Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/delayed-inode.c
49837 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2011 Fujitsu. All rights reserved.
4
* Written by Miao Xie <[email protected]>
5
*/
6
7
#include <linux/slab.h>
8
#include <linux/iversion.h>
9
#include "ctree.h"
10
#include "fs.h"
11
#include "messages.h"
12
#include "misc.h"
13
#include "delayed-inode.h"
14
#include "disk-io.h"
15
#include "transaction.h"
16
#include "qgroup.h"
17
#include "locking.h"
18
#include "inode-item.h"
19
#include "space-info.h"
20
#include "accessors.h"
21
#include "file-item.h"
22
23
#define BTRFS_DELAYED_WRITEBACK 512
24
#define BTRFS_DELAYED_BACKGROUND 128
25
#define BTRFS_DELAYED_BATCH 16
26
27
static struct kmem_cache *delayed_node_cache;
28
29
int __init btrfs_delayed_inode_init(void)
30
{
31
delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32
if (!delayed_node_cache)
33
return -ENOMEM;
34
return 0;
35
}
36
37
void __cold btrfs_delayed_inode_exit(void)
38
{
39
kmem_cache_destroy(delayed_node_cache);
40
}
41
42
void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43
{
44
atomic_set(&delayed_root->items, 0);
45
atomic_set(&delayed_root->items_seq, 0);
46
delayed_root->nodes = 0;
47
spin_lock_init(&delayed_root->lock);
48
init_waitqueue_head(&delayed_root->wait);
49
INIT_LIST_HEAD(&delayed_root->node_list);
50
INIT_LIST_HEAD(&delayed_root->prepare_list);
51
}
52
53
static inline void btrfs_init_delayed_node(
54
struct btrfs_delayed_node *delayed_node,
55
struct btrfs_root *root, u64 inode_id)
56
{
57
delayed_node->root = root;
58
delayed_node->inode_id = inode_id;
59
refcount_set(&delayed_node->refs, 0);
60
btrfs_delayed_node_ref_tracker_dir_init(delayed_node);
61
delayed_node->ins_root = RB_ROOT_CACHED;
62
delayed_node->del_root = RB_ROOT_CACHED;
63
mutex_init(&delayed_node->mutex);
64
INIT_LIST_HEAD(&delayed_node->n_list);
65
INIT_LIST_HEAD(&delayed_node->p_list);
66
}
67
68
static struct btrfs_delayed_node *btrfs_get_delayed_node(
69
struct btrfs_inode *btrfs_inode,
70
struct btrfs_ref_tracker *tracker)
71
{
72
struct btrfs_root *root = btrfs_inode->root;
73
u64 ino = btrfs_ino(btrfs_inode);
74
struct btrfs_delayed_node *node;
75
76
node = READ_ONCE(btrfs_inode->delayed_node);
77
if (node) {
78
refcount_inc(&node->refs);
79
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
80
return node;
81
}
82
83
xa_lock(&root->delayed_nodes);
84
node = xa_load(&root->delayed_nodes, ino);
85
86
if (node) {
87
if (btrfs_inode->delayed_node) {
88
refcount_inc(&node->refs); /* can be accessed */
89
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
90
BUG_ON(btrfs_inode->delayed_node != node);
91
xa_unlock(&root->delayed_nodes);
92
return node;
93
}
94
95
/*
96
* It's possible that we're racing into the middle of removing
97
* this node from the xarray. In this case, the refcount
98
* was zero and it should never go back to one. Just return
99
* NULL like it was never in the xarray at all; our release
100
* function is in the process of removing it.
101
*
102
* Some implementations of refcount_inc refuse to bump the
103
* refcount once it has hit zero. If we don't do this dance
104
* here, refcount_inc() may decide to just WARN_ONCE() instead
105
* of actually bumping the refcount.
106
*
107
* If this node is properly in the xarray, we want to bump the
108
* refcount twice, once for the inode and once for this get
109
* operation.
110
*/
111
if (refcount_inc_not_zero(&node->refs)) {
112
refcount_inc(&node->refs);
113
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
114
btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker,
115
GFP_ATOMIC);
116
btrfs_inode->delayed_node = node;
117
} else {
118
node = NULL;
119
}
120
121
xa_unlock(&root->delayed_nodes);
122
return node;
123
}
124
xa_unlock(&root->delayed_nodes);
125
126
return NULL;
127
}
128
129
/*
130
* Look up an existing delayed node associated with @btrfs_inode or create a new
131
* one and insert it to the delayed nodes of the root.
