Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/defrag.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2007 Oracle. All rights reserved.
4
*/
5
6
#include <linux/sched.h>
7
#include "ctree.h"
8
#include "disk-io.h"
9
#include "transaction.h"
10
#include "locking.h"
11
#include "accessors.h"
12
#include "messages.h"
13
#include "delalloc-space.h"
14
#include "subpage.h"
15
#include "defrag.h"
16
#include "file-item.h"
17
#include "super.h"
18
19
static struct kmem_cache *btrfs_inode_defrag_cachep;
20
21
/*
22
* When auto defrag is enabled we queue up these defrag structs to remember
23
* which inodes need defragging passes.
24
*/
25
struct inode_defrag {
26
struct rb_node rb_node;
27
/* Inode number */
28
u64 ino;
29
/*
30
* Transid where the defrag was added, we search for extents newer than
31
* this.
32
*/
33
u64 transid;
34
35
/* Root objectid */
36
u64 root;
37
38
/*
39
* The extent size threshold for autodefrag.
40
*
41
* This value is different for compressed/non-compressed extents, thus
42
* needs to be passed from higher layer.
43
* (aka, inode_should_defrag())
44
*/
45
u32 extent_thresh;
46
};
47
48
static int compare_inode_defrag(const struct inode_defrag *defrag1,
49
const struct inode_defrag *defrag2)
50
{
51
if (defrag1->root > defrag2->root)
52
return 1;
53
else if (defrag1->root < defrag2->root)
54
return -1;
55
else if (defrag1->ino > defrag2->ino)
56
return 1;
57
else if (defrag1->ino < defrag2->ino)
58
return -1;
59
else
60
return 0;
61
}
62
63
static int inode_defrag_cmp(struct rb_node *new, const struct rb_node *existing)
64
{
65
const struct inode_defrag *new_defrag = rb_entry(new, struct inode_defrag, rb_node);
66
const struct inode_defrag *existing_defrag = rb_entry(existing, struct inode_defrag, rb_node);
67
68
return compare_inode_defrag(new_defrag, existing_defrag);
69
}
70
71
/*
72
* Insert a record for an inode into the defrag tree. The lock must be held
73
* already.
74
*
75
* If you're inserting a record for an older transid than an existing record,
76
* the transid already in the tree is lowered.
77
*/
78
static int btrfs_insert_inode_defrag(struct btrfs_inode *inode,
79
struct inode_defrag *defrag)
80
{
81
struct btrfs_fs_info *fs_info = inode->root->fs_info;
82
struct rb_node *node;
83
84
node = rb_find_add(&defrag->rb_node, &fs_info->defrag_inodes, inode_defrag_cmp);
85
if (node) {
86
struct inode_defrag *entry;
87
88
entry = rb_entry(node, struct inode_defrag, rb_node);
89
/*
90
* If we're reinserting an entry for an old defrag run, make
91
* sure to lower the transid of our existing record.
92
*/
93
if (defrag->transid < entry->transid)
94
entry->transid = defrag->transid;
95
entry->extent_thresh = min(defrag->extent_thresh, entry->extent_thresh);
96
return -EEXIST;
97
}
98
set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
99
return 0;
100
}
101
102
static inline bool need_auto_defrag(struct btrfs_fs_info *fs_info)
103
{
104
if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
105
return false;
106
107
if (btrfs_fs_closing(fs_info))
108
return false;
109
110
return true;
111
}
112
113
/*
114
* Insert a defrag record for this inode if auto defrag is enabled. No errors
115
* returned as they're not considered fatal.
116
*/
117
void btrfs_add_inode_defrag(struct btrfs_inode *inode, u32 extent_thresh)
118
{
119
struct btrfs_root *root = inode->root;
120
struct btrfs_fs_info *fs_info = root->fs_info;
121
struct inode_defrag *defrag;
122
int ret;
123
124
if (!need_auto_defrag(fs_info))
125
return;
126
127
if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
128
return;
129
130
defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
131
if (!defrag)
132
return;
133
134
defrag->ino = btrfs_ino(inode);
135
defrag->transid = btrfs_get_root_last_trans(root);
136
defrag->root = btrfs_root_id(root);
137
defrag->extent_thresh = extent_thresh;
138
139
spin_lock(&fs_info->defrag_inodes_lock);
140
if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
141
/*
142
* If we set IN_DEFRAG flag and evict the inode from memory,
143
* and then re-read this inode, this new inode doesn't have
144
* IN_DEFRAG flag. At the case, we may find the existed defrag.
145
*/
146
ret = btrfs_insert_inode_defrag(inode, defrag);
147
if (ret)
148
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
149
} else {
150
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
151
}
152
spin_unlock(&fs_info->defrag_inodes_lock);
153
}
154
155
/*
156
* Pick the defragable inode that we want, if it doesn't exist, we will get the
157
* next one.
