Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/bio.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2007 Oracle. All rights reserved.
4
* Copyright (C) 2022 Christoph Hellwig.
5
*/
6
7
#include <linux/bio.h>
8
#include "bio.h"
9
#include "ctree.h"
10
#include "volumes.h"
11
#include "raid56.h"
12
#include "async-thread.h"
13
#include "dev-replace.h"
14
#include "zoned.h"
15
#include "file-item.h"
16
#include "raid-stripe-tree.h"
17
18
static struct bio_set btrfs_bioset;
19
static struct bio_set btrfs_clone_bioset;
20
static struct bio_set btrfs_repair_bioset;
21
static mempool_t btrfs_failed_bio_pool;
22
23
struct btrfs_failed_bio {
24
struct btrfs_bio *bbio;
25
int num_copies;
26
atomic_t repair_count;
27
};
28
29
/* Is this a data path I/O that needs storage layer checksum and repair? */
30
static inline bool is_data_bbio(const struct btrfs_bio *bbio)
31
{
32
return bbio->inode && is_data_inode(bbio->inode);
33
}
34
35
static bool bbio_has_ordered_extent(const struct btrfs_bio *bbio)
36
{
37
return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
38
}
39
40
/*
41
* Initialize a btrfs_bio structure. This skips the embedded bio itself as it
42
* is already initialized by the block layer.
43
*/
44
void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
45
btrfs_bio_end_io_t end_io, void *private)
46
{
47
memset(bbio, 0, offsetof(struct btrfs_bio, bio));
48
bbio->fs_info = fs_info;
49
bbio->end_io = end_io;
50
bbio->private = private;
51
atomic_set(&bbio->pending_ios, 1);
52
WRITE_ONCE(bbio->status, BLK_STS_OK);
53
}
54
55
/*
56
* Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for
57
* btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
58
*
59
* Just like the underlying bio_alloc_bioset it will not fail as it is backed by
60
* a mempool.
61
*/
62
struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
63
struct btrfs_fs_info *fs_info,
64
btrfs_bio_end_io_t end_io, void *private)
65
{
66
struct btrfs_bio *bbio;
67
struct bio *bio;
68
69
bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
70
bbio = btrfs_bio(bio);
71
btrfs_bio_init(bbio, fs_info, end_io, private);
72
return bbio;
73
}
74
75
static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
76
struct btrfs_bio *orig_bbio,
77
u64 map_length)
78
{
79
struct btrfs_bio *bbio;
80
struct bio *bio;
81
82
bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
83
&btrfs_clone_bioset);
84
if (IS_ERR(bio))
85
return ERR_CAST(bio);
86
87
bbio = btrfs_bio(bio);
88
btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
89
bbio->inode = orig_bbio->inode;
90
bbio->file_offset = orig_bbio->file_offset;
91
orig_bbio->file_offset += map_length;
92
if (bbio_has_ordered_extent(bbio)) {
93
refcount_inc(&orig_bbio->ordered->refs);
94
bbio->ordered = orig_bbio->ordered;
95
}
96
atomic_inc(&orig_bbio->pending_ios);
97
return bbio;
98
}
99
100
void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
101
{
102
bbio->bio.bi_status = status;
103
if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
104
struct btrfs_bio *orig_bbio = bbio->private;
105
106
/* Free bio that was never submitted to the underlying device. */
107
if (bbio_has_ordered_extent(bbio))
108
btrfs_put_ordered_extent(bbio->ordered);
109
bio_put(&bbio->bio);
110
111
bbio = orig_bbio;
112
}
113
114
/*
115
* At this point, bbio always points to the original btrfs_bio. Save
116
* the first error in it.