132
*
133
* Return the delayed node, or error pointer on failure.
134
*/
135
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
136
struct btrfs_inode *btrfs_inode,
137
struct btrfs_ref_tracker *tracker)
138
{
139
struct btrfs_delayed_node *node;
140
struct btrfs_root *root = btrfs_inode->root;
141
u64 ino = btrfs_ino(btrfs_inode);
142
int ret;
143
void *ptr;
144
145
again:
146
node = btrfs_get_delayed_node(btrfs_inode, tracker);
147
if (node)
148
return node;
149
150
node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
151
if (!node)
152
return ERR_PTR(-ENOMEM);
153
btrfs_init_delayed_node(node, root, ino);
154
155
/* Cached in the inode and can be accessed. */
156
refcount_set(&node->refs, 2);
157
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
158
btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_NOFS);
159
160
/* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
161
ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
162
if (ret == -ENOMEM)
163
goto cleanup;
164
165
xa_lock(&root->delayed_nodes);
166
ptr = xa_load(&root->delayed_nodes, ino);
167
if (ptr) {
168
/* Somebody inserted it, go back and read it. */
169
xa_unlock(&root->delayed_nodes);
170
goto cleanup;
171
}
172
ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
173
ASSERT(xa_err(ptr) != -EINVAL);
174
ASSERT(xa_err(ptr) != -ENOMEM);
175
ASSERT(ptr == NULL);
176
btrfs_inode->delayed_node = node;
177
xa_unlock(&root->delayed_nodes);
178
179
return node;
180
cleanup:
181
btrfs_delayed_node_ref_tracker_free(node, tracker);
182
btrfs_delayed_node_ref_tracker_free(node, &node->inode_cache_tracker);
183
btrfs_delayed_node_ref_tracker_dir_exit(node);
184
kmem_cache_free(delayed_node_cache, node);
185
if (ret)
186
return ERR_PTR(ret);
187
goto again;
188
}
189
190
/*
191
* Call it when holding delayed_node->mutex
192
*
193
* If mod = 1, add this node into the prepared list.
194
*/
195
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
196
struct btrfs_delayed_node *node,
197
int mod)
198
{
199
spin_lock(&root->lock);
200
if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
201
if (!list_empty(&node->p_list))
202
list_move_tail(&node->p_list, &root->prepare_list);
203
else if (mod)
204
list_add_tail(&node->p_list, &root->prepare_list);
205
} else {
206
list_add_tail(&node->n_list, &root->node_list);
207
list_add_tail(&node->p_list, &root->prepare_list);
208
refcount_inc(&node->refs); /* inserted into list */
209
btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker,
210
GFP_ATOMIC);
211
root->nodes++;
212
set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
213
}
214
spin_unlock(&root->lock);
215
}
216
217
/* Call it when holding delayed_node->mutex */
218
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
219
struct btrfs_delayed_node *node)
220
{
221
spin_lock(&root->lock);
222
if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
223
root->nodes--;
224
btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker);
225
refcount_dec(&node->refs); /* not in the list */
226
list_del_init(&node->n_list);
227
if (!list_empty(&node->p_list))
228
list_del_init(&node->p_list);
229
clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
230
}
231
spin_unlock(&root->lock);
232
}
233
234
static struct btrfs_delayed_node *btrfs_first_delayed_node(
235
struct btrfs_fs_info *fs_info,
236
struct btrfs_ref_tracker *tracker)
237
{
238
struct btrfs_delayed_node *node;
239
240
spin_lock(&fs_info->delayed_root.lock);
241
node = list_first_entry_or_null(&fs_info->delayed_root.node_list,
242
struct btrfs_delayed_node, n_list);
243
if (node) {
244
refcount_inc(&node->refs);
245
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
246
}
247
spin_unlock(&fs_info->delayed_root.lock);
248
249
return node;
250
}
251
252
static struct btrfs_delayed_node *btrfs_next_delayed_node(
253
struct btrfs_delayed_node *node,
254
struct btrfs_ref_tracker *tracker)
255
{
256
