Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/block-rsv.c
50677 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
#include "misc.h"
4
#include "ctree.h"
5
#include "block-rsv.h"
6
#include "space-info.h"
7
#include "transaction.h"
8
#include "block-group.h"
9
#include "fs.h"
10
#include "accessors.h"
11
12
/*
13
* HOW DO BLOCK RESERVES WORK
14
*
15
* Think of block_rsv's as buckets for logically grouped metadata
16
* reservations. Each block_rsv has a ->size and a ->reserved. ->size is
17
* how large we want our block rsv to be, ->reserved is how much space is
18
* currently reserved for this block reserve.
19
*
20
* ->failfast exists for the truncate case, and is described below.
21
*
22
* NORMAL OPERATION
23
*
24
* -> Reserve
25
* Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
26
*
27
* We call into btrfs_reserve_metadata_bytes() with our bytes, which is
28
* accounted for in space_info->bytes_may_use, and then add the bytes to
29
* ->reserved, and ->size in the case of btrfs_block_rsv_add.
30
*
31
* ->size is an over-estimation of how much we may use for a particular
32
* operation.
33
*
34
* -> Use
35
* Entrance: btrfs_use_block_rsv
36
*
37
* When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
38
* to determine the appropriate block_rsv to use, and then verify that
39
* ->reserved has enough space for our tree block allocation. Once
40
* successful we subtract fs_info->nodesize from ->reserved.
41
*
42
* -> Finish
43
* Entrance: btrfs_block_rsv_release
44
*
45
* We are finished with our operation, subtract our individual reservation
46
* from ->size, and then subtract ->size from ->reserved and free up the
47
* excess if there is any.
48
*
49
* There is some logic here to refill the delayed refs rsv or the global rsv
50
* as needed, otherwise the excess is subtracted from
51
* space_info->bytes_may_use.
52
*
53
* TYPES OF BLOCK RESERVES
54
*
55
* BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
56
* These behave normally, as described above, just within the confines of the
57
* lifetime of their particular operation (transaction for the whole trans
58
* handle lifetime, for example).
59
*
60
* BLOCK_RSV_GLOBAL
61
* It is impossible to properly account for all the space that may be required
62
* to make our extent tree updates. This block reserve acts as an overflow
63
* buffer in case our delayed refs reserve does not reserve enough space to
64
* update the extent tree.
65
*
66
* We can steal from this in some cases as well, notably on evict() or
67
* truncate() in order to help users recover from ENOSPC conditions.
68
*
69
* BLOCK_RSV_DELALLOC
70
* The individual item sizes are determined by the per-inode size
71
* calculations, which are described with the delalloc code. This is pretty
72
* straightforward, it's just the calculation of ->size encodes a lot of
73
* different items, and thus it gets used when updating inodes, inserting file
74
* extents, and inserting checksums.
75
*
76
* BLOCK_RSV_DELREFS
77
* We keep a running tally of how many delayed refs we have on the system.
78
* We assume each one of these delayed refs are going to use a full
79
* reservation. We use the transaction items and pre-reserve space for every
80
* operation, and use this reservation to refill any gap between ->size and
81
* ->reserved that may exist.
82
*
83
* From there it's straightforward, removing a delayed ref means we remove its
84
* count from ->size and free up reservations as necessary. Since this is
85
* the most dynamic block reserve in the system, we will try to refill this
86
* block reserve first with any excess returned by any other block reserve.
87
*
88
* BLOCK_RSV_EMPTY
89
* This is the fallback block reserve to make us try to reserve space if we
90
* don't have a specific bucket for this allocation. It is mostly used for
91
* updating the device tree and such, since that is a separate pool we're
92
* content to just reserve space from the space_info on demand.
93
*
94
* BLOCK_RSV_TEMP
95
* This is used by things like truncate and iput. We will temporarily
96
* allocate a block reserve, set it to some size, and then truncate bytes
97
* until we have no space left. With ->failfast set we'll simply return
98
* ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
99
* to make a new reservation. This is because these operations are
100
* unbounded, so we want to do as much work as we can, and then back off and
101
* re-reserve.
