Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/ctree.c
49641 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2007,2008 Oracle. All rights reserved.
4
*/
5
6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10
#include <linux/error-injection.h>
11
#include "messages.h"
12
#include "ctree.h"
13
#include "disk-io.h"
14
#include "transaction.h"
15
#include "print-tree.h"
16
#include "locking.h"
17
#include "volumes.h"
18
#include "qgroup.h"
19
#include "tree-mod-log.h"
20
#include "tree-checker.h"
21
#include "fs.h"
22
#include "accessors.h"
23
#include "extent-tree.h"
24
#include "relocation.h"
25
#include "file-item.h"
26
27
static struct kmem_cache *btrfs_path_cachep;
28
29
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30
*root, struct btrfs_path *path, int level);
31
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32
const struct btrfs_key *ins_key, struct btrfs_path *path,
33
int data_size, bool extend);
34
static int push_node_left(struct btrfs_trans_handle *trans,
35
struct extent_buffer *dst,
36
struct extent_buffer *src, bool empty);
37
static int balance_node_right(struct btrfs_trans_handle *trans,
38
struct extent_buffer *dst_buf,
39
struct extent_buffer *src_buf);
40
/*
41
* The leaf data grows from end-to-front in the node. this returns the address
42
* of the start of the last item, which is the stop of the leaf data stack.
43
*/
44
static unsigned int leaf_data_end(const struct extent_buffer *leaf)
45
{
46
u32 nr = btrfs_header_nritems(leaf);
47
48
if (nr == 0)
49
return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
50
return btrfs_item_offset(leaf, nr - 1);
51
}
52
53
/*
54
* Move data in a @leaf (using memmove, safe for overlapping ranges).
55
*
56
* @leaf: leaf that we're doing a memmove on
57
* @dst_offset: item data offset we're moving to
58
* @src_offset: item data offset were' moving from
59
* @len: length of the data we're moving
60
*
61
* Wrapper around memmove_extent_buffer() that takes into account the header on
62
* the leaf. The btrfs_item offset's start directly after the header, so we
63
* have to adjust any offsets to account for the header in the leaf. This
64
* handles that math to simplify the callers.
65
*/
66
static inline void memmove_leaf_data(const struct extent_buffer *leaf,
67
unsigned long dst_offset,
68
unsigned long src_offset,
69
unsigned long len)
70
{
71
memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
72
btrfs_item_nr_offset(leaf, 0) + src_offset, len);
73
}
74
75
/*
76
* Copy item data from @src into @dst at the given @offset.
77
*
78
* @dst: destination leaf that we're copying into
79
* @src: source leaf that we're copying from
80
* @dst_offset: item data offset we're copying to
81
* @src_offset: item data offset were' copying from
82
* @len: length of the data we're copying
83
*
84
* Wrapper around copy_extent_buffer() that takes into account the header on
85
* the leaf. The btrfs_item offset's start directly after the header, so we
86
* have to adjust any offsets to account for the header in the leaf. This
87
* handles that math to simplify the callers.
88
*/
89
static inline void copy_leaf_data(const struct extent_buffer *dst,
90
const struct extent_buffer *src,
91
unsigned long dst_offset,
92
unsigned long src_offset, unsigned long len)
93
{
94
copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
95
btrfs_item_nr_offset(src, 0) + src_offset, len);
96
}
97
98
/*
99
* Move items in a @leaf (using memmove).
100
*
101
* @dst: destination leaf for the items
102
* @dst_item: the item nr we're copying into
103
* @src_item: the item nr we're copying from
104
* @nr_items: the number of items to copy
105
*
106
* Wrapper around memmove_extent_buffer() that does the math to get the
107
* appropriate offsets into the leaf from the item numbers.
108
*/
109
static inline void memmove_leaf_items(const struct extent_buffer *leaf,
110
int dst_item, int src_item, int nr_items)
111
{
112
memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
113
btrfs_item_nr_offset(leaf, src_item),
114
nr_items * sizeof(struct btrfs_item));
115
}
116
117
/*
118
* Copy items from @src into @dst at the given @offset.
119
*
120
* @dst: destination leaf for the items
121
* @src: source leaf for the items
122
* @dst_item: the item nr we're copying into
123
* @src_item: the item nr we're copying from
124
* @nr_items: the number of items to copy
125
*
126
* Wrapper around copy_extent_buffer() that does the math to get the
127
* appropriate offsets into the leaf from the item numbers.
128
*/
129
static inline void copy_leaf_items(const struct extent_buffer *dst,
130
const struct extent_buffer *src,
131
int dst_item, int src_item, int nr_items)
132
{
133
copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
134
btrfs_item_nr_offset(src, src_item),
135
nr_items * sizeof(struct btrfs_item));
136
}
137
138
struct btrfs_path *btrfs_alloc_path(void)
139
{
140
might_sleep();
141
142
return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
143
}
144
145
/* this also releases the path */
146
void btrfs_free_path(struct btrfs_path *p)
147
{
148
if (!p)
149
return;
150
btrfs_release_path(p);
151
kmem_cache_free(btrfs_path_cachep, p);
152
}
153
154
/*
155
* path release drops references on the extent buffers in the path
156
* and it drops any locks held by this path
157
*
158
* It is safe to call this on paths that no locks or extent buffers held.
159
*/
160
noinline void btrfs_release_path(struct btrfs_path *p)
161
{
162
int i;
163
164
for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
165
p->slots[i] = 0;
166
if (!p->nodes[i])
167
continue;
168
if (p->locks[i]) {
169
btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
170
p->locks[i] = 0;
171
}
172
free_extent_buffer(p->nodes[i]);
173
p->nodes[i] = NULL;
174
}
175
}
176
177
/*
178
* safely gets a reference on the root node of a tree. A lock
179
* is not taken, so a concurrent writer may put a different node
180
* at the root of the tree. See btrfs_lock_root_node for the
181
* looping required.
182
*
183
* The extent buffer returned by this has a reference taken, so
184
* it won't disappear. It may stop being the root of the tree
185
* at any time because there are no locks held.
186
*/
187
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
188
{
189
struct extent_buffer *eb;
190
191
while (1) {
192
rcu_read_lock();
193
eb = rcu_dereference(root->node);
194
195
/*
196
* RCU really hurts here, we could free up the root node because
197
* it was COWed but we may not get the new root node yet so do
198
* the inc_not_zero dance and if it doesn't work then
199
* synchronize_rcu and try again.
200
*/
201
if (refcount_inc_not_zero(&eb->refs)) {
202
rcu_read_unlock();
203
break;
204
}
205
rcu_read_unlock();
206
synchronize_rcu();
207
}
208
return eb;
209
}
210
211
/*
212
* Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
213
* just get put onto a simple dirty list. Transaction walks this list to make
214
* sure they get properly updated on disk.
215
*/
216
static void add_root_to_dirty_list(struct btrfs_root *root)
217
{
218
struct btrfs_fs_info *fs_info = root->fs_info;
219
220
if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
221
!test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
222
return;
223
224
spin_lock(&fs_info->trans_lock);
225
if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
226
/* Want the extent tree to be the last on the list */
227
if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
228
list_move_tail(&root->dirty_list,
229
&fs_info->dirty_cowonly_roots);
230
else
231
list_move(&root->dirty_list,
232
&fs_info->dirty_cowonly_roots);
233
}
234
spin_unlock(&fs_info->trans_lock);
235
}
236
237
/*
238
* used by snapshot creation to make a copy of a root for a tree with
239
* a given objectid. The buffer with the new root node is returned in
240
* cow_ret, and this func returns zero on success or a negative error code.
241
*/
242
int btrfs_copy_root(struct btrfs_trans_handle *trans,
243
struct btrfs_root *root,
244
struct extent_buffer *buf,
245
struct extent_buffer **cow_ret, u64 new_root_objectid)
246
{
247
struct btrfs_fs_info *fs_info = root->fs_info;
248
struct extent_buffer *cow;
249
int ret = 0;
250
int level;
251
struct btrfs_disk_key disk_key;
252
u64 reloc_src_root = 0;
253
254
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
255
trans->transid != fs_info->running_transaction->transid);
256
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
257
trans->transid != btrfs_get_root_last_trans(root));
258
259
level = btrfs_header_level(buf);
260
if (level == 0)
261
btrfs_item_key(buf, &disk_key, 0);
262
else
263
btrfs_node_key(buf, &disk_key, 0);
264
265
if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
266
reloc_src_root = btrfs_header_owner(buf);
267
cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
268
&disk_key, level, buf->start, 0,
269
reloc_src_root, BTRFS_NESTING_NEW_ROOT);
270
if (IS_ERR(cow))
271
return PTR_ERR(cow);
272
273
copy_extent_buffer_full(cow, buf);
274
btrfs_set_header_bytenr(cow, cow->start);
275
btrfs_set_header_generation(cow, trans->transid);
276
btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
277
btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
278
BTRFS_HEADER_FLAG_RELOC);
279
if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280
btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
281
else
282
btrfs_set_header_owner(cow, new_root_objectid);
283
284
write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
285
286
if (unlikely(btrfs_header_generation(buf) > trans->transid)) {
287
btrfs_tree_unlock(cow);
288
free_extent_buffer(cow);
289
ret = -EUCLEAN;
290
btrfs_abort_transaction(trans, ret);
291
return ret;
292
}
293
294
if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
295
ret = btrfs_inc_ref(trans, root, cow, 1);
296
if (unlikely(ret))
297
btrfs_abort_transaction(trans, ret);
298
} else {
299
ret = btrfs_inc_ref(trans, root, cow, 0);
300
if (unlikely(ret))
301
btrfs_abort_transaction(trans, ret);
302
}
303
if (ret) {
304
btrfs_tree_unlock(cow);
305
free_extent_buffer(cow);
306
return ret;
307
}
308
309
btrfs_mark_buffer_dirty(trans, cow);
310
*cow_ret = cow;
311
return 0;
312
}
313
314
/*
315
* check if the tree block can be shared by multiple trees
316
*/
317
bool btrfs_block_can_be_shared(const struct btrfs_trans_handle *trans,
318
const struct btrfs_root *root,
319
const struct extent_buffer *buf)
320
{
321
const u64 buf_gen = btrfs_header_generation(buf);
322
323
/*
324
* Tree blocks not in shareable trees and tree roots are never shared.
325
* If a block was allocated after the last snapshot and the block was
326
* not allocated by tree relocation, we know the block is not shared.
327
*/
328
329
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
330
return false;
331
332
if (buf == root->node)
333
return false;
334
335
if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
336
!btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
337
return false;
338
339
if (buf != root->commit_root)
340
return true;
341
342
/*
343
* An extent buffer that used to be the commit root may still be shared
344
* because the tree height may have increased and it became a child of a
345
* higher level root. This can happen when snapshotting a subvolume
346
* created in the current transaction.
347
*/
348
if (buf_gen == trans->transid)
349
return true;
350
351
return false;
352
}
353
354
static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
355
struct btrfs_root *root,
356
struct extent_buffer *buf,
357
struct extent_buffer *cow,
358
int *last_ref)
359
{
360
struct btrfs_fs_info *fs_info = root->fs_info;
361
u64 refs;
362
u64 owner;
363
u64 flags;
364
int ret;
365
366
/*
367
* Backrefs update rules:
368
*
369
* Always use full backrefs for extent pointers in tree block
370
* allocated by tree relocation.
371
*
372
* If a shared tree block is no longer referenced by its owner
373
* tree (btrfs_header_owner(buf) == root->root_key.objectid),
374
* use full backrefs for extent pointers in tree block.
375
*
376
* If a tree block is been relocating
377
* (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
378
* use full backrefs for extent pointers in tree block.
379
* The reason for this is some operations (such as drop tree)
380
* are only allowed for blocks use full backrefs.
381
*/
382
383
if (btrfs_block_can_be_shared(trans, root, buf)) {
384
ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
385
btrfs_header_level(buf), 1,
386
&refs, &flags, NULL);
387
if (ret)
388
return ret;
389
if (unlikely(refs == 0)) {
390
btrfs_crit(fs_info,
391
"found 0 references for tree block at bytenr %llu level %d root %llu",
392
buf->start, btrfs_header_level(buf),
393
btrfs_root_id(root));
394
ret = -EUCLEAN;
395
btrfs_abort_transaction(trans, ret);
396
return ret;
397
}
398
} else {
399
refs = 1;
400
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
401
btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
402
flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
403
else
404
flags = 0;
405
}
406
407
owner = btrfs_header_owner(buf);
408
if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
409
!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
410
btrfs_crit(fs_info,
411
"found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
412
buf->start, btrfs_header_level(buf),
413
btrfs_root_id(root), refs, flags);
414
ret = -EUCLEAN;
415
btrfs_abort_transaction(trans, ret);
416
return ret;
417
}
418
419
if (refs > 1) {
420
if ((owner == btrfs_root_id(root) ||
421
btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
422
!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
423
ret = btrfs_inc_ref(trans, root, buf, 1);
424
if (ret)
425
return ret;
426
427
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
428
ret = btrfs_dec_ref(trans, root, buf, 0);
429
if (ret)
430
return ret;
431
ret = btrfs_inc_ref(trans, root, cow, 1);
432
if (ret)
433
return ret;
434
}
435
ret = btrfs_set_disk_extent_flags(trans, buf,
436
BTRFS_BLOCK_FLAG_FULL_BACKREF);
437
if (ret)
438
return ret;
439
} else {
440
441
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
442
ret = btrfs_inc_ref(trans, root, cow, 1);
443
else
444
ret = btrfs_inc_ref(trans, root, cow, 0);
445
if (ret)
446
return ret;
447
}
448
} else {
449
if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
450
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
451
ret = btrfs_inc_ref(trans, root, cow, 1);
452
else
453
ret = btrfs_inc_ref(trans, root, cow, 0);
454
if (ret)
455
return ret;
456
ret = btrfs_dec_ref(trans, root, buf, 1);
457
if (ret)
458
return ret;
459
}
460
btrfs_clear_buffer_dirty(trans, buf);
461
*last_ref = 1;
462
}
463
return 0;
464
}
465
466
/*
467
* does the dirty work in cow of a single block. The parent block (if
468
* supplied) is updated to point to the new cow copy. The new buffer is marked
469
* dirty and returned locked. If you modify the block it needs to be marked
470
* dirty again.
471
*
472
* search_start -- an allocation hint for the new block
473
*
474
* empty_size -- a hint that you plan on doing more cow. This is the size in
475
* bytes the allocator should try to find free next to the block it returns.
476
* This is just a hint and may be ignored by the allocator.
477
*/
478
int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
479
struct btrfs_root *root,
480
struct extent_buffer *buf,
481
struct extent_buffer *parent, int parent_slot,
482
struct extent_buffer **cow_ret,
483
u64 search_start, u64 empty_size,
484
enum btrfs_lock_nesting nest)
485
{
486
struct btrfs_fs_info *fs_info = root->fs_info;
487
struct btrfs_disk_key disk_key;
488
struct extent_buffer *cow;
489
int level, ret;
490
int last_ref = 0;
491
int unlock_orig = 0;
492
u64 parent_start = 0;
493
u64 reloc_src_root = 0;
494
495
if (*cow_ret == buf)
496
unlock_orig = 1;
497
498
btrfs_assert_tree_write_locked(buf);
499
500
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
501
trans->transid != fs_info->running_transaction->transid);
502
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
503
trans->transid != btrfs_get_root_last_trans(root));
504
505
level = btrfs_header_level(buf);
506
507
if (level == 0)
508
btrfs_item_key(buf, &disk_key, 0);
509
else
510
btrfs_node_key(buf, &disk_key, 0);
511
512
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
513
if (parent)
514
parent_start = parent->start;
515
reloc_src_root = btrfs_header_owner(buf);
516
}
517
cow = btrfs_alloc_tree_block(trans, root, parent_start,
518
btrfs_root_id(root), &disk_key, level,
519
search_start, empty_size, reloc_src_root, nest);
520
if (IS_ERR(cow))
521
return PTR_ERR(cow);
522
523
/* cow is set to blocking by btrfs_init_new_buffer */
524
525
copy_extent_buffer_full(cow, buf);
526
btrfs_set_header_bytenr(cow, cow->start);
527
btrfs_set_header_generation(cow, trans->transid);
528
btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
529
btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
530
BTRFS_HEADER_FLAG_RELOC);
531
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
532
btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
533
else
534
btrfs_set_header_owner(cow, btrfs_root_id(root));
535
536
write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
537
538
ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
539
if (unlikely(ret)) {
540
btrfs_abort_transaction(trans, ret);
541
goto error_unlock_cow;
542
}
543
544
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
545
ret = btrfs_reloc_cow_block(trans, root, buf, cow);
546
if (unlikely(ret)) {
547
btrfs_abort_transaction(trans, ret);
548
goto error_unlock_cow;
549
}
550
}
551
552
if (buf == root->node) {
553
WARN_ON(parent && parent != buf);
554
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
555
btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
556
parent_start = buf->start;
557
558
ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
559
if (unlikely(ret < 0)) {
560
btrfs_abort_transaction(trans, ret);
561
goto error_unlock_cow;
562
}
563
refcount_inc(&cow->refs);
564
rcu_assign_pointer(root->node, cow);
565
566
ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
567
parent_start, last_ref);
568
free_extent_buffer(buf);
569
add_root_to_dirty_list(root);
570
if (unlikely(ret < 0)) {
571
btrfs_abort_transaction(trans, ret);
572
goto error_unlock_cow;
573
}
574
} else {
575
WARN_ON(trans->transid != btrfs_header_generation(parent));
576
ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
577
BTRFS_MOD_LOG_KEY_REPLACE);
578
if (unlikely(ret)) {
579
btrfs_abort_transaction(trans, ret);
580
goto error_unlock_cow;
581
}
582
btrfs_set_node_blockptr(parent, parent_slot,
583
cow->start);
584
btrfs_set_node_ptr_generation(parent, parent_slot,
585
trans->transid);
586
btrfs_mark_buffer_dirty(trans, parent);
587
if (last_ref) {
588
ret = btrfs_tree_mod_log_free_eb(buf);
589
if (unlikely(ret)) {
590
btrfs_abort_transaction(trans, ret);
591
goto error_unlock_cow;
592
}
593
}
594
ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
595
parent_start, last_ref);
596
if (unlikely(ret < 0)) {
597
btrfs_abort_transaction(trans, ret);
598
goto error_unlock_cow;
599
}
600
}
601
602
trace_btrfs_cow_block(root, buf, cow);
603
if (unlock_orig)
604
btrfs_tree_unlock(buf);
605
free_extent_buffer_stale(buf);
606
btrfs_mark_buffer_dirty(trans, cow);
607
*cow_ret = cow;
608
return 0;
609
610
error_unlock_cow:
611
btrfs_tree_unlock(cow);
612
free_extent_buffer(cow);
613
return ret;
614
}
615
616
static inline bool should_cow_block(const struct btrfs_trans_handle *trans,
617
const struct btrfs_root *root,
618
const struct extent_buffer *buf)
619
{
620
if (btrfs_is_testing(root->fs_info))
621
return false;
622
623
/*
624
* We do not need to cow a block if
625
* 1) this block is not created or changed in this transaction;
626
* 2) this block does not belong to TREE_RELOC tree;
627
* 3) the root is not forced COW.
628
*
629
* What is forced COW:
630
* when we create snapshot during committing the transaction,
631
* after we've finished copying src root, we must COW the shared
632
* block to ensure the metadata consistency.
633
*/
634
635
if (btrfs_header_generation(buf) != trans->transid)
636
return true;
637
638
if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN))
639
return true;
640
641
/* Ensure we can see the FORCE_COW bit. */
642
smp_mb__before_atomic();
643
if (test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
644
return true;
645
646
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
647
return false;
648
649
if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
650
return true;
651
652
return false;
653
}
654
655
/*
656
* COWs a single block, see btrfs_force_cow_block() for the real work.