117
*/
118
if (status != BLK_STS_OK)
119
cmpxchg(&bbio->status, BLK_STS_OK, status);
120
121
if (atomic_dec_and_test(&bbio->pending_ios)) {
122
/* Load split bio's error which might be set above. */
123
if (status == BLK_STS_OK)
124
bbio->bio.bi_status = READ_ONCE(bbio->status);
125
126
if (bbio_has_ordered_extent(bbio)) {
127
struct btrfs_ordered_extent *ordered = bbio->ordered;
128
129
bbio->end_io(bbio);
130
btrfs_put_ordered_extent(ordered);
131
} else {
132
bbio->end_io(bbio);
133
}
134
}
135
}
136
137
static int next_repair_mirror(const struct btrfs_failed_bio *fbio, int cur_mirror)
138
{
139
if (cur_mirror == fbio->num_copies)
140
return cur_mirror + 1 - fbio->num_copies;
141
return cur_mirror + 1;
142
}
143
144
static int prev_repair_mirror(const struct btrfs_failed_bio *fbio, int cur_mirror)
145
{
146
if (cur_mirror == 1)
147
return fbio->num_copies;
148
return cur_mirror - 1;
149
}
150
151
static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
152
{
153
if (atomic_dec_and_test(&fbio->repair_count)) {
154
btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
155
mempool_free(fbio, &btrfs_failed_bio_pool);
156
}
157
}
158
159
static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
160
struct btrfs_device *dev)
161
{
162
struct btrfs_failed_bio *fbio = repair_bbio->private;
163
struct btrfs_inode *inode = repair_bbio->inode;
164
struct btrfs_fs_info *fs_info = inode->root->fs_info;
165
struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
166
int mirror = repair_bbio->mirror_num;
167
168
if (repair_bbio->bio.bi_status ||
169
!btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
170
bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
171
repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
172
173
mirror = next_repair_mirror(fbio, mirror);
174
if (mirror == fbio->bbio->mirror_num) {
175
btrfs_debug(fs_info, "no mirror left");
176
fbio->bbio->bio.bi_status = BLK_STS_IOERR;
177
goto done;
178
}
179
180
btrfs_submit_bbio(repair_bbio, mirror);
181
return;
182
}
183
184
do {
185
mirror = prev_repair_mirror(fbio, mirror);
186
btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
187
repair_bbio->file_offset, fs_info->sectorsize,
188
repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
189
bvec_phys(bv), mirror);
190
} while (mirror != fbio->bbio->mirror_num);
191
192
done:
193
btrfs_repair_done(fbio);
194
bio_put(&repair_bbio->bio);
195
}
196
197
/*
198
* Try to kick off a repair read to the next available mirror for a bad sector.
199
*
200
* This primarily tries to recover good data to serve the actual read request,
201
* but also tries to write the good data back to the bad mirror(s) when a
202
* read succeeded to restore the redundancy.
203
*/
204
static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
205
u32 bio_offset,
206
struct bio_vec *bv,
207
struct btrfs_failed_bio *fbio)
208
{
209
struct btrfs_inode *inode = failed_bbio->inode;
210
struct btrfs_fs_info *fs_info = inode->root->fs_info;
211
const u32 sectorsize = fs_info->sectorsize;
212
const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
213
struct btrfs_bio *repair_bbio;
214
struct bio *repair_bio;
215
int num_copies;
216
int mirror;
217
218
btrfs_debug(fs_info, "repair read error: read error at %llu",
219
failed_bbio->file_offset + bio_offset);
220
221
num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
222
if (num_copies == 1) {
223
btrfs_debug(fs_info, "no copy to repair from");
224
failed_bbio->bio.bi_status = BLK_STS_IOERR;
225
return fbio;
226
}
227
228
if (!fbio) {
229
fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
230
fbio->bbio = failed_bbio;
231
fbio->num_copies = num_copies;
232
atomic_set(&fbio->repair_count, 1);
233
}
234
235
atomic_inc(&fbio->repair_count);
236
237
repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
238
&btrfs_repair_bioset);
239
repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
240
__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
241
242
repair_bbio = btrfs_bio(repair_bio);
243
btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
244
repair_bbio->inode = failed_bbio->inode;
245
repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
246
247
mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
248
btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
249
btrfs_submit_bbio(repair_bbio, mirror);
250
return fbio;
251
}
252
253
static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
254
{
255
struct btrfs_inode *inode = bbio->inode;
256
struct btrfs_fs_info *fs_info = inode->root->fs_info;
257
u32 sectorsize = fs_info->sectorsize;
258
struct bvec_iter *iter = &bbio->saved_iter;
259
blk_status_t status = bbio->bio.bi_status;
260
struct btrfs_failed_bio *fbio = NULL;
261
u32 offset = 0;
262
263
/* Read-repair requires the inode field to be set by the submitter. */
264
ASSERT(inode);
265
266
/*
267
* Hand off repair bios to the repair code as there is no upper level
268
* submitter for them.
