904
switch (node->action) {
905
case BTRFS_ADD_DELAYED_EXTENT:
906
case BTRFS_UPDATE_DELAYED_HEAD:
907
WARN_ON(1);
908
continue;
909
case BTRFS_ADD_DELAYED_REF:
910
count = node->ref_mod;
911
break;
912
case BTRFS_DROP_DELAYED_REF:
913
count = node->ref_mod * -1;
914
break;
915
default:
916
BUG();
917
}
918
switch (node->type) {
919
case BTRFS_TREE_BLOCK_REF_KEY: {
920
/* NORMAL INDIRECT METADATA backref */
921
struct btrfs_key *key_ptr = NULL;
922
/* The owner of a tree block ref is the level. */
923
int level = btrfs_delayed_ref_owner(node);
924
925
if (head->extent_op && head->extent_op->update_key) {
926
btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
927
key_ptr = &key;
928
}
929
930
ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
931
key_ptr, level + 1, node->bytenr,
932
count, sc, GFP_ATOMIC);
933
break;
934
}
935
case BTRFS_SHARED_BLOCK_REF_KEY: {
936
/*
937
* SHARED DIRECT METADATA backref
938
*
939
* The owner of a tree block ref is the level.
940
*/
941
int level = btrfs_delayed_ref_owner(node);
942
943
ret = add_direct_ref(fs_info, preftrees, level + 1,
944
node->parent, node->bytenr, count,
945
sc, GFP_ATOMIC);
946
break;
947
}
948
case BTRFS_EXTENT_DATA_REF_KEY: {
949
/* NORMAL INDIRECT DATA backref */
950
key.objectid = btrfs_delayed_ref_owner(node);
951
key.type = BTRFS_EXTENT_DATA_KEY;
952
key.offset = btrfs_delayed_ref_offset(node);
953
954
/*
955
* If we have a share check context and a reference for
956
* another inode, we can't exit immediately. This is
957
* because even if this is a BTRFS_ADD_DELAYED_REF
958
* reference we may find next a BTRFS_DROP_DELAYED_REF
959
* which cancels out this ADD reference.
960
*
961
* If this is a DROP reference and there was no previous
962
* ADD reference, then we need to signal that when we
963
* process references from the extent tree (through
964
* add_inline_refs() and add_keyed_refs()), we should
965
* not exit early if we find a reference for another
966
* inode, because one of the delayed DROP references
967
* may cancel that reference in the extent tree.
968
*/
969
if (sc && count < 0)
970
sc->have_delayed_delete_refs = true;
971
972
ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
973
&key, 0, node->bytenr, count, sc,
974
GFP_ATOMIC);
975
break;
976
}
977
case BTRFS_SHARED_DATA_REF_KEY: {
978
/* SHARED DIRECT FULL backref */
979
ret = add_direct_ref(fs_info, preftrees, 0, node->parent,
980
node->bytenr, count, sc,
981
GFP_ATOMIC);
982
break;
983
}
984
default:
985
WARN_ON(1);
986
}
987
/*
988
* We must ignore BACKREF_FOUND_SHARED until all delayed
989
* refs have been checked.
990
*/
991
if (ret && (ret != BACKREF_FOUND_SHARED))
992
break;
993
}
994
if (!ret)
995
ret = extent_is_shared(sc);
996
997
spin_unlock(&head->lock);
998
return ret;
999
}
1000
1001
/*
1002
* add all inline backrefs for bytenr to the list
1003
*
1004
* Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1005
*/
1006
static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1007
struct btrfs_path *path,
1008
int *info_level, struct preftrees *preftrees,
1009
struct share_check *sc)
1010
{
1011
int ret = 0;
1012
int slot;
1013
struct extent_buffer *leaf;
1014
struct btrfs_key key;
1015
struct btrfs_key found_key;
1016
unsigned long ptr;
1017
unsigned long end;
1018
struct btrfs_extent_item *ei;
1019
u64 flags;
1020
u64 item_size;
1021
1022
/*
1023
* enumerate all inline refs
1024
*/
1025
leaf = path->nodes[0];
1026
slot = path->slots[0];
1027
1028
item_size = btrfs_item_size(leaf, slot);
1029
ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1030
1031
if (ctx->check_extent_item) {
1032
ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1033
if (ret)
1034
return ret;
1035
}
1036
1037
flags = btrfs_extent_flags(leaf, ei);
1038
btrfs_item_key_to_cpu(leaf, &found_key, slot);
1039
1040
ptr = (unsigned long)(ei + 1);
1041
end = (unsigned long)ei + item_size;
1042
1043
if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1044
flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1045
struct btrfs_tree_block_info *info;
1046
1047
info = (struct btrfs_tree_block_info *)ptr;
1048
*info_level = btrfs_tree_block_level(leaf, info);
1049
ptr += sizeof(struct btrfs_tree_block_info);
1050
BUG_ON(ptr > end);
1051
} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1052
*info_level = found_key.offset;
1053
} else {
1054
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1055
}
1056
1057
while (ptr < end) {
1058
struct btrfs_extent_inline_ref *iref;
1059
u64 offset;
1060
int type;
1061
1062
iref = (struct btrfs_extent_inline_ref *)ptr;
1063
type = btrfs_get_extent_inline_ref_type(leaf, iref,
1064
BTRFS_REF_TYPE_ANY);
1065
if (type == BTRFS_REF_TYPE_INVALID)
1066
return -EUCLEAN;
1067
1068
offset = btrfs_extent_inline_ref_offset(leaf, iref);
1069
1070
switch (type) {
1071
case BTRFS_SHARED_BLOCK_REF_KEY:
1072
ret = add_direct_ref(ctx->fs_info, preftrees,
1073
*info_level + 1, offset,
1074
ctx->bytenr, 1, NULL, GFP_NOFS);
1075
break;
1076
case BTRFS_SHARED_DATA_REF_KEY: {
1077
struct btrfs_shared_data_ref *sdref;
1078
int count;
1079
1080
sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1081
count = btrfs_shared_data_ref_count(leaf, sdref);
1082
1083
ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1084
ctx->bytenr, count, sc, GFP_NOFS);
1085
break;
1086
}
1087
case BTRFS_TREE_BLOCK_REF_KEY:
1088
ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1089
NULL, *info_level + 1,
1090
ctx->bytenr, 1, NULL, GFP_NOFS);
1091
break;
1092
case BTRFS_EXTENT_DATA_REF_KEY: {
1093
struct btrfs_extent_data_ref *dref;
1094
int count;
1095
u64 root;
1096
1097
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1098
count = btrfs_extent_data_ref_count(leaf, dref);
1099
key.objectid = btrfs_extent_data_ref_objectid(leaf,
1100
dref);
1101
key.type = BTRFS_EXTENT_DATA_KEY;
1102
key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1103
1104
if (sc && key.objectid != sc->inum &&
1105
!sc->have_delayed_delete_refs) {
1106
ret = BACKREF_FOUND_SHARED;
1107
break;
1108
}
1109
1110
root = btrfs_extent_data_ref_root(leaf, dref);
1111
1112
if (!ctx->skip_data_ref ||
1113
!ctx->skip_data_ref(root, key.objectid, key.offset,
1114
ctx->user_ctx))
1115
ret = add_indirect_ref(ctx->fs_info, preftrees,
1116
root, &key, 0, ctx->bytenr,
1117
count, sc, GFP_NOFS);
1118
break;
1119
}
1120
case BTRFS_EXTENT_OWNER_REF_KEY:
1121
ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA));
1122
break;
1123
default:
1124
WARN_ON(1);
1125
}
1126
if (ret)
1127
return ret;
1128
ptr += btrfs_extent_inline_ref_size(type);
1129
}
1130
1131
return 0;
1132
}
1133
1134
/*
1135
* add all non-inline backrefs for bytenr to the list
1136
*
1137
* Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1138
*/
1139
static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1140
struct btrfs_root *extent_root,
1141
struct btrfs_path *path,
1142
int info_level, struct preftrees *preftrees,
1143
struct share_check *sc)
1144
{
1145
struct btrfs_fs_info *fs_info = extent_root->fs_info;
1146
int ret;
1147
int slot;
1148
struct extent_buffer *leaf;
1149
struct btrfs_key key;
1150
1151
while (1) {
1152
ret = btrfs_next_item(extent_root, path);
1153
if (ret < 0)
1154
break;
1155
if (ret) {
1156
ret = 0;
1157
break;
1158
}
1159
1160
slot = path->slots[0];
1161
leaf = path->nodes[0];
1162
btrfs_item_key_to_cpu(leaf, &key, slot);
1163
1164
if (key.objectid != ctx->bytenr)
1165
break;
1166
if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1167
continue;
1168
if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1169
break;
1170
1171
switch (key.type) {
1172
case BTRFS_SHARED_BLOCK_REF_KEY:
1173
/* SHARED DIRECT METADATA backref */
1174
ret = add_direct_ref(fs_info, preftrees,
1175
info_level + 1, key.offset,
1176
ctx->bytenr, 1, NULL, GFP_NOFS);
1177
break;
1178
case BTRFS_SHARED_DATA_REF_KEY: {
1179
/* SHARED DIRECT FULL backref */
1180
struct btrfs_shared_data_ref *sdref;
1181
int count;
1182
1183
sdref = btrfs_item_ptr(leaf, slot,
1184
struct btrfs_shared_data_ref);
1185
count = btrfs_shared_data_ref_count(leaf, sdref);
1186
ret = add_direct_ref(fs_info, preftrees, 0,
1187
key.offset, ctx->bytenr, count,
1188
sc, GFP_NOFS);
1189
break;
1190
}
1191
case BTRFS_TREE_BLOCK_REF_KEY:
1192
/* NORMAL INDIRECT METADATA backref */
1193
ret = add_indirect_ref(fs_info, preftrees, key.offset,
1194
NULL, info_level + 1, ctx->bytenr,
1195
1, NULL, GFP_NOFS);
1196
break;
1197
case BTRFS_EXTENT_DATA_REF_KEY: {
1198
/* NORMAL INDIRECT DATA backref */
1199
struct btrfs_extent_data_ref *dref;
1200
int count;
1201
u64 root;
1202
1203
dref = btrfs_item_ptr(leaf, slot,
1204
struct btrfs_extent_data_ref);
1205
count = btrfs_extent_data_ref_count(leaf, dref);
1206
key.objectid = btrfs_extent_data_ref_objectid(leaf,
1207
dref);
1208
key.type = BTRFS_EXTENT_DATA_KEY;
1209
key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1210
1211
if (sc && key.objectid != sc->inum &&
1212
!sc->have_delayed_delete_refs) {
1213
ret = BACKREF_FOUND_SHARED;
1214
break;
1215
}
1216
1217
root = btrfs_extent_data_ref_root(leaf, dref);
1218
1219
if (!ctx->skip_data_ref ||
1220
!ctx->skip_data_ref(root, key.objectid, key.offset,
1221
ctx->user_ctx))
1222
ret = add_indirect_ref(fs_info, preftrees, root,
1223
&key, 0, ctx->bytenr,
1224
count, sc, GFP_NOFS);
1225
break;
1226
}
1227
default:
1228
WARN_ON(1);
1229
}
1230
if (ret)
1231
return ret;
1232
1233
}
1234
1235
return ret;
1236
}
1237
1238
/*
1239
* The caller has joined a transaction or is holding a read lock on the
1240
* fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1241
* snapshot field changing while updating or checking the cache.
