Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/delalloc-space.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
#include "messages.h"
4
#include "ctree.h"
5
#include "delalloc-space.h"
6
#include "block-rsv.h"
7
#include "btrfs_inode.h"
8
#include "space-info.h"
9
#include "qgroup.h"
10
#include "fs.h"
11
12
/*
13
* HOW DOES THIS WORK
14
*
15
* There are two stages to data reservations, one for data and one for metadata
16
* to handle the new extents and checksums generated by writing data.
17
*
18
*
19
* DATA RESERVATION
20
* The general flow of the data reservation is as follows
21
*
22
* -> Reserve
23
* We call into btrfs_reserve_data_bytes() for the user request bytes that
24
* they wish to write. We make this reservation and add it to
25
* space_info->bytes_may_use. We set EXTENT_DELALLOC on the inode io_tree
26
* for the range and carry on if this is buffered, or follow up trying to
27
* make a real allocation if we are pre-allocating or doing O_DIRECT.
28
*
29
* -> Use
30
* At writepages()/prealloc/O_DIRECT time we will call into
31
* btrfs_reserve_extent() for some part or all of this range of bytes. We
32
* will make the allocation and subtract space_info->bytes_may_use by the
33
* original requested length and increase the space_info->bytes_reserved by
34
* the allocated length. This distinction is important because compression
35
* may allocate a smaller on disk extent than we previously reserved.
36
*
37
* -> Allocation
38
* finish_ordered_io() will insert the new file extent item for this range,
39
* and then add a delayed ref update for the extent tree. Once that delayed
40
* ref is written the extent size is subtracted from
41
* space_info->bytes_reserved and added to space_info->bytes_used.
42
*
43
* Error handling
44
*
45
* -> By the reservation maker
46
* This is the simplest case, we haven't completed our operation and we know
47
* how much we reserved, we can simply call
48
* btrfs_free_reserved_data_space*() and it will be removed from
49
* space_info->bytes_may_use.
50
*
51
* -> After the reservation has been made, but before cow_file_range()
52
* This is specifically for the delalloc case. You must clear
53
* EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will
54
* be subtracted from space_info->bytes_may_use.
55
*
56
* METADATA RESERVATION
57
* The general metadata reservation lifetimes are discussed elsewhere, this
58
* will just focus on how it is used for delalloc space.
59
*
60
* We keep track of two things on a per inode bases
61
*
62
* ->outstanding_extents
63
* This is the number of file extent items we'll need to handle all of the
64
* outstanding DELALLOC space we have in this inode. We limit the maximum
65
* size of an extent, so a large contiguous dirty area may require more than
66
* one outstanding_extent, which is why count_max_extents() is used to
67
* determine how many outstanding_extents get added.
68
*
69
* ->csum_bytes
70
* This is essentially how many dirty bytes we have for this inode, so we
71
* can calculate the number of checksum items we would have to add in order
72
* to checksum our outstanding data.
73
*
74
* We keep a per-inode block_rsv in order to make it easier to keep track of
75
* our reservation. We use btrfs_calculate_inode_block_rsv_size() to
76
* calculate the current theoretical maximum reservation we would need for the
77
* metadata for this inode. We call this and then adjust our reservation as
78
* necessary, either by attempting to reserve more space, or freeing up excess
79
* space.
80
*
81
* OUTSTANDING_EXTENTS HANDLING
82
*
83
* ->outstanding_extents is used for keeping track of how many extents we will
84
* need to use for this inode, and it will fluctuate depending on where you are
85
* in the life cycle of the dirty data. Consider the following normal case for
86
* a completely clean inode, with a num_bytes < our maximum allowed extent size
87
*
88
* -> reserve
89
* ->outstanding_extents += 1 (current value is 1)
90
*
91
* -> set_delalloc
92
* ->outstanding_extents += 1 (current value is 2)
93
*
94
* -> btrfs_delalloc_release_extents()
95
* ->outstanding_extents -= 1 (current value is 1)
96
*
97
* We must call this once we are done, as we hold our reservation for the
98
* duration of our operation, and then assume set_delalloc will update the
99
* counter appropriately.