struct btrfs_delayed_root *delayed_root;
257
struct list_head *p;
258
struct btrfs_delayed_node *next = NULL;
259
260
delayed_root = &node->root->fs_info->delayed_root;
261
spin_lock(&delayed_root->lock);
262
if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
263
/* not in the list */
264
if (list_empty(&delayed_root->node_list))
265
goto out;
266
p = delayed_root->node_list.next;
267
} else if (list_is_last(&node->n_list, &delayed_root->node_list))
268
goto out;
269
else
270
p = node->n_list.next;
271
272
next = list_entry(p, struct btrfs_delayed_node, n_list);
273
refcount_inc(&next->refs);
274
btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC);
275
out:
276
spin_unlock(&delayed_root->lock);
277
278
return next;
279
}
280
281
static void __btrfs_release_delayed_node(
282
struct btrfs_delayed_node *delayed_node,
283
int mod, struct btrfs_ref_tracker *tracker)
284
{
285
struct btrfs_delayed_root *delayed_root;
286
287
if (!delayed_node)
288
return;
289
290
delayed_root = &delayed_node->root->fs_info->delayed_root;
291
292
mutex_lock(&delayed_node->mutex);
293
if (delayed_node->count)
294
btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
295
else
296
btrfs_dequeue_delayed_node(delayed_root, delayed_node);
297
mutex_unlock(&delayed_node->mutex);
298
299
btrfs_delayed_node_ref_tracker_free(delayed_node, tracker);
300
if (refcount_dec_and_test(&delayed_node->refs)) {
301
struct btrfs_root *root = delayed_node->root;
302
303
xa_erase(&root->delayed_nodes, delayed_node->inode_id);
304
/*
305
* Once our refcount goes to zero, nobody is allowed to bump it
306
* back up. We can delete it now.
307
*/
308
ASSERT(refcount_read(&delayed_node->refs) == 0);
309
btrfs_delayed_node_ref_tracker_dir_exit(delayed_node);
310
kmem_cache_free(delayed_node_cache, delayed_node);
311
}
312
}
313
314
static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node,
315
struct btrfs_ref_tracker *tracker)
316
{
317
__btrfs_release_delayed_node(node, 0, tracker);
318
}
319
320
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
321
struct btrfs_delayed_root *delayed_root,
322
struct btrfs_ref_tracker *tracker)
323
{
324
struct btrfs_delayed_node *node;
325
326
spin_lock(&delayed_root->lock);
327
node = list_first_entry_or_null(&delayed_root->prepare_list,
328
struct btrfs_delayed_node, p_list);
329
if (node) {
330
list_del_init(&node->p_list);
331
refcount_inc(&node->refs);
332
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
333
}
334
spin_unlock(&delayed_root->lock);
335
336
return node;
337
}
338
339
static inline void btrfs_release_prepared_delayed_node(
340
struct btrfs_delayed_node *node,
341
struct btrfs_ref_tracker *tracker)
342
{
343
__btrfs_release_delayed_node(node, 1, tracker);
344
}
345
346
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
347
struct btrfs_delayed_node *node,
348
enum btrfs_delayed_item_type type)
349
{
350
struct btrfs_delayed_item *item;
351
352
item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
353
if (item) {
354
item->data_len = data_len;
355
item->type = type;
356
item->bytes_reserved = 0;
357
item->delayed_node = node;
358
RB_CLEAR_NODE(&item->rb_node);
359
INIT_LIST_HEAD(&item->log_list);
360
item->logged = false;
361
refcount_set(&item->refs, 1);
362
}
363
return item;
364
}
365
366
static int delayed_item_index_cmp(const void *key, const struct rb_node *node)
367
{
368
const u64 *index = key;
369
const struct btrfs_delayed_item *delayed_item = rb_entry(node,
370
struct btrfs_delayed_item, rb_node);
371
372
if (delayed_item->index < *index)
373
return 1;
374
else if (delayed_item->index > *index)
375
return -1;
376
377
return 0;
378
}
379
380
/*
381
* Look up the delayed item by key.
382
*
383
* @delayed_node: pointer to the delayed node
384
* @index: the dir index value to lookup (offset of a dir index key)
385
*
386
* Note: if we don't find the right item, we will return the prev item and
387
* the next item.