1242
*/
1243
static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1244
struct btrfs_root *root,
1245
u64 bytenr, int level, bool *is_shared)
1246
{
1247
const struct btrfs_fs_info *fs_info = root->fs_info;
1248
struct btrfs_backref_shared_cache_entry *entry;
1249
1250
if (!current->journal_info)
1251
lockdep_assert_held(&fs_info->commit_root_sem);
1252
1253
if (!ctx->use_path_cache)
1254
return false;
1255
1256
if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1257
return false;
1258
1259
/*
1260
* Level -1 is used for the data extent, which is not reliable to cache
1261
* because its reference count can increase or decrease without us
1262
* realizing. We cache results only for extent buffers that lead from
1263
* the root node down to the leaf with the file extent item.
1264
*/
1265
ASSERT(level >= 0);
1266
1267
entry = &ctx->path_cache_entries[level];
1268
1269
/* Unused cache entry or being used for some other extent buffer. */
1270
if (entry->bytenr != bytenr)
1271
return false;
1272
1273
/*
1274
* We cached a false result, but the last snapshot generation of the
1275
* root changed, so we now have a snapshot. Don't trust the result.
1276
*/
1277
if (!entry->is_shared &&
1278
entry->gen != btrfs_root_last_snapshot(&root->root_item))
1279
return false;
1280
1281
/*
1282
* If we cached a true result and the last generation used for dropping
1283
* a root changed, we can not trust the result, because the dropped root
1284
* could be a snapshot sharing this extent buffer.
1285
*/
1286
if (entry->is_shared &&
1287
entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1288
return false;
1289
1290
*is_shared = entry->is_shared;
1291
/*
1292
* If the node at this level is shared, than all nodes below are also
1293
* shared. Currently some of the nodes below may be marked as not shared
1294
* because we have just switched from one leaf to another, and switched
1295
* also other nodes above the leaf and below the current level, so mark
1296
* them as shared.
1297
*/
1298
if (*is_shared) {
1299
for (int i = 0; i < level; i++) {
1300
ctx->path_cache_entries[i].is_shared = true;
1301
ctx->path_cache_entries[i].gen = entry->gen;
1302
}
1303
}
1304
1305
return true;
1306
}
1307
1308
/*
1309
* The caller has joined a transaction or is holding a read lock on the
1310
* fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1311
* snapshot field changing while updating or checking the cache.
1312
*/
1313
static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1314
struct btrfs_root *root,
1315
u64 bytenr, int level, bool is_shared)
1316
{
1317
const struct btrfs_fs_info *fs_info = root->fs_info;
1318
struct btrfs_backref_shared_cache_entry *entry;
1319
u64 gen;
1320
1321
if (!current->journal_info)
1322
lockdep_assert_held(&fs_info->commit_root_sem);
1323
1324
if (!ctx->use_path_cache)
1325
return;
1326
1327
if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1328
return;
1329
1330
/*
1331
* Level -1 is used for the data extent, which is not reliable to cache
1332
* because its reference count can increase or decrease without us
1333
* realizing. We cache results only for extent buffers that lead from
1334
* the root node down to the leaf with the file extent item.
1335
*/
1336
ASSERT(level >= 0);
1337
1338
if (is_shared)
1339
gen = btrfs_get_last_root_drop_gen(fs_info);
1340
else
1341
gen = btrfs_root_last_snapshot(&root->root_item);
1342
1343
entry = &ctx->path_cache_entries[level];
1344
entry->bytenr = bytenr;
1345
entry->is_shared = is_shared;
1346
entry->gen = gen;
1347
1348
/*
1349
* If we found an extent buffer is shared, set the cache result for all
1350
* extent buffers below it to true. As nodes in the path are COWed,
1351
* their sharedness is moved to their children, and if a leaf is COWed,
1352
* then the sharedness of a data extent becomes direct, the refcount of
1353
* data extent is increased in the extent item at the extent tree.
1354
*/
1355
if (is_shared) {
1356
for (int i = 0; i < level; i++) {
1357
entry = &ctx->path_cache_entries[i];
1358
entry->is_shared = is_shared;
1359
entry->gen = gen;
1360
}
1361
}
1362
}
1363
1364
/*
1365
* this adds all existing backrefs (inline backrefs, backrefs and delayed
1366
* refs) for the given bytenr to the refs list, merges duplicates and resolves
1367
* indirect refs to their parent bytenr.
1368
* When roots are found, they're added to the roots list
1369
*
1370
* @ctx: Backref walking context object, must be not NULL.
1371
* @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1372
* shared extent is detected.
1373
*
1374
* Otherwise this returns 0 for success and <0 for an error.
1375
*
1376
* FIXME some caching might speed things up
1377
*/
1378
static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1379
struct share_check *sc)
1380
{
1381
struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1382
struct btrfs_key key;
1383
struct btrfs_path *path;
1384
struct btrfs_delayed_ref_root *delayed_refs = NULL;
1385
struct btrfs_delayed_ref_head *head;
1386
int info_level = 0;
1387
int ret;
1388
struct prelim_ref *ref;
1389
struct rb_node *node;
1390
struct extent_inode_elem *eie = NULL;
1391
struct preftrees preftrees = {
1392
.direct = PREFTREE_INIT,
1393
.indirect = PREFTREE_INIT,
1394
.indirect_missing_keys = PREFTREE_INIT
1395
};
1396
1397
/* Roots ulist is not needed when using a sharedness check context. */
1398
if (sc)
1399
ASSERT(ctx->roots == NULL);
1400
1401
key.objectid = ctx->bytenr;
1402
if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1403
key.type = BTRFS_METADATA_ITEM_KEY;
1404
else
1405
key.type = BTRFS_EXTENT_ITEM_KEY;
1406
key.offset = (u64)-1;
1407
1408
path = btrfs_alloc_path();
1409
if (!path)
1410
return -ENOMEM;
1411
if (!ctx->trans) {
1412
path->search_commit_root = 1;
1413
path->skip_locking = 1;
1414
}
1415
1416
if (ctx->time_seq == BTRFS_SEQ_LAST)
1417
path->skip_locking = 1;
1418
1419
again:
1420
head = NULL;
1421
1422
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1423
if (ret < 0)
1424
goto out;
1425
if (ret == 0) {
1426
/*
1427
* Key with offset -1 found, there would have to exist an extent
1428
* item with such offset, but this is out of the valid range.
1429
*/
1430
ret = -EUCLEAN;
1431
goto out;
1432
}
1433
1434
if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1435
ctx->time_seq != BTRFS_SEQ_LAST) {
1436
/*
1437
* We have a specific time_seq we care about and trans which
1438
* means we have the path lock, we need to grab the ref head and
1439
* lock it so we have a consistent view of the refs at the given
1440
* time.
1441
*/
1442
delayed_refs = &ctx->trans->transaction->delayed_refs;
1443
spin_lock(&delayed_refs->lock);
1444
head = btrfs_find_delayed_ref_head(ctx->fs_info, delayed_refs,
1445
ctx->bytenr);
1446
if (head) {
1447
if (!mutex_trylock(&head->mutex)) {
1448
refcount_inc(&head->refs);
1449
spin_unlock(&delayed_refs->lock);
1450
1451
btrfs_release_path(path);
1452
1453
/*
1454
* Mutex was contended, block until it's
1455
* released and try again
1456
*/
1457
mutex_lock(&head->mutex);
1458
mutex_unlock(&head->mutex);
1459
btrfs_put_delayed_ref_head(head);
1460
goto again;
1461
}
1462
spin_unlock(&delayed_refs->lock);
1463
ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1464
&preftrees, sc);
1465
mutex_unlock(&head->mutex);
1466
if (ret)
1467
goto out;
1468
} else {
1469
spin_unlock(&delayed_refs->lock);
1470
}
1471
}
1472
1473
if (path->slots[0]) {
1474
struct extent_buffer *leaf;
1475
int slot;
1476
1477
path->slots[0]--;
1478
leaf = path->nodes[0];
1479
slot = path->slots[0];
1480
btrfs_item_key_to_cpu(leaf, &key, slot);
1481
if (key.objectid == ctx->bytenr &&
1482
(key.type == BTRFS_EXTENT_ITEM_KEY ||
1483
key.type == BTRFS_METADATA_ITEM_KEY)) {
1484
ret = add_inline_refs(ctx, path, &info_level,
1485
&preftrees, sc);
1486
if (ret)
1487
goto out;
1488
ret = add_keyed_refs(ctx, root, path, info_level,
1489
&preftrees, sc);
1490
if (ret)
1491
goto out;
1492
}
1493
}
1494
1495
/*
1496
* If we have a share context and we reached here, it means the extent
1497
* is not directly shared (no multiple reference items for it),
1498
* otherwise we would have exited earlier with a return value of
1499
* BACKREF_FOUND_SHARED after processing delayed references or while
1500
* processing inline or keyed references from the extent tree.
1501
* The extent may however be indirectly shared through shared subtrees
1502
* as a result from creating snapshots, so we determine below what is
1503
* its parent node, in case we are dealing with a metadata extent, or
1504
* what's the leaf (or leaves), from a fs tree, that has a file extent
1505
* item pointing to it in case we are dealing with a data extent.
1506
*/
1507
ASSERT(extent_is_shared(sc) == 0);
1508
1509
/*
1510
* If we are here for a data extent and we have a share_check structure
1511
* it means the data extent is not directly shared (does not have
1512
* multiple reference items), so we have to check if a path in the fs
1513
* tree (going from the root node down to the leaf that has the file
1514
* extent item pointing to the data extent) is shared, that is, if any
1515
* of the extent buffers in the path is referenced by other trees.
1516
*/
1517
if (sc && ctx->bytenr == sc->data_bytenr) {
1518
/*
1519
* If our data extent is from a generation more recent than the
1520
* last generation used to snapshot the root, then we know that
1521
* it can not be shared through subtrees, so we can skip
1522
* resolving indirect references, there's no point in
1523
* determining the extent buffers for the path from the fs tree
1524
* root node down to the leaf that has the file extent item that
1525
* points to the data extent.
1526
*/
1527
if (sc->data_extent_gen >
1528
btrfs_root_last_snapshot(&sc->root->root_item)) {
1529
ret = BACKREF_FOUND_NOT_SHARED;
1530
goto out;
1531
}
1532
1533
/*
1534
* If we are only determining if a data extent is shared or not
1535
* and the corresponding file extent item is located in the same
1536
* leaf as the previous file extent item, we can skip resolving
1537
* indirect references for a data extent, since the fs tree path
1538
* is the same (same leaf, so same path). We skip as long as the
1539
* cached result for the leaf is valid and only if there's only
1540
* one file extent item pointing to the data extent, because in
1541
* the case of multiple file extent items, they may be located
1542
* in different leaves and therefore we have multiple paths.
1543
*/
1544
if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1545
sc->self_ref_count == 1) {
1546
bool cached;
1547
bool is_shared;
1548
1549
cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1550
sc->ctx->curr_leaf_bytenr,
1551
0, &is_shared);
1552
if (cached) {
1553
if (is_shared)
1554
ret = BACKREF_FOUND_SHARED;
1555
else
1556
ret = BACKREF_FOUND_NOT_SHARED;
1557
goto out;
1558
}
1559
}
1560
}
1561
1562
btrfs_release_path(path);
1563
1564
ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
1565
if (ret)
1566
goto out;
1567
1568
WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1569
1570
ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1571
if (ret)
1572
goto out;
1573
1574
WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1575
1576
/*
1577
* This walks the tree of merged and resolved refs. Tree blocks are
1578
* read in as needed. Unique entries are added to the ulist, and
1579
* the list of found roots is updated.