100
*
101
* -> add ordered extent
102
* ->outstanding_extents += 1 (current value is 2)
103
*
104
* -> btrfs_clear_delalloc_extent
105
* ->outstanding_extents -= 1 (current value is 1)
106
*
107
* -> finish_ordered_io/btrfs_remove_ordered_extent
108
* ->outstanding_extents -= 1 (current value is 0)
109
*
110
* Each stage is responsible for their own accounting of the extent, thus
111
* making error handling and cleanup easier.
112
*/
113
114
static inline struct btrfs_space_info *data_sinfo_for_inode(const struct btrfs_inode *inode)
115
{
116
struct btrfs_fs_info *fs_info = inode->root->fs_info;
117
118
if (btrfs_is_zoned(fs_info) && btrfs_is_data_reloc_root(inode->root)) {
119
ASSERT(fs_info->data_sinfo->sub_group[0]->subgroup_id ==
120
BTRFS_SUB_GROUP_DATA_RELOC);
121
return fs_info->data_sinfo->sub_group[0];
122
}
123
return fs_info->data_sinfo;
124
}
125
126
int btrfs_alloc_data_chunk_ondemand(const struct btrfs_inode *inode, u64 bytes)
127
{
128
struct btrfs_root *root = inode->root;
129
struct btrfs_fs_info *fs_info = root->fs_info;
130
enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
131
132
/* Make sure bytes are sectorsize aligned */
133
bytes = ALIGN(bytes, fs_info->sectorsize);
134
135
if (btrfs_is_free_space_inode(inode))
136
flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
137
138
return btrfs_reserve_data_bytes(data_sinfo_for_inode(inode), bytes, flush);
139
}
140
141
int btrfs_check_data_free_space(struct btrfs_inode *inode,
142
struct extent_changeset **reserved, u64 start,
143
u64 len, bool noflush)
144
{
145
struct btrfs_fs_info *fs_info = inode->root->fs_info;
146
enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
147
int ret;
148
149
/* align the range */
150
len = round_up(start + len, fs_info->sectorsize) -
151
round_down(start, fs_info->sectorsize);
152
start = round_down(start, fs_info->sectorsize);
153
154
if (noflush)
155
flush = BTRFS_RESERVE_NO_FLUSH;
156
else if (btrfs_is_free_space_inode(inode))
157
flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
158
159
ret = btrfs_reserve_data_bytes(data_sinfo_for_inode(inode), len, flush);
160
if (ret < 0)
161
return ret;
162
163
/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
164
ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
165
if (ret < 0) {
166
btrfs_free_reserved_data_space_noquota(inode, len);
167
extent_changeset_free(*reserved);
168
*reserved = NULL;
169
} else {
170
ret = 0;
171
}
172
return ret;
173
}
174
175
/*
176
* Called if we need to clear a data reservation for this inode
177
* Normally in a error case.
178
*
179
* This one will *NOT* use accurate qgroup reserved space API, just for case
180
* which we can't sleep and is sure it won't affect qgroup reserved space.
181
* Like clear_bit_hook().
182
*/
183
void btrfs_free_reserved_data_space_noquota(struct btrfs_inode *inode, u64 len)
184
{
185
struct btrfs_fs_info *fs_info = inode->root->fs_info;
186
187
ASSERT(IS_ALIGNED(len, fs_info->sectorsize));
188
189
btrfs_space_info_free_bytes_may_use(data_sinfo_for_inode(inode), len);
190
}
191
192
/*
193
* Called if we need to clear a data reservation for this inode
194
* Normally in a error case.
195
*
196
* This one will handle the per-inode data rsv map for accurate reserved
197
* space framework.
198
*/
199
void btrfs_free_reserved_data_space(struct btrfs_inode *inode,
200
struct extent_changeset *reserved, u64 start, u64 len)
201
{
202
struct btrfs_fs_info *fs_info = inode->root->fs_info;
203
204
/* Make sure the range is aligned to sectorsize */
205
len = round_up(start + len, fs_info->sectorsize) -
206
round_down(start, fs_info->sectorsize);
207
start = round_down(start, fs_info->sectorsize);
208
209
btrfs_free_reserved_data_space_noquota(inode, len);
210
btrfs_qgroup_free_data(inode, reserved, start, len, NULL);
211
}
212
213
/*
214
* Release any excessive reservations for an inode.
