Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/backref.h
50374 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* Copyright (C) 2011 STRATO. All rights reserved.
4
*/
5
6
#ifndef BTRFS_BACKREF_H
7
#define BTRFS_BACKREF_H
8
9
#include <linux/types.h>
10
#include <linux/rbtree.h>
11
#include <linux/list.h>
12
#include <linux/slab.h>
13
#include <uapi/linux/btrfs.h>
14
#include <uapi/linux/btrfs_tree.h>
15
#include "messages.h"
16
#include "locking.h"
17
#include "disk-io.h"
18
#include "extent_io.h"
19
#include "ctree.h"
20
21
struct extent_inode_elem;
22
struct ulist;
23
struct btrfs_extent_item;
24
struct btrfs_trans_handle;
25
struct btrfs_fs_info;
26
27
/*
28
* Used by implementations of iterate_extent_inodes_t (see definition below) to
29
* signal that backref iteration can stop immediately and no error happened.
30
* The value must be non-negative and must not be 0, 1 (which is a common return
31
* value from things like btrfs_search_slot() and used internally in the backref
32
* walking code) and different from BACKREF_FOUND_SHARED and
33
* BACKREF_FOUND_NOT_SHARED
34
*/
35
#define BTRFS_ITERATE_EXTENT_INODES_STOP 5
36
37
/*
38
* Should return 0 if no errors happened and iteration of backrefs should
39
* continue. Can return BTRFS_ITERATE_EXTENT_INODES_STOP or any other non-zero
40
* value to immediately stop iteration and possibly signal an error back to
41
* the caller.
42
*/
43
typedef int (iterate_extent_inodes_t)(u64 inum, u64 offset, u64 num_bytes,
44
u64 root, void *ctx);
45
46
/*
47
* Context and arguments for backref walking functions. Some of the fields are
48
* to be filled by the caller of such functions while other are filled by the
49
* functions themselves, as described below.
50
*/
51
struct btrfs_backref_walk_ctx {
52
/*
53
* The address of the extent for which we are doing backref walking.
54
* Can be either a data extent or a metadata extent.
55
*
56
* Must always be set by the top level caller.
57
*/
58
u64 bytenr;
59
/*
60
* Offset relative to the target extent. This is only used for data
61
* extents, and it's meaningful because we can have file extent items
62
* that point only to a section of a data extent ("bookend" extents),
63
* and we want to filter out any that don't point to a section of the
64
* data extent containing the given offset.
65
*
66
* Must always be set by the top level caller.
67
*/
68
u64 extent_item_pos;
69
/*
70
* If true and bytenr corresponds to a data extent, then references from
71
* all file extent items that point to the data extent are considered,
72
* @extent_item_pos is ignored.
73
*/
74
bool ignore_extent_item_pos;
75
/*
76
* If true and bytenr corresponds to a data extent, then the inode list
77
* (each member describing inode number, file offset and root) is not
78
* added to each reference added to the @refs ulist.
79
*/
80
bool skip_inode_ref_list;
81
/* A valid transaction handle or NULL. */
82
struct btrfs_trans_handle *trans;
83
/*
84
* The file system's info object, can not be NULL.
85
*
86
* Must always be set by the top level caller.
87
*/
88
struct btrfs_fs_info *fs_info;
89
/*
90
* Time sequence acquired from btrfs_get_tree_mod_seq(), in case the
91
* caller joined the tree mod log to get a consistent view of b+trees
92
* while we do backref walking, or BTRFS_SEQ_LAST.
93
* When using BTRFS_SEQ_LAST, delayed refs are not checked and it uses
94
* commit roots when searching b+trees - this is a special case for
95
* qgroups used during a transaction commit.
96
*/
97
u64 time_seq;
98
/*
99
* Used to collect the bytenr of metadata extents that point to the
100
* target extent.
101
*/
102
struct ulist *refs;
103
/*
104
* List used to collect the IDs of the roots from which the target
105
* extent is accessible. Can be NULL in case the caller does not care
106
* about collecting root IDs.
