Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/block-group.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
#include <linux/sizes.h>
4
#include <linux/list_sort.h>
5
#include "misc.h"
6
#include "ctree.h"
7
#include "block-group.h"
8
#include "space-info.h"
9
#include "disk-io.h"
10
#include "free-space-cache.h"
11
#include "free-space-tree.h"
12
#include "volumes.h"
13
#include "transaction.h"
14
#include "ref-verify.h"
15
#include "sysfs.h"
16
#include "tree-log.h"
17
#include "delalloc-space.h"
18
#include "discard.h"
19
#include "raid56.h"
20
#include "zoned.h"
21
#include "fs.h"
22
#include "accessors.h"
23
#include "extent-tree.h"
24
25
#ifdef CONFIG_BTRFS_DEBUG
26
int btrfs_should_fragment_free_space(const struct btrfs_block_group *block_group)
27
{
28
struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30
return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31
block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32
(btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33
block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34
}
35
#endif
36
37
static inline bool has_unwritten_metadata(struct btrfs_block_group *block_group)
38
{
39
/* The meta_write_pointer is available only on the zoned setup. */
40
if (!btrfs_is_zoned(block_group->fs_info))
41
return false;
42
43
if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
44
return false;
45
46
return block_group->start + block_group->alloc_offset >
47
block_group->meta_write_pointer;
48
}
49
50
/*
51
* Return target flags in extended format or 0 if restripe for this chunk_type
52
* is not in progress
53
*
54
* Should be called with balance_lock held
55
*/
56
static u64 get_restripe_target(const struct btrfs_fs_info *fs_info, u64 flags)
57
{
58
const struct btrfs_balance_control *bctl = fs_info->balance_ctl;
59
u64 target = 0;
60
61
if (!bctl)
62
return 0;
63
64
if (flags & BTRFS_BLOCK_GROUP_DATA &&
65
bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
66
target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
67
} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
68
bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
69
target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
70
} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
71
bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
72
target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
73
}
74
75
return target;
76
}
77
78
/*
79
* @flags: available profiles in extended format (see ctree.h)
80
*
81
* Return reduced profile in chunk format. If profile changing is in progress
82
* (either running or paused) picks the target profile (if it's already
83
* available), otherwise falls back to plain reducing.
84
*/
85
static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
86
{
87
u64 num_devices = fs_info->fs_devices->rw_devices;
88
u64 target;
89
u64 raid_type;
90
u64 allowed = 0;
91
92
/*
93
* See if restripe for this chunk_type is in progress, if so try to
94
* reduce to the target profile
95
*/
96
spin_lock(&fs_info->balance_lock);
97
target = get_restripe_target(fs_info, flags);
98
if (target) {
99
spin_unlock(&fs_info->balance_lock);
100
return extended_to_chunk(target);
101
}
102
spin_unlock(&fs_info->balance_lock);
103
104
/* First, mask out the RAID levels which aren't possible */
105
for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
106
if (num_devices >= btrfs_raid_array[raid_type].devs_min)
107
allowed |= btrfs_raid_array[raid_type].bg_flag;
108
}
109
allowed &= flags;
110
111
/* Select the highest-redundancy RAID level. */
112
if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
113
allowed = BTRFS_BLOCK_GROUP_RAID1C4;
114
else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
115
allowed = BTRFS_BLOCK_GROUP_RAID6;
116
else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
117
allowed = BTRFS_BLOCK_GROUP_RAID1C3;
118
else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
119
allowed = BTRFS_BLOCK_GROUP_RAID5;
120
else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
121
allowed = BTRFS_BLOCK_GROUP_RAID10;
122
else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
123
allowed = BTRFS_BLOCK_GROUP_RAID1;
124
else if (allowed & BTRFS_BLOCK_GROUP_DUP)
125
allowed = BTRFS_BLOCK_GROUP_DUP;
126
else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
127
allowed = BTRFS_BLOCK_GROUP_RAID0;
128
129
flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
130
131
return extended_to_chunk(flags | allowed);
132
}
133
134
u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
135
{
136
unsigned seq;
137
u64 flags;
138
139
do {
140
flags = orig_flags;
141
seq = read_seqbegin(&fs_info->profiles_lock);
142
143
if (flags & BTRFS_BLOCK_GROUP_DATA)
144
flags |= fs_info->avail_data_alloc_bits;
145
else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
146
flags |= fs_info->avail_system_alloc_bits;
147
else if (flags & BTRFS_BLOCK_GROUP_METADATA)
148
flags |= fs_info->avail_metadata_alloc_bits;
149
} while (read_seqretry(&fs_info->profiles_lock, seq));
150
151
return btrfs_reduce_alloc_profile(fs_info, flags);
152
}
153
154
void btrfs_get_block_group(struct btrfs_block_group *cache)
155
{
156
refcount_inc(&cache->refs);
157
}
158
159
void btrfs_put_block_group(struct btrfs_block_group *cache)
160
{
161
if (refcount_dec_and_test(&cache->refs)) {
162
WARN_ON(cache->pinned > 0);
163
/*
164
* If there was a failure to cleanup a log tree, very likely due
165
* to an IO failure on a writeback attempt of one or more of its
166
* extent buffers, we could not do proper (and cheap) unaccounting
167
* of their reserved space, so don't warn on reserved > 0 in that
168
* case.
169
*/
170
if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
171
!BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
172
WARN_ON(cache->reserved > 0);
173
174
/*
175
* A block_group shouldn't be on the discard_list anymore.
176
* Remove the block_group from the discard_list to prevent us
177
* from causing a panic due to NULL pointer dereference.
178
*/
179
if (WARN_ON(!list_empty(&cache->discard_list)))
180
btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
181
cache);
182
183
kfree(cache->free_space_ctl);
184
btrfs_free_chunk_map(cache->physical_map);
185
kfree(cache);
186
}
187
}
188
189
static int btrfs_bg_start_cmp(const struct rb_node *new,
190
const struct rb_node *exist)
191
{
192
const struct btrfs_block_group *new_bg =
193
rb_entry(new, struct btrfs_block_group, cache_node);
194
const struct btrfs_block_group *exist_bg =
195
rb_entry(exist, struct btrfs_block_group, cache_node);
196
197
if (new_bg->start < exist_bg->start)
198
return -1;
199
if (new_bg->start > exist_bg->start)
200
return 1;
201
return 0;
202
}
203
204
/*
205
* This adds the block group to the fs_info rb tree for the block group cache
206
*/
207
static int btrfs_add_block_group_cache(struct btrfs_block_group *block_group)
208
{
209
struct btrfs_fs_info *fs_info = block_group->fs_info;
210
struct rb_node *exist;
211
int ret = 0;
212
213
ASSERT(block_group->length != 0);
214
215
write_lock(&fs_info->block_group_cache_lock);
216
217
exist = rb_find_add_cached(&block_group->cache_node,
218
&fs_info->block_group_cache_tree, btrfs_bg_start_cmp);
219
if (exist)
220
ret = -EEXIST;
221
write_unlock(&fs_info->block_group_cache_lock);
222
223
return ret;
224
}
225
226
/*
227
* This will return the block group at or after bytenr if contains is 0, else
228
* it will return the block group that contains the bytenr
229
*/
230
static struct btrfs_block_group *block_group_cache_tree_search(
231
struct btrfs_fs_info *info, u64 bytenr, int contains)
232
{
233
struct btrfs_block_group *cache, *ret = NULL;
234
struct rb_node *n;
235
u64 end, start;
236
237
read_lock(&info->block_group_cache_lock);
238
n = info->block_group_cache_tree.rb_root.rb_node;
239
240
while (n) {
241
cache = rb_entry(n, struct btrfs_block_group, cache_node);
242
end = cache->start + cache->length - 1;
243
start = cache->start;
244
245
if (bytenr < start) {
246
if (!contains && (!ret || start < ret->start))
247
ret = cache;
248
n = n->rb_left;
249
} else if (bytenr > start) {
250
if (contains && bytenr <= end) {
251
ret = cache;
252
break;
253
}
254
n = n->rb_right;
255
} else {
256
ret = cache;
257
break;
258
}
259
}
260
if (ret)
261
btrfs_get_block_group(ret);
262
read_unlock(&info->block_group_cache_lock);
263
264
return ret;
265
}
266
267
/*
268
* Return the block group that starts at or after bytenr
269
*/
270
struct btrfs_block_group *btrfs_lookup_first_block_group(
271
struct btrfs_fs_info *info, u64 bytenr)
272
{
273
return block_group_cache_tree_search(info, bytenr, 0);
274
}
275
276
/*
277
* Return the block group that contains the given bytenr
278
*/
279
struct btrfs_block_group *btrfs_lookup_block_group(
280
struct btrfs_fs_info *info, u64 bytenr)
281
{
282
return block_group_cache_tree_search(info, bytenr, 1);
283
}
284
285
struct btrfs_block_group *btrfs_next_block_group(
286
struct btrfs_block_group *cache)
287
{
288
struct btrfs_fs_info *fs_info = cache->fs_info;
289
struct rb_node *node;
290
291
read_lock(&fs_info->block_group_cache_lock);
292
293
/* If our block group was removed, we need a full search. */
294
if (RB_EMPTY_NODE(&cache->cache_node)) {
295
const u64 next_bytenr = cache->start + cache->length;
296
297
read_unlock(&fs_info->block_group_cache_lock);
298
btrfs_put_block_group(cache);
299
return btrfs_lookup_first_block_group(fs_info, next_bytenr);
300
}
301
node = rb_next(&cache->cache_node);
302
btrfs_put_block_group(cache);
303
if (node) {
304
cache = rb_entry(node, struct btrfs_block_group, cache_node);
305
btrfs_get_block_group(cache);
306
} else
307
cache = NULL;
308
read_unlock(&fs_info->block_group_cache_lock);
309
return cache;
310
}
311
312
/*
313
* Check if we can do a NOCOW write for a given extent.
314
*
315
* @fs_info: The filesystem information object.
316
* @bytenr: Logical start address of the extent.
317
*
318
* Check if we can do a NOCOW write for the given extent, and increments the
319
* number of NOCOW writers in the block group that contains the extent, as long
320
* as the block group exists and it's currently not in read-only mode.
321
*
322
* Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
323
* is responsible for calling btrfs_dec_nocow_writers() later.
324
*
325
* Or NULL if we can not do a NOCOW write
326
*/
327
struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
328
u64 bytenr)
329
{
330
struct btrfs_block_group *bg;
331
bool can_nocow = true;
332
333
bg = btrfs_lookup_block_group(fs_info, bytenr);
334
if (!bg)
335
return NULL;
336
337
spin_lock(&bg->lock);
338
if (bg->ro)
339
can_nocow = false;
340
else
341
atomic_inc(&bg->nocow_writers);
342
spin_unlock(&bg->lock);
343
344
if (!can_nocow) {
345
btrfs_put_block_group(bg);
346
return NULL;
347
}
348
349
/* No put on block group, done by btrfs_dec_nocow_writers(). */
350
return bg;
351
}
352
353
/*
354
* Decrement the number of NOCOW writers in a block group.
355
*
356
* This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
357
* and on the block group returned by that call. Typically this is called after
358
* creating an ordered extent for a NOCOW write, to prevent races with scrub and
359
* relocation.
360
*
361
* After this call, the caller should not use the block group anymore. It it wants
362
* to use it, then it should get a reference on it before calling this function.
363
*/
364
void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
365
{
366
if (atomic_dec_and_test(&bg->nocow_writers))
367
wake_up_var(&bg->nocow_writers);
368
369
/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
370
btrfs_put_block_group(bg);
371
}
372
373
void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
374
{
375
wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
376
}
377
378
void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
379
const u64 start)
380
{
381
struct btrfs_block_group *bg;
382
383
bg = btrfs_lookup_block_group(fs_info, start);
384
ASSERT(bg);
385
if (atomic_dec_and_test(&bg->reservations))
386
wake_up_var(&bg->reservations);
387
btrfs_put_block_group(bg);
388
}
389
390
void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
391
{
392
struct btrfs_space_info *space_info = bg->space_info;
393
394
ASSERT(bg->ro);
395
396
if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
397
return;
398
399
/*
400
* Our block group is read only but before we set it to read only,
401
* some task might have had allocated an extent from it already, but it
402
* has not yet created a respective ordered extent (and added it to a
403
* root's list of ordered extents).
404
* Therefore wait for any task currently allocating extents, since the
405
* block group's reservations counter is incremented while a read lock
406
* on the groups' semaphore is held and decremented after releasing
407
* the read access on that semaphore and creating the ordered extent.
408
*/
409
down_write(&space_info->groups_sem);
410
up_write(&space_info->groups_sem);
411
412
wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
413
}
414
415
struct btrfs_caching_control *btrfs_get_caching_control(
416
struct btrfs_block_group *cache)
417
{
418
struct btrfs_caching_control *ctl;
419
420
spin_lock(&cache->lock);
421
if (!cache->caching_ctl) {
422
spin_unlock(&cache->lock);
423
return NULL;
424
}
425
426
ctl = cache->caching_ctl;
427
refcount_inc(&ctl->count);
428
spin_unlock(&cache->lock);
429
return ctl;
430
}
431
432
static void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
433
{
434
if (refcount_dec_and_test(&ctl->count))
435
kfree(ctl);
436
}
437
438
/*
439
* When we wait for progress in the block group caching, its because our
440
* allocation attempt failed at least once. So, we must sleep and let some
441
* progress happen before we try again.
442
*
443
* This function will sleep at least once waiting for new free space to show
444
* up, and then it will check the block group free space numbers for our min
445
* num_bytes. Another option is to have it go ahead and look in the rbtree for
446
* a free extent of a given size, but this is a good start.
447
*
448
* Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
449
* any of the information in this block group.
450
*/
451
void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
452
u64 num_bytes)
453
{
454
struct btrfs_caching_control *caching_ctl;
455
int progress;
456
457
caching_ctl = btrfs_get_caching_control(cache);
458
if (!caching_ctl)
459
return;
460
461
/*
462
* We've already failed to allocate from this block group, so even if
463
* there's enough space in the block group it isn't contiguous enough to
464
* allow for an allocation, so wait for at least the next wakeup tick,
465
* or for the thing to be done.
466
*/
467
progress = atomic_read(&caching_ctl->progress);
468
469
wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
470
(progress != atomic_read(&caching_ctl->progress) &&
471
(cache->free_space_ctl->free_space >= num_bytes)));
472
473
btrfs_put_caching_control(caching_ctl);
474
}
475
476
static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
477
struct btrfs_caching_control *caching_ctl)
478
{
479
wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
480
return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
481
}
482
483
static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
484
{
485
struct btrfs_caching_control *caching_ctl;
486
int ret;
487
488
caching_ctl = btrfs_get_caching_control(cache);
489
if (!caching_ctl)
490
return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
491
ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
492
btrfs_put_caching_control(caching_ctl);
493
return ret;
494
}
495
496
#ifdef CONFIG_BTRFS_DEBUG
497
static void fragment_free_space(struct btrfs_block_group *block_group)
498
{
499
struct btrfs_fs_info *fs_info = block_group->fs_info;
500
u64 start = block_group->start;
501
u64 len = block_group->length;
502
u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
503
fs_info->nodesize : fs_info->sectorsize;
504
u64 step = chunk << 1;
505
506
while (len > chunk) {
507
btrfs_remove_free_space(block_group, start, chunk);
508
start += step;
509
if (len < step)
510
len = 0;
511
else
512
len -= step;
513
}
514
}
515
#endif
516
517
/*
518
* Add a free space range to the in memory free space cache of a block group.
519
* This checks if the range contains super block locations and any such
520
* locations are not added to the free space cache.
521
*
522
* @block_group: The target block group.
523
* @start: Start offset of the range.
524
* @end: End offset of the range (exclusive).
525
* @total_added_ret: Optional pointer to return the total amount of space
526
* added to the block group's free space cache.
527
*
528
* Returns 0 on success or < 0 on error.
529
*/
530
int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
531
u64 end, u64 *total_added_ret)
532
{
533
struct btrfs_fs_info *info = block_group->fs_info;
534
u64 extent_start, extent_end, size;
535
int ret;
536
537
if (total_added_ret)
538
*total_added_ret = 0;
539
540
while (start < end) {
541
if (!btrfs_find_first_extent_bit(&info->excluded_extents, start,
542
&extent_start, &extent_end,
543
EXTENT_DIRTY, NULL))
544
break;
545
546
if (extent_start <= start) {
547
start = extent_end + 1;
548
} else if (extent_start > start && extent_start < end) {
549
size = extent_start - start;
550
ret = btrfs_add_free_space_async_trimmed(block_group,
551
start, size);
552
if (ret)
553
return ret;
554
if (total_added_ret)
555
*total_added_ret += size;
556
start = extent_end + 1;
557
} else {
558
break;
559
}
560
}
561
562
if (start < end) {
563
size = end - start;
564
ret = btrfs_add_free_space_async_trimmed(block_group, start,
565
size);
566
if (ret)
567
return ret;
568
if (total_added_ret)
569
*total_added_ret += size;
570
}
571
572
return 0;
573
}
574
575
/*
576
* Get an arbitrary extent item index / max_index through the block group
577
*
578
* @block_group the block group to sample from
579
* @index: the integral step through the block group to grab from
580
* @max_index: the granularity of the sampling
581
* @key: return value parameter for the item we find
582
*
583
* Pre-conditions on indices:
584
* 0 <= index <= max_index
585
* 0 < max_index
586
*
587
* Returns: 0 on success, 1 if the search didn't yield a useful item, negative
588
* error code on error.
589
*/
590
static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
591
struct btrfs_block_group *block_group,
592
int index, int max_index,
593
struct btrfs_key *found_key)
594
{
595
struct btrfs_fs_info *fs_info = block_group->fs_info;
596
struct btrfs_root *extent_root;
597
u64 search_offset;
598
u64 search_end = block_group->start + block_group->length;
599
BTRFS_PATH_AUTO_FREE(path);
600
struct btrfs_key search_key;
601
int ret = 0;
602
603
ASSERT(index >= 0);
604
ASSERT(index <= max_index);
605
ASSERT(max_index > 0);
606
lockdep_assert_held(&caching_ctl->mutex);
607
lockdep_assert_held_read(&fs_info->commit_root_sem);
608
609
path = btrfs_alloc_path();
610
if (!path)
611
return -ENOMEM;
612
613
extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
614
BTRFS_SUPER_INFO_OFFSET));
615
616
path->skip_locking = 1;
617
path->search_commit_root = 1;
618
path->reada = READA_FORWARD;
619
620
search_offset = index * div_u64(block_group->length, max_index);
621
search_key.objectid = block_group->start + search_offset;
622
search_key.type = BTRFS_EXTENT_ITEM_KEY;
623
search_key.offset = 0;
624
625
btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
626
/* Success; sampled an extent item in the block group */
627
if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
628
found_key->objectid >= block_group->start &&
629
found_key->objectid + found_key->offset <= search_end)
630
break;
631
632
/* We can't possibly find a valid extent item anymore */
633
if (found_key->objectid >= search_end) {
634
ret = 1;
635
break;
636
}
637
}
638
639
lockdep_assert_held(&caching_ctl->mutex);
640
lockdep_assert_held_read(&fs_info->commit_root_sem);
641
return ret;
642
}
643
644
/*
645
* Best effort attempt to compute a block group's size class while caching it.
646
*
647
* @block_group: the block group we are caching
648
*
649
* We cannot infer the size class while adding free space extents, because that
650
* logic doesn't care about contiguous file extents (it doesn't differentiate
651
* between a 100M extent and 100 contiguous 1M extents). So we need to read the
652
* file extent items. Reading all of them is quite wasteful, because usually
653
* only a handful are enough to give a good answer. Therefore, we just grab 5 of
654
* them at even steps through the block group and pick the smallest size class
655
* we see. Since size class is best effort, and not guaranteed in general,
656
* inaccuracy is acceptable.
657
*
658
* To be more explicit about why this algorithm makes sense:
659
*
660
* If we are caching in a block group from disk, then there are three major cases
661
* to consider:
662
* 1. the block group is well behaved and all extents in it are the same size
663
* class.
664
* 2. the block group is mostly one size class with rare exceptions for last
665
* ditch allocations
666
* 3. the block group was populated before size classes and can have a totally
667
* arbitrary mix of size classes.