215
*
216
* @inode: the inode we need to release from
217
* @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup
218
* meta reservation needs to know if we are freeing qgroup
219
* reservation or just converting it into per-trans. Normally
220
* @qgroup_free is true for error handling, and false for normal
221
* release.
222
*
223
* This is the same as btrfs_block_rsv_release, except that it handles the
224
* tracepoint for the reservation.
225
*/
226
static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
227
{
228
struct btrfs_fs_info *fs_info = inode->root->fs_info;
229
struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
230
u64 released = 0;
231
u64 qgroup_to_release = 0;
232
233
/*
234
* Since we statically set the block_rsv->size we just want to say we
235
* are releasing 0 bytes, and then we'll just get the reservation over
236
* the size free'd.
237
*/
238
released = btrfs_block_rsv_release(fs_info, block_rsv, 0,
239
&qgroup_to_release);
240
if (released > 0)
241
trace_btrfs_space_reservation(fs_info, "delalloc",
242
btrfs_ino(inode), released, 0);
243
if (qgroup_free)
244
btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
245
else
246
btrfs_qgroup_convert_reserved_meta(inode->root,
247
qgroup_to_release);
248
}
249
250
static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
251
struct btrfs_inode *inode)
252
{
253
struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
254
u64 reserve_size = 0;
255
u64 qgroup_rsv_size = 0;
256
unsigned outstanding_extents;
257
258
lockdep_assert_held(&inode->lock);
259
outstanding_extents = inode->outstanding_extents;
260
261
/*
262
* Insert size for the number of outstanding extents, 1 normal size for
263
* updating the inode.
264
*/
265
if (outstanding_extents) {
266
reserve_size = btrfs_calc_insert_metadata_size(fs_info,
267
outstanding_extents);
268
reserve_size += btrfs_calc_metadata_size(fs_info, 1);
269
}
270
if (!(inode->flags & BTRFS_INODE_NODATASUM)) {
271
u64 csum_leaves;
272
273
csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
274
reserve_size += btrfs_calc_insert_metadata_size(fs_info, csum_leaves);
275
}
276
/*
277
* For qgroup rsv, the calculation is very simple:
278
* account one nodesize for each outstanding extent
279
*
280
* This is overestimating in most cases.
281
*/
282
qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
283
284
spin_lock(&block_rsv->lock);
285
block_rsv->size = reserve_size;
286
block_rsv->qgroup_rsv_size = qgroup_rsv_size;
287
spin_unlock(&block_rsv->lock);
288
}
289
290
static void calc_inode_reservations(struct btrfs_inode *inode,
291
u64 num_bytes, u64 disk_num_bytes,
292
u64 *meta_reserve, u64 *qgroup_reserve)
293
{
294
struct btrfs_fs_info *fs_info = inode->root->fs_info;
295
u64 nr_extents = count_max_extents(fs_info, num_bytes);
296
u64 csum_leaves;
297
u64 inode_update = btrfs_calc_metadata_size(fs_info, 1);
298
299
if (inode->flags & BTRFS_INODE_NODATASUM)
300
csum_leaves = 0;
301
else
302
csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, disk_num_bytes);
303
304
*meta_reserve = btrfs_calc_insert_metadata_size(fs_info,
305
nr_extents + csum_leaves);
306
307
/*
308
* finish_ordered_io has to update the inode, so add the space required
309
* for an inode update.
310
*/
311
*meta_reserve += inode_update;
312
*qgroup_reserve = nr_extents * fs_info->nodesize;
313
}
314
315
int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
316
u64 disk_num_bytes, bool noflush)
317
{
318
struct btrfs_root *root = inode->root;
319
struct btrfs_fs_info *fs_info = root->fs_info;
320
struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
321
u64 meta_reserve, qgroup_reserve;
322
unsigned nr_extents;
323
enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
324
int ret = 0;
325
326
/*
327
* If we are a free space inode we need to not flush since we will be in
328
* the middle of a transaction commit. We also don't need the delalloc
329
* mutex since we won't race with anybody. We need this mostly to make
330
* lockdep shut its filthy mouth.