107
*/
108
struct ulist *roots;
109
/*
110
* Used by iterate_extent_inodes() and the main backref walk code
111
* (find_parent_nodes()). Lookup and store functions for an optional
112
* cache which maps the logical address (bytenr) of leaves to an array
113
* of root IDs.
114
*/
115
bool (*cache_lookup)(u64 leaf_bytenr, void *user_ctx,
116
const u64 **root_ids_ret, int *root_count_ret);
117
void (*cache_store)(u64 leaf_bytenr, const struct ulist *root_ids,
118
void *user_ctx);
119
/*
120
* If this is not NULL, then the backref walking code will call this
121
* for each indirect data extent reference as soon as it finds one,
122
* before collecting all the remaining backrefs and before resolving
123
* indirect backrefs. This allows for the caller to terminate backref
124
* walking as soon as it finds one backref that matches some specific
125
* criteria. The @cache_lookup and @cache_store callbacks should not
126
* be NULL in order to use this callback.
127
*/
128
iterate_extent_inodes_t *indirect_ref_iterator;
129
/*
130
* If this is not NULL, then the backref walking code will call this for
131
* each extent item it's meant to process before it actually starts
132
* processing it. If this returns anything other than 0, then it stops
133
* the backref walking code immediately.
134
*/
135
int (*check_extent_item)(u64 bytenr, const struct btrfs_extent_item *ei,
136
const struct extent_buffer *leaf, void *user_ctx);
137
/*
138
* If this is not NULL, then the backref walking code will call this for
139
* each extent data ref it finds (BTRFS_EXTENT_DATA_REF_KEY keys) before
140
* processing that data ref. If this callback return false, then it will
141
* ignore this data ref and it will never resolve the indirect data ref,
142
* saving time searching for leaves in a fs tree with file extent items
143
* matching the data ref.
144
*/
145
bool (*skip_data_ref)(u64 root, u64 ino, u64 offset, void *user_ctx);
146
/* Context object to pass to the callbacks defined above. */
147
void *user_ctx;
148
};
149
150
struct inode_fs_paths {
151
struct btrfs_path *btrfs_path;
152
struct btrfs_root *fs_root;
153
struct btrfs_data_container *fspath;
154
};
155
156
struct btrfs_backref_shared_cache_entry {
157
u64 bytenr;
158
u64 gen;
159
bool is_shared;
160
};
161
162
#define BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE 8
163
164
struct btrfs_backref_share_check_ctx {
165
/* Ulists used during backref walking. */
166
struct ulist refs;
167
/*
168
* The current leaf the caller of btrfs_is_data_extent_shared() is at.
169
* Typically the caller (at the moment only fiemap) tries to determine
170
* the sharedness of data extents point by file extent items from entire
171
* leaves.
172
*/
173
u64 curr_leaf_bytenr;
174
/*
175
* The previous leaf the caller was at in the previous call to
176
* btrfs_is_data_extent_shared(). This may be the same as the current
177
* leaf. On the first call it must be 0.
178
*/
179
u64 prev_leaf_bytenr;
180
/*
181
* A path from a root to a leaf that has a file extent item pointing to
182
* a given data extent should never exceed the maximum b+tree height.
183
*/
184
struct btrfs_backref_shared_cache_entry path_cache_entries[BTRFS_MAX_LEVEL];
185
bool use_path_cache;
186
/*
187
* Cache the sharedness result for the last few extents we have found,
188
* but only for extents for which we have multiple file extent items
189
* that point to them.
190
* It's very common to have several file extent items that point to the
191
* same extent (bytenr) but with different offsets and lengths. This
192
* typically happens for COW writes, partial writes into prealloc
193
* extents, NOCOW writes after snapshotting a root, hole punching or
194
* reflinking within the same file (less common perhaps).
195
* So keep a small cache with the lookup results for the extent pointed
196
* by the last few file extent items. This cache is checked, with a
197
* linear scan, whenever btrfs_is_data_extent_shared() is called, so
198
* it must be small so that it does not negatively affect performance in
199
* case we don't have multiple file extent items that point to the same
200
* data extent.
