Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/block-group.c
50618 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
#include <linux/sizes.h>
4
#include <linux/list_sort.h>
5
#include "misc.h"
6
#include "ctree.h"
7
#include "block-group.h"
8
#include "space-info.h"
9
#include "disk-io.h"
10
#include "free-space-cache.h"
11
#include "free-space-tree.h"
12
#include "volumes.h"
13
#include "transaction.h"
14
#include "ref-verify.h"
15
#include "sysfs.h"
16
#include "tree-log.h"
17
#include "delalloc-space.h"
18
#include "discard.h"
19
#include "raid56.h"
20
#include "zoned.h"
21
#include "fs.h"
22
#include "accessors.h"
23
#include "extent-tree.h"
24
25
#ifdef CONFIG_BTRFS_DEBUG
26
int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group)
27
{
28
struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30
return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31
block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32
(btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33
block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34
}
35
#endif
36
37
static inline bool has_unwritten_metadata(struct btrfs_block_group *block_group)
38
{
39
/* The meta_write_pointer is available only on the zoned setup. */
40
if (!btrfs_is_zoned(block_group->fs_info))
41
return false;
42
43
if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
44
return false;
45
46
return block_group->start + block_group->alloc_offset >
47
block_group->meta_write_pointer;
48
}
49
50
/*
51
* Return target flags in extended format or 0 if restripe for this chunk_type
52
* is not in progress
53
*
54
* Should be called with balance_lock held
55
*/
56
static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags)
57
{
58
const struct btrfs_balance_control *bctl = fs_info->balance_ctl;
59
u64 target = 0;
60
61
if (!bctl)
62
return 0;
63
64
if (flags & BTRFS_BLOCK_GROUP_DATA &&
65
bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
66
target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
67
} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
68
bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
69
target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
70
} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
71
bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
72
target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
73
}
74
75
return target;
76
}
77
78
/*
79
* @flags: available profiles in extended format (see ctree.h)
80
*
81
* Return reduced profile in chunk format. If profile changing is in progress
82
* (either running or paused) picks the target profile (if it's already
83
* available), otherwise falls back to plain reducing.
84
*/
85
static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
86
{
87
u64 num_devices = fs_info->fs_devices->rw_devices;
88
u64 target;
89
u64 raid_type;
90
u64 allowed = 0;
91
92
/*
93
* See if restripe for this chunk_type is in progress, if so try to
94
* reduce to the target profile
95
*/
96
spin_lock(&fs_info->balance_lock);
97
target = get_restripe_target(fs_info, flags);
98
if (target) {
99
spin_unlock(&fs_info->balance_lock);
100
return extended_to_chunk(target);
101
}
102
spin_unlock(&fs_info->balance_lock);
103
104
/* First, mask out the RAID levels which aren't possible */
105
for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
106
if (num_devices >= btrfs_raid_array[raid_type].devs_min)
107
allowed |= btrfs_raid_array[raid_type].bg_flag;
108
}
109
allowed &= flags;
110
111
/* Select the highest-redundancy RAID level. */
112
if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
113
allowed = BTRFS_BLOCK_GROUP_RAID1C4;
114
else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
115
allowed = BTRFS_BLOCK_GROUP_RAID6;
116
else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
117
allowed = BTRFS_BLOCK_GROUP_RAID1C3;
118
else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
119
allowed = BTRFS_BLOCK_GROUP_RAID5;
120
else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
121
allowed = BTRFS_BLOCK_GROUP_RAID10;
122
else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
123
allowed = BTRFS_BLOCK_GROUP_RAID1;
124
else if (allowed & BTRFS_BLOCK_GROUP_DUP)
125
allowed = BTRFS_BLOCK_GROUP_DUP;
126
else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
127
allowed = BTRFS_BLOCK_GROUP_RAID0;
128
129
flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
130
131
return extended_to_chunk(flags | allowed);
132
}
133
134
u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
135
{
136
unsigned seq;
137
u64 flags;
138
139
do {
140
flags = orig_flags;
141
seq = read_seqbegin(&fs_info->profiles_lock);
142
143
if (flags & BTRFS_BLOCK_GROUP_DATA)
144
flags |= fs_info->avail_data_alloc_bits;
145
else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
146
flags |= fs_info->avail_system_alloc_bits;
147
else if (flags & BTRFS_BLOCK_GROUP_METADATA)
148
flags |= fs_info->avail_metadata_alloc_bits;
149
} while (read_seqretry(&fs_info->profiles_lock, seq));
150
151
return btrfs_reduce_alloc_profile(fs_info, flags);
152
}
153
154
void btrfs_get_block_group(struct btrfs_block_group *cache)
155
{
156
refcount_inc(&cache->refs);
157
}
158
159
void btrfs_put_block_group(struct btrfs_block_group *cache)
160
{
161
if (refcount_dec_and_test(&cache->refs)) {
162
WARN_ON(cache->pinned > 0);
163
/*
164
* If there was a failure to cleanup a log tree, very likely due
165
* to an IO failure on a writeback attempt of one or more of its
166
* extent buffers, we could not do proper (and cheap) unaccounting
167
* of their reserved space, so don't warn on reserved > 0 in that
168
* case.
169
*/
170
if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
171
!BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
172
WARN_ON(cache->reserved > 0);
173
174
/*
175
* A block_group shouldn't be on the discard_list anymore.
176
* Remove the block_group from the discard_list to prevent us
177
* from causing a panic due to NULL pointer dereference.
178
*/
179
if (WARN_ON(!list_empty(&cache->discard_list)))
180
btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
181
cache);
182
183
kfree(cache->free_space_ctl);
184
btrfs_free_chunk_map(cache->physical_map);
185
kfree(cache);
186
}
187
}
188
189
static int btrfs_bg_start_cmp(const struct rb_node *new,
190
const struct rb_node *exist)
191
{
192
const struct btrfs_block_group *new_bg =
193
rb_entry(new, struct btrfs_block_group, cache_node);
194
const struct btrfs_block_group *exist_bg =
195
rb_entry(exist, struct btrfs_block_group, cache_node);
196
197
if (new_bg->start < exist_bg->start)
198
return -1;
199
if (new_bg->start > exist_bg->start)
200
return 1;
201
return 0;
202
}
203
204
/*
205
* This adds the block group to the fs_info rb tree for the block group cache
206
*/
207
static int btrfs_add_block_group_cache(struct btrfs_block_group *block_group)
208
{
209
struct btrfs_fs_info *fs_info = block_group->fs_info;
210
struct rb_node *exist;
211
int ret = 0;
212
213
ASSERT(block_group->length != 0);
214
215
write_lock(&fs_info->block_group_cache_lock);
216
217
exist = rb_find_add_cached(&block_group->cache_node,
218
&fs_info->block_group_cache_tree, btrfs_bg_start_cmp);
219
if (exist)
220
ret = -EEXIST;
221
write_unlock(&fs_info->block_group_cache_lock);
222
223
return ret;
224
}
225
226
/*
227
* This will return the block group at or after bytenr if contains is 0, else
228
* it will return the block group that contains the bytenr
229
*/
230
static struct btrfs_block_group *block_group_cache_tree_search(
231
struct btrfs_fs_info *info, u64 bytenr, int contains)
232
{
233
struct btrfs_block_group *cache, *ret = NULL;
234
struct rb_node *n;
235
u64 end, start;
236
237
read_lock(&info->block_group_cache_lock);
238
n = info->block_group_cache_tree.rb_root.rb_node;
239
240
while (n) {
241
cache = rb_entry(n, struct btrfs_block_group, cache_node);
242
end = btrfs_block_group_end(cache) - 1;
243
start = cache->start;
244
245
if (bytenr < start) {
246
if (!contains && (!ret || start < ret->start))
247
ret = cache;
248
n = n->rb_left;
249
} else if (bytenr > start) {
250
if (contains && bytenr <= end) {
251
ret = cache;
252
break;
253
}
254
n = n->rb_right;
255
} else {
256
ret = cache;
257
break;
258
}
259
}
260
if (ret)
261
btrfs_get_block_group(ret);
262
read_unlock(&info->block_group_cache_lock);
263
264
return ret;
265
}
266
267
/*
268
* Return the block group that starts at or after bytenr
269
*/
270
struct btrfs_block_group *btrfs_lookup_first_block_group(
271
struct btrfs_fs_info *info, u64 bytenr)
272
{
273
return block_group_cache_tree_search(info, bytenr, 0);
274
}
275
276
/*
277
* Return the block group that contains the given bytenr
278
*/
279
struct btrfs_block_group *btrfs_lookup_block_group(
280
struct btrfs_fs_info *info, u64 bytenr)
281
{
282
return block_group_cache_tree_search(info, bytenr, 1);
283
}
284
285
struct btrfs_block_group *btrfs_next_block_group(
286
struct btrfs_block_group *cache)
287
{
288
struct btrfs_fs_info *fs_info = cache->fs_info;
289
struct rb_node *node;
290
291
read_lock(&fs_info->block_group_cache_lock);
292
293
/* If our block group was removed, we need a full search. */
294
if (RB_EMPTY_NODE(&cache->cache_node)) {
295
const u64 next_bytenr = btrfs_block_group_end(cache);
296
297
read_unlock(&fs_info->block_group_cache_lock);
298
btrfs_put_block_group(cache);
299
return btrfs_lookup_first_block_group(fs_info, next_bytenr);
300
}
301
node = rb_next(&cache->cache_node);
302
btrfs_put_block_group(cache);
303
if (node) {
304
cache = rb_entry(node, struct btrfs_block_group, cache_node);
305
btrfs_get_block_group(cache);
306
} else
307
cache = NULL;
308
read_unlock(&fs_info->block_group_cache_lock);
309
return cache;
310
}
311
312
/*
313
* Check if we can do a NOCOW write for a given extent.
314
*
315
* @fs_info: The filesystem information object.
316
* @bytenr: Logical start address of the extent.
317
*
318
* Check if we can do a NOCOW write for the given extent, and increments the
319
* number of NOCOW writers in the block group that contains the extent, as long
320
* as the block group exists and it's currently not in read-only mode.
321
*
322
* Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
323
* is responsible for calling btrfs_dec_nocow_writers() later.
324
*
325
* Or NULL if we can not do a NOCOW write
326
*/
327
struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
328
u64 bytenr)
329
{
330
struct btrfs_block_group *bg;
331
bool can_nocow = true;
332
333
bg = btrfs_lookup_block_group(fs_info, bytenr);
334
if (!bg)
335
return NULL;
336
337
spin_lock(&bg->lock);
338
if (bg->ro)
339
can_nocow = false;
340
else
341
atomic_inc(&bg->nocow_writers);
342
spin_unlock(&bg->lock);
343
344
if (!can_nocow) {
345
btrfs_put_block_group(bg);
346
return NULL;
347
}
348
349
/* No put on block group, done by btrfs_dec_nocow_writers(). */
350
return bg;
351
}
352
353
/*
354
* Decrement the number of NOCOW writers in a block group.
355
*
356
* This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
357
* and on the block group returned by that call. Typically this is called after
358
* creating an ordered extent for a NOCOW write, to prevent races with scrub and
359
* relocation.
360
*
361
* After this call, the caller should not use the block group anymore. It it wants
362
* to use it, then it should get a reference on it before calling this function.
363
*/
364
void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
365
{
366
if (atomic_dec_and_test(&bg->nocow_writers))
367
wake_up_var(&bg->nocow_writers);
368
369
/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
370
btrfs_put_block_group(bg);
371
}
372
373
void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
374
{
375
wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
376
}
377
378
void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
379
const u64 start)
380
{
381
struct btrfs_block_group *bg;
382
383
bg = btrfs_lookup_block_group(fs_info, start);
384
ASSERT(bg);
385
if (atomic_dec_and_test(&bg->reservations))
386
wake_up_var(&bg->reservations);
387
btrfs_put_block_group(bg);
388
}
389
390
void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
391
{
392
struct btrfs_space_info *space_info = bg->space_info;
393
394
ASSERT(bg->ro);
395
396
if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
397
return;
398
399
/*
400
* Our block group is read only but before we set it to read only,
401
* some task might have had allocated an extent from it already, but it
402
* has not yet created a respective ordered extent (and added it to a
403
* root's list of ordered extents).
404
* Therefore wait for any task currently allocating extents, since the
405
* block group's reservations counter is incremented while a read lock
406
* on the groups' semaphore is held and decremented after releasing
407
* the read access on that semaphore and creating the ordered extent.
408
*/
409
down_write(&space_info->groups_sem);
410
up_write(&space_info->groups_sem);
411
412
wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
413
}
414
415
struct btrfs_caching_control *btrfs_get_caching_control(
416
struct btrfs_block_group *cache)
417
{
418
struct btrfs_caching_control *ctl;
419
420
spin_lock(&cache->lock);
421
if (!cache->caching_ctl) {
422
spin_unlock(&cache->lock);
423
return NULL;
424
}
425
426
ctl = cache->caching_ctl;
427
refcount_inc(&ctl->count);
428
spin_unlock(&cache->lock);
429
return ctl;
430
}
431
432
static void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
433
{
434
if (refcount_dec_and_test(&ctl->count))
435
kfree(ctl);
436
}
437
438
/*
439
* When we wait for progress in the block group caching, its because our
440
* allocation attempt failed at least once. So, we must sleep and let some
441
* progress happen before we try again.
442
*
443
* This function will sleep at least once waiting for new free space to show
444
* up, and then it will check the block group free space numbers for our min
445
* num_bytes. Another option is to have it go ahead and look in the rbtree for
446
* a free extent of a given size, but this is a good start.
447
*
448
* Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
449
* any of the information in this block group.
450
*/
451
void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
452
u64 num_bytes)
453
{
454
struct btrfs_caching_control *caching_ctl;
455
int progress;
456
457
caching_ctl = btrfs_get_caching_control(cache);
458
if (!caching_ctl)
459
return;
460
461
/*
462
* We've already failed to allocate from this block group, so even if
463
* there's enough space in the block group it isn't contiguous enough to
464
* allow for an allocation, so wait for at least the next wakeup tick,
465
* or for the thing to be done.
466
*/
467
progress = atomic_read(&caching_ctl->progress);
468
469
wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
470
(progress != atomic_read(&caching_ctl->progress) &&
471
(cache->free_space_ctl->free_space >= num_bytes)));
472
473
btrfs_put_caching_control(caching_ctl);
474
}
475
476
static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
477
struct btrfs_caching_control *caching_ctl)
478
{
479
wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
480
return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
481
}
482
483
static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
484
{
485
struct btrfs_caching_control *caching_ctl;
486
int ret;
487
488
caching_ctl = btrfs_get_caching_control(cache);
489
if (!caching_ctl)
490
return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
491
ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
492
btrfs_put_caching_control(caching_ctl);
493
return ret;
494
}
495
496
#ifdef CONFIG_BTRFS_DEBUG
497
static void fragment_free_space(struct btrfs_block_group *block_group)
498
{
499
struct btrfs_fs_info *fs_info = block_group->fs_info;
500
u64 start = block_group->start;
501
u64 len = block_group->length;
502
u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
503
fs_info->nodesize : fs_info->sectorsize;
504
u64 step = chunk << 1;
505
506
while (len > chunk) {
507
btrfs_remove_free_space(block_group, start, chunk);
508
start += step;
509
if (len < step)
510
len = 0;
511
else
512
len -= step;
513
}
514
}
515
#endif
516
517
/*
518
* Add a free space range to the in memory free space cache of a block group.
519
* This checks if the range contains super block locations and any such
520
* locations are not added to the free space cache.
521
*
522
* @block_group: The target block group.
523
* @start: Start offset of the range.
524
* @end: End offset of the range (exclusive).
525
* @total_added_ret: Optional pointer to return the total amount of space
526
* added to the block group's free space cache.
527
*
528
* Returns 0 on success or < 0 on error.
529
*/
530
int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
531
u64 end, u64 *total_added_ret)
532
{
533
struct btrfs_fs_info *info = block_group->fs_info;
534
u64 extent_start, extent_end, size;
535
int ret;
536
537
if (total_added_ret)
538
*total_added_ret = 0;
539
540
while (start < end) {
541
if (!btrfs_find_first_extent_bit(&info->excluded_extents, start,
542
&extent_start, &extent_end,
543
EXTENT_DIRTY, NULL))
544
break;
545
546
if (extent_start <= start) {
547
start = extent_end + 1;
548
} else if (extent_start > start && extent_start < end) {
549
size = extent_start - start;
550
ret = btrfs_add_free_space_async_trimmed(block_group,
551
start, size);
552
if (ret)
553
return ret;
554
if (total_added_ret)
555
*total_added_ret += size;
556
start = extent_end + 1;
557
} else {
558
break;
559
}
560
}
561
562
if (start < end) {
563
size = end - start;
564
ret = btrfs_add_free_space_async_trimmed(block_group, start,
565
size);
566
if (ret)
567
return ret;
568
if (total_added_ret)
569
*total_added_ret += size;
570
}
571
572
return 0;
573
}
574
575
/*
576
* Get an arbitrary extent item index / max_index through the block group
577
*
578
* @caching_ctl the caching control containing the block group to sample from
579
* @index: the integral step through the block group to grab from
580
* @max_index: the granularity of the sampling
581
* @key: return value parameter for the item we find
582
* @path: path to use for searching in the extent tree
583
*
584
* Pre-conditions on indices:
585
* 0 <= index <= max_index
586
* 0 < max_index
587
*
588
* Returns: 0 on success, 1 if the search didn't yield a useful item.
589
*/
590
static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
591
int index, int max_index,
592
struct btrfs_key *found_key,
593
struct btrfs_path *path)
594
{
595
struct btrfs_block_group *block_group = caching_ctl->block_group;
596
struct btrfs_fs_info *fs_info = block_group->fs_info;
597
struct btrfs_root *extent_root;
598
u64 search_offset;
599
const u64 search_end = btrfs_block_group_end(block_group);
600
struct btrfs_key search_key;
601
int ret = 0;
602
603
ASSERT(index >= 0);
604
ASSERT(index <= max_index);
605
ASSERT(max_index > 0);
606
lockdep_assert_held(&caching_ctl->mutex);
607
lockdep_assert_held_read(&fs_info->commit_root_sem);
608
609
extent_root = btrfs_extent_root(fs_info, block_group->start);
610
if (unlikely(!extent_root)) {
611
btrfs_err(fs_info,
612
"missing extent root for block group at offset %llu",
613
block_group->start);
614
return -EUCLEAN;
615
}
616
617
search_offset = index * div_u64(block_group->length, max_index);
618
search_key.objectid = block_group->start + search_offset;
619
search_key.type = BTRFS_EXTENT_ITEM_KEY;
620
search_key.offset = 0;
621
622
btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
623
/* Success; sampled an extent item in the block group */
624
if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
625
found_key->objectid >= block_group->start &&
626
found_key->objectid + found_key->offset <= search_end)
627
break;
628
629
/* We can't possibly find a valid extent item anymore */
630
if (found_key->objectid >= search_end) {
631
ret = 1;
632
break;
633
}
634
}
635
636
lockdep_assert_held(&caching_ctl->mutex);
637
lockdep_assert_held_read(&fs_info->commit_root_sem);
638
return ret;
639
}
640
641
/*
642
* Best effort attempt to compute a block group's size class while caching it.
643
*
644
* @block_group: the block group we are caching
645
*
646
* We cannot infer the size class while adding free space extents, because that
647
* logic doesn't care about contiguous file extents (it doesn't differentiate
648
* between a 100M extent and 100 contiguous 1M extents). So we need to read the
649
* file extent items. Reading all of them is quite wasteful, because usually
650
* only a handful are enough to give a good answer. Therefore, we just grab 5 of
651
* them at even steps through the block group and pick the smallest size class
652
* we see. Since size class is best effort, and not guaranteed in general,
653
* inaccuracy is acceptable.
654
*
655
* To be more explicit about why this algorithm makes sense:
656
*
657
* If we are caching in a block group from disk, then there are three major cases
658
* to consider:
659
* 1. the block group is well behaved and all extents in it are the same size
660
* class.
661
* 2. the block group is mostly one size class with rare exceptions for last
662
* ditch allocations
663
* 3. the block group was populated before size classes and can have a totally
664
* arbitrary mix of size classes.
665
*
666
* In case 1, looking at any extent in the block group will yield the correct
667
* result. For the mixed cases, taking the minimum size class seems like a good
668
* approximation, since gaps from frees will be usable to the size class. For
669
* 2., a small handful of file extents is likely to yield the right answer. For
670
* 3, we can either read every file extent, or admit that this is best effort
671
* anyway and try to stay fast.
672
*
673
* No errors are returned since failing to determine the size class is not a
674
* critical error, size classes are just an optimization.
675
*/
676
static void load_block_group_size_class(struct btrfs_caching_control *caching_ctl)
677
{
678
BTRFS_PATH_AUTO_RELEASE(path);
679
struct btrfs_block_group *block_group = caching_ctl->block_group;
680
struct btrfs_fs_info *fs_info = block_group->fs_info;
681
struct btrfs_key key;
682
int i;
683
u64 min_size = block_group->length;
684
enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
685
686
/*
687
* Since we run in workqueue context, we allocate the path on stack to
688
* avoid memory allocation failure, as the stack in a work queue task
689
* is not deep.