668
*
669
* In case 1, looking at any extent in the block group will yield the correct
670
* result. For the mixed cases, taking the minimum size class seems like a good
671
* approximation, since gaps from frees will be usable to the size class. For
672
* 2., a small handful of file extents is likely to yield the right answer. For
673
* 3, we can either read every file extent, or admit that this is best effort
674
* anyway and try to stay fast.
675
*
676
* Returns: 0 on success, negative error code on error.
677
*/
678
static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
679
struct btrfs_block_group *block_group)
680
{
681
struct btrfs_fs_info *fs_info = block_group->fs_info;
682
struct btrfs_key key;
683
int i;
684
u64 min_size = block_group->length;
685
enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
686
int ret;
687
688
if (!btrfs_block_group_should_use_size_class(block_group))
689
return 0;
690
691
lockdep_assert_held(&caching_ctl->mutex);
692
lockdep_assert_held_read(&fs_info->commit_root_sem);
693
for (i = 0; i < 5; ++i) {
694
ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
695
if (ret < 0)
696
goto out;
697
if (ret > 0)
698
continue;
699
min_size = min_t(u64, min_size, key.offset);
700
size_class = btrfs_calc_block_group_size_class(min_size);
701
}
702
if (size_class != BTRFS_BG_SZ_NONE) {
703
spin_lock(&block_group->lock);
704
block_group->size_class = size_class;
705
spin_unlock(&block_group->lock);
706
}
707
out:
708
return ret;
709
}
710
711
static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
712
{
713
struct btrfs_block_group *block_group = caching_ctl->block_group;
714
struct btrfs_fs_info *fs_info = block_group->fs_info;
715
struct btrfs_root *extent_root;
716
BTRFS_PATH_AUTO_FREE(path);
717
struct extent_buffer *leaf;
718
struct btrfs_key key;
719
u64 total_found = 0;
720
u64 last = 0;
721
u32 nritems;
722
int ret;
723
bool wakeup = true;
724
725
path = btrfs_alloc_path();
726
if (!path)
727
return -ENOMEM;
728
729
last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
730
extent_root = btrfs_extent_root(fs_info, last);
731
732
#ifdef CONFIG_BTRFS_DEBUG
733
/*
734
* If we're fragmenting we don't want to make anybody think we can
735
* allocate from this block group until we've had a chance to fragment
736
* the free space.
737
*/
738
if (btrfs_should_fragment_free_space(block_group))
739
wakeup = false;
740
#endif
741
/*
742
* We don't want to deadlock with somebody trying to allocate a new
743
* extent for the extent root while also trying to search the extent
744
* root to add free space. So we skip locking and search the commit
745
* root, since its read-only
746
*/
747
path->skip_locking = 1;
748
path->search_commit_root = 1;
749
path->reada = READA_FORWARD;
750
751
key.objectid = last;
752
key.type = BTRFS_EXTENT_ITEM_KEY;
753
key.offset = 0;
754
755
next:
756
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
757
if (ret < 0)
758
goto out;
759
760
leaf = path->nodes[0];
761
nritems = btrfs_header_nritems(leaf);
762
763
while (1) {
764
if (btrfs_fs_closing(fs_info) > 1) {
765
last = (u64)-1;
766
break;
767
}
768
769
if (path->slots[0] < nritems) {
770
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
771
} else {
772
ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
773
if (ret)
774
break;
775
776
if (need_resched() ||
777
rwsem_is_contended(&fs_info->commit_root_sem)) {
778
btrfs_release_path(path);
779
up_read(&fs_info->commit_root_sem);
780
mutex_unlock(&caching_ctl->mutex);
781
cond_resched();
782
mutex_lock(&caching_ctl->mutex);
783
down_read(&fs_info->commit_root_sem);
784
goto next;
785
}
786
787
ret = btrfs_next_leaf(extent_root, path);
788
if (ret < 0)
789
goto out;
790
if (ret)
791
break;
792
leaf = path->nodes[0];
793
nritems = btrfs_header_nritems(leaf);
794
continue;
795
}
796
797
if (key.objectid < last) {
798
key.objectid = last;
799
key.type = BTRFS_EXTENT_ITEM_KEY;
800
key.offset = 0;
801
btrfs_release_path(path);
802
goto next;
803
}
804
805
if (key.objectid < block_group->start) {
806
path->slots[0]++;
807
continue;
808
}
809
810
if (key.objectid >= block_group->start + block_group->length)
811
break;
812
813
if (key.type == BTRFS_EXTENT_ITEM_KEY ||
814
key.type == BTRFS_METADATA_ITEM_KEY) {
815
u64 space_added;
816
817
ret = btrfs_add_new_free_space(block_group, last,
818
key.objectid, &space_added);
819
if (ret)
820
goto out;
821
total_found += space_added;
822
if (key.type == BTRFS_METADATA_ITEM_KEY)
823
last = key.objectid +
824
fs_info->nodesize;
825
else
826
last = key.objectid + key.offset;
827
828
if (total_found > CACHING_CTL_WAKE_UP) {
829
total_found = 0;
830
if (wakeup) {
831
atomic_inc(&caching_ctl->progress);
832
wake_up(&caching_ctl->wait);
833
}
834
}
835
}
836
path->slots[0]++;
837
}
838
839
ret = btrfs_add_new_free_space(block_group, last,
840
block_group->start + block_group->length,
841
NULL);
842
out:
843
return ret;
844
}
845
846
static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
847
{
848
btrfs_clear_extent_bit(&bg->fs_info->excluded_extents, bg->start,
849
bg->start + bg->length - 1, EXTENT_DIRTY, NULL);
850
}
851
852
static noinline void caching_thread(struct btrfs_work *work)
853
{
854
struct btrfs_block_group *block_group;
855
struct btrfs_fs_info *fs_info;
856
struct btrfs_caching_control *caching_ctl;
857
int ret;
858
859
caching_ctl = container_of(work, struct btrfs_caching_control, work);
860
block_group = caching_ctl->block_group;
861
fs_info = block_group->fs_info;
862
863
mutex_lock(&caching_ctl->mutex);
864
down_read(&fs_info->commit_root_sem);
865
866
load_block_group_size_class(caching_ctl, block_group);
867
if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
868
ret = load_free_space_cache(block_group);
869
if (ret == 1) {
870
ret = 0;
871
goto done;
872
}
873
874
/*
875
* We failed to load the space cache, set ourselves to
876
* CACHE_STARTED and carry on.
877
*/
878
spin_lock(&block_group->lock);
879
block_group->cached = BTRFS_CACHE_STARTED;
880
spin_unlock(&block_group->lock);
881
wake_up(&caching_ctl->wait);
882
}
883
884
/*
885
* If we are in the transaction that populated the free space tree we
886
* can't actually cache from the free space tree as our commit root and
887
* real root are the same, so we could change the contents of the blocks
888
* while caching. Instead do the slow caching in this case, and after
889
* the transaction has committed we will be safe.
890
*/
891
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
892
!(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
893
ret = btrfs_load_free_space_tree(caching_ctl);
894
else
895
ret = load_extent_tree_free(caching_ctl);
896
done:
897
spin_lock(&block_group->lock);
898
block_group->caching_ctl = NULL;
899
block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
900
spin_unlock(&block_group->lock);
901
902
#ifdef CONFIG_BTRFS_DEBUG
903
if (btrfs_should_fragment_free_space(block_group)) {
904
u64 bytes_used;
905
906
spin_lock(&block_group->space_info->lock);
907
spin_lock(&block_group->lock);
908
bytes_used = block_group->length - block_group->used;
909
block_group->space_info->bytes_used += bytes_used >> 1;
910
spin_unlock(&block_group->lock);
911
spin_unlock(&block_group->space_info->lock);
912
fragment_free_space(block_group);
913
}
914
#endif
915
916
up_read(&fs_info->commit_root_sem);
917
btrfs_free_excluded_extents(block_group);
918
mutex_unlock(&caching_ctl->mutex);
919
920
wake_up(&caching_ctl->wait);
921
922
btrfs_put_caching_control(caching_ctl);
923
btrfs_put_block_group(block_group);
924
}
925
926
int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
927
{
928
struct btrfs_fs_info *fs_info = cache->fs_info;
929
struct btrfs_caching_control *caching_ctl = NULL;
930
int ret = 0;
931
932
/* Allocator for zoned filesystems does not use the cache at all */
933
if (btrfs_is_zoned(fs_info))
934
return 0;
935
936
caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
937
if (!caching_ctl)
938
return -ENOMEM;
939
940
INIT_LIST_HEAD(&caching_ctl->list);
941
mutex_init(&caching_ctl->mutex);
942
init_waitqueue_head(&caching_ctl->wait);
943
caching_ctl->block_group = cache;
944
refcount_set(&caching_ctl->count, 2);
945
atomic_set(&caching_ctl->progress, 0);
946
btrfs_init_work(&caching_ctl->work, caching_thread, NULL);
947
948
spin_lock(&cache->lock);
949
if (cache->cached != BTRFS_CACHE_NO) {
950
kfree(caching_ctl);
951
952
caching_ctl = cache->caching_ctl;
953
if (caching_ctl)
954
refcount_inc(&caching_ctl->count);
955
spin_unlock(&cache->lock);
956
goto out;
957
}
958
WARN_ON(cache->caching_ctl);
959
cache->caching_ctl = caching_ctl;
960
cache->cached = BTRFS_CACHE_STARTED;
961
spin_unlock(&cache->lock);
962
963
write_lock(&fs_info->block_group_cache_lock);
964
refcount_inc(&caching_ctl->count);
965
list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
966
write_unlock(&fs_info->block_group_cache_lock);
967
968
btrfs_get_block_group(cache);
969
970
btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
971
out:
972
if (wait && caching_ctl)
973
ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
974
if (caching_ctl)
975
btrfs_put_caching_control(caching_ctl);
976
977
return ret;
978
}
979
980
static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
981
{
982
u64 extra_flags = chunk_to_extended(flags) &
983
BTRFS_EXTENDED_PROFILE_MASK;
984
985
write_seqlock(&fs_info->profiles_lock);
986
if (flags & BTRFS_BLOCK_GROUP_DATA)
987
fs_info->avail_data_alloc_bits &= ~extra_flags;
988
if (flags & BTRFS_BLOCK_GROUP_METADATA)
989
fs_info->avail_metadata_alloc_bits &= ~extra_flags;
990
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
991
fs_info->avail_system_alloc_bits &= ~extra_flags;
992
write_sequnlock(&fs_info->profiles_lock);
993
}
994
995
/*
996
* Clear incompat bits for the following feature(s):
997
*
998
* - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
999
* in the whole filesystem
1000
*
1001
* - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
1002
*/
1003
static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
1004
{
1005
bool found_raid56 = false;
1006
bool found_raid1c34 = false;
1007
1008
if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1009
(flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1010
(flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1011
struct list_head *head = &fs_info->space_info;
1012
struct btrfs_space_info *sinfo;
1013
1014
list_for_each_entry_rcu(sinfo, head, list) {
1015
down_read(&sinfo->groups_sem);
1016
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1017
found_raid56 = true;
1018
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1019
found_raid56 = true;
1020
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1021
found_raid1c34 = true;
1022
if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1023
found_raid1c34 = true;
1024
up_read(&sinfo->groups_sem);
1025
}
1026
if (!found_raid56)
1027
btrfs_clear_fs_incompat(fs_info, RAID56);
1028
if (!found_raid1c34)
1029
btrfs_clear_fs_incompat(fs_info, RAID1C34);
1030
}
1031
}
1032
1033
static struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1034
{
1035
if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1036
return fs_info->block_group_root;
1037
return btrfs_extent_root(fs_info, 0);
1038
}
1039
1040
static int remove_block_group_item(struct btrfs_trans_handle *trans,
1041
struct btrfs_path *path,
1042
struct btrfs_block_group *block_group)
1043
{
1044
struct btrfs_fs_info *fs_info = trans->fs_info;
1045
struct btrfs_root *root;
1046
struct btrfs_key key;
1047
int ret;
1048
1049
root = btrfs_block_group_root(fs_info);
1050
key.objectid = block_group->start;
1051
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1052
key.offset = block_group->length;
1053
1054
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1055
if (ret > 0)
1056
ret = -ENOENT;
1057
if (ret < 0)
1058
return ret;
1059
1060
ret = btrfs_del_item(trans, root, path);
1061
return ret;
1062
}
1063
1064
int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1065
struct btrfs_chunk_map *map)
1066
{
1067
struct btrfs_fs_info *fs_info = trans->fs_info;
1068
struct btrfs_path *path;
1069
struct btrfs_block_group *block_group;
1070
struct btrfs_free_cluster *cluster;
1071
struct inode *inode;
1072
struct kobject *kobj = NULL;
1073
int ret;
1074
int index;
1075
int factor;
1076
struct btrfs_caching_control *caching_ctl = NULL;
1077
bool remove_map;
1078
bool remove_rsv = false;
1079
1080
block_group = btrfs_lookup_block_group(fs_info, map->start);
1081
if (!block_group)
1082
return -ENOENT;
1083
1084
BUG_ON(!block_group->ro);
1085
1086
trace_btrfs_remove_block_group(block_group);
1087
/*
1088
* Free the reserved super bytes from this block group before
1089
* remove it.
1090
*/
1091
btrfs_free_excluded_extents(block_group);
1092
btrfs_free_ref_tree_range(fs_info, block_group->start,
1093
block_group->length);
1094
1095
index = btrfs_bg_flags_to_raid_index(block_group->flags);
1096
factor = btrfs_bg_type_to_factor(block_group->flags);
1097
1098
/* make sure this block group isn't part of an allocation cluster */
1099
cluster = &fs_info->data_alloc_cluster;
1100
spin_lock(&cluster->refill_lock);
1101
btrfs_return_cluster_to_free_space(block_group, cluster);
1102
spin_unlock(&cluster->refill_lock);
1103
1104
/*
1105
* make sure this block group isn't part of a metadata
1106
* allocation cluster
1107
*/
1108
cluster = &fs_info->meta_alloc_cluster;
1109
spin_lock(&cluster->refill_lock);
1110
btrfs_return_cluster_to_free_space(block_group, cluster);
1111
spin_unlock(&cluster->refill_lock);
1112
1113
btrfs_clear_treelog_bg(block_group);
1114
btrfs_clear_data_reloc_bg(block_group);
1115
1116
path = btrfs_alloc_path();
1117
if (!path) {
1118
ret = -ENOMEM;
1119
goto out;
1120
}
1121
1122
/*
1123
* get the inode first so any iput calls done for the io_list
1124
* aren't the final iput (no unlinks allowed now)
1125
*/
1126
inode = lookup_free_space_inode(block_group, path);
1127
1128
mutex_lock(&trans->transaction->cache_write_mutex);
1129
/*
1130
* Make sure our free space cache IO is done before removing the
1131
* free space inode
1132
*/
1133
spin_lock(&trans->transaction->dirty_bgs_lock);
1134
if (!list_empty(&block_group->io_list)) {
1135
list_del_init(&block_group->io_list);
1136
1137
WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1138
1139
spin_unlock(&trans->transaction->dirty_bgs_lock);
1140
btrfs_wait_cache_io(trans, block_group, path);
1141
btrfs_put_block_group(block_group);
1142
spin_lock(&trans->transaction->dirty_bgs_lock);
1143
}
1144
1145
if (!list_empty(&block_group->dirty_list)) {
1146
list_del_init(&block_group->dirty_list);
1147
remove_rsv = true;
1148
btrfs_put_block_group(block_group);
1149
}
1150
spin_unlock(&trans->transaction->dirty_bgs_lock);
1151
mutex_unlock(&trans->transaction->cache_write_mutex);
1152
1153
ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1154
if (ret)
1155
goto out;
1156
1157
write_lock(&fs_info->block_group_cache_lock);
1158
rb_erase_cached(&block_group->cache_node,
1159
&fs_info->block_group_cache_tree);
1160
RB_CLEAR_NODE(&block_group->cache_node);
1161
1162
/* Once for the block groups rbtree */
1163
btrfs_put_block_group(block_group);
1164
1165
write_unlock(&fs_info->block_group_cache_lock);
1166
1167
down_write(&block_group->space_info->groups_sem);
1168
/*
1169
* we must use list_del_init so people can check to see if they
1170
* are still on the list after taking the semaphore
1171
*/
1172
list_del_init(&block_group->list);
1173
if (list_empty(&block_group->space_info->block_groups[index])) {
1174
kobj = block_group->space_info->block_group_kobjs[index];
1175
block_group->space_info->block_group_kobjs[index] = NULL;
1176
clear_avail_alloc_bits(fs_info, block_group->flags);
1177
}
1178
up_write(&block_group->space_info->groups_sem);
1179
clear_incompat_bg_bits(fs_info, block_group->flags);
1180
if (kobj) {
1181
kobject_del(kobj);
1182
kobject_put(kobj);
1183
}
1184
1185
if (block_group->cached == BTRFS_CACHE_STARTED)
1186
btrfs_wait_block_group_cache_done(block_group);
1187
1188
write_lock(&fs_info->block_group_cache_lock);
1189
caching_ctl = btrfs_get_caching_control(block_group);
1190
if (!caching_ctl) {
1191
struct btrfs_caching_control *ctl;
1192
1193
list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1194
if (ctl->block_group == block_group) {
1195
caching_ctl = ctl;
1196
refcount_inc(&caching_ctl->count);
1197
break;
1198
}
1199
}
1200
}
1201
if (caching_ctl)
1202
list_del_init(&caching_ctl->list);
1203
write_unlock(&fs_info->block_group_cache_lock);
1204
1205
if (caching_ctl) {
1206
/* Once for the caching bgs list and once for us. */
1207
btrfs_put_caching_control(caching_ctl);
1208
btrfs_put_caching_control(caching_ctl);
1209
}
1210
1211
spin_lock(&trans->transaction->dirty_bgs_lock);
1212
WARN_ON(!list_empty(&block_group->dirty_list));
1213
WARN_ON(!list_empty(&block_group->io_list));
1214
spin_unlock(&trans->transaction->dirty_bgs_lock);
1215
1216
btrfs_remove_free_space_cache(block_group);
1217
1218
spin_lock(&block_group->space_info->lock);
1219
list_del_init(&block_group->ro_list);
1220
1221
if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1222
WARN_ON(block_group->space_info->total_bytes
1223
< block_group->length);
1224
WARN_ON(block_group->space_info->bytes_readonly
1225
< block_group->length - block_group->zone_unusable);
1226
WARN_ON(block_group->space_info->bytes_zone_unusable
1227
< block_group->zone_unusable);
1228
WARN_ON(block_group->space_info->disk_total
1229
< block_group->length * factor);
1230
}
1231
block_group->space_info->total_bytes -= block_group->length;
1232
block_group->space_info->bytes_readonly -=
1233
(block_group->length - block_group->zone_unusable);
1234
btrfs_space_info_update_bytes_zone_unusable(block_group->space_info,
1235
-block_group->zone_unusable);
1236
block_group->space_info->disk_total -= block_group->length * factor;
1237
1238
spin_unlock(&block_group->space_info->lock);
1239
1240
/*
1241
* Remove the free space for the block group from the free space tree
1242
* and the block group's item from the extent tree before marking the
1243
* block group as removed. This is to prevent races with tasks that
1244
* freeze and unfreeze a block group, this task and another task
1245
* allocating a new block group - the unfreeze task ends up removing
1246
* the block group's extent map before the task calling this function
1247
* deletes the block group item from the extent tree, allowing for
1248
* another task to attempt to create another block group with the same
1249
* item key (and failing with -EEXIST and a transaction abort).
1250
*/
1251
ret = btrfs_remove_block_group_free_space(trans, block_group);
1252
if (ret)
1253
goto out;
1254
1255
ret = remove_block_group_item(trans, path, block_group);
1256
if (ret < 0)
1257
goto out;
1258
1259
spin_lock(&block_group->lock);
1260
/*
1261
* Hitting this WARN means we removed a block group with an unwritten
1262
* region. It will cause "unable to find chunk map for logical" errors.