269
*/
270
if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
271
btrfs_end_repair_bio(bbio, dev);
272
return;
273
}
274
275
/* Clear the I/O error. A failed repair will reset it. */
276
bbio->bio.bi_status = BLK_STS_OK;
277
278
while (iter->bi_size) {
279
struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
280
281
bv.bv_len = min(bv.bv_len, sectorsize);
282
if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
283
fbio = repair_one_sector(bbio, offset, &bv, fbio);
284
285
bio_advance_iter_single(&bbio->bio, iter, sectorsize);
286
offset += sectorsize;
287
}
288
289
if (bbio->csum != bbio->csum_inline)
290
kfree(bbio->csum);
291
292
if (fbio)
293
btrfs_repair_done(fbio);
294
else
295
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
296
}
297
298
static void btrfs_log_dev_io_error(const struct bio *bio, struct btrfs_device *dev)
299
{
300
if (!dev || !dev->bdev)
301
return;
302
if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
303
return;
304
305
if (btrfs_op(bio) == BTRFS_MAP_WRITE)
306
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
307
else if (!(bio->bi_opf & REQ_RAHEAD))
308
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
309
if (bio->bi_opf & REQ_PREFLUSH)
310
btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
311
}
312
313
static struct workqueue_struct *btrfs_end_io_wq(const struct btrfs_fs_info *fs_info,
314
const struct bio *bio)
315
{
316
if (bio->bi_opf & REQ_META)
317
return fs_info->endio_meta_workers;
318
return fs_info->endio_workers;
319
}
320
321
static void btrfs_end_bio_work(struct work_struct *work)
322
{
323
struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
324
325
/* Metadata reads are checked and repaired by the submitter. */
326
if (is_data_bbio(bbio))
327
btrfs_check_read_bio(bbio, bbio->bio.bi_private);
328
else
329
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
330
}
331
332
static void btrfs_simple_end_io(struct bio *bio)
333
{
334
struct btrfs_bio *bbio = btrfs_bio(bio);
335
struct btrfs_device *dev = bio->bi_private;
336
struct btrfs_fs_info *fs_info = bbio->fs_info;
337
338
btrfs_bio_counter_dec(fs_info);
339
340
if (bio->bi_status)
341
btrfs_log_dev_io_error(bio, dev);
342
343
if (bio_op(bio) == REQ_OP_READ) {
344
INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
345
queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
346
} else {
347
if (bio_is_zone_append(bio) && !bio->bi_status)
348
btrfs_record_physical_zoned(bbio);
349
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
350
}
351
}
352
353
static void btrfs_raid56_end_io(struct bio *bio)
354
{
355
struct btrfs_io_context *bioc = bio->bi_private;
356
struct btrfs_bio *bbio = btrfs_bio(bio);
357
358
btrfs_bio_counter_dec(bioc->fs_info);
359
bbio->mirror_num = bioc->mirror_num;
360
if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
361
btrfs_check_read_bio(bbio, NULL);
362
else
363
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
364
365
btrfs_put_bioc(bioc);
366
}
367
368
static void btrfs_orig_write_end_io(struct bio *bio)
369
{
370
struct btrfs_io_stripe *stripe = bio->bi_private;
371
struct btrfs_io_context *bioc = stripe->bioc;
372
struct btrfs_bio *bbio = btrfs_bio(bio);
373
374
btrfs_bio_counter_dec(bioc->fs_info);
375
376
if (bio->bi_status) {
377
atomic_inc(&bioc->error);
378
btrfs_log_dev_io_error(bio, stripe->dev);
379
}
380
381
/*
382
* Only send an error to the higher layers if it is beyond the tolerance
383
* threshold.