1580
*
1581
* We release the entire tree in one go before returning.
1582
*/
1583
node = rb_first_cached(&preftrees.direct.root);
1584
while (node) {
1585
ref = rb_entry(node, struct prelim_ref, rbnode);
1586
node = rb_next(&ref->rbnode);
1587
/*
1588
* ref->count < 0 can happen here if there are delayed
1589
* refs with a node->action of BTRFS_DROP_DELAYED_REF.
1590
* prelim_ref_insert() relies on this when merging
1591
* identical refs to keep the overall count correct.
1592
* prelim_ref_insert() will merge only those refs
1593
* which compare identically. Any refs having
1594
* e.g. different offsets would not be merged,
1595
* and would retain their original ref->count < 0.
1596
*/
1597
if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1598
/* no parent == root of tree */
1599
ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1600
if (ret < 0)
1601
goto out;
1602
}
1603
if (ref->count && ref->parent) {
1604
if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1605
ref->level == 0) {
1606
struct btrfs_tree_parent_check check = { 0 };
1607
struct extent_buffer *eb;
1608
1609
check.level = ref->level;
1610
1611
eb = read_tree_block(ctx->fs_info, ref->parent,
1612
&check);
1613
if (IS_ERR(eb)) {
1614
ret = PTR_ERR(eb);
1615
goto out;
1616
}
1617
if (!extent_buffer_uptodate(eb)) {
1618
free_extent_buffer(eb);
1619
ret = -EIO;
1620
goto out;
1621
}
1622
1623
if (!path->skip_locking)
1624
btrfs_tree_read_lock(eb);
1625
ret = find_extent_in_eb(ctx, eb, &eie);
1626
if (!path->skip_locking)
1627
btrfs_tree_read_unlock(eb);
1628
free_extent_buffer(eb);
1629
if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1630
ret < 0)
1631
goto out;
1632
ref->inode_list = eie;
1633
/*
1634
* We transferred the list ownership to the ref,
1635
* so set to NULL to avoid a double free in case
1636
* an error happens after this.
1637
*/
1638
eie = NULL;
1639
}
1640
ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1641
ref->inode_list,
1642
(void **)&eie, GFP_NOFS);
1643
if (ret < 0)
1644
goto out;
1645
if (!ret && !ctx->skip_inode_ref_list) {
1646
/*
1647
* We've recorded that parent, so we must extend
1648
* its inode list here.
1649
*
1650
* However if there was corruption we may not
1651
* have found an eie, return an error in this
1652
* case.
1653
*/
1654
ASSERT(eie);
1655
if (!eie) {
1656
ret = -EUCLEAN;
1657
goto out;
1658
}
1659
while (eie->next)
1660
eie = eie->next;
1661
eie->next = ref->inode_list;
1662
}
1663
eie = NULL;
1664
/*
1665
* We have transferred the inode list ownership from
1666
* this ref to the ref we added to the 'refs' ulist.
1667
* So set this ref's inode list to NULL to avoid
1668
* use-after-free when our caller uses it or double
1669
* frees in case an error happens before we return.
1670
*/
1671
ref->inode_list = NULL;
1672
}
1673
cond_resched();
1674
}
1675
1676
out:
1677
btrfs_free_path(path);
1678
1679
prelim_release(&preftrees.direct);
1680
prelim_release(&preftrees.indirect);
1681
prelim_release(&preftrees.indirect_missing_keys);
1682
1683
if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1684
free_inode_elem_list(eie);
1685
return ret;
1686
}
1687
1688
/*
1689
* Finds all leaves with a reference to the specified combination of
1690
* @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1691
* added to the ulist at @ctx->refs, and that ulist is allocated by this
1692
* function. The caller should free the ulist with free_leaf_list() if
1693
* @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1694
* enough.
1695
*
1696
* Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1697
*/
1698
int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1699
{
1700
int ret;
1701
1702
ASSERT(ctx->refs == NULL);
1703
1704
ctx->refs = ulist_alloc(GFP_NOFS);
1705
if (!ctx->refs)
1706
return -ENOMEM;
1707
1708
ret = find_parent_nodes(ctx, NULL);
1709
if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1710
(ret < 0 && ret != -ENOENT)) {
1711
free_leaf_list(ctx->refs);
1712
ctx->refs = NULL;
1713
return ret;
1714
}
1715
1716
return 0;
1717
}
1718
1719
/*
1720
* Walk all backrefs for a given extent to find all roots that reference this
1721
* extent. Walking a backref means finding all extents that reference this
1722
* extent and in turn walk the backrefs of those, too. Naturally this is a
1723
* recursive process, but here it is implemented in an iterative fashion: We
1724
* find all referencing extents for the extent in question and put them on a
1725
* list. In turn, we find all referencing extents for those, further appending
1726
* to the list. The way we iterate the list allows adding more elements after
1727
* the current while iterating. The process stops when we reach the end of the
1728
* list.
1729
*
1730
* Found roots are added to @ctx->roots, which is allocated by this function if
1731
* it points to NULL, in which case the caller is responsible for freeing it
1732
* after it's not needed anymore.
1733
* This function requires @ctx->refs to be NULL, as it uses it for allocating a
1734
* ulist to do temporary work, and frees it before returning.
1735
*
1736
* Returns 0 on success, < 0 on error.
1737
*/
1738
static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1739
{
1740
const u64 orig_bytenr = ctx->bytenr;
1741
const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1742
bool roots_ulist_allocated = false;
1743
struct ulist_iterator uiter;
1744
int ret = 0;
1745
1746
ASSERT(ctx->refs == NULL);
1747
1748
ctx->refs = ulist_alloc(GFP_NOFS);
1749
if (!ctx->refs)
1750
return -ENOMEM;
1751
1752
if (!ctx->roots) {
1753
ctx->roots = ulist_alloc(GFP_NOFS);
1754
if (!ctx->roots) {
1755
ulist_free(ctx->refs);
1756
ctx->refs = NULL;
1757
return -ENOMEM;
1758
}
1759
roots_ulist_allocated = true;
1760
}
1761
1762
ctx->skip_inode_ref_list = true;
1763
1764
ULIST_ITER_INIT(&uiter);
1765
while (1) {
1766
struct ulist_node *node;
1767
1768
ret = find_parent_nodes(ctx, NULL);
1769
if (ret < 0 && ret != -ENOENT) {
1770
if (roots_ulist_allocated) {
1771
ulist_free(ctx->roots);
1772
ctx->roots = NULL;
1773
}
1774
break;
1775
}
1776
ret = 0;
1777
node = ulist_next(ctx->refs, &uiter);
1778
if (!node)
1779
break;
1780
ctx->bytenr = node->val;
1781
cond_resched();
1782
}
1783
1784
ulist_free(ctx->refs);
1785
ctx->refs = NULL;
1786
ctx->bytenr = orig_bytenr;
1787
ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1788
1789
return ret;
1790
}
1791
1792
int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1793
bool skip_commit_root_sem)
1794
{
1795
int ret;
1796
1797
if (!ctx->trans && !skip_commit_root_sem)
1798
down_read(&ctx->fs_info->commit_root_sem);
1799
ret = btrfs_find_all_roots_safe(ctx);
1800
if (!ctx->trans && !skip_commit_root_sem)
1801
up_read(&ctx->fs_info->commit_root_sem);
1802
return ret;
1803
}
1804
1805
struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1806
{
1807
struct btrfs_backref_share_check_ctx *ctx;
1808
1809
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1810
if (!ctx)
1811
return NULL;
1812
1813
ulist_init(&ctx->refs);
1814
1815
return ctx;
1816
}
1817
1818
void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1819
{
1820
if (!ctx)
1821
return;
1822
1823
ulist_release(&ctx->refs);
1824
kfree(ctx);
1825
}
1826
1827
/*
1828
* Check if a data extent is shared or not.
1829
*
1830
* @inode: The inode whose extent we are checking.
1831
* @bytenr: Logical bytenr of the extent we are checking.
1832
* @extent_gen: Generation of the extent (file extent item) or 0 if it is
1833
* not known.
1834
* @ctx: A backref sharedness check context.
1835
*
1836
* btrfs_is_data_extent_shared uses the backref walking code but will short
1837
* circuit as soon as it finds a root or inode that doesn't match the
1838
* one passed in. This provides a significant performance benefit for
1839
* callers (such as fiemap) which want to know whether the extent is
1840
* shared but do not need a ref count.
1841
*
1842
* This attempts to attach to the running transaction in order to account for
1843
* delayed refs, but continues on even when no running transaction exists.
1844
*
1845
* Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1846
*/
1847
int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1848
u64 extent_gen,
1849
struct btrfs_backref_share_check_ctx *ctx)
1850
{
1851
struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1852
struct btrfs_root *root = inode->root;
1853
struct btrfs_fs_info *fs_info = root->fs_info;
1854
struct btrfs_trans_handle *trans;
1855
struct ulist_iterator uiter;
1856
struct ulist_node *node;
1857
struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1858
int ret = 0;
1859
struct share_check shared = {
1860
.ctx = ctx,
1861
.root = root,
1862
.inum = btrfs_ino(inode),
1863
.data_bytenr = bytenr,
1864
.data_extent_gen = extent_gen,
1865
.share_count = 0,
1866
.self_ref_count = 0,
1867
.have_delayed_delete_refs = false,
1868
};
1869
int level;
1870
bool leaf_cached;
1871
bool leaf_is_shared;
1872
1873
for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1874
if (ctx->prev_extents_cache[i].bytenr == bytenr)
1875
return ctx->prev_extents_cache[i].is_shared;
1876
}
1877
1878
ulist_init(&ctx->refs);
1879
1880
trans = btrfs_join_transaction_nostart(root);
1881
if (IS_ERR(trans)) {
1882
if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1883
ret = PTR_ERR(trans);
1884
goto out;
1885
}
1886
trans = NULL;
1887
down_read(&fs_info->commit_root_sem);
1888
} else {
1889
btrfs_get_tree_mod_seq(fs_info, &elem);
1890
walk_ctx.time_seq = elem.seq;
1891
}
1892
1893
ctx->use_path_cache = true;
1894
1895
/*
1896
* We may have previously determined that the current leaf is shared.
1897
* If it is, then we have a data extent that is shared due to a shared
1898
* subtree (caused by snapshotting) and we don't need to check for data
1899
* backrefs. If the leaf is not shared, then we must do backref walking
1900
* to determine if the data extent is shared through reflinks.