158
*/
159
static struct inode_defrag *btrfs_pick_defrag_inode(
160
struct btrfs_fs_info *fs_info, u64 root, u64 ino)
161
{
162
struct inode_defrag *entry = NULL;
163
struct inode_defrag tmp;
164
struct rb_node *p;
165
struct rb_node *parent = NULL;
166
int ret;
167
168
tmp.ino = ino;
169
tmp.root = root;
170
171
spin_lock(&fs_info->defrag_inodes_lock);
172
p = fs_info->defrag_inodes.rb_node;
173
while (p) {
174
parent = p;
175
entry = rb_entry(parent, struct inode_defrag, rb_node);
176
177
ret = compare_inode_defrag(&tmp, entry);
178
if (ret < 0)
179
p = parent->rb_left;
180
else if (ret > 0)
181
p = parent->rb_right;
182
else
183
goto out;
184
}
185
186
if (parent && compare_inode_defrag(&tmp, entry) > 0) {
187
parent = rb_next(parent);
188
entry = rb_entry_safe(parent, struct inode_defrag, rb_node);
189
}
190
out:
191
if (entry)
192
rb_erase(parent, &fs_info->defrag_inodes);
193
spin_unlock(&fs_info->defrag_inodes_lock);
194
return entry;
195
}
196
197
void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
198
{
199
struct inode_defrag *defrag, *next;
200
201
spin_lock(&fs_info->defrag_inodes_lock);
202
203
rbtree_postorder_for_each_entry_safe(defrag, next,
204
&fs_info->defrag_inodes, rb_node)
205
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
206
207
fs_info->defrag_inodes = RB_ROOT;
208
209
spin_unlock(&fs_info->defrag_inodes_lock);
210
}
211
212
#define BTRFS_DEFRAG_BATCH 1024
213
214
static int btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
215
struct inode_defrag *defrag,
216
struct file_ra_state *ra)
217
{
218
struct btrfs_root *inode_root;
219
struct btrfs_inode *inode;
220
struct btrfs_ioctl_defrag_range_args range;
221
int ret = 0;
222
u64 cur = 0;
223
224
again:
225
if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
226
goto cleanup;
227
if (!need_auto_defrag(fs_info))
228
goto cleanup;
229
230
/* Get the inode */
231
inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
232
if (IS_ERR(inode_root)) {
233
ret = PTR_ERR(inode_root);
234
goto cleanup;
235
}
236
237
inode = btrfs_iget(defrag->ino, inode_root);
238
btrfs_put_root(inode_root);
239
if (IS_ERR(inode)) {
240
ret = PTR_ERR(inode);
241
goto cleanup;
242
}
243
244
if (cur >= i_size_read(&inode->vfs_inode)) {
245
iput(&inode->vfs_inode);
246
goto cleanup;
247
}
248
249
/* Do a chunk of defrag */
250
clear_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
251
memset(&range, 0, sizeof(range));
252
range.len = (u64)-1;
253
range.start = cur;
254
range.extent_thresh = defrag->extent_thresh;
255
file_ra_state_init(ra, inode->vfs_inode.i_mapping);
256
257
sb_start_write(fs_info->sb);
258
ret = btrfs_defrag_file(inode, ra, &range, defrag->transid,
259
BTRFS_DEFRAG_BATCH);
260
sb_end_write(fs_info->sb);
261
iput(&inode->vfs_inode);
262
263
if (ret < 0)
264
goto cleanup;
265
266
cur = max(cur + fs_info->sectorsize, range.start);
267
goto again;
268
269
cleanup:
270
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
271
return ret;
272
}
273
274
/*
275
* Run through the list of inodes in the FS that need defragging.
276
*/
277
int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
278
{
279
struct inode_defrag *defrag;
280
u64 first_ino = 0;
281
u64 root_objectid = 0;
282
283
atomic_inc(&fs_info->defrag_running);
284
while (1) {
285
struct file_ra_state ra = { 0 };
286
287
/* Pause the auto defragger. */
288
if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
289
break;
290
291
if (!need_auto_defrag(fs_info))
292
break;
293
294
/* find an inode to defrag */
295
defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
296
if (!defrag) {
297
if (root_objectid || first_ino) {
298
root_objectid = 0;
299
first_ino = 0;
300
continue;
301
} else {
302
break;
303
}
304
}
305
306
first_ino = defrag->ino + 1;
307
root_objectid = defrag->root;
308
309
btrfs_run_defrag_inode(fs_info, defrag, &ra);
310
}
311
atomic_dec(&fs_info->defrag_running);
312
313
/*
314
* During unmount, we use the transaction_wait queue to wait for the
315
* defragger to stop.
316
*/
317
wake_up(&fs_info->transaction_wait);
318
return 0;
319
}
320
321
/*
322
* Check if two blocks addresses are close, used by defrag.
323
*/
324
static bool close_blocks(u64 blocknr, u64 other, u32 blocksize)
325
{
326
if (blocknr < other && other - (blocknr + blocksize) < SZ_32K)
327
return true;
328
if (blocknr > other && blocknr - (other + blocksize) < SZ_32K)
329
return true;
330
return false;
331
}
332
333
/*
334
* Go through all the leaves pointed to by a node and reallocate them so that
335
* disk order is close to key order.
336
*/
337
static int btrfs_realloc_node(struct btrfs_trans_handle *trans,
338
struct btrfs_root *root,
339
struct extent_buffer *parent,
340
int start_slot, u64 *last_ret,
341
struct btrfs_key *progress)
342
{
343
struct btrfs_fs_info *fs_info = root->fs_info;
344
const u32 blocksize = fs_info->nodesize;
345
const int end_slot = btrfs_header_nritems(parent) - 1;
346
u64 search_start = *last_ret;
347
u64 last_block = 0;
348
int ret = 0;
349
bool progress_passed = false;
350
351
/*
352
* COWing must happen through a running transaction, which always
353
* matches the current fs generation (it's a transaction with a state
354
* less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
355
* into error state to prevent the commit of any transaction.
356
*/
357
if (unlikely(trans->transaction != fs_info->running_transaction ||
358
trans->transid != fs_info->generation)) {
359
btrfs_abort_transaction(trans, -EUCLEAN);
360
btrfs_crit(fs_info,
361
"unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
362
parent->start, btrfs_root_id(root), trans->transid,
363
fs_info->running_transaction->transid,
364
fs_info->generation);
365
return -EUCLEAN;
366
}
367
368
if (btrfs_header_nritems(parent) <= 1)
369
return 0;
370
371
for (int i = start_slot; i <= end_slot; i++) {
372
struct extent_buffer *cur;
373
struct btrfs_disk_key disk_key;
374
u64 blocknr;
375
u64 other;
376
bool close = true;
377
378
btrfs_node_key(parent, &disk_key, i);
379
if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0)
380
continue;
381
382
progress_passed = true;
383
blocknr = btrfs_node_blockptr(parent, i);
384
if (last_block == 0)
385
last_block = blocknr;
386
387
if (i > 0) {
388
other = btrfs_node_blockptr(parent, i - 1);
389
close = close_blocks(blocknr, other, blocksize);
390
}
391
if (!close && i < end_slot) {
392
other = btrfs_node_blockptr(parent, i + 1);
393
close = close_blocks(blocknr, other, blocksize);
394
}
395
if (close) {
396
last_block = blocknr;
397
continue;
398
}
399
400
cur = btrfs_read_node_slot(parent, i);
401
if (IS_ERR(cur))
402
return PTR_ERR(cur);
403
if (search_start == 0)
404
search_start = last_block;
405
406
btrfs_tree_lock(cur);
407
ret = btrfs_force_cow_block(trans, root, cur, parent, i,
408
&cur, search_start,
409
min(16 * blocksize,
410
(end_slot - i) * blocksize),
411
BTRFS_NESTING_COW);
412
if (ret) {
413
btrfs_tree_unlock(cur);
414
free_extent_buffer(cur);
415
break;
416
}
417
search_start = cur->start;
418
last_block = cur->start;
419
*last_ret = search_start;
420
btrfs_tree_unlock(cur);
421
free_extent_buffer(cur);
422
}
423
return ret;
424
}
425
426
/*
427
* Defrag all the leaves in a given btree.