201
*/
202
struct {
203
u64 bytenr;
204
bool is_shared;
205
} prev_extents_cache[BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE];
206
/*
207
* The slot in the prev_extents_cache array that will be used for
208
* storing the sharedness result of a new data extent.
209
*/
210
int prev_extents_cache_slot;
211
};
212
213
struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void);
214
void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx);
215
216
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
217
struct btrfs_path *path, struct btrfs_key *found_key,
218
u64 *flags);
219
220
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
221
struct btrfs_key *key, struct btrfs_extent_item *ei,
222
u32 item_size, u64 *out_root, u8 *out_level);
223
224
int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
225
bool search_commit_root,
226
iterate_extent_inodes_t *iterate, void *user_ctx);
227
228
int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
229
void *ctx, bool ignore_offset);
230
231
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath);
232
233
int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx);
234
int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
235
bool skip_commit_root_sem);
236
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
237
u32 name_len, unsigned long name_off,
238
struct extent_buffer *eb_in, u64 parent,
239
char *dest, u32 size);
240
241
struct btrfs_data_container *init_data_container(u32 total_bytes);
242
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
243
struct btrfs_path *path);
244
245
DEFINE_FREE(inode_fs_paths, struct inode_fs_paths *,
246
if (_T) {
247
kvfree(_T->fspath);
248
kfree(_T);
249
})
250
251
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
252
u64 start_off, struct btrfs_path *path,
253
struct btrfs_inode_extref **ret_extref,
254
u64 *found_off);
255
int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
256
u64 extent_gen,
257
struct btrfs_backref_share_check_ctx *ctx);
258
259
int __init btrfs_prelim_ref_init(void);
260
void __cold btrfs_prelim_ref_exit(void);
261
262
struct prelim_ref {
263
struct rb_node rbnode;
264
u64 root_id;
265
struct btrfs_key key_for_search;
266
u8 level;
267
int count;
268
struct extent_inode_elem *inode_list;
269
u64 parent;
270
u64 wanted_disk_byte;
271
};
272
273
/*
274
* Iterate backrefs of one extent.
275
*
276
* Now it only supports iteration of tree block in commit root.
277
*/
278
struct btrfs_backref_iter {
279
u64 bytenr;
280
struct btrfs_path *path;
281
struct btrfs_fs_info *fs_info;
282
struct btrfs_key cur_key;
283
u32 item_ptr;
284
u32 cur_ptr;
285
u32 end_ptr;
286
};
287
288
struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info);
289
290
/*
291
* For metadata with EXTENT_ITEM key (non-skinny) case, the first inline data
292
* is btrfs_tree_block_info, without a btrfs_extent_inline_ref header.
293
*
294
* This helper determines if that's the case.
295
*/
296
static inline bool btrfs_backref_has_tree_block_info(
297
struct btrfs_backref_iter *iter)
298
{
299
if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY &&
300
iter->cur_ptr - iter->item_ptr == sizeof(struct btrfs_extent_item))
301
return true;
302
return false;
303
}
304
305
int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr);
306
307
int btrfs_backref_iter_next(struct btrfs_backref_iter *iter);
308
309
/*
310
* Backref cache related structures
311
*
312
* The whole objective of backref_cache is to build a bi-directional map
313
* of tree blocks (represented by backref_node) and all their parents.
314
*/
315
316
/*
317
* Represent a tree block in the backref cache
318
*/
319
struct btrfs_backref_node {
320
union{
321
/* Use rb_simple_node for search/insert */
322
struct {
323
struct rb_node rb_node;
324
u64 bytenr;
325
};
326
327
struct rb_simple_node simple_node;
328
};
329
330
/*
331
* This is a sanity check, whenever we COW a block we will update
332
* new_bytenr with it's current location, and we will check this in
333
* various places to validate that the cache makes sense, it shouldn't
334
* be used for anything else.