657
* This version of it has extra checks so that a block isn't COWed more than
658
* once per transaction, as long as it hasn't been written yet
659
*/
660
int btrfs_cow_block(struct btrfs_trans_handle *trans,
661
struct btrfs_root *root, struct extent_buffer *buf,
662
struct extent_buffer *parent, int parent_slot,
663
struct extent_buffer **cow_ret,
664
enum btrfs_lock_nesting nest)
665
{
666
struct btrfs_fs_info *fs_info = root->fs_info;
667
u64 search_start;
668
669
if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
670
btrfs_abort_transaction(trans, -EUCLEAN);
671
btrfs_crit(fs_info,
672
"attempt to COW block %llu on root %llu that is being deleted",
673
buf->start, btrfs_root_id(root));
674
return -EUCLEAN;
675
}
676
677
/*
678
* COWing must happen through a running transaction, which always
679
* matches the current fs generation (it's a transaction with a state
680
* less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
681
* into error state to prevent the commit of any transaction.
682
*/
683
if (unlikely(trans->transaction != fs_info->running_transaction ||
684
trans->transid != fs_info->generation)) {
685
btrfs_abort_transaction(trans, -EUCLEAN);
686
btrfs_crit(fs_info,
687
"unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
688
buf->start, btrfs_root_id(root), trans->transid,
689
fs_info->running_transaction->transid,
690
fs_info->generation);
691
return -EUCLEAN;
692
}
693
694
if (!should_cow_block(trans, root, buf)) {
695
*cow_ret = buf;
696
return 0;
697
}
698
699
search_start = round_down(buf->start, SZ_1G);
700
701
/*
702
* Before CoWing this block for later modification, check if it's
703
* the subtree root and do the delayed subtree trace if needed.
704
*
705
* Also We don't care about the error, as it's handled internally.
706
*/
707
btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
708
return btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
709
cow_ret, search_start, 0, nest);
710
}
711
ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
712
713
/*
714
* same as comp_keys only with two btrfs_key's
715
*/
716
int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
717
{
718
if (k1->objectid > k2->objectid)
719
return 1;
720
if (k1->objectid < k2->objectid)
721
return -1;
722
if (k1->type > k2->type)
723
return 1;
724
if (k1->type < k2->type)
725
return -1;
726
if (k1->offset > k2->offset)
727
return 1;
728
if (k1->offset < k2->offset)
729
return -1;
730
return 0;
731
}
732
733
/*
734
* Search for a key in the given extent_buffer.
735
*
736
* The lower boundary for the search is specified by the slot number @first_slot.
737
* Use a value of 0 to search over the whole extent buffer. Works for both
738
* leaves and nodes.
739
*
740
* The slot in the extent buffer is returned via @slot. If the key exists in the
741
* extent buffer, then @slot will point to the slot where the key is, otherwise
742
* it points to the slot where you would insert the key.
743
*
744
* Slot may point to the total number of items (i.e. one position beyond the last
745
* key) if the key is bigger than the last key in the extent buffer.
746
*/
747
int btrfs_bin_search(const struct extent_buffer *eb, int first_slot,
748
const struct btrfs_key *key, int *slot)
749
{
750
unsigned long p;
751
int item_size;
752
/*
753
* Use unsigned types for the low and high slots, so that we get a more
754
* efficient division in the search loop below.
755
*/
756
u32 low = first_slot;
757
u32 high = btrfs_header_nritems(eb);
758
int ret;
759
const int key_size = sizeof(struct btrfs_disk_key);
760
761
if (unlikely(low > high)) {
762
btrfs_err(eb->fs_info,
763
"%s: low (%u) > high (%u) eb %llu owner %llu level %d",
764
__func__, low, high, eb->start,
765
btrfs_header_owner(eb), btrfs_header_level(eb));
766
return -EINVAL;
767
}
768
769
if (btrfs_header_level(eb) == 0) {
770
p = offsetof(struct btrfs_leaf, items);
771
item_size = sizeof(struct btrfs_item);
772
} else {
773
p = offsetof(struct btrfs_node, ptrs);
774
item_size = sizeof(struct btrfs_key_ptr);
775
}
776
777
while (low < high) {
778
const int unit_size = eb->folio_size;
779
unsigned long oil;
780
unsigned long offset;
781
struct btrfs_disk_key *tmp;
782
struct btrfs_disk_key unaligned;
783
int mid;
784
785
mid = (low + high) / 2;
786
offset = p + mid * item_size;
787
oil = get_eb_offset_in_folio(eb, offset);
788
789
if (oil + key_size <= unit_size) {
790
const unsigned long idx = get_eb_folio_index(eb, offset);
791
char *kaddr = folio_address(eb->folios[idx]);
792
793
oil = get_eb_offset_in_folio(eb, offset);
794
tmp = (struct btrfs_disk_key *)(kaddr + oil);
795
} else {
796
read_extent_buffer(eb, &unaligned, offset, key_size);
797
tmp = &unaligned;
798
}
799
800
ret = btrfs_comp_keys(tmp, key);
801
802
if (ret < 0)
803
low = mid + 1;
804
else if (ret > 0)
805
high = mid;
806
else {
807
*slot = mid;
808
return 0;
809
}
810
}
811
*slot = low;
812
return 1;
813
}
814
815
static void root_add_used_bytes(struct btrfs_root *root)
816
{
817
spin_lock(&root->accounting_lock);
818
btrfs_set_root_used(&root->root_item,
819
btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
820
spin_unlock(&root->accounting_lock);
821
}
822
823
static void root_sub_used_bytes(struct btrfs_root *root)
824
{
825
spin_lock(&root->accounting_lock);
826
btrfs_set_root_used(&root->root_item,
827
btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
828
spin_unlock(&root->accounting_lock);
829
}
830
831
/* given a node and slot number, this reads the blocks it points to. The
832
* extent buffer is returned with a reference taken (but unlocked).
833
*/
834
struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
835
int slot)
836
{
837
int level = btrfs_header_level(parent);
838
struct btrfs_tree_parent_check check = { 0 };
839
struct extent_buffer *eb;
840
841
if (slot < 0 || slot >= btrfs_header_nritems(parent))
842
return ERR_PTR(-ENOENT);
843
844
ASSERT(level);
845
846
check.level = level - 1;
847
check.transid = btrfs_node_ptr_generation(parent, slot);
848
check.owner_root = btrfs_header_owner(parent);
849
check.has_first_key = true;
850
btrfs_node_key_to_cpu(parent, &check.first_key, slot);
851
852
eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
853
&check);
854
if (IS_ERR(eb))
855
return eb;
856
if (unlikely(!extent_buffer_uptodate(eb))) {
857
free_extent_buffer(eb);
858
return ERR_PTR(-EIO);
859
}
860
861
return eb;
862
}
863
864
/*
865
* Promote a child node to become the new tree root.
866
*
867
* @trans: Transaction handle
868
* @root: Tree root structure to update
869
* @path: Path holding nodes and locks
870
* @level: Level of the parent (old root)
871
* @parent: The parent (old root) with exactly one item
872
*
873
* This helper is called during rebalancing when the root node contains only
874
* a single item (nritems == 1). We can reduce the tree height by promoting
875
* that child to become the new root and freeing the old root node. The path
876
* locks and references are updated accordingly.
877
*
878
* Return: 0 on success, negative errno on failure. The transaction is aborted
879
* on critical errors.
880
*/
881
static int promote_child_to_root(struct btrfs_trans_handle *trans,
882
struct btrfs_root *root, struct btrfs_path *path,
883
int level, struct extent_buffer *parent)
884
{
885
struct extent_buffer *child;
886
int ret;
887
888
ASSERT(btrfs_header_nritems(parent) == 1);
889
890
child = btrfs_read_node_slot(parent, 0);
891
if (IS_ERR(child))
892
return PTR_ERR(child);
893
894
btrfs_tree_lock(child);
895
ret = btrfs_cow_block(trans, root, child, parent, 0, &child, BTRFS_NESTING_COW);
896
if (ret) {
897
btrfs_tree_unlock(child);
898
free_extent_buffer(child);
899
return ret;
900
}
901
902
ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
903
if (unlikely(ret < 0)) {
904
btrfs_tree_unlock(child);
905
free_extent_buffer(child);
906
btrfs_abort_transaction(trans, ret);
907
return ret;
908
}
909
rcu_assign_pointer(root->node, child);
910
911
add_root_to_dirty_list(root);
912
btrfs_tree_unlock(child);
913
914
path->locks[level] = 0;
915
path->nodes[level] = NULL;
916
btrfs_clear_buffer_dirty(trans, parent);
917
btrfs_tree_unlock(parent);
918
/* Once for the path. */
919
free_extent_buffer(parent);
920
921
root_sub_used_bytes(root);
922
ret = btrfs_free_tree_block(trans, btrfs_root_id(root), parent, 0, 1);
923
/* Once for the root ptr. */
924
free_extent_buffer_stale(parent);
925
if (unlikely(ret < 0)) {
926
btrfs_abort_transaction(trans, ret);
927
return ret;
928
}
929
930
return 0;
931
}
932
933
/*
934
* node level balancing, used to make sure nodes are in proper order for
935
* item deletion. We balance from the top down, so we have to make sure
936
* that a deletion won't leave an node completely empty later on.
937
*/
938
static noinline int balance_level(struct btrfs_trans_handle *trans,
939
struct btrfs_root *root,
940
struct btrfs_path *path, int level)
941
{
942
struct btrfs_fs_info *fs_info = root->fs_info;
943
struct extent_buffer *right = NULL;
944
struct extent_buffer *mid;
945
struct extent_buffer *left = NULL;
946
struct extent_buffer *parent = NULL;
947
int ret = 0;
948
int wret;
949
int pslot;
950
int orig_slot = path->slots[level];
951
u64 orig_ptr;
952
953
ASSERT(level > 0);
954
955
mid = path->nodes[level];
956
957
WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
958
WARN_ON(btrfs_header_generation(mid) != trans->transid);
959
960
orig_ptr = btrfs_node_blockptr(mid, orig_slot);
961
962
if (level < BTRFS_MAX_LEVEL - 1) {
963
parent = path->nodes[level + 1];
964
pslot = path->slots[level + 1];
965
}
966
967
/*
968
* deal with the case where there is only one pointer in the root
969
* by promoting the node below to a root
970
*/
971
if (!parent) {
972
if (btrfs_header_nritems(mid) != 1)
973
return 0;
974
975
return promote_child_to_root(trans, root, path, level, mid);
976
}
977
if (btrfs_header_nritems(mid) >
978
BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
979
return 0;
980
981
if (pslot) {
982
left = btrfs_read_node_slot(parent, pslot - 1);
983
if (IS_ERR(left)) {
984
ret = PTR_ERR(left);
985
left = NULL;
986
goto out;
987
}
988
989
btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
990
wret = btrfs_cow_block(trans, root, left,
991
parent, pslot - 1, &left,
992
BTRFS_NESTING_LEFT_COW);
993
if (wret) {
994
ret = wret;
995
goto out;
996
}
997
}
998
999
if (pslot + 1 < btrfs_header_nritems(parent)) {
1000
right = btrfs_read_node_slot(parent, pslot + 1);
1001
if (IS_ERR(right)) {
1002
ret = PTR_ERR(right);
1003
right = NULL;
1004
goto out;
1005
}
1006
1007
btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1008
wret = btrfs_cow_block(trans, root, right,
1009
parent, pslot + 1, &right,
1010
BTRFS_NESTING_RIGHT_COW);
1011
if (wret) {
1012
ret = wret;
1013
goto out;
1014
}
1015
}
1016
1017
/* first, try to make some room in the middle buffer */
1018
if (left) {
1019
orig_slot += btrfs_header_nritems(left);
1020
wret = push_node_left(trans, left, mid, 1);
1021
if (wret < 0)
1022
ret = wret;
1023
}
1024
1025
/*
1026
* then try to empty the right most buffer into the middle
1027
*/
1028
if (right) {
1029
wret = push_node_left(trans, mid, right, 1);
1030
if (wret < 0 && wret != -ENOSPC)
1031
ret = wret;
1032
if (btrfs_header_nritems(right) == 0) {
1033
btrfs_clear_buffer_dirty(trans, right);
1034
btrfs_tree_unlock(right);
1035
ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1036
if (ret < 0) {
1037
free_extent_buffer_stale(right);
1038
right = NULL;
1039
goto out;
1040
}
1041
root_sub_used_bytes(root);
1042
ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1043
right, 0, 1);
1044
free_extent_buffer_stale(right);
1045
right = NULL;
1046
if (unlikely(ret < 0)) {
1047
btrfs_abort_transaction(trans, ret);
1048
goto out;
1049
}
1050
} else {
1051
struct btrfs_disk_key right_key;
1052
btrfs_node_key(right, &right_key, 0);
1053
ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1054
BTRFS_MOD_LOG_KEY_REPLACE);
1055
if (unlikely(ret < 0)) {
1056
btrfs_abort_transaction(trans, ret);
1057
goto out;
1058
}
1059
btrfs_set_node_key(parent, &right_key, pslot + 1);
1060
btrfs_mark_buffer_dirty(trans, parent);
1061
}
1062
}
1063
if (btrfs_header_nritems(mid) == 1) {
1064
/*
1065
* we're not allowed to leave a node with one item in the
1066
* tree during a delete. A deletion from lower in the tree
1067
* could try to delete the only pointer in this node.
1068
* So, pull some keys from the left.
1069
* There has to be a left pointer at this point because
1070
* otherwise we would have pulled some pointers from the
1071
* right
1072
*/
1073
if (unlikely(!left)) {
1074
btrfs_crit(fs_info,
1075
"missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1076
parent->start, btrfs_header_level(parent),
1077
mid->start, btrfs_root_id(root));
1078
ret = -EUCLEAN;
1079
btrfs_abort_transaction(trans, ret);
1080
goto out;
1081
}
1082
wret = balance_node_right(trans, mid, left);
1083
if (wret < 0) {
1084
ret = wret;
1085
goto out;
1086
}
1087
if (wret == 1) {
1088
wret = push_node_left(trans, left, mid, 1);
1089
if (wret < 0)
1090
ret = wret;
1091
}
1092
BUG_ON(wret == 1);
1093
}
1094
if (btrfs_header_nritems(mid) == 0) {
1095
btrfs_clear_buffer_dirty(trans, mid);
1096
btrfs_tree_unlock(mid);
1097
ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1098
if (ret < 0) {
1099
free_extent_buffer_stale(mid);
1100
mid = NULL;
1101
goto out;
1102
}
1103
root_sub_used_bytes(root);
1104
ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1105
free_extent_buffer_stale(mid);
1106
mid = NULL;
1107
if (unlikely(ret < 0)) {
1108
btrfs_abort_transaction(trans, ret);
1109
goto out;
1110
}
1111
} else {
1112
/* update the parent key to reflect our changes */
1113
struct btrfs_disk_key mid_key;
1114
btrfs_node_key(mid, &mid_key, 0);
1115
ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1116
BTRFS_MOD_LOG_KEY_REPLACE);
1117
if (unlikely(ret < 0)) {
1118
btrfs_abort_transaction(trans, ret);
1119
goto out;
1120
}
1121
btrfs_set_node_key(parent, &mid_key, pslot);
1122
btrfs_mark_buffer_dirty(trans, parent);
1123
}
1124
1125
/* update the path */
1126
if (left) {
1127
if (btrfs_header_nritems(left) > orig_slot) {
1128
/* left was locked after cow */
1129
path->nodes[level] = left;
1130
path->slots[level + 1] -= 1;
1131
path->slots[level] = orig_slot;
1132
/* Left is now owned by path. */
1133
left = NULL;
1134
if (mid) {
1135
btrfs_tree_unlock(mid);
1136
free_extent_buffer(mid);
1137
}
1138
} else {
1139
orig_slot -= btrfs_header_nritems(left);
1140
path->slots[level] = orig_slot;
1141
}
1142
}
1143
/* double check we haven't messed things up */
1144
if (orig_ptr !=
1145
btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1146
BUG();
1147
out:
1148
if (right) {
1149
btrfs_tree_unlock(right);
1150
free_extent_buffer(right);
1151
}
1152
if (left) {
1153
btrfs_tree_unlock(left);
1154
free_extent_buffer(left);
1155
}
1156
return ret;
1157
}
1158
1159
/* Node balancing for insertion. Here we only split or push nodes around
1160
* when they are completely full. This is also done top down, so we
1161
* have to be pessimistic.
1162
*/
1163
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1164
struct btrfs_root *root,
1165
struct btrfs_path *path, int level)
1166
{
1167
struct btrfs_fs_info *fs_info = root->fs_info;
1168
struct extent_buffer *right = NULL;
1169
struct extent_buffer *mid;
1170
struct extent_buffer *left = NULL;
1171
struct extent_buffer *parent = NULL;
1172
int ret = 0;
1173
int wret;
1174
int pslot;
1175
int orig_slot = path->slots[level];
1176
1177
if (level == 0)
1178
return 1;
1179
1180
mid = path->nodes[level];
1181
WARN_ON(btrfs_header_generation(mid) != trans->transid);
1182
1183
if (level < BTRFS_MAX_LEVEL - 1) {
1184
parent = path->nodes[level + 1];
1185
pslot = path->slots[level + 1];
1186
}
1187
1188
if (!parent)
1189
return 1;
1190
1191
/* first, try to make some room in the middle buffer */
1192
if (pslot) {
1193
u32 left_nr;
1194
1195
left = btrfs_read_node_slot(parent, pslot - 1);
1196
if (IS_ERR(left))
1197
return PTR_ERR(left);
1198
1199
btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1200
1201
left_nr = btrfs_header_nritems(left);
1202
if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1203
wret = 1;
1204
} else {
1205
ret = btrfs_cow_block(trans, root, left, parent,
1206
pslot - 1, &left,
1207
BTRFS_NESTING_LEFT_COW);
1208
if (ret)
1209
wret = 1;
1210
else {
1211
wret = push_node_left(trans, left, mid, 0);
1212
}
1213
}
1214
if (wret < 0)
1215
ret = wret;
1216
if (wret == 0) {
1217
struct btrfs_disk_key disk_key;
1218
orig_slot += left_nr;
1219
btrfs_node_key(mid, &disk_key, 0);
1220
ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1221
BTRFS_MOD_LOG_KEY_REPLACE);
1222
if (unlikely(ret < 0)) {
1223
btrfs_tree_unlock(left);
1224
free_extent_buffer(left);
1225
btrfs_abort_transaction(trans, ret);
1226
return ret;
1227
}
1228
btrfs_set_node_key(parent, &disk_key, pslot);
1229
btrfs_mark_buffer_dirty(trans, parent);
1230
if (btrfs_header_nritems(left) > orig_slot) {
1231
path->nodes[level] = left;
1232
path->slots[level + 1] -= 1;
1233
path->slots[level] = orig_slot;
1234
btrfs_tree_unlock(mid);
1235
free_extent_buffer(mid);
1236
} else {
1237
orig_slot -=
1238
btrfs_header_nritems(left);
1239
path->slots[level] = orig_slot;
1240
btrfs_tree_unlock(left);
1241
free_extent_buffer(left);
1242
}
1243
return 0;
1244
}
1245
btrfs_tree_unlock(left);
1246
free_extent_buffer(left);
1247
}
1248
1249
/*
1250
* then try to empty the right most buffer into the middle
1251
*/
1252
if (pslot + 1 < btrfs_header_nritems(parent)) {
1253
u32 right_nr;
1254
1255
right = btrfs_read_node_slot(parent, pslot + 1);
1256
if (IS_ERR(right))
1257
return PTR_ERR(right);
1258
1259
btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1260
1261
right_nr = btrfs_header_nritems(right);
1262
if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1263
wret = 1;
1264
} else {
1265
ret = btrfs_cow_block(trans, root, right,
1266
parent, pslot + 1,
1267
&right, BTRFS_NESTING_RIGHT_COW);
1268
if (ret)
1269
wret = 1;
1270
else {
1271
wret = balance_node_right(trans, right, mid);
1272
}
1273
}
1274
if (wret < 0)
1275
ret = wret;
1276
if (wret == 0) {
1277
struct btrfs_disk_key disk_key;
1278
1279
btrfs_node_key(right, &disk_key, 0);
1280
ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1281
BTRFS_MOD_LOG_KEY_REPLACE);
1282
if (unlikely(ret < 0)) {
1283
btrfs_tree_unlock(right);
1284
free_extent_buffer(right);
1285
btrfs_abort_transaction(trans, ret);
1286
return ret;
1287
}
1288
btrfs_set_node_key(parent, &disk_key, pslot + 1);
1289
btrfs_mark_buffer_dirty(trans, parent);
1290
1291
if (btrfs_header_nritems(mid) <= orig_slot) {
1292
path->nodes[level] = right;
1293
path->slots[level + 1] += 1;
1294
path->slots[level] = orig_slot -
1295
btrfs_header_nritems(mid);
1296
btrfs_tree_unlock(mid);
1297
free_extent_buffer(mid);
1298
} else {
1299
btrfs_tree_unlock(right);
1300
free_extent_buffer(right);
1301
}
1302
return 0;
1303
}
1304
btrfs_tree_unlock(right);
1305
free_extent_buffer(right);
1306
}
1307
return 1;
1308
}
1309
1310
/*
1311
* readahead one full node of leaves, finding things that are close
1312
* to the block in 'slot', and triggering ra on them.