690
*/
691
ASSERT(current_work() == &caching_ctl->work.normal_work);
692
693
if (!btrfs_block_group_should_use_size_class(block_group))
694
return;
695
696
path.skip_locking = true;
697
path.search_commit_root = true;
698
path.reada = READA_FORWARD;
699
700
lockdep_assert_held(&caching_ctl->mutex);
701
lockdep_assert_held_read(&fs_info->commit_root_sem);
702
for (i = 0; i < 5; ++i) {
703
int ret;
704
705
ret = sample_block_group_extent_item(caching_ctl, i, 5, &key, &path);
706
if (ret < 0)
707
return;
708
btrfs_release_path(&path);
709
if (ret > 0)
710
continue;
711
min_size = min_t(u64, min_size, key.offset);
712
size_class = btrfs_calc_block_group_size_class(min_size);
713
}
714
if (size_class != BTRFS_BG_SZ_NONE) {
715
spin_lock(&block_group->lock);
716
block_group->size_class = size_class;
717
spin_unlock(&block_group->lock);
718
}
719
}
720
721
static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
722
{
723
struct btrfs_block_group *block_group = caching_ctl->block_group;
724
const u64 block_group_end = btrfs_block_group_end(block_group);
725
struct btrfs_fs_info *fs_info = block_group->fs_info;
726
struct btrfs_root *extent_root;
727
BTRFS_PATH_AUTO_FREE(path);
728
struct extent_buffer *leaf;
729
struct btrfs_key key;
730
u64 total_found = 0;
731
u64 last = 0;
732
u32 nritems;
733
int ret;
734
bool wakeup = true;
735
736
path = btrfs_alloc_path();
737
if (!path)
738
return -ENOMEM;
739
740
last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
741
extent_root = btrfs_extent_root(fs_info, last);
742
743
#ifdef CONFIG_BTRFS_DEBUG
744
/*
745
* If we're fragmenting we don't want to make anybody think we can
746
* allocate from this block group until we've had a chance to fragment
747
* the free space.
748
*/
749
if (btrfs_should_fragment_free_space(block_group))
750
wakeup = false;
751
#endif
752
/*
753
* We don't want to deadlock with somebody trying to allocate a new
754
* extent for the extent root while also trying to search the extent
755
* root to add free space. So we skip locking and search the commit
756
* root, since its read-only
757
*/
758
path->skip_locking = true;
759
path->search_commit_root = true;
760
path->reada = READA_FORWARD;
761
762
key.objectid = last;
763
key.type = BTRFS_EXTENT_ITEM_KEY;
764
key.offset = 0;
765
766
next:
767
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
768
if (ret < 0)
769
return ret;
770
771
leaf = path->nodes[0];
772
nritems = btrfs_header_nritems(leaf);
773
774
while (1) {
775
if (btrfs_fs_closing_done(fs_info)) {
776
last = (u64)-1;
777
break;
778
}
779
780
if (path->slots[0] < nritems) {
781
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
782
} else {
783
ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
784
if (ret)
785
break;
786
787
if (need_resched() ||
788
rwsem_is_contended(&fs_info->commit_root_sem)) {
789
btrfs_release_path(path);
790
up_read(&fs_info->commit_root_sem);
791
mutex_unlock(&caching_ctl->mutex);
792
cond_resched();
793
mutex_lock(&caching_ctl->mutex);
794
down_read(&fs_info->commit_root_sem);
795
goto next;
796
}
797
798
ret = btrfs_next_leaf(extent_root, path);
799
if (ret < 0)
800
return ret;
801
if (ret)
802
break;
803
leaf = path->nodes[0];
804
nritems = btrfs_header_nritems(leaf);
805
continue;
806
}
807
808
if (key.objectid < last) {
809
key.objectid = last;
810
key.type = BTRFS_EXTENT_ITEM_KEY;
811
key.offset = 0;
812
btrfs_release_path(path);
813
goto next;
814
}
815
816
if (key.objectid < block_group->start) {
817
path->slots[0]++;
818
continue;
819
}
820
821
if (key.objectid >= block_group_end)
822
break;
823
824
if (key.type == BTRFS_EXTENT_ITEM_KEY ||
825
key.type == BTRFS_METADATA_ITEM_KEY) {
826
u64 space_added;
827
828
ret = btrfs_add_new_free_space(block_group, last,
829
key.objectid, &space_added);
830
if (ret)
831
return ret;
832
total_found += space_added;
833
if (key.type == BTRFS_METADATA_ITEM_KEY)
834
last = key.objectid +
835
fs_info->nodesize;
836
else
837
last = key.objectid + key.offset;
838
839
if (total_found > CACHING_CTL_WAKE_UP) {
840
total_found = 0;
841
if (wakeup) {
842
atomic_inc(&caching_ctl->progress);
843
wake_up(&caching_ctl->wait);
844
}
845
}
846
}
847
path->slots[0]++;
848
}
849
850
return btrfs_add_new_free_space(block_group, last, block_group_end, NULL);
851
}
852
853
static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
854
{
855
btrfs_clear_extent_bit(&bg->fs_info->excluded_extents, bg->start,
856
btrfs_block_group_end(bg) - 1, EXTENT_DIRTY, NULL);
857
}
858
859
static noinline void caching_thread(struct btrfs_work *work)
860
{
861
struct btrfs_block_group *block_group;
862
struct btrfs_fs_info *fs_info;
863
struct btrfs_caching_control *caching_ctl;
864
int ret;
865
866
caching_ctl = container_of(work, struct btrfs_caching_control, work);
867
block_group = caching_ctl->block_group;
868
fs_info = block_group->fs_info;
869
870
mutex_lock(&caching_ctl->mutex);
871
down_read(&fs_info->commit_root_sem);
872
873
load_block_group_size_class(caching_ctl);
874
if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
875
ret = load_free_space_cache(block_group);
876
if (ret == 1) {
877
ret = 0;
878
goto done;
879
}
880
881
/*
882
* We failed to load the space cache, set ourselves to
883
* CACHE_STARTED and carry on.
884
*/
885
spin_lock(&block_group->lock);
886
block_group->cached = BTRFS_CACHE_STARTED;
887
spin_unlock(&block_group->lock);
888
wake_up(&caching_ctl->wait);
889
}
890
891
/*
892
* If we are in the transaction that populated the free space tree we
893
* can't actually cache from the free space tree as our commit root and
894
* real root are the same, so we could change the contents of the blocks
895
* while caching. Instead do the slow caching in this case, and after
896
* the transaction has committed we will be safe.
897
*/
898
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
899
!(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
900
ret = btrfs_load_free_space_tree(caching_ctl);
901
else
902
ret = load_extent_tree_free(caching_ctl);
903
done:
904
spin_lock(&block_group->lock);
905
block_group->caching_ctl = NULL;
906
block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
907
spin_unlock(&block_group->lock);
908
909
#ifdef CONFIG_BTRFS_DEBUG
910
if (btrfs_should_fragment_free_space(block_group)) {
911
u64 bytes_used;
912
913
spin_lock(&block_group->space_info->lock);
914
spin_lock(&block_group->lock);
915
bytes_used = block_group->length - block_group->used;
916
block_group->space_info->bytes_used += bytes_used >> 1;
917
spin_unlock(&block_group->lock);
918
spin_unlock(&block_group->space_info->lock);
919
fragment_free_space(block_group);
920
}
921
#endif
922
923
up_read(&fs_info->commit_root_sem);
924
btrfs_free_excluded_extents(block_group);
925
mutex_unlock(&caching_ctl->mutex);
926
927
wake_up(&caching_ctl->wait);
928
929
btrfs_put_caching_control(caching_ctl);
930
btrfs_put_block_group(block_group);
931
}
932
933
int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
934
{
935
struct btrfs_fs_info *fs_info = cache->fs_info;
936
struct btrfs_caching_control *caching_ctl = NULL;
937
int ret = 0;
938
939
/* Allocator for zoned filesystems does not use the cache at all */
940
if (btrfs_is_zoned(fs_info))
941
return 0;
942
943
/*
944
* No allocations can be done from remapped block groups, so they have
945
* no entries in the free-space tree.
946
*/
947
if (cache->flags & BTRFS_BLOCK_GROUP_REMAPPED)
948
return 0;
949
950
caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
951
if (!caching_ctl)
952
return -ENOMEM;
953
954
INIT_LIST_HEAD(&caching_ctl->list);
955
mutex_init(&caching_ctl->mutex);
956
init_waitqueue_head(&caching_ctl->wait);
957
caching_ctl->block_group = cache;
958
refcount_set(&caching_ctl->count, 2);
959
atomic_set(&caching_ctl->progress, 0);
960
btrfs_init_work(&caching_ctl->work, caching_thread, NULL);
961
962
spin_lock(&cache->lock);
963
if (cache->cached != BTRFS_CACHE_NO) {
964
kfree(caching_ctl);
965
966
caching_ctl = cache->caching_ctl;
967
if (caching_ctl)
968
refcount_inc(&caching_ctl->count);
969
spin_unlock(&cache->lock);
970
goto out;
971
}
972
WARN_ON(cache->caching_ctl);
973
cache->caching_ctl = caching_ctl;
974
cache->cached = BTRFS_CACHE_STARTED;
975
spin_unlock(&cache->lock);
976
977
write_lock(&fs_info->block_group_cache_lock);
978
refcount_inc(&caching_ctl->count);
979
list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
980
write_unlock(&fs_info->block_group_cache_lock);
981
982
btrfs_get_block_group(cache);
983
984
btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
985
out:
986
if (wait && caching_ctl)
987
ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
988
if (caching_ctl)
989
btrfs_put_caching_control(caching_ctl);
990
991
return ret;
992
}
993
994
static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
995
{
996
u64 extra_flags = chunk_to_extended(flags) &
997
BTRFS_EXTENDED_PROFILE_MASK;
998
999
write_seqlock(&fs_info->profiles_lock);
1000
if (flags & BTRFS_BLOCK_GROUP_DATA)
1001
fs_info->avail_data_alloc_bits &= ~extra_flags;
1002
if (flags & BTRFS_BLOCK_GROUP_METADATA)
1003
fs_info->avail_metadata_alloc_bits &= ~extra_flags;
1004
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1005
fs_info->avail_system_alloc_bits &= ~extra_flags;
1006
write_sequnlock(&fs_info->profiles_lock);
1007
}
1008
1009
/*
1010
* Clear incompat bits for the following feature(s):
1011
*
1012
* - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
1013
* in the whole filesystem
1014
*
1015
* - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
1016
*/
1017
static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
1018
{
1019
bool found_raid56 = false;
1020
bool found_raid1c34 = false;
1021
1022
if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1023
(flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1024
(flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1025
struct list_head *head = &fs_info->space_info;
1026
struct btrfs_space_info *sinfo;
1027
1028
list_for_each_entry_rcu(sinfo, head, list) {
1029
down_read(&sinfo->groups_sem);
1030
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1031
found_raid56 = true;
1032
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1033
found_raid56 = true;
1034
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1035
found_raid1c34 = true;
1036
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1037
found_raid1c34 = true;
1038
up_read(&sinfo->groups_sem);
1039
}
1040
if (!found_raid56)
1041
btrfs_clear_fs_incompat(fs_info, RAID56);
1042
if (!found_raid1c34)
1043
btrfs_clear_fs_incompat(fs_info, RAID1C34);
1044
}
1045
}
1046
1047
static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1048
{
1049
if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1050
return fs_info->block_group_root;
1051
return btrfs_extent_root(fs_info, 0);
1052
}
1053
1054
static int remove_block_group_item(struct btrfs_trans_handle *trans,
1055
struct btrfs_path *path,
1056
struct btrfs_block_group *block_group)
1057
{
1058
struct btrfs_fs_info *fs_info = trans->fs_info;
1059
struct btrfs_root *root;
1060
struct btrfs_key key;
1061
int ret;
1062
1063
root = btrfs_block_group_root(fs_info);
1064
key.objectid = block_group->start;
1065
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1066
key.offset = block_group->length;
1067
1068
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1069
if (ret > 0)
1070
ret = -ENOENT;
1071
if (ret < 0)
1072
return ret;
1073
1074
return btrfs_del_item(trans, root, path);
1075
}
1076
1077
void btrfs_remove_bg_from_sinfo(struct btrfs_block_group *bg)
1078
{
1079
int factor = btrfs_bg_type_to_factor(bg->flags);
1080
1081
spin_lock(&bg->space_info->lock);
1082
if (btrfs_test_opt(bg->fs_info, ENOSPC_DEBUG)) {
1083
WARN_ON(bg->space_info->total_bytes < bg->length);
1084
WARN_ON(bg->space_info->bytes_readonly < bg->length - bg->zone_unusable);
1085
WARN_ON(bg->space_info->bytes_zone_unusable < bg->zone_unusable);
1086
WARN_ON(bg->space_info->disk_total < bg->length * factor);
1087
}
1088
bg->space_info->total_bytes -= bg->length;
1089
bg->space_info->bytes_readonly -= (bg->length - bg->zone_unusable);
1090
btrfs_space_info_update_bytes_zone_unusable(bg->space_info, -bg->zone_unusable);
1091
bg->space_info->disk_total -= bg->length * factor;
1092
spin_unlock(&bg->space_info->lock);
1093
}
1094
1095
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1096
struct btrfs_chunk_map *map)
1097
{
1098
struct btrfs_fs_info *fs_info = trans->fs_info;
1099
BTRFS_PATH_AUTO_FREE(path);
1100
struct btrfs_block_group *block_group;
1101
struct btrfs_free_cluster *cluster;
1102
struct inode *inode;
1103
struct kobject *kobj = NULL;
1104
int ret;
1105
int index;
1106
struct btrfs_caching_control *caching_ctl = NULL;
1107
bool remove_map;
1108
bool remove_rsv = false;
1109
1110
block_group = btrfs_lookup_block_group(fs_info, map->start);
1111
if (unlikely(!block_group)) {
1112
btrfs_abort_transaction(trans, -ENOENT);
1113
return -ENOENT;
1114
}
1115
1116
if (unlikely(!block_group->ro &&
1117
!(block_group->flags & BTRFS_BLOCK_GROUP_REMAPPED))) {
1118
ret = -EUCLEAN;
1119
btrfs_abort_transaction(trans, ret);
1120
goto out;
1121
}
1122
1123
trace_btrfs_remove_block_group(block_group);
1124
/*
1125
* Free the reserved super bytes from this block group before
1126
* remove it.
1127
*/
1128
btrfs_free_excluded_extents(block_group);
1129
btrfs_free_ref_tree_range(fs_info, block_group->start,
1130
block_group->length);
1131
1132
index = btrfs_bg_flags_to_raid_index(block_group->flags);
1133
1134
/* make sure this block group isn't part of an allocation cluster */
1135
cluster = &fs_info->data_alloc_cluster;
1136
spin_lock(&cluster->refill_lock);
1137
btrfs_return_cluster_to_free_space(block_group, cluster);
1138
spin_unlock(&cluster->refill_lock);
1139
1140
/*
1141
* make sure this block group isn't part of a metadata
1142
* allocation cluster
1143
*/
1144
cluster = &fs_info->meta_alloc_cluster;
1145
spin_lock(&cluster->refill_lock);
1146
btrfs_return_cluster_to_free_space(block_group, cluster);
1147
spin_unlock(&cluster->refill_lock);
1148
1149
btrfs_clear_treelog_bg(block_group);
1150
btrfs_clear_data_reloc_bg(block_group);
1151
1152
path = btrfs_alloc_path();
1153
if (unlikely(!path)) {
1154
ret = -ENOMEM;
1155
btrfs_abort_transaction(trans, ret);
1156
goto out;
1157
}
1158
1159
/*
1160
* get the inode first so any iput calls done for the io_list
1161
* aren't the final iput (no unlinks allowed now)
1162
*/
1163
inode = lookup_free_space_inode(block_group, path);
1164
1165
mutex_lock(&trans->transaction->cache_write_mutex);
1166
/*
1167
* Make sure our free space cache IO is done before removing the
1168
* free space inode
1169
*/
1170
spin_lock(&trans->transaction->dirty_bgs_lock);
1171
if (!list_empty(&block_group->io_list)) {
1172
list_del_init(&block_group->io_list);
1173
1174
WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1175
1176
spin_unlock(&trans->transaction->dirty_bgs_lock);
1177
btrfs_wait_cache_io(trans, block_group, path);
1178
btrfs_put_block_group(block_group);
1179
spin_lock(&trans->transaction->dirty_bgs_lock);
1180
}
1181
1182
if (!list_empty(&block_group->dirty_list)) {
1183
list_del_init(&block_group->dirty_list);
1184
remove_rsv = true;
1185
btrfs_put_block_group(block_group);
1186
}
1187
spin_unlock(&trans->transaction->dirty_bgs_lock);
1188
mutex_unlock(&trans->transaction->cache_write_mutex);
1189
1190
ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1191
if (unlikely(ret)) {
1192
btrfs_abort_transaction(trans, ret);
1193
goto out;
1194
}
1195
1196
write_lock(&fs_info->block_group_cache_lock);
1197
rb_erase_cached(&block_group->cache_node,
1198
&fs_info->block_group_cache_tree);
1199
RB_CLEAR_NODE(&block_group->cache_node);
1200
1201
/* Once for the block groups rbtree */
1202
btrfs_put_block_group(block_group);
1203
1204
write_unlock(&fs_info->block_group_cache_lock);
1205
1206
down_write(&block_group->space_info->groups_sem);
1207
/*
1208
* we must use list_del_init so people can check to see if they
1209
* are still on the list after taking the semaphore
1210
*/
1211
list_del_init(&block_group->list);
1212
if (list_empty(&block_group->space_info->block_groups[index])) {
1213
kobj = block_group->space_info->block_group_kobjs[index];
1214
block_group->space_info->block_group_kobjs[index] = NULL;
1215
clear_avail_alloc_bits(fs_info, block_group->flags);
1216
}
1217
up_write(&block_group->space_info->groups_sem);
1218
clear_incompat_bg_bits(fs_info, block_group->flags);
1219
if (kobj) {
1220
kobject_del(kobj);
1221
kobject_put(kobj);
1222
}
1223
1224
if (block_group->cached == BTRFS_CACHE_STARTED)
1225
btrfs_wait_block_group_cache_done(block_group);
1226
1227
write_lock(&fs_info->block_group_cache_lock);
1228
caching_ctl = btrfs_get_caching_control(block_group);
1229
if (!caching_ctl) {
1230
struct btrfs_caching_control *ctl;
1231
1232
list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1233
if (ctl->block_group == block_group) {
1234
caching_ctl = ctl;
1235
refcount_inc(&caching_ctl->count);
1236
break;
1237
}
1238
}
1239
}
1240
if (caching_ctl)
1241
list_del_init(&caching_ctl->list);
1242
write_unlock(&fs_info->block_group_cache_lock);
1243
1244
if (caching_ctl) {
1245
/* Once for the caching bgs list and once for us. */
1246
btrfs_put_caching_control(caching_ctl);
1247
btrfs_put_caching_control(caching_ctl);
1248
}
1249
1250
spin_lock(&trans->transaction->dirty_bgs_lock);
1251
WARN_ON(!list_empty(&block_group->dirty_list));
1252
WARN_ON(!list_empty(&block_group->io_list));
1253
spin_unlock(&trans->transaction->dirty_bgs_lock);
1254
1255
btrfs_remove_free_space_cache(block_group);
1256
1257
spin_lock(&block_group->space_info->lock);
1258
list_del_init(&block_group->ro_list);
1259
spin_unlock(&block_group->space_info->lock);
1260
1261
if (!(block_group->flags & BTRFS_BLOCK_GROUP_REMAPPED))
1262
btrfs_remove_bg_from_sinfo(block_group);
1263
1264
/*
1265
* Remove the free space for the block group from the free space tree
1266
* and the block group's item from the extent tree before marking the
1267
* block group as removed. This is to prevent races with tasks that
1268
* freeze and unfreeze a block group, this task and another task
1269
* allocating a new block group - the unfreeze task ends up removing
1270
* the block group's extent map before the task calling this function
1271
* deletes the block group item from the extent tree, allowing for
1272
* another task to attempt to create another block group with the same
1273
* item key (and failing with -EEXIST and a transaction abort).
1274
*
1275
* If the REMAPPED flag has been set the block group's free space
1276
* has already been removed, so we can skip the call to
1277
* btrfs_remove_block_group_free_space().
1278
*/
1279
if (!(block_group->flags & BTRFS_BLOCK_GROUP_REMAPPED)) {
1280
ret = btrfs_remove_block_group_free_space(trans, block_group);
1281
if (unlikely(ret)) {
1282
btrfs_abort_transaction(trans, ret);
1283
goto out;
1284
}
1285
}
1286
1287
ret = remove_block_group_item(trans, path, block_group);
1288
if (unlikely(ret < 0)) {
1289
btrfs_abort_transaction(trans, ret);
1290
goto out;
1291
}
1292
1293
spin_lock(&block_group->lock);
1294
/*
1295
* Hitting this WARN means we removed a block group with an unwritten
1296
* region. It will cause "unable to find chunk map for logical" errors.
1297
*/
1298
if (WARN_ON(has_unwritten_metadata(block_group)))
1299
btrfs_warn(fs_info,
1300
"block group %llu is removed before metadata write out",
1301
block_group->start);
1302
1303
set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1304
1305
/*
1306
* At this point trimming or scrub can't start on this block group,
1307
* because we removed the block group from the rbtree
1308
* fs_info->block_group_cache_tree so no one can't find it anymore and
1309
* even if someone already got this block group before we removed it
1310
* from the rbtree, they have already incremented block_group->frozen -
1311
* if they didn't, for the trimming case they won't find any free space
1312
* entries because we already removed them all when we called
1313
* btrfs_remove_free_space_cache().
1314
*
1315
* And we must not remove the chunk map from the fs_info->mapping_tree
1316
* to prevent the same logical address range and physical device space
1317
* ranges from being reused for a new block group. This is needed to
1318
* avoid races with trimming and scrub.