331
*
332
* If we have a transaction open (can happen if we call truncate_block
333
* from truncate), then we need FLUSH_LIMIT so we don't deadlock.
334
*/
335
if (noflush || btrfs_is_free_space_inode(inode)) {
336
flush = BTRFS_RESERVE_NO_FLUSH;
337
} else {
338
if (current->journal_info)
339
flush = BTRFS_RESERVE_FLUSH_LIMIT;
340
}
341
342
num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
343
disk_num_bytes = ALIGN(disk_num_bytes, fs_info->sectorsize);
344
345
/*
346
* We always want to do it this way, every other way is wrong and ends
347
* in tears. Pre-reserving the amount we are going to add will always
348
* be the right way, because otherwise if we have enough parallelism we
349
* could end up with thousands of inodes all holding little bits of
350
* reservations they were able to make previously and the only way to
351
* reclaim that space is to ENOSPC out the operations and clear
352
* everything out and try again, which is bad. This way we just
353
* over-reserve slightly, and clean up the mess when we are done.
354
*/
355
calc_inode_reservations(inode, num_bytes, disk_num_bytes,
356
&meta_reserve, &qgroup_reserve);
357
ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true,
358
noflush);
359
if (ret)
360
return ret;
361
ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
362
meta_reserve, flush);
363
if (ret) {
364
btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
365
return ret;
366
}
367
368
/*
369
* Now we need to update our outstanding extents and csum bytes _first_
370
* and then add the reservation to the block_rsv. This keeps us from
371
* racing with an ordered completion or some such that would think it
372
* needs to free the reservation we just made.
373
*/
374
nr_extents = count_max_extents(fs_info, num_bytes);
375
spin_lock(&inode->lock);
376
btrfs_mod_outstanding_extents(inode, nr_extents);
377
if (!(inode->flags & BTRFS_INODE_NODATASUM))
378
inode->csum_bytes += disk_num_bytes;
379
btrfs_calculate_inode_block_rsv_size(fs_info, inode);
380
spin_unlock(&inode->lock);
381
382
/* Now we can safely add our space to our block rsv */
383
btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false);
384
trace_btrfs_space_reservation(root->fs_info, "delalloc",
385
btrfs_ino(inode), meta_reserve, 1);
386
387
spin_lock(&block_rsv->lock);
388
block_rsv->qgroup_rsv_reserved += qgroup_reserve;
389
spin_unlock(&block_rsv->lock);
390
391
return 0;
392
}
393
394
/*
395
* Release a metadata reservation for an inode.
396
*
397
* @inode: the inode to release the reservation for.
398
* @num_bytes: the number of bytes we are releasing.
399
* @qgroup_free: free qgroup reservation or convert it to per-trans reservation
400
*
401
* This will release the metadata reservation for an inode. This can be called
402
* once we complete IO for a given set of bytes to release their metadata
403
* reservations, or on error for the same reason.
404
*/
405
void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
406
bool qgroup_free)
407
{
408
struct btrfs_fs_info *fs_info = inode->root->fs_info;
409
410
num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
411
spin_lock(&inode->lock);
412
if (!(inode->flags & BTRFS_INODE_NODATASUM))
413
inode->csum_bytes -= num_bytes;
414
btrfs_calculate_inode_block_rsv_size(fs_info, inode);
415
spin_unlock(&inode->lock);
416
417
if (btrfs_is_testing(fs_info))
418
return;
419
420
btrfs_inode_rsv_release(inode, qgroup_free);
421
}
422
423
/*
424
* Release our outstanding_extents for an inode.
425
*
426
* @inode: the inode to balance the reservation for.
427
* @num_bytes: the number of bytes we originally reserved with
428
*
429
* When we reserve space we increase outstanding_extents for the extents we may
430
* add. Once we've set the range as delalloc or created our ordered extents we
431
* have outstanding_extents to track the real usage, so we use this to free our
432
* temporarily tracked outstanding_extents. This _must_ be used in conjunction
433
* with btrfs_delalloc_reserve_metadata.