1313
*/
1314
static void reada_for_search(struct btrfs_fs_info *fs_info,
1315
const struct btrfs_path *path,
1316
int level, int slot, u64 objectid)
1317
{
1318
struct extent_buffer *node;
1319
struct btrfs_disk_key disk_key;
1320
u32 nritems;
1321
u64 search;
1322
u64 target;
1323
u64 nread = 0;
1324
u64 nread_max;
1325
u32 nr;
1326
u32 blocksize;
1327
u32 nscan = 0;
1328
1329
if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1330
return;
1331
1332
if (!path->nodes[level])
1333
return;
1334
1335
node = path->nodes[level];
1336
1337
/*
1338
* Since the time between visiting leaves is much shorter than the time
1339
* between visiting nodes, limit read ahead of nodes to 1, to avoid too
1340
* much IO at once (possibly random).
1341
*/
1342
if (path->reada == READA_FORWARD_ALWAYS) {
1343
if (level > 1)
1344
nread_max = node->fs_info->nodesize;
1345
else
1346
nread_max = SZ_128K;
1347
} else {
1348
nread_max = SZ_64K;
1349
}
1350
1351
search = btrfs_node_blockptr(node, slot);
1352
blocksize = fs_info->nodesize;
1353
if (path->reada != READA_FORWARD_ALWAYS) {
1354
struct extent_buffer *eb;
1355
1356
eb = find_extent_buffer(fs_info, search);
1357
if (eb) {
1358
free_extent_buffer(eb);
1359
return;
1360
}
1361
}
1362
1363
target = search;
1364
1365
nritems = btrfs_header_nritems(node);
1366
nr = slot;
1367
1368
while (1) {
1369
if (path->reada == READA_BACK) {
1370
if (nr == 0)
1371
break;
1372
nr--;
1373
} else if (path->reada == READA_FORWARD ||
1374
path->reada == READA_FORWARD_ALWAYS) {
1375
nr++;
1376
if (nr >= nritems)
1377
break;
1378
}
1379
if (path->reada == READA_BACK && objectid) {
1380
btrfs_node_key(node, &disk_key, nr);
1381
if (btrfs_disk_key_objectid(&disk_key) != objectid)
1382
break;
1383
}
1384
search = btrfs_node_blockptr(node, nr);
1385
if (path->reada == READA_FORWARD_ALWAYS ||
1386
(search <= target && target - search <= 65536) ||
1387
(search > target && search - target <= 65536)) {
1388
btrfs_readahead_node_child(node, nr);
1389
nread += blocksize;
1390
}
1391
nscan++;
1392
if (nread > nread_max || nscan > 32)
1393
break;
1394
}
1395
}
1396
1397
static noinline void reada_for_balance(const struct btrfs_path *path, int level)
1398
{
1399
struct extent_buffer *parent;
1400
int slot;
1401
int nritems;
1402
1403
parent = path->nodes[level + 1];
1404
if (!parent)
1405
return;
1406
1407
nritems = btrfs_header_nritems(parent);
1408
slot = path->slots[level + 1];
1409
1410
if (slot > 0)
1411
btrfs_readahead_node_child(parent, slot - 1);
1412
if (slot + 1 < nritems)
1413
btrfs_readahead_node_child(parent, slot + 1);
1414
}
1415
1416
1417
/*
1418
* when we walk down the tree, it is usually safe to unlock the higher layers
1419
* in the tree. The exceptions are when our path goes through slot 0, because
1420
* operations on the tree might require changing key pointers higher up in the
1421
* tree.
1422
*
1423
* callers might also have set path->keep_locks, which tells this code to keep
1424
* the lock if the path points to the last slot in the block. This is part of
1425
* walking through the tree, and selecting the next slot in the higher block.
1426
*
1427
* lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1428
* if lowest_unlock is 1, level 0 won't be unlocked
1429
*/
1430
static noinline void unlock_up(struct btrfs_path *path, int level,
1431
int lowest_unlock, int min_write_lock_level,
1432
int *write_lock_level)
1433
{
1434
int i;
1435
int skip_level = level;
1436
bool check_skip = true;
1437
1438
for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1439
if (!path->nodes[i])
1440
break;
1441
if (!path->locks[i])
1442
break;
1443
1444
if (check_skip) {
1445
if (path->slots[i] == 0) {
1446
skip_level = i + 1;
1447
continue;
1448
}
1449
1450
if (path->keep_locks) {
1451
u32 nritems;
1452
1453
nritems = btrfs_header_nritems(path->nodes[i]);
1454
if (nritems < 1 || path->slots[i] >= nritems - 1) {
1455
skip_level = i + 1;
1456
continue;
1457
}
1458
}
1459
}
1460
1461
if (i >= lowest_unlock && i > skip_level) {
1462
btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1463
check_skip = false;
1464
path->locks[i] = 0;
1465
if (write_lock_level &&
1466
i > min_write_lock_level &&
1467
i <= *write_lock_level) {
1468
*write_lock_level = i - 1;
1469
}
1470
}
1471
}
1472
}
1473
1474
/*
1475
* Helper function for btrfs_search_slot() and other functions that do a search
1476
* on a btree. The goal is to find a tree block in the cache (the radix tree at
1477
* fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1478
* its pages from disk.
1479
*
1480
* Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1481
* whole btree search, starting again from the current root node.
1482
*/
1483
static int
1484
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1485
struct extent_buffer **eb_ret, int slot,
1486
const struct btrfs_key *key)
1487
{
1488
struct btrfs_fs_info *fs_info = root->fs_info;
1489
struct btrfs_tree_parent_check check = { 0 };
1490
u64 blocknr;
1491
struct extent_buffer *tmp = NULL;
1492
int ret = 0;
1493
int ret2;
1494
int parent_level;
1495
bool read_tmp = false;
1496
bool tmp_locked = false;
1497
bool path_released = false;
1498
1499
blocknr = btrfs_node_blockptr(*eb_ret, slot);
1500
parent_level = btrfs_header_level(*eb_ret);
1501
btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1502
check.has_first_key = true;
1503
check.level = parent_level - 1;
1504
check.transid = btrfs_node_ptr_generation(*eb_ret, slot);
1505
check.owner_root = btrfs_root_id(root);
1506
1507
/*
1508
* If we need to read an extent buffer from disk and we are holding locks
1509
* on upper level nodes, we unlock all the upper nodes before reading the
1510
* extent buffer, and then return -EAGAIN to the caller as it needs to
1511
* restart the search. We don't release the lock on the current level
1512
* because we need to walk this node to figure out which blocks to read.
1513
*/
1514
tmp = find_extent_buffer(fs_info, blocknr);
1515
if (tmp) {
1516
if (p->reada == READA_FORWARD_ALWAYS)
1517
reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1518
1519
/* first we do an atomic uptodate check */
1520
if (btrfs_buffer_uptodate(tmp, check.transid, true) > 0) {
1521
/*
1522
* Do extra check for first_key, eb can be stale due to
1523
* being cached, read from scrub, or have multiple
1524
* parents (shared tree blocks).
1525
*/
1526
if (unlikely(btrfs_verify_level_key(tmp, &check))) {
1527
ret = -EUCLEAN;
1528
goto out;
1529
}
1530
*eb_ret = tmp;
1531
tmp = NULL;
1532
ret = 0;
1533
goto out;
1534
}
1535
1536
if (p->nowait) {
1537
ret = -EAGAIN;
1538
goto out;
1539
}
1540
1541
if (!p->skip_locking) {
1542
btrfs_unlock_up_safe(p, parent_level + 1);
1543
btrfs_maybe_reset_lockdep_class(root, tmp);
1544
tmp_locked = true;
1545
btrfs_tree_read_lock(tmp);
1546
btrfs_release_path(p);
1547
ret = -EAGAIN;
1548
path_released = true;
1549
}
1550
1551
/* Now we're allowed to do a blocking uptodate check. */
1552
ret2 = btrfs_read_extent_buffer(tmp, &check);
1553
if (ret2) {
1554
ret = ret2;
1555
goto out;
1556
}
1557
1558
if (ret == 0) {
1559
ASSERT(!tmp_locked);
1560
*eb_ret = tmp;
1561
tmp = NULL;
1562
}
1563
goto out;
1564
} else if (p->nowait) {
1565
ret = -EAGAIN;
1566
goto out;
1567
}
1568
1569
if (!p->skip_locking) {
1570
btrfs_unlock_up_safe(p, parent_level + 1);
1571
ret = -EAGAIN;
1572
}
1573
1574
if (p->reada != READA_NONE)
1575
reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1576
1577
tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level);
1578
if (IS_ERR(tmp)) {
1579
ret = PTR_ERR(tmp);
1580
tmp = NULL;
1581
goto out;
1582
}
1583
read_tmp = true;
1584
1585
if (!p->skip_locking) {
1586
ASSERT(ret == -EAGAIN);
1587
btrfs_maybe_reset_lockdep_class(root, tmp);
1588
tmp_locked = true;
1589
btrfs_tree_read_lock(tmp);
1590
btrfs_release_path(p);
1591
path_released = true;
1592
}
1593
1594
/* Now we're allowed to do a blocking uptodate check. */
1595
ret2 = btrfs_read_extent_buffer(tmp, &check);
1596
if (ret2) {
1597
ret = ret2;
1598
goto out;
1599
}
1600
1601
/*
1602
* If the read above didn't mark this buffer up to date,
1603
* it will never end up being up to date. Set ret to EIO now
1604
* and give up so that our caller doesn't loop forever
1605
* on our EAGAINs.
1606
*/
1607
if (unlikely(!extent_buffer_uptodate(tmp))) {
1608
ret = -EIO;
1609
goto out;
1610
}
1611
1612
if (ret == 0) {
1613
ASSERT(!tmp_locked);
1614
*eb_ret = tmp;
1615
tmp = NULL;
1616
}
1617
out:
1618
if (tmp) {
1619
if (tmp_locked)
1620
btrfs_tree_read_unlock(tmp);
1621
if (read_tmp && ret && ret != -EAGAIN)
1622
free_extent_buffer_stale(tmp);
1623
else
1624
free_extent_buffer(tmp);
1625
}
1626
if (ret && !path_released)
1627
btrfs_release_path(p);
1628
1629
return ret;
1630
}
1631
1632
/*
1633
* helper function for btrfs_search_slot. This does all of the checks
1634
* for node-level blocks and does any balancing required based on
1635
* the ins_len.
1636
*
1637
* If no extra work was required, zero is returned. If we had to
1638
* drop the path, -EAGAIN is returned and btrfs_search_slot must
1639
* start over
1640
*/
1641
static int
1642
setup_nodes_for_search(struct btrfs_trans_handle *trans,
1643
struct btrfs_root *root, struct btrfs_path *p,
1644
struct extent_buffer *b, int level, int ins_len,
1645
int *write_lock_level)
1646
{
1647
struct btrfs_fs_info *fs_info = root->fs_info;
1648
int ret = 0;
1649
1650
if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1651
BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1652
1653
if (*write_lock_level < level + 1) {
1654
*write_lock_level = level + 1;
1655
btrfs_release_path(p);
1656
return -EAGAIN;
1657
}
1658
1659
reada_for_balance(p, level);
1660
ret = split_node(trans, root, p, level);
1661
1662
b = p->nodes[level];
1663
} else if (ins_len < 0 && btrfs_header_nritems(b) <
1664
BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1665
1666
if (*write_lock_level < level + 1) {
1667
*write_lock_level = level + 1;
1668
btrfs_release_path(p);
1669
return -EAGAIN;
1670
}
1671
1672
reada_for_balance(p, level);
1673
ret = balance_level(trans, root, p, level);
1674
if (ret)
1675
return ret;
1676
1677
b = p->nodes[level];
1678
if (!b) {
1679
btrfs_release_path(p);
1680
return -EAGAIN;
1681
}
1682
BUG_ON(btrfs_header_nritems(b) == 1);
1683
}
1684
return ret;
1685
}
1686
1687
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1688
u64 iobjectid, u64 ioff, u8 key_type,
1689
struct btrfs_key *found_key)
1690
{
1691
int ret;
1692
struct btrfs_key key;
1693
struct extent_buffer *eb;
1694
1695
ASSERT(path);
1696
ASSERT(found_key);
1697
1698
key.type = key_type;
1699
key.objectid = iobjectid;
1700
key.offset = ioff;
1701
1702
ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1703
if (ret < 0)
1704
return ret;
1705
1706
eb = path->nodes[0];
1707
if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1708
ret = btrfs_next_leaf(fs_root, path);
1709
if (ret)
1710
return ret;
1711
eb = path->nodes[0];
1712
}
1713
1714
btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1715
if (found_key->type != key.type ||
1716
found_key->objectid != key.objectid)
1717
return 1;
1718
1719
return 0;
1720
}
1721
1722
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1723
struct btrfs_path *p,
1724
int write_lock_level)
1725
{
1726
struct extent_buffer *b;
1727
int root_lock = 0;
1728
int level = 0;
1729
1730
if (p->search_commit_root) {
1731
b = root->commit_root;
1732
refcount_inc(&b->refs);
1733
level = btrfs_header_level(b);
1734
/*
1735
* Ensure that all callers have set skip_locking when
1736
* p->search_commit_root is true.
1737
*/
1738
ASSERT(p->skip_locking);
1739
1740
goto out;
1741
}
1742
1743
if (p->skip_locking) {
1744
b = btrfs_root_node(root);
1745
level = btrfs_header_level(b);
1746
goto out;
1747
}
1748
1749
/* We try very hard to do read locks on the root */
1750
root_lock = BTRFS_READ_LOCK;
1751
1752
/*
1753
* If the level is set to maximum, we can skip trying to get the read
1754
* lock.
1755
*/
1756
if (write_lock_level < BTRFS_MAX_LEVEL) {
1757
/*
1758
* We don't know the level of the root node until we actually
1759
* have it read locked
1760
*/
1761
if (p->nowait) {
1762
b = btrfs_try_read_lock_root_node(root);
1763
if (IS_ERR(b))
1764
return b;
1765
} else {
1766
b = btrfs_read_lock_root_node(root);
1767
}
1768
level = btrfs_header_level(b);
1769
if (level > write_lock_level)
1770
goto out;
1771
1772
/* Whoops, must trade for write lock */
1773
btrfs_tree_read_unlock(b);
1774
free_extent_buffer(b);
1775
}
1776
1777
b = btrfs_lock_root_node(root);
1778
root_lock = BTRFS_WRITE_LOCK;
1779
1780
/* The level might have changed, check again */
1781
level = btrfs_header_level(b);
1782
1783
out:
1784
/*
1785
* The root may have failed to write out at some point, and thus is no
1786
* longer valid, return an error in this case.
1787
*/
1788
if (unlikely(!extent_buffer_uptodate(b))) {
1789
if (root_lock)
1790
btrfs_tree_unlock_rw(b, root_lock);
1791
free_extent_buffer(b);
1792
return ERR_PTR(-EIO);
1793
}
1794
1795
p->nodes[level] = b;
1796
if (!p->skip_locking)
1797
p->locks[level] = root_lock;
1798
/*
1799
* Callers are responsible for dropping b's references.
1800
*/
1801
return b;
1802
}
1803
1804
/*
1805
* Replace the extent buffer at the lowest level of the path with a cloned
1806
* version. The purpose is to be able to use it safely, after releasing the
1807
* commit root semaphore, even if relocation is happening in parallel, the
1808
* transaction used for relocation is committed and the extent buffer is
1809
* reallocated in the next transaction.
1810
*
1811
* This is used in a context where the caller does not prevent transaction
1812
* commits from happening, either by holding a transaction handle or holding
1813
* some lock, while it's doing searches through a commit root.
1814
* At the moment it's only used for send operations.
1815
*/
1816
static int finish_need_commit_sem_search(struct btrfs_path *path)
1817
{
1818
const int i = path->lowest_level;
1819
const int slot = path->slots[i];
1820
struct extent_buffer *lowest = path->nodes[i];
1821
struct extent_buffer *clone;
1822
1823
ASSERT(path->need_commit_sem);
1824
1825
if (!lowest)
1826
return 0;
1827
1828
lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1829
1830
clone = btrfs_clone_extent_buffer(lowest);
1831
if (!clone)
1832
return -ENOMEM;
1833
1834
btrfs_release_path(path);
1835
path->nodes[i] = clone;
1836
path->slots[i] = slot;
1837
1838
return 0;
1839
}
1840
1841
static inline int search_for_key_slot(const struct extent_buffer *eb,
1842
int search_low_slot,
1843
const struct btrfs_key *key,
1844
int prev_cmp,
1845
int *slot)
1846
{
1847
/*
1848
* If a previous call to btrfs_bin_search() on a parent node returned an
1849
* exact match (prev_cmp == 0), we can safely assume the target key will
1850
* always be at slot 0 on lower levels, since each key pointer
1851
* (struct btrfs_key_ptr) refers to the lowest key accessible from the
1852
* subtree it points to. Thus we can skip searching lower levels.
1853
*/
1854
if (prev_cmp == 0) {
1855
*slot = 0;
1856
return 0;
1857
}
1858
1859
return btrfs_bin_search(eb, search_low_slot, key, slot);
1860
}
1861
1862
static int search_leaf(struct btrfs_trans_handle *trans,
1863
struct btrfs_root *root,
1864
const struct btrfs_key *key,
1865
struct btrfs_path *path,
1866
int ins_len,
1867
int prev_cmp)
1868
{
1869
struct extent_buffer *leaf = path->nodes[0];
1870
int leaf_free_space = -1;
1871
int search_low_slot = 0;
1872
int ret;
1873
bool do_bin_search = true;
1874
1875
/*
1876
* If we are doing an insertion, the leaf has enough free space and the
1877
* destination slot for the key is not slot 0, then we can unlock our
1878
* write lock on the parent, and any other upper nodes, before doing the
1879
* binary search on the leaf (with search_for_key_slot()), allowing other
1880
* tasks to lock the parent and any other upper nodes.
1881
*/
1882
if (ins_len > 0) {
1883
/*
1884
* Cache the leaf free space, since we will need it later and it
1885
* will not change until then.
1886
*/
1887
leaf_free_space = btrfs_leaf_free_space(leaf);
1888
1889
/*
1890
* !path->locks[1] means we have a single node tree, the leaf is
1891
* the root of the tree.
1892
*/
1893
if (path->locks[1] && leaf_free_space >= ins_len) {
1894
struct btrfs_disk_key first_key;
1895
1896
ASSERT(btrfs_header_nritems(leaf) > 0);
1897
btrfs_item_key(leaf, &first_key, 0);
1898
1899
/*
1900
* Doing the extra comparison with the first key is cheap,
1901
* taking into account that the first key is very likely
1902
* already in a cache line because it immediately follows
1903
* the extent buffer's header and we have recently accessed
1904
* the header's level field.
1905
*/
1906
ret = btrfs_comp_keys(&first_key, key);
1907
if (ret < 0) {
1908
/*
1909
* The first key is smaller than the key we want
1910
* to insert, so we are safe to unlock all upper
1911
* nodes and we have to do the binary search.
1912
*
1913
* We do use btrfs_unlock_up_safe() and not
1914
* unlock_up() because the later does not unlock
1915
* nodes with a slot of 0 - we can safely unlock
1916
* any node even if its slot is 0 since in this
1917
* case the key does not end up at slot 0 of the
1918
* leaf and there's no need to split the leaf.
1919
*/
1920
btrfs_unlock_up_safe(path, 1);
1921
search_low_slot = 1;
1922
} else {
1923
/*
1924
* The first key is >= then the key we want to
1925
* insert, so we can skip the binary search as
1926
* the target key will be at slot 0.
1927
*
1928
* We can not unlock upper nodes when the key is
1929
* less than the first key, because we will need
1930
* to update the key at slot 0 of the parent node
1931
* and possibly of other upper nodes too.