1319
*
1320
* An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1321
* completely transactionless, so while it is trimming a range the
1322
* currently running transaction might finish and a new one start,
1323
* allowing for new block groups to be created that can reuse the same
1324
* physical device locations unless we take this special care.
1325
*
1326
* There may also be an implicit trim operation if the file system
1327
* is mounted with -odiscard. The same protections must remain
1328
* in place until the extents have been discarded completely when
1329
* the transaction commit has completed.
1330
*/
1331
remove_map = (atomic_read(&block_group->frozen) == 0);
1332
spin_unlock(&block_group->lock);
1333
1334
if (remove_map)
1335
btrfs_remove_chunk_map(fs_info, map);
1336
1337
out:
1338
/* Once for the lookup reference */
1339
btrfs_put_block_group(block_group);
1340
if (remove_rsv)
1341
btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
1342
return ret;
1343
}
1344
1345
struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1346
struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1347
{
1348
struct btrfs_root *root = btrfs_block_group_root(fs_info);
1349
struct btrfs_chunk_map *map;
1350
unsigned int num_items;
1351
1352
map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
1353
ASSERT(map != NULL);
1354
ASSERT(map->start == chunk_offset);
1355
1356
/*
1357
* We need to reserve 3 + N units from the metadata space info in order
1358
* to remove a block group (done at btrfs_remove_chunk() and at
1359
* btrfs_remove_block_group()), which are used for:
1360
*
1361
* 1 unit for adding the free space inode's orphan (located in the tree
1362
* of tree roots).
1363
* 1 unit for deleting the block group item (located in the extent
1364
* tree).
1365
* 1 unit for deleting the free space item (located in tree of tree
1366
* roots).
1367
* N units for deleting N device extent items corresponding to each
1368
* stripe (located in the device tree).
1369
*
1370
* In order to remove a block group we also need to reserve units in the
1371
* system space info in order to update the chunk tree (update one or
1372
* more device items and remove one chunk item), but this is done at
1373
* btrfs_remove_chunk() through a call to check_system_chunk().
1374
*/
1375
num_items = 3 + map->num_stripes;
1376
btrfs_free_chunk_map(map);
1377
1378
return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1379
}
1380
1381
/*
1382
* Mark block group @cache read-only, so later write won't happen to block
1383
* group @cache.
1384
*
1385
* If @force is not set, this function will only mark the block group readonly
1386
* if we have enough free space (1M) in other metadata/system block groups.
1387
* If @force is not set, this function will mark the block group readonly
1388
* without checking free space.
1389
*
1390
* NOTE: This function doesn't care if other block groups can contain all the
1391
* data in this block group. That check should be done by relocation routine,
1392
* not this function.
1393
*/
1394
static int inc_block_group_ro(struct btrfs_block_group *cache, bool force)
1395
{
1396
struct btrfs_space_info *sinfo = cache->space_info;
1397
u64 num_bytes;
1398
int ret = -ENOSPC;
1399
1400
spin_lock(&sinfo->lock);
1401
spin_lock(&cache->lock);
1402
1403
if (cache->swap_extents) {
1404
ret = -ETXTBSY;
1405
goto out;
1406
}
1407
1408
if (cache->ro) {
1409
cache->ro++;
1410
ret = 0;
1411
goto out;
1412
}
1413
1414
num_bytes = btrfs_block_group_available_space(cache);
1415
1416
/*
1417
* Data never overcommits, even in mixed mode, so do just the straight
1418
* check of left over space in how much we have allocated.
1419
*/
1420
if (force) {
1421
ret = 0;
1422
} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1423
u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1424
1425
/*
1426
* Here we make sure if we mark this bg RO, we still have enough
1427
* free space as buffer.
1428
*/
1429
if (sinfo_used + num_bytes <= sinfo->total_bytes)
1430
ret = 0;
1431
} else {
1432
/*
1433
* We overcommit metadata, so we need to do the
1434
* btrfs_can_overcommit check here, and we need to pass in
1435
* BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1436
* leeway to allow us to mark this block group as read only.
1437
*/
1438
if (btrfs_can_overcommit(sinfo, num_bytes, BTRFS_RESERVE_NO_FLUSH))
1439
ret = 0;
1440
}
1441
1442
if (!ret) {
1443
sinfo->bytes_readonly += num_bytes;
1444
if (btrfs_is_zoned(cache->fs_info)) {
1445
/* Migrate zone_unusable bytes to readonly */
1446
sinfo->bytes_readonly += cache->zone_unusable;
1447
btrfs_space_info_update_bytes_zone_unusable(sinfo, -cache->zone_unusable);
1448
cache->zone_unusable = 0;
1449
}
1450
cache->ro++;
1451
list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1452
}
1453
out:
1454
spin_unlock(&cache->lock);
1455
spin_unlock(&sinfo->lock);
1456
if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1457
btrfs_info(cache->fs_info,
1458
"unable to make block group %llu ro", cache->start);
1459
btrfs_dump_space_info(cache->space_info, 0, false);
1460
}
1461
return ret;
1462
}
1463
1464
static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1465
const struct btrfs_block_group *bg)
1466
{
1467
struct btrfs_fs_info *fs_info = trans->fs_info;
1468
struct btrfs_transaction *prev_trans = NULL;
1469
const u64 start = bg->start;
1470
const u64 end = start + bg->length - 1;
1471
int ret;
1472
1473
spin_lock(&fs_info->trans_lock);
1474
if (!list_is_first(&trans->transaction->list, &fs_info->trans_list)) {
1475
prev_trans = list_prev_entry(trans->transaction, list);
1476
refcount_inc(&prev_trans->use_count);
1477
}
1478
spin_unlock(&fs_info->trans_lock);
1479
1480
/*
1481
* Hold the unused_bg_unpin_mutex lock to avoid racing with
1482
* btrfs_finish_extent_commit(). If we are at transaction N, another
1483
* task might be running finish_extent_commit() for the previous
1484
* transaction N - 1, and have seen a range belonging to the block
1485
* group in pinned_extents before we were able to clear the whole block
1486
* group range from pinned_extents. This means that task can lookup for
1487
* the block group after we unpinned it from pinned_extents and removed
1488
* it, leading to an error at unpin_extent_range().
1489
*/
1490
mutex_lock(&fs_info->unused_bg_unpin_mutex);
1491
if (prev_trans) {
1492
ret = btrfs_clear_extent_bit(&prev_trans->pinned_extents, start, end,
1493
EXTENT_DIRTY, NULL);
1494
if (ret)
1495
goto out;
1496
}
1497
1498
ret = btrfs_clear_extent_bit(&trans->transaction->pinned_extents, start, end,
1499
EXTENT_DIRTY, NULL);
1500
out:
1501
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1502
if (prev_trans)
1503
btrfs_put_transaction(prev_trans);
1504
1505
return ret == 0;
1506
}
1507
1508
/*
1509
* Link the block_group to a list via bg_list.
1510
*
1511
* @bg: The block_group to link to the list.
1512
* @list: The list to link it to.
1513
*
1514
* Use this rather than list_add_tail() directly to ensure proper respect
1515
* to locking and refcounting.
1516
*
1517
* Returns: true if the bg was linked with a refcount bump and false otherwise.
1518
*/
1519
static bool btrfs_link_bg_list(struct btrfs_block_group *bg, struct list_head *list)
1520
{
1521
struct btrfs_fs_info *fs_info = bg->fs_info;
1522
bool added = false;
1523
1524
spin_lock(&fs_info->unused_bgs_lock);
1525
if (list_empty(&bg->bg_list)) {
1526
btrfs_get_block_group(bg);
1527
list_add_tail(&bg->bg_list, list);
1528
added = true;
1529
}
1530
spin_unlock(&fs_info->unused_bgs_lock);
1531
return added;
1532
}
1533
1534
/*
1535
* Process the unused_bgs list and remove any that don't have any allocated
1536
* space inside of them.
1537
*/
1538
void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1539
{
1540
LIST_HEAD(retry_list);
1541
struct btrfs_block_group *block_group;
1542
struct btrfs_space_info *space_info;
1543
struct btrfs_trans_handle *trans;
1544
const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1545
int ret = 0;
1546
1547
if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1548
return;
1549
1550
if (btrfs_fs_closing(fs_info))
1551
return;
1552
1553
/*
1554
* Long running balances can keep us blocked here for eternity, so
1555
* simply skip deletion if we're unable to get the mutex.
1556
*/
1557
if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1558
return;
1559
1560
spin_lock(&fs_info->unused_bgs_lock);
1561
while (!list_empty(&fs_info->unused_bgs)) {
1562
u64 used;
1563
int trimming;
1564
1565
block_group = list_first_entry(&fs_info->unused_bgs,
1566
struct btrfs_block_group,
1567
bg_list);
1568
list_del_init(&block_group->bg_list);
1569
1570
space_info = block_group->space_info;
1571
1572
if (ret || btrfs_mixed_space_info(space_info)) {
1573
btrfs_put_block_group(block_group);
1574
continue;
1575
}
1576
spin_unlock(&fs_info->unused_bgs_lock);
1577
1578
btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1579
1580
/* Don't want to race with allocators so take the groups_sem */
1581
down_write(&space_info->groups_sem);
1582
1583
/*
1584
* Async discard moves the final block group discard to be prior
1585
* to the unused_bgs code path. Therefore, if it's not fully
1586
* trimmed, punt it back to the async discard lists.
1587
*/
1588
if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1589
!btrfs_is_free_space_trimmed(block_group)) {
1590
trace_btrfs_skip_unused_block_group(block_group);
1591
up_write(&space_info->groups_sem);
1592
/* Requeue if we failed because of async discard */
1593
btrfs_discard_queue_work(&fs_info->discard_ctl,
1594
block_group);
1595
goto next;
1596
}
1597
1598
spin_lock(&space_info->lock);
1599
spin_lock(&block_group->lock);
1600
if (btrfs_is_block_group_used(block_group) ||
1601
(block_group->ro && !(block_group->flags & BTRFS_BLOCK_GROUP_REMAPPED)) ||
1602
list_is_singular(&block_group->list) ||
1603
test_bit(BLOCK_GROUP_FLAG_FULLY_REMAPPED, &block_group->runtime_flags)) {
1604
/*
1605
* We want to bail if we made new allocations or have
1606
* outstanding allocations in this block group. We do
1607
* the ro check in case balance is currently acting on
1608
* this block group.
1609
*
1610
* Also bail out if this is the only block group for its
1611
* type, because otherwise we would lose profile
1612
* information from fs_info->avail_*_alloc_bits and the
1613
* next block group of this type would be created with a
1614
* "single" profile (even if we're in a raid fs) because
1615
* fs_info->avail_*_alloc_bits would be 0.
1616
*/
1617
trace_btrfs_skip_unused_block_group(block_group);
1618
spin_unlock(&block_group->lock);
1619
spin_unlock(&space_info->lock);
1620
up_write(&space_info->groups_sem);
1621
goto next;
1622
}
1623
1624
/*
1625
* The block group may be unused but there may be space reserved
1626
* accounting with the existence of that block group, that is,
1627
* space_info->bytes_may_use was incremented by a task but no
1628
* space was yet allocated from the block group by the task.
1629
* That space may or may not be allocated, as we are generally
1630
* pessimistic about space reservation for metadata as well as
1631
* for data when using compression (as we reserve space based on
1632
* the worst case, when data can't be compressed, and before
1633
* actually attempting compression, before starting writeback).
1634
*
1635
* So check if the total space of the space_info minus the size
1636
* of this block group is less than the used space of the
1637
* space_info - if that's the case, then it means we have tasks
1638
* that might be relying on the block group in order to allocate
1639
* extents, and add back the block group to the unused list when
1640
* we finish, so that we retry later in case no tasks ended up
1641
* needing to allocate extents from the block group.
1642
*/
1643
used = btrfs_space_info_used(space_info, true);
1644
if (((space_info->total_bytes - block_group->length < used &&
1645
block_group->zone_unusable < block_group->length) ||
1646
has_unwritten_metadata(block_group)) &&
1647
!(block_group->flags & BTRFS_BLOCK_GROUP_REMAPPED)) {
1648
/*
1649
* Add a reference for the list, compensate for the ref
1650
* drop under the "next" label for the
1651
* fs_info->unused_bgs list.
1652
*/
1653
btrfs_link_bg_list(block_group, &retry_list);
1654
1655
trace_btrfs_skip_unused_block_group(block_group);
1656
spin_unlock(&block_group->lock);
1657
spin_unlock(&space_info->lock);
1658
up_write(&space_info->groups_sem);
1659
goto next;
1660
}
1661
1662
spin_unlock(&block_group->lock);
1663
spin_unlock(&space_info->lock);
1664
1665
/* We don't want to force the issue, only flip if it's ok. */
1666
ret = inc_block_group_ro(block_group, 0);
1667
up_write(&space_info->groups_sem);
1668
if (ret < 0) {
1669
ret = 0;
1670
goto next;
1671
}
1672
1673
ret = btrfs_zone_finish(block_group);
1674
if (ret < 0) {
1675
btrfs_dec_block_group_ro(block_group);
1676
if (ret == -EAGAIN) {
1677
btrfs_link_bg_list(block_group, &retry_list);
1678
ret = 0;
1679
}
1680
goto next;
1681
}
1682
1683
/*
1684
* Want to do this before we do anything else so we can recover
1685
* properly if we fail to join the transaction.
1686
*/
1687
trans = btrfs_start_trans_remove_block_group(fs_info,
1688
block_group->start);
1689
if (IS_ERR(trans)) {
1690
btrfs_dec_block_group_ro(block_group);
1691
ret = PTR_ERR(trans);
1692
goto next;
1693
}
1694
1695
/*
1696
* We could have pending pinned extents for this block group,
1697
* just delete them, we don't care about them anymore.
1698
*/
1699
if (!clean_pinned_extents(trans, block_group)) {
1700
btrfs_dec_block_group_ro(block_group);
1701
goto end_trans;
1702
}
1703
1704
/*
1705
* At this point, the block_group is read only and should fail
1706
* new allocations. However, btrfs_finish_extent_commit() can
1707
* cause this block_group to be placed back on the discard
1708
* lists because now the block_group isn't fully discarded.
1709
* Bail here and try again later after discarding everything.
1710
*/
1711
spin_lock(&fs_info->discard_ctl.lock);
1712
if (!list_empty(&block_group->discard_list)) {
1713
spin_unlock(&fs_info->discard_ctl.lock);
1714
btrfs_dec_block_group_ro(block_group);
1715
btrfs_discard_queue_work(&fs_info->discard_ctl,
1716
block_group);
1717
goto end_trans;
1718
}
1719
spin_unlock(&fs_info->discard_ctl.lock);
1720
1721
/* Reset pinned so btrfs_put_block_group doesn't complain */
1722
spin_lock(&space_info->lock);
1723
spin_lock(&block_group->lock);
1724
1725
btrfs_space_info_update_bytes_pinned(space_info, -block_group->pinned);
1726
space_info->bytes_readonly += block_group->pinned;
1727
block_group->pinned = 0;
1728
1729
spin_unlock(&block_group->lock);
1730
spin_unlock(&space_info->lock);
1731
1732
/*
1733
* The normal path here is an unused block group is passed here,
1734
* then trimming is handled in the transaction commit path.
1735
* Async discard interposes before this to do the trimming
1736
* before coming down the unused block group path as trimming
1737
* will no longer be done later in the transaction commit path.
1738
*/
1739
if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1740
goto flip_async;
1741
1742
/*
1743
* DISCARD can flip during remount. On zoned filesystems, we
1744
* need to reset sequential-required zones.
1745
*/
1746
trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1747
btrfs_is_zoned(fs_info);
1748
1749
/* Implicit trim during transaction commit. */
1750
if (trimming)
1751
btrfs_freeze_block_group(block_group);
1752
1753
/*
1754
* Btrfs_remove_chunk will abort the transaction if things go
1755
* horribly wrong.
1756
*/
1757
ret = btrfs_remove_chunk(trans, block_group->start);
1758
1759
if (ret) {
1760
if (trimming)
1761
btrfs_unfreeze_block_group(block_group);
1762
goto end_trans;
1763
}
1764
1765
/*
1766
* If we're not mounted with -odiscard, we can just forget
1767
* about this block group. Otherwise we'll need to wait
1768
* until transaction commit to do the actual discard.
1769
*/
1770
if (trimming) {
1771
spin_lock(&fs_info->unused_bgs_lock);
1772
/*
1773
* A concurrent scrub might have added us to the list
1774
* fs_info->unused_bgs, so use a list_move operation
1775
* to add the block group to the deleted_bgs list.
1776
*/
1777
list_move(&block_group->bg_list,
1778
&trans->transaction->deleted_bgs);
1779
spin_unlock(&fs_info->unused_bgs_lock);
1780
btrfs_get_block_group(block_group);
1781
}
1782
end_trans:
1783
btrfs_end_transaction(trans);
1784
next:
1785
btrfs_put_block_group(block_group);
1786
spin_lock(&fs_info->unused_bgs_lock);
1787
}
1788
list_splice_tail(&retry_list, &fs_info->unused_bgs);
1789
spin_unlock(&fs_info->unused_bgs_lock);
1790
mutex_unlock(&fs_info->reclaim_bgs_lock);
1791
return;
1792
1793
flip_async:
1794
btrfs_end_transaction(trans);
1795
spin_lock(&fs_info->unused_bgs_lock);
1796
list_splice_tail(&retry_list, &fs_info->unused_bgs);
1797
spin_unlock(&fs_info->unused_bgs_lock);
1798
mutex_unlock(&fs_info->reclaim_bgs_lock);
1799
btrfs_put_block_group(block_group);
1800
btrfs_discard_punt_unused_bgs_list(fs_info);
1801
}
1802
1803
void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1804
{
1805
struct btrfs_fs_info *fs_info = bg->fs_info;
1806
1807
spin_lock(&fs_info->unused_bgs_lock);
1808
if (list_empty(&bg->bg_list)) {
1809
btrfs_get_block_group(bg);
1810
trace_btrfs_add_unused_block_group(bg);
1811
list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1812
} else if (bg->flags & BTRFS_BLOCK_GROUP_REMAPPED &&
1813
bg->identity_remap_count == 0) {
1814
/* Leave fully remapped block groups on the fully_remapped_bgs list. */
1815
} else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1816
/* Pull out the block group from the reclaim_bgs list. */
1817
trace_btrfs_add_unused_block_group(bg);
1818
list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1819
}
1820
spin_unlock(&fs_info->unused_bgs_lock);
1821
}
1822
1823
/*
1824
* We want block groups with a low number of used bytes to be in the beginning
1825
* of the list, so they will get reclaimed first.
1826
*/
1827
static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1828
const struct list_head *b)
1829
{
1830
const struct btrfs_block_group *bg1, *bg2;
1831
1832
bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1833
bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1834
1835
/*
1836
* Some other task may be updating the ->used field concurrently, but it
1837
* is not serious if we get a stale value or load/store tearing issues,
1838
* as sorting the list of block groups to reclaim is not critical and an
1839
* occasional imperfect order is ok. So silence KCSAN and avoid the
1840
* overhead of locking or any other synchronization.
1841
*/
1842
return data_race(bg1->used > bg2->used);
1843
}
1844
1845
static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info)
1846
{
1847
if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1848
return false;
1849
1850
if (btrfs_fs_closing(fs_info))
1851
return false;
1852
1853
if (btrfs_is_zoned(fs_info))
1854
return btrfs_zoned_should_reclaim(fs_info);
1855
return true;
1856
}
1857
1858
static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed)
1859
{
1860
const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info);
1861
u64 thresh_bytes = mult_perc(bg->length, thresh_pct);
1862
const u64 new_val = bg->used;
1863
const u64 old_val = new_val + bytes_freed;
1864
1865
if (thresh_bytes == 0)
1866
return false;
1867
1868
/*
1869
* If we were below the threshold before don't reclaim, we are likely a
1870
* brand new block group and we don't want to relocate new block groups.
1871
*/
1872
if (old_val < thresh_bytes)
1873
return false;
1874
if (new_val >= thresh_bytes)
1875
return false;
1876
return true;
1877
}
1878
1879
void btrfs_reclaim_bgs_work(struct work_struct *work)
1880
{
1881
struct btrfs_fs_info *fs_info =
1882
container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1883
struct btrfs_block_group *bg;
1884
struct btrfs_space_info *space_info;
1885
LIST_HEAD(retry_list);
1886
1887
if (!btrfs_should_reclaim(fs_info))
1888
return;
1889
1890
guard(super_write)(fs_info->sb);
1891
1892
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1893
return;
1894
1895
/*
1896
* Long running balances can keep us blocked here for eternity, so
1897
* simply skip reclaim if we're unable to get the mutex.
1898
*/
1899
if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1900
btrfs_exclop_finish(fs_info);
1901
return;
1902
}
1903
1904
spin_lock(&fs_info->unused_bgs_lock);
1905
/*
1906
* Sort happens under lock because we can't simply splice it and sort.
1907
* The block groups might still be in use and reachable via bg_list,
1908
* and their presence in the reclaim_bgs list must be preserved.