388
*/
389
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
390
struct rb_root *root,
391
u64 index)
392
{
393
struct rb_node *node;
394
395
node = rb_find(&index, root, delayed_item_index_cmp);
396
return rb_entry_safe(node, struct btrfs_delayed_item, rb_node);
397
}
398
399
static int btrfs_delayed_item_cmp(const struct rb_node *new,
400
const struct rb_node *exist)
401
{
402
const struct btrfs_delayed_item *new_item =
403
rb_entry(new, struct btrfs_delayed_item, rb_node);
404
405
return delayed_item_index_cmp(&new_item->index, exist);
406
}
407
408
static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
409
struct btrfs_delayed_item *ins)
410
{
411
struct rb_root_cached *root;
412
struct rb_node *exist;
413
414
if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
415
root = &delayed_node->ins_root;
416
else
417
root = &delayed_node->del_root;
418
419
exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp);
420
if (exist)
421
return -EEXIST;
422
423
if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
424
ins->index >= delayed_node->index_cnt)
425
delayed_node->index_cnt = ins->index + 1;
426
427
delayed_node->count++;
428
atomic_inc(&delayed_node->root->fs_info->delayed_root.items);
429
return 0;
430
}
431
432
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
433
{
434
int seq = atomic_inc_return(&delayed_root->items_seq);
435
436
/* atomic_dec_return implies a barrier */
437
if ((atomic_dec_return(&delayed_root->items) <
438
BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
439
cond_wake_up_nomb(&delayed_root->wait);
440
}
441
442
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
443
{
444
struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
445
struct rb_root_cached *root;
446
447
/* Not inserted, ignore it. */
448
if (RB_EMPTY_NODE(&delayed_item->rb_node))
449
return;
450
451
/* If it's in a rbtree, then we need to have delayed node locked. */
452
lockdep_assert_held(&delayed_node->mutex);
453
454
if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
455
root = &delayed_node->ins_root;
456
else
457
root = &delayed_node->del_root;
458
459
rb_erase_cached(&delayed_item->rb_node, root);
460
RB_CLEAR_NODE(&delayed_item->rb_node);
461
delayed_node->count--;
462
finish_one_item(&delayed_node->root->fs_info->delayed_root);
463
}
464
465
static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
466
{
467
if (item) {
468
__btrfs_remove_delayed_item(item);
469
if (refcount_dec_and_test(&item->refs))
470
kfree(item);
471
}
472
}
473
474
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
475
struct btrfs_delayed_node *delayed_node)
476
{
477
struct rb_node *p = rb_first_cached(&delayed_node->ins_root);
478
479
return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
480
}
481
482
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
483
struct btrfs_delayed_node *delayed_node)
484
{
485
struct rb_node *p = rb_first_cached(&delayed_node->del_root);
486
487
return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
488
}
489
490
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
491
struct btrfs_delayed_item *item)
492
{
493
struct rb_node *p = rb_next(&item->rb_node);
494
495
return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
496
}
497
498
static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
499
struct btrfs_delayed_item *item)
500
{
501
struct btrfs_block_rsv *src_rsv;
502
struct btrfs_block_rsv *dst_rsv;
503
struct btrfs_fs_info *fs_info = trans->fs_info;
504
u64 num_bytes;
505
int ret;
506
507
if (!trans->bytes_reserved)
508
return 0;
509
510
src_rsv = trans->block_rsv;
511
dst_rsv = &fs_info->delayed_block_rsv;
512
513
num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
514
515
/*
516
* Here we migrate space rsv from transaction rsv, since have already
517
* reserved space when starting a transaction. So no need to reserve
518
* qgroup space here.
519
*/
520
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
521
if (!ret) {
522
trace_btrfs_space_reservation(fs_info, "delayed_item",
523
item->delayed_node->inode_id,
524
num_bytes, 1);
525
/*
526
* For insertions we track reserved metadata space by accounting
527
* for the number of leaves that will be used, based on the delayed
528
* node's curr_index_batch_size and index_item_leaves fields.
529
*/
530
if (item->type == BTRFS_DELAYED_DELETION_ITEM)
531
item->bytes_reserved = num_bytes;
532
}
533
534
return ret;
535
}
536
537
static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
538
struct btrfs_delayed_item *item)
539
{
540
struct btrfs_block_rsv *rsv;
541
struct btrfs_fs_info *fs_info = root->fs_info;
542
543
if (!item->bytes_reserved)
544
return;
545
546
rsv = &fs_info->delayed_block_rsv;
547
/*
548
* Check btrfs_delayed_item_reserve_metadata() to see why we don't need
549
* to release/reserve qgroup space.