428
* Read all the leaves and try to get key order to
429
* better reflect disk order
430
*/
431
432
static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
433
struct btrfs_root *root)
434
{
435
struct btrfs_path *path = NULL;
436
struct btrfs_key key;
437
int ret = 0;
438
int wret;
439
int level;
440
int next_key_ret = 0;
441
u64 last_ret = 0;
442
443
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
444
goto out;
445
446
path = btrfs_alloc_path();
447
if (!path) {
448
ret = -ENOMEM;
449
goto out;
450
}
451
452
level = btrfs_header_level(root->node);
453
454
if (level == 0)
455
goto out;
456
457
if (root->defrag_progress.objectid == 0) {
458
struct extent_buffer *root_node;
459
u32 nritems;
460
461
root_node = btrfs_lock_root_node(root);
462
nritems = btrfs_header_nritems(root_node);
463
root->defrag_max.objectid = 0;
464
/* from above we know this is not a leaf */
465
btrfs_node_key_to_cpu(root_node, &root->defrag_max,
466
nritems - 1);
467
btrfs_tree_unlock(root_node);
468
free_extent_buffer(root_node);
469
memset(&key, 0, sizeof(key));
470
} else {
471
memcpy(&key, &root->defrag_progress, sizeof(key));
472
}
473
474
path->keep_locks = 1;
475
476
ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
477
if (ret < 0)
478
goto out;
479
if (ret > 0) {
480
ret = 0;
481
goto out;
482
}
483
btrfs_release_path(path);
484
/*
485
* We don't need a lock on a leaf. btrfs_realloc_node() will lock all
486
* leafs from path->nodes[1], so set lowest_level to 1 to avoid later
487
* a deadlock (attempting to write lock an already write locked leaf).
488
*/
489
path->lowest_level = 1;
490
wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
491
492
if (wret < 0) {
493
ret = wret;
494
goto out;
495
}
496
if (!path->nodes[1]) {
497
ret = 0;
498
goto out;
499
}
500
/*
501
* The node at level 1 must always be locked when our path has
502
* keep_locks set and lowest_level is 1, regardless of the value of
503
* path->slots[1].
504
*/
505
ASSERT(path->locks[1] != 0);
506
ret = btrfs_realloc_node(trans, root,
507
path->nodes[1], 0,
508
&last_ret,
509
&root->defrag_progress);
510
if (ret) {
511
WARN_ON(ret == -EAGAIN);
512
goto out;
513
}
514
/*
515
* Now that we reallocated the node we can find the next key. Note that
516
* btrfs_find_next_key() can release our path and do another search
517
* without COWing, this is because even with path->keep_locks = 1,
518
* btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
519
* node when path->slots[node_level - 1] does not point to the last
520
* item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
521
* we search for the next key after reallocating our node.
522
*/
523
path->slots[1] = btrfs_header_nritems(path->nodes[1]);
524
next_key_ret = btrfs_find_next_key(root, path, &key, 1,
525
BTRFS_OLDEST_GENERATION);
526
if (next_key_ret == 0) {
527
memcpy(&root->defrag_progress, &key, sizeof(key));
528
ret = -EAGAIN;
529
}
530
out:
531
btrfs_free_path(path);
532
if (ret == -EAGAIN) {
533
if (root->defrag_max.objectid > root->defrag_progress.objectid)
534
goto done;
535
if (root->defrag_max.type > root->defrag_progress.type)
536
goto done;
537
if (root->defrag_max.offset > root->defrag_progress.offset)
538
goto done;
539
ret = 0;
540
}
541
done:
542
if (ret != -EAGAIN)
543
memset(&root->defrag_progress, 0,
544
sizeof(root->defrag_progress));
545
546
return ret;
547
}
548
549
/*
550
* Defrag a given btree. Every leaf in the btree is read and defragmented.
551
*/
552
int btrfs_defrag_root(struct btrfs_root *root)
553
{
554
struct btrfs_fs_info *fs_info = root->fs_info;
555
int ret;
556
557
if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
558
return 0;
559
560
while (1) {
561
struct btrfs_trans_handle *trans;
562
563
trans = btrfs_start_transaction(root, 0);
564
if (IS_ERR(trans)) {
565
ret = PTR_ERR(trans);
566
break;
567
}
568
569
ret = btrfs_defrag_leaves(trans, root);
570
571
btrfs_end_transaction(trans);
572
btrfs_btree_balance_dirty(fs_info);
573
cond_resched();
574
575
if (btrfs_fs_closing(fs_info) || ret != -EAGAIN)
576
break;
577
578
if (btrfs_defrag_cancelled(fs_info)) {
579
btrfs_debug(fs_info, "defrag_root cancelled");
580
ret = -EAGAIN;
581
break;
582
}
583
}
584
clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
585
return ret;
586
}
587
588
/*
589
* Defrag specific helper to get an extent map.
590
*
591
* Differences between this and btrfs_get_extent() are:
592
*
593
* - No extent_map will be added to inode->extent_tree
594
* To reduce memory usage in the long run.
595
*
596
* - Extra optimization to skip file extents older than @newer_than
597
* By using btrfs_search_forward() we can skip entire file ranges that
598
* have extents created in past transactions, because btrfs_search_forward()
599
* will not visit leaves and nodes with a generation smaller than given
600
* minimal generation threshold (@newer_than).