1932
* If the key matches the first key, then we can
1933
* unlock all the upper nodes, using
1934
* btrfs_unlock_up_safe() instead of unlock_up()
1935
* as stated above.
1936
*/
1937
if (ret == 0)
1938
btrfs_unlock_up_safe(path, 1);
1939
/*
1940
* ret is already 0 or 1, matching the result of
1941
* a btrfs_bin_search() call, so there is no need
1942
* to adjust it.
1943
*/
1944
do_bin_search = false;
1945
path->slots[0] = 0;
1946
}
1947
}
1948
}
1949
1950
if (do_bin_search) {
1951
ret = search_for_key_slot(leaf, search_low_slot, key,
1952
prev_cmp, &path->slots[0]);
1953
if (ret < 0)
1954
return ret;
1955
}
1956
1957
if (ins_len > 0) {
1958
/*
1959
* Item key already exists. In this case, if we are allowed to
1960
* insert the item (for example, in dir_item case, item key
1961
* collision is allowed), it will be merged with the original
1962
* item. Only the item size grows, no new btrfs item will be
1963
* added. If search_for_extension is not set, ins_len already
1964
* accounts the size btrfs_item, deduct it here so leaf space
1965
* check will be correct.
1966
*/
1967
if (ret == 0 && !path->search_for_extension) {
1968
ASSERT(ins_len >= sizeof(struct btrfs_item));
1969
ins_len -= sizeof(struct btrfs_item);
1970
}
1971
1972
ASSERT(leaf_free_space >= 0);
1973
1974
if (leaf_free_space < ins_len) {
1975
int ret2;
1976
1977
ret2 = split_leaf(trans, root, key, path, ins_len, (ret == 0));
1978
ASSERT(ret2 <= 0);
1979
if (WARN_ON(ret2 > 0))
1980
ret2 = -EUCLEAN;
1981
if (ret2)
1982
ret = ret2;
1983
}
1984
}
1985
1986
return ret;
1987
}
1988
1989
/*
1990
* Look for a key in a tree and perform necessary modifications to preserve
1991
* tree invariants.
1992
*
1993
* @trans: Handle of transaction, used when modifying the tree
1994
* @p: Holds all btree nodes along the search path
1995
* @root: The root node of the tree
1996
* @key: The key we are looking for
1997
* @ins_len: Indicates purpose of search:
1998
* >0 for inserts it's size of item inserted (*)
1999
* <0 for deletions
2000
* 0 for plain searches, not modifying the tree
2001
*
2002
* (*) If size of item inserted doesn't include
2003
* sizeof(struct btrfs_item), then p->search_for_extension must
2004
* be set.
2005
* @cow: boolean should CoW operations be performed. Must always be 1
2006
* when modifying the tree.
2007
*
2008
* If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2009
* If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2010
*
2011
* If @key is found, 0 is returned and you can find the item in the leaf level
2012
* of the path (level 0)
2013
*
2014
* If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2015
* points to the slot where it should be inserted
2016
*
2017
* If an error is encountered while searching the tree a negative error number
2018
* is returned
2019
*/
2020
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2021
const struct btrfs_key *key, struct btrfs_path *p,
2022
int ins_len, int cow)
2023
{
2024
struct btrfs_fs_info *fs_info;
2025
struct extent_buffer *b;
2026
int slot;
2027
int ret;
2028
int level;
2029
int lowest_unlock = 1;
2030
/* everything at write_lock_level or lower must be write locked */
2031
int write_lock_level = 0;
2032
u8 lowest_level = 0;
2033
int min_write_lock_level;
2034
int prev_cmp;
2035
2036
if (!root)
2037
return -EINVAL;
2038
2039
fs_info = root->fs_info;
2040
might_sleep();
2041
2042
lowest_level = p->lowest_level;
2043
WARN_ON(lowest_level && ins_len > 0);
2044
WARN_ON(p->nodes[0] != NULL);
2045
BUG_ON(!cow && ins_len);
2046
2047
/*
2048
* For now only allow nowait for read only operations. There's no
2049
* strict reason why we can't, we just only need it for reads so it's
2050
* only implemented for reads.
2051
*/
2052
ASSERT(!p->nowait || !cow);
2053
2054
if (ins_len < 0) {
2055
lowest_unlock = 2;
2056
2057
/* when we are removing items, we might have to go up to level
2058
* two as we update tree pointers Make sure we keep write
2059
* for those levels as well
2060
*/
2061
write_lock_level = 2;
2062
} else if (ins_len > 0) {
2063
/*
2064
* for inserting items, make sure we have a write lock on
2065
* level 1 so we can update keys
2066
*/
2067
write_lock_level = 1;
2068
}
2069
2070
if (!cow)
2071
write_lock_level = -1;
2072
2073
if (cow && (p->keep_locks || p->lowest_level))
2074
write_lock_level = BTRFS_MAX_LEVEL;
2075
2076
min_write_lock_level = write_lock_level;
2077
2078
if (p->need_commit_sem) {
2079
ASSERT(p->search_commit_root);
2080
if (p->nowait) {
2081
if (!down_read_trylock(&fs_info->commit_root_sem))
2082
return -EAGAIN;
2083
} else {
2084
down_read(&fs_info->commit_root_sem);
2085
}
2086
}
2087
2088
again:
2089
prev_cmp = -1;
2090
b = btrfs_search_slot_get_root(root, p, write_lock_level);
2091
if (IS_ERR(b)) {
2092
ret = PTR_ERR(b);
2093
goto done;
2094
}
2095
2096
while (b) {
2097
int dec = 0;
2098
int ret2;
2099
2100
level = btrfs_header_level(b);
2101
2102
if (cow) {
2103
bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2104
2105
/*
2106
* if we don't really need to cow this block
2107
* then we don't want to set the path blocking,
2108
* so we test it here
2109
*/
2110
if (!should_cow_block(trans, root, b))
2111
goto cow_done;
2112
2113
/*
2114
* must have write locks on this node and the
2115
* parent
2116
*/
2117
if (level > write_lock_level ||
2118
(level + 1 > write_lock_level &&
2119
level + 1 < BTRFS_MAX_LEVEL &&
2120
p->nodes[level + 1])) {
2121
write_lock_level = level + 1;
2122
btrfs_release_path(p);
2123
goto again;
2124
}
2125
2126
if (last_level)
2127
ret2 = btrfs_cow_block(trans, root, b, NULL, 0,
2128
&b, BTRFS_NESTING_COW);
2129
else
2130
ret2 = btrfs_cow_block(trans, root, b,
2131
p->nodes[level + 1],
2132
p->slots[level + 1], &b,
2133
BTRFS_NESTING_COW);
2134
if (ret2) {
2135
ret = ret2;
2136
goto done;
2137
}
2138
}
2139
cow_done:
2140
p->nodes[level] = b;
2141
2142
/*
2143
* we have a lock on b and as long as we aren't changing
2144
* the tree, there is no way to for the items in b to change.
2145
* It is safe to drop the lock on our parent before we
2146
* go through the expensive btree search on b.
2147
*
2148
* If we're inserting or deleting (ins_len != 0), then we might
2149
* be changing slot zero, which may require changing the parent.
2150
* So, we can't drop the lock until after we know which slot
2151
* we're operating on.
2152
*/
2153
if (!ins_len && !p->keep_locks) {
2154
int u = level + 1;
2155
2156
if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2157
btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2158
p->locks[u] = 0;
2159
}
2160
}
2161
2162
if (level == 0) {
2163
if (ins_len > 0)
2164
ASSERT(write_lock_level >= 1);
2165
2166
ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2167
if (!p->search_for_split)
2168
unlock_up(p, level, lowest_unlock,
2169
min_write_lock_level, NULL);
2170
goto done;
2171
}
2172
2173
ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2174
if (ret < 0)
2175
goto done;
2176
prev_cmp = ret;
2177
2178
if (ret && slot > 0) {
2179
dec = 1;
2180
slot--;
2181
}
2182
p->slots[level] = slot;
2183
ret2 = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2184
&write_lock_level);
2185
if (ret2 == -EAGAIN)
2186
goto again;
2187
if (ret2) {
2188
ret = ret2;
2189
goto done;
2190
}
2191
b = p->nodes[level];
2192
slot = p->slots[level];
2193
2194
/*
2195
* Slot 0 is special, if we change the key we have to update
2196
* the parent pointer which means we must have a write lock on
2197
* the parent
2198
*/
2199
if (slot == 0 && ins_len && write_lock_level < level + 1) {
2200
write_lock_level = level + 1;
2201
btrfs_release_path(p);
2202
goto again;
2203
}
2204
2205
unlock_up(p, level, lowest_unlock, min_write_lock_level,
2206
&write_lock_level);
2207
2208
if (level == lowest_level) {
2209
if (dec)
2210
p->slots[level]++;
2211
goto done;
2212
}
2213
2214
ret2 = read_block_for_search(root, p, &b, slot, key);
2215
if (ret2 == -EAGAIN && !p->nowait)
2216
goto again;
2217
if (ret2) {
2218
ret = ret2;
2219
goto done;
2220
}
2221
2222
if (!p->skip_locking) {
2223
level = btrfs_header_level(b);
2224
2225
btrfs_maybe_reset_lockdep_class(root, b);
2226
2227
if (level <= write_lock_level) {
2228
btrfs_tree_lock(b);
2229
p->locks[level] = BTRFS_WRITE_LOCK;
2230
} else {
2231
if (p->nowait) {
2232
if (!btrfs_try_tree_read_lock(b)) {
2233
free_extent_buffer(b);
2234
ret = -EAGAIN;
2235
goto done;
2236
}
2237
} else {
2238
btrfs_tree_read_lock(b);
2239
}
2240
p->locks[level] = BTRFS_READ_LOCK;
2241
}
2242
p->nodes[level] = b;
2243
}
2244
}
2245
ret = 1;
2246
done:
2247
if (ret < 0 && !p->skip_release_on_error)
2248
btrfs_release_path(p);
2249
2250
if (p->need_commit_sem) {
2251
int ret2;
2252
2253
ret2 = finish_need_commit_sem_search(p);
2254
up_read(&fs_info->commit_root_sem);
2255
if (ret2)
2256
ret = ret2;
2257
}
2258
2259
return ret;
2260
}
2261
ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2262
2263
/*
2264
* Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2265
* current state of the tree together with the operations recorded in the tree
2266
* modification log to search for the key in a previous version of this tree, as
2267
* denoted by the time_seq parameter.
2268
*
2269
* Naturally, there is no support for insert, delete or cow operations.
2270
*
2271
* The resulting path and return value will be set up as if we called
2272
* btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2273
*/
2274
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2275
struct btrfs_path *p, u64 time_seq)
2276
{
2277
struct btrfs_fs_info *fs_info = root->fs_info;
2278
struct extent_buffer *b;
2279
int slot;
2280
int ret;
2281
int level;
2282
int lowest_unlock = 1;
2283
u8 lowest_level = 0;
2284
2285
lowest_level = p->lowest_level;
2286
WARN_ON(p->nodes[0] != NULL);
2287
ASSERT(!p->nowait);
2288
2289
if (p->search_commit_root) {
2290
BUG_ON(time_seq);
2291
return btrfs_search_slot(NULL, root, key, p, 0, 0);
2292
}
2293
2294
again:
2295
b = btrfs_get_old_root(root, time_seq);
2296
if (unlikely(!b)) {
2297
ret = -EIO;
2298
goto done;
2299
}
2300
level = btrfs_header_level(b);
2301
p->locks[level] = BTRFS_READ_LOCK;
2302
2303
while (b) {
2304
int dec = 0;
2305
int ret2;
2306
2307
level = btrfs_header_level(b);
2308
p->nodes[level] = b;
2309
2310
/*
2311
* we have a lock on b and as long as we aren't changing
2312
* the tree, there is no way to for the items in b to change.
2313
* It is safe to drop the lock on our parent before we
2314
* go through the expensive btree search on b.
2315
*/
2316
btrfs_unlock_up_safe(p, level + 1);
2317
2318
ret = btrfs_bin_search(b, 0, key, &slot);
2319
if (ret < 0)
2320
goto done;
2321
2322
if (level == 0) {
2323
p->slots[level] = slot;
2324
unlock_up(p, level, lowest_unlock, 0, NULL);
2325
goto done;
2326
}
2327
2328
if (ret && slot > 0) {
2329
dec = 1;
2330
slot--;
2331
}
2332
p->slots[level] = slot;
2333
unlock_up(p, level, lowest_unlock, 0, NULL);
2334
2335
if (level == lowest_level) {
2336
if (dec)
2337
p->slots[level]++;
2338
goto done;
2339
}
2340
2341
ret2 = read_block_for_search(root, p, &b, slot, key);
2342
if (ret2 == -EAGAIN && !p->nowait)
2343
goto again;
2344
if (ret2) {
2345
ret = ret2;
2346
goto done;
2347
}
2348
2349
level = btrfs_header_level(b);
2350
btrfs_tree_read_lock(b);
2351
b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq);
2352
if (!b) {
2353
ret = -ENOMEM;
2354
goto done;
2355
}
2356
p->locks[level] = BTRFS_READ_LOCK;
2357
p->nodes[level] = b;
2358
}
2359
ret = 1;
2360
done:
2361
if (ret < 0)
2362
btrfs_release_path(p);
2363
2364
return ret;
2365
}
2366
2367
/*
2368
* Search the tree again to find a leaf with smaller keys.
2369
* Returns 0 if it found something.
2370
* Returns 1 if there are no smaller keys.
2371
* Returns < 0 on error.
2372
*
2373
* This may release the path, and so you may lose any locks held at the
2374
* time you call it.
2375
*/
2376
static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2377
{
2378
struct btrfs_key key;
2379
struct btrfs_key orig_key;
2380
struct btrfs_disk_key found_key;
2381
int ret;
2382
2383
btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2384
orig_key = key;
2385
2386
if (key.offset > 0) {
2387
key.offset--;
2388
} else if (key.type > 0) {
2389
key.type--;
2390
key.offset = (u64)-1;
2391
} else if (key.objectid > 0) {
2392
key.objectid--;
2393
key.type = (u8)-1;
2394
key.offset = (u64)-1;
2395
} else {
2396
return 1;
2397
}
2398
2399
btrfs_release_path(path);
2400
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2401
if (ret <= 0)
2402
return ret;
2403
2404
/*
2405
* Previous key not found. Even if we were at slot 0 of the leaf we had
2406
* before releasing the path and calling btrfs_search_slot(), we now may
2407
* be in a slot pointing to the same original key - this can happen if
2408
* after we released the path, one of more items were moved from a
2409
* sibling leaf into the front of the leaf we had due to an insertion
2410
* (see push_leaf_right()).
2411
* If we hit this case and our slot is > 0 and just decrement the slot
2412
* so that the caller does not process the same key again, which may or
2413
* may not break the caller, depending on its logic.
2414
*/
2415
if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2416
btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2417
ret = btrfs_comp_keys(&found_key, &orig_key);
2418
if (ret == 0) {
2419
if (path->slots[0] > 0) {
2420
path->slots[0]--;
2421
return 0;
2422
}
2423
/*
2424
* At slot 0, same key as before, it means orig_key is
2425
* the lowest, leftmost, key in the tree. We're done.
2426
*/
2427
return 1;
2428
}
2429
}
2430
2431
btrfs_item_key(path->nodes[0], &found_key, 0);
2432
ret = btrfs_comp_keys(&found_key, &key);
2433
/*
2434
* We might have had an item with the previous key in the tree right
2435
* before we released our path. And after we released our path, that
2436
* item might have been pushed to the first slot (0) of the leaf we
2437
* were holding due to a tree balance. Alternatively, an item with the
2438
* previous key can exist as the only element of a leaf (big fat item).
2439
* Therefore account for these 2 cases, so that our callers (like
2440
* btrfs_previous_item) don't miss an existing item with a key matching
2441
* the previous key we computed above.
2442
*/
2443
if (ret <= 0)
2444
return 0;
2445
return 1;
2446
}
2447
2448
/*
2449
* helper to use instead of search slot if no exact match is needed but
2450
* instead the next or previous item should be returned.
2451
* When find_higher is true, the next higher item is returned, the next lower
2452
* otherwise.
2453
* When return_any and find_higher are both true, and no higher item is found,
2454
* return the next lower instead.
2455
* When return_any is true and find_higher is false, and no lower item is found,
2456
* return the next higher instead.
2457
* It returns 0 if any item is found, 1 if none is found (tree empty), and
2458
* < 0 on error
2459
*/
2460
int btrfs_search_slot_for_read(struct btrfs_root *root,
2461
const struct btrfs_key *key,
2462
struct btrfs_path *p, int find_higher,
2463
int return_any)
2464
{
2465
int ret;
2466
struct extent_buffer *leaf;
2467
2468
again:
2469
ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2470
if (ret <= 0)
2471
return ret;
2472
/*
2473
* a return value of 1 means the path is at the position where the
2474
* item should be inserted. Normally this is the next bigger item,
2475
* but in case the previous item is the last in a leaf, path points
2476
* to the first free slot in the previous leaf, i.e. at an invalid
2477
* item.
2478
*/
2479
leaf = p->nodes[0];
2480
2481
if (find_higher) {
2482
if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2483
ret = btrfs_next_leaf(root, p);
2484
if (ret <= 0)
2485
return ret;
2486
if (!return_any)
2487
return 1;
2488
/*
2489
* no higher item found, return the next
2490
* lower instead
2491
*/
2492
return_any = 0;
2493
find_higher = 0;
2494
btrfs_release_path(p);
2495
goto again;
2496
}
2497
} else {
2498
if (p->slots[0] == 0) {
2499
ret = btrfs_prev_leaf(root, p);
2500
if (ret < 0)
2501
return ret;
2502
if (!ret) {
2503
leaf = p->nodes[0];
2504
if (p->slots[0] == btrfs_header_nritems(leaf))
2505
p->slots[0]--;
2506
return 0;
2507
}
2508
if (!return_any)
2509
return 1;
2510
/*
2511
* no lower item found, return the next
2512
* higher instead
2513
*/
2514
return_any = 0;
2515
find_higher = 1;
2516
btrfs_release_path(p);
2517
goto again;
2518
} else {
2519
--p->slots[0];
2520
}
2521
}
2522
return 0;
2523
}
2524
2525
/*
2526
* Execute search and call btrfs_previous_item to traverse backwards if the item
2527
* was not found.
2528
*
2529
* Return 0 if found, 1 if not found and < 0 if error.
2530
*/
2531
int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2532
struct btrfs_path *path)
2533
{
2534
int ret;
2535
2536
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2537
if (ret > 0)
2538
ret = btrfs_previous_item(root, path, key->objectid, key->type);
2539
2540
if (ret == 0)
2541
btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2542
2543
return ret;
2544
}
2545
2546
/*
2547
* Search for a valid slot for the given path.
2548
*
2549
* @root: The root node of the tree.
2550
* @key: Will contain a valid item if found.
2551
* @path: The starting point to validate the slot.
2552
*
2553
* Return: 0 if the item is valid
2554
* 1 if not found
2555
* <0 if error.
2556
*/
2557
int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2558
struct btrfs_path *path)
2559
{
2560
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2561
int ret;
2562
2563
ret = btrfs_next_leaf(root, path);
2564
if (ret)
2565
return ret;
2566
}
2567
2568
btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2569
return 0;
2570
}
2571
2572
/*
2573
* adjust the pointers going up the tree, starting at level
2574
* making sure the right key of each node is points to 'key'.
2575
* This is used after shifting pointers to the left, so it stops
2576
* fixing up pointers when a given leaf/node is not in slot 0 of the
2577
* higher levels
2578
*
2579
*/
2580
static void fixup_low_keys(struct btrfs_trans_handle *trans,
2581
const struct btrfs_path *path,
2582
const struct btrfs_disk_key *key, int level)
2583
{
2584
int i;
2585
struct extent_buffer *t;
2586
int ret;
2587
2588
for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2589
int tslot = path->slots[i];
2590
2591
if (!path->nodes[i])
2592
break;
2593
t = path->nodes[i];
2594
ret = btrfs_tree_mod_log_insert_key(t, tslot,
2595
BTRFS_MOD_LOG_KEY_REPLACE);
2596
BUG_ON(ret < 0);
2597
btrfs_set_node_key(t, key, tslot);
2598
btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2599
if (tslot != 0)
2600
break;
2601
}
2602
}
2603
2604
/*
2605
* update item key.