102
*/
103
104
static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
105
struct btrfs_block_rsv *block_rsv,
106
struct btrfs_block_rsv *dest, u64 num_bytes,
107
u64 *qgroup_to_release_ret)
108
{
109
struct btrfs_space_info *space_info = block_rsv->space_info;
110
u64 qgroup_to_release = 0;
111
u64 ret;
112
113
spin_lock(&block_rsv->lock);
114
if (num_bytes == (u64)-1) {
115
num_bytes = block_rsv->size;
116
qgroup_to_release = block_rsv->qgroup_rsv_size;
117
}
118
block_rsv->size -= num_bytes;
119
if (block_rsv->reserved >= block_rsv->size) {
120
num_bytes = block_rsv->reserved - block_rsv->size;
121
block_rsv->reserved = block_rsv->size;
122
block_rsv->full = true;
123
} else {
124
num_bytes = 0;
125
}
126
if (qgroup_to_release_ret &&
127
block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
128
qgroup_to_release = block_rsv->qgroup_rsv_reserved -
129
block_rsv->qgroup_rsv_size;
130
block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
131
} else {
132
qgroup_to_release = 0;
133
}
134
spin_unlock(&block_rsv->lock);
135
136
ret = num_bytes;
137
if (num_bytes > 0) {
138
if (dest) {
139
spin_lock(&dest->lock);
140
if (!dest->full) {
141
u64 bytes_to_add;
142
143
bytes_to_add = dest->size - dest->reserved;
144
bytes_to_add = min(num_bytes, bytes_to_add);
145
dest->reserved += bytes_to_add;
146
if (dest->reserved >= dest->size)
147
dest->full = true;
148
num_bytes -= bytes_to_add;
149
}
150
spin_unlock(&dest->lock);
151
}
152
if (num_bytes)
153
btrfs_space_info_free_bytes_may_use(space_info, num_bytes);
154
}
155
if (qgroup_to_release_ret)
156
*qgroup_to_release_ret = qgroup_to_release;
157
return ret;
158
}
159
160
int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
161
struct btrfs_block_rsv *dst, u64 num_bytes,
162
bool update_size)
163
{
164
int ret;
165
166
ret = btrfs_block_rsv_use_bytes(src, num_bytes);
167
if (ret)
168
return ret;
169
170
btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
171
return 0;
172
}
173
174
void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type)
175
{
176
memset(rsv, 0, sizeof(*rsv));
177
spin_lock_init(&rsv->lock);
178
rsv->type = type;
179
}
180
181
void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
182
struct btrfs_block_rsv *rsv,
183
enum btrfs_rsv_type type)
184
{
185
btrfs_init_block_rsv(rsv, type);
186
rsv->space_info = btrfs_find_space_info(fs_info,
187
BTRFS_BLOCK_GROUP_METADATA);
188
}
189
190
struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
191
enum btrfs_rsv_type type)
192
{
193
struct btrfs_block_rsv *block_rsv;
194
195
block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
196
if (!block_rsv)
197
return NULL;
198
199
btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
200
return block_rsv;
201
}
202
203
void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
204
struct btrfs_block_rsv *rsv)
205
{
206
if (!rsv)
207
return;
208
btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
209
kfree(rsv);
210
}
211
212
int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
213
struct btrfs_block_rsv *block_rsv, u64 num_bytes,
214
enum btrfs_reserve_flush_enum flush)
215
{
216
int ret;
217
218
if (num_bytes == 0)
219
return 0;
220
221
ret = btrfs_reserve_metadata_bytes(block_rsv->space_info, num_bytes, flush);
222
if (!ret)
223
btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
224
225
return ret;
226
}
227
228
int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent)
229
{
230
u64 num_bytes = 0;
231
int ret = -ENOSPC;
232
233
spin_lock(&block_rsv->lock);
234
num_bytes = mult_perc(block_rsv->size, min_percent);
235
if (block_rsv->reserved >= num_bytes)
236
ret = 0;
237
spin_unlock(&block_rsv->lock);
238
239
return ret;
240
}
241
242
int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
243
struct btrfs_block_rsv *block_rsv, u64 num_bytes,