601
*
602
* Return valid em if we find a file extent matching the requirement.
603
* Return NULL if we can not find a file extent matching the requirement.
604
*
605
* Return ERR_PTR() for error.
606
*/
607
static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
608
u64 start, u64 newer_than)
609
{
610
struct btrfs_root *root = inode->root;
611
struct btrfs_file_extent_item *fi;
612
struct btrfs_path path = { 0 };
613
struct extent_map *em;
614
struct btrfs_key key;
615
u64 ino = btrfs_ino(inode);
616
int ret;
617
618
em = btrfs_alloc_extent_map();
619
if (!em) {
620
ret = -ENOMEM;
621
goto err;
622
}
623
624
key.objectid = ino;
625
key.type = BTRFS_EXTENT_DATA_KEY;
626
key.offset = start;
627
628
if (newer_than) {
629
ret = btrfs_search_forward(root, &key, &path, newer_than);
630
if (ret < 0)
631
goto err;
632
/* Can't find anything newer */
633
if (ret > 0)
634
goto not_found;
635
} else {
636
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
637
if (ret < 0)
638
goto err;
639
}
640
if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
641
/*
642
* If btrfs_search_slot() makes path to point beyond nritems,
643
* we should not have an empty leaf, as this inode must at
644
* least have its INODE_ITEM.
645
*/
646
ASSERT(btrfs_header_nritems(path.nodes[0]));
647
path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
648
}
649
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
650
/* Perfect match, no need to go one slot back */
651
if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
652
key.offset == start)
653
goto iterate;
654
655
/* We didn't find a perfect match, needs to go one slot back */
656
if (path.slots[0] > 0) {
657
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
658
if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
659
path.slots[0]--;
660
}
661
662
iterate:
663
/* Iterate through the path to find a file extent covering @start */
664
while (true) {
665
u64 extent_end;
666
667
if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
668
goto next;
669
670
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
671
672
/*
673
* We may go one slot back to INODE_REF/XATTR item, then
674
* need to go forward until we reach an EXTENT_DATA.
675
* But we should still has the correct ino as key.objectid.
676
*/
677
if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
678
goto next;
679
680
/* It's beyond our target range, definitely not extent found */
681
if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
682
goto not_found;
683
684
/*
685
* | |<- File extent ->|
686
* \- start
687
*
688
* This means there is a hole between start and key.offset.
689
*/
690
if (key.offset > start) {
691
em->start = start;
692
em->disk_bytenr = EXTENT_MAP_HOLE;
693
em->disk_num_bytes = 0;
694
em->ram_bytes = 0;
695
em->offset = 0;
696
em->len = key.offset - start;
697
break;
698
}
699
700
fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
701
struct btrfs_file_extent_item);
702
extent_end = btrfs_file_extent_end(&path);
703
704
/*
705
* |<- file extent ->| |
706
* \- start
707
*
708
* We haven't reached start, search next slot.
709
*/
710
if (extent_end <= start)
711
goto next;
712
713
/* Now this extent covers @start, convert it to em */
714
btrfs_extent_item_to_extent_map(inode, &path, fi, em);
715
break;
716
next:
717
ret = btrfs_next_item(root, &path);
718
if (ret < 0)
719
goto err;
720
if (ret > 0)
721
goto not_found;
722
}
723
btrfs_release_path(&path);
724
return em;
725
726
not_found:
727
btrfs_release_path(&path);
728
btrfs_free_extent_map(em);
729
return NULL;
730
731
err:
732
btrfs_release_path(&path);
733
btrfs_free_extent_map(em);
734
return ERR_PTR(ret);
735
}
736
737
static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
738
u64 newer_than, bool locked)
739
{
740
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
741
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
742
struct extent_map *em;
743
const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
744
745
/*
746
* Hopefully we have this extent in the tree already, try without the
747
* full extent lock.
748
*/
749
read_lock(&em_tree->lock);
750
em = btrfs_lookup_extent_mapping(em_tree, start, sectorsize);
751
read_unlock(&em_tree->lock);
752
753
/*
754
* We can get a merged extent, in that case, we need to re-search
755
* tree to get the original em for defrag.
756
*
757
* This is because even if we have adjacent extents that are contiguous
758
* and compatible (same type and flags), we still want to defrag them
759
* so that we use less metadata (extent items in the extent tree and
760
* file extent items in the inode's subvolume tree).
761
*/
762
if (em && (em->flags & EXTENT_FLAG_MERGED)) {
763
btrfs_free_extent_map(em);
764
em = NULL;
765
}
766
767
if (!em) {
768
struct extent_state *cached = NULL;
769
u64 end = start + sectorsize - 1;
770
771
/* Get the big lock and read metadata off disk. */
772
if (!locked)
773
btrfs_lock_extent(io_tree, start, end, &cached);
774
em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
775
if (!locked)
776
btrfs_unlock_extent(io_tree, start, end, &cached);
777
778
if (IS_ERR(em))
779
return NULL;
780
}
781
782
return em;
783
}
784
785
static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
786
const struct extent_map *em)
787
{
788
if (btrfs_extent_map_is_compressed(em))
789
return BTRFS_MAX_COMPRESSED;
790
return fs_info->max_extent_size;
791
}
792
793
static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
794
u32 extent_thresh, u64 newer_than, bool locked)
795
{
796
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
797
struct extent_map *next;
798
bool ret = false;
799
800
/* This is the last extent */
801
if (em->start + em->len >= i_size_read(inode))
802
return false;
803
804
/*
805
* Here we need to pass @newer_then when checking the next extent, or
806
* we will hit a case we mark current extent for defrag, but the next
807
* one will not be a target.
808
* This will just cause extra IO without really reducing the fragments.
809
*/
810
next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
811
/* No more em or hole */
812
if (!next || next->disk_bytenr >= EXTENT_MAP_LAST_BYTE)
813
goto out;
814
if (next->flags & EXTENT_FLAG_PREALLOC)
815
goto out;
816
/*
817
* If the next extent is at its max capacity, defragging current extent
818
* makes no sense, as the total number of extents won't change.