550
*/
551
trace_btrfs_space_reservation(fs_info, "delayed_item",
552
item->delayed_node->inode_id,
553
item->bytes_reserved, 0);
554
btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
555
}
556
557
static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
558
unsigned int num_leaves)
559
{
560
struct btrfs_fs_info *fs_info = node->root->fs_info;
561
const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
562
563
/* There are no space reservations during log replay, bail out. */
564
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
565
return;
566
567
trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
568
bytes, 0);
569
btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
570
}
571
572
static int btrfs_delayed_inode_reserve_metadata(
573
struct btrfs_trans_handle *trans,
574
struct btrfs_root *root,
575
struct btrfs_delayed_node *node)
576
{
577
struct btrfs_fs_info *fs_info = root->fs_info;
578
struct btrfs_block_rsv *src_rsv;
579
struct btrfs_block_rsv *dst_rsv;
580
u64 num_bytes;
581
int ret;
582
583
src_rsv = trans->block_rsv;
584
dst_rsv = &fs_info->delayed_block_rsv;
585
586
num_bytes = btrfs_calc_metadata_size(fs_info, 1);
587
588
/*
589
* btrfs_dirty_inode will update the inode under btrfs_join_transaction
590
* which doesn't reserve space for speed. This is a problem since we
591
* still need to reserve space for this update, so try to reserve the
592
* space.
593
*
594
* Now if src_rsv == delalloc_block_rsv we'll let it just steal since
595
* we always reserve enough to update the inode item.
596
*/
597
if (!src_rsv || (!trans->bytes_reserved &&
598
src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
599
ret = btrfs_qgroup_reserve_meta(root, num_bytes,
600
BTRFS_QGROUP_RSV_META_PREALLOC, true);
601
if (ret < 0)
602
return ret;
603
ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
604
BTRFS_RESERVE_NO_FLUSH);
605
/* NO_FLUSH could only fail with -ENOSPC */
606
ASSERT(ret == 0 || ret == -ENOSPC);
607
if (ret)
608
btrfs_qgroup_free_meta_prealloc(root, num_bytes);
609
} else {
610
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
611
}
612
613
if (!ret) {
614
trace_btrfs_space_reservation(fs_info, "delayed_inode",
615
node->inode_id, num_bytes, 1);
616
node->bytes_reserved = num_bytes;
617
}
618
619
return ret;
620
}
621
622
static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
623
struct btrfs_delayed_node *node,
624
bool qgroup_free)
625
{
626
struct btrfs_block_rsv *rsv;
627
628
if (!node->bytes_reserved)
629
return;
630
631
rsv = &fs_info->delayed_block_rsv;
632
trace_btrfs_space_reservation(fs_info, "delayed_inode",
633
node->inode_id, node->bytes_reserved, 0);
634
btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
635
if (qgroup_free)
636
btrfs_qgroup_free_meta_prealloc(node->root,
637
node->bytes_reserved);
638
else
639
btrfs_qgroup_convert_reserved_meta(node->root,
640
node->bytes_reserved);
641
node->bytes_reserved = 0;
642
}
643
644
/*
645
* Insert a single delayed item or a batch of delayed items, as many as possible
646
* that fit in a leaf. The delayed items (dir index keys) are sorted by their key
647
* in the rbtree, and if there's a gap between two consecutive dir index items,
648
* then it means at some point we had delayed dir indexes to add but they got
649
* removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
650
* into the subvolume tree. Dir index keys also have their offsets coming from a
651
* monotonically increasing counter, so we can't get new keys with an offset that
652
* fits within a gap between delayed dir index items.
653
*/
654
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
655
struct btrfs_root *root,
656
struct btrfs_path *path,
657
struct btrfs_delayed_item *first_item)
658
{
659
struct btrfs_fs_info *fs_info = root->fs_info;
660
struct btrfs_delayed_node *node = first_item->delayed_node;
661
LIST_HEAD(item_list);
662
struct btrfs_delayed_item *curr;
663
struct btrfs_delayed_item *next;
664
const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
665
struct btrfs_item_batch batch;
666
struct btrfs_key first_key;
667
const u32 first_data_size = first_item->data_len;
668
int total_size;
669
char AUTO_KFREE(ins_data);
670
int ret;
671
bool continuous_keys_only = false;
672
673
lockdep_assert_held(&node->mutex);
674
675
/*
676
* During normal operation the delayed index offset is continuously
677
* increasing, so we can batch insert all items as there will not be any
678
* overlapping keys in the tree.
679
*
680
* The exception to this is log replay, where we may have interleaved
681
* offsets in the tree, so our batch needs to be continuous keys only in
682
* order to ensure we do not end up with out of order items in our leaf.
683
*/
684
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
685
continuous_keys_only = true;
686
687
/*
688
* For delayed items to insert, we track reserved metadata bytes based
689
* on the number of leaves that we will use.