244
enum btrfs_reserve_flush_enum flush)
245
{
246
int ret = -ENOSPC;
247
248
if (!block_rsv)
249
return 0;
250
251
spin_lock(&block_rsv->lock);
252
if (block_rsv->reserved >= num_bytes)
253
ret = 0;
254
else
255
num_bytes -= block_rsv->reserved;
256
spin_unlock(&block_rsv->lock);
257
258
if (!ret)
259
return 0;
260
261
ret = btrfs_reserve_metadata_bytes(block_rsv->space_info, num_bytes, flush);
262
if (!ret) {
263
btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
264
return 0;
265
}
266
267
return ret;
268
}
269
270
u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
271
struct btrfs_block_rsv *block_rsv, u64 num_bytes,
272
u64 *qgroup_to_release)
273
{
274
struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
275
struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
276
struct btrfs_block_rsv *target = NULL;
277
278
/*
279
* If we are a delayed block reserve then push to the global rsv,
280
* otherwise dump into the global delayed reserve if it is not full.
281
*/
282
if (block_rsv->type == BTRFS_BLOCK_RSV_DELOPS)
283
target = global_rsv;
284
else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv))
285
target = delayed_rsv;
286
287
if (target && block_rsv->space_info != target->space_info)
288
target = NULL;
289
290
return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
291
qgroup_to_release);
292
}
293
294
int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
295
{
296
int ret = -ENOSPC;
297
298
spin_lock(&block_rsv->lock);
299
if (block_rsv->reserved >= num_bytes) {
300
block_rsv->reserved -= num_bytes;
301
if (block_rsv->reserved < block_rsv->size)
302
block_rsv->full = false;
303
ret = 0;
304
}
305
spin_unlock(&block_rsv->lock);
306
return ret;
307
}
308
309
void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
310
u64 num_bytes, bool update_size)
311
{
312
spin_lock(&block_rsv->lock);
313
block_rsv->reserved += num_bytes;
314
if (update_size)
315
block_rsv->size += num_bytes;
316
else if (block_rsv->reserved >= block_rsv->size)
317
block_rsv->full = true;
318
spin_unlock(&block_rsv->lock);
319
}
320
321
void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
322
{
323
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
324
struct btrfs_space_info *sinfo = block_rsv->space_info;
325
struct btrfs_root *root, *tmp;
326
u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
327
unsigned int min_items = 1;
328
329
/*
330
* The global block rsv is based on the size of the extent tree, the
331
* checksum tree and the root tree. If the fs is empty we want to set
332
* it to a minimal amount for safety.
333
*
334
* We also are going to need to modify the minimum of the tree root and
335
* any global roots we could touch.
336
*/
337
read_lock(&fs_info->global_root_lock);
338
rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
339
rb_node) {
340
if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID ||
341
btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID ||
342
btrfs_root_id(root) == BTRFS_FREE_SPACE_TREE_OBJECTID) {
343
num_bytes += btrfs_root_used(&root->root_item);
344
min_items++;
345
}
346
}
347
read_unlock(&fs_info->global_root_lock);
348
349
if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
350
num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item);
351
min_items++;
352
}
353
354
if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
355
num_bytes += btrfs_root_used(&fs_info->stripe_root->root_item);
356
min_items++;
357
}
358
359
/*
360
* But we also want to reserve enough space so we can do the fallback
361
* global reserve for an unlink, which is an additional
362
* BTRFS_UNLINK_METADATA_UNITS items.
363
*
364
* But we also need space for the delayed ref updates from the unlink,
365
* so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for
366
* each unlink metadata item.