1263
*/
1264
if (WARN_ON(has_unwritten_metadata(block_group)))
1265
btrfs_warn(fs_info,
1266
"block group %llu is removed before metadata write out",
1267
block_group->start);
1268
1269
set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1270
1271
/*
1272
* At this point trimming or scrub can't start on this block group,
1273
* because we removed the block group from the rbtree
1274
* fs_info->block_group_cache_tree so no one can't find it anymore and
1275
* even if someone already got this block group before we removed it
1276
* from the rbtree, they have already incremented block_group->frozen -
1277
* if they didn't, for the trimming case they won't find any free space
1278
* entries because we already removed them all when we called
1279
* btrfs_remove_free_space_cache().
1280
*
1281
* And we must not remove the chunk map from the fs_info->mapping_tree
1282
* to prevent the same logical address range and physical device space
1283
* ranges from being reused for a new block group. This is needed to
1284
* avoid races with trimming and scrub.
1285
*
1286
* An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1287
* completely transactionless, so while it is trimming a range the
1288
* currently running transaction might finish and a new one start,
1289
* allowing for new block groups to be created that can reuse the same
1290
* physical device locations unless we take this special care.
1291
*
1292
* There may also be an implicit trim operation if the file system
1293
* is mounted with -odiscard. The same protections must remain
1294
* in place until the extents have been discarded completely when
1295
* the transaction commit has completed.
1296
*/
1297
remove_map = (atomic_read(&block_group->frozen) == 0);
1298
spin_unlock(&block_group->lock);
1299
1300
if (remove_map)
1301
btrfs_remove_chunk_map(fs_info, map);
1302
1303
out:
1304
/* Once for the lookup reference */
1305
btrfs_put_block_group(block_group);
1306
if (remove_rsv)
1307
btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
1308
btrfs_free_path(path);
1309
return ret;
1310
}
1311
1312
struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1313
struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1314
{
1315
struct btrfs_root *root = btrfs_block_group_root(fs_info);
1316
struct btrfs_chunk_map *map;
1317
unsigned int num_items;
1318
1319
map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
1320
ASSERT(map != NULL);
1321
ASSERT(map->start == chunk_offset);
1322
1323
/*
1324
* We need to reserve 3 + N units from the metadata space info in order
1325
* to remove a block group (done at btrfs_remove_chunk() and at
1326
* btrfs_remove_block_group()), which are used for:
1327
*
1328
* 1 unit for adding the free space inode's orphan (located in the tree
1329
* of tree roots).
1330
* 1 unit for deleting the block group item (located in the extent
1331
* tree).
1332
* 1 unit for deleting the free space item (located in tree of tree
1333
* roots).
1334
* N units for deleting N device extent items corresponding to each
1335
* stripe (located in the device tree).
1336
*
1337
* In order to remove a block group we also need to reserve units in the
1338
* system space info in order to update the chunk tree (update one or
1339
* more device items and remove one chunk item), but this is done at
1340
* btrfs_remove_chunk() through a call to check_system_chunk().
1341
*/
1342
num_items = 3 + map->num_stripes;
1343
btrfs_free_chunk_map(map);
1344
1345
return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1346
}
1347
1348
/*
1349
* Mark block group @cache read-only, so later write won't happen to block
1350
* group @cache.
1351
*
1352
* If @force is not set, this function will only mark the block group readonly
1353
* if we have enough free space (1M) in other metadata/system block groups.
1354
* If @force is not set, this function will mark the block group readonly
1355
* without checking free space.
1356
*
1357
* NOTE: This function doesn't care if other block groups can contain all the
1358
* data in this block group. That check should be done by relocation routine,
1359
* not this function.
1360
*/
1361
static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1362
{
1363
struct btrfs_space_info *sinfo = cache->space_info;
1364
u64 num_bytes;
1365
int ret = -ENOSPC;
1366
1367
spin_lock(&sinfo->lock);
1368
spin_lock(&cache->lock);
1369
1370
if (cache->swap_extents) {
1371
ret = -ETXTBSY;
1372
goto out;
1373
}
1374
1375
if (cache->ro) {
1376
cache->ro++;
1377
ret = 0;
1378
goto out;
1379
}
1380
1381
num_bytes = cache->length - cache->reserved - cache->pinned -
1382
cache->bytes_super - cache->zone_unusable - cache->used;
1383
1384
/*
1385
* Data never overcommits, even in mixed mode, so do just the straight
1386
* check of left over space in how much we have allocated.
1387
*/
1388
if (force) {
1389
ret = 0;
1390
} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1391
u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1392
1393
/*
1394
* Here we make sure if we mark this bg RO, we still have enough
1395
* free space as buffer.
1396
*/
1397
if (sinfo_used + num_bytes <= sinfo->total_bytes)
1398
ret = 0;
1399
} else {
1400
/*
1401
* We overcommit metadata, so we need to do the
1402
* btrfs_can_overcommit check here, and we need to pass in
1403
* BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1404
* leeway to allow us to mark this block group as read only.
1405
*/
1406
if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1407
BTRFS_RESERVE_NO_FLUSH))
1408
ret = 0;
1409
}
1410
1411
if (!ret) {
1412
sinfo->bytes_readonly += num_bytes;
1413
if (btrfs_is_zoned(cache->fs_info)) {
1414
/* Migrate zone_unusable bytes to readonly */
1415
sinfo->bytes_readonly += cache->zone_unusable;
1416
btrfs_space_info_update_bytes_zone_unusable(sinfo, -cache->zone_unusable);
1417
cache->zone_unusable = 0;
1418
}
1419
cache->ro++;
1420
list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1421
}
1422
out:
1423
spin_unlock(&cache->lock);
1424
spin_unlock(&sinfo->lock);
1425
if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1426
btrfs_info(cache->fs_info,
1427
"unable to make block group %llu ro", cache->start);
1428
btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, false);
1429
}
1430
return ret;
1431
}
1432
1433
static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1434
const struct btrfs_block_group *bg)
1435
{
1436
struct btrfs_fs_info *fs_info = trans->fs_info;
1437
struct btrfs_transaction *prev_trans = NULL;
1438
const u64 start = bg->start;
1439
const u64 end = start + bg->length - 1;
1440
int ret;
1441
1442
spin_lock(&fs_info->trans_lock);
1443
if (!list_is_first(&trans->transaction->list, &fs_info->trans_list)) {
1444
prev_trans = list_prev_entry(trans->transaction, list);
1445
refcount_inc(&prev_trans->use_count);
1446
}
1447
spin_unlock(&fs_info->trans_lock);
1448
1449
/*
1450
* Hold the unused_bg_unpin_mutex lock to avoid racing with
1451
* btrfs_finish_extent_commit(). If we are at transaction N, another
1452
* task might be running finish_extent_commit() for the previous
1453
* transaction N - 1, and have seen a range belonging to the block
1454
* group in pinned_extents before we were able to clear the whole block
1455
* group range from pinned_extents. This means that task can lookup for
1456
* the block group after we unpinned it from pinned_extents and removed
1457
* it, leading to an error at unpin_extent_range().
1458
*/
1459
mutex_lock(&fs_info->unused_bg_unpin_mutex);
1460
if (prev_trans) {
1461
ret = btrfs_clear_extent_bit(&prev_trans->pinned_extents, start, end,
1462
EXTENT_DIRTY, NULL);
1463
if (ret)
1464
goto out;
1465
}
1466
1467
ret = btrfs_clear_extent_bit(&trans->transaction->pinned_extents, start, end,
1468
EXTENT_DIRTY, NULL);
1469
out:
1470
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1471
if (prev_trans)
1472
btrfs_put_transaction(prev_trans);
1473
1474
return ret == 0;
1475
}
1476
1477
/*
1478
* Link the block_group to a list via bg_list.
1479
*
1480
* @bg: The block_group to link to the list.
1481
* @list: The list to link it to.
1482
*
1483
* Use this rather than list_add_tail() directly to ensure proper respect
1484
* to locking and refcounting.
1485
*
1486
* Returns: true if the bg was linked with a refcount bump and false otherwise.
1487
*/
1488
static bool btrfs_link_bg_list(struct btrfs_block_group *bg, struct list_head *list)
1489
{
1490
struct btrfs_fs_info *fs_info = bg->fs_info;
1491
bool added = false;
1492
1493
spin_lock(&fs_info->unused_bgs_lock);
1494
if (list_empty(&bg->bg_list)) {
1495
btrfs_get_block_group(bg);
1496
list_add_tail(&bg->bg_list, list);
1497
added = true;
1498
}
1499
spin_unlock(&fs_info->unused_bgs_lock);
1500
return added;
1501
}
1502
1503
/*
1504
* Process the unused_bgs list and remove any that don't have any allocated
1505
* space inside of them.
1506
*/
1507
void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1508
{
1509
LIST_HEAD(retry_list);
1510
struct btrfs_block_group *block_group;
1511
struct btrfs_space_info *space_info;
1512
struct btrfs_trans_handle *trans;
1513
const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1514
int ret = 0;
1515
1516
if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1517
return;
1518
1519
if (btrfs_fs_closing(fs_info))
1520
return;
1521
1522
/*
1523
* Long running balances can keep us blocked here for eternity, so
1524
* simply skip deletion if we're unable to get the mutex.
1525
*/
1526
if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1527
return;
1528
1529
spin_lock(&fs_info->unused_bgs_lock);
1530
while (!list_empty(&fs_info->unused_bgs)) {
1531
u64 used;
1532
int trimming;
1533
1534
block_group = list_first_entry(&fs_info->unused_bgs,
1535
struct btrfs_block_group,
1536
bg_list);
1537
list_del_init(&block_group->bg_list);
1538
1539
space_info = block_group->space_info;
1540
1541
if (ret || btrfs_mixed_space_info(space_info)) {
1542
btrfs_put_block_group(block_group);
1543
continue;
1544
}
1545
spin_unlock(&fs_info->unused_bgs_lock);
1546
1547
btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1548
1549
/* Don't want to race with allocators so take the groups_sem */
1550
down_write(&space_info->groups_sem);
1551
1552
/*
1553
* Async discard moves the final block group discard to be prior
1554
* to the unused_bgs code path. Therefore, if it's not fully
1555
* trimmed, punt it back to the async discard lists.
1556
*/
1557
if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1558
!btrfs_is_free_space_trimmed(block_group)) {
1559
trace_btrfs_skip_unused_block_group(block_group);
1560
up_write(&space_info->groups_sem);
1561
/* Requeue if we failed because of async discard */
1562
btrfs_discard_queue_work(&fs_info->discard_ctl,
1563
block_group);
1564
goto next;
1565
}
1566
1567
spin_lock(&space_info->lock);
1568
spin_lock(&block_group->lock);
1569
if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1570
list_is_singular(&block_group->list)) {
1571
/*
1572
* We want to bail if we made new allocations or have
1573
* outstanding allocations in this block group. We do
1574
* the ro check in case balance is currently acting on
1575
* this block group.
1576
*
1577
* Also bail out if this is the only block group for its
1578
* type, because otherwise we would lose profile
1579
* information from fs_info->avail_*_alloc_bits and the
1580
* next block group of this type would be created with a
1581
* "single" profile (even if we're in a raid fs) because
1582
* fs_info->avail_*_alloc_bits would be 0.
1583
*/
1584
trace_btrfs_skip_unused_block_group(block_group);
1585
spin_unlock(&block_group->lock);
1586
spin_unlock(&space_info->lock);
1587
up_write(&space_info->groups_sem);
1588
goto next;
1589
}
1590
1591
/*
1592
* The block group may be unused but there may be space reserved
1593
* accounting with the existence of that block group, that is,
1594
* space_info->bytes_may_use was incremented by a task but no
1595
* space was yet allocated from the block group by the task.
1596
* That space may or may not be allocated, as we are generally
1597
* pessimistic about space reservation for metadata as well as
1598
* for data when using compression (as we reserve space based on
1599
* the worst case, when data can't be compressed, and before
1600
* actually attempting compression, before starting writeback).
1601
*
1602
* So check if the total space of the space_info minus the size
1603
* of this block group is less than the used space of the
1604
* space_info - if that's the case, then it means we have tasks
1605
* that might be relying on the block group in order to allocate
1606
* extents, and add back the block group to the unused list when
1607
* we finish, so that we retry later in case no tasks ended up
1608
* needing to allocate extents from the block group.
1609
*/
1610
used = btrfs_space_info_used(space_info, true);
1611
if ((space_info->total_bytes - block_group->length < used &&
1612
block_group->zone_unusable < block_group->length) ||
1613
has_unwritten_metadata(block_group)) {
1614
/*
1615
* Add a reference for the list, compensate for the ref
1616
* drop under the "next" label for the
1617
* fs_info->unused_bgs list.
1618
*/
1619
btrfs_link_bg_list(block_group, &retry_list);
1620
1621
trace_btrfs_skip_unused_block_group(block_group);
1622
spin_unlock(&block_group->lock);
1623
spin_unlock(&space_info->lock);
1624
up_write(&space_info->groups_sem);
1625
goto next;
1626
}
1627
1628
spin_unlock(&block_group->lock);
1629
spin_unlock(&space_info->lock);
1630
1631
/* We don't want to force the issue, only flip if it's ok. */
1632
ret = inc_block_group_ro(block_group, 0);
1633
up_write(&space_info->groups_sem);
1634
if (ret < 0) {
1635
ret = 0;
1636
goto next;
1637
}
1638
1639
ret = btrfs_zone_finish(block_group);
1640
if (ret < 0) {
1641
btrfs_dec_block_group_ro(block_group);
1642
if (ret == -EAGAIN) {
1643
btrfs_link_bg_list(block_group, &retry_list);
1644
ret = 0;
1645
}
1646
goto next;
1647
}
1648
1649
/*
1650
* Want to do this before we do anything else so we can recover
1651
* properly if we fail to join the transaction.
1652
*/
1653
trans = btrfs_start_trans_remove_block_group(fs_info,
1654
block_group->start);
1655
if (IS_ERR(trans)) {
1656
btrfs_dec_block_group_ro(block_group);
1657
ret = PTR_ERR(trans);
1658
goto next;
1659
}
1660
1661
/*
1662
* We could have pending pinned extents for this block group,
1663
* just delete them, we don't care about them anymore.
1664
*/
1665
if (!clean_pinned_extents(trans, block_group)) {
1666
btrfs_dec_block_group_ro(block_group);
1667
goto end_trans;
1668
}
1669
1670
/*
1671
* At this point, the block_group is read only and should fail
1672
* new allocations. However, btrfs_finish_extent_commit() can
1673
* cause this block_group to be placed back on the discard
1674
* lists because now the block_group isn't fully discarded.
1675
* Bail here and try again later after discarding everything.
1676
*/
1677
spin_lock(&fs_info->discard_ctl.lock);
1678
if (!list_empty(&block_group->discard_list)) {
1679
spin_unlock(&fs_info->discard_ctl.lock);
1680
btrfs_dec_block_group_ro(block_group);
1681
btrfs_discard_queue_work(&fs_info->discard_ctl,
1682
block_group);
1683
goto end_trans;
1684
}
1685
spin_unlock(&fs_info->discard_ctl.lock);
1686
1687
/* Reset pinned so btrfs_put_block_group doesn't complain */
1688
spin_lock(&space_info->lock);
1689
spin_lock(&block_group->lock);
1690
1691
btrfs_space_info_update_bytes_pinned(space_info, -block_group->pinned);
1692
space_info->bytes_readonly += block_group->pinned;
1693
block_group->pinned = 0;
1694
1695
spin_unlock(&block_group->lock);
1696
spin_unlock(&space_info->lock);
1697
1698
/*
1699
* The normal path here is an unused block group is passed here,
1700
* then trimming is handled in the transaction commit path.
1701
* Async discard interposes before this to do the trimming
1702
* before coming down the unused block group path as trimming
1703
* will no longer be done later in the transaction commit path.
1704
*/
1705
if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1706
goto flip_async;
1707
1708
/*
1709
* DISCARD can flip during remount. On zoned filesystems, we
1710
* need to reset sequential-required zones.
1711
*/
1712
trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1713
btrfs_is_zoned(fs_info);
1714
1715
/* Implicit trim during transaction commit. */
1716
if (trimming)
1717
btrfs_freeze_block_group(block_group);
1718
1719
/*
1720
* Btrfs_remove_chunk will abort the transaction if things go
1721
* horribly wrong.
1722
*/
1723
ret = btrfs_remove_chunk(trans, block_group->start);
1724
1725
if (ret) {
1726
if (trimming)
1727
btrfs_unfreeze_block_group(block_group);
1728
goto end_trans;
1729
}
1730
1731
/*
1732
* If we're not mounted with -odiscard, we can just forget
1733
* about this block group. Otherwise we'll need to wait
1734
* until transaction commit to do the actual discard.
1735
*/
1736
if (trimming) {
1737
spin_lock(&fs_info->unused_bgs_lock);
1738
/*
1739
* A concurrent scrub might have added us to the list
1740
* fs_info->unused_bgs, so use a list_move operation
1741
* to add the block group to the deleted_bgs list.
1742
*/
1743
list_move(&block_group->bg_list,
1744
&trans->transaction->deleted_bgs);
1745
spin_unlock(&fs_info->unused_bgs_lock);
1746
btrfs_get_block_group(block_group);
1747
}
1748
end_trans:
1749
btrfs_end_transaction(trans);
1750
next:
1751
btrfs_put_block_group(block_group);
1752
spin_lock(&fs_info->unused_bgs_lock);
1753
}
1754
list_splice_tail(&retry_list, &fs_info->unused_bgs);
1755
spin_unlock(&fs_info->unused_bgs_lock);
1756
mutex_unlock(&fs_info->reclaim_bgs_lock);
1757
return;
1758
1759
flip_async:
1760
btrfs_end_transaction(trans);
1761
spin_lock(&fs_info->unused_bgs_lock);
1762
list_splice_tail(&retry_list, &fs_info->unused_bgs);
1763
spin_unlock(&fs_info->unused_bgs_lock);
1764
mutex_unlock(&fs_info->reclaim_bgs_lock);
1765
btrfs_put_block_group(block_group);
1766
btrfs_discard_punt_unused_bgs_list(fs_info);
1767
}
1768
1769
void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1770
{
1771
struct btrfs_fs_info *fs_info = bg->fs_info;
1772
1773
spin_lock(&fs_info->unused_bgs_lock);
1774
if (list_empty(&bg->bg_list)) {
1775
btrfs_get_block_group(bg);
1776
trace_btrfs_add_unused_block_group(bg);
1777
list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1778
} else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1779
/* Pull out the block group from the reclaim_bgs list. */
1780
trace_btrfs_add_unused_block_group(bg);
1781
list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1782
}
1783
spin_unlock(&fs_info->unused_bgs_lock);
1784
}
1785
1786
/*
1787
* We want block groups with a low number of used bytes to be in the beginning
1788
* of the list, so they will get reclaimed first.
1789
*/
1790
static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1791
const struct list_head *b)
1792
{
1793
const struct btrfs_block_group *bg1, *bg2;
1794
1795
bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1796
bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1797
1798
return bg1->used > bg2->used;
1799
}
1800
1801
static inline bool btrfs_should_reclaim(const struct btrfs_fs_info *fs_info)
1802
{
1803
if (btrfs_is_zoned(fs_info))
1804
return btrfs_zoned_should_reclaim(fs_info);
1805
return true;
1806
}
1807
1808
static bool should_reclaim_block_group(const struct btrfs_block_group *bg, u64 bytes_freed)
1809
{
1810
const int thresh_pct = btrfs_calc_reclaim_threshold(bg->space_info);
1811
u64 thresh_bytes = mult_perc(bg->length, thresh_pct);
1812
const u64 new_val = bg->used;
1813
const u64 old_val = new_val + bytes_freed;
1814
1815
if (thresh_bytes == 0)
1816
return false;
1817
1818
/*
1819
* If we were below the threshold before don't reclaim, we are likely a
1820
* brand new block group and we don't want to relocate new block groups.
1821
*/
1822
if (old_val < thresh_bytes)
1823
return false;
1824
if (new_val >= thresh_bytes)
1825
return false;
1826
return true;
1827
}
1828
1829
void btrfs_reclaim_bgs_work(struct work_struct *work)
1830
{
1831
struct btrfs_fs_info *fs_info =
1832
container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1833
struct btrfs_block_group *bg;
1834
struct btrfs_space_info *space_info;
1835
LIST_HEAD(retry_list);
1836
1837
if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1838
return;
1839
1840
if (btrfs_fs_closing(fs_info))
1841
return;
1842
1843
if (!btrfs_should_reclaim(fs_info))
1844
return;
1845
1846
sb_start_write(fs_info->sb);
1847
1848
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1849
sb_end_write(fs_info->sb);
1850
return;
1851
}
1852
1853
/*
1854
* Long running balances can keep us blocked here for eternity, so
1855
* simply skip reclaim if we're unable to get the mutex.