690
* See btrfs_insert_delayed_dir_index() and
691
* btrfs_delayed_item_reserve_metadata()).
692
*/
693
ASSERT(first_item->bytes_reserved == 0);
694
695
list_add_tail(&first_item->tree_list, &item_list);
696
batch.total_data_size = first_data_size;
697
batch.nr = 1;
698
total_size = first_data_size + sizeof(struct btrfs_item);
699
curr = first_item;
700
701
while (true) {
702
int next_size;
703
704
next = __btrfs_next_delayed_item(curr);
705
if (!next)
706
break;
707
708
/*
709
* We cannot allow gaps in the key space if we're doing log
710
* replay.
711
*/
712
if (continuous_keys_only && (next->index != curr->index + 1))
713
break;
714
715
ASSERT(next->bytes_reserved == 0);
716
717
next_size = next->data_len + sizeof(struct btrfs_item);
718
if (total_size + next_size > max_size)
719
break;
720
721
list_add_tail(&next->tree_list, &item_list);
722
batch.nr++;
723
total_size += next_size;
724
batch.total_data_size += next->data_len;
725
curr = next;
726
}
727
728
if (batch.nr == 1) {
729
first_key.objectid = node->inode_id;
730
first_key.type = BTRFS_DIR_INDEX_KEY;
731
first_key.offset = first_item->index;
732
batch.keys = &first_key;
733
batch.data_sizes = &first_data_size;
734
} else {
735
struct btrfs_key *ins_keys;
736
u32 *ins_sizes;
737
int i = 0;
738
739
ins_data = kmalloc_array(batch.nr,
740
sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS);
741
if (!ins_data)
742
return -ENOMEM;
743
ins_sizes = (u32 *)ins_data;
744
ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
745
batch.keys = ins_keys;
746
batch.data_sizes = ins_sizes;
747
list_for_each_entry(curr, &item_list, tree_list) {
748
ins_keys[i].objectid = node->inode_id;
749
ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
750
ins_keys[i].offset = curr->index;
751
ins_sizes[i] = curr->data_len;
752
i++;
753
}
754
}
755
756
ret = btrfs_insert_empty_items(trans, root, path, &batch);
757
if (ret)
758
return ret;
759
760
list_for_each_entry(curr, &item_list, tree_list) {
761
char *data_ptr;
762
763
data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
764
write_extent_buffer(path->nodes[0], &curr->data,
765
(unsigned long)data_ptr, curr->data_len);
766
path->slots[0]++;
767
}
768
769
/*
770
* Now release our path before releasing the delayed items and their
771
* metadata reservations, so that we don't block other tasks for more
772
* time than needed.
773
*/
774
btrfs_release_path(path);
775
776
ASSERT(node->index_item_leaves > 0);
777
778
/*
779
* For normal operations we will batch an entire leaf's worth of delayed
780
* items, so if there are more items to process we can decrement
781
* index_item_leaves by 1 as we inserted 1 leaf's worth of items.
782
*
783
* However for log replay we may not have inserted an entire leaf's
784
* worth of items, we may have not had continuous items, so decrementing
785
* here would mess up the index_item_leaves accounting. For this case
786
* only clean up the accounting when there are no items left.
787
*/
788
if (next && !continuous_keys_only) {
789
/*
790
* We inserted one batch of items into a leaf a there are more
791
* items to flush in a future batch, now release one unit of
792
* metadata space from the delayed block reserve, corresponding
793
* the leaf we just flushed to.
794
*/
795
btrfs_delayed_item_release_leaves(node, 1);
796
node->index_item_leaves--;
797
} else if (!next) {
798
/*
799
* There are no more items to insert. We can have a number of
800
* reserved leaves > 1 here - this happens when many dir index
801
* items are added and then removed before they are flushed (file
802
* names with a very short life, never span a transaction). So
803
* release all remaining leaves.