384
*/
385
if (atomic_read(&bioc->error) > bioc->max_errors)
386
bio->bi_status = BLK_STS_IOERR;
387
else
388
bio->bi_status = BLK_STS_OK;
389
390
if (bio_is_zone_append(bio) && !bio->bi_status)
391
stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
392
393
btrfs_bio_end_io(bbio, bbio->bio.bi_status);
394
btrfs_put_bioc(bioc);
395
}
396
397
static void btrfs_clone_write_end_io(struct bio *bio)
398
{
399
struct btrfs_io_stripe *stripe = bio->bi_private;
400
401
if (bio->bi_status) {
402
atomic_inc(&stripe->bioc->error);
403
btrfs_log_dev_io_error(bio, stripe->dev);
404
} else if (bio_is_zone_append(bio)) {
405
stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
406
}
407
408
/* Pass on control to the original bio this one was cloned from */
409
bio_endio(stripe->bioc->orig_bio);
410
bio_put(bio);
411
}
412
413
static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
414
{
415
if (!dev || !dev->bdev ||
416
test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
417
(btrfs_op(bio) == BTRFS_MAP_WRITE &&
418
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
419
bio_io_error(bio);
420
return;
421
}
422
423
bio_set_dev(bio, dev->bdev);
424
425
/*
426
* For zone append writing, bi_sector must point the beginning of the
427
* zone
428
*/
429
if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
430
u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
431
u64 zone_start = round_down(physical, dev->fs_info->zone_size);
432
433
ASSERT(btrfs_dev_is_sequential(dev, physical));
434
bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
435
}
436
btrfs_debug(dev->fs_info,
437
"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
438
__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
439
(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
440
dev->devid, bio->bi_iter.bi_size);
441
442
/*
443
* Track reads if tracking is enabled; ignore I/O operations before the
444
* filesystem is fully initialized.
445
*/
446
if (dev->fs_devices->collect_fs_stats && bio_op(bio) == REQ_OP_READ && dev->fs_info)
447
percpu_counter_add(&dev->fs_info->stats_read_blocks,
448
bio->bi_iter.bi_size >> dev->fs_info->sectorsize_bits);
449
450
if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
451
blkcg_punt_bio_submit(bio);
452
else
453
submit_bio(bio);
454
}
455
456
static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
457
{
458
struct bio *orig_bio = bioc->orig_bio, *bio;
459
460
ASSERT(bio_op(orig_bio) != REQ_OP_READ);
461
462
/* Reuse the bio embedded into the btrfs_bio for the last mirror */
463
if (dev_nr == bioc->num_stripes - 1) {
464
bio = orig_bio;
465
bio->bi_end_io = btrfs_orig_write_end_io;
466
} else {
467
bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
468
bio_inc_remaining(orig_bio);
469
bio->bi_end_io = btrfs_clone_write_end_io;
470
}
471
472
bio->bi_private = &bioc->stripes[dev_nr];
473
bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
474
bioc->stripes[dev_nr].bioc = bioc;
475
bioc->size = bio->bi_iter.bi_size;
476
btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
477
}
478
479
static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
480
struct btrfs_io_stripe *smap, int mirror_num)
481
{
482
if (!bioc) {
483
/* Single mirror read/write fast path. */
484
btrfs_bio(bio)->mirror_num = mirror_num;
485
bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
486
if (bio_op(bio) != REQ_OP_READ)
487
btrfs_bio(bio)->orig_physical = smap->physical;
488
bio->bi_private = smap->dev;
489
bio->bi_end_io = btrfs_simple_end_io;
490
btrfs_submit_dev_bio(smap->dev, bio);
491
} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
492
/* Parity RAID write or read recovery. */
493
bio->bi_private = bioc;
494
bio->bi_end_io = btrfs_raid56_end_io;
495
if (bio_op(bio) == REQ_OP_READ)
496
raid56_parity_recover(bio, bioc, mirror_num);
497
else
498
raid56_parity_write(bio, bioc);
499
} else {
500
/* Write to multiple mirrors. */
501
int total_devs = bioc->num_stripes;
502
503
bioc->orig_bio = bio;
504
for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
505
btrfs_submit_mirrored_bio(bioc, dev_nr);
506
}
507
}
508
509
static int btrfs_bio_csum(struct btrfs_bio *bbio)
510
{
511
if (bbio->bio.bi_opf & REQ_META)
512
return btree_csum_one_bio(bbio);
513
return btrfs_csum_one_bio(bbio);
514
}
515
516
/*
517
* Async submit bios are used to offload expensive checksumming onto the worker
518
* threads.