367
*/
368
min_items += BTRFS_UNLINK_METADATA_UNITS;
369
370
num_bytes = max_t(u64, num_bytes,
371
btrfs_calc_insert_metadata_size(fs_info, min_items) +
372
btrfs_calc_delayed_ref_bytes(fs_info,
373
BTRFS_UNLINK_METADATA_UNITS));
374
375
spin_lock(&sinfo->lock);
376
spin_lock(&block_rsv->lock);
377
378
block_rsv->size = min_t(u64, num_bytes, SZ_512M);
379
380
if (block_rsv->reserved < block_rsv->size) {
381
num_bytes = block_rsv->size - block_rsv->reserved;
382
btrfs_space_info_update_bytes_may_use(sinfo, num_bytes);
383
block_rsv->reserved = block_rsv->size;
384
} else if (block_rsv->reserved > block_rsv->size) {
385
num_bytes = block_rsv->reserved - block_rsv->size;
386
btrfs_space_info_update_bytes_may_use(sinfo, -num_bytes);
387
block_rsv->reserved = block_rsv->size;
388
btrfs_try_granting_tickets(sinfo);
389
}
390
391
block_rsv->full = (block_rsv->reserved == block_rsv->size);
392
393
if (block_rsv->size >= sinfo->total_bytes)
394
sinfo->force_alloc = CHUNK_ALLOC_FORCE;
395
spin_unlock(&block_rsv->lock);
396
spin_unlock(&sinfo->lock);
397
}
398
399
void btrfs_init_root_block_rsv(struct btrfs_root *root)
400
{
401
struct btrfs_fs_info *fs_info = root->fs_info;
402
403
switch (btrfs_root_id(root)) {
404
case BTRFS_CSUM_TREE_OBJECTID:
405
case BTRFS_EXTENT_TREE_OBJECTID:
406
case BTRFS_FREE_SPACE_TREE_OBJECTID:
407
case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
408
case BTRFS_RAID_STRIPE_TREE_OBJECTID:
409
root->block_rsv = &fs_info->delayed_refs_rsv;
410
break;
411
case BTRFS_ROOT_TREE_OBJECTID:
412
case BTRFS_DEV_TREE_OBJECTID:
413
case BTRFS_QUOTA_TREE_OBJECTID:
414
root->block_rsv = &fs_info->global_block_rsv;
415
break;
416
case BTRFS_CHUNK_TREE_OBJECTID:
417
root->block_rsv = &fs_info->chunk_block_rsv;
418
break;
419
case BTRFS_TREE_LOG_OBJECTID:
420
root->block_rsv = &fs_info->treelog_rsv;
421
break;
422
case BTRFS_REMAP_TREE_OBJECTID:
423
root->block_rsv = &fs_info->remap_block_rsv;
424
break;
425
default:
426
root->block_rsv = NULL;
427
break;
428
}
429
}
430
431
void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
432
{
433
struct btrfs_space_info *space_info;
434
435
space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
436
fs_info->chunk_block_rsv.space_info = space_info;
437
438
space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA_REMAP);
439
fs_info->remap_block_rsv.space_info = space_info;
440
441
space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
442
fs_info->global_block_rsv.space_info = space_info;
443
fs_info->trans_block_rsv.space_info = space_info;
444
fs_info->empty_block_rsv.space_info = space_info;
445
fs_info->delayed_block_rsv.space_info = space_info;
446
fs_info->delayed_refs_rsv.space_info = space_info;
447
448
/* The treelog_rsv uses a dedicated space_info on the zoned mode. */
449
if (!btrfs_is_zoned(fs_info)) {
450
fs_info->treelog_rsv.space_info = space_info;
451
} else {
452
ASSERT(space_info->sub_group[0]->subgroup_id == BTRFS_SUB_GROUP_TREELOG);
453
fs_info->treelog_rsv.space_info = space_info->sub_group[0];
454
}
455
456
btrfs_update_global_block_rsv(fs_info);
457
}
458
459
void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
460
{
461
btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
462
NULL);
463
WARN_ON(fs_info->trans_block_rsv.size > 0);
464
WARN_ON(fs_info->trans_block_rsv.reserved > 0);
465
WARN_ON(fs_info->chunk_block_rsv.size > 0);
466
WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
467
WARN_ON(fs_info->remap_block_rsv.size > 0);
468
WARN_ON(fs_info->remap_block_rsv.reserved > 0);
469