804
*/
805
btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
806
node->index_item_leaves = 0;
807
}
808
809
list_for_each_entry_safe(curr, next, &item_list, tree_list) {
810
list_del(&curr->tree_list);
811
btrfs_release_delayed_item(curr);
812
}
813
814
return 0;
815
}
816
817
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
818
struct btrfs_path *path,
819
struct btrfs_root *root,
820
struct btrfs_delayed_node *node)
821
{
822
int ret = 0;
823
824
while (ret == 0) {
825
struct btrfs_delayed_item *curr;
826
827
mutex_lock(&node->mutex);
828
curr = __btrfs_first_delayed_insertion_item(node);
829
if (!curr) {
830
mutex_unlock(&node->mutex);
831
break;
832
}
833
ret = btrfs_insert_delayed_item(trans, root, path, curr);
834
mutex_unlock(&node->mutex);
835
}
836
837
return ret;
838
}
839
840
static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
841
struct btrfs_root *root,
842
struct btrfs_path *path,
843
struct btrfs_delayed_item *item)
844
{
845
const u64 ino = item->delayed_node->inode_id;
846
struct btrfs_fs_info *fs_info = root->fs_info;
847
struct btrfs_delayed_item *curr, *next;
848
struct extent_buffer *leaf = path->nodes[0];
849
LIST_HEAD(batch_list);
850
int nitems, slot, last_slot;
851
int ret;
852
u64 total_reserved_size = item->bytes_reserved;
853
854
ASSERT(leaf != NULL);
855
856
slot = path->slots[0];
857
last_slot = btrfs_header_nritems(leaf) - 1;
858
/*
859
* Our caller always gives us a path pointing to an existing item, so
860
* this can not happen.
861
*/
862
ASSERT(slot <= last_slot);
863
if (WARN_ON(slot > last_slot))
864
return -ENOENT;
865
866
nitems = 1;
867
curr = item;
868
list_add_tail(&curr->tree_list, &batch_list);
869
870
/*
871
* Keep checking if the next delayed item matches the next item in the
872
* leaf - if so, we can add it to the batch of items to delete from the
873
* leaf.
874
*/
875
while (slot < last_slot) {
876
struct btrfs_key key;
877
878
next = __btrfs_next_delayed_item(curr);
879
if (!next)
880
break;
881
882
slot++;
883
btrfs_item_key_to_cpu(leaf, &key, slot);
884
if (key.objectid != ino ||
885
key.type != BTRFS_DIR_INDEX_KEY ||
886
key.offset != next->index)
887
break;
888
nitems++;
889
curr = next;
890
list_add_tail(&curr->tree_list, &batch_list);
891
total_reserved_size += curr->bytes_reserved;
892
}
893
894
ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
895
if (ret)
896
return ret;
897
898
/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
899
if (total_reserved_size > 0) {
900
/*
901
* Check btrfs_delayed_item_reserve_metadata() to see why we
902
* don't need to release/reserve qgroup space.
903
*/
904
trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
905
total_reserved_size, 0);
906
btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
907
total_reserved_size, NULL);
908
}
909
910
list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
911
list_del(&curr->tree_list);
912
btrfs_release_delayed_item(curr);
913
}
914
915
return 0;
916
}
917
918
static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
919
struct btrfs_path *path,
920
struct btrfs_root *root,
921
struct btrfs_delayed_node *node)
922
{
923
struct btrfs_key key;
924
int ret = 0;
925
926
key.objectid = node->inode_id;
927
key.type = BTRFS_DIR_INDEX_KEY;
928
929
while (ret == 0) {
930
struct btrfs_delayed_item *item;
931
932
mutex_lock(&node->mutex);
933
item = __btrfs_first_delayed_deletion_item(node);
934
if (!item) {
935
mutex_unlock(&node->mutex);
936
break;
937
}
938
939
key.offset = item->index;
940
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
941
if (ret > 0) {
942
/*
943
* There's no matching item in the leaf. This means we
944
* have already deleted this item in a past run of the
945
* delayed items. We ignore errors when running delayed
946
* items from an async context, through a work queue job
947
* running btrfs_async_run_delayed_root(), and don't
948
* release delayed items that failed to complete. This
949
* is because we will retry later, and at transaction
950
* commit time we always run delayed items and will
951
* then deal with errors if they fail to run again.
952
*
953
* So just release delayed items for which we can't find
954
* an item in the tree, and move to the next item.
955
*/
956
btrfs_release_path(path);
957
btrfs_release_delayed_item(item);
958
ret = 0;
959
} else if (ret == 0) {
960
ret = btrfs_batch_delete_items(trans, root, path, item);
961
btrfs_release_path(path);
962
}
963
964
/*
965
* We unlock and relock on each iteration, this is to prevent
966
* blocking other tasks for too long while we are being run from
967
* the async context (work queue job). Those tasks are typically
968
* running system calls like creat/mkdir/rename/unlink/etc which
969
* need to add delayed items to this delayed node.