1856
*/
1857
if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1858
btrfs_exclop_finish(fs_info);
1859
sb_end_write(fs_info->sb);
1860
return;
1861
}
1862
1863
spin_lock(&fs_info->unused_bgs_lock);
1864
/*
1865
* Sort happens under lock because we can't simply splice it and sort.
1866
* The block groups might still be in use and reachable via bg_list,
1867
* and their presence in the reclaim_bgs list must be preserved.
1868
*/
1869
list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1870
while (!list_empty(&fs_info->reclaim_bgs)) {
1871
u64 used;
1872
u64 reserved;
1873
int ret = 0;
1874
1875
bg = list_first_entry(&fs_info->reclaim_bgs,
1876
struct btrfs_block_group,
1877
bg_list);
1878
list_del_init(&bg->bg_list);
1879
1880
space_info = bg->space_info;
1881
spin_unlock(&fs_info->unused_bgs_lock);
1882
1883
/* Don't race with allocators so take the groups_sem */
1884
down_write(&space_info->groups_sem);
1885
1886
spin_lock(&space_info->lock);
1887
spin_lock(&bg->lock);
1888
if (bg->reserved || bg->pinned || bg->ro) {
1889
/*
1890
* We want to bail if we made new allocations or have
1891
* outstanding allocations in this block group. We do
1892
* the ro check in case balance is currently acting on
1893
* this block group.
1894
*/
1895
spin_unlock(&bg->lock);
1896
spin_unlock(&space_info->lock);
1897
up_write(&space_info->groups_sem);
1898
goto next;
1899
}
1900
if (bg->used == 0) {
1901
/*
1902
* It is possible that we trigger relocation on a block
1903
* group as its extents are deleted and it first goes
1904
* below the threshold, then shortly after goes empty.
1905
*
1906
* In this case, relocating it does delete it, but has
1907
* some overhead in relocation specific metadata, looking
1908
* for the non-existent extents and running some extra
1909
* transactions, which we can avoid by using one of the
1910
* other mechanisms for dealing with empty block groups.
1911
*/
1912
if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1913
btrfs_mark_bg_unused(bg);
1914
spin_unlock(&bg->lock);
1915
spin_unlock(&space_info->lock);
1916
up_write(&space_info->groups_sem);
1917
goto next;
1918
1919
}
1920
/*
1921
* The block group might no longer meet the reclaim condition by
1922
* the time we get around to reclaiming it, so to avoid
1923
* reclaiming overly full block_groups, skip reclaiming them.
1924
*
1925
* Since the decision making process also depends on the amount
1926
* being freed, pass in a fake giant value to skip that extra
1927
* check, which is more meaningful when adding to the list in
1928
* the first place.
1929
*/
1930
if (!should_reclaim_block_group(bg, bg->length)) {
1931
spin_unlock(&bg->lock);
1932
spin_unlock(&space_info->lock);
1933
up_write(&space_info->groups_sem);
1934
goto next;
1935
}
1936
1937
spin_unlock(&bg->lock);
1938
spin_unlock(&space_info->lock);
1939
1940
/*
1941
* Get out fast, in case we're read-only or unmounting the
1942
* filesystem. It is OK to drop block groups from the list even
1943
* for the read-only case. As we did sb_start_write(),
1944
* "mount -o remount,ro" won't happen and read-only filesystem
1945
* means it is forced read-only due to a fatal error. So, it
1946
* never gets back to read-write to let us reclaim again.
1947
*/
1948
if (btrfs_need_cleaner_sleep(fs_info)) {
1949
up_write(&space_info->groups_sem);
1950
goto next;
1951
}
1952
1953
ret = inc_block_group_ro(bg, 0);
1954
up_write(&space_info->groups_sem);
1955
if (ret < 0)
1956
goto next;
1957
1958
/*
1959
* The amount of bytes reclaimed corresponds to the sum of the
1960
* "used" and "reserved" counters. We have set the block group
1961
* to RO above, which prevents reservations from happening but
1962
* we may have existing reservations for which allocation has
1963
* not yet been done - btrfs_update_block_group() was not yet
1964
* called, which is where we will transfer a reserved extent's
1965
* size from the "reserved" counter to the "used" counter - this
1966
* happens when running delayed references. When we relocate the
1967
* chunk below, relocation first flushes dellaloc, waits for
1968
* ordered extent completion (which is where we create delayed
1969
* references for data extents) and commits the current
1970
* transaction (which runs delayed references), and only after
1971
* it does the actual work to move extents out of the block
1972
* group. So the reported amount of reclaimed bytes is
1973
* effectively the sum of the 'used' and 'reserved' counters.
1974
*/
1975
spin_lock(&bg->lock);
1976
used = bg->used;
1977
reserved = bg->reserved;
1978
spin_unlock(&bg->lock);
1979
1980
trace_btrfs_reclaim_block_group(bg);
1981
ret = btrfs_relocate_chunk(fs_info, bg->start, false);
1982
if (ret) {
1983
btrfs_dec_block_group_ro(bg);
1984
btrfs_err(fs_info, "error relocating chunk %llu",
1985
bg->start);
1986
used = 0;
1987
reserved = 0;
1988
spin_lock(&space_info->lock);
1989
space_info->reclaim_errors++;
1990
if (READ_ONCE(space_info->periodic_reclaim))
1991
space_info->periodic_reclaim_ready = false;
1992
spin_unlock(&space_info->lock);
1993
}
1994
spin_lock(&space_info->lock);
1995
space_info->reclaim_count++;
1996
space_info->reclaim_bytes += used;
1997
space_info->reclaim_bytes += reserved;
1998
spin_unlock(&space_info->lock);
1999
2000
next:
2001
if (ret && !READ_ONCE(space_info->periodic_reclaim))
2002
btrfs_link_bg_list(bg, &retry_list);
2003
btrfs_put_block_group(bg);
2004
2005
mutex_unlock(&fs_info->reclaim_bgs_lock);
2006
/*
2007
* Reclaiming all the block groups in the list can take really
2008
* long. Prioritize cleaning up unused block groups.
2009
*/
2010
btrfs_delete_unused_bgs(fs_info);
2011
/*
2012
* If we are interrupted by a balance, we can just bail out. The
2013
* cleaner thread restart again if necessary.
2014
*/
2015
if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
2016
goto end;
2017
spin_lock(&fs_info->unused_bgs_lock);
2018
}
2019
spin_unlock(&fs_info->unused_bgs_lock);
2020
mutex_unlock(&fs_info->reclaim_bgs_lock);
2021
end:
2022
spin_lock(&fs_info->unused_bgs_lock);
2023
list_splice_tail(&retry_list, &fs_info->reclaim_bgs);
2024
spin_unlock(&fs_info->unused_bgs_lock);
2025
btrfs_exclop_finish(fs_info);
2026
sb_end_write(fs_info->sb);
2027
}
2028
2029
void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
2030
{
2031
btrfs_reclaim_sweep(fs_info);
2032
spin_lock(&fs_info->unused_bgs_lock);
2033
if (!list_empty(&fs_info->reclaim_bgs))
2034
queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
2035
spin_unlock(&fs_info->unused_bgs_lock);
2036
}
2037
2038
void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
2039
{
2040
struct btrfs_fs_info *fs_info = bg->fs_info;
2041
2042
if (btrfs_link_bg_list(bg, &fs_info->reclaim_bgs))
2043
trace_btrfs_add_reclaim_block_group(bg);
2044
}
2045
2046
static int read_bg_from_eb(struct btrfs_fs_info *fs_info, const struct btrfs_key *key,
2047
const struct btrfs_path *path)
2048
{
2049
struct btrfs_chunk_map *map;
2050
struct btrfs_block_group_item bg;
2051
struct extent_buffer *leaf;
2052
int slot;
2053
u64 flags;
2054
int ret = 0;
2055
2056
slot = path->slots[0];
2057
leaf = path->nodes[0];
2058
2059
map = btrfs_find_chunk_map(fs_info, key->objectid, key->offset);
2060
if (!map) {
2061
btrfs_err(fs_info,
2062
"logical %llu len %llu found bg but no related chunk",
2063
key->objectid, key->offset);
2064
return -ENOENT;
2065
}
2066
2067
if (map->start != key->objectid || map->chunk_len != key->offset) {
2068
btrfs_err(fs_info,
2069
"block group %llu len %llu mismatch with chunk %llu len %llu",
2070
key->objectid, key->offset, map->start, map->chunk_len);
2071
ret = -EUCLEAN;
2072
goto out_free_map;
2073
}
2074
2075
read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2076
sizeof(bg));
2077
flags = btrfs_stack_block_group_flags(&bg) &
2078
BTRFS_BLOCK_GROUP_TYPE_MASK;
2079
2080
if (flags != (map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2081
btrfs_err(fs_info,
2082
"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2083
key->objectid, key->offset, flags,
2084
(BTRFS_BLOCK_GROUP_TYPE_MASK & map->type));
2085
ret = -EUCLEAN;
2086
}
2087
2088
out_free_map:
2089
btrfs_free_chunk_map(map);
2090
return ret;
2091
}
2092
2093
static int find_first_block_group(struct btrfs_fs_info *fs_info,
2094
struct btrfs_path *path,
2095
const struct btrfs_key *key)
2096
{
2097
struct btrfs_root *root = btrfs_block_group_root(fs_info);
2098
int ret;
2099
struct btrfs_key found_key;
2100
2101
btrfs_for_each_slot(root, key, &found_key, path, ret) {
2102
if (found_key.objectid >= key->objectid &&
2103
found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2104
return read_bg_from_eb(fs_info, &found_key, path);
2105
}
2106
}
2107
return ret;
2108
}
2109
2110
static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2111
{
2112
u64 extra_flags = chunk_to_extended(flags) &
2113
BTRFS_EXTENDED_PROFILE_MASK;
2114
2115
write_seqlock(&fs_info->profiles_lock);
2116
if (flags & BTRFS_BLOCK_GROUP_DATA)
2117
fs_info->avail_data_alloc_bits |= extra_flags;
2118
if (flags & BTRFS_BLOCK_GROUP_METADATA)
2119
fs_info->avail_metadata_alloc_bits |= extra_flags;
2120
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2121
fs_info->avail_system_alloc_bits |= extra_flags;
2122
write_sequnlock(&fs_info->profiles_lock);
2123
}
2124
2125
/*
2126
* Map a physical disk address to a list of logical addresses.
2127
*
2128
* @fs_info: the filesystem
2129
* @chunk_start: logical address of block group
2130
* @physical: physical address to map to logical addresses
2131
* @logical: return array of logical addresses which map to @physical
2132
* @naddrs: length of @logical
2133
* @stripe_len: size of IO stripe for the given block group
2134
*
2135
* Maps a particular @physical disk address to a list of @logical addresses.
2136
* Used primarily to exclude those portions of a block group that contain super
2137
* block copies.
2138
*/
2139
int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2140
u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2141
{
2142
struct btrfs_chunk_map *map;
2143
u64 *buf;
2144
u64 bytenr;
2145
u64 data_stripe_length;
2146
u64 io_stripe_size;
2147
int i, nr = 0;
2148
int ret = 0;
2149
2150
map = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2151
if (IS_ERR(map))
2152
return -EIO;
2153
2154
data_stripe_length = map->stripe_size;
2155
io_stripe_size = BTRFS_STRIPE_LEN;
2156
chunk_start = map->start;
2157
2158
/* For RAID5/6 adjust to a full IO stripe length */
2159
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2160
io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2161
2162
buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2163
if (!buf) {
2164
ret = -ENOMEM;
2165
goto out;
2166
}
2167
2168
for (i = 0; i < map->num_stripes; i++) {
2169
bool already_inserted = false;
2170
u32 stripe_nr;
2171
u32 offset;
2172
int j;
2173
2174
if (!in_range(physical, map->stripes[i].physical,
2175
data_stripe_length))
2176
continue;
2177
2178
stripe_nr = (physical - map->stripes[i].physical) >>
2179
BTRFS_STRIPE_LEN_SHIFT;
2180
offset = (physical - map->stripes[i].physical) &
2181
BTRFS_STRIPE_LEN_MASK;
2182
2183
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2184
BTRFS_BLOCK_GROUP_RAID10))
2185
stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2186
map->sub_stripes);
2187
/*
2188
* The remaining case would be for RAID56, multiply by
2189
* nr_data_stripes(). Alternatively, just use rmap_len below
2190
* instead of map->stripe_len
2191
*/
2192
bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2193
2194
/* Ensure we don't add duplicate addresses */
2195
for (j = 0; j < nr; j++) {
2196
if (buf[j] == bytenr) {
2197
already_inserted = true;
2198
break;
2199
}
2200
}
2201
2202
if (!already_inserted)
2203
buf[nr++] = bytenr;
2204
}
2205
2206
*logical = buf;
2207
*naddrs = nr;
2208
*stripe_len = io_stripe_size;
2209
out:
2210
btrfs_free_chunk_map(map);
2211
return ret;
2212
}
2213
2214
static int exclude_super_stripes(struct btrfs_block_group *cache)
2215
{
2216
struct btrfs_fs_info *fs_info = cache->fs_info;
2217
const bool zoned = btrfs_is_zoned(fs_info);
2218
u64 bytenr;
2219
u64 *logical;
2220
int stripe_len;
2221
int i, nr, ret;
2222
2223
if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2224
stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2225
cache->bytes_super += stripe_len;
2226
ret = btrfs_set_extent_bit(&fs_info->excluded_extents, cache->start,
2227
cache->start + stripe_len - 1,
2228
EXTENT_DIRTY, NULL);
2229
if (ret)
2230
return ret;
2231
}
2232
2233
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2234
bytenr = btrfs_sb_offset(i);
2235
ret = btrfs_rmap_block(fs_info, cache->start,
2236
bytenr, &logical, &nr, &stripe_len);
2237
if (ret)
2238
return ret;
2239
2240
/* Shouldn't have super stripes in sequential zones */
2241
if (zoned && nr) {
2242
kfree(logical);
2243
btrfs_err(fs_info,
2244
"zoned: block group %llu must not contain super block",
2245
cache->start);
2246
return -EUCLEAN;
2247
}
2248
2249
while (nr--) {
2250
u64 len = min_t(u64, stripe_len,
2251
cache->start + cache->length - logical[nr]);
2252
2253
cache->bytes_super += len;
2254
ret = btrfs_set_extent_bit(&fs_info->excluded_extents,
2255
logical[nr], logical[nr] + len - 1,
2256
EXTENT_DIRTY, NULL);
2257
if (ret) {
2258
kfree(logical);
2259
return ret;
2260
}
2261
}
2262
2263
kfree(logical);
2264
}
2265
return 0;
2266
}
2267
2268
static struct btrfs_block_group *btrfs_create_block_group_cache(
2269
struct btrfs_fs_info *fs_info, u64 start)
2270
{
2271
struct btrfs_block_group *cache;
2272
2273
cache = kzalloc(sizeof(*cache), GFP_NOFS);
2274
if (!cache)
2275
return NULL;
2276
2277
cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2278
GFP_NOFS);
2279
if (!cache->free_space_ctl) {
2280
kfree(cache);
2281
return NULL;
2282
}
2283
2284
cache->start = start;
2285
2286
cache->fs_info = fs_info;
2287
cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2288
2289
cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2290
2291
refcount_set(&cache->refs, 1);
2292
spin_lock_init(&cache->lock);
2293
init_rwsem(&cache->data_rwsem);
2294
INIT_LIST_HEAD(&cache->list);
2295
INIT_LIST_HEAD(&cache->cluster_list);
2296
INIT_LIST_HEAD(&cache->bg_list);
2297
INIT_LIST_HEAD(&cache->ro_list);
2298
INIT_LIST_HEAD(&cache->discard_list);
2299
INIT_LIST_HEAD(&cache->dirty_list);
2300
INIT_LIST_HEAD(&cache->io_list);
2301
INIT_LIST_HEAD(&cache->active_bg_list);
2302
btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2303
atomic_set(&cache->frozen, 0);
2304
mutex_init(&cache->free_space_lock);
2305
2306
return cache;
2307
}
2308
2309
/*
2310
* Iterate all chunks and verify that each of them has the corresponding block
2311
* group
2312
*/
2313
static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2314
{
2315
u64 start = 0;
2316
int ret = 0;
2317
2318
while (1) {
2319
struct btrfs_chunk_map *map;
2320
struct btrfs_block_group *bg;
2321
2322
/*
2323
* btrfs_find_chunk_map() will return the first chunk map
2324
* intersecting the range, so setting @length to 1 is enough to
2325
* get the first chunk.
2326
*/
2327
map = btrfs_find_chunk_map(fs_info, start, 1);
2328
if (!map)
2329
break;
2330
2331
bg = btrfs_lookup_block_group(fs_info, map->start);
2332
if (!bg) {
2333
btrfs_err(fs_info,
2334
"chunk start=%llu len=%llu doesn't have corresponding block group",
2335
map->start, map->chunk_len);
2336
ret = -EUCLEAN;
2337
btrfs_free_chunk_map(map);
2338
break;
2339
}
2340
if (bg->start != map->start || bg->length != map->chunk_len ||
2341
(bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2342
(map->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2343
btrfs_err(fs_info,
2344
"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2345
map->start, map->chunk_len,
2346
map->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2347
bg->start, bg->length,
2348
bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2349
ret = -EUCLEAN;
2350
btrfs_free_chunk_map(map);
2351
btrfs_put_block_group(bg);
2352
break;
2353
}
2354
start = map->start + map->chunk_len;
2355
btrfs_free_chunk_map(map);
2356
btrfs_put_block_group(bg);
2357
}
2358
return ret;
2359
}
2360
2361
static int read_one_block_group(struct btrfs_fs_info *info,
2362
struct btrfs_block_group_item *bgi,
2363
const struct btrfs_key *key,
2364
int need_clear)
2365
{
2366
struct btrfs_block_group *cache;
2367
const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2368
int ret;
2369
2370
ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2371
2372
cache = btrfs_create_block_group_cache(info, key->objectid);
2373
if (!cache)
2374
return -ENOMEM;
2375
2376
cache->length = key->offset;
2377
cache->used = btrfs_stack_block_group_used(bgi);
2378
cache->commit_used = cache->used;
2379
cache->flags = btrfs_stack_block_group_flags(bgi);
2380
cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2381
cache->space_info = btrfs_find_space_info(info, cache->flags);
2382
2383
btrfs_set_free_space_tree_thresholds(cache);
2384
2385
if (need_clear) {
2386
/*
2387
* When we mount with old space cache, we need to
2388
* set BTRFS_DC_CLEAR and set dirty flag.
2389
*
2390
* a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2391
* truncate the old free space cache inode and
2392
* setup a new one.
2393
* b) Setting 'dirty flag' makes sure that we flush
2394
* the new space cache info onto disk.
2395
*/
2396
if (btrfs_test_opt(info, SPACE_CACHE))
2397
cache->disk_cache_state = BTRFS_DC_CLEAR;
2398
}
2399
if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2400
(cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2401
btrfs_err(info,
2402
"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2403
cache->start);
2404
ret = -EINVAL;
2405
goto error;
2406
}
2407
2408
ret = btrfs_load_block_group_zone_info(cache, false);
2409
if (ret) {
2410
btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2411
cache->start);
2412
goto error;
2413
}
2414
2415
/*
2416
* We need to exclude the super stripes now so that the space info has
2417
* super bytes accounted for, otherwise we'll think we have more space
2418
* than we actually do.
2419
*/
2420
ret = exclude_super_stripes(cache);
2421
if (ret) {
2422
/* We may have excluded something, so call this just in case. */
2423
btrfs_free_excluded_extents(cache);
2424
goto error;
2425
}
2426
2427
/*
2428
* For zoned filesystem, space after the allocation offset is the only
2429
* free space for a block group. So, we don't need any caching work.
2430
* btrfs_calc_zone_unusable() will set the amount of free space and
2431
* zone_unusable space.