WARN_ON(fs_info->delayed_block_rsv.size > 0);
470
WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
471
WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
472
WARN_ON(fs_info->delayed_refs_rsv.size > 0);
473
}
474
475
static struct btrfs_block_rsv *get_block_rsv(
476
const struct btrfs_trans_handle *trans,
477
const struct btrfs_root *root)
478
{
479
struct btrfs_fs_info *fs_info = root->fs_info;
480
struct btrfs_block_rsv *block_rsv = NULL;
481
482
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
483
(root == fs_info->uuid_root) ||
484
(trans->adding_csums && btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID))
485
block_rsv = trans->block_rsv;
486
487
if (!block_rsv)
488
block_rsv = root->block_rsv;
489
490
if (!block_rsv)
491
block_rsv = &fs_info->empty_block_rsv;
492
493
return block_rsv;
494
}
495
496
struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
497
struct btrfs_root *root,
498
u32 blocksize)
499
{
500
struct btrfs_fs_info *fs_info = root->fs_info;
501
struct btrfs_block_rsv *block_rsv;
502
struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
503
int ret;
504
bool global_updated = false;
505
506
block_rsv = get_block_rsv(trans, root);
507
508
if (unlikely(btrfs_block_rsv_size(block_rsv) == 0))
509
goto try_reserve;
510
again:
511
ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
512
if (!ret)
513
return block_rsv;
514
515
if (block_rsv->failfast)
516
return ERR_PTR(ret);
517
518
if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
519
global_updated = true;
520
btrfs_update_global_block_rsv(fs_info);
521
goto again;
522
}
523
524
/*
525
* The global reserve still exists to save us from ourselves, so don't
526
* warn_on if we are short on our delayed refs reserve.
527
*/
528
if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
529
btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
530
static DEFINE_RATELIMIT_STATE(_rs,
531
DEFAULT_RATELIMIT_INTERVAL * 10,
532
/*DEFAULT_RATELIMIT_BURST*/ 1);
533
if (__ratelimit(&_rs))
534
WARN(1, KERN_DEBUG
535
"BTRFS: block rsv %d returned %d\n",
536
block_rsv->type, ret);
537
}
538
try_reserve:
539
ret = btrfs_reserve_metadata_bytes(block_rsv->space_info, blocksize,
540
BTRFS_RESERVE_NO_FLUSH);
541
if (!ret)
542
return block_rsv;
543
/*
544
* If we couldn't reserve metadata bytes try and use some from
545
* the global reserve if its space type is the same as the global
546
* reservation.
547
*/
548
if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
549
block_rsv->space_info == global_rsv->space_info) {
550
ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
551
if (!ret)
552
return global_rsv;
553
}
554
555
/*
556
* All hope is lost, but of course our reservations are overly
557
* pessimistic, so instead of possibly having an ENOSPC abort here, try
558
* one last time to force a reservation if there's enough actual space
559
* on disk to make the reservation.
560
*/
561
ret = btrfs_reserve_metadata_bytes(block_rsv->space_info, blocksize,
562
BTRFS_RESERVE_FLUSH_EMERGENCY);
563
if (!ret)
564
return block_rsv;
565
566
return ERR_PTR(ret);
567
}
568
569
int btrfs_check_trunc_cache_free_space(const struct btrfs_fs_info *fs_info,
570
struct btrfs_block_rsv *rsv)
571
{
572
u64 needed_bytes;
573
int ret;
574
575
/* 1 for slack space, 1 for updating the inode */
576
needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
577
btrfs_calc_metadata_size(fs_info, 1);
578
579
spin_lock(&rsv->lock);
580
if (rsv->reserved < needed_bytes)
581
ret = -ENOSPC;
582
else
583
ret = 0;
584
spin_unlock(&rsv->lock);
585
return ret;
586
}
587
588