819
*/
820
if (next->len >= get_extent_max_capacity(fs_info, em))
821
goto out;
822
/* Skip older extent */
823
if (next->generation < newer_than)
824
goto out;
825
/* Also check extent size */
826
if (next->len >= extent_thresh)
827
goto out;
828
829
ret = true;
830
out:
831
btrfs_free_extent_map(next);
832
return ret;
833
}
834
835
/*
836
* Prepare one page to be defragged.
837
*
838
* This will ensure:
839
*
840
* - Returned page is locked and has been set up properly.
841
* - No ordered extent exists in the page.
842
* - The page is uptodate.
843
*
844
* NOTE: Caller should also wait for page writeback after the cluster is
845
* prepared, here we don't do writeback wait for each page.
846
*/
847
static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index)
848
{
849
struct address_space *mapping = inode->vfs_inode.i_mapping;
850
gfp_t mask = btrfs_alloc_write_mask(mapping);
851
u64 lock_start;
852
u64 lock_end;
853
struct extent_state *cached_state = NULL;
854
struct folio *folio;
855
int ret;
856
857
again:
858
/* TODO: Add order fgp order flags when large folios are fully enabled. */
859
folio = __filemap_get_folio(mapping, index,
860
FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
861
if (IS_ERR(folio))
862
return folio;
863
864
/*
865
* Since we can defragment files opened read-only, we can encounter
866
* transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS).
867
*
868
* The IO for such large folios is not fully tested, thus return
869
* an error to reject such folios unless it's an experimental build.
870
*
871
* Filesystem transparent huge pages are typically only used for
872
* executables that explicitly enable them, so this isn't very
873
* restrictive.
874
*/
875
if (!IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) && folio_test_large(folio)) {
876
folio_unlock(folio);
877
folio_put(folio);
878
return ERR_PTR(-ETXTBSY);
879
}
880
881
ret = set_folio_extent_mapped(folio);
882
if (ret < 0) {
883
folio_unlock(folio);
884
folio_put(folio);
885
return ERR_PTR(ret);
886
}
887
888
lock_start = folio_pos(folio);
889
lock_end = folio_end(folio) - 1;
890
/* Wait for any existing ordered extent in the range */
891
while (1) {
892
struct btrfs_ordered_extent *ordered;
893
894
btrfs_lock_extent(&inode->io_tree, lock_start, lock_end, &cached_state);
895
ordered = btrfs_lookup_ordered_range(inode, lock_start, folio_size(folio));
896
btrfs_unlock_extent(&inode->io_tree, lock_start, lock_end, &cached_state);
897
if (!ordered)
898
break;
899
900
folio_unlock(folio);
901
btrfs_start_ordered_extent(ordered);
902
btrfs_put_ordered_extent(ordered);
903
folio_lock(folio);
904
/*
905
* We unlocked the folio above, so we need check if it was
906
* released or not.
907
*/
908
if (folio->mapping != mapping || !folio->private) {
909
folio_unlock(folio);
910
folio_put(folio);
911
goto again;
912
}
913
}
914
915
/*
916
* Now the page range has no ordered extent any more. Read the page to
917
* make it uptodate.
918
*/
919
if (!folio_test_uptodate(folio)) {
920
btrfs_read_folio(NULL, folio);
921
folio_lock(folio);
922
if (folio->mapping != mapping || !folio->private) {
923
folio_unlock(folio);
924
folio_put(folio);
925
goto again;
926
}
927
if (!folio_test_uptodate(folio)) {
928
folio_unlock(folio);
929
folio_put(folio);
930
return ERR_PTR(-EIO);
931
}
932
}
933
return folio;
934
}
935
936
struct defrag_target_range {
937
struct list_head list;
938
u64 start;
939
u64 len;
940
};
941
942
/*
943
* Collect all valid target extents.
944
*
945
* @start: file offset to lookup
946
* @len: length to lookup
947
* @extent_thresh: file extent size threshold, any extent size >= this value
948
* will be ignored
949
* @newer_than: only defrag extents newer than this value
950
* @do_compress: whether the defrag is doing compression or no-compression
951
* if true, @extent_thresh will be ignored and all regular
952
* file extents meeting @newer_than will be targets.
953
* @locked: if the range has already held extent lock
954
* @target_list: list of targets file extents
955
*/
956
static int defrag_collect_targets(struct btrfs_inode *inode,
957
u64 start, u64 len, u32 extent_thresh,
958
u64 newer_than, bool do_compress,
959
bool locked, struct list_head *target_list,
960
u64 *last_scanned_ret)
961
{
962
struct btrfs_fs_info *fs_info = inode->root->fs_info;
963
bool last_is_target = false;
964
u64 cur = start;
965
int ret = 0;
966
967
while (cur < start + len) {
968
struct extent_map *em;
969
struct defrag_target_range *new;
970
bool next_mergeable = true;
971
u64 range_len;
972
973
last_is_target = false;
974
em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
975
if (!em)
976
break;
977
978
/*
979
* If the file extent is an inlined one, we may still want to
980
* defrag it (fallthrough) if it will cause a regular extent.
981
* This is for users who want to convert inline extents to
982
* regular ones through max_inline= mount option.
983
*/
984
if (em->disk_bytenr == EXTENT_MAP_INLINE &&
985
em->len <= inode->root->fs_info->max_inline)
986
goto next;
987
988
/* Skip holes and preallocated extents. */
989
if (em->disk_bytenr == EXTENT_MAP_HOLE ||
990
(em->flags & EXTENT_FLAG_PREALLOC))
991
goto next;
992
993
/* Skip older extent */
994
if (em->generation < newer_than)
995
goto next;
996
997
/* This em is under writeback, no need to defrag */
998
if (em->generation == (u64)-1)
999
goto next;
1000
1001
/*
1002
* Our start offset might be in the middle of an existing extent
1003
* map, so take that into account.