1909
*/
1910
list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1911
while (!list_empty(&fs_info->reclaim_bgs)) {
1912
u64 used;
1913
u64 reserved;
1914
u64 old_total;
1915
int ret = 0;
1916
1917
bg = list_first_entry(&fs_info->reclaim_bgs,
1918
struct btrfs_block_group,
1919
bg_list);
1920
list_del_init(&bg->bg_list);
1921
1922
space_info = bg->space_info;
1923
spin_unlock(&fs_info->unused_bgs_lock);
1924
1925
/* Don't race with allocators so take the groups_sem */
1926
down_write(&space_info->groups_sem);
1927
1928
spin_lock(&space_info->lock);
1929
spin_lock(&bg->lock);
1930
if (bg->reserved || bg->pinned || bg->ro) {
1931
/*
1932
* We want to bail if we made new allocations or have
1933
* outstanding allocations in this block group. We do
1934
* the ro check in case balance is currently acting on
1935
* this block group.
1936
*/
1937
spin_unlock(&bg->lock);
1938
spin_unlock(&space_info->lock);
1939
up_write(&space_info->groups_sem);
1940
goto next;
1941
}
1942
if (bg->used == 0) {
1943
/*
1944
* It is possible that we trigger relocation on a block
1945
* group as its extents are deleted and it first goes
1946
* below the threshold, then shortly after goes empty.
1947
*
1948
* In this case, relocating it does delete it, but has
1949
* some overhead in relocation specific metadata, looking
1950
* for the non-existent extents and running some extra
1951
* transactions, which we can avoid by using one of the
1952
* other mechanisms for dealing with empty block groups.
1953
*/
1954
if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1955
btrfs_mark_bg_unused(bg);
1956
spin_unlock(&bg->lock);
1957
spin_unlock(&space_info->lock);
1958
up_write(&space_info->groups_sem);
1959
goto next;
1960
1961
}
1962
/*
1963
* The block group might no longer meet the reclaim condition by
1964
* the time we get around to reclaiming it, so to avoid
1965
* reclaiming overly full block_groups, skip reclaiming them.
1966
*
1967
* Since the decision making process also depends on the amount
1968
* being freed, pass in a fake giant value to skip that extra
1969
* check, which is more meaningful when adding to the list in
1970
* the first place.
1971
*/
1972
if (!should_reclaim_block_group(bg, bg->length)) {
1973
spin_unlock(&bg->lock);
1974
spin_unlock(&space_info->lock);
1975
up_write(&space_info->groups_sem);
1976
goto next;
1977
}
1978
1979
spin_unlock(&bg->lock);
1980
old_total = space_info->total_bytes;
1981
spin_unlock(&space_info->lock);
1982
1983
/*
1984
* Get out fast, in case we're read-only or unmounting the
1985
* filesystem. It is OK to drop block groups from the list even
1986
* for the read-only case. As we did take the super write lock,
1987
* "mount -o remount,ro" won't happen and read-only filesystem
1988
* means it is forced read-only due to a fatal error. So, it
1989
* never gets back to read-write to let us reclaim again.
1990
*/
1991
if (btrfs_need_cleaner_sleep(fs_info)) {
1992
up_write(&space_info->groups_sem);
1993
goto next;
1994
}
1995
1996
ret = inc_block_group_ro(bg, 0);
1997
up_write(&space_info->groups_sem);
1998
if (ret < 0)
1999
goto next;
2000
2001
/*
2002
* The amount of bytes reclaimed corresponds to the sum of the
2003
* "used" and "reserved" counters. We have set the block group
2004
* to RO above, which prevents reservations from happening but
2005
* we may have existing reservations for which allocation has
2006
* not yet been done - btrfs_update_block_group() was not yet
2007
* called, which is where we will transfer a reserved extent's
2008
* size from the "reserved" counter to the "used" counter - this
2009
* happens when running delayed references. When we relocate the
2010
* chunk below, relocation first flushes delalloc, waits for
2011
* ordered extent completion (which is where we create delayed
2012
* references for data extents) and commits the current
2013
* transaction (which runs delayed references), and only after
2014
* it does the actual work to move extents out of the block
2015
* group. So the reported amount of reclaimed bytes is
2016
* effectively the sum of the 'used' and 'reserved' counters.
2017
*/
2018
spin_lock(&bg->lock);
2019
used = bg->used;
2020
reserved = bg->reserved;
2021
spin_unlock(&bg->lock);
2022
2023
trace_btrfs_reclaim_block_group(bg);
2024
ret = btrfs_relocate_chunk(fs_info, bg->start, false);
2025
if (ret) {
2026
btrfs_dec_block_group_ro(bg);
2027
btrfs_err(fs_info, "error relocating chunk %llu",
2028
bg->start);
2029
used = 0;
2030
reserved = 0;
2031
spin_lock(&space_info->lock);
2032
space_info->reclaim_errors++;
2033
spin_unlock(&space_info->lock);
2034
}
2035
spin_lock(&space_info->lock);
2036
space_info->reclaim_count++;
2037
space_info->reclaim_bytes += used;
2038
space_info->reclaim_bytes += reserved;
2039
if (space_info->total_bytes < old_total)
2040
btrfs_set_periodic_reclaim_ready(space_info, true);
2041
spin_unlock(&space_info->lock);
2042
2043
next:
2044
if (ret && !READ_ONCE(space_info->periodic_reclaim))
2045
btrfs_link_bg_list(bg, &retry_list);
2046
btrfs_put_block_group(bg);
2047
2048
mutex_unlock(&fs_info->reclaim_bgs_lock);
2049
/*
2050
* Reclaiming all the block groups in the list can take really
2051
* long. Prioritize cleaning up unused block groups.
2052
*/
2053
btrfs_delete_unused_bgs(fs_info);
2054
/*
2055
* If we are interrupted by a balance, we can just bail out. The
2056
* cleaner thread restart again if necessary.
2057
*/
2058
if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
2059
goto end;
2060
spin_lock(&fs_info->unused_bgs_lock);
2061
}
2062
spin_unlock(&fs_info->unused_bgs_lock);
2063
mutex_unlock(&fs_info->reclaim_bgs_lock);
2064
end:
2065
spin_lock(&fs_info->unused_bgs_lock);
2066
list_splice_tail(&retry_list, &fs_info->reclaim_bgs);
2067
spin_unlock(&fs_info->unused_bgs_lock);
2068
btrfs_exclop_finish(fs_info);
2069
}
2070
2071
void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
2072
{
2073
btrfs_reclaim_sweep(fs_info);
2074
spin_lock(&fs_info->unused_bgs_lock);
2075
if (!list_empty(&fs_info->reclaim_bgs))
2076
queue_work(system_dfl_wq, &fs_info->reclaim_bgs_work);
2077
spin_unlock(&fs_info->unused_bgs_lock);
2078
}
2079
2080
void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
2081
{
2082
struct btrfs_fs_info *fs_info = bg->fs_info;
2083
2084
if (btrfs_link_bg_list(bg, &fs_info->reclaim_bgs))
2085
trace_btrfs_add_reclaim_block_group(bg);
2086
}
2087
2088
static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key,
2089
const struct btrfs_path *path)
2090
{
2091
struct btrfs_chunk_map *map;
2092
struct btrfs_block_group_item bg;
2093
struct extent_buffer *leaf;
2094
int slot;
2095
u64 flags;
2096
int ret = 0;
2097
2098
slot = path->slots[0];
2099
leaf = path->nodes[0];
2100
2101
map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset);
2102
if (!map) {
2103
btrfs_err(fs_info,
2104
"logical %llu len %llu found bg but no related chunk",
2105
key->objectid, key->offset);
2106
return -ENOENT;
2107
}
2108
2109
if (unlikely(map->start != key->objectid || map->chunk_len != key->offset)) {
2110
btrfs_err(fs_info,
2111
"block group %llu len %llu mismatch with chunk %llu len %llu",
2112
key->objectid, key->offset, map->start, map->chunk_len);
2113
ret = -EUCLEAN;
2114
goto out_free_map;
2115
}
2116
2117
read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2118
sizeof(bg));
2119
flags = btrfs_stack_block_group_flags(&bg) &
2120
BTRFS_BLOCK_GROUP_TYPE_MASK;
2121
2122
if (unlikely(flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK))) {
2123
btrfs_err(fs_info,
2124
"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2125
key->objectid, key->offset, flags,
2126
(BTRFS_BLOCK_GROUP_TYPE_MASK & map->type));
2127
ret = -EUCLEAN;
2128
}
2129
2130
out_free_map:
2131
btrfs_free_chunk_map(map);
2132
return ret;
2133
}
2134
2135
static int find_first_block_group(struct btrfs_fs_info *fs_info,
2136
struct btrfs_path *path,
2137
const struct btrfs_key *key)
2138
{
2139
struct btrfs_root *root = btrfs_block_group_root(fs_info);
2140
int ret;
2141
struct btrfs_key found_key;
2142
2143
btrfs_for_each_slot(root, key, &found_key, path, ret) {
2144
if (found_key.objectid >= key->objectid &&
2145
found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2146
return read_bg_from_eb(fs_info, &found_key, path);
2147
}
2148
}
2149
return ret;
2150
}
2151
2152
static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2153
{
2154
u64 extra_flags = chunk_to_extended(flags) &
2155
BTRFS_EXTENDED_PROFILE_MASK;
2156
2157
write_seqlock(&fs_info->profiles_lock);
2158
if (flags & BTRFS_BLOCK_GROUP_DATA)
2159
fs_info->avail_data_alloc_bits |= extra_flags;
2160
if (flags & BTRFS_BLOCK_GROUP_METADATA)
2161
fs_info->avail_metadata_alloc_bits |= extra_flags;
2162
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2163
fs_info->avail_system_alloc_bits |= extra_flags;
2164
write_sequnlock(&fs_info->profiles_lock);
2165
}
2166
2167
/*
2168
* Map a physical disk address to a list of logical addresses.
2169
*
2170
* @fs_info: the filesystem
2171
* @chunk_start: logical address of block group
2172
* @physical: physical address to map to logical addresses
2173
* @logical: return array of logical addresses which map to @physical
2174
* @naddrs: length of @logical
2175
* @stripe_len: size of IO stripe for the given block group
2176
*
2177
* Maps a particular @physical disk address to a list of @logical addresses.
2178
* Used primarily to exclude those portions of a block group that contain super
2179
* block copies.
2180
*/
2181
int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2182
u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2183
{
2184
struct btrfs_chunk_map *map;
2185
u64 *buf;
2186
u64 bytenr;
2187
u64 data_stripe_length;
2188
u64 io_stripe_size;
2189
int i, nr = 0;
2190
int ret = 0;
2191
2192
map = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2193
if (IS_ERR(map))
2194
return -EIO;
2195
2196
data_stripe_length = map->stripe_size;
2197
io_stripe_size = BTRFS_STRIPE_LEN;
2198
chunk_start = map->start;
2199
2200
/* For RAID5/6 adjust to a full IO stripe length */
2201
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2202
io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2203
2204
buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2205
if (!buf) {
2206
ret = -ENOMEM;
2207
goto out;
2208
}
2209
2210
for (i = 0; i < map->num_stripes; i++) {
2211
bool already_inserted = false;
2212
u32 stripe_nr;
2213
u32 offset;
2214
int j;
2215
2216
if (!in_range(physical, map->stripes[i].physical,
2217
data_stripe_length))
2218
continue;
2219
2220
stripe_nr = (physical - map->stripes[i].physical) >>
2221
BTRFS_STRIPE_LEN_SHIFT;
2222
offset = (physical - map->stripes[i].physical) &
2223
BTRFS_STRIPE_LEN_MASK;
2224
2225
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2226
BTRFS_BLOCK_GROUP_RAID10))
2227
stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2228
map->sub_stripes);
2229
/*
2230
* The remaining case would be for RAID56, multiply by
2231
* nr_data_stripes(). Alternatively, just use rmap_len below
2232
* instead of map->stripe_len
2233
*/
2234
bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2235
2236
/* Ensure we don't add duplicate addresses */
2237
for (j = 0; j < nr; j++) {
2238
if (buf[j] == bytenr) {
2239
already_inserted = true;
2240
break;
2241
}
2242
}
2243
2244
if (!already_inserted)
2245
buf[nr++] = bytenr;
2246
}
2247
2248
*logical = buf;
2249
*naddrs = nr;
2250
*stripe_len = io_stripe_size;
2251
out:
2252
btrfs_free_chunk_map(map);
2253
return ret;
2254
}
2255
2256
static int exclude_super_stripes(struct btrfs_block_group *cache)
2257
{
2258
struct btrfs_fs_info *fs_info = cache->fs_info;
2259
const bool zoned = btrfs_is_zoned(fs_info);
2260
u64 bytenr;
2261
u64 *logical;
2262
int stripe_len;
2263
int i, nr, ret;
2264
2265
if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2266
stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2267
cache->bytes_super += stripe_len;
2268
ret = btrfs_set_extent_bit(&fs_info->excluded_extents, cache->start,
2269
cache->start + stripe_len - 1,
2270
EXTENT_DIRTY, NULL);
2271
if (ret)
2272
return ret;
2273
}
2274
2275
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2276
bytenr = btrfs_sb_offset(i);
2277
ret = btrfs_rmap_block(fs_info, cache->start,
2278
bytenr, &logical, &nr, &stripe_len);
2279
if (ret)
2280
return ret;
2281
2282
/* Shouldn't have super stripes in sequential zones */
2283
if (unlikely(zoned && nr)) {
2284
kfree(logical);
2285
btrfs_err(fs_info,
2286
"zoned: block group %llu must not contain super block",
2287
cache->start);
2288
return -EUCLEAN;
2289
}
2290
2291
while (nr--) {
2292
u64 len = min_t(u64, stripe_len,
2293
btrfs_block_group_end(cache) - logical[nr]);
2294
2295
cache->bytes_super += len;
2296
ret = btrfs_set_extent_bit(&fs_info->excluded_extents,
2297
logical[nr], logical[nr] + len - 1,
2298
EXTENT_DIRTY, NULL);
2299
if (ret) {
2300
kfree(logical);
2301
return ret;
2302
}
2303
}
2304
2305
kfree(logical);
2306
}
2307
return 0;
2308
}
2309
2310
static struct btrfs_block_group *btrfs_create_block_group(
2311
struct btrfs_fs_info *fs_info, u64 start)
2312
{
2313
struct btrfs_block_group *cache;
2314
2315
cache = kzalloc(sizeof(*cache), GFP_NOFS);
2316
if (!cache)
2317
return NULL;
2318
2319
cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2320
GFP_NOFS);
2321
if (!cache->free_space_ctl) {
2322
kfree(cache);
2323
return NULL;
2324
}
2325
2326
cache->start = start;
2327
2328
cache->fs_info = fs_info;
2329
cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2330
2331
cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2332
2333
refcount_set(&cache->refs, 1);
2334
spin_lock_init(&cache->lock);
2335
init_rwsem(&cache->data_rwsem);
2336
INIT_LIST_HEAD(&cache->list);
2337
INIT_LIST_HEAD(&cache->cluster_list);
2338
INIT_LIST_HEAD(&cache->bg_list);
2339
INIT_LIST_HEAD(&cache->ro_list);
2340
INIT_LIST_HEAD(&cache->discard_list);
2341
INIT_LIST_HEAD(&cache->dirty_list);
2342
INIT_LIST_HEAD(&cache->io_list);
2343
INIT_LIST_HEAD(&cache->active_bg_list);
2344
btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2345
atomic_set(&cache->frozen, 0);
2346
mutex_init(&cache->free_space_lock);
2347
2348
return cache;
2349
}
2350
2351
/*
2352
* Iterate all chunks and verify that each of them has the corresponding block
2353
* group
2354
*/
2355
static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2356
{
2357
u64 start = 0;
2358
int ret = 0;
2359
2360
while (1) {
2361
struct btrfs_chunk_map *map;
2362
struct btrfs_block_group *bg;
2363
2364
/*
2365
* btrfs_find_chunk_map() will return the first chunk map
2366
* intersecting the range, so setting @length to 1 is enough to
2367
* get the first chunk.
2368
*/
2369
map = btrfs_find_chunk_map(fs_info, start, 1);
2370
if (!map)
2371
break;
2372
2373
bg = btrfs_lookup_block_group(fs_info, map->start);
2374
if (unlikely(!bg)) {
2375
btrfs_err(fs_info,
2376
"chunk start=%llu len=%llu doesn't have corresponding block group",
2377
map->start, map->chunk_len);
2378
ret = -EUCLEAN;
2379
btrfs_free_chunk_map(map);
2380
break;
2381
}
2382
if (unlikely(bg->start != map->start || bg->length != map->chunk_len ||
2383
(bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2384
(map->type & BTRFS_BLOCK_GROUP_TYPE_MASK))) {
2385
btrfs_err(fs_info,
2386
"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2387
map->start, map->chunk_len,
2388
map->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2389
bg->start, bg->length,
2390
bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2391
ret = -EUCLEAN;
2392
btrfs_free_chunk_map(map);
2393
btrfs_put_block_group(bg);
2394
break;
2395
}
2396
start = map->start + map->chunk_len;
2397
btrfs_free_chunk_map(map);
2398
btrfs_put_block_group(bg);
2399
}
2400
return ret;
2401
}
2402
2403
static int read_one_block_group(struct btrfs_fs_info *info,
2404
struct btrfs_block_group_item_v2 *bgi,
2405
const struct btrfs_key *key,
2406
int need_clear)
2407
{
2408
struct btrfs_block_group *cache;
2409
const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2410
int ret;
2411
2412
ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2413
2414
cache = btrfs_create_block_group(info, key->objectid);
2415
if (!cache)
2416
return -ENOMEM;
2417
2418
cache->length = key->offset;
2419
cache->used = btrfs_stack_block_group_v2_used(bgi);
2420
cache->last_used = cache->used;
2421
cache->flags = btrfs_stack_block_group_v2_flags(bgi);
2422
cache->last_flags = cache->flags;
2423
cache->global_root_id = btrfs_stack_block_group_v2_chunk_objectid(bgi);
2424
cache->space_info = btrfs_find_space_info(info, cache->flags);
2425
cache->remap_bytes = btrfs_stack_block_group_v2_remap_bytes(bgi);
2426
cache->last_remap_bytes = cache->remap_bytes;
2427
cache->identity_remap_count = btrfs_stack_block_group_v2_identity_remap_count(bgi);
2428
cache->last_identity_remap_count = cache->identity_remap_count;
2429
2430
btrfs_set_free_space_tree_thresholds(cache);
2431
2432
if (need_clear) {
2433
/*
2434
* When we mount with old space cache, we need to
2435
* set BTRFS_DC_CLEAR and set dirty flag.
2436
*
2437
* a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2438
* truncate the old free space cache inode and
2439
* setup a new one.
2440
* b) Setting 'dirty flag' makes sure that we flush
2441
* the new space cache info onto disk.
2442
*/
2443
if (btrfs_test_opt(info, SPACE_CACHE))
2444
cache->disk_cache_state = BTRFS_DC_CLEAR;
2445
}
2446
if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2447
(cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2448
btrfs_err(info,
2449
"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2450
cache->start);
2451
ret = -EINVAL;
2452
goto error;
2453
}
2454
2455
ret = btrfs_load_block_group_zone_info(cache, false);
2456
if (ret) {
2457
btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2458
cache->start);
2459
goto error;
2460
}
2461
2462
/*
2463
* We need to exclude the super stripes now so that the space info has
2464
* super bytes accounted for, otherwise we'll think we have more space
2465
* than we actually do.
2466
*/
2467
ret = exclude_super_stripes(cache);
2468
if (ret) {
2469
/* We may have excluded something, so call this just in case. */
2470
btrfs_free_excluded_extents(cache);
2471
goto error;
2472
}
2473
2474
/*
2475
* For zoned filesystem, space after the allocation offset is the only
2476
* free space for a block group. So, we don't need any caching work.
2477
* btrfs_calc_zone_unusable() will set the amount of free space and
2478
* zone_unusable space.
2479
*
2480
* For regular filesystem, check for two cases, either we are full, and
2481
* therefore don't need to bother with the caching work since we won't
2482
* find any space, or we are empty, and we can just add all the space
2483
* in and be done with it. This saves us _a_lot_ of time, particularly
2484
* in the full case.
2485
*/
2486
if (btrfs_is_zoned(info)) {
2487
btrfs_calc_zone_unusable(cache);
2488
/* Should not have any excluded extents. Just in case, though. */
2489
btrfs_free_excluded_extents(cache);
2490
} else if (cache->length == cache->used) {
2491
cache->cached = BTRFS_CACHE_FINISHED;
2492
btrfs_free_excluded_extents(cache);
2493
} else if (cache->used == 0 && cache->remap_bytes == 0) {
2494
cache->cached = BTRFS_CACHE_FINISHED;
2495
ret = btrfs_add_new_free_space(cache, cache->start,
2496
btrfs_block_group_end(cache), NULL);
2497
btrfs_free_excluded_extents(cache);
2498
if (ret)
2499
goto error;
2500
}
2501
2502
ret = btrfs_add_block_group_cache(cache);
2503
if (ret) {
2504
btrfs_remove_free_space_cache(cache);
2505
goto error;
2506
}
2507
2508
trace_btrfs_add_block_group(info, cache, 0);
2509
btrfs_add_bg_to_space_info(info, cache);
2510
2511
set_avail_alloc_bits(info, cache->flags);
2512
if (btrfs_chunk_writeable(info, cache->start)) {
2513
if (cache->used == 0 && cache->remap_bytes == 0) {
2514
ASSERT(list_empty(&cache->bg_list));
2515
if (btrfs_test_opt(info, DISCARD_ASYNC))
2516
btrfs_discard_queue_work(&info->discard_ctl, cache);
2517
else
2518
btrfs_mark_bg_unused(cache);
2519
}
2520
} else {
2521
inc_block_group_ro(cache, 1);
2522
}
2523
2524
return 0;
2525
error:
2526
btrfs_put_block_group(cache);
2527
return ret;
2528
}
2529
2530
static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2531
{
2532
struct rb_node *node;
2533
int ret = 0;
2534
2535
for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
2536
struct btrfs_chunk_map *map;
2537
struct btrfs_block_group *bg;
2538
2539
map = rb_entry(node, struct btrfs_chunk_map, rb_node);
2540
bg = btrfs_create_block_group(fs_info, map->start);
2541
if (!bg) {
2542
ret = -ENOMEM;
2543
break;
2544
}
2545
2546
/* Fill dummy cache as FULL */
2547
bg->length = map->chunk_len;
2548
bg->flags = map->type;
2549
bg->cached = BTRFS_CACHE_FINISHED;
2550
bg->used = map->chunk_len;
2551
bg->flags = map->type;
2552
bg->space_info = btrfs_find_space_info(fs_info, bg->flags);
2553
ret = btrfs_add_block_group_cache(bg);
2554
/*
2555
* We may have some valid block group cache added already, in
2556
* that case we skip to the next one.