2432
*
2433
* For regular filesystem, check for two cases, either we are full, and
2434
* therefore don't need to bother with the caching work since we won't
2435
* find any space, or we are empty, and we can just add all the space
2436
* in and be done with it. This saves us _a_lot_ of time, particularly
2437
* in the full case.
2438
*/
2439
if (btrfs_is_zoned(info)) {
2440
btrfs_calc_zone_unusable(cache);
2441
/* Should not have any excluded extents. Just in case, though. */
2442
btrfs_free_excluded_extents(cache);
2443
} else if (cache->length == cache->used) {
2444
cache->cached = BTRFS_CACHE_FINISHED;
2445
btrfs_free_excluded_extents(cache);
2446
} else if (cache->used == 0) {
2447
cache->cached = BTRFS_CACHE_FINISHED;
2448
ret = btrfs_add_new_free_space(cache, cache->start,
2449
cache->start + cache->length, NULL);
2450
btrfs_free_excluded_extents(cache);
2451
if (ret)
2452
goto error;
2453
}
2454
2455
ret = btrfs_add_block_group_cache(cache);
2456
if (ret) {
2457
btrfs_remove_free_space_cache(cache);
2458
goto error;
2459
}
2460
2461
trace_btrfs_add_block_group(info, cache, 0);
2462
btrfs_add_bg_to_space_info(info, cache);
2463
2464
set_avail_alloc_bits(info, cache->flags);
2465
if (btrfs_chunk_writeable(info, cache->start)) {
2466
if (cache->used == 0) {
2467
ASSERT(list_empty(&cache->bg_list));
2468
if (btrfs_test_opt(info, DISCARD_ASYNC))
2469
btrfs_discard_queue_work(&info->discard_ctl, cache);
2470
else
2471
btrfs_mark_bg_unused(cache);
2472
}
2473
} else {
2474
inc_block_group_ro(cache, 1);
2475
}
2476
2477
return 0;
2478
error:
2479
btrfs_put_block_group(cache);
2480
return ret;
2481
}
2482
2483
static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2484
{
2485
struct rb_node *node;
2486
int ret = 0;
2487
2488
for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
2489
struct btrfs_chunk_map *map;
2490
struct btrfs_block_group *bg;
2491
2492
map = rb_entry(node, struct btrfs_chunk_map, rb_node);
2493
bg = btrfs_create_block_group_cache(fs_info, map->start);
2494
if (!bg) {
2495
ret = -ENOMEM;
2496
break;
2497
}
2498
2499
/* Fill dummy cache as FULL */
2500
bg->length = map->chunk_len;
2501
bg->flags = map->type;
2502
bg->cached = BTRFS_CACHE_FINISHED;
2503
bg->used = map->chunk_len;
2504
bg->flags = map->type;
2505
bg->space_info = btrfs_find_space_info(fs_info, bg->flags);
2506
ret = btrfs_add_block_group_cache(bg);
2507
/*
2508
* We may have some valid block group cache added already, in
2509
* that case we skip to the next one.
2510
*/
2511
if (ret == -EEXIST) {
2512
ret = 0;
2513
btrfs_put_block_group(bg);
2514
continue;
2515
}
2516
2517
if (ret) {
2518
btrfs_remove_free_space_cache(bg);
2519
btrfs_put_block_group(bg);
2520
break;
2521
}
2522
2523
btrfs_add_bg_to_space_info(fs_info, bg);
2524
2525
set_avail_alloc_bits(fs_info, bg->flags);
2526
}
2527
if (!ret)
2528
btrfs_init_global_block_rsv(fs_info);
2529
return ret;
2530
}
2531
2532
int btrfs_read_block_groups(struct btrfs_fs_info *info)
2533
{
2534
struct btrfs_root *root = btrfs_block_group_root(info);
2535
struct btrfs_path *path;
2536
int ret;
2537
struct btrfs_block_group *cache;
2538
struct btrfs_space_info *space_info;
2539
struct btrfs_key key;
2540
int need_clear = 0;
2541
u64 cache_gen;
2542
2543
/*
2544
* Either no extent root (with ibadroots rescue option) or we have
2545
* unsupported RO options. The fs can never be mounted read-write, so no
2546
* need to waste time searching block group items.
2547
*
2548
* This also allows new extent tree related changes to be RO compat,
2549
* no need for a full incompat flag.
2550
*/
2551
if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2552
~BTRFS_FEATURE_COMPAT_RO_SUPP))
2553
return fill_dummy_bgs(info);
2554
2555
key.objectid = 0;
2556
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2557
key.offset = 0;
2558
path = btrfs_alloc_path();
2559
if (!path)
2560
return -ENOMEM;
2561
2562
cache_gen = btrfs_super_cache_generation(info->super_copy);
2563
if (btrfs_test_opt(info, SPACE_CACHE) &&
2564
btrfs_super_generation(info->super_copy) != cache_gen)
2565
need_clear = 1;
2566
if (btrfs_test_opt(info, CLEAR_CACHE))
2567
need_clear = 1;
2568
2569
while (1) {
2570
struct btrfs_block_group_item bgi;
2571
struct extent_buffer *leaf;
2572
int slot;
2573
2574
ret = find_first_block_group(info, path, &key);
2575
if (ret > 0)
2576
break;
2577
if (ret != 0)
2578
goto error;
2579
2580
leaf = path->nodes[0];
2581
slot = path->slots[0];
2582
2583
read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2584
sizeof(bgi));
2585
2586
btrfs_item_key_to_cpu(leaf, &key, slot);
2587
btrfs_release_path(path);
2588
ret = read_one_block_group(info, &bgi, &key, need_clear);
2589
if (ret < 0)
2590
goto error;
2591
key.objectid += key.offset;
2592
key.offset = 0;
2593
}
2594
btrfs_release_path(path);
2595
2596
list_for_each_entry(space_info, &info->space_info, list) {
2597
int i;
2598
2599
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2600
if (list_empty(&space_info->block_groups[i]))
2601
continue;
2602
cache = list_first_entry(&space_info->block_groups[i],
2603
struct btrfs_block_group,
2604
list);
2605
btrfs_sysfs_add_block_group_type(cache);
2606
}
2607
2608
if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2609
(BTRFS_BLOCK_GROUP_RAID10 |
2610
BTRFS_BLOCK_GROUP_RAID1_MASK |
2611
BTRFS_BLOCK_GROUP_RAID56_MASK |
2612
BTRFS_BLOCK_GROUP_DUP)))
2613
continue;
2614
/*
2615
* Avoid allocating from un-mirrored block group if there are
2616
* mirrored block groups.
2617
*/
2618
list_for_each_entry(cache,
2619
&space_info->block_groups[BTRFS_RAID_RAID0],
2620
list)
2621
inc_block_group_ro(cache, 1);
2622
list_for_each_entry(cache,
2623
&space_info->block_groups[BTRFS_RAID_SINGLE],
2624
list)
2625
inc_block_group_ro(cache, 1);
2626
}
2627
2628
btrfs_init_global_block_rsv(info);
2629
ret = check_chunk_block_group_mappings(info);
2630
error:
2631
btrfs_free_path(path);
2632
/*
2633
* We've hit some error while reading the extent tree, and have
2634
* rescue=ibadroots mount option.
2635
* Try to fill the tree using dummy block groups so that the user can
2636
* continue to mount and grab their data.
2637
*/
2638
if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2639
ret = fill_dummy_bgs(info);
2640
return ret;
2641
}
2642
2643
/*
2644
* This function, insert_block_group_item(), belongs to the phase 2 of chunk
2645
* allocation.
2646
*
2647
* See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2648
* phases.
2649
*/
2650
static int insert_block_group_item(struct btrfs_trans_handle *trans,
2651
struct btrfs_block_group *block_group)
2652
{
2653
struct btrfs_fs_info *fs_info = trans->fs_info;
2654
struct btrfs_block_group_item bgi;
2655
struct btrfs_root *root = btrfs_block_group_root(fs_info);
2656
struct btrfs_key key;
2657
u64 old_commit_used;
2658
int ret;
2659
2660
spin_lock(&block_group->lock);
2661
btrfs_set_stack_block_group_used(&bgi, block_group->used);
2662
btrfs_set_stack_block_group_chunk_objectid(&bgi,
2663
block_group->global_root_id);
2664
btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2665
old_commit_used = block_group->commit_used;
2666
block_group->commit_used = block_group->used;
2667
key.objectid = block_group->start;
2668
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2669
key.offset = block_group->length;
2670
spin_unlock(&block_group->lock);
2671
2672
ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2673
if (ret < 0) {
2674
spin_lock(&block_group->lock);
2675
block_group->commit_used = old_commit_used;
2676
spin_unlock(&block_group->lock);
2677
}
2678
2679
return ret;
2680
}
2681
2682
static int insert_dev_extent(struct btrfs_trans_handle *trans,
2683
const struct btrfs_device *device, u64 chunk_offset,
2684
u64 start, u64 num_bytes)
2685
{
2686
struct btrfs_fs_info *fs_info = device->fs_info;
2687
struct btrfs_root *root = fs_info->dev_root;
2688
BTRFS_PATH_AUTO_FREE(path);
2689
struct btrfs_dev_extent *extent;
2690
struct extent_buffer *leaf;
2691
struct btrfs_key key;
2692
int ret;
2693
2694
WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2695
WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2696
path = btrfs_alloc_path();
2697
if (!path)
2698
return -ENOMEM;
2699
2700
key.objectid = device->devid;
2701
key.type = BTRFS_DEV_EXTENT_KEY;
2702
key.offset = start;
2703
ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2704
if (ret)
2705
return ret;
2706
2707
leaf = path->nodes[0];
2708
extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2709
btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2710
btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2711
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2712
btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2713
btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2714
2715
return ret;
2716
}
2717
2718
/*
2719
* This function belongs to phase 2.
2720
*
2721
* See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2722
* phases.
2723
*/
2724
static int insert_dev_extents(struct btrfs_trans_handle *trans,
2725
u64 chunk_offset, u64 chunk_size)
2726
{
2727
struct btrfs_fs_info *fs_info = trans->fs_info;
2728
struct btrfs_device *device;
2729
struct btrfs_chunk_map *map;
2730
u64 dev_offset;
2731
int i;
2732
int ret = 0;
2733
2734
map = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2735
if (IS_ERR(map))
2736
return PTR_ERR(map);
2737
2738
/*
2739
* Take the device list mutex to prevent races with the final phase of
2740
* a device replace operation that replaces the device object associated
2741
* with the map's stripes, because the device object's id can change
2742
* at any time during that final phase of the device replace operation
2743
* (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2744
* replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2745
* resulting in persisting a device extent item with such ID.
2746
*/
2747
mutex_lock(&fs_info->fs_devices->device_list_mutex);
2748
for (i = 0; i < map->num_stripes; i++) {
2749
device = map->stripes[i].dev;
2750
dev_offset = map->stripes[i].physical;
2751
2752
ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2753
map->stripe_size);
2754
if (ret)
2755
break;
2756
}
2757
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2758
2759
btrfs_free_chunk_map(map);
2760
return ret;
2761
}
2762
2763
/*
2764
* This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2765
* chunk allocation.
2766
*
2767
* See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2768
* phases.
2769
*/
2770
void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2771
{
2772
struct btrfs_fs_info *fs_info = trans->fs_info;
2773
struct btrfs_block_group *block_group;
2774
int ret = 0;
2775
2776
while (!list_empty(&trans->new_bgs)) {
2777
int index;
2778
2779
block_group = list_first_entry(&trans->new_bgs,
2780
struct btrfs_block_group,
2781
bg_list);
2782
if (ret)
2783
goto next;
2784
2785
index = btrfs_bg_flags_to_raid_index(block_group->flags);
2786
2787
ret = insert_block_group_item(trans, block_group);
2788
if (ret)
2789
btrfs_abort_transaction(trans, ret);
2790
if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2791
&block_group->runtime_flags)) {
2792
mutex_lock(&fs_info->chunk_mutex);
2793
ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2794
mutex_unlock(&fs_info->chunk_mutex);
2795
if (ret)
2796
btrfs_abort_transaction(trans, ret);
2797
}
2798
ret = insert_dev_extents(trans, block_group->start,
2799
block_group->length);
2800
if (ret)
2801
btrfs_abort_transaction(trans, ret);
2802
btrfs_add_block_group_free_space(trans, block_group);
2803
2804
/*
2805
* If we restriped during balance, we may have added a new raid
2806
* type, so now add the sysfs entries when it is safe to do so.
2807
* We don't have to worry about locking here as it's handled in
2808
* btrfs_sysfs_add_block_group_type.
2809
*/
2810
if (block_group->space_info->block_group_kobjs[index] == NULL)
2811
btrfs_sysfs_add_block_group_type(block_group);
2812
2813
/* Already aborted the transaction if it failed. */
2814
next:
2815
btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2816
2817
spin_lock(&fs_info->unused_bgs_lock);
2818
list_del_init(&block_group->bg_list);
2819
clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2820
btrfs_put_block_group(block_group);
2821
spin_unlock(&fs_info->unused_bgs_lock);
2822
2823
/*
2824
* If the block group is still unused, add it to the list of
2825
* unused block groups. The block group may have been created in
2826
* order to satisfy a space reservation, in which case the
2827
* extent allocation only happens later. But often we don't
2828
* actually need to allocate space that we previously reserved,
2829
* so the block group may become unused for a long time. For
2830
* example for metadata we generally reserve space for a worst
2831
* possible scenario, but then don't end up allocating all that
2832
* space or none at all (due to no need to COW, extent buffers
2833
* were already COWed in the current transaction and still
2834
* unwritten, tree heights lower than the maximum possible
2835
* height, etc). For data we generally reserve the axact amount
2836
* of space we are going to allocate later, the exception is
2837
* when using compression, as we must reserve space based on the
2838
* uncompressed data size, because the compression is only done
2839
* when writeback triggered and we don't know how much space we
2840
* are actually going to need, so we reserve the uncompressed
2841
* size because the data may be incompressible in the worst case.
2842
*/
2843
if (ret == 0) {
2844
bool used;
2845
2846
spin_lock(&block_group->lock);
2847
used = btrfs_is_block_group_used(block_group);
2848
spin_unlock(&block_group->lock);
2849
2850
if (!used)
2851
btrfs_mark_bg_unused(block_group);
2852
}
2853
}
2854
btrfs_trans_release_chunk_metadata(trans);
2855
}
2856
2857
/*
2858
* For extent tree v2 we use the block_group_item->chunk_offset to point at our
2859
* global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2860
*/
2861
static u64 calculate_global_root_id(const struct btrfs_fs_info *fs_info, u64 offset)
2862
{
2863
u64 div = SZ_1G;
2864
u64 index;
2865
2866
if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2867
return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2868
2869
/* If we have a smaller fs index based on 128MiB. */
2870
if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2871
div = SZ_128M;
2872
2873
offset = div64_u64(offset, div);
2874
div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2875
return index;
2876
}
2877
2878
struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2879
struct btrfs_space_info *space_info,
2880
u64 type, u64 chunk_offset, u64 size)
2881
{
2882
struct btrfs_fs_info *fs_info = trans->fs_info;
2883
struct btrfs_block_group *cache;
2884
int ret;
2885
2886
btrfs_set_log_full_commit(trans);
2887
2888
cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2889
if (!cache)
2890
return ERR_PTR(-ENOMEM);
2891
2892
/*
2893
* Mark it as new before adding it to the rbtree of block groups or any
2894
* list, so that no other task finds it and calls btrfs_mark_bg_unused()
2895
* before the new flag is set.
2896
*/
2897
set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2898
2899
cache->length = size;
2900
btrfs_set_free_space_tree_thresholds(cache);
2901
cache->flags = type;
2902
cache->cached = BTRFS_CACHE_FINISHED;
2903
cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2904
2905
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2906
set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2907
2908
ret = btrfs_load_block_group_zone_info(cache, true);
2909
if (ret) {
2910
btrfs_put_block_group(cache);
2911
return ERR_PTR(ret);
2912
}
2913
2914
ret = exclude_super_stripes(cache);
2915
if (ret) {
2916
/* We may have excluded something, so call this just in case */
2917
btrfs_free_excluded_extents(cache);
2918
btrfs_put_block_group(cache);
2919
return ERR_PTR(ret);
2920
}
2921
2922
ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2923
btrfs_free_excluded_extents(cache);
2924
if (ret) {
2925
btrfs_put_block_group(cache);
2926
return ERR_PTR(ret);
2927
}
2928
2929
/*
2930
* Ensure the corresponding space_info object is created and
2931
* assigned to our block group. We want our bg to be added to the rbtree
2932
* with its ->space_info set.
2933
*/
2934
cache->space_info = space_info;
2935
ASSERT(cache->space_info);
2936
2937
ret = btrfs_add_block_group_cache(cache);
2938
if (ret) {
2939
btrfs_remove_free_space_cache(cache);
2940
btrfs_put_block_group(cache);
2941
return ERR_PTR(ret);
2942
}
2943
2944
/*
2945
* Now that our block group has its ->space_info set and is inserted in
2946
* the rbtree, update the space info's counters.
2947
*/
2948
trace_btrfs_add_block_group(fs_info, cache, 1);
2949
btrfs_add_bg_to_space_info(fs_info, cache);
2950
btrfs_update_global_block_rsv(fs_info);
2951
2952
#ifdef CONFIG_BTRFS_DEBUG
2953
if (btrfs_should_fragment_free_space(cache)) {
2954
cache->space_info->bytes_used += size >> 1;
2955
fragment_free_space(cache);
2956
}
2957
#endif
2958
2959
btrfs_link_bg_list(cache, &trans->new_bgs);
2960
btrfs_inc_delayed_refs_rsv_bg_inserts(fs_info);
2961
2962
set_avail_alloc_bits(fs_info, type);
2963
return cache;
2964
}
2965
2966
/*
2967
* Mark one block group RO, can be called several times for the same block
2968
* group.
2969
*
2970
* @cache: the destination block group
2971
* @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2972
* ensure we still have some free space after marking this
2973
* block group RO.
2974
*/
2975
int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2976
bool do_chunk_alloc)
2977
{
2978
struct btrfs_fs_info *fs_info = cache->fs_info;
2979
struct btrfs_space_info *space_info = cache->space_info;
2980
struct btrfs_trans_handle *trans;
2981
struct btrfs_root *root = btrfs_block_group_root(fs_info);
2982
u64 alloc_flags;
2983
int ret;
2984
bool dirty_bg_running;
2985
2986
/*
2987
* This can only happen when we are doing read-only scrub on read-only
2988
* mount.
2989
* In that case we should not start a new transaction on read-only fs.
2990
* Thus here we skip all chunk allocations.
2991
*/
2992
if (sb_rdonly(fs_info->sb)) {
2993
mutex_lock(&fs_info->ro_block_group_mutex);
2994
ret = inc_block_group_ro(cache, 0);
2995
mutex_unlock(&fs_info->ro_block_group_mutex);
2996
return ret;
2997
}
2998
2999
do {
3000
trans = btrfs_join_transaction(root);
3001
if (IS_ERR(trans))
3002
return PTR_ERR(trans);
3003
3004
dirty_bg_running = false;
3005
3006
/*
3007
* We're not allowed to set block groups readonly after the dirty
3008
* block group cache has started writing. If it already started,
3009
* back off and let this transaction commit.
3010
*/
3011
mutex_lock(&fs_info->ro_block_group_mutex);
3012
if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
3013
u64 transid = trans->transid;
3014
3015
mutex_unlock(&fs_info->ro_block_group_mutex);
3016
btrfs_end_transaction(trans);
3017
3018
ret = btrfs_wait_for_commit(fs_info, transid);
3019
if (ret)
3020
return ret;
3021
dirty_bg_running = true;
3022
}
3023
} while (dirty_bg_running);
3024
3025
if (do_chunk_alloc) {
3026
/*
3027
* If we are changing raid levels, try to allocate a
3028
* corresponding block group with the new raid level.
3029
*/
3030
alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3031
if (alloc_flags != cache->flags) {
3032
ret = btrfs_chunk_alloc(trans, space_info, alloc_flags,
3033
CHUNK_ALLOC_FORCE);
3034
/*
3035
* ENOSPC is allowed here, we may have enough space
3036
* already allocated at the new raid level to carry on
3037
*/
3038
if (ret == -ENOSPC)
3039
ret = 0;
3040
if (ret < 0)
3041
goto out;
3042
}
3043
}
3044
3045
ret = inc_block_group_ro(cache, 0);
3046
if (!ret)
3047
goto out;
3048
if (ret == -ETXTBSY)
3049
goto unlock_out;
3050
3051
/*
3052
* Skip chunk allocation if the bg is SYSTEM, this is to avoid system
3053
* chunk allocation storm to exhaust the system chunk array. Otherwise
3054
* we still want to try our best to mark the block group read-only.