2606
*
2607
* This function isn't completely safe. It's the caller's responsibility
2608
* that the new key won't break the order
2609
*/
2610
void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2611
const struct btrfs_path *path,
2612
const struct btrfs_key *new_key)
2613
{
2614
struct btrfs_fs_info *fs_info = trans->fs_info;
2615
struct btrfs_disk_key disk_key;
2616
struct extent_buffer *eb;
2617
int slot;
2618
2619
eb = path->nodes[0];
2620
slot = path->slots[0];
2621
if (slot > 0) {
2622
btrfs_item_key(eb, &disk_key, slot - 1);
2623
if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2624
btrfs_print_leaf(eb);
2625
btrfs_crit(fs_info,
2626
"slot %u key " BTRFS_KEY_FMT " new key " BTRFS_KEY_FMT,
2627
slot, btrfs_disk_key_objectid(&disk_key),
2628
btrfs_disk_key_type(&disk_key),
2629
btrfs_disk_key_offset(&disk_key),
2630
BTRFS_KEY_FMT_VALUE(new_key));
2631
BUG();
2632
}
2633
}
2634
if (slot < btrfs_header_nritems(eb) - 1) {
2635
btrfs_item_key(eb, &disk_key, slot + 1);
2636
if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2637
btrfs_print_leaf(eb);
2638
btrfs_crit(fs_info,
2639
"slot %u key " BTRFS_KEY_FMT " new key " BTRFS_KEY_FMT,
2640
slot, btrfs_disk_key_objectid(&disk_key),
2641
btrfs_disk_key_type(&disk_key),
2642
btrfs_disk_key_offset(&disk_key),
2643
BTRFS_KEY_FMT_VALUE(new_key));
2644
BUG();
2645
}
2646
}
2647
2648
btrfs_cpu_key_to_disk(&disk_key, new_key);
2649
btrfs_set_item_key(eb, &disk_key, slot);
2650
btrfs_mark_buffer_dirty(trans, eb);
2651
if (slot == 0)
2652
fixup_low_keys(trans, path, &disk_key, 1);
2653
}
2654
2655
/*
2656
* Check key order of two sibling extent buffers.
2657
*
2658
* Return true if something is wrong.
2659
* Return false if everything is fine.
2660
*
2661
* Tree-checker only works inside one tree block, thus the following
2662
* corruption can not be detected by tree-checker:
2663
*
2664
* Leaf @left | Leaf @right
2665
* --------------------------------------------------------------
2666
* | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2667
*
2668
* Key f6 in leaf @left itself is valid, but not valid when the next
2669
* key in leaf @right is 7.
2670
* This can only be checked at tree block merge time.
2671
* And since tree checker has ensured all key order in each tree block
2672
* is correct, we only need to bother the last key of @left and the first
2673
* key of @right.
2674
*/
2675
static bool check_sibling_keys(const struct extent_buffer *left,
2676
const struct extent_buffer *right)
2677
{
2678
struct btrfs_key left_last;
2679
struct btrfs_key right_first;
2680
int level = btrfs_header_level(left);
2681
int nr_left = btrfs_header_nritems(left);
2682
int nr_right = btrfs_header_nritems(right);
2683
2684
/* No key to check in one of the tree blocks */
2685
if (!nr_left || !nr_right)
2686
return false;
2687
2688
if (level) {
2689
btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2690
btrfs_node_key_to_cpu(right, &right_first, 0);
2691
} else {
2692
btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2693
btrfs_item_key_to_cpu(right, &right_first, 0);
2694
}
2695
2696
if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2697
btrfs_crit(left->fs_info, "left extent buffer:");
2698
btrfs_print_tree(left, false);
2699
btrfs_crit(left->fs_info, "right extent buffer:");
2700
btrfs_print_tree(right, false);
2701
btrfs_crit(left->fs_info,
2702
"bad key order, sibling blocks, left last " BTRFS_KEY_FMT " right first " BTRFS_KEY_FMT,
2703
BTRFS_KEY_FMT_VALUE(&left_last),
2704
BTRFS_KEY_FMT_VALUE(&right_first));
2705
return true;
2706
}
2707
return false;
2708
}
2709
2710
/*
2711
* try to push data from one node into the next node left in the
2712
* tree.
2713
*
2714
* returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2715
* error, and > 0 if there was no room in the left hand block.
2716
*/
2717
static int push_node_left(struct btrfs_trans_handle *trans,
2718
struct extent_buffer *dst,
2719
struct extent_buffer *src, bool empty)
2720
{
2721
struct btrfs_fs_info *fs_info = trans->fs_info;
2722
int push_items = 0;
2723
int src_nritems;
2724
int dst_nritems;
2725
int ret = 0;
2726
2727
src_nritems = btrfs_header_nritems(src);
2728
dst_nritems = btrfs_header_nritems(dst);
2729
push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2730
WARN_ON(btrfs_header_generation(src) != trans->transid);
2731
WARN_ON(btrfs_header_generation(dst) != trans->transid);
2732
2733
if (!empty && src_nritems <= 8)
2734
return 1;
2735
2736
if (push_items <= 0)
2737
return 1;
2738
2739
if (empty) {
2740
push_items = min(src_nritems, push_items);
2741
if (push_items < src_nritems) {
2742
/* leave at least 8 pointers in the node if
2743
* we aren't going to empty it
2744
*/
2745
if (src_nritems - push_items < 8) {
2746
if (push_items <= 8)
2747
return 1;
2748
push_items -= 8;
2749
}
2750
}
2751
} else
2752
push_items = min(src_nritems - 8, push_items);
2753
2754
/* dst is the left eb, src is the middle eb */
2755
if (unlikely(check_sibling_keys(dst, src))) {
2756
ret = -EUCLEAN;
2757
btrfs_abort_transaction(trans, ret);
2758
return ret;
2759
}
2760
ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2761
if (unlikely(ret)) {
2762
btrfs_abort_transaction(trans, ret);
2763
return ret;
2764
}
2765
copy_extent_buffer(dst, src,
2766
btrfs_node_key_ptr_offset(dst, dst_nritems),
2767
btrfs_node_key_ptr_offset(src, 0),
2768
push_items * sizeof(struct btrfs_key_ptr));
2769
2770
if (push_items < src_nritems) {
2771
/*
2772
* btrfs_tree_mod_log_eb_copy handles logging the move, so we
2773
* don't need to do an explicit tree mod log operation for it.
2774
*/
2775
memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2776
btrfs_node_key_ptr_offset(src, push_items),
2777
(src_nritems - push_items) *
2778
sizeof(struct btrfs_key_ptr));
2779
}
2780
btrfs_set_header_nritems(src, src_nritems - push_items);
2781
btrfs_set_header_nritems(dst, dst_nritems + push_items);
2782
btrfs_mark_buffer_dirty(trans, src);
2783
btrfs_mark_buffer_dirty(trans, dst);
2784
2785
return ret;
2786
}
2787
2788
/*
2789
* try to push data from one node into the next node right in the
2790
* tree.
2791
*
2792
* returns 0 if some ptrs were pushed, < 0 if there was some horrible
2793
* error, and > 0 if there was no room in the right hand block.
2794
*
2795
* this will only push up to 1/2 the contents of the left node over
2796
*/
2797
static int balance_node_right(struct btrfs_trans_handle *trans,
2798
struct extent_buffer *dst,
2799
struct extent_buffer *src)
2800
{
2801
struct btrfs_fs_info *fs_info = trans->fs_info;
2802
int push_items = 0;
2803
int max_push;
2804
int src_nritems;
2805
int dst_nritems;
2806
int ret = 0;
2807
2808
WARN_ON(btrfs_header_generation(src) != trans->transid);
2809
WARN_ON(btrfs_header_generation(dst) != trans->transid);
2810
2811
src_nritems = btrfs_header_nritems(src);
2812
dst_nritems = btrfs_header_nritems(dst);
2813
push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2814
if (push_items <= 0)
2815
return 1;
2816
2817
if (src_nritems < 4)
2818
return 1;
2819
2820
max_push = src_nritems / 2 + 1;
2821
/* don't try to empty the node */
2822
if (max_push >= src_nritems)
2823
return 1;
2824
2825
if (max_push < push_items)
2826
push_items = max_push;
2827
2828
/* dst is the right eb, src is the middle eb */
2829
if (unlikely(check_sibling_keys(src, dst))) {
2830
ret = -EUCLEAN;
2831
btrfs_abort_transaction(trans, ret);
2832
return ret;
2833
}
2834
2835
/*
2836
* btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2837
* need to do an explicit tree mod log operation for it.
2838
*/
2839
memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2840
btrfs_node_key_ptr_offset(dst, 0),
2841
(dst_nritems) *
2842
sizeof(struct btrfs_key_ptr));
2843
2844
ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2845
push_items);
2846
if (unlikely(ret)) {
2847
btrfs_abort_transaction(trans, ret);
2848
return ret;
2849
}
2850
copy_extent_buffer(dst, src,
2851
btrfs_node_key_ptr_offset(dst, 0),
2852
btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2853
push_items * sizeof(struct btrfs_key_ptr));
2854
2855
btrfs_set_header_nritems(src, src_nritems - push_items);
2856
btrfs_set_header_nritems(dst, dst_nritems + push_items);
2857
2858
btrfs_mark_buffer_dirty(trans, src);
2859
btrfs_mark_buffer_dirty(trans, dst);
2860
2861
return ret;
2862
}
2863
2864
/*
2865
* helper function to insert a new root level in the tree.
2866
* A new node is allocated, and a single item is inserted to
2867
* point to the existing root
2868
*
2869
* returns zero on success or < 0 on failure.
2870
*/
2871
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2872
struct btrfs_root *root,
2873
struct btrfs_path *path, int level)
2874
{
2875
u64 lower_gen;
2876
struct extent_buffer *lower;
2877
struct extent_buffer *c;
2878
struct extent_buffer *old;
2879
struct btrfs_disk_key lower_key;
2880
int ret;
2881
2882
BUG_ON(path->nodes[level]);
2883
BUG_ON(path->nodes[level-1] != root->node);
2884
2885
lower = path->nodes[level-1];
2886
if (level == 1)
2887
btrfs_item_key(lower, &lower_key, 0);
2888
else
2889
btrfs_node_key(lower, &lower_key, 0);
2890
2891
c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2892
&lower_key, level, root->node->start, 0,
2893
0, BTRFS_NESTING_NEW_ROOT);
2894
if (IS_ERR(c))
2895
return PTR_ERR(c);
2896
2897
root_add_used_bytes(root);
2898
2899
btrfs_set_header_nritems(c, 1);
2900
btrfs_set_node_key(c, &lower_key, 0);
2901
btrfs_set_node_blockptr(c, 0, lower->start);
2902
lower_gen = btrfs_header_generation(lower);
2903
WARN_ON(lower_gen != trans->transid);
2904
2905
btrfs_set_node_ptr_generation(c, 0, lower_gen);
2906
2907
btrfs_mark_buffer_dirty(trans, c);
2908
2909
old = root->node;
2910
ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2911
if (ret < 0) {
2912
int ret2;
2913
2914
btrfs_clear_buffer_dirty(trans, c);
2915
ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2916
if (unlikely(ret2 < 0))
2917
btrfs_abort_transaction(trans, ret2);
2918
btrfs_tree_unlock(c);
2919
free_extent_buffer(c);
2920
return ret;
2921
}
2922
rcu_assign_pointer(root->node, c);
2923
2924
/* the super has an extra ref to root->node */
2925
free_extent_buffer(old);
2926
2927
add_root_to_dirty_list(root);
2928
refcount_inc(&c->refs);
2929
path->nodes[level] = c;
2930
path->locks[level] = BTRFS_WRITE_LOCK;
2931
path->slots[level] = 0;
2932
return 0;
2933
}
2934
2935
/*
2936
* worker function to insert a single pointer in a node.
2937
* the node should have enough room for the pointer already
2938
*
2939
* slot and level indicate where you want the key to go, and
2940
* blocknr is the block the key points to.
2941
*/
2942
static int insert_ptr(struct btrfs_trans_handle *trans,
2943
const struct btrfs_path *path,
2944
const struct btrfs_disk_key *key, u64 bytenr,
2945
int slot, int level)
2946
{
2947
struct extent_buffer *lower;
2948
int nritems;
2949
int ret;
2950
2951
BUG_ON(!path->nodes[level]);
2952
btrfs_assert_tree_write_locked(path->nodes[level]);
2953
lower = path->nodes[level];
2954
nritems = btrfs_header_nritems(lower);
2955
BUG_ON(slot > nritems);
2956
BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2957
if (slot != nritems) {
2958
if (level) {
2959
ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2960
slot, nritems - slot);
2961
if (unlikely(ret < 0)) {
2962
btrfs_abort_transaction(trans, ret);
2963
return ret;
2964
}
2965
}
2966
memmove_extent_buffer(lower,
2967
btrfs_node_key_ptr_offset(lower, slot + 1),
2968
btrfs_node_key_ptr_offset(lower, slot),
2969
(nritems - slot) * sizeof(struct btrfs_key_ptr));
2970
}
2971
if (level) {
2972
ret = btrfs_tree_mod_log_insert_key(lower, slot,
2973
BTRFS_MOD_LOG_KEY_ADD);
2974
if (unlikely(ret < 0)) {
2975
btrfs_abort_transaction(trans, ret);
2976
return ret;
2977
}
2978
}
2979
btrfs_set_node_key(lower, key, slot);
2980
btrfs_set_node_blockptr(lower, slot, bytenr);
2981
WARN_ON(trans->transid == 0);
2982
btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2983
btrfs_set_header_nritems(lower, nritems + 1);
2984
btrfs_mark_buffer_dirty(trans, lower);
2985
2986
return 0;
2987
}
2988
2989
/*
2990
* split the node at the specified level in path in two.
2991
* The path is corrected to point to the appropriate node after the split
2992
*
2993
* Before splitting this tries to make some room in the node by pushing
2994
* left and right, if either one works, it returns right away.
2995
*
2996
* returns 0 on success and < 0 on failure
2997
*/
2998
static noinline int split_node(struct btrfs_trans_handle *trans,
2999
struct btrfs_root *root,
3000
struct btrfs_path *path, int level)
3001
{
3002
struct btrfs_fs_info *fs_info = root->fs_info;
3003
struct extent_buffer *c;
3004
struct extent_buffer *split;
3005
struct btrfs_disk_key disk_key;
3006
int mid;
3007
int ret;
3008
u32 c_nritems;
3009
3010
c = path->nodes[level];
3011
WARN_ON(btrfs_header_generation(c) != trans->transid);
3012
if (c == root->node) {
3013
/*
3014
* trying to split the root, lets make a new one
3015
*
3016
* tree mod log: We don't log_removal old root in
3017
* insert_new_root, because that root buffer will be kept as a
3018
* normal node. We are going to log removal of half of the
3019
* elements below with btrfs_tree_mod_log_eb_copy(). We're
3020
* holding a tree lock on the buffer, which is why we cannot
3021
* race with other tree_mod_log users.
3022
*/
3023
ret = insert_new_root(trans, root, path, level + 1);
3024
if (ret)
3025
return ret;
3026
} else {
3027
ret = push_nodes_for_insert(trans, root, path, level);
3028
c = path->nodes[level];
3029
if (!ret && btrfs_header_nritems(c) <
3030
BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3031
return 0;
3032
if (ret < 0)
3033
return ret;
3034
}
3035
3036
c_nritems = btrfs_header_nritems(c);
3037
mid = (c_nritems + 1) / 2;
3038
btrfs_node_key(c, &disk_key, mid);
3039
3040
split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3041
&disk_key, level, c->start, 0,
3042
0, BTRFS_NESTING_SPLIT);
3043
if (IS_ERR(split))
3044
return PTR_ERR(split);
3045
3046
root_add_used_bytes(root);
3047
ASSERT(btrfs_header_level(c) == level);
3048
3049
ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3050
if (unlikely(ret)) {
3051
btrfs_tree_unlock(split);
3052
free_extent_buffer(split);
3053
btrfs_abort_transaction(trans, ret);
3054
return ret;
3055
}
3056
copy_extent_buffer(split, c,
3057
btrfs_node_key_ptr_offset(split, 0),
3058
btrfs_node_key_ptr_offset(c, mid),
3059
(c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3060
btrfs_set_header_nritems(split, c_nritems - mid);
3061
btrfs_set_header_nritems(c, mid);
3062
3063
btrfs_mark_buffer_dirty(trans, c);
3064
btrfs_mark_buffer_dirty(trans, split);
3065
3066
ret = insert_ptr(trans, path, &disk_key, split->start,
3067
path->slots[level + 1] + 1, level + 1);
3068
if (ret < 0) {
3069
btrfs_tree_unlock(split);
3070
free_extent_buffer(split);
3071
return ret;
3072
}
3073
3074
if (path->slots[level] >= mid) {
3075
path->slots[level] -= mid;
3076
btrfs_tree_unlock(c);
3077
free_extent_buffer(c);
3078
path->nodes[level] = split;
3079
path->slots[level + 1] += 1;
3080
} else {
3081
btrfs_tree_unlock(split);
3082
free_extent_buffer(split);
3083
}
3084
return 0;
3085
}
3086
3087
/*
3088
* how many bytes are required to store the items in a leaf. start
3089
* and nr indicate which items in the leaf to check. This totals up the
3090
* space used both by the item structs and the item data
3091
*/
3092
static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3093
{
3094
int data_len;
3095
int nritems = btrfs_header_nritems(l);
3096
int end = min(nritems, start + nr) - 1;
3097
3098
if (!nr)
3099
return 0;
3100
data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3101
data_len = data_len - btrfs_item_offset(l, end);
3102
data_len += sizeof(struct btrfs_item) * nr;
3103
WARN_ON(data_len < 0);
3104
return data_len;
3105
}
3106
3107
/*
3108
* The space between the end of the leaf items and
3109
* the start of the leaf data. IOW, how much room
3110
* the leaf has left for both items and data
3111
*/
3112
int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3113
{
3114
struct btrfs_fs_info *fs_info = leaf->fs_info;
3115
int nritems = btrfs_header_nritems(leaf);
3116
int ret;
3117
3118
ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3119
if (unlikely(ret < 0)) {
3120
btrfs_crit(fs_info,
3121
"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3122
ret,
3123
(unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3124
leaf_space_used(leaf, 0, nritems), nritems);
3125
}
3126
return ret;
3127
}
3128
3129
/*
3130
* min slot controls the lowest index we're willing to push to the
3131
* right. We'll push up to and including min_slot, but no lower
3132
*/
3133
static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3134
struct btrfs_path *path,
3135
int data_size, bool empty,
3136
struct extent_buffer *right,
3137
int free_space, u32 left_nritems,
3138
u32 min_slot)
3139
{
3140
struct btrfs_fs_info *fs_info = right->fs_info;
3141
struct extent_buffer *left = path->nodes[0];
3142
struct extent_buffer *upper = path->nodes[1];
3143
struct btrfs_disk_key disk_key;
3144
int slot;
3145
u32 i;
3146
int push_space = 0;
3147
int push_items = 0;
3148
u32 nr;
3149
u32 right_nritems;
3150
u32 data_end;
3151
u32 this_item_size;
3152
3153
if (empty)
3154
nr = 0;
3155
else
3156
nr = max_t(u32, 1, min_slot);
3157
3158
if (path->slots[0] >= left_nritems)
3159
push_space += data_size;
3160
3161
slot = path->slots[1];
3162
i = left_nritems - 1;
3163
while (i >= nr) {
3164
if (!empty && push_items > 0) {
3165
if (path->slots[0] > i)
3166
break;
3167
if (path->slots[0] == i) {
3168
int space = btrfs_leaf_free_space(left);
3169
3170
if (space + push_space * 2 > free_space)
3171
break;
3172
}
3173
}
3174
3175
if (path->slots[0] == i)
3176
push_space += data_size;
3177
3178
this_item_size = btrfs_item_size(left, i);
3179
if (this_item_size + sizeof(struct btrfs_item) +
3180
push_space > free_space)
3181
break;
3182
3183
push_items++;
3184
push_space += this_item_size + sizeof(struct btrfs_item);
3185
if (i == 0)
3186
break;
3187
i--;
3188
}
3189
3190
if (push_items == 0)
3191
goto out_unlock;
3192
3193
WARN_ON(!empty && push_items == left_nritems);
3194
3195
/* push left to right */
3196
right_nritems = btrfs_header_nritems(right);
3197
3198
push_space = btrfs_item_data_end(left, left_nritems - push_items);
3199
push_space -= leaf_data_end(left);
3200
3201
/* make room in the right data area */
3202
data_end = leaf_data_end(right);
3203
memmove_leaf_data(right, data_end - push_space, data_end,
3204
BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3205
3206
/* copy from the left data area */
3207
copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3208
leaf_data_end(left), push_space);
3209
3210
memmove_leaf_items(right, push_items, 0, right_nritems);
3211
3212
/* copy the items from left to right */
3213
copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3214
3215
/* update the item pointers */
3216
right_nritems += push_items;
3217
btrfs_set_header_nritems(right, right_nritems);
3218
push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3219
for (i = 0; i < right_nritems; i++) {
3220
push_space -= btrfs_item_size(right, i);
3221
btrfs_set_item_offset(right, i, push_space);
3222
}
3223
3224
left_nritems -= push_items;
3225
btrfs_set_header_nritems(left, left_nritems);
3226
3227
if (left_nritems)
3228
btrfs_mark_buffer_dirty(trans, left);
3229
else
3230
btrfs_clear_buffer_dirty(trans, left);
3231
3232
btrfs_mark_buffer_dirty(trans, right);
3233
3234
btrfs_item_key(right, &disk_key, 0);
3235
btrfs_set_node_key(upper, &disk_key, slot + 1);
3236
btrfs_mark_buffer_dirty(trans, upper);
3237
3238
/* then fixup the leaf pointer in the path */
3239
if (path->slots[0] >= left_nritems) {
3240
path->slots[0] -= left_nritems;
3241
btrfs_tree_unlock(left);
3242
free_extent_buffer(left);
3243
path->nodes[0] = right;
3244
path->slots[1] += 1;
3245
} else {
3246
btrfs_tree_unlock(right);
3247
free_extent_buffer(right);
3248
}
3249
return 0;
3250
3251
out_unlock:
3252
btrfs_tree_unlock(right);
3253
free_extent_buffer(right);
3254
return 1;
3255
}
3256
3257
/*
3258
* push some data in the path leaf to the right, trying to free up at
3259
* least data_size bytes. returns zero if the push worked, nonzero otherwise
3260
*
3261
* returns 1 if the push failed because the other node didn't have enough
3262
* room, 0 if everything worked out and < 0 if there were major errors.