434
*/
435
void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
436
{
437
struct btrfs_fs_info *fs_info = inode->root->fs_info;
438
unsigned num_extents;
439
440
spin_lock(&inode->lock);
441
num_extents = count_max_extents(fs_info, num_bytes);
442
btrfs_mod_outstanding_extents(inode, -num_extents);
443
btrfs_calculate_inode_block_rsv_size(fs_info, inode);
444
spin_unlock(&inode->lock);
445
446
if (btrfs_is_testing(fs_info))
447
return;
448
449
btrfs_inode_rsv_release(inode, true);
450
}
451
452
/* Shrink a previously reserved extent to a new length. */
453
void btrfs_delalloc_shrink_extents(struct btrfs_inode *inode, u64 reserved_len, u64 new_len)
454
{
455
struct btrfs_fs_info *fs_info = inode->root->fs_info;
456
const u32 reserved_num_extents = count_max_extents(fs_info, reserved_len);
457
const u32 new_num_extents = count_max_extents(fs_info, new_len);
458
const int diff_num_extents = new_num_extents - reserved_num_extents;
459
460
ASSERT(new_len <= reserved_len);
461
if (new_num_extents == reserved_num_extents)
462
return;
463
464
spin_lock(&inode->lock);
465
btrfs_mod_outstanding_extents(inode, diff_num_extents);
466
btrfs_calculate_inode_block_rsv_size(fs_info, inode);
467
spin_unlock(&inode->lock);
468
469
if (btrfs_is_testing(fs_info))
470
return;
471
472
btrfs_inode_rsv_release(inode, true);
473
}
474
475
/*
476
* Reserve data and metadata space for delalloc
477
*
478
* @inode: inode we're writing to
479
* @start: start range we are writing to
480
* @len: how long the range we are writing to
481
* @reserved: mandatory parameter, record actually reserved qgroup ranges of
482
* current reservation.
483
*
484
* This will do the following things
485
*
486
* - reserve space in data space info for num bytes and reserve precious
487
* corresponding qgroup space
488
* (Done in check_data_free_space)
489
*
490
* - reserve space for metadata space, based on the number of outstanding
491
* extents and how much csums will be needed also reserve metadata space in a
492
* per root over-reserve method.
493
* - add to the inodes->delalloc_bytes
494
* - add it to the fs_info's delalloc inodes list.
495
* (Above 3 all done in delalloc_reserve_metadata)
496
*
497
* Return 0 for success
498
* Return <0 for error(-ENOSPC or -EDQUOT)
499
*/
500
int btrfs_delalloc_reserve_space(struct btrfs_inode *inode,
501
struct extent_changeset **reserved, u64 start, u64 len)
502
{
503
int ret;
504
505
ret = btrfs_check_data_free_space(inode, reserved, start, len, false);
506
if (ret < 0)
507
return ret;
508
ret = btrfs_delalloc_reserve_metadata(inode, len, len, false);
509
if (ret < 0) {
510
btrfs_free_reserved_data_space(inode, *reserved, start, len);
511
extent_changeset_free(*reserved);
512
*reserved = NULL;
513
}
514
return ret;
515
}
516
517
/*
518
* Release data and metadata space for delalloc
519
*
520
* @inode: inode we're releasing space for
521
* @reserved: list of changed/reserved ranges
522
* @start: start position of the space already reserved
523
* @len: length of the space already reserved
524
* @qgroup_free: should qgroup reserved-space also be freed
525
*
526
* Release the metadata space that was not used and will decrement
527
* ->delalloc_bytes and remove it from the fs_info->delalloc_inodes list if
528
* there are no delalloc bytes left. Also it will handle the qgroup reserved
529
* space.
530
*/
531
void btrfs_delalloc_release_space(struct btrfs_inode *inode,
532
struct extent_changeset *reserved,
533
u64 start, u64 len, bool qgroup_free)
534
{
535
btrfs_delalloc_release_metadata(inode, len, qgroup_free);
536
btrfs_free_reserved_data_space(inode, reserved, start, len);
537
}
538
539