1004
*/
1005
range_len = em->len - (cur - em->start);
1006
/*
1007
* If this range of the extent map is already flagged for delalloc,
1008
* skip it, because:
1009
*
1010
* 1) We could deadlock later, when trying to reserve space for
1011
* delalloc, because in case we can't immediately reserve space
1012
* the flusher can start delalloc and wait for the respective
1013
* ordered extents to complete. The deadlock would happen
1014
* because we do the space reservation while holding the range
1015
* locked, and starting writeback, or finishing an ordered
1016
* extent, requires locking the range;
1017
*
1018
* 2) If there's delalloc there, it means there's dirty pages for
1019
* which writeback has not started yet (we clean the delalloc
1020
* flag when starting writeback and after creating an ordered
1021
* extent). If we mark pages in an adjacent range for defrag,
1022
* then we will have a larger contiguous range for delalloc,
1023
* very likely resulting in a larger extent after writeback is
1024
* triggered (except in a case of free space fragmentation).
1025
*/
1026
if (btrfs_test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1,
1027
EXTENT_DELALLOC))
1028
goto next;
1029
1030
/*
1031
* For do_compress case, we want to compress all valid file
1032
* extents, thus no @extent_thresh or mergeable check.
1033
*/
1034
if (do_compress)
1035
goto add;
1036
1037
/* Skip too large extent */
1038
if (em->len >= extent_thresh)
1039
goto next;
1040
1041
/*
1042
* Skip extents already at its max capacity, this is mostly for
1043
* compressed extents, which max cap is only 128K.
1044
*/
1045
if (em->len >= get_extent_max_capacity(fs_info, em))
1046
goto next;
1047
1048
/*
1049
* Normally there are no more extents after an inline one, thus
1050
* @next_mergeable will normally be false and not defragged.
1051
* So if an inline extent passed all above checks, just add it
1052
* for defrag, and be converted to regular extents.
1053
*/
1054
if (em->disk_bytenr == EXTENT_MAP_INLINE)
1055
goto add;
1056
1057
next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1058
extent_thresh, newer_than, locked);
1059
if (!next_mergeable) {
1060
struct defrag_target_range *last;
1061
1062
/* Empty target list, no way to merge with last entry */
1063
if (list_empty(target_list))
1064
goto next;
1065
last = list_last_entry(target_list,
1066
struct defrag_target_range, list);
1067
/* Not mergeable with last entry */
1068
if (last->start + last->len != cur)
1069
goto next;
1070
1071
/* Mergeable, fall through to add it to @target_list. */
1072
}
1073
1074
add:
1075
last_is_target = true;
1076
range_len = min(btrfs_extent_map_end(em), start + len) - cur;
1077
/*
1078
* This one is a good target, check if it can be merged into
1079
* last range of the target list.
1080
*/
1081
if (!list_empty(target_list)) {
1082
struct defrag_target_range *last;
1083
1084
last = list_last_entry(target_list,
1085
struct defrag_target_range, list);
1086
ASSERT(last->start + last->len <= cur);
1087
if (last->start + last->len == cur) {
1088
/* Mergeable, enlarge the last entry */
1089
last->len += range_len;
1090
goto next;
1091
}
1092
/* Fall through to allocate a new entry */
1093
}
1094
1095
/* Allocate new defrag_target_range */
1096
new = kmalloc(sizeof(*new), GFP_NOFS);
1097
if (!new) {
1098
btrfs_free_extent_map(em);
1099
ret = -ENOMEM;
1100
break;
1101
}
1102
new->start = cur;
1103
new->len = range_len;
1104
list_add_tail(&new->list, target_list);
1105
1106
next:
1107
cur = btrfs_extent_map_end(em);
1108
btrfs_free_extent_map(em);
1109
}
1110
if (ret < 0) {
1111
struct defrag_target_range *entry;
1112
struct defrag_target_range *tmp;
1113
1114
list_for_each_entry_safe(entry, tmp, target_list, list) {
1115
list_del_init(&entry->list);
1116
kfree(entry);
1117
}
1118
}
1119
if (!ret && last_scanned_ret) {
1120
/*
1121
* If the last extent is not a target, the caller can skip to
1122
* the end of that extent.
1123
* Otherwise, we can only go the end of the specified range.
1124
*/
1125
if (!last_is_target)
1126
*last_scanned_ret = max(cur, *last_scanned_ret);
1127
else
1128
*last_scanned_ret = max(start + len, *last_scanned_ret);
1129
}
1130
return ret;
1131
}
1132
1133
#define CLUSTER_SIZE (SZ_256K)
1134
static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
1135
1136
/*
1137
* Defrag one contiguous target range.
1138
*
1139
* @inode: target inode
1140
* @target: target range to defrag
1141
* @pages: locked pages covering the defrag range
1142
* @nr_pages: number of locked pages
1143
*
1144
* Caller should ensure:
1145
*
1146
* - Pages are prepared
1147
* Pages should be locked, no ordered extent in the pages range,
1148
* no writeback.
1149
*
1150
* - Extent bits are locked
1151
*/
1152
static int defrag_one_locked_target(struct btrfs_inode *inode,
1153
struct defrag_target_range *target,
1154
struct folio **folios, int nr_pages,
1155
struct extent_state **cached_state)
1156
{
1157
struct btrfs_fs_info *fs_info = inode->root->fs_info;
1158
struct extent_changeset *data_reserved = NULL;
1159
const u64 start = target->start;
1160
const u64 len = target->len;
1161
int ret = 0;
1162
1163
ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1164
if (ret < 0)
1165
return ret;
1166
btrfs_clear_extent_bit(&inode->io_tree, start, start + len - 1,
1167
EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1168
EXTENT_DEFRAG, cached_state);
1169
btrfs_set_extent_bit(&inode->io_tree, start, start + len - 1,
1170
EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
1171
1172
/*
1173
* Update the page status.
1174
* Due to possible large folios, we have to check all folios one by one.