335
*/
336
u64 new_bytenr;
337
/* Objectid of tree block owner, can be not uptodate */
338
u64 owner;
339
/* Link to pending, changed or detached list */
340
struct list_head list;
341
342
/* List of upper level edges, which link this node to its parents */
343
struct list_head upper;
344
/* List of lower level edges, which link this node to its children */
345
struct list_head lower;
346
347
/* NULL if this node is not tree root */
348
struct btrfs_root *root;
349
/* Extent buffer got by COWing the block */
350
struct extent_buffer *eb;
351
/* Level of the tree block */
352
unsigned int level:8;
353
/* Is the extent buffer locked */
354
unsigned int locked:1;
355
/* Has the block been processed */
356
unsigned int processed:1;
357
/* Have backrefs of this block been checked */
358
unsigned int checked:1;
359
/*
360
* 1 if corresponding block has been COWed but some upper level block
361
* pointers may not point to the new location
362
*/
363
unsigned int pending:1;
364
/* 1 if the backref node isn't connected to any other backref node */
365
unsigned int detached:1;
366
367
/*
368
* For generic purpose backref cache, where we only care if it's a reloc
369
* root, doesn't care the source subvolid.
370
*/
371
unsigned int is_reloc_root:1;
372
};
373
374
#define LOWER 0
375
#define UPPER 1
376
377
/*
378
* Represent an edge connecting upper and lower backref nodes.
379
*/
380
struct btrfs_backref_edge {
381
/*
382
* list[LOWER] is linked to btrfs_backref_node::upper of lower level
383
* node, and list[UPPER] is linked to btrfs_backref_node::lower of
384
* upper level node.
385
*
386
* Also, build_backref_tree() uses list[UPPER] for pending edges, before
387
* linking list[UPPER] to its upper level nodes.
388
*/
389
struct list_head list[2];
390
391
/* Two related nodes */
392
struct btrfs_backref_node *node[2];
393
};
394
395
struct btrfs_backref_cache {
396
/* Red black tree of all backref nodes in the cache */
397
struct rb_root rb_root;
398
/* For passing backref nodes to btrfs_reloc_cow_block */
399
struct btrfs_backref_node *path[BTRFS_MAX_LEVEL];
400
/*
401
* List of blocks that have been COWed but some block pointers in upper
402
* level blocks may not reflect the new location
403
*/
404
struct list_head pending[BTRFS_MAX_LEVEL];
405
406
u64 last_trans;
407
408
int nr_nodes;
409
int nr_edges;
410
411
/* List of unchecked backref edges during backref cache build */
412
struct list_head pending_edge;
413
414
/* List of useless backref nodes during backref cache build */
415
struct list_head useless_node;
416
417
struct btrfs_fs_info *fs_info;
418
419
/*
420
* Whether this cache is for relocation
421
*
422
* Relocation backref cache require more info for reloc root compared
423
* to generic backref cache.
424
*/
425
bool is_reloc;
426
};
427
428
void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
429
struct btrfs_backref_cache *cache, bool is_reloc);
430
struct btrfs_backref_node *btrfs_backref_alloc_node(
431
struct btrfs_backref_cache *cache, u64 bytenr, int level);
432
struct btrfs_backref_edge *btrfs_backref_alloc_edge(
433
struct btrfs_backref_cache *cache);
434
435
void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
436
struct btrfs_backref_node *node);
437
void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
438
struct btrfs_backref_edge *edge);
439
void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node);
440
void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node);
441
442
void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
443
struct btrfs_backref_node *node);
444
void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
445
struct btrfs_backref_node *node);
446
447
void btrfs_backref_release_cache(struct btrfs_backref_cache *cache);
448
449
static inline void btrfs_backref_panic(struct btrfs_fs_info *fs_info,
450
u64 bytenr, int error)
451
{
452
btrfs_panic(fs_info, error,
453
"Inconsistency in backref cache found at offset %llu",
454
bytenr);
455
}
456
457
int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
458
struct btrfs_backref_cache *cache,
459
struct btrfs_path *path,
460
struct btrfs_backref_iter *iter,
461
struct btrfs_key *node_key,
462
struct btrfs_backref_node *cur);
463
464
int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
465
struct btrfs_backref_node *start);
466
467
void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
468
struct btrfs_backref_node *node);
469
470
#endif
471
472