3055
*/
3056
if (!do_chunk_alloc && ret == -ENOSPC &&
3057
(cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
3058
goto unlock_out;
3059
3060
alloc_flags = btrfs_get_alloc_profile(fs_info, space_info->flags);
3061
ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE);
3062
if (ret < 0)
3063
goto out;
3064
/*
3065
* We have allocated a new chunk. We also need to activate that chunk to
3066
* grant metadata tickets for zoned filesystem.
3067
*/
3068
ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
3069
if (ret < 0)
3070
goto out;
3071
3072
ret = inc_block_group_ro(cache, 0);
3073
if (ret == -ETXTBSY)
3074
goto unlock_out;
3075
out:
3076
if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
3077
alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3078
mutex_lock(&fs_info->chunk_mutex);
3079
check_system_chunk(trans, alloc_flags);
3080
mutex_unlock(&fs_info->chunk_mutex);
3081
}
3082
unlock_out:
3083
mutex_unlock(&fs_info->ro_block_group_mutex);
3084
3085
btrfs_end_transaction(trans);
3086
return ret;
3087
}
3088
3089
void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
3090
{
3091
struct btrfs_space_info *sinfo = cache->space_info;
3092
u64 num_bytes;
3093
3094
BUG_ON(!cache->ro);
3095
3096
spin_lock(&sinfo->lock);
3097
spin_lock(&cache->lock);
3098
if (!--cache->ro) {
3099
if (btrfs_is_zoned(cache->fs_info)) {
3100
/* Migrate zone_unusable bytes back */
3101
cache->zone_unusable =
3102
(cache->alloc_offset - cache->used - cache->pinned -
3103
cache->reserved) +
3104
(cache->length - cache->zone_capacity);
3105
btrfs_space_info_update_bytes_zone_unusable(sinfo, cache->zone_unusable);
3106
sinfo->bytes_readonly -= cache->zone_unusable;
3107
}
3108
num_bytes = cache->length - cache->reserved -
3109
cache->pinned - cache->bytes_super -
3110
cache->zone_unusable - cache->used;
3111
sinfo->bytes_readonly -= num_bytes;
3112
list_del_init(&cache->ro_list);
3113
}
3114
spin_unlock(&cache->lock);
3115
spin_unlock(&sinfo->lock);
3116
}
3117
3118
static int update_block_group_item(struct btrfs_trans_handle *trans,
3119
struct btrfs_path *path,
3120
struct btrfs_block_group *cache)
3121
{
3122
struct btrfs_fs_info *fs_info = trans->fs_info;
3123
int ret;
3124
struct btrfs_root *root = btrfs_block_group_root(fs_info);
3125
unsigned long bi;
3126
struct extent_buffer *leaf;
3127
struct btrfs_block_group_item bgi;
3128
struct btrfs_key key;
3129
u64 old_commit_used;
3130
u64 used;
3131
3132
/*
3133
* Block group items update can be triggered out of commit transaction
3134
* critical section, thus we need a consistent view of used bytes.
3135
* We cannot use cache->used directly outside of the spin lock, as it
3136
* may be changed.
3137
*/
3138
spin_lock(&cache->lock);
3139
old_commit_used = cache->commit_used;
3140
used = cache->used;
3141
/* No change in used bytes, can safely skip it. */
3142
if (cache->commit_used == used) {
3143
spin_unlock(&cache->lock);
3144
return 0;
3145
}
3146
cache->commit_used = used;
3147
spin_unlock(&cache->lock);
3148
3149
key.objectid = cache->start;
3150
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3151
key.offset = cache->length;
3152
3153
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3154
if (ret) {
3155
if (ret > 0)
3156
ret = -ENOENT;
3157
goto fail;
3158
}
3159
3160
leaf = path->nodes[0];
3161
bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3162
btrfs_set_stack_block_group_used(&bgi, used);
3163
btrfs_set_stack_block_group_chunk_objectid(&bgi,
3164
cache->global_root_id);
3165
btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3166
write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3167
fail:
3168
btrfs_release_path(path);
3169
/*
3170
* We didn't update the block group item, need to revert commit_used
3171
* unless the block group item didn't exist yet - this is to prevent a
3172
* race with a concurrent insertion of the block group item, with
3173
* insert_block_group_item(), that happened just after we attempted to
3174
* update. In that case we would reset commit_used to 0 just after the
3175
* insertion set it to a value greater than 0 - if the block group later
3176
* becomes with 0 used bytes, we would incorrectly skip its update.
3177
*/
3178
if (ret < 0 && ret != -ENOENT) {
3179
spin_lock(&cache->lock);
3180
cache->commit_used = old_commit_used;
3181
spin_unlock(&cache->lock);
3182
}
3183
return ret;
3184
3185
}
3186
3187
static int cache_save_setup(struct btrfs_block_group *block_group,
3188
struct btrfs_trans_handle *trans,
3189
struct btrfs_path *path)
3190
{
3191
struct btrfs_fs_info *fs_info = block_group->fs_info;
3192
struct inode *inode = NULL;
3193
struct extent_changeset *data_reserved = NULL;
3194
u64 alloc_hint = 0;
3195
int dcs = BTRFS_DC_ERROR;
3196
u64 cache_size = 0;
3197
int retries = 0;
3198
int ret = 0;
3199
3200
if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3201
return 0;
3202
3203
/*
3204
* If this block group is smaller than 100 megs don't bother caching the
3205
* block group.
3206
*/
3207
if (block_group->length < (100 * SZ_1M)) {
3208
spin_lock(&block_group->lock);
3209
block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3210
spin_unlock(&block_group->lock);
3211
return 0;
3212
}
3213
3214
if (TRANS_ABORTED(trans))
3215
return 0;
3216
again:
3217
inode = lookup_free_space_inode(block_group, path);
3218
if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3219
ret = PTR_ERR(inode);
3220
btrfs_release_path(path);
3221
goto out;
3222
}
3223
3224
if (IS_ERR(inode)) {
3225
BUG_ON(retries);
3226
retries++;
3227
3228
if (block_group->ro)
3229
goto out_free;
3230
3231
ret = create_free_space_inode(trans, block_group, path);
3232
if (ret)
3233
goto out_free;
3234
goto again;
3235
}
3236
3237
/*
3238
* We want to set the generation to 0, that way if anything goes wrong
3239
* from here on out we know not to trust this cache when we load up next
3240
* time.
3241
*/
3242
BTRFS_I(inode)->generation = 0;
3243
ret = btrfs_update_inode(trans, BTRFS_I(inode));
3244
if (ret) {
3245
/*
3246
* So theoretically we could recover from this, simply set the
3247
* super cache generation to 0 so we know to invalidate the
3248
* cache, but then we'd have to keep track of the block groups
3249
* that fail this way so we know we _have_ to reset this cache
3250
* before the next commit or risk reading stale cache. So to
3251
* limit our exposure to horrible edge cases lets just abort the
3252
* transaction, this only happens in really bad situations
3253
* anyway.
3254
*/
3255
btrfs_abort_transaction(trans, ret);
3256
goto out_put;
3257
}
3258
WARN_ON(ret);
3259
3260
/* We've already setup this transaction, go ahead and exit */
3261
if (block_group->cache_generation == trans->transid &&
3262
i_size_read(inode)) {
3263
dcs = BTRFS_DC_SETUP;
3264
goto out_put;
3265
}
3266
3267
if (i_size_read(inode) > 0) {
3268
ret = btrfs_check_trunc_cache_free_space(fs_info,
3269
&fs_info->global_block_rsv);
3270
if (ret)
3271
goto out_put;
3272
3273
ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3274
if (ret)
3275
goto out_put;
3276
}
3277
3278
spin_lock(&block_group->lock);
3279
if (block_group->cached != BTRFS_CACHE_FINISHED ||
3280
!btrfs_test_opt(fs_info, SPACE_CACHE)) {
3281
/*
3282
* don't bother trying to write stuff out _if_
3283
* a) we're not cached,
3284
* b) we're with nospace_cache mount option,
3285
* c) we're with v2 space_cache (FREE_SPACE_TREE).
3286
*/
3287
dcs = BTRFS_DC_WRITTEN;
3288
spin_unlock(&block_group->lock);
3289
goto out_put;
3290
}
3291
spin_unlock(&block_group->lock);
3292
3293
/*
3294
* We hit an ENOSPC when setting up the cache in this transaction, just
3295
* skip doing the setup, we've already cleared the cache so we're safe.
3296
*/
3297
if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3298
ret = -ENOSPC;
3299
goto out_put;
3300
}
3301
3302
/*
3303
* Try to preallocate enough space based on how big the block group is.
3304
* Keep in mind this has to include any pinned space which could end up
3305
* taking up quite a bit since it's not folded into the other space
3306
* cache.
3307
*/
3308
cache_size = div_u64(block_group->length, SZ_256M);
3309
if (!cache_size)
3310
cache_size = 1;
3311
3312
cache_size *= 16;
3313
cache_size *= fs_info->sectorsize;
3314
3315
ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3316
cache_size, false);
3317
if (ret)
3318
goto out_put;
3319
3320
ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3321
cache_size, cache_size,
3322
&alloc_hint);
3323
/*
3324
* Our cache requires contiguous chunks so that we don't modify a bunch
3325
* of metadata or split extents when writing the cache out, which means
3326
* we can enospc if we are heavily fragmented in addition to just normal
3327
* out of space conditions. So if we hit this just skip setting up any
3328
* other block groups for this transaction, maybe we'll unpin enough
3329
* space the next time around.
3330
*/
3331
if (!ret)
3332
dcs = BTRFS_DC_SETUP;
3333
else if (ret == -ENOSPC)
3334
set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3335
3336
out_put:
3337
iput(inode);
3338
out_free:
3339
btrfs_release_path(path);
3340
out:
3341
spin_lock(&block_group->lock);
3342
if (!ret && dcs == BTRFS_DC_SETUP)
3343
block_group->cache_generation = trans->transid;
3344
block_group->disk_cache_state = dcs;
3345
spin_unlock(&block_group->lock);
3346
3347
extent_changeset_free(data_reserved);
3348
return ret;
3349
}
3350
3351
int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3352
{
3353
struct btrfs_fs_info *fs_info = trans->fs_info;
3354
struct btrfs_block_group *cache, *tmp;
3355
struct btrfs_transaction *cur_trans = trans->transaction;
3356
BTRFS_PATH_AUTO_FREE(path);
3357
3358
if (list_empty(&cur_trans->dirty_bgs) ||
3359
!btrfs_test_opt(fs_info, SPACE_CACHE))
3360
return 0;
3361
3362
path = btrfs_alloc_path();
3363
if (!path)
3364
return -ENOMEM;
3365
3366
/* Could add new block groups, use _safe just in case */
3367
list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3368
dirty_list) {
3369
if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3370
cache_save_setup(cache, trans, path);
3371
}
3372
3373
return 0;
3374
}
3375
3376
/*
3377
* Transaction commit does final block group cache writeback during a critical
3378
* section where nothing is allowed to change the FS. This is required in
3379
* order for the cache to actually match the block group, but can introduce a
3380
* lot of latency into the commit.
3381
*
3382
* So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3383
* There's a chance we'll have to redo some of it if the block group changes
3384
* again during the commit, but it greatly reduces the commit latency by
3385
* getting rid of the easy block groups while we're still allowing others to
3386
* join the commit.
3387
*/
3388
int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3389
{
3390
struct btrfs_fs_info *fs_info = trans->fs_info;
3391
struct btrfs_block_group *cache;
3392
struct btrfs_transaction *cur_trans = trans->transaction;
3393
int ret = 0;
3394
int should_put;
3395
BTRFS_PATH_AUTO_FREE(path);
3396
LIST_HEAD(dirty);
3397
struct list_head *io = &cur_trans->io_bgs;
3398
int loops = 0;
3399
3400
spin_lock(&cur_trans->dirty_bgs_lock);
3401
if (list_empty(&cur_trans->dirty_bgs)) {
3402
spin_unlock(&cur_trans->dirty_bgs_lock);
3403
return 0;
3404
}
3405
list_splice_init(&cur_trans->dirty_bgs, &dirty);
3406
spin_unlock(&cur_trans->dirty_bgs_lock);
3407
3408
again:
3409
/* Make sure all the block groups on our dirty list actually exist */
3410
btrfs_create_pending_block_groups(trans);
3411
3412
if (!path) {
3413
path = btrfs_alloc_path();
3414
if (!path) {
3415
ret = -ENOMEM;
3416
goto out;
3417
}
3418
}
3419
3420
/*
3421
* cache_write_mutex is here only to save us from balance or automatic
3422
* removal of empty block groups deleting this block group while we are
3423
* writing out the cache
3424
*/
3425
mutex_lock(&trans->transaction->cache_write_mutex);
3426
while (!list_empty(&dirty)) {
3427
bool drop_reserve = true;
3428
3429
cache = list_first_entry(&dirty, struct btrfs_block_group,
3430
dirty_list);
3431
/*
3432
* This can happen if something re-dirties a block group that
3433
* is already under IO. Just wait for it to finish and then do
3434
* it all again
3435
*/
3436
if (!list_empty(&cache->io_list)) {
3437
list_del_init(&cache->io_list);
3438
btrfs_wait_cache_io(trans, cache, path);
3439
btrfs_put_block_group(cache);
3440
}
3441
3442
3443
/*
3444
* btrfs_wait_cache_io uses the cache->dirty_list to decide if
3445
* it should update the cache_state. Don't delete until after
3446
* we wait.
3447
*
3448
* Since we're not running in the commit critical section
3449
* we need the dirty_bgs_lock to protect from update_block_group
3450
*/
3451
spin_lock(&cur_trans->dirty_bgs_lock);
3452
list_del_init(&cache->dirty_list);
3453
spin_unlock(&cur_trans->dirty_bgs_lock);
3454
3455
should_put = 1;
3456
3457
cache_save_setup(cache, trans, path);
3458
3459
if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3460
cache->io_ctl.inode = NULL;
3461
ret = btrfs_write_out_cache(trans, cache, path);
3462
if (ret == 0 && cache->io_ctl.inode) {
3463
should_put = 0;
3464
3465
/*
3466
* The cache_write_mutex is protecting the
3467
* io_list, also refer to the definition of
3468
* btrfs_transaction::io_bgs for more details
3469
*/
3470
list_add_tail(&cache->io_list, io);
3471
} else {
3472
/*
3473
* If we failed to write the cache, the
3474
* generation will be bad and life goes on
3475
*/
3476
ret = 0;
3477
}
3478
}
3479
if (!ret) {
3480
ret = update_block_group_item(trans, path, cache);
3481
/*
3482
* Our block group might still be attached to the list
3483
* of new block groups in the transaction handle of some
3484
* other task (struct btrfs_trans_handle->new_bgs). This
3485
* means its block group item isn't yet in the extent
3486
* tree. If this happens ignore the error, as we will
3487
* try again later in the critical section of the
3488
* transaction commit.
3489
*/
3490
if (ret == -ENOENT) {
3491
ret = 0;
3492
spin_lock(&cur_trans->dirty_bgs_lock);
3493
if (list_empty(&cache->dirty_list)) {
3494
list_add_tail(&cache->dirty_list,
3495
&cur_trans->dirty_bgs);
3496
btrfs_get_block_group(cache);
3497
drop_reserve = false;
3498
}
3499
spin_unlock(&cur_trans->dirty_bgs_lock);
3500
} else if (ret) {
3501
btrfs_abort_transaction(trans, ret);
3502
}
3503
}
3504
3505
/* If it's not on the io list, we need to put the block group */
3506
if (should_put)
3507
btrfs_put_block_group(cache);
3508
if (drop_reserve)
3509
btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3510
/*
3511
* Avoid blocking other tasks for too long. It might even save
3512
* us from writing caches for block groups that are going to be
3513
* removed.
3514
*/
3515
mutex_unlock(&trans->transaction->cache_write_mutex);
3516
if (ret)
3517
goto out;
3518
mutex_lock(&trans->transaction->cache_write_mutex);
3519
}
3520
mutex_unlock(&trans->transaction->cache_write_mutex);
3521
3522
/*
3523
* Go through delayed refs for all the stuff we've just kicked off
3524
* and then loop back (just once)
3525
*/
3526
if (!ret)
3527
ret = btrfs_run_delayed_refs(trans, 0);
3528
if (!ret && loops == 0) {
3529
loops++;
3530
spin_lock(&cur_trans->dirty_bgs_lock);
3531
list_splice_init(&cur_trans->dirty_bgs, &dirty);
3532
/*
3533
* dirty_bgs_lock protects us from concurrent block group
3534
* deletes too (not just cache_write_mutex).
3535
*/
3536
if (!list_empty(&dirty)) {
3537
spin_unlock(&cur_trans->dirty_bgs_lock);
3538
goto again;
3539
}
3540
spin_unlock(&cur_trans->dirty_bgs_lock);
3541
}
3542
out:
3543
if (ret < 0) {
3544
spin_lock(&cur_trans->dirty_bgs_lock);
3545
list_splice_init(&dirty, &cur_trans->dirty_bgs);
3546
spin_unlock(&cur_trans->dirty_bgs_lock);
3547
btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3548
}
3549
3550
return ret;
3551
}
3552
3553
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3554
{
3555
struct btrfs_fs_info *fs_info = trans->fs_info;
3556
struct btrfs_block_group *cache;
3557
struct btrfs_transaction *cur_trans = trans->transaction;
3558
int ret = 0;
3559
int should_put;
3560
BTRFS_PATH_AUTO_FREE(path);
3561
struct list_head *io = &cur_trans->io_bgs;
3562
3563
path = btrfs_alloc_path();
3564
if (!path)
3565
return -ENOMEM;
3566
3567
/*
3568
* Even though we are in the critical section of the transaction commit,
3569
* we can still have concurrent tasks adding elements to this
3570
* transaction's list of dirty block groups. These tasks correspond to
3571
* endio free space workers started when writeback finishes for a
3572
* space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3573
* allocate new block groups as a result of COWing nodes of the root
3574
* tree when updating the free space inode. The writeback for the space
3575
* caches is triggered by an earlier call to
3576
* btrfs_start_dirty_block_groups() and iterations of the following
3577
* loop.
3578
* Also we want to do the cache_save_setup first and then run the
3579
* delayed refs to make sure we have the best chance at doing this all
3580
* in one shot.
3581
*/
3582
spin_lock(&cur_trans->dirty_bgs_lock);
3583
while (!list_empty(&cur_trans->dirty_bgs)) {
3584
cache = list_first_entry(&cur_trans->dirty_bgs,
3585
struct btrfs_block_group,
3586
dirty_list);
3587
3588
/*
3589
* This can happen if cache_save_setup re-dirties a block group
3590
* that is already under IO. Just wait for it to finish and
3591
* then do it all again
3592
*/
3593
if (!list_empty(&cache->io_list)) {
3594
spin_unlock(&cur_trans->dirty_bgs_lock);
3595
list_del_init(&cache->io_list);
3596
btrfs_wait_cache_io(trans, cache, path);
3597
btrfs_put_block_group(cache);
3598
spin_lock(&cur_trans->dirty_bgs_lock);
3599
}
3600
3601
/*
3602
* Don't remove from the dirty list until after we've waited on
3603
* any pending IO
3604
*/
3605
list_del_init(&cache->dirty_list);
3606
spin_unlock(&cur_trans->dirty_bgs_lock);
3607
should_put = 1;
3608
3609
cache_save_setup(cache, trans, path);
3610
3611
if (!ret)
3612
ret = btrfs_run_delayed_refs(trans, U64_MAX);
3613
3614
if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3615
cache->io_ctl.inode = NULL;
3616
ret = btrfs_write_out_cache(trans, cache, path);
3617
if (ret == 0 && cache->io_ctl.inode) {
3618
should_put = 0;
3619
list_add_tail(&cache->io_list, io);
3620
} else {
3621
/*
3622
* If we failed to write the cache, the
3623
* generation will be bad and life goes on
3624
*/
3625
ret = 0;
3626
}
3627
}
3628
if (!ret) {
3629
ret = update_block_group_item(trans, path, cache);
3630
/*
3631
* One of the free space endio workers might have
3632
* created a new block group while updating a free space
3633
* cache's inode (at inode.c:btrfs_finish_ordered_io())
3634
* and hasn't released its transaction handle yet, in
3635
* which case the new block group is still attached to
3636
* its transaction handle and its creation has not
3637
* finished yet (no block group item in the extent tree
3638
* yet, etc). If this is the case, wait for all free
3639
* space endio workers to finish and retry. This is a
3640
* very rare case so no need for a more efficient and
3641
* complex approach.