519
*/
520
struct async_submit_bio {
521
struct btrfs_bio *bbio;
522
struct btrfs_io_context *bioc;
523
struct btrfs_io_stripe smap;
524
int mirror_num;
525
struct btrfs_work work;
526
};
527
528
/*
529
* In order to insert checksums into the metadata in large chunks, we wait
530
* until bio submission time. All the pages in the bio are checksummed and
531
* sums are attached onto the ordered extent record.
532
*
533
* At IO completion time the csums attached on the ordered extent record are
534
* inserted into the btree.
535
*/
536
static void run_one_async_start(struct btrfs_work *work)
537
{
538
struct async_submit_bio *async =
539
container_of(work, struct async_submit_bio, work);
540
int ret;
541
542
ret = btrfs_bio_csum(async->bbio);
543
if (ret)
544
async->bbio->bio.bi_status = errno_to_blk_status(ret);
545
}
546
547
/*
548
* In order to insert checksums into the metadata in large chunks, we wait
549
* until bio submission time. All the pages in the bio are checksummed and
550
* sums are attached onto the ordered extent record.
551
*
552
* At IO completion time the csums attached on the ordered extent record are
553
* inserted into the tree.
554
*
555
* If called with @do_free == true, then it will free the work struct.
556
*/
557
static void run_one_async_done(struct btrfs_work *work, bool do_free)
558
{
559
struct async_submit_bio *async =
560
container_of(work, struct async_submit_bio, work);
561
struct bio *bio = &async->bbio->bio;
562
563
if (do_free) {
564
kfree(container_of(work, struct async_submit_bio, work));
565
return;
566
}
567
568
/* If an error occurred we just want to clean up the bio and move on. */
569
if (bio->bi_status) {
570
btrfs_bio_end_io(async->bbio, bio->bi_status);
571
return;
572
}
573
574
/*
575
* All of the bios that pass through here are from async helpers.
576
* Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
577
* context. This changes nothing when cgroups aren't in use.
578
*/
579
bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
580
btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
581
}
582
583
static bool should_async_write(struct btrfs_bio *bbio)
584
{
585
bool auto_csum_mode = true;
586
587
#ifdef CONFIG_BTRFS_EXPERIMENTAL
588
struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
589
enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
590
591
if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
592
return false;
593
594
auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
595
#endif
596
597
/* Submit synchronously if the checksum implementation is fast. */
598
if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
599
return false;
600
601
/*
602
* Try to defer the submission to a workqueue to parallelize the
603
* checksum calculation unless the I/O is issued synchronously.
604
*/
605
if (op_is_sync(bbio->bio.bi_opf))
606
return false;
607
608
/* Zoned devices require I/O to be submitted in order. */
609
if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
610
return false;
611
612
return true;
613
}
614
615
/*
616
* Submit bio to an async queue.
617
*
618
* Return true if the work has been successfully submitted, else false.
619
*/
620
static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
621
struct btrfs_io_context *bioc,
622
struct btrfs_io_stripe *smap, int mirror_num)
623
{
624
struct btrfs_fs_info *fs_info = bbio->fs_info;
625
struct async_submit_bio *async;
626
627
async = kmalloc(sizeof(*async), GFP_NOFS);
628
if (!async)
629
return false;
630
631
async->bbio = bbio;
632
async->bioc = bioc;
633
async->smap = *smap;
634
async->mirror_num = mirror_num;
635
636
btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
637
btrfs_queue_work(fs_info->workers, &async->work);
638
return true;
639
}
640
641
static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
642
{
643
unsigned int nr_segs;
644
int sector_offset;
645
646
map_length = min(map_length, bbio->fs_info->max_zone_append_size);
647
sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
648
&nr_segs, map_length);
649
if (sector_offset) {
650
/*
651
* bio_split_rw_at() could split at a size smaller than our
652
* sectorsize and thus cause unaligned I/Os. Fix that by
653
* always rounding down to the nearest boundary.