2557
*/
2558
if (ret == -EEXIST) {
2559
ret = 0;
2560
btrfs_put_block_group(bg);
2561
continue;
2562
}
2563
2564
if (ret) {
2565
btrfs_remove_free_space_cache(bg);
2566
btrfs_put_block_group(bg);
2567
break;
2568
}
2569
2570
btrfs_add_bg_to_space_info(fs_info, bg);
2571
2572
set_avail_alloc_bits(fs_info, bg->flags);
2573
}
2574
if (!ret)
2575
btrfs_init_global_block_rsv(fs_info);
2576
return ret;
2577
}
2578
2579
int btrfs_read_block_groups(struct btrfs_fs_info *info)
2580
{
2581
struct btrfs_root *root = btrfs_block_group_root(info);
2582
struct btrfs_path *path;
2583
int ret;
2584
struct btrfs_block_group *cache;
2585
struct btrfs_space_info *space_info;
2586
struct btrfs_key key;
2587
int need_clear = 0;
2588
u64 cache_gen;
2589
2590
/*
2591
* Either no extent root (with ibadroots rescue option) or we have
2592
* unsupported RO options. The fs can never be mounted read-write, so no
2593
* need to waste time searching block group items.
2594
*
2595
* This also allows new extent tree related changes to be RO compat,
2596
* no need for a full incompat flag.
2597
*/
2598
if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2599
~BTRFS_FEATURE_COMPAT_RO_SUPP))
2600
return fill_dummy_bgs(info);
2601
2602
key.objectid = 0;
2603
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2604
key.offset = 0;
2605
path = btrfs_alloc_path();
2606
if (!path)
2607
return -ENOMEM;
2608
2609
cache_gen = btrfs_super_cache_generation(info->super_copy);
2610
if (btrfs_test_opt(info, SPACE_CACHE) &&
2611
btrfs_super_generation(info->super_copy) != cache_gen)
2612
need_clear = 1;
2613
if (btrfs_test_opt(info, CLEAR_CACHE))
2614
need_clear = 1;
2615
2616
while (1) {
2617
struct btrfs_block_group_item_v2 bgi;
2618
struct extent_buffer *leaf;
2619
int slot;
2620
size_t size;
2621
2622
ret = find_first_block_group(info, path, &key);
2623
if (ret > 0)
2624
break;
2625
if (ret != 0)
2626
goto error;
2627
2628
leaf = path->nodes[0];
2629
slot = path->slots[0];
2630
2631
if (btrfs_fs_incompat(info, REMAP_TREE)) {
2632
size = sizeof(struct btrfs_block_group_item_v2);
2633
} else {
2634
size = sizeof(struct btrfs_block_group_item);
2635
btrfs_set_stack_block_group_v2_remap_bytes(&bgi, 0);
2636
btrfs_set_stack_block_group_v2_identity_remap_count(&bgi, 0);
2637
}
2638
2639
read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2640
size);
2641
2642
btrfs_item_key_to_cpu(leaf, &key, slot);
2643
btrfs_release_path(path);
2644
ret = read_one_block_group(info, &bgi, &key, need_clear);
2645
if (ret < 0)
2646
goto error;
2647
key.objectid += key.offset;
2648
key.offset = 0;
2649
}
2650
btrfs_release_path(path);
2651
2652
list_for_each_entry(space_info, &info->space_info, list) {
2653
int i;
2654
2655
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2656
if (list_empty(&space_info->block_groups[i]))
2657
continue;
2658
cache = list_first_entry(&space_info->block_groups[i],
2659
struct btrfs_block_group,
2660
list);
2661
btrfs_sysfs_add_block_group_type(cache);
2662
}
2663
2664
if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2665
(BTRFS_BLOCK_GROUP_RAID10 |
2666
BTRFS_BLOCK_GROUP_RAID1_MASK |
2667
BTRFS_BLOCK_GROUP_RAID56_MASK |
2668
BTRFS_BLOCK_GROUP_DUP)))
2669
continue;
2670
/*
2671
* Avoid allocating from un-mirrored block group if there are
2672
* mirrored block groups.
2673
*/
2674
list_for_each_entry(cache,
2675
&space_info->block_groups[BTRFS_RAID_RAID0],
2676
list)
2677
inc_block_group_ro(cache, 1);
2678
list_for_each_entry(cache,
2679
&space_info->block_groups[BTRFS_RAID_SINGLE],
2680
list)
2681
inc_block_group_ro(cache, 1);
2682
}
2683
2684
btrfs_init_global_block_rsv(info);
2685
ret = check_chunk_block_group_mappings(info);
2686
error:
2687
btrfs_free_path(path);
2688
/*
2689
* We've hit some error while reading the extent tree, and have
2690
* rescue=ibadroots mount option.
2691
* Try to fill the tree using dummy block groups so that the user can
2692
* continue to mount and grab their data.
2693
*/
2694
if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2695
ret = fill_dummy_bgs(info);
2696
return ret;
2697
}
2698
2699
/*
2700
* This function, insert_block_group_item(), belongs to the phase 2 of chunk
2701
* allocation.
2702
*
2703
* See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2704
* phases.
2705
*/
2706
static int insert_block_group_item(struct btrfs_trans_handle *trans,
2707
struct btrfs_block_group *block_group)
2708
{
2709
struct btrfs_fs_info *fs_info = trans->fs_info;
2710
struct btrfs_block_group_item_v2 bgi;
2711
struct btrfs_root *root = btrfs_block_group_root(fs_info);
2712
struct btrfs_key key;
2713
u64 old_last_used;
2714
size_t size;
2715
int ret;
2716
2717
spin_lock(&block_group->lock);
2718
btrfs_set_stack_block_group_v2_used(&bgi, block_group->used);
2719
btrfs_set_stack_block_group_v2_chunk_objectid(&bgi, block_group->global_root_id);
2720
btrfs_set_stack_block_group_v2_flags(&bgi, block_group->flags);
2721
btrfs_set_stack_block_group_v2_remap_bytes(&bgi, block_group->remap_bytes);
2722
btrfs_set_stack_block_group_v2_identity_remap_count(&bgi, block_group->identity_remap_count);
2723
old_last_used = block_group->last_used;
2724
block_group->last_used = block_group->used;
2725
block_group->last_remap_bytes = block_group->remap_bytes;
2726
block_group->last_identity_remap_count = block_group->identity_remap_count;
2727
block_group->last_flags = block_group->flags;
2728
key.objectid = block_group->start;
2729
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2730
key.offset = block_group->length;
2731
spin_unlock(&block_group->lock);
2732
2733
if (btrfs_fs_incompat(fs_info, REMAP_TREE))
2734
size = sizeof(struct btrfs_block_group_item_v2);
2735
else
2736
size = sizeof(struct btrfs_block_group_item);
2737
2738
ret = btrfs_insert_item(trans, root, &key, &bgi, size);
2739
if (ret < 0) {
2740
spin_lock(&block_group->lock);
2741
block_group->last_used = old_last_used;
2742
spin_unlock(&block_group->lock);
2743
}
2744
2745
return ret;
2746
}
2747
2748
static int insert_dev_extent(struct btrfs_trans_handle *trans,
2749
const struct btrfs_device *device, u64 chunk_offset,
2750
u64 start, u64 num_bytes)
2751
{
2752
struct btrfs_fs_info *fs_info = device->fs_info;
2753
struct btrfs_root *root = fs_info->dev_root;
2754
BTRFS_PATH_AUTO_FREE(path);
2755
struct btrfs_dev_extent *extent;
2756
struct extent_buffer *leaf;
2757
struct btrfs_key key;
2758
int ret;
2759
2760
WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2761
WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2762
path = btrfs_alloc_path();
2763
if (!path)
2764
return -ENOMEM;
2765
2766
key.objectid = device->devid;
2767
key.type = BTRFS_DEV_EXTENT_KEY;
2768
key.offset = start;
2769
ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2770
if (ret)
2771
return ret;
2772
2773
leaf = path->nodes[0];
2774
extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2775
btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2776
btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2777
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2778
btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2779
btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2780
2781
return ret;
2782
}
2783
2784
/*
2785
* This function belongs to phase 2.
2786
*
2787
* See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2788
* phases.
2789
*/
2790
static int insert_dev_extents(struct btrfs_trans_handle *trans,
2791
u64 chunk_offset, u64 chunk_size)
2792
{
2793
struct btrfs_fs_info *fs_info = trans->fs_info;
2794
struct btrfs_device *device;
2795
struct btrfs_chunk_map *map;
2796
u64 dev_offset;
2797
int i;
2798
int ret = 0;
2799
2800
map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2801
if (IS_ERR(map))
2802
return PTR_ERR(map);
2803
2804
/*
2805
* Take the device list mutex to prevent races with the final phase of
2806
* a device replace operation that replaces the device object associated
2807
* with the map's stripes, because the device object's id can change
2808
* at any time during that final phase of the device replace operation
2809
* (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2810
* replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2811
* resulting in persisting a device extent item with such ID.
2812
*/
2813
mutex_lock(&fs_info->fs_devices->device_list_mutex);
2814
for (i = 0; i < map->num_stripes; i++) {
2815
device = map->stripes[i].dev;
2816
dev_offset = map->stripes[i].physical;
2817
2818
ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2819
map->stripe_size);
2820
if (ret)
2821
break;
2822
}
2823
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2824
2825
btrfs_free_chunk_map(map);
2826
return ret;
2827
}
2828
2829
/*
2830
* This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2831
* chunk allocation.
2832
*
2833
* See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2834
* phases.
2835
*/
2836
void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2837
{
2838
struct btrfs_fs_info *fs_info = trans->fs_info;
2839
struct btrfs_block_group *block_group;
2840
int ret = 0;
2841
2842
while (!list_empty(&trans->new_bgs)) {
2843
int index;
2844
2845
block_group = list_first_entry(&trans->new_bgs,
2846
struct btrfs_block_group,
2847
bg_list);
2848
if (ret)
2849
goto next;
2850
2851
index = btrfs_bg_flags_to_raid_index(block_group->flags);
2852
2853
ret = insert_block_group_item(trans, block_group);
2854
if (ret)
2855
btrfs_abort_transaction(trans, ret);
2856
if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2857
&block_group->runtime_flags)) {
2858
mutex_lock(&fs_info->chunk_mutex);
2859
ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2860
mutex_unlock(&fs_info->chunk_mutex);
2861
if (ret)
2862
btrfs_abort_transaction(trans, ret);
2863
}
2864
ret = insert_dev_extents(trans, block_group->start,
2865
block_group->length);
2866
if (ret)
2867
btrfs_abort_transaction(trans, ret);
2868
btrfs_add_block_group_free_space(trans, block_group);
2869
2870
/*
2871
* If we restriped during balance, we may have added a new raid
2872
* type, so now add the sysfs entries when it is safe to do so.
2873
* We don't have to worry about locking here as it's handled in
2874
* btrfs_sysfs_add_block_group_type.
2875
*/
2876
if (block_group->space_info->block_group_kobjs[index] == NULL)
2877
btrfs_sysfs_add_block_group_type(block_group);
2878
2879
/* Already aborted the transaction if it failed. */
2880
next:
2881
btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2882
2883
spin_lock(&fs_info->unused_bgs_lock);
2884
list_del_init(&block_group->bg_list);
2885
clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2886
btrfs_put_block_group(block_group);
2887
spin_unlock(&fs_info->unused_bgs_lock);
2888
2889
/*
2890
* If the block group is still unused, add it to the list of
2891
* unused block groups. The block group may have been created in
2892
* order to satisfy a space reservation, in which case the
2893
* extent allocation only happens later. But often we don't
2894
* actually need to allocate space that we previously reserved,
2895
* so the block group may become unused for a long time. For
2896
* example for metadata we generally reserve space for a worst
2897
* possible scenario, but then don't end up allocating all that
2898
* space or none at all (due to no need to COW, extent buffers
2899
* were already COWed in the current transaction and still
2900
* unwritten, tree heights lower than the maximum possible
2901
* height, etc). For data we generally reserve the exact amount
2902
* of space we are going to allocate later, the exception is
2903
* when using compression, as we must reserve space based on the
2904
* uncompressed data size, because the compression is only done
2905
* when writeback triggered and we don't know how much space we
2906
* are actually going to need, so we reserve the uncompressed
2907
* size because the data may be incompressible in the worst case.
2908
*/
2909
if (ret == 0) {
2910
bool used;
2911
2912
spin_lock(&block_group->lock);
2913
used = btrfs_is_block_group_used(block_group);
2914
spin_unlock(&block_group->lock);
2915
2916
if (!used)
2917
btrfs_mark_bg_unused(block_group);
2918
}
2919
}
2920
btrfs_trans_release_chunk_metadata(trans);
2921
}
2922
2923
/*
2924
* For extent tree v2 we use the block_group_item->chunk_offset to point at our
2925
* global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2926
*/
2927
static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset)
2928
{
2929
u64 div = SZ_1G;
2930
u64 index;
2931
2932
if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2933
return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2934
2935
/* If we have a smaller fs index based on 128MiB. */
2936
if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2937
div = SZ_128M;
2938
2939
offset = div64_u64(offset, div);
2940
div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2941
return index;
2942
}
2943
2944
struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2945
struct btrfs_space_info *space_info,
2946
u64 type, u64 chunk_offset, u64 size)
2947
{
2948
struct btrfs_fs_info *fs_info = trans->fs_info;
2949
struct btrfs_block_group *cache;
2950
int ret;
2951
2952
btrfs_set_log_full_commit(trans);
2953
2954
cache = btrfs_create_block_group(fs_info, chunk_offset);
2955
if (!cache)
2956
return ERR_PTR(-ENOMEM);
2957
2958
/*
2959
* Mark it as new before adding it to the rbtree of block groups or any
2960
* list, so that no other task finds it and calls btrfs_mark_bg_unused()
2961
* before the new flag is set.
2962
*/
2963
set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2964
2965
cache->length = size;
2966
btrfs_set_free_space_tree_thresholds(cache);
2967
cache->flags = type;
2968
cache->cached = BTRFS_CACHE_FINISHED;
2969
cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2970
2971
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2972
set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2973
2974
ret = btrfs_load_block_group_zone_info(cache, true);
2975
if (ret) {
2976
btrfs_put_block_group(cache);
2977
return ERR_PTR(ret);
2978
}
2979
2980
ret = exclude_super_stripes(cache);
2981
if (ret) {
2982
/* We may have excluded something, so call this just in case */
2983
btrfs_free_excluded_extents(cache);
2984
btrfs_put_block_group(cache);
2985
return ERR_PTR(ret);
2986
}
2987
2988
ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2989
btrfs_free_excluded_extents(cache);
2990
if (ret) {
2991
btrfs_put_block_group(cache);
2992
return ERR_PTR(ret);
2993
}
2994
2995
/*
2996
* Ensure the corresponding space_info object is created and
2997
* assigned to our block group. We want our bg to be added to the rbtree
2998
* with its ->space_info set.
2999
*/
3000
cache->space_info = space_info;
3001
ASSERT(cache->space_info);
3002
3003
ret = btrfs_add_block_group_cache(cache);
3004
if (ret) {
3005
btrfs_remove_free_space_cache(cache);
3006
btrfs_put_block_group(cache);
3007
return ERR_PTR(ret);
3008
}
3009
3010
/*
3011
* Now that our block group has its ->space_info set and is inserted in
3012
* the rbtree, update the space info's counters.
3013
*/
3014
trace_btrfs_add_block_group(fs_info, cache, 1);
3015
btrfs_add_bg_to_space_info(fs_info, cache);
3016
btrfs_update_global_block_rsv(fs_info);
3017
3018
#ifdef CONFIG_BTRFS_DEBUG
3019
if (btrfs_should_fragment_free_space(cache)) {
3020
cache->space_info->bytes_used += size >> 1;
3021
fragment_free_space(cache);
3022
}
3023
#endif
3024
3025
btrfs_link_bg_list(cache, &trans->new_bgs);
3026
btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info);
3027
3028
set_avail_alloc_bits(fs_info, type);
3029
return cache;
3030
}
3031
3032
/*
3033
* Mark one block group RO, can be called several times for the same block
3034
* group.
3035
*
3036
* @cache: the destination block group
3037
* @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
3038
* ensure we still have some free space after marking this
3039
* block group RO.
3040
*/
3041
int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
3042
bool do_chunk_alloc)
3043
{
3044
struct btrfs_fs_info *fs_info = cache->fs_info;
3045
struct btrfs_space_info *space_info = cache->space_info;
3046
struct btrfs_trans_handle *trans;
3047
struct btrfs_root *root = btrfs_block_group_root(fs_info);
3048
u64 alloc_flags;
3049
int ret;
3050
bool dirty_bg_running;
3051
3052
/*
3053
* This can only happen when we are doing read-only scrub on read-only
3054
* mount.
3055
* In that case we should not start a new transaction on read-only fs.
3056
* Thus here we skip all chunk allocations.
3057
*/
3058
if (sb_rdonly(fs_info->sb)) {
3059
mutex_lock(&fs_info->ro_block_group_mutex);
3060
ret = inc_block_group_ro(cache, 0);
3061
mutex_unlock(&fs_info->ro_block_group_mutex);
3062
return ret;
3063
}
3064
3065
do {
3066
trans = btrfs_join_transaction(root);
3067
if (IS_ERR(trans))
3068
return PTR_ERR(trans);
3069
3070
dirty_bg_running = false;
3071
3072
/*
3073
* We're not allowed to set block groups readonly after the dirty
3074
* block group cache has started writing. If it already started,
3075
* back off and let this transaction commit.
3076
*/
3077
mutex_lock(&fs_info->ro_block_group_mutex);
3078
if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
3079
u64 transid = trans->transid;
3080
3081
mutex_unlock(&fs_info->ro_block_group_mutex);
3082
btrfs_end_transaction(trans);
3083
3084
ret = btrfs_wait_for_commit(fs_info, transid);
3085
if (ret)
3086
return ret;
3087
dirty_bg_running = true;
3088
}
3089
} while (dirty_bg_running);
3090
3091
if (do_chunk_alloc) {
3092
/*
3093
* If we are changing raid levels, try to allocate a
3094
* corresponding block group with the new raid level.
3095
*/
3096
alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3097
if (alloc_flags != cache->flags) {
3098
ret = btrfs_chunk_alloc(trans, space_info, alloc_flags,
3099
CHUNK_ALLOC_FORCE);
3100
/*
3101
* ENOSPC is allowed here, we may have enough space
3102
* already allocated at the new raid level to carry on
3103
*/
3104
if (ret == -ENOSPC)
3105
ret = 0;
3106
if (ret < 0)
3107
goto out;
3108
}
3109
}
3110
3111
ret = inc_block_group_ro(cache, 0);
3112
if (!ret)
3113
goto out;
3114
if (ret == -ETXTBSY)
3115
goto unlock_out;
3116
3117
/*
3118
* Skip chunk allocation if the bg is SYSTEM, this is to avoid system
3119
* chunk allocation storm to exhaust the system chunk array. Otherwise
3120
* we still want to try our best to mark the block group read-only.
3121
*/
3122
if (!do_chunk_alloc && ret == -ENOSPC &&
3123
(cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
3124
goto unlock_out;
3125
3126
alloc_flags = btrfs_get_alloc_profile(fs_info, space_info->flags);
3127
ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE);
3128
if (ret < 0)
3129
goto out;
3130
/*
3131
* We have allocated a new chunk. We also need to activate that chunk to
3132
* grant metadata tickets for zoned filesystem.