1901
*/
1902
leaf_cached = lookup_backref_shared_cache(ctx, root,
1903
ctx->curr_leaf_bytenr, 0,
1904
&leaf_is_shared);
1905
if (leaf_cached && leaf_is_shared) {
1906
ret = 1;
1907
goto out_trans;
1908
}
1909
1910
walk_ctx.skip_inode_ref_list = true;
1911
walk_ctx.trans = trans;
1912
walk_ctx.fs_info = fs_info;
1913
walk_ctx.refs = &ctx->refs;
1914
1915
/* -1 means we are in the bytenr of the data extent. */
1916
level = -1;
1917
ULIST_ITER_INIT(&uiter);
1918
while (1) {
1919
const unsigned long prev_ref_count = ctx->refs.nnodes;
1920
1921
walk_ctx.bytenr = bytenr;
1922
ret = find_parent_nodes(&walk_ctx, &shared);
1923
if (ret == BACKREF_FOUND_SHARED ||
1924
ret == BACKREF_FOUND_NOT_SHARED) {
1925
/* If shared must return 1, otherwise return 0. */
1926
ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1927
if (level >= 0)
1928
store_backref_shared_cache(ctx, root, bytenr,
1929
level, ret == 1);
1930
break;
1931
}
1932
if (ret < 0 && ret != -ENOENT)
1933
break;
1934
ret = 0;
1935
1936
/*
1937
* More than one extent buffer (bytenr) may have been added to
1938
* the ctx->refs ulist, in which case we have to check multiple
1939
* tree paths in case the first one is not shared, so we can not
1940
* use the path cache which is made for a single path. Multiple
1941
* extent buffers at the current level happen when:
1942
*
1943
* 1) level -1, the data extent: If our data extent was not
1944
* directly shared (without multiple reference items), then
1945
* it might have a single reference item with a count > 1 for
1946
* the same offset, which means there are 2 (or more) file
1947
* extent items that point to the data extent - this happens
1948
* when a file extent item needs to be split and then one
1949
* item gets moved to another leaf due to a b+tree leaf split
1950
* when inserting some item. In this case the file extent
1951
* items may be located in different leaves and therefore
1952
* some of the leaves may be referenced through shared
1953
* subtrees while others are not. Since our extent buffer
1954
* cache only works for a single path (by far the most common
1955
* case and simpler to deal with), we can not use it if we
1956
* have multiple leaves (which implies multiple paths).
1957
*
1958
* 2) level >= 0, a tree node/leaf: We can have a mix of direct
1959
* and indirect references on a b+tree node/leaf, so we have
1960
* to check multiple paths, and the extent buffer (the
1961
* current bytenr) may be shared or not. One example is
1962
* during relocation as we may get a shared tree block ref
1963
* (direct ref) and a non-shared tree block ref (indirect
1964
* ref) for the same node/leaf.
1965
*/
1966
if ((ctx->refs.nnodes - prev_ref_count) > 1)
1967
ctx->use_path_cache = false;
1968
1969
if (level >= 0)
1970
store_backref_shared_cache(ctx, root, bytenr,
1971
level, false);
1972
node = ulist_next(&ctx->refs, &uiter);
1973
if (!node)
1974
break;
1975
bytenr = node->val;
1976
if (ctx->use_path_cache) {
1977
bool is_shared;
1978
bool cached;
1979
1980
level++;
1981
cached = lookup_backref_shared_cache(ctx, root, bytenr,
1982
level, &is_shared);
1983
if (cached) {
1984
ret = (is_shared ? 1 : 0);
1985
break;
1986
}
1987
}
1988
shared.share_count = 0;
1989
shared.have_delayed_delete_refs = false;
1990
cond_resched();
1991
}
1992
1993
/*
1994
* If the path cache is disabled, then it means at some tree level we
1995
* got multiple parents due to a mix of direct and indirect backrefs or
1996
* multiple leaves with file extent items pointing to the same data
1997
* extent. We have to invalidate the cache and cache only the sharedness
1998
* result for the levels where we got only one node/reference.
1999
*/
2000
if (!ctx->use_path_cache) {
2001
int i = 0;
2002
2003
level--;
2004
if (ret >= 0 && level >= 0) {
2005
bytenr = ctx->path_cache_entries[level].bytenr;
2006
ctx->use_path_cache = true;
2007
store_backref_shared_cache(ctx, root, bytenr, level, ret);
2008
i = level + 1;
2009
}
2010
2011
for ( ; i < BTRFS_MAX_LEVEL; i++)
2012
ctx->path_cache_entries[i].bytenr = 0;
2013
}
2014
2015
/*
2016
* Cache the sharedness result for the data extent if we know our inode
2017
* has more than 1 file extent item that refers to the data extent.
2018
*/
2019
if (ret >= 0 && shared.self_ref_count > 1) {
2020
int slot = ctx->prev_extents_cache_slot;
2021
2022
ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2023
ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2024
2025
slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2026
ctx->prev_extents_cache_slot = slot;
2027
}
2028
2029
out_trans:
2030
if (trans) {
2031
btrfs_put_tree_mod_seq(fs_info, &elem);
2032
btrfs_end_transaction(trans);
2033
} else {
2034
up_read(&fs_info->commit_root_sem);
2035
}
2036
out:
2037
ulist_release(&ctx->refs);
2038
ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2039
2040
return ret;
2041
}
2042
2043
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2044
u64 start_off, struct btrfs_path *path,
2045
struct btrfs_inode_extref **ret_extref,
2046
u64 *found_off)
2047
{
2048
int ret, slot;
2049
struct btrfs_key key;
2050
struct btrfs_key found_key;
2051
struct btrfs_inode_extref *extref;
2052
const struct extent_buffer *leaf;
2053
unsigned long ptr;
2054
2055
key.objectid = inode_objectid;
2056
key.type = BTRFS_INODE_EXTREF_KEY;
2057
key.offset = start_off;
2058
2059
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2060
if (ret < 0)
2061
return ret;
2062
2063
while (1) {
2064
leaf = path->nodes[0];
2065
slot = path->slots[0];
2066
if (slot >= btrfs_header_nritems(leaf)) {
2067
/*
2068
* If the item at offset is not found,
2069
* btrfs_search_slot will point us to the slot
2070
* where it should be inserted. In our case
2071
* that will be the slot directly before the
2072
* next INODE_REF_KEY_V2 item. In the case
2073
* that we're pointing to the last slot in a
2074
* leaf, we must move one leaf over.
2075
*/
2076
ret = btrfs_next_leaf(root, path);
2077
if (ret) {
2078
if (ret >= 1)
2079
ret = -ENOENT;
2080
break;
2081
}
2082
continue;
2083
}
2084
2085
btrfs_item_key_to_cpu(leaf, &found_key, slot);
2086
2087
/*
2088
* Check that we're still looking at an extended ref key for
2089
* this particular objectid. If we have different
2090
* objectid or type then there are no more to be found
2091
* in the tree and we can exit.
2092
*/
2093
ret = -ENOENT;
2094
if (found_key.objectid != inode_objectid)
2095
break;
2096
if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2097
break;
2098
2099
ret = 0;
2100
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2101
extref = (struct btrfs_inode_extref *)ptr;
2102
*ret_extref = extref;
2103
if (found_off)
2104
*found_off = found_key.offset;
2105
break;
2106
}
2107
2108
return ret;
2109
}
2110
2111
/*
2112
* this iterates to turn a name (from iref/extref) into a full filesystem path.
2113
* Elements of the path are separated by '/' and the path is guaranteed to be
2114
* 0-terminated. the path is only given within the current file system.
2115
* Therefore, it never starts with a '/'. the caller is responsible to provide
2116
* "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2117
* the start point of the resulting string is returned. this pointer is within
2118
* dest, normally.
2119
* in case the path buffer would overflow, the pointer is decremented further
2120
* as if output was written to the buffer, though no more output is actually
2121
* generated. that way, the caller can determine how much space would be
2122
* required for the path to fit into the buffer. in that case, the returned
2123
* value will be smaller than dest. callers must check this!
2124
*/
2125
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2126
u32 name_len, unsigned long name_off,
2127
struct extent_buffer *eb_in, u64 parent,
2128
char *dest, u32 size)
2129
{
2130
int slot;
2131
u64 next_inum;
2132
int ret;
2133
s64 bytes_left = ((s64)size) - 1;
2134
struct extent_buffer *eb = eb_in;
2135
struct btrfs_key found_key;
2136
struct btrfs_inode_ref *iref;
2137
2138
if (bytes_left >= 0)
2139
dest[bytes_left] = '\0';
2140
2141
while (1) {
2142
bytes_left -= name_len;
2143
if (bytes_left >= 0)
2144
read_extent_buffer(eb, dest + bytes_left,
2145
name_off, name_len);
2146
if (eb != eb_in) {
2147
if (!path->skip_locking)
2148
btrfs_tree_read_unlock(eb);
2149
free_extent_buffer(eb);
2150
}
2151
ret = btrfs_find_item(fs_root, path, parent, 0,
2152
BTRFS_INODE_REF_KEY, &found_key);
2153
if (ret > 0)
2154
ret = -ENOENT;
2155
if (ret)
2156
break;
2157
2158
next_inum = found_key.offset;
2159
2160
/* regular exit ahead */
2161
if (parent == next_inum)
2162
break;
2163
2164
slot = path->slots[0];
2165
eb = path->nodes[0];
2166
/* make sure we can use eb after releasing the path */
2167
if (eb != eb_in) {
2168
path->nodes[0] = NULL;
2169
path->locks[0] = 0;
2170
}
2171
btrfs_release_path(path);
2172
iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2173
2174
name_len = btrfs_inode_ref_name_len(eb, iref);
2175
name_off = (unsigned long)(iref + 1);
2176
2177
parent = next_inum;
2178
--bytes_left;
2179
if (bytes_left >= 0)
2180
dest[bytes_left] = '/';
2181
}
2182
2183
btrfs_release_path(path);
2184
2185
if (ret)
2186
return ERR_PTR(ret);
2187
2188
return dest + bytes_left;
2189
}
2190
2191
/*
2192
* this makes the path point to (logical EXTENT_ITEM *)
2193
* returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2194
* tree blocks and <0 on error.
2195
*/
2196
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2197
struct btrfs_path *path, struct btrfs_key *found_key,
2198
u64 *flags_ret)
2199
{
2200
struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2201
int ret;
2202
u64 flags;
2203
u64 size = 0;
2204
const struct extent_buffer *eb;
2205
struct btrfs_extent_item *ei;
2206
struct btrfs_key key;
2207
2208
key.objectid = logical;
2209
if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2210
key.type = BTRFS_METADATA_ITEM_KEY;
2211
else
2212
key.type = BTRFS_EXTENT_ITEM_KEY;
2213
key.offset = (u64)-1;
2214
2215
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2216
if (ret < 0)
2217
return ret;
2218
if (ret == 0) {
2219
/*
2220
* Key with offset -1 found, there would have to exist an extent
2221
* item with such offset, but this is out of the valid range.
2222
*/
2223
return -EUCLEAN;
2224
}
2225
2226
ret = btrfs_previous_extent_item(extent_root, path, 0);
2227
if (ret) {
2228
if (ret > 0)
2229
ret = -ENOENT;
2230
return ret;
2231
}
2232
btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2233
if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2234
size = fs_info->nodesize;
2235
else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2236
size = found_key->offset;
2237
2238
if (found_key->objectid > logical ||
2239
found_key->objectid + size <= logical) {
2240
btrfs_debug(fs_info,
2241
"logical %llu is not within any extent", logical);
2242
return -ENOENT;
2243
}
2244
2245
eb = path->nodes[0];
2246
2247
ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2248
flags = btrfs_extent_flags(eb, ei);
2249
2250
btrfs_debug(fs_info,
2251
"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2252
logical, logical - found_key->objectid, found_key->objectid,
2253
found_key->offset, flags, btrfs_item_size(eb, path->slots[0]));
2254
2255
WARN_ON(!flags_ret);
2256
if (flags_ret) {
2257
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2258
*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2259
else if (flags & BTRFS_EXTENT_FLAG_DATA)
2260
*flags_ret = BTRFS_EXTENT_FLAG_DATA;
2261
else
2262
BUG();
2263
return 0;
2264
}
2265
2266
return -EIO;
2267
}
2268
2269
/*
2270
* helper function to iterate extent inline refs. ptr must point to a 0 value
2271
* for the first call and may be modified. it is used to track state.