1175
*/
1176
for (int i = 0; i < nr_pages && folios[i]; i++) {
1177
struct folio *folio = folios[i];
1178
1179
if (!folio)
1180
break;
1181
if (start >= folio_end(folio) || start + len <= folio_pos(folio))
1182
continue;
1183
btrfs_folio_clamp_clear_checked(fs_info, folio, start, len);
1184
btrfs_folio_clamp_set_dirty(fs_info, folio, start, len);
1185
}
1186
btrfs_delalloc_release_extents(inode, len);
1187
extent_changeset_free(data_reserved);
1188
1189
return ret;
1190
}
1191
1192
static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1193
u32 extent_thresh, u64 newer_than, bool do_compress,
1194
u64 *last_scanned_ret)
1195
{
1196
struct extent_state *cached_state = NULL;
1197
struct defrag_target_range *entry;
1198
struct defrag_target_range *tmp;
1199
LIST_HEAD(target_list);
1200
struct folio **folios;
1201
const u32 sectorsize = inode->root->fs_info->sectorsize;
1202
u64 cur = start;
1203
const unsigned int nr_pages = ((start + len - 1) >> PAGE_SHIFT) -
1204
(start >> PAGE_SHIFT) + 1;
1205
int ret = 0;
1206
1207
ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1208
ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1209
1210
folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS);
1211
if (!folios)
1212
return -ENOMEM;
1213
1214
/* Prepare all pages */
1215
for (int i = 0; cur < start + len && i < nr_pages; i++) {
1216
folios[i] = defrag_prepare_one_folio(inode, cur >> PAGE_SHIFT);
1217
if (IS_ERR(folios[i])) {
1218
ret = PTR_ERR(folios[i]);
1219
folios[i] = NULL;
1220
goto free_folios;
1221
}
1222
cur = folio_end(folios[i]);
1223
}
1224
for (int i = 0; i < nr_pages; i++) {
1225
if (!folios[i])
1226
break;
1227
folio_wait_writeback(folios[i]);
1228
}
1229
1230
/* We should get at least one folio. */
1231
ASSERT(folios[0]);
1232
/* Lock the pages range */
1233
btrfs_lock_extent(&inode->io_tree, folio_pos(folios[0]), cur - 1, &cached_state);
1234
/*
1235
* Now we have a consistent view about the extent map, re-check
1236
* which range really needs to be defragged.
1237
*
1238
* And this time we have extent locked already, pass @locked = true
1239
* so that we won't relock the extent range and cause deadlock.
1240
*/
1241
ret = defrag_collect_targets(inode, start, len, extent_thresh,
1242
newer_than, do_compress, true,
1243
&target_list, last_scanned_ret);
1244
if (ret < 0)
1245
goto unlock_extent;
1246
1247
list_for_each_entry(entry, &target_list, list) {
1248
ret = defrag_one_locked_target(inode, entry, folios, nr_pages,
1249
&cached_state);
1250
if (ret < 0)
1251
break;
1252
}
1253
1254
list_for_each_entry_safe(entry, tmp, &target_list, list) {
1255
list_del_init(&entry->list);
1256
kfree(entry);
1257
}
1258
unlock_extent:
1259
btrfs_unlock_extent(&inode->io_tree, folio_pos(folios[0]), cur - 1, &cached_state);
1260
free_folios:
1261
for (int i = 0; i < nr_pages; i++) {
1262
if (!folios[i])
1263
break;
1264
folio_unlock(folios[i]);
1265
folio_put(folios[i]);
1266
}
1267
kfree(folios);
1268
return ret;
1269
}
1270
1271
static int defrag_one_cluster(struct btrfs_inode *inode,
1272
struct file_ra_state *ra,
1273
u64 start, u32 len, u32 extent_thresh,
1274
u64 newer_than, bool do_compress,
1275
unsigned long *sectors_defragged,
1276
unsigned long max_sectors,
1277
u64 *last_scanned_ret)
1278
{
1279
const u32 sectorsize = inode->root->fs_info->sectorsize;
1280
struct defrag_target_range *entry;
1281
struct defrag_target_range *tmp;
1282
LIST_HEAD(target_list);
1283
int ret;
1284
1285
ret = defrag_collect_targets(inode, start, len, extent_thresh,
1286
newer_than, do_compress, false,
1287
&target_list, NULL);
1288
if (ret < 0)
1289
goto out;
1290
1291
list_for_each_entry(entry, &target_list, list) {
1292
u32 range_len = entry->len;
1293
1294
/* Reached or beyond the limit */
1295
if (max_sectors && *sectors_defragged >= max_sectors) {
1296
ret = 1;
1297
break;
1298
}
1299
1300
if (max_sectors)
1301
range_len = min_t(u32, range_len,
1302
(max_sectors - *sectors_defragged) * sectorsize);
1303
1304
/*
1305
* If defrag_one_range() has updated last_scanned_ret,
1306
* our range may already be invalid (e.g. hole punched).
1307
* Skip if our range is before last_scanned_ret, as there is
1308
* no need to defrag the range anymore.
1309
*/
1310
if (entry->start + range_len <= *last_scanned_ret)
1311
continue;
1312
1313
page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1314
ra, NULL, entry->start >> PAGE_SHIFT,
1315
((entry->start + range_len - 1) >> PAGE_SHIFT) -
1316
(entry->start >> PAGE_SHIFT) + 1);
1317
/*
1318
* Here we may not defrag any range if holes are punched before
1319
* we locked the pages.
1320
* But that's fine, it only affects the @sectors_defragged
1321
* accounting.
1322
*/
1323
ret = defrag_one_range(inode, entry->start, range_len,
1324
extent_thresh, newer_than, do_compress,
1325
last_scanned_ret);
1326
if (ret < 0)
1327
break;
1328
*sectors_defragged += range_len >>
1329
inode->root->fs_info->sectorsize_bits;
1330
}
1331
out:
1332
list_for_each_entry_safe(entry, tmp, &target_list, list) {
1333
list_del_init(&entry->list);
1334
kfree(entry);
1335
}
1336
if (ret >= 0)
1337
*last_scanned_ret = max(*last_scanned_ret, start + len);
1338
return ret;
1339
}
1340
1341
/*
1342
* Entry point to file defragmentation.