3133
*/
3134
ret = btrfs_zoned_activate_one_bg(space_info, true);
3135
if (ret < 0)
3136
goto out;
3137
3138
ret = inc_block_group_ro(cache, 0);
3139
if (ret == -ETXTBSY)
3140
goto unlock_out;
3141
out:
3142
if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
3143
alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3144
mutex_lock(&fs_info->chunk_mutex);
3145
check_system_chunk(trans, alloc_flags);
3146
mutex_unlock(&fs_info->chunk_mutex);
3147
}
3148
unlock_out:
3149
mutex_unlock(&fs_info->ro_block_group_mutex);
3150
3151
btrfs_end_transaction(trans);
3152
return ret;
3153
}
3154
3155
void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
3156
{
3157
struct btrfs_space_info *sinfo = cache->space_info;
3158
3159
BUG_ON(!cache->ro);
3160
3161
spin_lock(&sinfo->lock);
3162
spin_lock(&cache->lock);
3163
if (!--cache->ro) {
3164
if (btrfs_is_zoned(cache->fs_info)) {
3165
/* Migrate zone_unusable bytes back */
3166
cache->zone_unusable =
3167
(cache->alloc_offset - cache->used - cache->pinned -
3168
cache->reserved) +
3169
(cache->length - cache->zone_capacity);
3170
btrfs_space_info_update_bytes_zone_unusable(sinfo, cache->zone_unusable);
3171
sinfo->bytes_readonly -= cache->zone_unusable;
3172
}
3173
sinfo->bytes_readonly -= btrfs_block_group_available_space(cache);
3174
list_del_init(&cache->ro_list);
3175
}
3176
spin_unlock(&cache->lock);
3177
spin_unlock(&sinfo->lock);
3178
}
3179
3180
static int update_block_group_item(struct btrfs_trans_handle *trans,
3181
struct btrfs_path *path,
3182
struct btrfs_block_group *cache)
3183
{
3184
struct btrfs_fs_info *fs_info = trans->fs_info;
3185
int ret;
3186
struct btrfs_root *root = btrfs_block_group_root(fs_info);
3187
unsigned long bi;
3188
struct extent_buffer *leaf;
3189
struct btrfs_block_group_item_v2 bgi;
3190
struct btrfs_key key;
3191
u64 old_last_used, old_last_remap_bytes;
3192
u32 old_last_identity_remap_count;
3193
u64 used, remap_bytes;
3194
u32 identity_remap_count;
3195
3196
/*
3197
* Block group items update can be triggered out of commit transaction
3198
* critical section, thus we need a consistent view of used bytes.
3199
* We cannot use cache->used directly outside of the spin lock, as it
3200
* may be changed.
3201
*/
3202
spin_lock(&cache->lock);
3203
old_last_used = cache->last_used;
3204
old_last_remap_bytes = cache->last_remap_bytes;
3205
old_last_identity_remap_count = cache->last_identity_remap_count;
3206
used = cache->used;
3207
remap_bytes = cache->remap_bytes;
3208
identity_remap_count = cache->identity_remap_count;
3209
/* No change in values, can safely skip it. */
3210
if (cache->last_used == used &&
3211
cache->last_remap_bytes == remap_bytes &&
3212
cache->last_identity_remap_count == identity_remap_count &&
3213
cache->last_flags == cache->flags) {
3214
spin_unlock(&cache->lock);
3215
return 0;
3216
}
3217
cache->last_used = used;
3218
cache->last_remap_bytes = remap_bytes;
3219
cache->last_identity_remap_count = identity_remap_count;
3220
cache->last_flags = cache->flags;
3221
spin_unlock(&cache->lock);
3222
3223
key.objectid = cache->start;
3224
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3225
key.offset = cache->length;
3226
3227
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3228
if (ret) {
3229
if (ret > 0)
3230
ret = -ENOENT;
3231
goto fail;
3232
}
3233
3234
leaf = path->nodes[0];
3235
bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3236
btrfs_set_stack_block_group_v2_used(&bgi, used);
3237
btrfs_set_stack_block_group_v2_chunk_objectid(&bgi, cache->global_root_id);
3238
btrfs_set_stack_block_group_v2_flags(&bgi, cache->flags);
3239
3240
if (btrfs_fs_incompat(fs_info, REMAP_TREE)) {
3241
btrfs_set_stack_block_group_v2_remap_bytes(&bgi, cache->remap_bytes);
3242
btrfs_set_stack_block_group_v2_identity_remap_count(&bgi,
3243
cache->identity_remap_count);
3244
write_extent_buffer(leaf, &bgi, bi,
3245
sizeof(struct btrfs_block_group_item_v2));
3246
} else {
3247
write_extent_buffer(leaf, &bgi, bi,
3248
sizeof(struct btrfs_block_group_item));
3249
}
3250
3251
fail:
3252
btrfs_release_path(path);
3253
/*
3254
* We didn't update the block group item, need to revert last_used
3255
* unless the block group item didn't exist yet - this is to prevent a
3256
* race with a concurrent insertion of the block group item, with
3257
* insert_block_group_item(), that happened just after we attempted to
3258
* update. In that case we would reset last_used to 0 just after the
3259
* insertion set it to a value greater than 0 - if the block group later
3260
* becomes with 0 used bytes, we would incorrectly skip its update.
3261
*/
3262
if (ret < 0 && ret != -ENOENT) {
3263
spin_lock(&cache->lock);
3264
cache->last_used = old_last_used;
3265
cache->last_remap_bytes = old_last_remap_bytes;
3266
cache->last_identity_remap_count = old_last_identity_remap_count;
3267
spin_unlock(&cache->lock);
3268
}
3269
return ret;
3270
3271
}
3272
3273
static int cache_save_setup(struct btrfs_block_group *block_group,
3274
struct btrfs_trans_handle *trans,
3275
struct btrfs_path *path)
3276
{
3277
struct btrfs_fs_info *fs_info = block_group->fs_info;
3278
struct inode *inode = NULL;
3279
struct extent_changeset *data_reserved = NULL;
3280
u64 alloc_hint = 0;
3281
int dcs = BTRFS_DC_ERROR;
3282
u64 cache_size = 0;
3283
int retries = 0;
3284
int ret = 0;
3285
3286
if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3287
return 0;
3288
3289
/*
3290
* If this block group is smaller than 100 megs don't bother caching the
3291
* block group.
3292
*/
3293
if (block_group->length < (100 * SZ_1M)) {
3294
spin_lock(&block_group->lock);
3295
block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3296
spin_unlock(&block_group->lock);
3297
return 0;
3298
}
3299
3300
if (TRANS_ABORTED(trans))
3301
return 0;
3302
again:
3303
inode = lookup_free_space_inode(block_group, path);
3304
if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3305
ret = PTR_ERR(inode);
3306
btrfs_release_path(path);
3307
goto out;
3308
}
3309
3310
if (IS_ERR(inode)) {
3311
BUG_ON(retries);
3312
retries++;
3313
3314
if (block_group->ro)
3315
goto out_free;
3316
3317
ret = create_free_space_inode(trans, block_group, path);
3318
if (ret)
3319
goto out_free;
3320
goto again;
3321
}
3322
3323
/*
3324
* We want to set the generation to 0, that way if anything goes wrong
3325
* from here on out we know not to trust this cache when we load up next
3326
* time.
3327
*/
3328
BTRFS_I(inode)->generation = 0;
3329
ret = btrfs_update_inode(trans, BTRFS_I(inode));
3330
if (unlikely(ret)) {
3331
/*
3332
* So theoretically we could recover from this, simply set the
3333
* super cache generation to 0 so we know to invalidate the
3334
* cache, but then we'd have to keep track of the block groups
3335
* that fail this way so we know we _have_ to reset this cache
3336
* before the next commit or risk reading stale cache. So to
3337
* limit our exposure to horrible edge cases lets just abort the
3338
* transaction, this only happens in really bad situations
3339
* anyway.
3340
*/
3341
btrfs_abort_transaction(trans, ret);
3342
goto out_put;
3343
}
3344
WARN_ON(ret);
3345
3346
/* We've already setup this transaction, go ahead and exit */
3347
if (block_group->cache_generation == trans->transid &&
3348
i_size_read(inode)) {
3349
dcs = BTRFS_DC_SETUP;
3350
goto out_put;
3351
}
3352
3353
if (i_size_read(inode) > 0) {
3354
ret = btrfs_check_trunc_cache_free_space(fs_info,
3355
&fs_info->global_block_rsv);
3356
if (ret)
3357
goto out_put;
3358
3359
ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3360
if (ret)
3361
goto out_put;
3362
}
3363
3364
spin_lock(&block_group->lock);
3365
if (block_group->cached != BTRFS_CACHE_FINISHED ||
3366
!btrfs_test_opt(fs_info, SPACE_CACHE)) {
3367
/*
3368
* don't bother trying to write stuff out _if_
3369
* a) we're not cached,
3370
* b) we're with nospace_cache mount option,
3371
* c) we're with v2 space_cache (FREE_SPACE_TREE).
3372
*/
3373
dcs = BTRFS_DC_WRITTEN;
3374
spin_unlock(&block_group->lock);
3375
goto out_put;
3376
}
3377
spin_unlock(&block_group->lock);
3378
3379
/*
3380
* We hit an ENOSPC when setting up the cache in this transaction, just
3381
* skip doing the setup, we've already cleared the cache so we're safe.
3382
*/
3383
if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3384
ret = -ENOSPC;
3385
goto out_put;
3386
}
3387
3388
/*
3389
* Try to preallocate enough space based on how big the block group is.
3390
* Keep in mind this has to include any pinned space which could end up
3391
* taking up quite a bit since it's not folded into the other space
3392
* cache.
3393
*/
3394
cache_size = div_u64(block_group->length, SZ_256M);
3395
if (!cache_size)
3396
cache_size = 1;
3397
3398
cache_size *= 16;
3399
cache_size *= fs_info->sectorsize;
3400
3401
ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3402
cache_size, false);
3403
if (ret)
3404
goto out_put;
3405
3406
ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3407
cache_size, cache_size,
3408
&alloc_hint);
3409
/*
3410
* Our cache requires contiguous chunks so that we don't modify a bunch
3411
* of metadata or split extents when writing the cache out, which means
3412
* we can enospc if we are heavily fragmented in addition to just normal
3413
* out of space conditions. So if we hit this just skip setting up any
3414
* other block groups for this transaction, maybe we'll unpin enough
3415
* space the next time around.
3416
*/
3417
if (!ret)
3418
dcs = BTRFS_DC_SETUP;
3419
else if (ret == -ENOSPC)
3420
set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3421
3422
out_put:
3423
iput(inode);
3424
out_free:
3425
btrfs_release_path(path);
3426
out:
3427
spin_lock(&block_group->lock);
3428
if (!ret && dcs == BTRFS_DC_SETUP)
3429
block_group->cache_generation = trans->transid;
3430
block_group->disk_cache_state = dcs;
3431
spin_unlock(&block_group->lock);
3432
3433
extent_changeset_free(data_reserved);
3434
return ret;
3435
}
3436
3437
int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3438
{
3439
struct btrfs_fs_info *fs_info = trans->fs_info;
3440
struct btrfs_block_group *cache, *tmp;
3441
struct btrfs_transaction *cur_trans = trans->transaction;
3442
BTRFS_PATH_AUTO_FREE(path);
3443
3444
if (list_empty(&cur_trans->dirty_bgs) ||
3445
!btrfs_test_opt(fs_info, SPACE_CACHE))
3446
return 0;
3447
3448
path = btrfs_alloc_path();
3449
if (!path)
3450
return -ENOMEM;
3451
3452
/* Could add new block groups, use _safe just in case */
3453
list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3454
dirty_list) {
3455
if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3456
cache_save_setup(cache, trans, path);
3457
}
3458
3459
return 0;
3460
}
3461
3462
/*
3463
* Transaction commit does final block group cache writeback during a critical
3464
* section where nothing is allowed to change the FS. This is required in
3465
* order for the cache to actually match the block group, but can introduce a
3466
* lot of latency into the commit.
3467
*
3468
* So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3469
* There's a chance we'll have to redo some of it if the block group changes
3470
* again during the commit, but it greatly reduces the commit latency by
3471
* getting rid of the easy block groups while we're still allowing others to
3472
* join the commit.
3473
*/
3474
int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3475
{
3476
struct btrfs_fs_info *fs_info = trans->fs_info;
3477
struct btrfs_block_group *cache;
3478
struct btrfs_transaction *cur_trans = trans->transaction;
3479
int ret = 0;
3480
int should_put;
3481
BTRFS_PATH_AUTO_FREE(path);
3482
LIST_HEAD(dirty);
3483
struct list_head *io = &cur_trans->io_bgs;
3484
int loops = 0;
3485
3486
spin_lock(&cur_trans->dirty_bgs_lock);
3487
if (list_empty(&cur_trans->dirty_bgs)) {
3488
spin_unlock(&cur_trans->dirty_bgs_lock);
3489
return 0;
3490
}
3491
list_splice_init(&cur_trans->dirty_bgs, &dirty);
3492
spin_unlock(&cur_trans->dirty_bgs_lock);
3493
3494
again:
3495
/* Make sure all the block groups on our dirty list actually exist */
3496
btrfs_create_pending_block_groups(trans);
3497
3498
if (!path) {
3499
path = btrfs_alloc_path();
3500
if (!path) {
3501
ret = -ENOMEM;
3502
goto out;
3503
}
3504
}
3505
3506
/*
3507
* cache_write_mutex is here only to save us from balance or automatic
3508
* removal of empty block groups deleting this block group while we are
3509
* writing out the cache
3510
*/
3511
mutex_lock(&trans->transaction->cache_write_mutex);
3512
while (!list_empty(&dirty)) {
3513
bool drop_reserve = true;
3514
3515
cache = list_first_entry(&dirty, struct btrfs_block_group,
3516
dirty_list);
3517
/*
3518
* This can happen if something re-dirties a block group that
3519
* is already under IO. Just wait for it to finish and then do
3520
* it all again
3521
*/
3522
if (!list_empty(&cache->io_list)) {
3523
list_del_init(&cache->io_list);
3524
btrfs_wait_cache_io(trans, cache, path);
3525
btrfs_put_block_group(cache);
3526
}
3527
3528
3529
/*
3530
* btrfs_wait_cache_io uses the cache->dirty_list to decide if
3531
* it should update the cache_state. Don't delete until after
3532
* we wait.
3533
*
3534
* Since we're not running in the commit critical section
3535
* we need the dirty_bgs_lock to protect from update_block_group
3536
*/
3537
spin_lock(&cur_trans->dirty_bgs_lock);
3538
list_del_init(&cache->dirty_list);
3539
spin_unlock(&cur_trans->dirty_bgs_lock);
3540
3541
should_put = 1;
3542
3543
cache_save_setup(cache, trans, path);
3544
3545
if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3546
cache->io_ctl.inode = NULL;
3547
ret = btrfs_write_out_cache(trans, cache, path);
3548
if (ret == 0 && cache->io_ctl.inode) {
3549
should_put = 0;
3550
3551
/*
3552
* The cache_write_mutex is protecting the
3553
* io_list, also refer to the definition of
3554
* btrfs_transaction::io_bgs for more details
3555
*/
3556
list_add_tail(&cache->io_list, io);
3557
} else {
3558
/*
3559
* If we failed to write the cache, the
3560
* generation will be bad and life goes on
3561
*/
3562
ret = 0;
3563
}
3564
}
3565
if (!ret) {
3566
ret = update_block_group_item(trans, path, cache);
3567
/*
3568
* Our block group might still be attached to the list
3569
* of new block groups in the transaction handle of some
3570
* other task (struct btrfs_trans_handle->new_bgs). This
3571
* means its block group item isn't yet in the extent
3572
* tree. If this happens ignore the error, as we will
3573
* try again later in the critical section of the
3574
* transaction commit.
3575
*/
3576
if (ret == -ENOENT) {
3577
ret = 0;
3578
spin_lock(&cur_trans->dirty_bgs_lock);
3579
if (list_empty(&cache->dirty_list)) {
3580
list_add_tail(&cache->dirty_list,
3581
&cur_trans->dirty_bgs);
3582
btrfs_get_block_group(cache);
3583
drop_reserve = false;
3584
}
3585
spin_unlock(&cur_trans->dirty_bgs_lock);
3586
} else if (ret) {
3587
btrfs_abort_transaction(trans, ret);
3588
}
3589
}
3590
3591
/* If it's not on the io list, we need to put the block group */
3592
if (should_put)
3593
btrfs_put_block_group(cache);
3594
if (drop_reserve)
3595
btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3596
/*
3597
* Avoid blocking other tasks for too long. It might even save
3598
* us from writing caches for block groups that are going to be
3599
* removed.
3600
*/
3601
mutex_unlock(&trans->transaction->cache_write_mutex);
3602
if (ret)
3603
goto out;
3604
mutex_lock(&trans->transaction->cache_write_mutex);
3605
}
3606
mutex_unlock(&trans->transaction->cache_write_mutex);
3607
3608
/*
3609
* Go through delayed refs for all the stuff we've just kicked off
3610
* and then loop back (just once)
3611
*/
3612
if (!ret)
3613
ret = btrfs_run_delayed_refs(trans, 0);
3614
if (!ret && loops == 0) {
3615
loops++;
3616
spin_lock(&cur_trans->dirty_bgs_lock);
3617
list_splice_init(&cur_trans->dirty_bgs, &dirty);
3618
/*
3619
* dirty_bgs_lock protects us from concurrent block group
3620
* deletes too (not just cache_write_mutex).
3621
*/
3622
if (!list_empty(&dirty)) {
3623
spin_unlock(&cur_trans->dirty_bgs_lock);
3624
goto again;
3625
}
3626
spin_unlock(&cur_trans->dirty_bgs_lock);
3627
}
3628
out:
3629
if (ret < 0) {
3630
spin_lock(&cur_trans->dirty_bgs_lock);
3631
list_splice_init(&dirty, &cur_trans->dirty_bgs);
3632
spin_unlock(&cur_trans->dirty_bgs_lock);
3633
btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3634
}
3635
3636
return ret;
3637
}
3638
3639
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3640
{
3641
struct btrfs_fs_info *fs_info = trans->fs_info;
3642
struct btrfs_block_group *cache;
3643
struct btrfs_transaction *cur_trans = trans->transaction;
3644
int ret = 0;
3645
int should_put;
3646
BTRFS_PATH_AUTO_FREE(path);
3647
struct list_head *io = &cur_trans->io_bgs;
3648
3649
path = btrfs_alloc_path();
3650
if (!path)
3651
return -ENOMEM;
3652
3653
/*
3654
* Even though we are in the critical section of the transaction commit,
3655
* we can still have concurrent tasks adding elements to this
3656
* transaction's list of dirty block groups. These tasks correspond to
3657
* endio free space workers started when writeback finishes for a
3658
* space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3659
* allocate new block groups as a result of COWing nodes of the root
3660
* tree when updating the free space inode. The writeback for the space
3661
* caches is triggered by an earlier call to
3662
* btrfs_start_dirty_block_groups() and iterations of the following
3663
* loop.
3664
* Also we want to do the cache_save_setup first and then run the
3665
* delayed refs to make sure we have the best chance at doing this all
3666
* in one shot.
3667
*/
3668
spin_lock(&cur_trans->dirty_bgs_lock);
3669
while (!list_empty(&cur_trans->dirty_bgs)) {
3670
cache = list_first_entry(&cur_trans->dirty_bgs,
3671
struct btrfs_block_group,
3672
dirty_list);
3673
3674
/*
3675
* This can happen if cache_save_setup re-dirties a block group
3676
* that is already under IO. Just wait for it to finish and
3677
* then do it all again
3678
*/
3679
if (!list_empty(&cache->io_list)) {
3680
spin_unlock(&cur_trans->dirty_bgs_lock);
3681
list_del_init(&cache->io_list);
3682
btrfs_wait_cache_io(trans, cache, path);
3683
btrfs_put_block_group(cache);
3684
spin_lock(&cur_trans->dirty_bgs_lock);
3685
}
3686
3687
/*
3688
* Don't remove from the dirty list until after we've waited on
3689
* any pending IO
3690
*/
3691
list_del_init(&cache->dirty_list);
3692
spin_unlock(&cur_trans->dirty_bgs_lock);
3693
should_put = 1;
3694
3695
cache_save_setup(cache, trans, path);
3696
3697
if (!ret)
3698
ret = btrfs_run_delayed_refs(trans, U64_MAX);
3699
3700
if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3701
cache->io_ctl.inode = NULL;
3702
ret = btrfs_write_out_cache(trans, cache, path);
3703
if (ret == 0 && cache->io_ctl.inode) {
3704
should_put = 0;
3705
list_add_tail(&cache->io_list, io);
3706
} else {
3707
/*
3708
* If we failed to write the cache, the
3709
* generation will be bad and life goes on
3710
*/
3711
ret = 0;
3712
}
3713
}
3714
if (!ret) {
3715
ret = update_block_group_item(trans, path, cache);
3716
/*
3717
* One of the free space endio workers might have
3718
* created a new block group while updating a free space
3719
* cache's inode (at inode.c:btrfs_finish_ordered_io())
3720
* and hasn't released its transaction handle yet, in
3721
* which case the new block group is still attached to
3722
* its transaction handle and its creation has not
3723
* finished yet (no block group item in the extent tree
3724
* yet, etc). If this is the case, wait for all free
3725
* space endio workers to finish and retry. This is a
3726
* very rare case so no need for a more efficient and
3727
* complex approach.