2272
* if more refs exist, 0 is returned and the next call to
2273
* get_extent_inline_ref must pass the modified ptr parameter to get the
2274
* next ref. after the last ref was processed, 1 is returned.
2275
* returns <0 on error
2276
*/
2277
static int get_extent_inline_ref(unsigned long *ptr,
2278
const struct extent_buffer *eb,
2279
const struct btrfs_key *key,
2280
const struct btrfs_extent_item *ei,
2281
u32 item_size,
2282
struct btrfs_extent_inline_ref **out_eiref,
2283
int *out_type)
2284
{
2285
unsigned long end;
2286
u64 flags;
2287
struct btrfs_tree_block_info *info;
2288
2289
if (!*ptr) {
2290
/* first call */
2291
flags = btrfs_extent_flags(eb, ei);
2292
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2293
if (key->type == BTRFS_METADATA_ITEM_KEY) {
2294
/* a skinny metadata extent */
2295
*out_eiref =
2296
(struct btrfs_extent_inline_ref *)(ei + 1);
2297
} else {
2298
WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2299
info = (struct btrfs_tree_block_info *)(ei + 1);
2300
*out_eiref =
2301
(struct btrfs_extent_inline_ref *)(info + 1);
2302
}
2303
} else {
2304
*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2305
}
2306
*ptr = (unsigned long)*out_eiref;
2307
if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2308
return -ENOENT;
2309
}
2310
2311
end = (unsigned long)ei + item_size;
2312
*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2313
*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2314
BTRFS_REF_TYPE_ANY);
2315
if (*out_type == BTRFS_REF_TYPE_INVALID)
2316
return -EUCLEAN;
2317
2318
*ptr += btrfs_extent_inline_ref_size(*out_type);
2319
WARN_ON(*ptr > end);
2320
if (*ptr == end)
2321
return 1; /* last */
2322
2323
return 0;
2324
}
2325
2326
/*
2327
* reads the tree block backref for an extent. tree level and root are returned
2328
* through out_level and out_root. ptr must point to a 0 value for the first
2329
* call and may be modified (see get_extent_inline_ref comment).
2330
* returns 0 if data was provided, 1 if there was no more data to provide or
2331
* <0 on error.
2332
*/
2333
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2334
struct btrfs_key *key, struct btrfs_extent_item *ei,
2335
u32 item_size, u64 *out_root, u8 *out_level)
2336
{
2337
int ret;
2338
int type;
2339
struct btrfs_extent_inline_ref *eiref;
2340
2341
if (*ptr == (unsigned long)-1)
2342
return 1;
2343
2344
while (1) {
2345
ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2346
&eiref, &type);
2347
if (ret < 0)
2348
return ret;
2349
2350
if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2351
type == BTRFS_SHARED_BLOCK_REF_KEY)
2352
break;
2353
2354
if (ret == 1)
2355
return 1;
2356
}
2357
2358
/* we can treat both ref types equally here */
2359
*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2360
2361
if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2362
struct btrfs_tree_block_info *info;
2363
2364
info = (struct btrfs_tree_block_info *)(ei + 1);
2365
*out_level = btrfs_tree_block_level(eb, info);
2366
} else {
2367
ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2368
*out_level = (u8)key->offset;
2369
}
2370
2371
if (ret == 1)
2372
*ptr = (unsigned long)-1;
2373
2374
return 0;
2375
}
2376
2377
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2378
struct extent_inode_elem *inode_list,
2379
u64 root, u64 extent_item_objectid,
2380
iterate_extent_inodes_t *iterate, void *ctx)
2381
{
2382
struct extent_inode_elem *eie;
2383
int ret = 0;
2384
2385
for (eie = inode_list; eie; eie = eie->next) {
2386
btrfs_debug(fs_info,
2387
"ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2388
extent_item_objectid, eie->inum,
2389
eie->offset, root);
2390
ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2391
if (ret) {
2392
btrfs_debug(fs_info,
2393
"stopping iteration for %llu due to ret=%d",
2394
extent_item_objectid, ret);
2395
break;
2396
}
2397
}
2398
2399
return ret;
2400
}
2401
2402
/*
2403
* calls iterate() for every inode that references the extent identified by
2404
* the given parameters.
2405
* when the iterator function returns a non-zero value, iteration stops.
2406
*/
2407
int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2408
bool search_commit_root,
2409
iterate_extent_inodes_t *iterate, void *user_ctx)
2410
{
2411
int ret;
2412
struct ulist *refs;
2413
struct ulist_node *ref_node;
2414
struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2415
struct ulist_iterator ref_uiter;
2416
2417
btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2418
ctx->bytenr);
2419
2420
ASSERT(ctx->trans == NULL);
2421
ASSERT(ctx->roots == NULL);
2422
2423
if (!search_commit_root) {
2424
struct btrfs_trans_handle *trans;
2425
2426
trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2427
if (IS_ERR(trans)) {
2428
if (PTR_ERR(trans) != -ENOENT &&
2429
PTR_ERR(trans) != -EROFS)
2430
return PTR_ERR(trans);
2431
trans = NULL;
2432
}
2433
ctx->trans = trans;
2434
}
2435
2436
if (ctx->trans) {
2437
btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2438
ctx->time_seq = seq_elem.seq;
2439
} else {
2440
down_read(&ctx->fs_info->commit_root_sem);
2441
}
2442
2443
ret = btrfs_find_all_leafs(ctx);
2444
if (ret)
2445
goto out;
2446
refs = ctx->refs;
2447
ctx->refs = NULL;
2448
2449
ULIST_ITER_INIT(&ref_uiter);
2450
while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2451
const u64 leaf_bytenr = ref_node->val;
2452
struct ulist_node *root_node;
2453
struct ulist_iterator root_uiter;
2454
struct extent_inode_elem *inode_list;
2455
2456
inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2457
2458
if (ctx->cache_lookup) {
2459
const u64 *root_ids;
2460
int root_count;
2461
bool cached;
2462
2463
cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2464
&root_ids, &root_count);
2465
if (cached) {
2466
for (int i = 0; i < root_count; i++) {
2467
ret = iterate_leaf_refs(ctx->fs_info,
2468
inode_list,
2469
root_ids[i],
2470
leaf_bytenr,
2471
iterate,
2472
user_ctx);
2473
if (ret)
2474
break;
2475
}
2476
continue;
2477
}
2478
}
2479
2480
if (!ctx->roots) {
2481
ctx->roots = ulist_alloc(GFP_NOFS);
2482
if (!ctx->roots) {
2483
ret = -ENOMEM;
2484
break;
2485
}
2486
}
2487
2488
ctx->bytenr = leaf_bytenr;
2489
ret = btrfs_find_all_roots_safe(ctx);
2490
if (ret)
2491
break;
2492
2493
if (ctx->cache_store)
2494
ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2495
2496
ULIST_ITER_INIT(&root_uiter);
2497
while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2498
btrfs_debug(ctx->fs_info,
2499
"root %llu references leaf %llu, data list %#llx",
2500
root_node->val, ref_node->val,
2501
ref_node->aux);
2502
ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2503
root_node->val, ctx->bytenr,
2504
iterate, user_ctx);
2505
}
2506
ulist_reinit(ctx->roots);
2507
}
2508
2509
free_leaf_list(refs);
2510
out:
2511
if (ctx->trans) {
2512
btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2513
btrfs_end_transaction(ctx->trans);
2514
ctx->trans = NULL;
2515
} else {
2516
up_read(&ctx->fs_info->commit_root_sem);
2517
}
2518
2519
ulist_free(ctx->roots);
2520
ctx->roots = NULL;
2521
2522
if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2523
ret = 0;
2524
2525
return ret;
2526
}
2527
2528
static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2529
{
2530
struct btrfs_data_container *inodes = ctx;
2531
const size_t c = 3 * sizeof(u64);
2532
2533
if (inodes->bytes_left >= c) {
2534
inodes->bytes_left -= c;
2535
inodes->val[inodes->elem_cnt] = inum;
2536
inodes->val[inodes->elem_cnt + 1] = offset;
2537
inodes->val[inodes->elem_cnt + 2] = root;
2538
inodes->elem_cnt += 3;
2539
} else {
2540
inodes->bytes_missing += c - inodes->bytes_left;
2541
inodes->bytes_left = 0;
2542
inodes->elem_missed += 3;
2543
}
2544
2545
return 0;
2546
}
2547
2548
int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2549
void *ctx, bool ignore_offset)
2550
{
2551
struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2552
int ret;
2553
u64 flags = 0;
2554
struct btrfs_key found_key;
2555
struct btrfs_path *path;
2556
2557
path = btrfs_alloc_path();
2558
if (!path)
2559
return -ENOMEM;
2560
2561
ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2562
btrfs_free_path(path);
2563
if (ret < 0)
2564
return ret;
2565
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2566
return -EINVAL;
2567
2568
walk_ctx.bytenr = found_key.objectid;
2569
if (ignore_offset)
2570
walk_ctx.ignore_extent_item_pos = true;
2571
else
2572
walk_ctx.extent_item_pos = logical - found_key.objectid;
2573
walk_ctx.fs_info = fs_info;
2574
2575
return iterate_extent_inodes(&walk_ctx, false, build_ino_list, ctx);
2576
}
2577
2578
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2579
struct extent_buffer *eb, struct inode_fs_paths *ipath);
2580
2581
static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2582
{
2583
int ret = 0;
2584
int slot;
2585
u32 cur;
2586
u32 len;
2587
u32 name_len;
2588
u64 parent = 0;
2589
int found = 0;
2590
struct btrfs_root *fs_root = ipath->fs_root;
2591
struct btrfs_path *path = ipath->btrfs_path;
2592
struct extent_buffer *eb;
2593
struct btrfs_inode_ref *iref;
2594
struct btrfs_key found_key;
2595
2596
while (!ret) {
2597
ret = btrfs_find_item(fs_root, path, inum,
2598
parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2599
&found_key);
2600
2601
if (ret < 0)
2602
break;
2603
if (ret) {
2604
ret = found ? 0 : -ENOENT;
2605
break;
2606
}
2607
++found;
2608
2609
parent = found_key.offset;
2610
slot = path->slots[0];
2611
eb = btrfs_clone_extent_buffer(path->nodes[0]);
2612
if (!eb) {
2613
ret = -ENOMEM;
2614
break;
2615
}
2616
btrfs_release_path(path);
2617
2618
iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2619
2620
for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2621
name_len = btrfs_inode_ref_name_len(eb, iref);
2622
/* path must be released before calling iterate()! */
2623
btrfs_debug(fs_root->fs_info,
2624
"following ref at offset %u for inode %llu in tree %llu",
2625
cur, found_key.objectid,
2626
btrfs_root_id(fs_root));
2627
ret = inode_to_path(parent, name_len,
2628
(unsigned long)(iref + 1), eb, ipath);
2629
if (ret)
2630
break;
2631
len = sizeof(*iref) + name_len;
2632
iref = (struct btrfs_inode_ref *)((char *)iref + len);
2633
}
2634
free_extent_buffer(eb);
2635
}
2636
2637
btrfs_release_path(path);
2638
2639
return ret;
2640
}
2641
2642
static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2643
{
2644
int ret;
2645
int slot;
2646
u64 offset = 0;
2647
u64 parent;
2648
int found = 0;
2649
struct btrfs_root *fs_root = ipath->fs_root;
2650
struct btrfs_path *path = ipath->btrfs_path;
2651
struct extent_buffer *eb;
2652
struct btrfs_inode_extref *extref;
2653
u32 item_size;
2654
u32 cur_offset;
2655
unsigned long ptr;
2656
2657
while (1) {
2658
ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2659
&offset);
2660
if (ret < 0)
2661
break;
2662
if (ret) {
2663
ret = found ? 0 : -ENOENT;
2664
break;
2665
}
2666
++found;
2667
2668
slot = path->slots[0];
2669
eb = btrfs_clone_extent_buffer(path->nodes[0]);
2670
if (!eb) {
2671
ret = -ENOMEM;
2672
break;
2673
}
2674
btrfs_release_path(path);
2675
2676
item_size = btrfs_item_size(eb, slot);
2677
ptr = btrfs_item_ptr_offset(eb, slot);
2678
cur_offset = 0;
2679
2680
while (cur_offset < item_size) {
2681
u32 name_len;
2682
2683
extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2684
parent = btrfs_inode_extref_parent(eb, extref);
2685
name_len = btrfs_inode_extref_name_len(eb, extref);
2686
ret = inode_to_path(parent, name_len,
2687
(unsigned long)&extref->name, eb, ipath);
2688
if (ret)
2689
break;
2690
2691
cur_offset += btrfs_inode_extref_name_len(eb, extref);
2692
cur_offset += sizeof(*extref);
2693
}
2694
free_extent_buffer(eb);
2695
2696
offset++;
2697
}
2698
2699
btrfs_release_path(path);
2700
2701
return ret;
2702
}
2703
2704
/*
2705
* returns 0 if the path could be dumped (probably truncated)
2706
* returns <0 in case of an error
2707
*/
2708
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2709
struct extent_buffer *eb, struct inode_fs_paths *ipath)
2710
{
2711
char *fspath;
2712
char *fspath_min;
2713
int i = ipath->fspath->elem_cnt;
2714
const int s_ptr = sizeof(char *);
2715
u32 bytes_left;
2716
2717
bytes_left = ipath->fspath->bytes_left > s_ptr ?