1343
*
1344
* @inode: inode to be defragged
1345
* @ra: readahead state
1346
* @range: defrag options including range and flags
1347
* @newer_than: minimum transid to defrag
1348
* @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1349
* will be defragged.
1350
*
1351
* Return <0 for error.
1352
* Return >=0 for the number of sectors defragged, and range->start will be updated
1353
* to indicate the file offset where next defrag should be started at.
1354
* (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1355
* defragging all the range).
1356
*/
1357
int btrfs_defrag_file(struct btrfs_inode *inode, struct file_ra_state *ra,
1358
struct btrfs_ioctl_defrag_range_args *range,
1359
u64 newer_than, unsigned long max_to_defrag)
1360
{
1361
struct btrfs_fs_info *fs_info = inode->root->fs_info;
1362
unsigned long sectors_defragged = 0;
1363
u64 isize = i_size_read(&inode->vfs_inode);
1364
u64 cur;
1365
u64 last_byte;
1366
bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1367
bool no_compress = (range->flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS);
1368
int compress_type = BTRFS_COMPRESS_ZLIB;
1369
int compress_level = 0;
1370
int ret = 0;
1371
u32 extent_thresh = range->extent_thresh;
1372
pgoff_t start_index;
1373
1374
ASSERT(ra);
1375
1376
if (isize == 0)
1377
return 0;
1378
1379
if (range->start >= isize)
1380
return -EINVAL;
1381
1382
if (do_compress) {
1383
if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS_LEVEL) {
1384
if (range->compress.type >= BTRFS_NR_COMPRESS_TYPES)
1385
return -EINVAL;
1386
if (range->compress.type) {
1387
compress_type = range->compress.type;
1388
compress_level = range->compress.level;
1389
if (!btrfs_compress_level_valid(compress_type, compress_level))
1390
return -EINVAL;
1391
}
1392
} else {
1393
if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1394
return -EINVAL;
1395
if (range->compress_type)
1396
compress_type = range->compress_type;
1397
}
1398
} else if (range->flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS) {
1399
compress_type = BTRFS_DEFRAG_DONT_COMPRESS;
1400
compress_level = 1;
1401
}
1402
1403
if (extent_thresh == 0)
1404
extent_thresh = SZ_256K;
1405
1406
if (range->start + range->len > range->start) {
1407
/* Got a specific range */
1408
last_byte = min(isize, range->start + range->len);
1409
} else {
1410
/* Defrag until file end */
1411
last_byte = isize;
1412
}
1413
1414
/* Align the range */
1415
cur = round_down(range->start, fs_info->sectorsize);
1416
last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1417
1418
/*
1419
* Make writeback start from the beginning of the range, so that the
1420
* defrag range can be written sequentially.
1421
*/
1422
start_index = cur >> PAGE_SHIFT;
1423
if (start_index < inode->vfs_inode.i_mapping->writeback_index)
1424
inode->vfs_inode.i_mapping->writeback_index = start_index;
1425
1426
while (cur < last_byte) {
1427
const unsigned long prev_sectors_defragged = sectors_defragged;
1428
u64 last_scanned = cur;
1429
u64 cluster_end;
1430
1431
if (btrfs_defrag_cancelled(fs_info)) {
1432
ret = -EAGAIN;
1433
break;
1434
}
1435
1436
/* We want the cluster end at page boundary when possible */
1437
cluster_end = (((cur >> PAGE_SHIFT) +
1438
(SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1439
cluster_end = min(cluster_end, last_byte);
1440
1441
btrfs_inode_lock(inode, 0);
1442
if (IS_SWAPFILE(&inode->vfs_inode)) {
1443
ret = -ETXTBSY;
1444
btrfs_inode_unlock(inode, 0);
1445
break;
1446
}
1447
if (!(inode->vfs_inode.i_sb->s_flags & SB_ACTIVE)) {
1448
btrfs_inode_unlock(inode, 0);
1449
break;
1450
}
1451
if (do_compress || no_compress) {
1452
inode->defrag_compress = compress_type;
1453
inode->defrag_compress_level = compress_level;
1454
}
1455
ret = defrag_one_cluster(inode, ra, cur,
1456
cluster_end + 1 - cur, extent_thresh,
1457
newer_than, do_compress || no_compress,
1458
&sectors_defragged,
1459
max_to_defrag, &last_scanned);
1460
1461
if (sectors_defragged > prev_sectors_defragged)
1462
balance_dirty_pages_ratelimited(inode->vfs_inode.i_mapping);
1463
1464
btrfs_inode_unlock(inode, 0);
1465
if (ret < 0)
1466
break;
1467
cur = max(cluster_end + 1, last_scanned);
1468
if (ret > 0) {
1469
ret = 0;
1470
break;
1471
}
1472
cond_resched();
1473
}
1474
1475
/*
1476
* Update range.start for autodefrag, this will indicate where to start
1477
* in next run.
1478
*/
1479
range->start = cur;
1480
if (sectors_defragged) {
1481
/*
1482
* We have defragged some sectors, for compression case they
1483
* need to be written back immediately.
1484
*/
1485
if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1486
filemap_flush(inode->vfs_inode.i_mapping);
1487
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1488
&inode->runtime_flags))
1489
filemap_flush(inode->vfs_inode.i_mapping);
1490
}
1491
if (range->compress_type == BTRFS_COMPRESS_LZO)
1492
btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1493
else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1494
btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1495
ret = sectors_defragged;
1496
}
1497
if (do_compress || no_compress) {
1498
btrfs_inode_lock(inode, 0);
1499
inode->defrag_compress = BTRFS_COMPRESS_NONE;
1500
btrfs_inode_unlock(inode, 0);
1501
}
1502
return ret;
1503
}
1504
1505
void __cold btrfs_auto_defrag_exit(void)
1506
{
1507
kmem_cache_destroy(btrfs_inode_defrag_cachep);
1508
}
1509
1510
int __init btrfs_auto_defrag_init(void)
1511
{
1512
btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1513
sizeof(struct inode_defrag), 0, 0, NULL);
1514
if (!btrfs_inode_defrag_cachep)
1515
return -ENOMEM;
1516
1517
return 0;
1518
}
1519
1520