3642
*/
3643
if (ret == -ENOENT) {
3644
wait_event(cur_trans->writer_wait,
3645
atomic_read(&cur_trans->num_writers) == 1);
3646
ret = update_block_group_item(trans, path, cache);
3647
if (ret)
3648
btrfs_abort_transaction(trans, ret);
3649
} else if (ret) {
3650
btrfs_abort_transaction(trans, ret);
3651
}
3652
}
3653
3654
/* If its not on the io list, we need to put the block group */
3655
if (should_put)
3656
btrfs_put_block_group(cache);
3657
btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
3658
spin_lock(&cur_trans->dirty_bgs_lock);
3659
}
3660
spin_unlock(&cur_trans->dirty_bgs_lock);
3661
3662
/*
3663
* Refer to the definition of io_bgs member for details why it's safe
3664
* to use it without any locking
3665
*/
3666
while (!list_empty(io)) {
3667
cache = list_first_entry(io, struct btrfs_block_group,
3668
io_list);
3669
list_del_init(&cache->io_list);
3670
btrfs_wait_cache_io(trans, cache, path);
3671
btrfs_put_block_group(cache);
3672
}
3673
3674
return ret;
3675
}
3676
3677
int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3678
u64 bytenr, u64 num_bytes, bool alloc)
3679
{
3680
struct btrfs_fs_info *info = trans->fs_info;
3681
struct btrfs_space_info *space_info;
3682
struct btrfs_block_group *cache;
3683
u64 old_val;
3684
bool reclaim = false;
3685
bool bg_already_dirty = true;
3686
int factor;
3687
3688
/* Block accounting for super block */
3689
spin_lock(&info->delalloc_root_lock);
3690
old_val = btrfs_super_bytes_used(info->super_copy);
3691
if (alloc)
3692
old_val += num_bytes;
3693
else
3694
old_val -= num_bytes;
3695
btrfs_set_super_bytes_used(info->super_copy, old_val);
3696
spin_unlock(&info->delalloc_root_lock);
3697
3698
cache = btrfs_lookup_block_group(info, bytenr);
3699
if (!cache)
3700
return -ENOENT;
3701
3702
/* An extent can not span multiple block groups. */
3703
ASSERT(bytenr + num_bytes <= cache->start + cache->length);
3704
3705
space_info = cache->space_info;
3706
factor = btrfs_bg_type_to_factor(cache->flags);
3707
3708
/*
3709
* If this block group has free space cache written out, we need to make
3710
* sure to load it if we are removing space. This is because we need
3711
* the unpinning stage to actually add the space back to the block group,
3712
* otherwise we will leak space.
3713
*/
3714
if (!alloc && !btrfs_block_group_done(cache))
3715
btrfs_cache_block_group(cache, true);
3716
3717
spin_lock(&space_info->lock);
3718
spin_lock(&cache->lock);
3719
3720
if (btrfs_test_opt(info, SPACE_CACHE) &&
3721
cache->disk_cache_state < BTRFS_DC_CLEAR)
3722
cache->disk_cache_state = BTRFS_DC_CLEAR;
3723
3724
old_val = cache->used;
3725
if (alloc) {
3726
old_val += num_bytes;
3727
cache->used = old_val;
3728
cache->reserved -= num_bytes;
3729
cache->reclaim_mark = 0;
3730
space_info->bytes_reserved -= num_bytes;
3731
space_info->bytes_used += num_bytes;
3732
space_info->disk_used += num_bytes * factor;
3733
if (READ_ONCE(space_info->periodic_reclaim))
3734
btrfs_space_info_update_reclaimable(space_info, -num_bytes);
3735
spin_unlock(&cache->lock);
3736
spin_unlock(&space_info->lock);
3737
} else {
3738
old_val -= num_bytes;
3739
cache->used = old_val;
3740
cache->pinned += num_bytes;
3741
btrfs_space_info_update_bytes_pinned(space_info, num_bytes);
3742
space_info->bytes_used -= num_bytes;
3743
space_info->disk_used -= num_bytes * factor;
3744
if (READ_ONCE(space_info->periodic_reclaim))
3745
btrfs_space_info_update_reclaimable(space_info, num_bytes);
3746
else
3747
reclaim = should_reclaim_block_group(cache, num_bytes);
3748
3749
spin_unlock(&cache->lock);
3750
spin_unlock(&space_info->lock);
3751
3752
btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr,
3753
bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
3754
}
3755
3756
spin_lock(&trans->transaction->dirty_bgs_lock);
3757
if (list_empty(&cache->dirty_list)) {
3758
list_add_tail(&cache->dirty_list, &trans->transaction->dirty_bgs);
3759
bg_already_dirty = false;
3760
btrfs_get_block_group(cache);
3761
}
3762
spin_unlock(&trans->transaction->dirty_bgs_lock);
3763
3764
/*
3765
* No longer have used bytes in this block group, queue it for deletion.
3766
* We do this after adding the block group to the dirty list to avoid
3767
* races between cleaner kthread and space cache writeout.
3768
*/
3769
if (!alloc && old_val == 0) {
3770
if (!btrfs_test_opt(info, DISCARD_ASYNC))
3771
btrfs_mark_bg_unused(cache);
3772
} else if (!alloc && reclaim) {
3773
btrfs_mark_bg_to_reclaim(cache);
3774
}
3775
3776
btrfs_put_block_group(cache);
3777
3778
/* Modified block groups are accounted for in the delayed_refs_rsv. */
3779
if (!bg_already_dirty)
3780
btrfs_inc_delayed_refs_rsv_bg_updates(info);
3781
3782
return 0;
3783
}
3784
3785
/*
3786
* Update the block_group and space info counters.
3787
*
3788
* @cache: The cache we are manipulating
3789
* @ram_bytes: The number of bytes of file content, and will be same to
3790
* @num_bytes except for the compress path.
3791
* @num_bytes: The number of bytes in question
3792
* @delalloc: The blocks are allocated for the delalloc write
3793
*
3794
* This is called by the allocator when it reserves space. If this is a
3795
* reservation and the block group has become read only we cannot make the
3796
* reservation and return -EAGAIN, otherwise this function always succeeds.
3797
*/
3798
int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3799
u64 ram_bytes, u64 num_bytes, int delalloc,
3800
bool force_wrong_size_class)
3801
{
3802
struct btrfs_space_info *space_info = cache->space_info;
3803
enum btrfs_block_group_size_class size_class;
3804
int ret = 0;
3805
3806
spin_lock(&space_info->lock);
3807
spin_lock(&cache->lock);
3808
if (cache->ro) {
3809
ret = -EAGAIN;
3810
goto out;
3811
}
3812
3813
if (btrfs_block_group_should_use_size_class(cache)) {
3814
size_class = btrfs_calc_block_group_size_class(num_bytes);
3815
ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3816
if (ret)
3817
goto out;
3818
}
3819
cache->reserved += num_bytes;
3820
space_info->bytes_reserved += num_bytes;
3821
trace_btrfs_space_reservation(cache->fs_info, "space_info",
3822
space_info->flags, num_bytes, 1);
3823
btrfs_space_info_update_bytes_may_use(space_info, -ram_bytes);
3824
if (delalloc)
3825
cache->delalloc_bytes += num_bytes;
3826
3827
/*
3828
* Compression can use less space than we reserved, so wake tickets if
3829
* that happens.
3830
*/
3831
if (num_bytes < ram_bytes)
3832
btrfs_try_granting_tickets(cache->fs_info, space_info);
3833
out:
3834
spin_unlock(&cache->lock);
3835
spin_unlock(&space_info->lock);
3836
return ret;
3837
}
3838
3839
/*
3840
* Update the block_group and space info counters.
3841
*
3842
* @cache: The cache we are manipulating.
3843
* @num_bytes: The number of bytes in question.
3844
* @is_delalloc: Whether the blocks are allocated for a delalloc write.
3845
*
3846
* This is called by somebody who is freeing space that was never actually used
3847
* on disk. For example if you reserve some space for a new leaf in transaction
3848
* A and before transaction A commits you free that leaf, you call this with
3849
* reserve set to 0 in order to clear the reservation.
3850
*/
3851
void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, u64 num_bytes,
3852
bool is_delalloc)
3853
{
3854
struct btrfs_space_info *space_info = cache->space_info;
3855
3856
spin_lock(&space_info->lock);
3857
spin_lock(&cache->lock);
3858
if (cache->ro)
3859
space_info->bytes_readonly += num_bytes;
3860
else if (btrfs_is_zoned(cache->fs_info))
3861
space_info->bytes_zone_unusable += num_bytes;
3862
cache->reserved -= num_bytes;
3863
space_info->bytes_reserved -= num_bytes;
3864
space_info->max_extent_size = 0;
3865
3866
if (is_delalloc)
3867
cache->delalloc_bytes -= num_bytes;
3868
spin_unlock(&cache->lock);
3869
3870
btrfs_try_granting_tickets(cache->fs_info, space_info);
3871
spin_unlock(&space_info->lock);
3872
}
3873
3874
static void force_metadata_allocation(struct btrfs_fs_info *info)
3875
{
3876
struct list_head *head = &info->space_info;
3877
struct btrfs_space_info *found;
3878
3879
list_for_each_entry(found, head, list) {
3880
if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3881
found->force_alloc = CHUNK_ALLOC_FORCE;
3882
}
3883
}
3884
3885
static bool should_alloc_chunk(const struct btrfs_fs_info *fs_info,
3886
const struct btrfs_space_info *sinfo, int force)
3887
{
3888
u64 bytes_used = btrfs_space_info_used(sinfo, false);
3889
u64 thresh;
3890
3891
if (force == CHUNK_ALLOC_FORCE)
3892
return true;
3893
3894
/*
3895
* in limited mode, we want to have some free space up to
3896
* about 1% of the FS size.
3897
*/
3898
if (force == CHUNK_ALLOC_LIMITED) {
3899
thresh = btrfs_super_total_bytes(fs_info->super_copy);
3900
thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3901
3902
if (sinfo->total_bytes - bytes_used < thresh)
3903
return true;
3904
}
3905
3906
if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3907
return false;
3908
return true;
3909
}
3910
3911
int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3912
{
3913
u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3914
struct btrfs_space_info *space_info;
3915
3916
space_info = btrfs_find_space_info(trans->fs_info, type);
3917
if (!space_info) {
3918
DEBUG_WARN();
3919
return -EINVAL;
3920
}
3921
3922
return btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE);
3923
}
3924
3925
static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans,
3926
struct btrfs_space_info *space_info,
3927
u64 flags)
3928
{
3929
struct btrfs_block_group *bg;
3930
int ret;
3931
3932
/*
3933
* Check if we have enough space in the system space info because we
3934
* will need to update device items in the chunk btree and insert a new
3935
* chunk item in the chunk btree as well. This will allocate a new
3936
* system block group if needed.
3937
*/
3938
check_system_chunk(trans, flags);
3939
3940
bg = btrfs_create_chunk(trans, space_info, flags);
3941
if (IS_ERR(bg)) {
3942
ret = PTR_ERR(bg);
3943
goto out;
3944
}
3945
3946
ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3947
/*
3948
* Normally we are not expected to fail with -ENOSPC here, since we have
3949
* previously reserved space in the system space_info and allocated one
3950
* new system chunk if necessary. However there are three exceptions:
3951
*
3952
* 1) We may have enough free space in the system space_info but all the
3953
* existing system block groups have a profile which can not be used
3954
* for extent allocation.
3955
*
3956
* This happens when mounting in degraded mode. For example we have a
3957
* RAID1 filesystem with 2 devices, lose one device and mount the fs
3958
* using the other device in degraded mode. If we then allocate a chunk,
3959
* we may have enough free space in the existing system space_info, but
3960
* none of the block groups can be used for extent allocation since they
3961
* have a RAID1 profile, and because we are in degraded mode with a
3962
* single device, we are forced to allocate a new system chunk with a
3963
* SINGLE profile. Making check_system_chunk() iterate over all system
3964
* block groups and check if they have a usable profile and enough space
3965
* can be slow on very large filesystems, so we tolerate the -ENOSPC and
3966
* try again after forcing allocation of a new system chunk. Like this
3967
* we avoid paying the cost of that search in normal circumstances, when
3968
* we were not mounted in degraded mode;
3969
*
3970
* 2) We had enough free space info the system space_info, and one suitable
3971
* block group to allocate from when we called check_system_chunk()
3972
* above. However right after we called it, the only system block group
3973
* with enough free space got turned into RO mode by a running scrub,
3974
* and in this case we have to allocate a new one and retry. We only
3975
* need do this allocate and retry once, since we have a transaction
3976
* handle and scrub uses the commit root to search for block groups;
3977
*
3978
* 3) We had one system block group with enough free space when we called
3979
* check_system_chunk(), but after that, right before we tried to
3980
* allocate the last extent buffer we needed, a discard operation came
3981
* in and it temporarily removed the last free space entry from the
3982
* block group (discard removes a free space entry, discards it, and
3983
* then adds back the entry to the block group cache).
3984
*/
3985
if (ret == -ENOSPC) {
3986
const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3987
struct btrfs_block_group *sys_bg;
3988
struct btrfs_space_info *sys_space_info;
3989
3990
sys_space_info = btrfs_find_space_info(trans->fs_info, sys_flags);
3991
if (!sys_space_info) {
3992
ret = -EINVAL;
3993
btrfs_abort_transaction(trans, ret);
3994
goto out;
3995
}
3996
3997
sys_bg = btrfs_create_chunk(trans, sys_space_info, sys_flags);
3998
if (IS_ERR(sys_bg)) {
3999
ret = PTR_ERR(sys_bg);
4000
btrfs_abort_transaction(trans, ret);
4001
goto out;
4002
}
4003
4004
ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
4005
if (ret) {
4006
btrfs_abort_transaction(trans, ret);
4007
goto out;
4008
}
4009
4010
ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
4011
if (ret) {
4012
btrfs_abort_transaction(trans, ret);
4013
goto out;
4014
}
4015
} else if (ret) {
4016
btrfs_abort_transaction(trans, ret);
4017
goto out;
4018
}
4019
out:
4020
btrfs_trans_release_chunk_metadata(trans);
4021
4022
if (ret)
4023
return ERR_PTR(ret);
4024
4025
btrfs_get_block_group(bg);
4026
return bg;
4027
}
4028
4029
/*
4030
* Chunk allocation is done in 2 phases:
4031
*
4032
* 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
4033
* the chunk, the chunk mapping, create its block group and add the items
4034
* that belong in the chunk btree to it - more specifically, we need to
4035
* update device items in the chunk btree and add a new chunk item to it.
4036
*
4037
* 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
4038
* group item to the extent btree and the device extent items to the devices
4039
* btree.
4040
*
4041
* This is done to prevent deadlocks. For example when COWing a node from the
4042
* extent btree we are holding a write lock on the node's parent and if we
4043
* trigger chunk allocation and attempted to insert the new block group item
4044
* in the extent btree right way, we could deadlock because the path for the
4045
* insertion can include that parent node. At first glance it seems impossible
4046
* to trigger chunk allocation after starting a transaction since tasks should
4047
* reserve enough transaction units (metadata space), however while that is true
4048
* most of the time, chunk allocation may still be triggered for several reasons:
4049
*
4050
* 1) When reserving metadata, we check if there is enough free space in the
4051
* metadata space_info and therefore don't trigger allocation of a new chunk.
4052
* However later when the task actually tries to COW an extent buffer from
4053
* the extent btree or from the device btree for example, it is forced to
4054
* allocate a new block group (chunk) because the only one that had enough
4055
* free space was just turned to RO mode by a running scrub for example (or
4056
* device replace, block group reclaim thread, etc), so we can not use it
4057
* for allocating an extent and end up being forced to allocate a new one;
4058
*
4059
* 2) Because we only check that the metadata space_info has enough free bytes,
4060
* we end up not allocating a new metadata chunk in that case. However if
4061
* the filesystem was mounted in degraded mode, none of the existing block
4062
* groups might be suitable for extent allocation due to their incompatible
4063
* profile (for e.g. mounting a 2 devices filesystem, where all block groups
4064
* use a RAID1 profile, in degraded mode using a single device). In this case
4065
* when the task attempts to COW some extent buffer of the extent btree for
4066
* example, it will trigger allocation of a new metadata block group with a
4067
* suitable profile (SINGLE profile in the example of the degraded mount of
4068
* the RAID1 filesystem);
4069
*
4070
* 3) The task has reserved enough transaction units / metadata space, but when
4071
* it attempts to COW an extent buffer from the extent or device btree for
4072
* example, it does not find any free extent in any metadata block group,
4073
* therefore forced to try to allocate a new metadata block group.
4074
* This is because some other task allocated all available extents in the
4075
* meanwhile - this typically happens with tasks that don't reserve space
4076
* properly, either intentionally or as a bug. One example where this is
4077
* done intentionally is fsync, as it does not reserve any transaction units
4078
* and ends up allocating a variable number of metadata extents for log
4079
* tree extent buffers;
4080
*
4081
* 4) The task has reserved enough transaction units / metadata space, but right
4082
* before it tries to allocate the last extent buffer it needs, a discard
4083
* operation comes in and, temporarily, removes the last free space entry from
4084
* the only metadata block group that had free space (discard starts by
4085
* removing a free space entry from a block group, then does the discard
4086
* operation and, once it's done, it adds back the free space entry to the
4087
* block group).
4088
*
4089
* We also need this 2 phases setup when adding a device to a filesystem with
4090
* a seed device - we must create new metadata and system chunks without adding
4091
* any of the block group items to the chunk, extent and device btrees. If we
4092
* did not do it this way, we would get ENOSPC when attempting to update those
4093
* btrees, since all the chunks from the seed device are read-only.
4094
*
4095
* Phase 1 does the updates and insertions to the chunk btree because if we had
4096
* it done in phase 2 and have a thundering herd of tasks allocating chunks in
4097
* parallel, we risk having too many system chunks allocated by many tasks if
4098
* many tasks reach phase 1 without the previous ones completing phase 2. In the
4099
* extreme case this leads to exhaustion of the system chunk array in the
4100
* superblock. This is easier to trigger if using a btree node/leaf size of 64K
4101
* and with RAID filesystems (so we have more device items in the chunk btree).
4102
* This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4103
* the system chunk array due to concurrent allocations") provides more details.
4104
*
4105
* Allocation of system chunks does not happen through this function. A task that
4106
* needs to update the chunk btree (the only btree that uses system chunks), must
4107
* preallocate chunk space by calling either check_system_chunk() or
4108
* btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4109
* metadata chunk or when removing a chunk, while the later is used before doing
4110
* a modification to the chunk btree - use cases for the later are adding,
4111
* removing and resizing a device as well as relocation of a system chunk.
4112
* See the comment below for more details.
4113
*
4114
* The reservation of system space, done through check_system_chunk(), as well
4115
* as all the updates and insertions into the chunk btree must be done while
4116
* holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4117
* an extent buffer from the chunks btree we never trigger allocation of a new
4118
* system chunk, which would result in a deadlock (trying to lock twice an
4119
* extent buffer of the chunk btree, first time before triggering the chunk
4120
* allocation and the second time during chunk allocation while attempting to
4121
* update the chunks btree). The system chunk array is also updated while holding
4122
* that mutex. The same logic applies to removing chunks - we must reserve system
4123
* space, update the chunk btree and the system chunk array in the superblock
4124
* while holding fs_info->chunk_mutex.
4125
*
4126
* This function, btrfs_chunk_alloc(), belongs to phase 1.
4127
*
4128
* @space_info: specify which space_info the new chunk should belong to.
4129
*
4130
* If @force is CHUNK_ALLOC_FORCE:
4131
* - return 1 if it successfully allocates a chunk,
4132
* - return errors including -ENOSPC otherwise.