2718
ipath->fspath->bytes_left - s_ptr : 0;
2719
2720
fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2721
fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2722
name_off, eb, inum, fspath_min, bytes_left);
2723
if (IS_ERR(fspath))
2724
return PTR_ERR(fspath);
2725
2726
if (fspath > fspath_min) {
2727
ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2728
++ipath->fspath->elem_cnt;
2729
ipath->fspath->bytes_left = fspath - fspath_min;
2730
} else {
2731
++ipath->fspath->elem_missed;
2732
ipath->fspath->bytes_missing += fspath_min - fspath;
2733
ipath->fspath->bytes_left = 0;
2734
}
2735
2736
return 0;
2737
}
2738
2739
/*
2740
* this dumps all file system paths to the inode into the ipath struct, provided
2741
* is has been created large enough. each path is zero-terminated and accessed
2742
* from ipath->fspath->val[i].
2743
* when it returns, there are ipath->fspath->elem_cnt number of paths available
2744
* in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2745
* number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2746
* it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2747
* have been needed to return all paths.
2748
*/
2749
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2750
{
2751
int ret;
2752
int found_refs = 0;
2753
2754
ret = iterate_inode_refs(inum, ipath);
2755
if (!ret)
2756
++found_refs;
2757
else if (ret != -ENOENT)
2758
return ret;
2759
2760
ret = iterate_inode_extrefs(inum, ipath);
2761
if (ret == -ENOENT && found_refs)
2762
return 0;
2763
2764
return ret;
2765
}
2766
2767
struct btrfs_data_container *init_data_container(u32 total_bytes)
2768
{
2769
struct btrfs_data_container *data;
2770
size_t alloc_bytes;
2771
2772
alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2773
data = kvzalloc(alloc_bytes, GFP_KERNEL);
2774
if (!data)
2775
return ERR_PTR(-ENOMEM);
2776
2777
if (total_bytes >= sizeof(*data))
2778
data->bytes_left = total_bytes - sizeof(*data);
2779
else
2780
data->bytes_missing = sizeof(*data) - total_bytes;
2781
2782
return data;
2783
}
2784
2785
/*
2786
* allocates space to return multiple file system paths for an inode.
2787
* total_bytes to allocate are passed, note that space usable for actual path
2788
* information will be total_bytes - sizeof(struct inode_fs_paths).
2789
* the returned pointer must be freed with free_ipath() in the end.
2790
*/
2791
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2792
struct btrfs_path *path)
2793
{
2794
struct inode_fs_paths *ifp;
2795
struct btrfs_data_container *fspath;
2796
2797
fspath = init_data_container(total_bytes);
2798
if (IS_ERR(fspath))
2799
return ERR_CAST(fspath);
2800
2801
ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2802
if (!ifp) {
2803
kvfree(fspath);
2804
return ERR_PTR(-ENOMEM);
2805
}
2806
2807
ifp->btrfs_path = path;
2808
ifp->fspath = fspath;
2809
ifp->fs_root = fs_root;
2810
2811
return ifp;
2812
}
2813
2814
void free_ipath(struct inode_fs_paths *ipath)
2815
{
2816
if (!ipath)
2817
return;
2818
kvfree(ipath->fspath);
2819
kfree(ipath);
2820
}
2821
2822
struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2823
{
2824
struct btrfs_backref_iter *ret;
2825
2826
ret = kzalloc(sizeof(*ret), GFP_NOFS);
2827
if (!ret)
2828
return NULL;
2829
2830
ret->path = btrfs_alloc_path();
2831
if (!ret->path) {
2832
kfree(ret);
2833
return NULL;
2834
}
2835
2836
/* Current backref iterator only supports iteration in commit root */
2837
ret->path->search_commit_root = 1;
2838
ret->path->skip_locking = 1;
2839
ret->fs_info = fs_info;
2840
2841
return ret;
2842
}
2843
2844
static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
2845
{
2846
iter->bytenr = 0;
2847
iter->item_ptr = 0;
2848
iter->cur_ptr = 0;
2849
iter->end_ptr = 0;
2850
btrfs_release_path(iter->path);
2851
memset(&iter->cur_key, 0, sizeof(iter->cur_key));
2852
}
2853
2854
int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2855
{
2856
struct btrfs_fs_info *fs_info = iter->fs_info;
2857
struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2858
struct btrfs_path *path = iter->path;
2859
struct btrfs_extent_item *ei;
2860
struct btrfs_key key;
2861
int ret;
2862
2863
key.objectid = bytenr;
2864
key.type = BTRFS_METADATA_ITEM_KEY;
2865
key.offset = (u64)-1;
2866
iter->bytenr = bytenr;
2867
2868
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2869
if (ret < 0)
2870
return ret;
2871
if (ret == 0) {
2872
/*
2873
* Key with offset -1 found, there would have to exist an extent
2874
* item with such offset, but this is out of the valid range.
2875
*/
2876
ret = -EUCLEAN;
2877
goto release;
2878
}
2879
if (path->slots[0] == 0) {
2880
DEBUG_WARN();
2881
ret = -EUCLEAN;
2882
goto release;
2883
}
2884
path->slots[0]--;
2885
2886
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2887
if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2888
key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2889
ret = -ENOENT;
2890
goto release;
2891
}
2892
memcpy(&iter->cur_key, &key, sizeof(key));
2893
iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2894
path->slots[0]);
2895
iter->end_ptr = (u32)(iter->item_ptr +
2896
btrfs_item_size(path->nodes[0], path->slots[0]));
2897
ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2898
struct btrfs_extent_item);
2899
2900
/*
2901
* Only support iteration on tree backref yet.
2902
*
2903
* This is an extra precaution for non skinny-metadata, where
2904
* EXTENT_ITEM is also used for tree blocks, that we can only use
2905
* extent flags to determine if it's a tree block.
2906
*/
2907
if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2908
ret = -ENOTSUPP;
2909
goto release;
2910
}
2911
iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2912
2913
/* If there is no inline backref, go search for keyed backref */
2914
if (iter->cur_ptr >= iter->end_ptr) {
2915
ret = btrfs_next_item(extent_root, path);
2916
2917
/* No inline nor keyed ref */
2918
if (ret > 0) {
2919
ret = -ENOENT;
2920
goto release;
2921
}
2922
if (ret < 0)
2923
goto release;
2924
2925
btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2926
path->slots[0]);
2927
if (iter->cur_key.objectid != bytenr ||
2928
(iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2929
iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2930
ret = -ENOENT;
2931
goto release;
2932
}
2933
iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2934
path->slots[0]);
2935
iter->item_ptr = iter->cur_ptr;
2936
iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2937
path->nodes[0], path->slots[0]));
2938
}
2939
2940
return 0;
2941
release:
2942
btrfs_backref_iter_release(iter);
2943
return ret;
2944
}
2945
2946
static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter)
2947
{
2948
if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
2949
iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
2950
return true;
2951
return false;
2952
}
2953
2954
/*
2955
* Go to the next backref item of current bytenr, can be either inlined or
2956
* keyed.
2957
*
2958
* Caller needs to check whether it's inline ref or not by iter->cur_key.
2959
*
2960
* Return 0 if we get next backref without problem.
2961
* Return >0 if there is no extra backref for this bytenr.
2962
* Return <0 if there is something wrong happened.