3263
*
3264
* this will push starting from min_slot to the end of the leaf. It won't
3265
* push any slot lower than min_slot
3266
*/
3267
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3268
*root, struct btrfs_path *path,
3269
int min_data_size, int data_size,
3270
bool empty, u32 min_slot)
3271
{
3272
struct extent_buffer *left = path->nodes[0];
3273
struct extent_buffer *right;
3274
struct extent_buffer *upper;
3275
int slot;
3276
int free_space;
3277
u32 left_nritems;
3278
int ret;
3279
3280
if (!path->nodes[1])
3281
return 1;
3282
3283
slot = path->slots[1];
3284
upper = path->nodes[1];
3285
if (slot >= btrfs_header_nritems(upper) - 1)
3286
return 1;
3287
3288
btrfs_assert_tree_write_locked(path->nodes[1]);
3289
3290
right = btrfs_read_node_slot(upper, slot + 1);
3291
if (IS_ERR(right))
3292
return PTR_ERR(right);
3293
3294
btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
3295
3296
free_space = btrfs_leaf_free_space(right);
3297
if (free_space < data_size)
3298
goto out_unlock;
3299
3300
ret = btrfs_cow_block(trans, root, right, upper,
3301
slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3302
if (ret)
3303
goto out_unlock;
3304
3305
left_nritems = btrfs_header_nritems(left);
3306
if (left_nritems == 0)
3307
goto out_unlock;
3308
3309
if (unlikely(check_sibling_keys(left, right))) {
3310
ret = -EUCLEAN;
3311
btrfs_abort_transaction(trans, ret);
3312
btrfs_tree_unlock(right);
3313
free_extent_buffer(right);
3314
return ret;
3315
}
3316
if (path->slots[0] == left_nritems && !empty) {
3317
/* Key greater than all keys in the leaf, right neighbor has
3318
* enough room for it and we're not emptying our leaf to delete
3319
* it, therefore use right neighbor to insert the new item and
3320
* no need to touch/dirty our left leaf. */
3321
btrfs_tree_unlock(left);
3322
free_extent_buffer(left);
3323
path->nodes[0] = right;
3324
path->slots[0] = 0;
3325
path->slots[1]++;
3326
return 0;
3327
}
3328
3329
return __push_leaf_right(trans, path, min_data_size, empty, right,
3330
free_space, left_nritems, min_slot);
3331
out_unlock:
3332
btrfs_tree_unlock(right);
3333
free_extent_buffer(right);
3334
return 1;
3335
}
3336
3337
/*
3338
* push some data in the path leaf to the left, trying to free up at
3339
* least data_size bytes. returns zero if the push worked, nonzero otherwise
3340
*
3341
* max_slot can put a limit on how far into the leaf we'll push items. The
3342
* item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3343
* items
3344
*/
3345
static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3346
struct btrfs_path *path, int data_size,
3347
bool empty, struct extent_buffer *left,
3348
int free_space, u32 right_nritems,
3349
u32 max_slot)
3350
{
3351
struct btrfs_fs_info *fs_info = left->fs_info;
3352
struct btrfs_disk_key disk_key;
3353
struct extent_buffer *right = path->nodes[0];
3354
int i;
3355
int push_space = 0;
3356
int push_items = 0;
3357
u32 old_left_nritems;
3358
u32 nr;
3359
int ret = 0;
3360
u32 this_item_size;
3361
u32 old_left_item_size;
3362
3363
if (empty)
3364
nr = min(right_nritems, max_slot);
3365
else
3366
nr = min(right_nritems - 1, max_slot);
3367
3368
for (i = 0; i < nr; i++) {
3369
if (!empty && push_items > 0) {
3370
if (path->slots[0] < i)
3371
break;
3372
if (path->slots[0] == i) {
3373
int space = btrfs_leaf_free_space(right);
3374
3375
if (space + push_space * 2 > free_space)
3376
break;
3377
}
3378
}
3379
3380
if (path->slots[0] == i)
3381
push_space += data_size;
3382
3383
this_item_size = btrfs_item_size(right, i);
3384
if (this_item_size + sizeof(struct btrfs_item) + push_space >
3385
free_space)
3386
break;
3387
3388
push_items++;
3389
push_space += this_item_size + sizeof(struct btrfs_item);
3390
}
3391
3392
if (push_items == 0) {
3393
ret = 1;
3394
goto out;
3395
}
3396
WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3397
3398
/* push data from right to left */
3399
copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3400
3401
push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3402
btrfs_item_offset(right, push_items - 1);
3403
3404
copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3405
btrfs_item_offset(right, push_items - 1), push_space);
3406
old_left_nritems = btrfs_header_nritems(left);
3407
BUG_ON(old_left_nritems <= 0);
3408
3409
old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3410
for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3411
u32 ioff;
3412
3413
ioff = btrfs_item_offset(left, i);
3414
btrfs_set_item_offset(left, i,
3415
ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3416
}
3417
btrfs_set_header_nritems(left, old_left_nritems + push_items);
3418
3419
/* fixup right node */
3420
if (unlikely(push_items > right_nritems)) {
3421
ret = -EUCLEAN;
3422
btrfs_abort_transaction(trans, ret);
3423
btrfs_crit(fs_info, "push items (%d) > right leaf items (%u)",
3424
push_items, right_nritems);
3425
goto out;
3426
}
3427
3428
if (push_items < right_nritems) {
3429
push_space = btrfs_item_offset(right, push_items - 1) -
3430
leaf_data_end(right);
3431
memmove_leaf_data(right,
3432
BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3433
leaf_data_end(right), push_space);
3434
3435
memmove_leaf_items(right, 0, push_items,
3436
btrfs_header_nritems(right) - push_items);
3437
}
3438
3439
right_nritems -= push_items;
3440
btrfs_set_header_nritems(right, right_nritems);
3441
push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3442
for (i = 0; i < right_nritems; i++) {
3443
push_space = push_space - btrfs_item_size(right, i);
3444
btrfs_set_item_offset(right, i, push_space);
3445
}
3446
3447
btrfs_mark_buffer_dirty(trans, left);
3448
if (right_nritems)
3449
btrfs_mark_buffer_dirty(trans, right);
3450
else
3451
btrfs_clear_buffer_dirty(trans, right);
3452
3453
btrfs_item_key(right, &disk_key, 0);
3454
fixup_low_keys(trans, path, &disk_key, 1);
3455
3456
/* then fixup the leaf pointer in the path */
3457
if (path->slots[0] < push_items) {
3458
path->slots[0] += old_left_nritems;
3459
btrfs_tree_unlock(right);
3460
free_extent_buffer(right);
3461
path->nodes[0] = left;
3462
path->slots[1] -= 1;
3463
} else {
3464
btrfs_tree_unlock(left);
3465
free_extent_buffer(left);
3466
path->slots[0] -= push_items;
3467
}
3468
BUG_ON(path->slots[0] < 0);
3469
return ret;
3470
out:
3471
btrfs_tree_unlock(left);
3472
free_extent_buffer(left);
3473
return ret;
3474
}
3475
3476
/*
3477
* push some data in the path leaf to the left, trying to free up at
3478
* least data_size bytes. returns zero if the push worked, nonzero otherwise
3479
*
3480
* max_slot can put a limit on how far into the leaf we'll push items. The
3481
* item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3482
* items
3483
*/
3484
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3485
*root, struct btrfs_path *path, int min_data_size,
3486
int data_size, int empty, u32 max_slot)
3487
{
3488
struct extent_buffer *right = path->nodes[0];
3489
struct extent_buffer *left;
3490
int slot;
3491
int free_space;
3492
u32 right_nritems;
3493
int ret = 0;
3494
3495
slot = path->slots[1];
3496
if (slot == 0)
3497
return 1;
3498
if (!path->nodes[1])
3499
return 1;
3500
3501
right_nritems = btrfs_header_nritems(right);
3502
if (right_nritems == 0)
3503
return 1;
3504
3505
btrfs_assert_tree_write_locked(path->nodes[1]);
3506
3507
left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3508
if (IS_ERR(left))
3509
return PTR_ERR(left);
3510
3511
btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
3512
3513
free_space = btrfs_leaf_free_space(left);
3514
if (free_space < data_size) {
3515
ret = 1;
3516
goto out;
3517
}
3518
3519
ret = btrfs_cow_block(trans, root, left,
3520
path->nodes[1], slot - 1, &left,
3521
BTRFS_NESTING_LEFT_COW);
3522
if (ret) {
3523
/* we hit -ENOSPC, but it isn't fatal here */
3524
if (ret == -ENOSPC)
3525
ret = 1;
3526
goto out;
3527
}
3528
3529
if (unlikely(check_sibling_keys(left, right))) {
3530
ret = -EUCLEAN;
3531
btrfs_abort_transaction(trans, ret);
3532
goto out;
3533
}
3534
return __push_leaf_left(trans, path, min_data_size, empty, left,
3535
free_space, right_nritems, max_slot);
3536
out:
3537
btrfs_tree_unlock(left);
3538
free_extent_buffer(left);
3539
return ret;
3540
}
3541
3542
/*
3543
* split the path's leaf in two, making sure there is at least data_size
3544
* available for the resulting leaf level of the path.
3545
*/
3546
static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3547
struct btrfs_path *path,
3548
struct extent_buffer *l,
3549
struct extent_buffer *right,
3550
int slot, int mid, int nritems)
3551
{
3552
struct btrfs_fs_info *fs_info = trans->fs_info;
3553
int data_copy_size;
3554
int rt_data_off;
3555
int i;
3556
int ret;
3557
struct btrfs_disk_key disk_key;
3558
3559
nritems = nritems - mid;
3560
btrfs_set_header_nritems(right, nritems);
3561
data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3562
3563
copy_leaf_items(right, l, 0, mid, nritems);
3564
3565
copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3566
leaf_data_end(l), data_copy_size);
3567
3568
rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3569
3570
for (i = 0; i < nritems; i++) {
3571
u32 ioff;
3572
3573
ioff = btrfs_item_offset(right, i);
3574
btrfs_set_item_offset(right, i, ioff + rt_data_off);
3575
}
3576
3577
btrfs_set_header_nritems(l, mid);
3578
btrfs_item_key(right, &disk_key, 0);
3579
ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3580
if (ret < 0)
3581
return ret;
3582
3583
btrfs_mark_buffer_dirty(trans, right);
3584
btrfs_mark_buffer_dirty(trans, l);
3585
BUG_ON(path->slots[0] != slot);
3586
3587
if (mid <= slot) {
3588
btrfs_tree_unlock(path->nodes[0]);
3589
free_extent_buffer(path->nodes[0]);
3590
path->nodes[0] = right;
3591
path->slots[0] -= mid;
3592
path->slots[1] += 1;
3593
} else {
3594
btrfs_tree_unlock(right);
3595
free_extent_buffer(right);
3596
}
3597
3598
BUG_ON(path->slots[0] < 0);
3599
3600
return 0;
3601
}
3602
3603
/*
3604
* double splits happen when we need to insert a big item in the middle
3605
* of a leaf. A double split can leave us with 3 mostly empty leaves:
3606
* leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3607
* A B C
3608
*
3609
* We avoid this by trying to push the items on either side of our target
3610
* into the adjacent leaves. If all goes well we can avoid the double split
3611
* completely.
3612
*/
3613
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3614
struct btrfs_root *root,
3615
struct btrfs_path *path,
3616
int data_size)
3617
{
3618
int ret;
3619
int progress = 0;
3620
int slot;
3621
u32 nritems;
3622
int space_needed = data_size;
3623
3624
slot = path->slots[0];
3625
if (slot < btrfs_header_nritems(path->nodes[0]))
3626
space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3627
3628
/*
3629
* try to push all the items after our slot into the
3630
* right leaf
3631
*/
3632
ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3633
if (ret < 0)
3634
return ret;
3635
3636
if (ret == 0)
3637
progress++;
3638
3639
nritems = btrfs_header_nritems(path->nodes[0]);
3640
/*
3641
* our goal is to get our slot at the start or end of a leaf. If
3642
* we've done so we're done
3643
*/
3644
if (path->slots[0] == 0 || path->slots[0] == nritems)
3645
return 0;
3646
3647
if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3648
return 0;
3649
3650
/* try to push all the items before our slot into the next leaf */
3651
slot = path->slots[0];
3652
space_needed = data_size;
3653
if (slot > 0)
3654
space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3655
ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3656
if (ret < 0)
3657
return ret;
3658
3659
if (ret == 0)
3660
progress++;
3661
3662
if (progress)
3663
return 0;
3664
return 1;
3665
}
3666
3667
/*
3668
* split the path's leaf in two, making sure there is at least data_size
3669
* available for the resulting leaf level of the path.
3670
*
3671
* returns 0 if all went well and < 0 on failure.
3672
*/
3673
static noinline int split_leaf(struct btrfs_trans_handle *trans,
3674
struct btrfs_root *root,
3675
const struct btrfs_key *ins_key,
3676
struct btrfs_path *path, int data_size,
3677
bool extend)
3678
{
3679
struct btrfs_disk_key disk_key;
3680
struct extent_buffer *l;
3681
u32 nritems;
3682
int mid;
3683
int slot;
3684
struct extent_buffer *right;
3685
struct btrfs_fs_info *fs_info = root->fs_info;
3686
int ret = 0;
3687
int wret;
3688
int split;
3689
int num_doubles = 0;
3690
int tried_avoid_double = 0;
3691
3692
l = path->nodes[0];
3693
slot = path->slots[0];
3694
if (extend && data_size + btrfs_item_size(l, slot) +
3695
sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3696
return -EOVERFLOW;
3697
3698
/* first try to make some room by pushing left and right */
3699
if (data_size && path->nodes[1]) {
3700
int space_needed = data_size;
3701
3702
if (slot < btrfs_header_nritems(l))
3703
space_needed -= btrfs_leaf_free_space(l);
3704
3705
wret = push_leaf_right(trans, root, path, space_needed,
3706
space_needed, 0, 0);
3707
if (wret < 0)
3708
return wret;
3709
if (wret) {
3710
space_needed = data_size;
3711
if (slot > 0)
3712
space_needed -= btrfs_leaf_free_space(l);
3713
wret = push_leaf_left(trans, root, path, space_needed,
3714
space_needed, 0, (u32)-1);
3715
if (wret < 0)
3716
return wret;
3717
}
3718
l = path->nodes[0];
3719
3720
/* did the pushes work? */
3721
if (btrfs_leaf_free_space(l) >= data_size)
3722
return 0;
3723
}
3724
3725
if (!path->nodes[1]) {
3726
ret = insert_new_root(trans, root, path, 1);
3727
if (ret)
3728
return ret;
3729
}
3730
again:
3731
split = 1;
3732
l = path->nodes[0];
3733
slot = path->slots[0];
3734
nritems = btrfs_header_nritems(l);
3735
mid = (nritems + 1) / 2;
3736
3737
if (mid <= slot) {
3738
if (nritems == 1 ||
3739
leaf_space_used(l, mid, nritems - mid) + data_size >
3740
BTRFS_LEAF_DATA_SIZE(fs_info)) {
3741
if (slot >= nritems) {
3742
split = 0;
3743
} else {
3744
mid = slot;
3745
if (mid != nritems &&
3746
leaf_space_used(l, mid, nritems - mid) +
3747
data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3748
if (data_size && !tried_avoid_double)
3749
goto push_for_double;
3750
split = 2;
3751
}
3752
}
3753
}
3754
} else {
3755
if (leaf_space_used(l, 0, mid) + data_size >
3756
BTRFS_LEAF_DATA_SIZE(fs_info)) {
3757
if (!extend && data_size && slot == 0) {
3758
split = 0;
3759
} else if ((extend || !data_size) && slot == 0) {
3760
mid = 1;
3761
} else {
3762
mid = slot;
3763
if (mid != nritems &&
3764
leaf_space_used(l, mid, nritems - mid) +
3765
data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3766
if (data_size && !tried_avoid_double)
3767
goto push_for_double;
3768
split = 2;
3769
}
3770
}
3771
}
3772
}
3773
3774
if (split == 0)
3775
btrfs_cpu_key_to_disk(&disk_key, ins_key);
3776
else
3777
btrfs_item_key(l, &disk_key, mid);
3778
3779
/*
3780
* We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3781
* split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3782
* subclasses, which is 8 at the time of this patch, and we've maxed it
3783
* out. In the future we could add a
3784
* BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3785
* use BTRFS_NESTING_NEW_ROOT.
3786
*/
3787
right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3788
&disk_key, 0, l->start, 0, 0,
3789
num_doubles ? BTRFS_NESTING_NEW_ROOT :
3790
BTRFS_NESTING_SPLIT);
3791
if (IS_ERR(right))
3792
return PTR_ERR(right);
3793
3794
root_add_used_bytes(root);
3795
3796
if (split == 0) {
3797
if (mid <= slot) {
3798
btrfs_set_header_nritems(right, 0);
3799
ret = insert_ptr(trans, path, &disk_key,
3800
right->start, path->slots[1] + 1, 1);
3801
if (ret < 0) {
3802
btrfs_tree_unlock(right);
3803
free_extent_buffer(right);
3804
return ret;
3805
}
3806
btrfs_tree_unlock(path->nodes[0]);
3807
free_extent_buffer(path->nodes[0]);
3808
path->nodes[0] = right;
3809
path->slots[0] = 0;
3810
path->slots[1] += 1;
3811
} else {
3812
btrfs_set_header_nritems(right, 0);
3813
ret = insert_ptr(trans, path, &disk_key,
3814
right->start, path->slots[1], 1);
3815
if (ret < 0) {
3816
btrfs_tree_unlock(right);
3817
free_extent_buffer(right);
3818
return ret;
3819
}
3820
btrfs_tree_unlock(path->nodes[0]);
3821
free_extent_buffer(path->nodes[0]);
3822
path->nodes[0] = right;
3823
path->slots[0] = 0;
3824
if (path->slots[1] == 0)
3825
fixup_low_keys(trans, path, &disk_key, 1);
3826
}
3827
/*
3828
* We create a new leaf 'right' for the required ins_len and
3829
* we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3830
* the content of ins_len to 'right'.