3728
*/
3729
if (ret == -ENOENT) {
3730
wait_event(cur_trans->writer_wait,
3731
atomic_read(&cur_trans->num_writers) == 1);
3732
ret = update_block_group_item(trans, path, cache);
3733
if (ret)
3734
btrfs_abort_transaction(trans, ret);
3735
} else if (ret) {
3736
btrfs_abort_transaction(trans, ret);
3737
}
3738
}
3739
3740
/* If its not on the io list, we need to put the block group */
3741
if (should_put)
3742
btrfs_put_block_group(cache);
3743
btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3744
spin_lock(&cur_trans->dirty_bgs_lock);
3745
}
3746
spin_unlock(&cur_trans->dirty_bgs_lock);
3747
3748
/*
3749
* Refer to the definition of io_bgs member for details why it's safe
3750
* to use it without any locking
3751
*/
3752
while (!list_empty(io)) {
3753
cache = list_first_entry(io, struct btrfs_block_group,
3754
io_list);
3755
list_del_init(&cache->io_list);
3756
btrfs_wait_cache_io(trans, cache, path);
3757
btrfs_put_block_group(cache);
3758
}
3759
3760
return ret;
3761
}
3762
3763
int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3764
u64 bytenr, u64 num_bytes, bool alloc)
3765
{
3766
struct btrfs_fs_info *info = trans->fs_info;
3767
struct btrfs_space_info *space_info;
3768
struct btrfs_block_group *cache;
3769
u64 old_val;
3770
bool reclaim = false;
3771
bool bg_already_dirty = true;
3772
int factor;
3773
3774
/* Block accounting for super block */
3775
spin_lock(&info->delalloc_root_lock);
3776
old_val = btrfs_super_bytes_used(info->super_copy);
3777
if (alloc)
3778
old_val += num_bytes;
3779
else
3780
old_val -= num_bytes;
3781
btrfs_set_super_bytes_used(info->super_copy, old_val);
3782
spin_unlock(&info->delalloc_root_lock);
3783
3784
cache = btrfs_lookup_block_group(info, bytenr);
3785
if (!cache)
3786
return -ENOENT;
3787
3788
/* An extent can not span multiple block groups. */
3789
ASSERT(bytenr + num_bytes <= btrfs_block_group_end(cache));
3790
3791
space_info = cache->space_info;
3792
factor = btrfs_bg_type_to_factor(cache->flags);
3793
3794
/*
3795
* If this block group has free space cache written out, we need to make
3796
* sure to load it if we are removing space. This is because we need
3797
* the unpinning stage to actually add the space back to the block group,
3798
* otherwise we will leak space.
3799
*/
3800
if (!alloc && !btrfs_block_group_done(cache))
3801
btrfs_cache_block_group(cache, true);
3802
3803
spin_lock(&space_info->lock);
3804
spin_lock(&cache->lock);
3805
3806
if (btrfs_test_opt(info, SPACE_CACHE) &&
3807
cache->disk_cache_state < BTRFS_DC_CLEAR)
3808
cache->disk_cache_state = BTRFS_DC_CLEAR;
3809
3810
old_val = cache->used;
3811
if (alloc) {
3812
old_val += num_bytes;
3813
cache->used = old_val;
3814
cache->reserved -= num_bytes;
3815
cache->reclaim_mark = 0;
3816
space_info->bytes_reserved -= num_bytes;
3817
space_info->bytes_used += num_bytes;
3818
space_info->disk_used += num_bytes * factor;
3819
if (READ_ONCE(space_info->periodic_reclaim))
3820
btrfs_space_info_update_reclaimable(space_info, -num_bytes);
3821
spin_unlock(&cache->lock);
3822
spin_unlock(&space_info->lock);
3823
} else {
3824
old_val -= num_bytes;
3825
cache->used = old_val;
3826
cache->pinned += num_bytes;
3827
btrfs_space_info_update_bytes_pinned(space_info, num_bytes);
3828
space_info->bytes_used -= num_bytes;
3829
space_info->disk_used -= num_bytes * factor;
3830
if (READ_ONCE(space_info->periodic_reclaim))
3831
btrfs_space_info_update_reclaimable(space_info, num_bytes);
3832
else
3833
reclaim = should_reclaim_block_group(cache, num_bytes);
3834
3835
spin_unlock(&cache->lock);
3836
spin_unlock(&space_info->lock);
3837
3838
btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr,
3839
bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
3840
}
3841
3842
spin_lock(&trans->transaction->dirty_bgs_lock);
3843
if (list_empty(&cache->dirty_list)) {
3844
list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs);
3845
bg_already_dirty = false;
3846
btrfs_get_block_group(cache);
3847
}
3848
spin_unlock(&trans->transaction->dirty_bgs_lock);
3849
3850
/*
3851
* No longer have used bytes in this block group, queue it for deletion.
3852
* We do this after adding the block group to the dirty list to avoid
3853
* races between cleaner kthread and space cache writeout.
3854
*/
3855
if (!alloc && old_val == 0) {
3856
if (!btrfs_test_opt(info, DISCARD_ASYNC))
3857
btrfs_mark_bg_unused(cache);
3858
} else if (!alloc && reclaim) {
3859
btrfs_mark_bg_to_reclaim(cache);
3860
}
3861
3862
btrfs_put_block_group(cache);
3863
3864
/* Modified block groups are accounted for in the delayed_refs_rsv. */
3865
if (!bg_already_dirty)
3866
btrfs_inc_delayed_refs_rsv_bg_updates(info);
3867
3868
return 0;
3869
}
3870
3871
/*
3872
* Update the block_group and space info counters.
3873
*
3874
* @cache: The cache we are manipulating
3875
* @ram_bytes: The number of bytes of file content, and will be same to
3876
* @num_bytes except for the compress path.
3877
* @num_bytes: The number of bytes in question
3878
* @delalloc: The blocks are allocated for the delalloc write
3879
*
3880
* This is called by the allocator when it reserves space. If this is a
3881
* reservation and the block group has become read only we cannot make the
3882
* reservation and return -EAGAIN, otherwise this function always succeeds.
3883
*/
3884
int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3885
u64 ram_bytes, u64 num_bytes, bool delalloc,
3886
bool force_wrong_size_class)
3887
{
3888
struct btrfs_space_info *space_info = cache->space_info;
3889
enum btrfs_block_group_size_class size_class;
3890
int ret = 0;
3891
3892
spin_lock(&space_info->lock);
3893
spin_lock(&cache->lock);
3894
if (cache->ro) {
3895
ret = -EAGAIN;
3896
goto out_error;
3897
}
3898
3899
if (btrfs_block_group_should_use_size_class(cache)) {
3900
size_class = btrfs_calc_block_group_size_class(num_bytes);
3901
ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3902
if (ret)
3903
goto out_error;
3904
}
3905
3906
cache->reserved += num_bytes;
3907
if (delalloc)
3908
cache->delalloc_bytes += num_bytes;
3909
3910
trace_btrfs_space_reservation(cache->fs_info, "space_info",
3911
space_info->flags, num_bytes, 1);
3912
spin_unlock(&cache->lock);
3913
3914
space_info->bytes_reserved += num_bytes;
3915
btrfs_space_info_update_bytes_may_use(space_info, -ram_bytes);
3916
3917
/*
3918
* Compression can use less space than we reserved, so wake tickets if
3919
* that happens.
3920
*/
3921
if (num_bytes < ram_bytes)
3922
btrfs_try_granting_tickets(space_info);
3923
spin_unlock(&space_info->lock);
3924
3925
return 0;
3926
3927
out_error:
3928
spin_unlock(&cache->lock);
3929
spin_unlock(&space_info->lock);
3930
return ret;
3931
}
3932
3933
/*
3934
* Update the block_group and space info counters.
3935
*
3936
* @cache: The cache we are manipulating.
3937
* @num_bytes: The number of bytes in question.
3938
* @is_delalloc: Whether the blocks are allocated for a delalloc write.
3939
*
3940
* This is called by somebody who is freeing space that was never actually used
3941
* on disk. For example if you reserve some space for a new leaf in transaction
3942
* A and before transaction A commits you free that leaf, you call this with
3943
* reserve set to 0 in order to clear the reservation.
3944
*/
3945
void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, u64 num_bytes,
3946
bool is_delalloc)
3947
{
3948
struct btrfs_space_info *space_info = cache->space_info;
3949
bool bg_ro;
3950
3951
spin_lock(&space_info->lock);
3952
spin_lock(&cache->lock);
3953
bg_ro = cache->ro;
3954
cache->reserved -= num_bytes;
3955
if (is_delalloc)
3956
cache->delalloc_bytes -= num_bytes;
3957
spin_unlock(&cache->lock);
3958
3959
if (bg_ro)
3960
space_info->bytes_readonly += num_bytes;
3961
else if (btrfs_is_zoned(cache->fs_info))
3962
space_info->bytes_zone_unusable += num_bytes;
3963
3964
space_info->bytes_reserved -= num_bytes;
3965
space_info->max_extent_size = 0;
3966
3967
btrfs_try_granting_tickets(space_info);
3968
spin_unlock(&space_info->lock);
3969
}
3970
3971
static void force_metadata_allocation(struct btrfs_fs_info *info)
3972
{
3973
struct list_head *head = &info->space_info;
3974
struct btrfs_space_info *found;
3975
3976
list_for_each_entry(found, head, list) {
3977
if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3978
found->force_alloc = CHUNK_ALLOC_FORCE;
3979
}
3980
}
3981
3982
static bool should_alloc_chunk(const struct btrfs_fs_info *fs_info,
3983
const struct btrfs_space_info *sinfo, int force)
3984
{
3985
u64 bytes_used = btrfs_space_info_used(sinfo, false);
3986
u64 thresh;
3987
3988
if (force == CHUNK_ALLOC_FORCE)
3989
return true;
3990
3991
/*
3992
* in limited mode, we want to have some free space up to
3993
* about 1% of the FS size.
3994
*/
3995
if (force == CHUNK_ALLOC_LIMITED) {
3996
thresh = btrfs_super_total_bytes(fs_info->super_copy);
3997
thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3998
3999
if (sinfo->total_bytes - bytes_used < thresh)
4000
return true;
4001
}
4002
4003
if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
4004
return false;
4005
return true;
4006
}
4007
4008
int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
4009
{
4010
u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
4011
struct btrfs_space_info *space_info;
4012
4013
space_info = btrfs_find_space_info(trans->fs_info, type);
4014
if (!space_info) {
4015
DEBUG_WARN();
4016
return -EINVAL;
4017
}
4018
4019
return btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE);
4020
}
4021
4022
static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans,
4023
struct btrfs_space_info *space_info,
4024
u64 flags)
4025
{
4026
struct btrfs_block_group *bg;
4027
int ret;
4028
4029
/*
4030
* Check if we have enough space in the system space info because we
4031
* will need to update device items in the chunk btree and insert a new
4032
* chunk item in the chunk btree as well. This will allocate a new
4033
* system block group if needed.
4034
*/
4035
check_system_chunk(trans, flags);
4036
4037
bg = btrfs_create_chunk(trans, space_info, flags);
4038
if (IS_ERR(bg)) {
4039
ret = PTR_ERR(bg);
4040
goto out;
4041
}
4042
4043
ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
4044
/*
4045
* Normally we are not expected to fail with -ENOSPC here, since we have
4046
* previously reserved space in the system space_info and allocated one
4047
* new system chunk if necessary. However there are three exceptions:
4048
*
4049
* 1) We may have enough free space in the system space_info but all the
4050
* existing system block groups have a profile which can not be used
4051
* for extent allocation.
4052
*
4053
* This happens when mounting in degraded mode. For example we have a
4054
* RAID1 filesystem with 2 devices, lose one device and mount the fs
4055
* using the other device in degraded mode. If we then allocate a chunk,
4056
* we may have enough free space in the existing system space_info, but
4057
* none of the block groups can be used for extent allocation since they
4058
* have a RAID1 profile, and because we are in degraded mode with a
4059
* single device, we are forced to allocate a new system chunk with a
4060
* SINGLE profile. Making check_system_chunk() iterate over all system
4061
* block groups and check if they have a usable profile and enough space
4062
* can be slow on very large filesystems, so we tolerate the -ENOSPC and
4063
* try again after forcing allocation of a new system chunk. Like this
4064
* we avoid paying the cost of that search in normal circumstances, when
4065
* we were not mounted in degraded mode;
4066
*
4067
* 2) We had enough free space info the system space_info, and one suitable
4068
* block group to allocate from when we called check_system_chunk()
4069
* above. However right after we called it, the only system block group
4070
* with enough free space got turned into RO mode by a running scrub,
4071
* and in this case we have to allocate a new one and retry. We only
4072
* need do this allocate and retry once, since we have a transaction
4073
* handle and scrub uses the commit root to search for block groups;
4074
*
4075
* 3) We had one system block group with enough free space when we called
4076
* check_system_chunk(), but after that, right before we tried to
4077
* allocate the last extent buffer we needed, a discard operation came
4078
* in and it temporarily removed the last free space entry from the
4079
* block group (discard removes a free space entry, discards it, and
4080
* then adds back the entry to the block group cache).
4081
*/
4082
if (ret == -ENOSPC) {
4083
const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
4084
struct btrfs_block_group *sys_bg;
4085
struct btrfs_space_info *sys_space_info;
4086
4087
sys_space_info = btrfs_find_space_info(trans->fs_info, sys_flags);
4088
if (unlikely(!sys_space_info)) {
4089
ret = -EINVAL;
4090
btrfs_abort_transaction(trans, ret);
4091
goto out;
4092
}
4093
4094
sys_bg = btrfs_create_chunk(trans, sys_space_info, sys_flags);
4095
if (IS_ERR(sys_bg)) {
4096
ret = PTR_ERR(sys_bg);
4097
btrfs_abort_transaction(trans, ret);
4098
goto out;
4099
}
4100
4101
ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
4102
if (unlikely(ret)) {
4103
btrfs_abort_transaction(trans, ret);
4104
goto out;
4105
}
4106
4107
ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
4108
if (unlikely(ret)) {
4109
btrfs_abort_transaction(trans, ret);
4110
goto out;
4111
}
4112
} else if (unlikely(ret)) {
4113
btrfs_abort_transaction(trans, ret);
4114
goto out;
4115
}
4116
out:
4117
btrfs_trans_release_chunk_metadata(trans);
4118
4119
if (ret)
4120
return ERR_PTR(ret);
4121
4122
btrfs_get_block_group(bg);
4123
return bg;
4124
}
4125
4126
/*
4127
* Chunk allocation is done in 2 phases:
4128
*
4129
* 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
4130
* the chunk, the chunk mapping, create its block group and add the items
4131
* that belong in the chunk btree to it - more specifically, we need to
4132
* update device items in the chunk btree and add a new chunk item to it.
4133
*
4134
* 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
4135
* group item to the extent btree and the device extent items to the devices
4136
* btree.
4137
*
4138
* This is done to prevent deadlocks. For example when COWing a node from the
4139
* extent btree we are holding a write lock on the node's parent and if we
4140
* trigger chunk allocation and attempted to insert the new block group item
4141
* in the extent btree right way, we could deadlock because the path for the
4142
* insertion can include that parent node. At first glance it seems impossible
4143
* to trigger chunk allocation after starting a transaction since tasks should
4144
* reserve enough transaction units (metadata space), however while that is true
4145
* most of the time, chunk allocation may still be triggered for several reasons:
4146
*
4147
* 1) When reserving metadata, we check if there is enough free space in the
4148
* metadata space_info and therefore don't trigger allocation of a new chunk.
4149
* However later when the task actually tries to COW an extent buffer from
4150
* the extent btree or from the device btree for example, it is forced to
4151
* allocate a new block group (chunk) because the only one that had enough
4152
* free space was just turned to RO mode by a running scrub for example (or
4153
* device replace, block group reclaim thread, etc), so we can not use it
4154
* for allocating an extent and end up being forced to allocate a new one;
4155
*
4156
* 2) Because we only check that the metadata space_info has enough free bytes,
4157
* we end up not allocating a new metadata chunk in that case. However if
4158
* the filesystem was mounted in degraded mode, none of the existing block
4159
* groups might be suitable for extent allocation due to their incompatible
4160
* profile (for e.g. mounting a 2 devices filesystem, where all block groups
4161
* use a RAID1 profile, in degraded mode using a single device). In this case
4162
* when the task attempts to COW some extent buffer of the extent btree for
4163
* example, it will trigger allocation of a new metadata block group with a
4164
* suitable profile (SINGLE profile in the example of the degraded mount of
4165
* the RAID1 filesystem);
4166
*
4167
* 3) The task has reserved enough transaction units / metadata space, but when
4168
* it attempts to COW an extent buffer from the extent or device btree for
4169
* example, it does not find any free extent in any metadata block group,
4170
* therefore forced to try to allocate a new metadata block group.
4171
* This is because some other task allocated all available extents in the
4172
* meanwhile - this typically happens with tasks that don't reserve space
4173
* properly, either intentionally or as a bug. One example where this is
4174
* done intentionally is fsync, as it does not reserve any transaction units
4175
* and ends up allocating a variable number of metadata extents for log
4176
* tree extent buffers;
4177
*
4178
* 4) The task has reserved enough transaction units / metadata space, but right
4179
* before it tries to allocate the last extent buffer it needs, a discard
4180
* operation comes in and, temporarily, removes the last free space entry from
4181
* the only metadata block group that had free space (discard starts by
4182
* removing a free space entry from a block group, then does the discard
4183
* operation and, once it's done, it adds back the free space entry to the
4184
* block group).
4185
*
4186
* We also need this 2 phases setup when adding a device to a filesystem with
4187
* a seed device - we must create new metadata and system chunks without adding
4188
* any of the block group items to the chunk, extent and device btrees. If we
4189
* did not do it this way, we would get ENOSPC when attempting to update those
4190
* btrees, since all the chunks from the seed device are read-only.
4191
*
4192
* Phase 1 does the updates and insertions to the chunk btree because if we had
4193
* it done in phase 2 and have a thundering herd of tasks allocating chunks in
4194
* parallel, we risk having too many system chunks allocated by many tasks if
4195
* many tasks reach phase 1 without the previous ones completing phase 2. In the
4196
* extreme case this leads to exhaustion of the system chunk array in the
4197
* superblock. This is easier to trigger if using a btree node/leaf size of 64K
4198
* and with RAID filesystems (so we have more device items in the chunk btree).
4199
* This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4200
* the system chunk array due to concurrent allocations") provides more details.
4201
*
4202
* Allocation of system chunks does not happen through this function. A task that
4203
* needs to update the chunk btree (the only btree that uses system chunks), must
4204
* preallocate chunk space by calling either check_system_chunk() or
4205
* btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4206
* metadata chunk or when removing a chunk, while the later is used before doing
4207
* a modification to the chunk btree - use cases for the later are adding,
4208
* removing and resizing a device as well as relocation of a system chunk.
4209
* See the comment below for more details.
4210
*
4211
* The reservation of system space, done through check_system_chunk(), as well
4212
* as all the updates and insertions into the chunk btree must be done while
4213
* holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4214
* an extent buffer from the chunks btree we never trigger allocation of a new
4215
* system chunk, which would result in a deadlock (trying to lock twice an
4216
* extent buffer of the chunk btree, first time before triggering the chunk
4217
* allocation and the second time during chunk allocation while attempting to
4218
* update the chunks btree). The system chunk array is also updated while holding
4219
* that mutex. The same logic applies to removing chunks - we must reserve system
4220
* space, update the chunk btree and the system chunk array in the superblock
4221
* while holding fs_info->chunk_mutex.
4222
*
4223
* This function, btrfs_chunk_alloc(), belongs to phase 1.
4224
*
4225
* @space_info: specify which space_info the new chunk should belong to.
4226
*
4227
* If @force is CHUNK_ALLOC_FORCE:
4228
* - return 1 if it successfully allocates a chunk,
4229
* - return errors including -ENOSPC otherwise.
4230
* If @force is NOT CHUNK_ALLOC_FORCE:
4231
* - return 0 if it doesn't need to allocate a new chunk,
4232
* - return 1 if it successfully allocates a chunk,
4233
* - return errors including -ENOSPC otherwise.
4234
*/
4235
int btrfs_chunk_alloc(struct btrfs_trans_handle *trans,
4236
struct btrfs_space_info *space_info, u64 flags,
4237
enum btrfs_chunk_alloc_enum force)
4238
{
4239
struct btrfs_fs_info *fs_info = trans->fs_info;
4240
struct btrfs_block_group *ret_bg;
4241
bool wait_for_alloc = false;
4242
bool should_alloc = false;
4243
bool from_extent_allocation = false;
4244
int ret = 0;
4245
4246
if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4247
from_extent_allocation = true;
4248
force = CHUNK_ALLOC_FORCE;
4249
}
4250
4251
/* Don't re-enter if we're already allocating a chunk */
4252
if (trans->allocating_chunk)
4253
return -ENOSPC;
4254
/*
4255
* Allocation of system chunks can not happen through this path, as we
4256
* could end up in a deadlock if we are allocating a data or metadata
4257
* chunk and there is another task modifying the chunk btree.
4258
*
4259
* This is because while we are holding the chunk mutex, we will attempt
4260
* to add the new chunk item to the chunk btree or update an existing
4261
* device item in the chunk btree, while the other task that is modifying
4262
* the chunk btree is attempting to COW an extent buffer while holding a
4263
* lock on it and on its parent - if the COW operation triggers a system
4264
* chunk allocation, then we can deadlock because we are holding the
4265
* chunk mutex and we may need to access that extent buffer or its parent
4266
* in order to add the chunk item or update a device item.
4267
*
4268
* Tasks that want to modify the chunk tree should reserve system space
4269
* before updating the chunk btree, by calling either
4270
* btrfs_reserve_chunk_metadata() or check_system_chunk().
4271
* It's possible that after a task reserves the space, it still ends up
4272
* here - this happens in the cases described above at do_chunk_alloc().
4273
* The task will have to either retry or fail.
4274
*/
4275
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4276
return -ENOSPC;
4277
4278
do {
4279
spin_lock(&space_info->lock);
4280
if (force < space_info->force_alloc)
4281
force = space_info->force_alloc;
4282
should_alloc = should_alloc_chunk(fs_info, space_info, force);
4283
if (space_info->full) {
4284
/* No more free physical space */
4285
spin_unlock(&space_info->lock);
4286
if (should_alloc)
4287
ret = -ENOSPC;
4288
else
4289
ret = 0;
4290
return ret;
4291
} else if (!should_alloc) {
4292
spin_unlock(&space_info->lock);
4293
return 0;
4294
} else if (space_info->chunk_alloc) {
4295
/*
4296
* Someone is already allocating, so we need to block
4297
* until this someone is finished and then loop to
4298
* recheck if we should continue with our allocation
4299
* attempt.