2963
*/
2964
int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2965
{
2966
struct extent_buffer *eb = iter->path->nodes[0];
2967
struct btrfs_root *extent_root;
2968
struct btrfs_path *path = iter->path;
2969
struct btrfs_extent_inline_ref *iref;
2970
int ret;
2971
u32 size;
2972
2973
if (btrfs_backref_iter_is_inline_ref(iter)) {
2974
/* We're still inside the inline refs */
2975
ASSERT(iter->cur_ptr < iter->end_ptr);
2976
2977
if (btrfs_backref_has_tree_block_info(iter)) {
2978
/* First tree block info */
2979
size = sizeof(struct btrfs_tree_block_info);
2980
} else {
2981
/* Use inline ref type to determine the size */
2982
int type;
2983
2984
iref = (struct btrfs_extent_inline_ref *)
2985
((unsigned long)iter->cur_ptr);
2986
type = btrfs_extent_inline_ref_type(eb, iref);
2987
2988
size = btrfs_extent_inline_ref_size(type);
2989
}
2990
iter->cur_ptr += size;
2991
if (iter->cur_ptr < iter->end_ptr)
2992
return 0;
2993
2994
/* All inline items iterated, fall through */
2995
}
2996
2997
/* We're at keyed items, there is no inline item, go to the next one */
2998
extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2999
ret = btrfs_next_item(extent_root, iter->path);
3000
if (ret)
3001
return ret;
3002
3003
btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
3004
if (iter->cur_key.objectid != iter->bytenr ||
3005
(iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
3006
iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
3007
return 1;
3008
iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
3009
path->slots[0]);
3010
iter->cur_ptr = iter->item_ptr;
3011
iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
3012
path->slots[0]);
3013
return 0;
3014
}
3015
3016
void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3017
struct btrfs_backref_cache *cache, bool is_reloc)
3018
{
3019
int i;
3020
3021
cache->rb_root = RB_ROOT;
3022
for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3023
INIT_LIST_HEAD(&cache->pending[i]);
3024
INIT_LIST_HEAD(&cache->pending_edge);
3025
INIT_LIST_HEAD(&cache->useless_node);
3026
cache->fs_info = fs_info;
3027
cache->is_reloc = is_reloc;
3028
}
3029
3030
struct btrfs_backref_node *btrfs_backref_alloc_node(
3031
struct btrfs_backref_cache *cache, u64 bytenr, int level)
3032
{
3033
struct btrfs_backref_node *node;
3034
3035
ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3036
node = kzalloc(sizeof(*node), GFP_NOFS);
3037
if (!node)
3038
return node;
3039
3040
INIT_LIST_HEAD(&node->list);
3041
INIT_LIST_HEAD(&node->upper);
3042
INIT_LIST_HEAD(&node->lower);
3043
RB_CLEAR_NODE(&node->rb_node);
3044
cache->nr_nodes++;
3045
node->level = level;
3046
node->bytenr = bytenr;
3047
3048
return node;
3049
}
3050
3051
void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
3052
struct btrfs_backref_node *node)
3053
{
3054
if (node) {
3055
ASSERT(list_empty(&node->list));
3056
ASSERT(list_empty(&node->lower));
3057
ASSERT(node->eb == NULL);
3058
cache->nr_nodes--;
3059
btrfs_put_root(node->root);
3060
kfree(node);
3061
}
3062
}
3063
3064
struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3065
struct btrfs_backref_cache *cache)
3066
{
3067
struct btrfs_backref_edge *edge;
3068
3069
edge = kzalloc(sizeof(*edge), GFP_NOFS);
3070
if (edge)
3071
cache->nr_edges++;
3072
return edge;
3073
}
3074
3075
void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
3076
struct btrfs_backref_edge *edge)
3077
{
3078
if (edge) {
3079
cache->nr_edges--;
3080
kfree(edge);
3081
}
3082
}
3083
3084
void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node)
3085
{
3086
if (node->locked) {
3087
btrfs_tree_unlock(node->eb);
3088
node->locked = 0;
3089
}
3090
}
3091
3092
void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node)
3093
{
3094
if (node->eb) {
3095
btrfs_backref_unlock_node_buffer(node);
3096
free_extent_buffer(node->eb);
3097
node->eb = NULL;
3098
}
3099
}
3100
3101
/*
3102
* Drop the backref node from cache without cleaning up its children
3103
* edges.
3104
*
3105
* This can only be called on node without parent edges.
3106
* The children edges are still kept as is.
3107
*/
3108
void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
3109
struct btrfs_backref_node *node)
3110
{
3111
ASSERT(list_empty(&node->upper));
3112
3113
btrfs_backref_drop_node_buffer(node);
3114
list_del_init(&node->list);
3115
list_del_init(&node->lower);
3116
if (!RB_EMPTY_NODE(&node->rb_node))
3117
rb_erase(&node->rb_node, &tree->rb_root);
3118
btrfs_backref_free_node(tree, node);
3119
}
3120
3121
/*
3122
* Drop the backref node from cache, also cleaning up all its
3123
* upper edges and any uncached nodes in the path.
3124
*
3125
* This cleanup happens bottom up, thus the node should either
3126
* be the lowest node in the cache or a detached node.
3127
*/
3128
void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3129
struct btrfs_backref_node *node)
3130
{
3131
struct btrfs_backref_edge *edge;
3132
3133
if (!node)
3134
return;
3135
3136
while (!list_empty(&node->upper)) {
3137
edge = list_first_entry(&node->upper, struct btrfs_backref_edge,
3138
list[LOWER]);
3139
list_del(&edge->list[LOWER]);
3140
list_del(&edge->list[UPPER]);
3141
btrfs_backref_free_edge(cache, edge);
3142
}
3143
3144
btrfs_backref_drop_node(cache, node);
3145
}
3146
3147
/*
3148
* Release all nodes/edges from current cache
3149
*/
3150
void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3151
{
3152
struct btrfs_backref_node *node;
3153
3154
while ((node = rb_entry_safe(rb_first(&cache->rb_root),
3155
struct btrfs_backref_node, rb_node)))
3156
btrfs_backref_cleanup_node(cache, node);
3157
3158
ASSERT(list_empty(&cache->pending_edge));
3159
ASSERT(list_empty(&cache->useless_node));
3160
ASSERT(!cache->nr_nodes);
3161
ASSERT(!cache->nr_edges);
3162
}
3163
3164
static void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
3165
struct btrfs_backref_node *lower,
3166
struct btrfs_backref_node *upper)
3167
{
3168
ASSERT(upper && lower && upper->level == lower->level + 1);
3169
edge->node[LOWER] = lower;
3170
edge->node[UPPER] = upper;
3171
list_add_tail(&edge->list[LOWER], &lower->upper);
3172
}
3173
/*
3174
* Handle direct tree backref
3175
*
3176
* Direct tree backref means, the backref item shows its parent bytenr
3177
* directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3178
*
3179
* @ref_key: The converted backref key.
3180
* For keyed backref, it's the item key.
3181
* For inlined backref, objectid is the bytenr,
3182
* type is btrfs_inline_ref_type, offset is
3183
* btrfs_inline_ref_offset.
3184
*/
3185
static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3186
struct btrfs_key *ref_key,
3187
struct btrfs_backref_node *cur)
3188
{
3189
struct btrfs_backref_edge *edge;
3190
struct btrfs_backref_node *upper;
3191
struct rb_node *rb_node;
3192
3193
ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3194
3195
/* Only reloc root uses backref pointing to itself */
3196
if (ref_key->objectid == ref_key->offset) {
3197
struct btrfs_root *root;
3198
3199
cur->is_reloc_root = 1;
3200
/* Only reloc backref cache cares about a specific root */
3201
if (cache->is_reloc) {
3202
root = find_reloc_root(cache->fs_info, cur->bytenr);
3203
if (!root)
3204
return -ENOENT;
3205
cur->root = root;
3206
} else {
3207
/*
3208
* For generic purpose backref cache, reloc root node
3209
* is useless.
3210
*/
3211
list_add(&cur->list, &cache->useless_node);
3212
}
3213
return 0;
3214
}
3215
3216
edge = btrfs_backref_alloc_edge(cache);
3217
if (!edge)
3218
return -ENOMEM;
3219
3220
rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3221
if (!rb_node) {
3222
/* Parent node not yet cached */
3223
upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3224
cur->level + 1);
3225
if (!upper) {
3226
btrfs_backref_free_edge(cache, edge);
3227
return -ENOMEM;
3228
}
3229
3230
/*
3231
* Backrefs for the upper level block isn't cached, add the
3232
* block to pending list
3233
*/
3234
list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3235
} else {
3236
/* Parent node already cached */
3237
upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3238
ASSERT(upper->checked);
3239
INIT_LIST_HEAD(&edge->list[UPPER]);
3240
}
3241
btrfs_backref_link_edge(edge, cur, upper);
3242
return 0;
3243
}
3244
3245
/*
3246
* Handle indirect tree backref
3247
*
3248
* Indirect tree backref means, we only know which tree the node belongs to.
3249
* We still need to do a tree search to find out the parents. This is for
3250
* TREE_BLOCK_REF backref (keyed or inlined).
3251
*
3252
* @trans: Transaction handle.
3253
* @ref_key: The same as @ref_key in handle_direct_tree_backref()
3254
* @tree_key: The first key of this tree block.
3255
* @path: A clean (released) path, to avoid allocating path every time
3256
* the function get called.
3257
*/
3258
static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3259
struct btrfs_backref_cache *cache,
3260
struct btrfs_path *path,
3261
struct btrfs_key *ref_key,
3262
struct btrfs_key *tree_key,
3263
struct btrfs_backref_node *cur)
3264
{
3265
struct btrfs_fs_info *fs_info = cache->fs_info;
3266
struct btrfs_backref_node *upper;
3267
struct btrfs_backref_node *lower;
3268
struct btrfs_backref_edge *edge;
3269
struct extent_buffer *eb;
3270
struct btrfs_root *root;
3271
struct rb_node *rb_node;
3272
int level;
3273
bool need_check = true;
3274
int ret;
3275
3276
root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3277
if (IS_ERR(root))
3278
return PTR_ERR(root);
3279
3280
/* We shouldn't be using backref cache for non-shareable roots. */
3281
if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
3282
btrfs_put_root(root);
3283
return -EUCLEAN;
3284
}
3285
3286
if (btrfs_root_level(&root->root_item) == cur->level) {
3287
/* Tree root */
3288
ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3289
/*
3290
* For reloc backref cache, we may ignore reloc root. But for
3291
* general purpose backref cache, we can't rely on
3292
* btrfs_should_ignore_reloc_root() as it may conflict with
3293
* current running relocation and lead to missing root.
3294
*
3295
* For general purpose backref cache, reloc root detection is
3296
* completely relying on direct backref (key->offset is parent
3297
* bytenr), thus only do such check for reloc cache.
3298
*/
3299
if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3300
btrfs_put_root(root);
3301
list_add(&cur->list, &cache->useless_node);
3302
} else {
3303
cur->root = root;
3304
}
3305
return 0;
3306
}
3307
3308
level = cur->level + 1;
3309
3310
/* Search the tree to find parent blocks referring to the block */
3311
path->search_commit_root = 1;
3312
path->skip_locking = 1;
3313
path->lowest_level = level;
3314
ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3315
path->lowest_level = 0;
3316
if (ret < 0) {
3317
btrfs_put_root(root);
3318
return ret;
3319
}
3320
if (ret > 0 && path->slots[level] > 0)
3321
path->slots[level]--;
3322
3323
eb = path->nodes[level];
3324
if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3325
btrfs_err(fs_info,
3326
"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3327
cur->bytenr, level - 1, btrfs_root_id(root),
3328
tree_key->objectid, tree_key->type, tree_key->offset);
3329
btrfs_put_root(root);
3330
ret = -ENOENT;
3331
goto out;
3332
}
3333
lower = cur;
3334
3335
/* Add all nodes and edges in the path */
3336
for (; level < BTRFS_MAX_LEVEL; level++) {
3337
if (!path->nodes[level]) {
3338
ASSERT(btrfs_root_bytenr(&root->root_item) ==
3339
lower->bytenr);
3340
/* Same as previous should_ignore_reloc_root() call */
3341
if (btrfs_should_ignore_reloc_root(root) &&
3342
cache->is_reloc) {
3343
btrfs_put_root(root);
3344
list_add(&lower->list, &cache->useless_node);
3345
} else {
3346
lower->root = root;
3347
}
3348
break;
3349
}
3350
3351
edge = btrfs_backref_alloc_edge(cache);
3352
if (!edge) {
3353
btrfs_put_root(root);
3354
ret = -ENOMEM;
3355
goto out;
3356
}
3357
3358
eb = path->nodes[level];
3359
rb_node = rb_simple_search(&cache->rb_root, eb->start);
3360
if (!rb_node) {
3361
upper = btrfs_backref_alloc_node(cache, eb->start,
3362
lower->level + 1);
3363
if (!upper) {
3364
btrfs_put_root(root);
3365
btrfs_backref_free_edge(cache, edge);
3366
ret = -ENOMEM;
3367
goto out;
3368
}
3369
upper->owner = btrfs_header_owner(eb);
3370
3371
/* We shouldn't be using backref cache for non shareable roots. */
3372
if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
3373
btrfs_put_root(root);
3374
btrfs_backref_free_edge(cache, edge);
3375
btrfs_backref_free_node(cache, upper);
3376
ret = -EUCLEAN;
3377
goto out;
3378
}
3379
3380
/*
3381
* If we know the block isn't shared we can avoid
3382
* checking its backrefs.