654
*/
655
return ALIGN_DOWN(sector_offset << SECTOR_SHIFT, bbio->fs_info->sectorsize);
656
}
657
return map_length;
658
}
659
660
static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
661
{
662
struct btrfs_inode *inode = bbio->inode;
663
struct btrfs_fs_info *fs_info = bbio->fs_info;
664
struct bio *bio = &bbio->bio;
665
u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
666
u64 length = bio->bi_iter.bi_size;
667
u64 map_length = length;
668
bool use_append = btrfs_use_zone_append(bbio);
669
struct btrfs_io_context *bioc = NULL;
670
struct btrfs_io_stripe smap;
671
blk_status_t status;
672
int ret;
673
674
if (!bbio->inode || btrfs_is_data_reloc_root(inode->root))
675
smap.rst_search_commit_root = true;
676
else
677
smap.rst_search_commit_root = false;
678
679
btrfs_bio_counter_inc_blocked(fs_info);
680
ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
681
&bioc, &smap, &mirror_num);
682
if (ret) {
683
status = errno_to_blk_status(ret);
684
btrfs_bio_counter_dec(fs_info);
685
goto end_bbio;
686
}
687
688
map_length = min(map_length, length);
689
if (use_append)
690
map_length = btrfs_append_map_length(bbio, map_length);
691
692
if (map_length < length) {
693
struct btrfs_bio *split;
694
695
split = btrfs_split_bio(fs_info, bbio, map_length);
696
if (IS_ERR(split)) {
697
status = errno_to_blk_status(PTR_ERR(split));
698
btrfs_bio_counter_dec(fs_info);
699
goto end_bbio;
700
}
701
bbio = split;
702
bio = &bbio->bio;
703
}
704
705
/*
706
* Save the iter for the end_io handler and preload the checksums for
707
* data reads.
708
*/
709
if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
710
bbio->saved_iter = bio->bi_iter;
711
ret = btrfs_lookup_bio_sums(bbio);
712
status = errno_to_blk_status(ret);
713
if (status)
714
goto fail;
715
}
716
717
if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
718
if (use_append) {
719
bio->bi_opf &= ~REQ_OP_WRITE;
720
bio->bi_opf |= REQ_OP_ZONE_APPEND;
721
}
722
723
if (is_data_bbio(bbio) && bioc && bioc->use_rst) {
724
/*
725
* No locking for the list update, as we only add to
726
* the list in the I/O submission path, and list
727
* iteration only happens in the completion path, which
728
* can't happen until after the last submission.
729
*/
730
btrfs_get_bioc(bioc);
731
list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
732
}
733
734
/*
735
* Csum items for reloc roots have already been cloned at this
736
* point, so they are handled as part of the no-checksum case.
737
*/
738
if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
739
!test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
740
!btrfs_is_data_reloc_root(inode->root)) {
741
if (should_async_write(bbio) &&
742
btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
743
goto done;
744
745
ret = btrfs_bio_csum(bbio);
746
status = errno_to_blk_status(ret);
747
if (status)
748
goto fail;
749
} else if (use_append ||
750
(btrfs_is_zoned(fs_info) && inode &&
751
inode->flags & BTRFS_INODE_NODATASUM)) {
752
ret = btrfs_alloc_dummy_sum(bbio);
753
status = errno_to_blk_status(ret);
754
if (status)
755
goto fail;
756
}
757
}
758
759
btrfs_submit_bio(bio, bioc, &smap, mirror_num);
760
done:
761
return map_length == length;
762
763
fail:
764
btrfs_bio_counter_dec(fs_info);
765
/*
766
* We have split the original bbio, now we have to end both the current
767
* @bbio and remaining one, as the remaining one will never be submitted.