4133
* If @force is NOT CHUNK_ALLOC_FORCE:
4134
* - return 0 if it doesn't need to allocate a new chunk,
4135
* - return 1 if it successfully allocates a chunk,
4136
* - return errors including -ENOSPC otherwise.
4137
*/
4138
int btrfs_chunk_alloc(struct btrfs_trans_handle *trans,
4139
struct btrfs_space_info *space_info, u64 flags,
4140
enum btrfs_chunk_alloc_enum force)
4141
{
4142
struct btrfs_fs_info *fs_info = trans->fs_info;
4143
struct btrfs_block_group *ret_bg;
4144
bool wait_for_alloc = false;
4145
bool should_alloc = false;
4146
bool from_extent_allocation = false;
4147
int ret = 0;
4148
4149
if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4150
from_extent_allocation = true;
4151
force = CHUNK_ALLOC_FORCE;
4152
}
4153
4154
/* Don't re-enter if we're already allocating a chunk */
4155
if (trans->allocating_chunk)
4156
return -ENOSPC;
4157
/*
4158
* Allocation of system chunks can not happen through this path, as we
4159
* could end up in a deadlock if we are allocating a data or metadata
4160
* chunk and there is another task modifying the chunk btree.
4161
*
4162
* This is because while we are holding the chunk mutex, we will attempt
4163
* to add the new chunk item to the chunk btree or update an existing
4164
* device item in the chunk btree, while the other task that is modifying
4165
* the chunk btree is attempting to COW an extent buffer while holding a
4166
* lock on it and on its parent - if the COW operation triggers a system
4167
* chunk allocation, then we can deadlock because we are holding the
4168
* chunk mutex and we may need to access that extent buffer or its parent
4169
* in order to add the chunk item or update a device item.
4170
*
4171
* Tasks that want to modify the chunk tree should reserve system space
4172
* before updating the chunk btree, by calling either
4173
* btrfs_reserve_chunk_metadata() or check_system_chunk().
4174
* It's possible that after a task reserves the space, it still ends up
4175
* here - this happens in the cases described above at do_chunk_alloc().
4176
* The task will have to either retry or fail.
4177
*/
4178
if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4179
return -ENOSPC;
4180
4181
do {
4182
spin_lock(&space_info->lock);
4183
if (force < space_info->force_alloc)
4184
force = space_info->force_alloc;
4185
should_alloc = should_alloc_chunk(fs_info, space_info, force);
4186
if (space_info->full) {
4187
/* No more free physical space */
4188
if (should_alloc)
4189
ret = -ENOSPC;
4190
else
4191
ret = 0;
4192
spin_unlock(&space_info->lock);
4193
return ret;
4194
} else if (!should_alloc) {
4195
spin_unlock(&space_info->lock);
4196
return 0;
4197
} else if (space_info->chunk_alloc) {
4198
/*
4199
* Someone is already allocating, so we need to block
4200
* until this someone is finished and then loop to
4201
* recheck if we should continue with our allocation
4202
* attempt.
4203
*/
4204
wait_for_alloc = true;
4205
force = CHUNK_ALLOC_NO_FORCE;
4206
spin_unlock(&space_info->lock);
4207
mutex_lock(&fs_info->chunk_mutex);
4208
mutex_unlock(&fs_info->chunk_mutex);
4209
} else {
4210
/* Proceed with allocation */
4211
space_info->chunk_alloc = 1;
4212
wait_for_alloc = false;
4213
spin_unlock(&space_info->lock);
4214
}
4215
4216
cond_resched();
4217
} while (wait_for_alloc);
4218
4219
mutex_lock(&fs_info->chunk_mutex);
4220
trans->allocating_chunk = true;
4221
4222
/*
4223
* If we have mixed data/metadata chunks we want to make sure we keep
4224
* allocating mixed chunks instead of individual chunks.
4225
*/
4226
if (btrfs_mixed_space_info(space_info))
4227
flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4228
4229
/*
4230
* if we're doing a data chunk, go ahead and make sure that
4231
* we keep a reasonable number of metadata chunks allocated in the
4232
* FS as well.
4233
*/
4234
if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4235
fs_info->data_chunk_allocations++;
4236
if (!(fs_info->data_chunk_allocations %
4237
fs_info->metadata_ratio))
4238
force_metadata_allocation(fs_info);
4239
}
4240
4241
ret_bg = do_chunk_alloc(trans, space_info, flags);
4242
trans->allocating_chunk = false;
4243
4244
if (IS_ERR(ret_bg)) {
4245
ret = PTR_ERR(ret_bg);
4246
} else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4247
/*
4248
* New block group is likely to be used soon. Try to activate
4249
* it now. Failure is OK for now.
4250
*/
4251
btrfs_zone_activate(ret_bg);
4252
}
4253
4254
if (!ret)
4255
btrfs_put_block_group(ret_bg);
4256
4257
spin_lock(&space_info->lock);
4258
if (ret < 0) {
4259
if (ret == -ENOSPC)
4260
space_info->full = 1;
4261
else
4262
goto out;
4263
} else {
4264
ret = 1;
4265
space_info->max_extent_size = 0;
4266
}
4267
4268
space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4269
out:
4270
space_info->chunk_alloc = 0;
4271
spin_unlock(&space_info->lock);
4272
mutex_unlock(&fs_info->chunk_mutex);
4273
4274
return ret;
4275
}
4276
4277
static u64 get_profile_num_devs(const struct btrfs_fs_info *fs_info, u64 type)
4278
{
4279
u64 num_dev;
4280
4281
num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4282
if (!num_dev)
4283
num_dev = fs_info->fs_devices->rw_devices;
4284
4285
return num_dev;
4286
}
4287
4288
static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4289
u64 bytes,
4290
u64 type)
4291
{
4292
struct btrfs_fs_info *fs_info = trans->fs_info;
4293
struct btrfs_space_info *info;
4294
u64 left;
4295
int ret = 0;
4296
4297
/*
4298
* Needed because we can end up allocating a system chunk and for an
4299
* atomic and race free space reservation in the chunk block reserve.
4300
*/
4301
lockdep_assert_held(&fs_info->chunk_mutex);
4302
4303
info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4304
spin_lock(&info->lock);
4305
left = info->total_bytes - btrfs_space_info_used(info, true);
4306
spin_unlock(&info->lock);
4307
4308
if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4309
btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4310
left, bytes, type);
4311
btrfs_dump_space_info(fs_info, info, 0, false);
4312
}
4313
4314
if (left < bytes) {
4315
u64 flags = btrfs_system_alloc_profile(fs_info);
4316
struct btrfs_block_group *bg;
4317
struct btrfs_space_info *space_info;
4318
4319
space_info = btrfs_find_space_info(fs_info, flags);
4320
ASSERT(space_info);
4321
4322
/*
4323
* Ignore failure to create system chunk. We might end up not
4324
* needing it, as we might not need to COW all nodes/leafs from
4325
* the paths we visit in the chunk tree (they were already COWed
4326
* or created in the current transaction for example).
4327
*/
4328
bg = btrfs_create_chunk(trans, space_info, flags);
4329
if (IS_ERR(bg)) {
4330
ret = PTR_ERR(bg);
4331
} else {
4332
/*
4333
* We have a new chunk. We also need to activate it for
4334
* zoned filesystem.
4335
*/
4336
ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4337
if (ret < 0)
4338
return;
4339
4340
/*
4341
* If we fail to add the chunk item here, we end up
4342
* trying again at phase 2 of chunk allocation, at
4343
* btrfs_create_pending_block_groups(). So ignore
4344
* any error here. An ENOSPC here could happen, due to
4345
* the cases described at do_chunk_alloc() - the system
4346
* block group we just created was just turned into RO
4347
* mode by a scrub for example, or a running discard
4348
* temporarily removed its free space entries, etc.
4349
*/
4350
btrfs_chunk_alloc_add_chunk_item(trans, bg);
4351
}
4352
}
4353
4354
if (!ret) {
4355
ret = btrfs_block_rsv_add(fs_info,
4356
&fs_info->chunk_block_rsv,
4357
bytes, BTRFS_RESERVE_NO_FLUSH);
4358
if (!ret)
4359
trans->chunk_bytes_reserved += bytes;
4360
}
4361
}
4362
4363
/*
4364
* Reserve space in the system space for allocating or removing a chunk.
4365
* The caller must be holding fs_info->chunk_mutex.
4366
*/
4367
void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4368
{
4369
struct btrfs_fs_info *fs_info = trans->fs_info;
4370
const u64 num_devs = get_profile_num_devs(fs_info, type);
4371
u64 bytes;
4372
4373
/* num_devs device items to update and 1 chunk item to add or remove. */
4374
bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4375
btrfs_calc_insert_metadata_size(fs_info, 1);
4376
4377
reserve_chunk_space(trans, bytes, type);
4378
}
4379
4380
/*
4381
* Reserve space in the system space, if needed, for doing a modification to the
4382
* chunk btree.
4383
*
4384
* @trans: A transaction handle.
4385
* @is_item_insertion: Indicate if the modification is for inserting a new item
4386
* in the chunk btree or if it's for the deletion or update
4387
* of an existing item.
4388
*
4389
* This is used in a context where we need to update the chunk btree outside
4390
* block group allocation and removal, to avoid a deadlock with a concurrent
4391
* task that is allocating a metadata or data block group and therefore needs to
4392
* update the chunk btree while holding the chunk mutex. After the update to the
4393
* chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4394
*
4395
*/
4396
void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4397
bool is_item_insertion)
4398
{
4399
struct btrfs_fs_info *fs_info = trans->fs_info;
4400
u64 bytes;
4401
4402
if (is_item_insertion)
4403
bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4404
else
4405
bytes = btrfs_calc_metadata_size(fs_info, 1);
4406
4407
mutex_lock(&fs_info->chunk_mutex);
4408
reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4409
mutex_unlock(&fs_info->chunk_mutex);
4410
}
4411
4412
void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4413
{
4414
struct btrfs_block_group *block_group;
4415
4416
block_group = btrfs_lookup_first_block_group(info, 0);
4417
while (block_group) {
4418
btrfs_wait_block_group_cache_done(block_group);
4419
spin_lock(&block_group->lock);
4420
if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4421
&block_group->runtime_flags)) {
4422
struct btrfs_inode *inode = block_group->inode;
4423
4424
block_group->inode = NULL;
4425
spin_unlock(&block_group->lock);
4426
4427
ASSERT(block_group->io_ctl.inode == NULL);
4428
iput(&inode->vfs_inode);
4429
} else {
4430
spin_unlock(&block_group->lock);
4431
}
4432
block_group = btrfs_next_block_group(block_group);
4433
}
4434
}
4435
4436
static void check_removing_space_info(struct btrfs_space_info *space_info)
4437
{
4438
struct btrfs_fs_info *info = space_info->fs_info;
4439
4440
if (space_info->subgroup_id == BTRFS_SUB_GROUP_PRIMARY) {
4441
/* This is a top space_info, proceed with its children first. */
4442
for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) {
4443
if (space_info->sub_group[i]) {
4444
check_removing_space_info(space_info->sub_group[i]);
4445
kfree(space_info->sub_group[i]);
4446
space_info->sub_group[i] = NULL;
4447
}
4448
}
4449
}
4450
4451
/*
4452
* Do not hide this behind enospc_debug, this is actually important and
4453
* indicates a real bug if this happens.
4454
*/
4455
if (WARN_ON(space_info->bytes_pinned > 0 || space_info->bytes_may_use > 0))
4456
btrfs_dump_space_info(info, space_info, 0, false);
4457
4458
/*
4459
* If there was a failure to cleanup a log tree, very likely due to an
4460
* IO failure on a writeback attempt of one or more of its extent
4461
* buffers, we could not do proper (and cheap) unaccounting of their
4462
* reserved space, so don't warn on bytes_reserved > 0 in that case.
4463
*/
4464
if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4465
!BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4466
if (WARN_ON(space_info->bytes_reserved > 0))
4467
btrfs_dump_space_info(info, space_info, 0, false);
4468
}
4469
4470
WARN_ON(space_info->reclaim_size > 0);
4471
}
4472
4473
/*
4474
* Must be called only after stopping all workers, since we could have block
4475
* group caching kthreads running, and therefore they could race with us if we
4476
* freed the block groups before stopping them.
4477
*/
4478
int btrfs_free_block_groups(struct btrfs_fs_info *info)
4479
{
4480
struct btrfs_block_group *block_group;
4481
struct btrfs_space_info *space_info;
4482
struct btrfs_caching_control *caching_ctl;
4483
struct rb_node *n;
4484
4485
if (btrfs_is_zoned(info)) {
4486
if (info->active_meta_bg) {
4487
btrfs_put_block_group(info->active_meta_bg);
4488
info->active_meta_bg = NULL;
4489
}
4490
if (info->active_system_bg) {
4491
btrfs_put_block_group(info->active_system_bg);
4492
info->active_system_bg = NULL;
4493
}
4494
}
4495
4496
write_lock(&info->block_group_cache_lock);
4497
while (!list_empty(&info->caching_block_groups)) {
4498
caching_ctl = list_first_entry(&info->caching_block_groups,
4499
struct btrfs_caching_control, list);
4500
list_del(&caching_ctl->list);
4501
btrfs_put_caching_control(caching_ctl);
4502
}
4503
write_unlock(&info->block_group_cache_lock);
4504
4505
spin_lock(&info->unused_bgs_lock);
4506
while (!list_empty(&info->unused_bgs)) {
4507
block_group = list_first_entry(&info->unused_bgs,
4508
struct btrfs_block_group,
4509
bg_list);
4510
list_del_init(&block_group->bg_list);
4511
btrfs_put_block_group(block_group);
4512
}
4513
4514
while (!list_empty(&info->reclaim_bgs)) {
4515
block_group = list_first_entry(&info->reclaim_bgs,
4516
struct btrfs_block_group,
4517
bg_list);
4518
list_del_init(&block_group->bg_list);
4519
btrfs_put_block_group(block_group);
4520
}
4521
spin_unlock(&info->unused_bgs_lock);
4522
4523
spin_lock(&info->zone_active_bgs_lock);
4524
while (!list_empty(&info->zone_active_bgs)) {
4525
block_group = list_first_entry(&info->zone_active_bgs,
4526
struct btrfs_block_group,
4527
active_bg_list);
4528
list_del_init(&block_group->active_bg_list);
4529
btrfs_put_block_group(block_group);
4530
}
4531
spin_unlock(&info->zone_active_bgs_lock);
4532
4533
write_lock(&info->block_group_cache_lock);
4534
while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4535
block_group = rb_entry(n, struct btrfs_block_group,
4536
cache_node);
4537
rb_erase_cached(&block_group->cache_node,
4538
&info->block_group_cache_tree);
4539
RB_CLEAR_NODE(&block_group->cache_node);
4540
write_unlock(&info->block_group_cache_lock);
4541
4542
down_write(&block_group->space_info->groups_sem);
4543
list_del(&block_group->list);
4544
up_write(&block_group->space_info->groups_sem);
4545
4546
/*
4547
* We haven't cached this block group, which means we could
4548
* possibly have excluded extents on this block group.
4549
*/
4550
if (block_group->cached == BTRFS_CACHE_NO ||
4551
block_group->cached == BTRFS_CACHE_ERROR)
4552
btrfs_free_excluded_extents(block_group);
4553
4554
btrfs_remove_free_space_cache(block_group);
4555
ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4556
ASSERT(list_empty(&block_group->dirty_list));
4557
ASSERT(list_empty(&block_group->io_list));
4558
ASSERT(list_empty(&block_group->bg_list));
4559
ASSERT(refcount_read(&block_group->refs) == 1);
4560
ASSERT(block_group->swap_extents == 0);
4561
btrfs_put_block_group(block_group);
4562
4563
write_lock(&info->block_group_cache_lock);
4564
}
4565
write_unlock(&info->block_group_cache_lock);
4566
4567
btrfs_release_global_block_rsv(info);
4568
4569
while (!list_empty(&info->space_info)) {
4570
space_info = list_first_entry(&info->space_info,
4571
struct btrfs_space_info, list);
4572
4573
check_removing_space_info(space_info);
4574
list_del(&space_info->list);
4575
btrfs_sysfs_remove_space_info(space_info);
4576
}
4577
return 0;
4578
}
4579
4580
void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4581
{
4582
atomic_inc(&cache->frozen);
4583
}
4584
4585
void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4586
{
4587
struct btrfs_fs_info *fs_info = block_group->fs_info;
4588
bool cleanup;
4589
4590
spin_lock(&block_group->lock);
4591
cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4592
test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4593
spin_unlock(&block_group->lock);
4594
4595
if (cleanup) {
4596
struct btrfs_chunk_map *map;
4597
4598
map = btrfs_find_chunk_map(fs_info, block_group->start, 1);
4599
/* Logic error, can't happen. */
4600
ASSERT(map);
4601
4602
btrfs_remove_chunk_map(fs_info, map);
4603
4604
/* Once for our lookup reference. */
4605
btrfs_free_chunk_map(map);
4606
4607
/*
4608
* We may have left one free space entry and other possible
4609
* tasks trimming this block group have left 1 entry each one.
4610
* Free them if any.
4611
*/
4612
btrfs_remove_free_space_cache(block_group);
4613
}
4614
}
4615
4616
bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4617
{
4618
bool ret = true;
4619
4620
spin_lock(&bg->lock);
4621
if (bg->ro)
4622
ret = false;
4623
else
4624
bg->swap_extents++;
4625
spin_unlock(&bg->lock);
4626
4627
return ret;
4628
}
4629
4630
void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4631
{
4632
spin_lock(&bg->lock);
4633
ASSERT(!bg->ro);
4634
ASSERT(bg->swap_extents >= amount);
4635
bg->swap_extents -= amount;
4636
spin_unlock(&bg->lock);
4637
}
4638
4639
enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4640
{
4641
if (size <= SZ_128K)
4642
return BTRFS_BG_SZ_SMALL;
4643
if (size <= SZ_8M)
4644
return BTRFS_BG_SZ_MEDIUM;
4645
return BTRFS_BG_SZ_LARGE;
4646
}
4647
4648
/*
4649
* Handle a block group allocating an extent in a size class
4650
*
4651
* @bg: The block group we allocated in.
4652
* @size_class: The size class of the allocation.
4653
* @force_wrong_size_class: Whether we are desperate enough to allow
4654
* mismatched size classes.
4655
*
4656
* Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4657
* case of a race that leads to the wrong size class without
4658
* force_wrong_size_class set.
4659
*
4660
* find_free_extent will skip block groups with a mismatched size class until
4661
* it really needs to avoid ENOSPC. In that case it will set
4662
* force_wrong_size_class. However, if a block group is newly allocated and
4663
* doesn't yet have a size class, then it is possible for two allocations of
4664
* different sizes to race and both try to use it. The loser is caught here and
4665
* has to retry.
4666
*/
4667
int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4668
enum btrfs_block_group_size_class size_class,
4669
bool force_wrong_size_class)
4670
{
4671
ASSERT(size_class != BTRFS_BG_SZ_NONE);
4672
4673
/* The new allocation is in the right size class, do nothing */
4674
if (bg->size_class == size_class)
4675
return 0;
4676
/*
4677
* The new allocation is in a mismatched size class.
4678
* This means one of two things:
4679
*
4680
* 1. Two tasks in find_free_extent for different size_classes raced
4681
* and hit the same empty block_group. Make the loser try again.
4682
* 2. A call to find_free_extent got desperate enough to set
4683
* 'force_wrong_slab'. Don't change the size_class, but allow the
4684
* allocation.
4685
*/
4686
if (bg->size_class != BTRFS_BG_SZ_NONE) {
4687
if (force_wrong_size_class)
4688
return 0;
4689
return -EAGAIN;
4690
}
4691
/*
4692
* The happy new block group case: the new allocation is the first
4693
* one in the block_group so we set size_class.
4694
*/
4695
bg->size_class = size_class;
4696
4697
return 0;
4698
}
4699
4700
bool btrfs_block_group_should_use_size_class(const struct btrfs_block_group *bg)
4701
{
4702
if (btrfs_is_zoned(bg->fs_info))
4703
return false;
4704
if (!btrfs_is_block_group_data_only(bg))
4705
return false;
4706
return true;
4707
}
4708
4709