3383
*/
3384
if (btrfs_block_can_be_shared(trans, root, eb))
3385
upper->checked = 0;
3386
else
3387
upper->checked = 1;
3388
3389
/*
3390
* Add the block to pending list if we need to check its
3391
* backrefs, we only do this once while walking up a
3392
* tree as we will catch anything else later on.
3393
*/
3394
if (!upper->checked && need_check) {
3395
need_check = false;
3396
list_add_tail(&edge->list[UPPER],
3397
&cache->pending_edge);
3398
} else {
3399
if (upper->checked)
3400
need_check = true;
3401
INIT_LIST_HEAD(&edge->list[UPPER]);
3402
}
3403
} else {
3404
upper = rb_entry(rb_node, struct btrfs_backref_node,
3405
rb_node);
3406
ASSERT(upper->checked);
3407
INIT_LIST_HEAD(&edge->list[UPPER]);
3408
if (!upper->owner)
3409
upper->owner = btrfs_header_owner(eb);
3410
}
3411
btrfs_backref_link_edge(edge, lower, upper);
3412
3413
if (rb_node) {
3414
btrfs_put_root(root);
3415
break;
3416
}
3417
lower = upper;
3418
upper = NULL;
3419
}
3420
out:
3421
btrfs_release_path(path);
3422
return ret;
3423
}
3424
3425
/*
3426
* Add backref node @cur into @cache.
3427
*
3428
* NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3429
* links aren't yet bi-directional. Needs to finish such links.
3430
* Use btrfs_backref_finish_upper_links() to finish such linkage.
3431
*
3432
* @trans: Transaction handle.
3433
* @path: Released path for indirect tree backref lookup
3434
* @iter: Released backref iter for extent tree search
3435
* @node_key: The first key of the tree block
3436
*/
3437
int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3438
struct btrfs_backref_cache *cache,
3439
struct btrfs_path *path,
3440
struct btrfs_backref_iter *iter,
3441
struct btrfs_key *node_key,
3442
struct btrfs_backref_node *cur)
3443
{
3444
struct btrfs_backref_edge *edge;
3445
struct btrfs_backref_node *exist;
3446
int ret;
3447
3448
ret = btrfs_backref_iter_start(iter, cur->bytenr);
3449
if (ret < 0)
3450
return ret;
3451
/*
3452
* We skip the first btrfs_tree_block_info, as we don't use the key
3453
* stored in it, but fetch it from the tree block
3454
*/
3455
if (btrfs_backref_has_tree_block_info(iter)) {
3456
ret = btrfs_backref_iter_next(iter);
3457
if (ret < 0)
3458
goto out;
3459
/* No extra backref? This means the tree block is corrupted */
3460
if (ret > 0) {
3461
ret = -EUCLEAN;
3462
goto out;
3463
}
3464
}
3465
WARN_ON(cur->checked);
3466
if (!list_empty(&cur->upper)) {
3467
/*
3468
* The backref was added previously when processing backref of
3469
* type BTRFS_TREE_BLOCK_REF_KEY
3470
*/
3471
ASSERT(list_is_singular(&cur->upper));
3472
edge = list_first_entry(&cur->upper, struct btrfs_backref_edge,
3473
list[LOWER]);
3474
ASSERT(list_empty(&edge->list[UPPER]));
3475
exist = edge->node[UPPER];
3476
/*
3477
* Add the upper level block to pending list if we need check
3478
* its backrefs
3479
*/
3480
if (!exist->checked)
3481
list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3482
} else {
3483
exist = NULL;
3484
}
3485
3486
for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3487
struct extent_buffer *eb;
3488
struct btrfs_key key;
3489
int type;
3490
3491
cond_resched();
3492
eb = iter->path->nodes[0];
3493
3494
key.objectid = iter->bytenr;
3495
if (btrfs_backref_iter_is_inline_ref(iter)) {
3496
struct btrfs_extent_inline_ref *iref;
3497
3498
/* Update key for inline backref */
3499
iref = (struct btrfs_extent_inline_ref *)
3500
((unsigned long)iter->cur_ptr);
3501
type = btrfs_get_extent_inline_ref_type(eb, iref,
3502
BTRFS_REF_TYPE_BLOCK);
3503
if (type == BTRFS_REF_TYPE_INVALID) {
3504
ret = -EUCLEAN;
3505
goto out;
3506
}
3507
key.type = type;
3508
key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3509
} else {
3510
key.type = iter->cur_key.type;
3511
key.offset = iter->cur_key.offset;
3512
}
3513
3514
/*
3515
* Parent node found and matches current inline ref, no need to
3516
* rebuild this node for this inline ref
3517
*/
3518
if (exist &&
3519
((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3520
exist->owner == key.offset) ||
3521
(key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3522
exist->bytenr == key.offset))) {
3523
exist = NULL;
3524
continue;
3525
}
3526
3527
/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3528
if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3529
ret = handle_direct_tree_backref(cache, &key, cur);
3530
if (ret < 0)
3531
goto out;
3532
} else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3533
/*
3534
* key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3535
* offset means the root objectid. We need to search
3536
* the tree to get its parent bytenr.
3537
*/
3538
ret = handle_indirect_tree_backref(trans, cache, path,
3539
&key, node_key, cur);
3540
if (ret < 0)
3541
goto out;
3542
}
3543
/*
3544
* Unrecognized tree backref items (if it can pass tree-checker)
3545
* would be ignored.
3546
*/
3547
}
3548
ret = 0;
3549
cur->checked = 1;
3550
WARN_ON(exist);
3551
out:
3552
btrfs_backref_iter_release(iter);
3553
return ret;
3554
}
3555
3556
/*
3557
* Finish the upwards linkage created by btrfs_backref_add_tree_node()
3558
*/
3559
int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3560
struct btrfs_backref_node *start)
3561
{
3562
struct list_head *useless_node = &cache->useless_node;
3563
struct btrfs_backref_edge *edge;
3564
struct rb_node *rb_node;
3565
LIST_HEAD(pending_edge);
3566
3567
ASSERT(start->checked);
3568
3569
rb_node = rb_simple_insert(&cache->rb_root, &start->simple_node);
3570
if (rb_node)
3571
btrfs_backref_panic(cache->fs_info, start->bytenr, -EEXIST);
3572
3573
/*
3574
* Use breadth first search to iterate all related edges.
3575
*
3576
* The starting points are all the edges of this node
3577
*/
3578
list_for_each_entry(edge, &start->upper, list[LOWER])
3579
list_add_tail(&edge->list[UPPER], &pending_edge);
3580
3581
while (!list_empty(&pending_edge)) {
3582
struct btrfs_backref_node *upper;
3583
struct btrfs_backref_node *lower;
3584
3585
edge = list_first_entry(&pending_edge,
3586
struct btrfs_backref_edge, list[UPPER]);
3587
list_del_init(&edge->list[UPPER]);
3588
upper = edge->node[UPPER];
3589
lower = edge->node[LOWER];
3590
3591
/* Parent is detached, no need to keep any edges */
3592
if (upper->detached) {
3593
list_del(&edge->list[LOWER]);
3594
btrfs_backref_free_edge(cache, edge);
3595
3596
/* Lower node is orphan, queue for cleanup */
3597
if (list_empty(&lower->upper))
3598
list_add(&lower->list, useless_node);
3599
continue;
3600
}
3601
3602
/*
3603
* All new nodes added in current build_backref_tree() haven't
3604
* been linked to the cache rb tree.
3605
* So if we have upper->rb_node populated, this means a cache
3606
* hit. We only need to link the edge, as @upper and all its
3607
* parents have already been linked.
3608
*/
3609
if (!RB_EMPTY_NODE(&upper->rb_node)) {
3610
list_add_tail(&edge->list[UPPER], &upper->lower);
3611
continue;
3612
}
3613
3614
/* Sanity check, we shouldn't have any unchecked nodes */
3615
if (!upper->checked) {
3616
DEBUG_WARN("we should not have any unchecked nodes");
3617
return -EUCLEAN;
3618
}
3619
3620
rb_node = rb_simple_insert(&cache->rb_root, &upper->simple_node);
3621
if (unlikely(rb_node)) {
3622
btrfs_backref_panic(cache->fs_info, upper->bytenr, -EEXIST);
3623
return -EUCLEAN;
3624
}
3625
3626
list_add_tail(&edge->list[UPPER], &upper->lower);
3627
3628
/*
3629
* Also queue all the parent edges of this uncached node
3630
* to finish the upper linkage
3631
*/
3632
list_for_each_entry(edge, &upper->upper, list[LOWER])
3633
list_add_tail(&edge->list[UPPER], &pending_edge);
3634
}
3635
return 0;
3636
}
3637
3638
void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3639
struct btrfs_backref_node *node)
3640
{
3641
struct btrfs_backref_node *lower;
3642
struct btrfs_backref_node *upper;
3643
struct btrfs_backref_edge *edge;
3644
3645
while (!list_empty(&cache->useless_node)) {
3646
lower = list_first_entry(&cache->useless_node,
3647
struct btrfs_backref_node, list);
3648
list_del_init(&lower->list);
3649
}
3650
while (!list_empty(&cache->pending_edge)) {
3651
edge = list_first_entry(&cache->pending_edge,
3652
struct btrfs_backref_edge, list[UPPER]);
3653
list_del(&edge->list[UPPER]);
3654
list_del(&edge->list[LOWER]);
3655
lower = edge->node[LOWER];
3656
upper = edge->node[UPPER];
3657
btrfs_backref_free_edge(cache, edge);
3658
3659
/*
3660
* Lower is no longer linked to any upper backref nodes and
3661
* isn't in the cache, we can free it ourselves.
3662
*/
3663
if (list_empty(&lower->upper) &&
3664
RB_EMPTY_NODE(&lower->rb_node))
3665
list_add(&lower->list, &cache->useless_node);
3666
3667
if (!RB_EMPTY_NODE(&upper->rb_node))
3668
continue;
3669
3670
/* Add this guy's upper edges to the list to process */
3671
list_for_each_entry(edge, &upper->upper, list[LOWER])
3672
list_add_tail(&edge->list[UPPER],
3673
&cache->pending_edge);
3674
if (list_empty(&upper->upper))
3675
list_add(&upper->list, &cache->useless_node);
3676
}
3677
3678
while (!list_empty(&cache->useless_node)) {
3679
lower = list_first_entry(&cache->useless_node,
3680
struct btrfs_backref_node, list);
3681
list_del_init(&lower->list);
3682
if (lower == node)
3683
node = NULL;
3684
btrfs_backref_drop_node(cache, lower);
3685
}
3686
3687
btrfs_backref_cleanup_node(cache, node);
3688
ASSERT(list_empty(&cache->useless_node) &&
3689
list_empty(&cache->pending_edge));
3690
}
3691
3692