3831
*/
3832
return ret;
3833
}
3834
3835
ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3836
if (ret < 0) {
3837
btrfs_tree_unlock(right);
3838
free_extent_buffer(right);
3839
return ret;
3840
}
3841
3842
if (split == 2) {
3843
BUG_ON(num_doubles != 0);
3844
num_doubles++;
3845
goto again;
3846
}
3847
3848
return 0;
3849
3850
push_for_double:
3851
push_for_double_split(trans, root, path, data_size);
3852
tried_avoid_double = 1;
3853
if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3854
return 0;
3855
goto again;
3856
}
3857
3858
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3859
struct btrfs_root *root,
3860
struct btrfs_path *path, int ins_len)
3861
{
3862
struct btrfs_key key;
3863
struct extent_buffer *leaf;
3864
struct btrfs_file_extent_item *fi;
3865
u64 extent_len = 0;
3866
u32 item_size;
3867
int ret;
3868
3869
leaf = path->nodes[0];
3870
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3871
3872
BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3873
key.type != BTRFS_RAID_STRIPE_KEY &&
3874
key.type != BTRFS_EXTENT_CSUM_KEY);
3875
3876
if (btrfs_leaf_free_space(leaf) >= ins_len)
3877
return 0;
3878
3879
item_size = btrfs_item_size(leaf, path->slots[0]);
3880
if (key.type == BTRFS_EXTENT_DATA_KEY) {
3881
fi = btrfs_item_ptr(leaf, path->slots[0],
3882
struct btrfs_file_extent_item);
3883
extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3884
}
3885
btrfs_release_path(path);
3886
3887
path->keep_locks = true;
3888
path->search_for_split = true;
3889
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3890
path->search_for_split = false;
3891
if (ret > 0)
3892
ret = -EAGAIN;
3893
if (ret < 0)
3894
goto err;
3895
3896
ret = -EAGAIN;
3897
leaf = path->nodes[0];
3898
/* if our item isn't there, return now */
3899
if (item_size != btrfs_item_size(leaf, path->slots[0]))
3900
goto err;
3901
3902
/* the leaf has changed, it now has room. return now */
3903
if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3904
goto err;
3905
3906
if (key.type == BTRFS_EXTENT_DATA_KEY) {
3907
fi = btrfs_item_ptr(leaf, path->slots[0],
3908
struct btrfs_file_extent_item);
3909
if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3910
goto err;
3911
}
3912
3913
ret = split_leaf(trans, root, &key, path, ins_len, 1);
3914
if (ret)
3915
goto err;
3916
3917
path->keep_locks = false;
3918
btrfs_unlock_up_safe(path, 1);
3919
return 0;
3920
err:
3921
path->keep_locks = false;
3922
return ret;
3923
}
3924
3925
static noinline int split_item(struct btrfs_trans_handle *trans,
3926
struct btrfs_path *path,
3927
const struct btrfs_key *new_key,
3928
unsigned long split_offset)
3929
{
3930
struct extent_buffer *leaf;
3931
int orig_slot, slot;
3932
char *buf;
3933
u32 nritems;
3934
u32 item_size;
3935
u32 orig_offset;
3936
struct btrfs_disk_key disk_key;
3937
3938
leaf = path->nodes[0];
3939
/*
3940
* Shouldn't happen because the caller must have previously called
3941
* setup_leaf_for_split() to make room for the new item in the leaf.
3942
*/
3943
if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3944
return -ENOSPC;
3945
3946
orig_slot = path->slots[0];
3947
orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3948
item_size = btrfs_item_size(leaf, path->slots[0]);
3949
3950
buf = kmalloc(item_size, GFP_NOFS);
3951
if (!buf)
3952
return -ENOMEM;
3953
3954
read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3955
path->slots[0]), item_size);
3956
3957
slot = path->slots[0] + 1;
3958
nritems = btrfs_header_nritems(leaf);
3959
if (slot != nritems) {
3960
/* shift the items */
3961
memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3962
}
3963
3964
btrfs_cpu_key_to_disk(&disk_key, new_key);
3965
btrfs_set_item_key(leaf, &disk_key, slot);
3966
3967
btrfs_set_item_offset(leaf, slot, orig_offset);
3968
btrfs_set_item_size(leaf, slot, item_size - split_offset);
3969
3970
btrfs_set_item_offset(leaf, orig_slot,
3971
orig_offset + item_size - split_offset);
3972
btrfs_set_item_size(leaf, orig_slot, split_offset);
3973
3974
btrfs_set_header_nritems(leaf, nritems + 1);
3975
3976
/* write the data for the start of the original item */
3977
write_extent_buffer(leaf, buf,
3978
btrfs_item_ptr_offset(leaf, path->slots[0]),
3979
split_offset);
3980
3981
/* write the data for the new item */
3982
write_extent_buffer(leaf, buf + split_offset,
3983
btrfs_item_ptr_offset(leaf, slot),
3984
item_size - split_offset);
3985
btrfs_mark_buffer_dirty(trans, leaf);
3986
3987
BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3988
kfree(buf);
3989
return 0;
3990
}
3991
3992
/*
3993
* This function splits a single item into two items,
3994
* giving 'new_key' to the new item and splitting the
3995
* old one at split_offset (from the start of the item).
3996
*
3997
* The path may be released by this operation. After
3998
* the split, the path is pointing to the old item. The
3999
* new item is going to be in the same node as the old one.
4000
*
4001
* Note, the item being split must be smaller enough to live alone on
4002
* a tree block with room for one extra struct btrfs_item
4003
*
4004
* This allows us to split the item in place, keeping a lock on the
4005
* leaf the entire time.
4006
*/
4007
int btrfs_split_item(struct btrfs_trans_handle *trans,
4008
struct btrfs_root *root,
4009
struct btrfs_path *path,
4010
const struct btrfs_key *new_key,
4011
unsigned long split_offset)
4012
{
4013
int ret;
4014
ret = setup_leaf_for_split(trans, root, path,
4015
sizeof(struct btrfs_item));
4016
if (ret)
4017
return ret;
4018
4019
ret = split_item(trans, path, new_key, split_offset);
4020
return ret;
4021
}
4022
4023
/*
4024
* make the item pointed to by the path smaller. new_size indicates
4025
* how small to make it, and from_end tells us if we just chop bytes
4026
* off the end of the item or if we shift the item to chop bytes off
4027
* the front.
4028
*/
4029
void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4030
const struct btrfs_path *path, u32 new_size, int from_end)
4031
{
4032
int slot;
4033
struct extent_buffer *leaf;
4034
u32 nritems;
4035
unsigned int data_end;
4036
unsigned int old_data_start;
4037
unsigned int old_size;
4038
unsigned int size_diff;
4039
int i;
4040
4041
leaf = path->nodes[0];
4042
slot = path->slots[0];
4043
4044
old_size = btrfs_item_size(leaf, slot);
4045
if (old_size == new_size)
4046
return;
4047
4048
nritems = btrfs_header_nritems(leaf);
4049
data_end = leaf_data_end(leaf);
4050
4051
old_data_start = btrfs_item_offset(leaf, slot);
4052
4053
size_diff = old_size - new_size;
4054
4055
BUG_ON(slot < 0);
4056
BUG_ON(slot >= nritems);
4057
4058
/*
4059
* item0..itemN ... dataN.offset..dataN.size .. data0.size
4060
*/
4061
/* first correct the data pointers */
4062
for (i = slot; i < nritems; i++) {
4063
u32 ioff;
4064
4065
ioff = btrfs_item_offset(leaf, i);
4066
btrfs_set_item_offset(leaf, i, ioff + size_diff);
4067
}
4068
4069
/* shift the data */
4070
if (from_end) {
4071
memmove_leaf_data(leaf, data_end + size_diff, data_end,
4072
old_data_start + new_size - data_end);
4073
} else {
4074
struct btrfs_disk_key disk_key;
4075
u64 offset;
4076
4077
btrfs_item_key(leaf, &disk_key, slot);
4078
4079
if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4080
unsigned long ptr;
4081
struct btrfs_file_extent_item *fi;
4082
4083
fi = btrfs_item_ptr(leaf, slot,
4084
struct btrfs_file_extent_item);
4085
fi = (struct btrfs_file_extent_item *)(
4086
(unsigned long)fi - size_diff);
4087
4088
if (btrfs_file_extent_type(leaf, fi) ==
4089
BTRFS_FILE_EXTENT_INLINE) {
4090
ptr = btrfs_item_ptr_offset(leaf, slot);
4091
memmove_extent_buffer(leaf, ptr,
4092
(unsigned long)fi,
4093
BTRFS_FILE_EXTENT_INLINE_DATA_START);
4094
}
4095
}
4096
4097
memmove_leaf_data(leaf, data_end + size_diff, data_end,
4098
old_data_start - data_end);
4099
4100
offset = btrfs_disk_key_offset(&disk_key);
4101
btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4102
btrfs_set_item_key(leaf, &disk_key, slot);
4103
if (slot == 0)
4104
fixup_low_keys(trans, path, &disk_key, 1);
4105
}
4106
4107
btrfs_set_item_size(leaf, slot, new_size);
4108
btrfs_mark_buffer_dirty(trans, leaf);
4109
4110
if (unlikely(btrfs_leaf_free_space(leaf) < 0)) {
4111
btrfs_print_leaf(leaf);
4112
BUG();
4113
}
4114
}
4115
4116
/*
4117
* make the item pointed to by the path bigger, data_size is the added size.
4118
*/
4119
void btrfs_extend_item(struct btrfs_trans_handle *trans,
4120
const struct btrfs_path *path, u32 data_size)
4121
{
4122
int slot;
4123
struct extent_buffer *leaf;
4124
u32 nritems;
4125
unsigned int data_end;
4126
unsigned int old_data;
4127
unsigned int old_size;
4128
int i;
4129
4130
leaf = path->nodes[0];
4131
4132
nritems = btrfs_header_nritems(leaf);
4133
data_end = leaf_data_end(leaf);
4134
4135
if (unlikely(btrfs_leaf_free_space(leaf) < data_size)) {
4136
btrfs_print_leaf(leaf);
4137
BUG();
4138
}
4139
slot = path->slots[0];
4140
old_data = btrfs_item_data_end(leaf, slot);
4141
4142
BUG_ON(slot < 0);
4143
if (unlikely(slot >= nritems)) {
4144
btrfs_print_leaf(leaf);
4145
btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4146
slot, nritems);
4147
BUG();
4148
}
4149
4150
/*
4151
* item0..itemN ... dataN.offset..dataN.size .. data0.size
4152
*/
4153
/* first correct the data pointers */
4154
for (i = slot; i < nritems; i++) {
4155
u32 ioff;
4156
4157
ioff = btrfs_item_offset(leaf, i);
4158
btrfs_set_item_offset(leaf, i, ioff - data_size);
4159
}
4160
4161
/* shift the data */
4162
memmove_leaf_data(leaf, data_end - data_size, data_end,
4163
old_data - data_end);
4164
4165
old_size = btrfs_item_size(leaf, slot);
4166
btrfs_set_item_size(leaf, slot, old_size + data_size);
4167
btrfs_mark_buffer_dirty(trans, leaf);
4168
4169
if (unlikely(btrfs_leaf_free_space(leaf) < 0)) {
4170
btrfs_print_leaf(leaf);
4171
BUG();
4172
}
4173
}
4174
4175
/*
4176
* Make space in the node before inserting one or more items.
4177
*
4178
* @trans: transaction handle
4179
* @root: root we are inserting items to
4180
* @path: points to the leaf/slot where we are going to insert new items
4181
* @batch: information about the batch of items to insert
4182
*
4183
* Main purpose is to save stack depth by doing the bulk of the work in a
4184
* function that doesn't call btrfs_search_slot
4185
*/
4186
static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4187
struct btrfs_root *root, struct btrfs_path *path,
4188
const struct btrfs_item_batch *batch)
4189
{
4190
struct btrfs_fs_info *fs_info = root->fs_info;
4191
int i;
4192
u32 nritems;
4193
unsigned int data_end;
4194
struct btrfs_disk_key disk_key;
4195
struct extent_buffer *leaf;
4196
int slot;
4197
u32 total_size;
4198
4199
/*
4200
* Before anything else, update keys in the parent and other ancestors
4201
* if needed, then release the write locks on them, so that other tasks
4202
* can use them while we modify the leaf.
4203
*/
4204
if (path->slots[0] == 0) {
4205
btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4206
fixup_low_keys(trans, path, &disk_key, 1);
4207
}
4208
btrfs_unlock_up_safe(path, 1);
4209
4210
leaf = path->nodes[0];
4211
slot = path->slots[0];
4212
4213
nritems = btrfs_header_nritems(leaf);
4214
data_end = leaf_data_end(leaf);
4215
total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4216
4217
if (unlikely(btrfs_leaf_free_space(leaf) < total_size)) {
4218
btrfs_print_leaf(leaf);
4219
btrfs_crit(fs_info, "not enough freespace need %u have %d",
4220
total_size, btrfs_leaf_free_space(leaf));
4221
BUG();
4222
}
4223
4224
if (slot != nritems) {
4225
unsigned int old_data = btrfs_item_data_end(leaf, slot);
4226
4227
if (unlikely(old_data < data_end)) {
4228
btrfs_print_leaf(leaf);
4229
btrfs_crit(fs_info,
4230
"item at slot %d with data offset %u beyond data end of leaf %u",
4231
slot, old_data, data_end);
4232
BUG();
4233
}
4234
/*
4235
* item0..itemN ... dataN.offset..dataN.size .. data0.size
4236
*/
4237
/* first correct the data pointers */
4238
for (i = slot; i < nritems; i++) {
4239
u32 ioff;
4240
4241
ioff = btrfs_item_offset(leaf, i);
4242
btrfs_set_item_offset(leaf, i,
4243
ioff - batch->total_data_size);
4244
}
4245
/* shift the items */
4246
memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4247
4248
/* shift the data */
4249
memmove_leaf_data(leaf, data_end - batch->total_data_size,
4250
data_end, old_data - data_end);
4251
data_end = old_data;
4252
}
4253
4254
/* setup the item for the new data */
4255
for (i = 0; i < batch->nr; i++) {
4256
btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4257
btrfs_set_item_key(leaf, &disk_key, slot + i);
4258
data_end -= batch->data_sizes[i];
4259
btrfs_set_item_offset(leaf, slot + i, data_end);
4260
btrfs_set_item_size(leaf, slot + i, batch->data_sizes[i]);
4261
}
4262
4263
btrfs_set_header_nritems(leaf, nritems + batch->nr);
4264
btrfs_mark_buffer_dirty(trans, leaf);
4265
4266
if (unlikely(btrfs_leaf_free_space(leaf) < 0)) {
4267
btrfs_print_leaf(leaf);
4268
BUG();
4269
}
4270
}
4271
4272
/*
4273
* Insert a new item into a leaf.
4274
*
4275
* @trans: Transaction handle.
4276
* @root: The root of the btree.
4277
* @path: A path pointing to the target leaf and slot.
4278
* @key: The key of the new item.
4279
* @data_size: The size of the data associated with the new key.
4280
*/
4281
void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4282
struct btrfs_root *root,
4283
struct btrfs_path *path,
4284
const struct btrfs_key *key,
4285
u32 data_size)
4286
{
4287
struct btrfs_item_batch batch;
4288
4289
batch.keys = key;
4290
batch.data_sizes = &data_size;
4291
batch.total_data_size = data_size;
4292
batch.nr = 1;
4293
4294
setup_items_for_insert(trans, root, path, &batch);
4295
}
4296
4297
/*
4298
* Given a key and some data, insert items into the tree.
4299
* This does all the path init required, making room in the tree if needed.
4300
*
4301
* Returns: 0 on success
4302
* -EEXIST if the first key already exists
4303
* < 0 on other errors
4304
*/
4305
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4306
struct btrfs_root *root,
4307
struct btrfs_path *path,
4308
const struct btrfs_item_batch *batch)
4309
{
4310
int ret = 0;
4311
int slot;
4312
u32 total_size;
4313
4314
total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4315
ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4316
if (ret == 0)
4317
return -EEXIST;
4318
if (ret < 0)
4319
return ret;
4320
4321
slot = path->slots[0];
4322
BUG_ON(slot < 0);
4323
4324
setup_items_for_insert(trans, root, path, batch);
4325
return 0;
4326
}
4327
4328
/*
4329
* Given a key and some data, insert an item into the tree.
4330
* This does all the path init required, making room in the tree if needed.
4331
*/
4332
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4333
const struct btrfs_key *cpu_key, void *data,
4334
u32 data_size)
4335
{
4336
int ret = 0;
4337
BTRFS_PATH_AUTO_FREE(path);
4338
struct extent_buffer *leaf;
4339
unsigned long ptr;
4340
4341
path = btrfs_alloc_path();
4342
if (!path)
4343
return -ENOMEM;
4344
ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4345
if (!ret) {
4346
leaf = path->nodes[0];
4347
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4348
write_extent_buffer(leaf, data, ptr, data_size);
4349
btrfs_mark_buffer_dirty(trans, leaf);
4350
}
4351
return ret;
4352
}
4353
4354
/*
4355
* This function duplicates an item, giving 'new_key' to the new item.
4356
* It guarantees both items live in the same tree leaf and the new item is
4357
* contiguous with the original item.
4358
*
4359
* This allows us to split a file extent in place, keeping a lock on the leaf
4360
* the entire time.
4361
*/
4362
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4363
struct btrfs_root *root,
4364
struct btrfs_path *path,
4365
const struct btrfs_key *new_key)
4366
{
4367
struct extent_buffer *leaf;
4368
int ret;
4369
u32 item_size;
4370
4371
leaf = path->nodes[0];
4372
item_size = btrfs_item_size(leaf, path->slots[0]);
4373
ret = setup_leaf_for_split(trans, root, path,
4374
item_size + sizeof(struct btrfs_item));
4375
if (ret)
4376
return ret;
4377
4378
path->slots[0]++;
4379
btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4380
leaf = path->nodes[0];
4381
memcpy_extent_buffer(leaf,
4382
btrfs_item_ptr_offset(leaf, path->slots[0]),
4383
btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4384
item_size);
4385
return 0;
4386
}
4387
4388
/*
4389
* delete the pointer from a given node.
4390
*
4391
* the tree should have been previously balanced so the deletion does not
4392
* empty a node.
4393
*
4394
* This is exported for use inside btrfs-progs, don't un-export it.
4395
*/
4396
int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4397
struct btrfs_path *path, int level, int slot)
4398
{
4399
struct extent_buffer *parent = path->nodes[level];
4400
u32 nritems;
4401
int ret;
4402
4403
nritems = btrfs_header_nritems(parent);
4404
if (slot != nritems - 1) {
4405
if (level) {
4406
ret = btrfs_tree_mod_log_insert_move(parent, slot,
4407
slot + 1, nritems - slot - 1);
4408
if (unlikely(ret < 0)) {
4409
btrfs_abort_transaction(trans, ret);
4410
return ret;
4411
}
4412
}
4413
memmove_extent_buffer(parent,
4414
btrfs_node_key_ptr_offset(parent, slot),
4415
btrfs_node_key_ptr_offset(parent, slot + 1),
4416
sizeof(struct btrfs_key_ptr) *
4417
(nritems - slot - 1));
4418
} else if (level) {
4419
ret = btrfs_tree_mod_log_insert_key(parent, slot,
4420
BTRFS_MOD_LOG_KEY_REMOVE);
4421
if (unlikely(ret < 0)) {
4422
btrfs_abort_transaction(trans, ret);
4423
return ret;
4424
}
4425
}
4426
4427
nritems--;
4428
btrfs_set_header_nritems(parent, nritems);
4429
if (nritems == 0 && parent == root->node) {
4430
BUG_ON(btrfs_header_level(root->node) != 1);
4431
/* just turn the root into a leaf and break */
4432
btrfs_set_header_level(root->node, 0);
4433
} else if (slot == 0) {
4434
struct btrfs_disk_key disk_key;
4435
4436
btrfs_node_key(parent, &disk_key, 0);
4437
fixup_low_keys(trans, path, &disk_key, level + 1);
4438
}
4439
btrfs_mark_buffer_dirty(trans, parent);
4440
return 0;
4441
}
4442
4443
/*
4444
* a helper function to delete the leaf pointed to by path->slots[1] and
4445
* path->nodes[1].