4300
*/
4301
spin_unlock(&space_info->lock);
4302
wait_for_alloc = true;
4303
force = CHUNK_ALLOC_NO_FORCE;
4304
mutex_lock(&fs_info->chunk_mutex);
4305
mutex_unlock(&fs_info->chunk_mutex);
4306
} else {
4307
/* Proceed with allocation */
4308
space_info->chunk_alloc = true;
4309
spin_unlock(&space_info->lock);
4310
wait_for_alloc = false;
4311
}
4312
4313
cond_resched();
4314
} while (wait_for_alloc);
4315
4316
mutex_lock(&fs_info->chunk_mutex);
4317
trans->allocating_chunk = true;
4318
4319
/*
4320
* If we have mixed data/metadata chunks we want to make sure we keep
4321
* allocating mixed chunks instead of individual chunks.
4322
*/
4323
if (btrfs_mixed_space_info(space_info))
4324
flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4325
4326
/*
4327
* if we're doing a data chunk, go ahead and make sure that
4328
* we keep a reasonable number of metadata chunks allocated in the
4329
* FS as well.
4330
*/
4331
if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4332
fs_info->data_chunk_allocations++;
4333
if (!(fs_info->data_chunk_allocations %
4334
fs_info->metadata_ratio))
4335
force_metadata_allocation(fs_info);
4336
}
4337
4338
ret_bg = do_chunk_alloc(trans, space_info, flags);
4339
trans->allocating_chunk = false;
4340
4341
if (IS_ERR(ret_bg)) {
4342
ret = PTR_ERR(ret_bg);
4343
} else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4344
/*
4345
* New block group is likely to be used soon. Try to activate
4346
* it now. Failure is OK for now.
4347
*/
4348
btrfs_zone_activate(ret_bg);
4349
}
4350
4351
if (!ret)
4352
btrfs_put_block_group(ret_bg);
4353
4354
spin_lock(&space_info->lock);
4355
if (ret < 0) {
4356
if (ret == -ENOSPC)
4357
space_info->full = true;
4358
else
4359
goto out;
4360
} else {
4361
ret = 1;
4362
space_info->max_extent_size = 0;
4363
}
4364
4365
space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4366
out:
4367
space_info->chunk_alloc = false;
4368
spin_unlock(&space_info->lock);
4369
mutex_unlock(&fs_info->chunk_mutex);
4370
4371
return ret;
4372
}
4373
4374
static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type)
4375
{
4376
u64 num_dev;
4377
4378
num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4379
if (!num_dev)
4380
num_dev = fs_info->fs_devices->rw_devices;
4381
4382
return num_dev;
4383
}
4384
4385
static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4386
u64 bytes,
4387
u64 type)
4388
{
4389
struct btrfs_fs_info *fs_info = trans->fs_info;
4390
struct btrfs_space_info *info;
4391
u64 left;
4392
int ret = 0;
4393
4394
/*
4395
* Needed because we can end up allocating a system chunk and for an
4396
* atomic and race free space reservation in the chunk block reserve.
4397
*/
4398
lockdep_assert_held(&fs_info->chunk_mutex);
4399
4400
info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4401
spin_lock(&info->lock);
4402
left = info->total_bytes - btrfs_space_info_used(info, true);
4403
spin_unlock(&info->lock);
4404
4405
if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4406
btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4407
left, bytes, type);
4408
btrfs_dump_space_info(info, 0, false);
4409
}
4410
4411
if (left < bytes) {
4412
u64 flags = btrfs_system_alloc_profile(fs_info);
4413
struct btrfs_block_group *bg;
4414
struct btrfs_space_info *space_info;
4415
4416
space_info = btrfs_find_space_info(fs_info, flags);
4417
ASSERT(space_info);
4418
4419
/*
4420
* Ignore failure to create system chunk. We might end up not
4421
* needing it, as we might not need to COW all nodes/leafs from
4422
* the paths we visit in the chunk tree (they were already COWed
4423
* or created in the current transaction for example).
4424
*/
4425
bg = btrfs_create_chunk(trans, space_info, flags);
4426
if (IS_ERR(bg)) {
4427
ret = PTR_ERR(bg);
4428
} else {
4429
/*
4430
* We have a new chunk. We also need to activate it for
4431
* zoned filesystem.
4432
*/
4433
ret = btrfs_zoned_activate_one_bg(info, true);
4434
if (ret < 0)
4435
return;
4436
4437
/*
4438
* If we fail to add the chunk item here, we end up
4439
* trying again at phase 2 of chunk allocation, at
4440
* btrfs_create_pending_block_groups(). So ignore
4441
* any error here. An ENOSPC here could happen, due to
4442
* the cases described at do_chunk_alloc() - the system
4443
* block group we just created was just turned into RO
4444
* mode by a scrub for example, or a running discard
4445
* temporarily removed its free space entries, etc.
4446
*/
4447
btrfs_chunk_alloc_add_chunk_item(trans, bg);
4448
}
4449
}
4450
4451
if (!ret) {
4452
ret = btrfs_block_rsv_add(fs_info,
4453
&fs_info->chunk_block_rsv,
4454
bytes, BTRFS_RESERVE_NO_FLUSH);
4455
if (!ret)
4456
trans->chunk_bytes_reserved += bytes;
4457
}
4458
}
4459
4460
/*
4461
* Reserve space in the system space for allocating or removing a chunk.
4462
* The caller must be holding fs_info->chunk_mutex.
4463
*/
4464
void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4465
{
4466
struct btrfs_fs_info *fs_info = trans->fs_info;
4467
const u64 num_devs = get_profile_num_devs(fs_info, type);
4468
u64 bytes;
4469
4470
/* num_devs device items to update and 1 chunk item to add or remove. */
4471
bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4472
btrfs_calc_insert_metadata_size(fs_info, 1);
4473
4474
reserve_chunk_space(trans, bytes, type);
4475
}
4476
4477
/*
4478
* Reserve space in the system space, if needed, for doing a modification to the
4479
* chunk btree.
4480
*
4481
* @trans: A transaction handle.
4482
* @is_item_insertion: Indicate if the modification is for inserting a new item
4483
* in the chunk btree or if it's for the deletion or update
4484
* of an existing item.
4485
*
4486
* This is used in a context where we need to update the chunk btree outside
4487
* block group allocation and removal, to avoid a deadlock with a concurrent
4488
* task that is allocating a metadata or data block group and therefore needs to
4489
* update the chunk btree while holding the chunk mutex. After the update to the
4490
* chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4491
*
4492
*/
4493
void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4494
bool is_item_insertion)
4495
{
4496
struct btrfs_fs_info *fs_info = trans->fs_info;
4497
u64 bytes;
4498
4499
if (is_item_insertion)
4500
bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4501
else
4502
bytes = btrfs_calc_metadata_size(fs_info, 1);
4503
4504
mutex_lock(&fs_info->chunk_mutex);
4505
reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4506
mutex_unlock(&fs_info->chunk_mutex);
4507
}
4508
4509
void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4510
{
4511
struct btrfs_block_group *block_group;
4512
4513
block_group = btrfs_lookup_first_block_group(info, 0);
4514
while (block_group) {
4515
btrfs_wait_block_group_cache_done(block_group);
4516
spin_lock(&block_group->lock);
4517
if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4518
&block_group->runtime_flags)) {
4519
struct btrfs_inode *inode = block_group->inode;
4520
4521
block_group->inode = NULL;
4522
spin_unlock(&block_group->lock);
4523
4524
ASSERT(block_group->io_ctl.inode == NULL);
4525
iput(&inode->vfs_inode);
4526
} else {
4527
spin_unlock(&block_group->lock);
4528
}
4529
block_group = btrfs_next_block_group(block_group);
4530
}
4531
}
4532
4533
static void check_removing_space_info(struct btrfs_space_info *space_info)
4534
{
4535
struct btrfs_fs_info *info = space_info->fs_info;
4536
4537
if (space_info->subgroup_id == BTRFS_SUB_GROUP_PRIMARY) {
4538
/* This is a top space_info, proceed with its children first. */
4539
for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) {
4540
if (space_info->sub_group[i]) {
4541
check_removing_space_info(space_info->sub_group[i]);
4542
kfree(space_info->sub_group[i]);
4543
space_info->sub_group[i] = NULL;
4544
}
4545
}
4546
}
4547
4548
/*
4549
* Do not hide this behind enospc_debug, this is actually important and
4550
* indicates a real bug if this happens.
4551
*/
4552
if (WARN_ON(space_info->bytes_pinned > 0 || space_info->bytes_may_use > 0))
4553
btrfs_dump_space_info(space_info, 0, false);
4554
4555
/*
4556
* If there was a failure to cleanup a log tree, very likely due to an
4557
* IO failure on a writeback attempt of one or more of its extent
4558
* buffers, we could not do proper (and cheap) unaccounting of their
4559
* reserved space, so don't warn on bytes_reserved > 0 in that case.
4560
*/
4561
if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4562
!BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4563
if (WARN_ON(space_info->bytes_reserved > 0))
4564
btrfs_dump_space_info(space_info, 0, false);
4565
}
4566
4567
WARN_ON(space_info->reclaim_size > 0);
4568
}
4569
4570
/*
4571
* Must be called only after stopping all workers, since we could have block
4572
* group caching kthreads running, and therefore they could race with us if we
4573
* freed the block groups before stopping them.
4574
*/
4575
int btrfs_free_block_groups(struct btrfs_fs_info *info)
4576
{
4577
struct btrfs_block_group *block_group;
4578
struct btrfs_space_info *space_info;
4579
struct btrfs_caching_control *caching_ctl;
4580
struct rb_node *n;
4581
4582
if (btrfs_is_zoned(info)) {
4583
if (info->active_meta_bg) {
4584
btrfs_put_block_group(info->active_meta_bg);
4585
info->active_meta_bg = NULL;
4586
}
4587
if (info->active_system_bg) {
4588
btrfs_put_block_group(info->active_system_bg);
4589
info->active_system_bg = NULL;
4590
}
4591
}
4592
4593
write_lock(&info->block_group_cache_lock);
4594
while (!list_empty(&info->caching_block_groups)) {
4595
caching_ctl = list_first_entry(&info->caching_block_groups,
4596
struct btrfs_caching_control, list);
4597
list_del(&caching_ctl->list);
4598
btrfs_put_caching_control(caching_ctl);
4599
}
4600
write_unlock(&info->block_group_cache_lock);
4601
4602
spin_lock(&info->unused_bgs_lock);
4603
while (!list_empty(&info->unused_bgs)) {
4604
block_group = list_first_entry(&info->unused_bgs,
4605
struct btrfs_block_group,
4606
bg_list);
4607
list_del_init(&block_group->bg_list);
4608
btrfs_put_block_group(block_group);
4609
}
4610
4611
while (!list_empty(&info->reclaim_bgs)) {
4612
block_group = list_first_entry(&info->reclaim_bgs,
4613
struct btrfs_block_group,
4614
bg_list);
4615
list_del_init(&block_group->bg_list);
4616
btrfs_put_block_group(block_group);
4617
}
4618
4619
while (!list_empty(&info->fully_remapped_bgs)) {
4620
block_group = list_first_entry(&info->fully_remapped_bgs,
4621
struct btrfs_block_group, bg_list);
4622
list_del_init(&block_group->bg_list);
4623
btrfs_put_block_group(block_group);
4624
}
4625
spin_unlock(&info->unused_bgs_lock);
4626
4627
spin_lock(&info->zone_active_bgs_lock);
4628
while (!list_empty(&info->zone_active_bgs)) {
4629
block_group = list_first_entry(&info->zone_active_bgs,
4630
struct btrfs_block_group,
4631
active_bg_list);
4632
list_del_init(&block_group->active_bg_list);
4633
btrfs_put_block_group(block_group);
4634
}
4635
spin_unlock(&info->zone_active_bgs_lock);
4636
4637
write_lock(&info->block_group_cache_lock);
4638
while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4639
block_group = rb_entry(n, struct btrfs_block_group,
4640
cache_node);
4641
rb_erase_cached(&block_group->cache_node,
4642
&info->block_group_cache_tree);
4643
RB_CLEAR_NODE(&block_group->cache_node);
4644
write_unlock(&info->block_group_cache_lock);
4645
4646
down_write(&block_group->space_info->groups_sem);
4647
list_del(&block_group->list);
4648
up_write(&block_group->space_info->groups_sem);
4649
4650
/*
4651
* We haven't cached this block group, which means we could
4652
* possibly have excluded extents on this block group.
4653
*/
4654
if (block_group->cached == BTRFS_CACHE_NO ||
4655
block_group->cached == BTRFS_CACHE_ERROR)
4656
btrfs_free_excluded_extents(block_group);
4657
4658
btrfs_remove_free_space_cache(block_group);
4659
ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4660
ASSERT(list_empty(&block_group->dirty_list));
4661
ASSERT(list_empty(&block_group->io_list));
4662
ASSERT(list_empty(&block_group->bg_list));
4663
ASSERT(refcount_read(&block_group->refs) == 1);
4664
ASSERT(block_group->swap_extents == 0);
4665
btrfs_put_block_group(block_group);
4666
4667
write_lock(&info->block_group_cache_lock);
4668
}
4669
write_unlock(&info->block_group_cache_lock);
4670
4671
btrfs_release_global_block_rsv(info);
4672
4673
while (!list_empty(&info->space_info)) {
4674
space_info = list_first_entry(&info->space_info,
4675
struct btrfs_space_info, list);
4676
4677
check_removing_space_info(space_info);
4678
list_del(&space_info->list);
4679
btrfs_sysfs_remove_space_info(space_info);
4680
}
4681
return 0;
4682
}
4683
4684
void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4685
{
4686
atomic_inc(&cache->frozen);
4687
}
4688
4689
void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4690
{
4691
struct btrfs_fs_info *fs_info = block_group->fs_info;
4692
bool cleanup;
4693
4694
spin_lock(&block_group->lock);
4695
cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4696
test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4697
spin_unlock(&block_group->lock);
4698
4699
if (cleanup) {
4700
struct btrfs_chunk_map *map;
4701
4702
map = btrfs_find_chunk_map(fs_info, block_group->start, 1);
4703
/* Logic error, can't happen. */
4704
ASSERT(map);
4705
4706
btrfs_remove_chunk_map(fs_info, map);
4707
4708
/* Once for our lookup reference. */
4709
btrfs_free_chunk_map(map);
4710
4711
/*
4712
* We may have left one free space entry and other possible
4713
* tasks trimming this block group have left 1 entry each one.
4714
* Free them if any.
4715
*/
4716
btrfs_remove_free_space_cache(block_group);
4717
}
4718
}
4719
4720
bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4721
{
4722
bool ret = true;
4723
4724
spin_lock(&bg->lock);
4725
if (bg->ro)
4726
ret = false;
4727
else
4728
bg->swap_extents++;
4729
spin_unlock(&bg->lock);
4730
4731
return ret;
4732
}
4733
4734
void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4735
{
4736
spin_lock(&bg->lock);
4737
ASSERT(!bg->ro);
4738
ASSERT(bg->swap_extents >= amount);
4739
bg->swap_extents -= amount;
4740
spin_unlock(&bg->lock);
4741
}
4742
4743
enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4744
{
4745
if (size <= SZ_128K)
4746
return BTRFS_BG_SZ_SMALL;
4747
if (size <= SZ_8M)
4748
return BTRFS_BG_SZ_MEDIUM;
4749
return BTRFS_BG_SZ_LARGE;
4750
}
4751
4752
/*
4753
* Handle a block group allocating an extent in a size class
4754
*
4755
* @bg: The block group we allocated in.
4756
* @size_class: The size class of the allocation.
4757
* @force_wrong_size_class: Whether we are desperate enough to allow
4758
* mismatched size classes.
4759
*
4760
* Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4761
* case of a race that leads to the wrong size class without
4762
* force_wrong_size_class set.
4763
*
4764
* find_free_extent will skip block groups with a mismatched size class until
4765
* it really needs to avoid ENOSPC. In that case it will set
4766
* force_wrong_size_class. However, if a block group is newly allocated and
4767
* doesn't yet have a size class, then it is possible for two allocations of
4768
* different sizes to race and both try to use it. The loser is caught here and
4769
* has to retry.
4770
*/
4771
int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4772
enum btrfs_block_group_size_class size_class,
4773
bool force_wrong_size_class)
4774
{
4775
lockdep_assert_held(&bg->lock);
4776
ASSERT(size_class != BTRFS_BG_SZ_NONE);
4777
4778
/* The new allocation is in the right size class, do nothing */
4779
if (bg->size_class == size_class)
4780
return 0;
4781
/*
4782
* The new allocation is in a mismatched size class.
4783
* This means one of two things:
4784
*
4785
* 1. Two tasks in find_free_extent for different size_classes raced
4786
* and hit the same empty block_group. Make the loser try again.
4787
* 2. A call to find_free_extent got desperate enough to set
4788
* 'force_wrong_slab'. Don't change the size_class, but allow the
4789
* allocation.
4790
*/
4791
if (bg->size_class != BTRFS_BG_SZ_NONE) {
4792
if (force_wrong_size_class)
4793
return 0;
4794
return -EAGAIN;
4795
}
4796
/*
4797
* The happy new block group case: the new allocation is the first
4798
* one in the block_group so we set size_class.
4799
*/
4800
bg->size_class = size_class;
4801
4802
return 0;
4803
}
4804
4805
bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg)
4806
{
4807
if (btrfs_is_zoned(bg->fs_info))
4808
return false;
4809
if (!btrfs_is_block_group_data_only(bg))
4810
return false;
4811
return true;
4812
}
4813
4814
void btrfs_mark_bg_fully_remapped(struct btrfs_block_group *bg,
4815
struct btrfs_trans_handle *trans)
4816
{
4817
struct btrfs_fs_info *fs_info = trans->fs_info;
4818
4819
4820
if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
4821
spin_lock(&bg->lock);
4822
set_bit(BLOCK_GROUP_FLAG_STRIPE_REMOVAL_PENDING, &bg->runtime_flags);
4823
spin_unlock(&bg->lock);
4824
4825
btrfs_discard_queue_work(&fs_info->discard_ctl, bg);
4826
} else {
4827
spin_lock(&fs_info->unused_bgs_lock);
4828
/*
4829
* The block group might already be on the unused_bgs list,
4830
* remove it if it is. It'll get readded after
4831
* btrfs_handle_fully_remapped_bgs() finishes.
4832
*/
4833
if (!list_empty(&bg->bg_list))
4834
list_del(&bg->bg_list);
4835
else
4836
btrfs_get_block_group(bg);
4837
4838
list_add_tail(&bg->bg_list, &fs_info->fully_remapped_bgs);
4839
spin_unlock(&fs_info->unused_bgs_lock);
4840
}
4841
}
4842
4843
/*
4844
* Compare the block group and chunk trees, and find any fully-remapped block
4845
* groups which haven't yet had their chunk stripes and device extents removed,
4846
* and put them on the fully_remapped_bgs list so this gets done.
4847
*
4848
* This happens when a block group becomes fully remapped, i.e. its last
4849
* identity mapping is removed, and the volume is unmounted before async
4850
* discard has finished. It's important this gets done as until it is the
4851
* chunk's stripes are dead space.
4852
*/
4853
int btrfs_populate_fully_remapped_bgs_list(struct btrfs_fs_info *fs_info)
4854
{
4855
struct rb_node *node_bg, *node_chunk;
4856
4857
node_bg = rb_first_cached(&fs_info->block_group_cache_tree);
4858
node_chunk = rb_first_cached(&fs_info->mapping_tree);
4859
4860
while (node_bg && node_chunk) {
4861
struct btrfs_block_group *bg;
4862
struct btrfs_chunk_map *map;
4863
4864
bg = rb_entry(node_bg, struct btrfs_block_group, cache_node);
4865
map = rb_entry(node_chunk, struct btrfs_chunk_map, rb_node);
4866
4867
ASSERT(bg->start == map->start);
4868
4869
if (!(bg->flags & BTRFS_BLOCK_GROUP_REMAPPED))
4870
goto next;
4871
4872
if (bg->identity_remap_count != 0)
4873
goto next;
4874
4875
if (map->num_stripes == 0)
4876
goto next;
4877
4878
spin_lock(&fs_info->unused_bgs_lock);
4879
4880
if (list_empty(&bg->bg_list)) {
4881
btrfs_get_block_group(bg);
4882
list_add_tail(&bg->bg_list, &fs_info->fully_remapped_bgs);
4883
} else {
4884
list_move_tail(&bg->bg_list, &fs_info->fully_remapped_bgs);
4885
}
4886
4887
spin_unlock(&fs_info->unused_bgs_lock);
4888
4889
/*
4890
* Ideally we'd want to call btrfs_discard_queue_work() here,
4891
* but it'd do nothing as the discard worker hasn't been
4892
* started yet.
4893
*
4894
* The block group will get added to the discard list when
4895
* btrfs_handle_fully_remapped_bgs() gets called, when we
4896
* commit the first transaction.
4897
*/
4898
if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
4899
spin_lock(&bg->lock);
4900
set_bit(BLOCK_GROUP_FLAG_STRIPE_REMOVAL_PENDING, &bg->runtime_flags);
4901
spin_unlock(&bg->lock);
4902
}
4903
4904
next:
4905
node_bg = rb_next(node_bg);
4906
node_chunk = rb_next(node_chunk);
4907
}
4908
4909
ASSERT(!node_bg && !node_chunk);
4910
4911
return 0;
4912
}
4913
4914