768
*/
769
if (map_length < length) {
770
struct btrfs_bio *remaining = bbio->private;
771
772
ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
773
ASSERT(remaining);
774
775
btrfs_bio_end_io(remaining, status);
776
}
777
end_bbio:
778
btrfs_bio_end_io(bbio, status);
779
/* Do not submit another chunk */
780
return true;
781
}
782
783
void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
784
{
785
/* If bbio->inode is not populated, its file_offset must be 0. */
786
ASSERT(bbio->inode || bbio->file_offset == 0);
787
788
while (!btrfs_submit_chunk(bbio, mirror_num))
789
;
790
}
791
792
/*
793
* Submit a repair write.
794
*
795
* This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
796
* RAID setup. Here we only want to write the one bad copy, so we do the
797
* mapping ourselves and submit the bio directly.
798
*
799
* The I/O is issued synchronously to block the repair read completion from
800
* freeing the bio.
801
*/
802
int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
803
u64 length, u64 logical, phys_addr_t paddr, int mirror_num)
804
{
805
struct btrfs_io_stripe smap = { 0 };
806
struct bio_vec bvec;
807
struct bio bio;
808
int ret = 0;
809
810
ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
811
BUG_ON(!mirror_num);
812
813
if (btrfs_repair_one_zone(fs_info, logical))
814
return 0;
815
816
/*
817
* Avoid races with device replace and make sure our bioc has devices
818
* associated to its stripes that don't go away while we are doing the
819
* read repair operation.
820
*/
821
btrfs_bio_counter_inc_blocked(fs_info);
822
ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
823
if (ret < 0)
824
goto out_counter_dec;
825
826
if (!smap.dev->bdev ||
827
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
828
ret = -EIO;
829
goto out_counter_dec;
830
}
831
832
bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
833
bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
834
__bio_add_page(&bio, phys_to_page(paddr), length, offset_in_page(paddr));
835
ret = submit_bio_wait(&bio);
836
if (ret) {
837
/* try to remap that extent elsewhere? */
838
btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
839
goto out_bio_uninit;
840
}
841
842
btrfs_info_rl(fs_info,
843
"read error corrected: ino %llu off %llu (dev %s sector %llu)",
844
ino, start, btrfs_dev_name(smap.dev),
845
smap.physical >> SECTOR_SHIFT);
846
ret = 0;
847
848
out_bio_uninit:
849
bio_uninit(&bio);
850
out_counter_dec:
851
btrfs_bio_counter_dec(fs_info);
852
return ret;
853
}
854
855
/*
856
* Submit a btrfs_bio based repair write.
857
*
858
* If @dev_replace is true, the write would be submitted to dev-replace target.
859
*/
860
void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
861
{
862
struct btrfs_fs_info *fs_info = bbio->fs_info;
863
u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
864
u64 length = bbio->bio.bi_iter.bi_size;
865
struct btrfs_io_stripe smap = { 0 };
866
int ret;
867
868
ASSERT(fs_info);
869
ASSERT(mirror_num > 0);
870
ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
871
ASSERT(!bbio->inode);
872
873
btrfs_bio_counter_inc_blocked(fs_info);
874
ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
875
if (ret < 0)
876
goto fail;
877
878
if (dev_replace) {
879
ASSERT(smap.dev == fs_info->dev_replace.srcdev);
880
smap.dev = fs_info->dev_replace.tgtdev;
881
}
882
btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
883
return;
884
885
fail:
886
btrfs_bio_counter_dec(fs_info);
887
btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
888
}
889
890
int __init btrfs_bioset_init(void)
891
{
892
if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
893
offsetof(struct btrfs_bio, bio),
894
BIOSET_NEED_BVECS))
895
return -ENOMEM;
896
if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
897
offsetof(struct btrfs_bio, bio), 0))
898
goto out;
899
if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
900
offsetof(struct btrfs_bio, bio),
901
BIOSET_NEED_BVECS))
902
goto out;
903
if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
904
sizeof(struct btrfs_failed_bio)))
905
goto out;
906
return 0;
907
908
out:
909
btrfs_bioset_exit();
910
return -ENOMEM;
911
}
912
913
void __cold btrfs_bioset_exit(void)
914
{
915
mempool_exit(&btrfs_failed_bio_pool);
916
bioset_exit(&btrfs_repair_bioset);
917
bioset_exit(&btrfs_clone_bioset);
918
bioset_exit(&btrfs_bioset);
919
}
920
921