4446
*
4447
* This deletes the pointer in path->nodes[1] and frees the leaf
4448
* block extent. zero is returned if it all worked out, < 0 otherwise.
4449
*
4450
* The path must have already been setup for deleting the leaf, including
4451
* all the proper balancing. path->nodes[1] must be locked.
4452
*/
4453
static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4454
struct btrfs_root *root,
4455
struct btrfs_path *path,
4456
struct extent_buffer *leaf)
4457
{
4458
int ret;
4459
4460
WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4461
ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4462
if (ret < 0)
4463
return ret;
4464
4465
/*
4466
* btrfs_free_extent is expensive, we want to make sure we
4467
* aren't holding any locks when we call it
4468
*/
4469
btrfs_unlock_up_safe(path, 0);
4470
4471
root_sub_used_bytes(root);
4472
4473
refcount_inc(&leaf->refs);
4474
ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4475
free_extent_buffer_stale(leaf);
4476
if (ret < 0)
4477
btrfs_abort_transaction(trans, ret);
4478
4479
return ret;
4480
}
4481
/*
4482
* delete the item at the leaf level in path. If that empties
4483
* the leaf, remove it from the tree
4484
*/
4485
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4486
struct btrfs_path *path, int slot, int nr)
4487
{
4488
struct btrfs_fs_info *fs_info = root->fs_info;
4489
struct extent_buffer *leaf;
4490
int ret = 0;
4491
int wret;
4492
u32 nritems;
4493
4494
leaf = path->nodes[0];
4495
nritems = btrfs_header_nritems(leaf);
4496
4497
if (slot + nr != nritems) {
4498
const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4499
const int data_end = leaf_data_end(leaf);
4500
u32 dsize = 0;
4501
int i;
4502
4503
for (i = 0; i < nr; i++)
4504
dsize += btrfs_item_size(leaf, slot + i);
4505
4506
memmove_leaf_data(leaf, data_end + dsize, data_end,
4507
last_off - data_end);
4508
4509
for (i = slot + nr; i < nritems; i++) {
4510
u32 ioff;
4511
4512
ioff = btrfs_item_offset(leaf, i);
4513
btrfs_set_item_offset(leaf, i, ioff + dsize);
4514
}
4515
4516
memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4517
}
4518
btrfs_set_header_nritems(leaf, nritems - nr);
4519
nritems -= nr;
4520
4521
/* delete the leaf if we've emptied it */
4522
if (nritems == 0) {
4523
if (leaf != root->node) {
4524
btrfs_clear_buffer_dirty(trans, leaf);
4525
ret = btrfs_del_leaf(trans, root, path, leaf);
4526
if (ret < 0)
4527
return ret;
4528
}
4529
} else {
4530
int used = leaf_space_used(leaf, 0, nritems);
4531
if (slot == 0) {
4532
struct btrfs_disk_key disk_key;
4533
4534
btrfs_item_key(leaf, &disk_key, 0);
4535
fixup_low_keys(trans, path, &disk_key, 1);
4536
}
4537
4538
/*
4539
* Try to delete the leaf if it is mostly empty. We do this by
4540
* trying to move all its items into its left and right neighbours.
4541
* If we can't move all the items, then we don't delete it - it's
4542
* not ideal, but future insertions might fill the leaf with more
4543
* items, or items from other leaves might be moved later into our
4544
* leaf due to deletions on those leaves.
4545
*/
4546
if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4547
u32 min_push_space;
4548
4549
/* push_leaf_left fixes the path.
4550
* make sure the path still points to our leaf
4551
* for possible call to btrfs_del_ptr below
4552
*/
4553
slot = path->slots[1];
4554
refcount_inc(&leaf->refs);
4555
/*
4556
* We want to be able to at least push one item to the
4557
* left neighbour leaf, and that's the first item.
4558
*/
4559
min_push_space = sizeof(struct btrfs_item) +
4560
btrfs_item_size(leaf, 0);
4561
wret = push_leaf_left(trans, root, path, 0,
4562
min_push_space, 1, (u32)-1);
4563
if (wret < 0 && wret != -ENOSPC)
4564
ret = wret;
4565
4566
if (path->nodes[0] == leaf &&
4567
btrfs_header_nritems(leaf)) {
4568
/*
4569
* If we were not able to push all items from our
4570
* leaf to its left neighbour, then attempt to
4571
* either push all the remaining items to the
4572
* right neighbour or none. There's no advantage
4573
* in pushing only some items, instead of all, as
4574
* it's pointless to end up with a leaf having
4575
* too few items while the neighbours can be full
4576
* or nearly full.
4577
*/
4578
nritems = btrfs_header_nritems(leaf);
4579
min_push_space = leaf_space_used(leaf, 0, nritems);
4580
wret = push_leaf_right(trans, root, path, 0,
4581
min_push_space, 1, 0);
4582
if (wret < 0 && wret != -ENOSPC)
4583
ret = wret;
4584
}
4585
4586
if (btrfs_header_nritems(leaf) == 0) {
4587
path->slots[1] = slot;
4588
ret = btrfs_del_leaf(trans, root, path, leaf);
4589
free_extent_buffer(leaf);
4590
if (ret < 0)
4591
return ret;
4592
} else {
4593
/* if we're still in the path, make sure
4594
* we're dirty. Otherwise, one of the
4595
* push_leaf functions must have already
4596
* dirtied this buffer
4597
*/
4598
if (path->nodes[0] == leaf)
4599
btrfs_mark_buffer_dirty(trans, leaf);
4600
free_extent_buffer(leaf);
4601
}
4602
} else {
4603
btrfs_mark_buffer_dirty(trans, leaf);
4604
}
4605
}
4606
return ret;
4607
}
4608
4609
/*
4610
* A helper function to walk down the tree starting at min_key, and looking
4611
* for leaves that have a minimum transaction id.
4612
* This is used by the btree defrag code, and tree logging
4613
*
4614
* This does not cow, but it does stuff the starting key it finds back
4615
* into min_key, so you can call btrfs_search_slot with cow=1 on the
4616
* key and get a writable path.
4617
*
4618
* min_trans indicates the oldest transaction that you are interested
4619
* in walking through. Any nodes or leaves older than min_trans are
4620
* skipped over (without reading them).
4621
*
4622
* returns zero if something useful was found, < 0 on error and 1 if there
4623
* was nothing in the tree that matched the search criteria.
4624
*/
4625
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4626
struct btrfs_path *path,
4627
u64 min_trans)
4628
{
4629
struct extent_buffer *cur;
4630
int slot;
4631
int sret;
4632
u32 nritems;
4633
int level;
4634
int ret = 1;
4635
const bool keep_locks = path->keep_locks;
4636
4637
ASSERT(!path->nowait);
4638
ASSERT(path->lowest_level == 0);
4639
path->keep_locks = true;
4640
again:
4641
cur = btrfs_read_lock_root_node(root);
4642
level = btrfs_header_level(cur);
4643
WARN_ON(path->nodes[level]);
4644
path->nodes[level] = cur;
4645
path->locks[level] = BTRFS_READ_LOCK;
4646
4647
if (btrfs_header_generation(cur) < min_trans) {
4648
ret = 1;
4649
goto out;
4650
}
4651
while (1) {
4652
nritems = btrfs_header_nritems(cur);
4653
level = btrfs_header_level(cur);
4654
sret = btrfs_bin_search(cur, 0, min_key, &slot);
4655
if (sret < 0) {
4656
ret = sret;
4657
goto out;
4658
}
4659
4660
/* At level 0 we're done, setup the path and exit. */
4661
if (level == 0) {
4662
if (slot >= nritems)
4663
goto find_next_key;
4664
ret = 0;
4665
path->slots[level] = slot;
4666
/* Save our key for returning back. */
4667
btrfs_item_key_to_cpu(cur, min_key, slot);
4668
goto out;
4669
}
4670
if (sret && slot > 0)
4671
slot--;
4672
/*
4673
* check this node pointer against the min_trans parameters.
4674
* If it is too old, skip to the next one.
4675
*/
4676
while (slot < nritems) {
4677
u64 gen;
4678
4679
gen = btrfs_node_ptr_generation(cur, slot);
4680
if (gen < min_trans) {
4681
slot++;
4682
continue;
4683
}
4684
break;
4685
}
4686
find_next_key:
4687
/*
4688
* we didn't find a candidate key in this node, walk forward
4689
* and find another one
4690
*/
4691
path->slots[level] = slot;
4692
if (slot >= nritems) {
4693
sret = btrfs_find_next_key(root, path, min_key, level,
4694
min_trans);
4695
if (sret == 0) {
4696
btrfs_release_path(path);
4697
goto again;
4698
} else {
4699
goto out;
4700
}
4701
}
4702
cur = btrfs_read_node_slot(cur, slot);
4703
if (IS_ERR(cur)) {
4704
ret = PTR_ERR(cur);
4705
goto out;
4706
}
4707
4708
btrfs_tree_read_lock(cur);
4709
4710
path->locks[level - 1] = BTRFS_READ_LOCK;
4711
path->nodes[level - 1] = cur;
4712
unlock_up(path, level, 1, 0, NULL);
4713
}
4714
out:
4715
path->keep_locks = keep_locks;
4716
if (ret == 0)
4717
btrfs_unlock_up_safe(path, 1);
4718
return ret;
4719
}
4720
4721
/*
4722
* this is similar to btrfs_next_leaf, but does not try to preserve
4723
* and fixup the path. It looks for and returns the next key in the
4724
* tree based on the current path and the min_trans parameters.
4725
*
4726
* 0 is returned if another key is found, < 0 if there are any errors
4727
* and 1 is returned if there are no higher keys in the tree
4728
*
4729
* path->keep_locks should be set to true on the search made before
4730
* calling this function.
4731
*/
4732
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4733
struct btrfs_key *key, int level, u64 min_trans)
4734
{
4735
int slot;
4736
struct extent_buffer *c;
4737
4738
WARN_ON(!path->keep_locks && !path->skip_locking);
4739
while (level < BTRFS_MAX_LEVEL) {
4740
if (!path->nodes[level])
4741
return 1;
4742
4743
slot = path->slots[level] + 1;
4744
c = path->nodes[level];
4745
next:
4746
if (slot >= btrfs_header_nritems(c)) {
4747
int ret;
4748
int orig_lowest;
4749
struct btrfs_key cur_key;
4750
if (level + 1 >= BTRFS_MAX_LEVEL ||
4751
!path->nodes[level + 1])
4752
return 1;
4753
4754
if (path->locks[level + 1] || path->skip_locking) {
4755
level++;
4756
continue;
4757
}
4758
4759
slot = btrfs_header_nritems(c) - 1;
4760
if (level == 0)
4761
btrfs_item_key_to_cpu(c, &cur_key, slot);
4762
else
4763
btrfs_node_key_to_cpu(c, &cur_key, slot);
4764
4765
orig_lowest = path->lowest_level;
4766
btrfs_release_path(path);
4767
path->lowest_level = level;
4768
ret = btrfs_search_slot(NULL, root, &cur_key, path,
4769
0, 0);
4770
path->lowest_level = orig_lowest;
4771
if (ret < 0)
4772
return ret;
4773
4774
c = path->nodes[level];
4775
slot = path->slots[level];
4776
if (ret == 0)
4777
slot++;
4778
goto next;
4779
}
4780
4781
if (level == 0)
4782
btrfs_item_key_to_cpu(c, key, slot);
4783
else {
4784
u64 gen = btrfs_node_ptr_generation(c, slot);
4785
4786
if (gen < min_trans) {
4787
slot++;
4788
goto next;
4789
}
4790
btrfs_node_key_to_cpu(c, key, slot);
4791
}
4792
return 0;
4793
}
4794
return 1;
4795
}
4796
4797
int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4798
u64 time_seq)
4799
{
4800
int slot;
4801
int level;
4802
struct extent_buffer *c;
4803
struct extent_buffer *next;
4804
struct btrfs_fs_info *fs_info = root->fs_info;
4805
struct btrfs_key key;
4806
bool need_commit_sem = false;
4807
u32 nritems;
4808
int ret;
4809
int i;
4810
4811
/*
4812
* The nowait semantics are used only for write paths, where we don't
4813
* use the tree mod log and sequence numbers.
4814
*/
4815
if (time_seq)
4816
ASSERT(!path->nowait);
4817
4818
nritems = btrfs_header_nritems(path->nodes[0]);
4819
if (nritems == 0)
4820
return 1;
4821
4822
btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4823
again:
4824
level = 1;
4825
next = NULL;
4826
btrfs_release_path(path);
4827
4828
path->keep_locks = true;
4829
4830
if (time_seq) {
4831
ret = btrfs_search_old_slot(root, &key, path, time_seq);
4832
} else {
4833
if (path->need_commit_sem) {
4834
path->need_commit_sem = false;
4835
need_commit_sem = true;
4836
if (path->nowait) {
4837
if (!down_read_trylock(&fs_info->commit_root_sem)) {
4838
ret = -EAGAIN;
4839
goto done;
4840
}
4841
} else {
4842
down_read(&fs_info->commit_root_sem);
4843
}
4844
}
4845
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4846
}
4847
path->keep_locks = false;
4848
4849
if (ret < 0)
4850
goto done;
4851
4852
nritems = btrfs_header_nritems(path->nodes[0]);
4853
/*
4854
* By releasing the path above we dropped all our locks. A balance
4855
* could have happened and
4856
*
4857
* 1. added more items after the previous last item
4858
* 2. deleted the previous last item
4859
*
4860
* So, check again here and advance the path if there are now more
4861
* items available.
4862
*/
4863
if (nritems > 0 && path->slots[0] <= nritems - 1) {
4864
if (ret == 0 && path->slots[0] != nritems - 1) {
4865
path->slots[0]++;
4866
goto done;
4867
} else if (ret > 0) {
4868
ret = 0;
4869
goto done;
4870
}
4871
}
4872
4873
while (level < BTRFS_MAX_LEVEL) {
4874
if (!path->nodes[level]) {
4875
ret = 1;
4876
goto done;
4877
}
4878
4879
slot = path->slots[level] + 1;
4880
c = path->nodes[level];
4881
if (slot >= btrfs_header_nritems(c)) {
4882
level++;
4883
if (level == BTRFS_MAX_LEVEL) {
4884
ret = 1;
4885
goto done;
4886
}
4887
continue;
4888
}
4889
4890
4891
/*
4892
* Our current level is where we're going to start from, and to
4893
* make sure lockdep doesn't complain we need to drop our locks
4894
* and nodes from 0 to our current level.
4895
*/
4896
for (i = 0; i < level; i++) {
4897
if (path->locks[level]) {
4898
btrfs_tree_read_unlock(path->nodes[i]);
4899
path->locks[i] = 0;
4900
}
4901
free_extent_buffer(path->nodes[i]);
4902
path->nodes[i] = NULL;
4903
}
4904
4905
next = c;
4906
ret = read_block_for_search(root, path, &next, slot, &key);
4907
if (ret == -EAGAIN && !path->nowait)
4908
goto again;
4909
4910
if (ret < 0) {
4911
btrfs_release_path(path);
4912
goto done;
4913
}
4914
4915
if (!path->skip_locking) {
4916
ret = btrfs_try_tree_read_lock(next);
4917
if (!ret && path->nowait) {
4918
ret = -EAGAIN;
4919
goto done;
4920
}
4921
if (!ret && time_seq) {
4922
/*
4923
* If we don't get the lock, we may be racing
4924
* with push_leaf_left, holding that lock while
4925
* itself waiting for the leaf we've currently
4926
* locked. To solve this situation, we give up
4927
* on our lock and cycle.
4928
*/
4929
free_extent_buffer(next);
4930
btrfs_release_path(path);
4931
cond_resched();
4932
goto again;
4933
}
4934
if (!ret)
4935
btrfs_tree_read_lock(next);
4936
}
4937
break;
4938
}
4939
path->slots[level] = slot;
4940
while (1) {
4941
level--;
4942
path->nodes[level] = next;
4943
path->slots[level] = 0;
4944
if (!path->skip_locking)
4945
path->locks[level] = BTRFS_READ_LOCK;
4946
if (!level)
4947
break;
4948
4949
ret = read_block_for_search(root, path, &next, 0, &key);
4950
if (ret == -EAGAIN && !path->nowait)
4951
goto again;
4952
4953
if (ret < 0) {
4954
btrfs_release_path(path);
4955
goto done;
4956
}
4957
4958
if (!path->skip_locking) {
4959
if (path->nowait) {
4960
if (!btrfs_try_tree_read_lock(next)) {
4961
ret = -EAGAIN;
4962
goto done;
4963
}
4964
} else {
4965
btrfs_tree_read_lock(next);
4966
}
4967
}
4968
}
4969
ret = 0;
4970
done:
4971
unlock_up(path, 0, 1, 0, NULL);
4972
if (need_commit_sem) {
4973
int ret2;
4974
4975
path->need_commit_sem = true;
4976
ret2 = finish_need_commit_sem_search(path);
4977
up_read(&fs_info->commit_root_sem);
4978
if (ret2)
4979
ret = ret2;
4980
}
4981
4982
return ret;
4983
}
4984
4985
int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4986
{
4987
path->slots[0]++;
4988
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4989
return btrfs_next_old_leaf(root, path, time_seq);
4990
return 0;
4991
}
4992
4993
/*
4994
* this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4995
* searching until it gets past min_objectid or finds an item of 'type'
4996
*
4997
* returns 0 if something is found, 1 if nothing was found and < 0 on error
4998
*/
4999
int btrfs_previous_item(struct btrfs_root *root,
5000
struct btrfs_path *path, u64 min_objectid,
5001
int type)
5002
{
5003
struct btrfs_key found_key;
5004
struct extent_buffer *leaf;
5005
u32 nritems;
5006
int ret;
5007
5008
while (1) {
5009
if (path->slots[0] == 0) {
5010
ret = btrfs_prev_leaf(root, path);
5011
if (ret != 0)
5012
return ret;
5013
} else {
5014
path->slots[0]--;
5015
}
5016
leaf = path->nodes[0];
5017
nritems = btrfs_header_nritems(leaf);
5018
if (nritems == 0)
5019
return 1;
5020
if (path->slots[0] == nritems)
5021
path->slots[0]--;
5022
5023
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5024
if (found_key.objectid < min_objectid)
5025
break;
5026
if (found_key.type == type)
5027
return 0;
5028
if (found_key.objectid == min_objectid &&
5029
found_key.type < type)
5030
break;
5031
}
5032
return 1;
5033
}
5034
5035
/*
5036
* search in extent tree to find a previous Metadata/Data extent item with
5037
* min objecitd.
5038
*
5039
* returns 0 if something is found, 1 if nothing was found and < 0 on error
5040
*/
5041
int btrfs_previous_extent_item(struct btrfs_root *root,
5042
struct btrfs_path *path, u64 min_objectid)
5043
{
5044
struct btrfs_key found_key;
5045
struct extent_buffer *leaf;
5046
u32 nritems;
5047
int ret;
5048
5049
while (1) {
5050
if (path->slots[0] == 0) {
5051
ret = btrfs_prev_leaf(root, path);
5052
if (ret != 0)
5053
return ret;
5054
} else {
5055
path->slots[0]--;
5056
}
5057
leaf = path->nodes[0];
5058
nritems = btrfs_header_nritems(leaf);
5059
if (nritems == 0)
5060
return 1;
5061
if (path->slots[0] == nritems)
5062
path->slots[0]--;
5063
5064
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5065
if (found_key.objectid < min_objectid)
5066
break;
5067
if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5068
found_key.type == BTRFS_METADATA_ITEM_KEY)
5069
return 0;
5070
if (found_key.objectid == min_objectid &&
5071
found_key.type < BTRFS_EXTENT_ITEM_KEY)
5072
break;
5073
}
5074
return 1;
5075
}
5076
5077
int __init btrfs_ctree_init(void)
5078
{
5079
btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5080
if (!btrfs_path_cachep)
5081
return -ENOMEM;
5082
return 0;
5083
}
5084
5085
void __cold btrfs_ctree_exit(void)
5086
{
5087
kmem_cache_destroy(btrfs_path_cachep);
5088
}
5089
5090