970
*/
971
mutex_unlock(&node->mutex);
972
}
973
974
return ret;
975
}
976
977
static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
978
{
979
if (delayed_node &&
980
test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
981
ASSERT(delayed_node->root);
982
clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
983
delayed_node->count--;
984
finish_one_item(&delayed_node->root->fs_info->delayed_root);
985
}
986
}
987
988
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
989
{
990
if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
991
ASSERT(delayed_node->root);
992
delayed_node->count--;
993
finish_one_item(&delayed_node->root->fs_info->delayed_root);
994
}
995
}
996
997
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
998
struct btrfs_root *root,
999
struct btrfs_path *path,
1000
struct btrfs_delayed_node *node)
1001
{
1002
struct btrfs_fs_info *fs_info = root->fs_info;
1003
struct btrfs_key key;
1004
struct btrfs_inode_item *inode_item;
1005
struct extent_buffer *leaf;
1006
int mod;
1007
int ret;
1008
1009
key.objectid = node->inode_id;
1010
key.type = BTRFS_INODE_ITEM_KEY;
1011
key.offset = 0;
1012
1013
if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1014
mod = -1;
1015
else
1016
mod = 1;
1017
1018
ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1019
if (ret > 0)
1020
ret = -ENOENT;
1021
if (ret < 0) {
1022
/*
1023
* If we fail to update the delayed inode we need to abort the
1024
* transaction, because we could leave the inode with the
1025
* improper counts behind.
1026
*/
1027
if (unlikely(ret != -ENOENT))
1028
btrfs_abort_transaction(trans, ret);
1029
goto out;
1030
}
1031
1032
leaf = path->nodes[0];
1033
inode_item = btrfs_item_ptr(leaf, path->slots[0],
1034
struct btrfs_inode_item);
1035
write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1036
sizeof(struct btrfs_inode_item));
1037
1038
if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1039
goto out;
1040
1041
/*
1042
* Now we're going to delete the INODE_REF/EXTREF, which should be the
1043
* only one ref left. Check if the next item is an INODE_REF/EXTREF.
1044
*
1045
* But if we're the last item already, release and search for the last
1046
* INODE_REF/EXTREF.
1047
*/
1048
if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1049
key.objectid = node->inode_id;
1050
key.type = BTRFS_INODE_EXTREF_KEY;
1051
key.offset = (u64)-1;
1052
1053
btrfs_release_path(path);
1054
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1055
if (unlikely(ret < 0)) {
1056
btrfs_abort_transaction(trans, ret);
1057
goto err_out;
1058
}
1059
ASSERT(ret > 0);
1060
ASSERT(path->slots[0] > 0);
1061
ret = 0;
1062
path->slots[0]--;
1063
leaf = path->nodes[0];
1064
} else {
1065
path->slots[0]++;
1066
}
1067
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1068
if (key.objectid != node->inode_id)
1069
goto out;
1070
if (key.type != BTRFS_INODE_REF_KEY &&
1071
key.type != BTRFS_INODE_EXTREF_KEY)
1072
goto out;
1073
1074
/*
1075
* Delayed iref deletion is for the inode who has only one link,
1076
* so there is only one iref. The case that several irefs are
1077
* in the same item doesn't exist.
1078
*/
1079
ret = btrfs_del_item(trans, root, path);
1080
if (ret < 0)
1081
btrfs_abort_transaction(trans, ret);
1082
out:
1083
btrfs_release_delayed_iref(node);
1084
btrfs_release_path(path);
1085
err_out:
1086
btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1087
btrfs_release_delayed_inode(node);
1088
return ret;
1089
}
1090
1091
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1092
struct btrfs_root *root,
1093
struct btrfs_path *path,
1094
struct btrfs_delayed_node *node)
1095
{
1096
int ret;
1097
1098
mutex_lock(&node->mutex);
1099
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1100
mutex_unlock(&node->mutex);
1101
return 0;
1102
}
1103
1104
ret = __btrfs_update_delayed_inode(trans, root, path, node);
1105
mutex_unlock(&node->mutex);
1106
return ret;
1107
}
1108
1109
static inline int
1110
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1111
struct btrfs_path *path,
1112
struct btrfs_delayed_node *node)
1113
{
1114
int ret;
1115
1116
ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1117
if (ret)
1118
return ret;
1119
1120
ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1121
if (ret)
1122
return ret;
1123
1124
ret = btrfs_record_root_in_trans(trans, node->root);
1125
if (ret)
1126
return ret;
1127
1128
return btrfs_update_delayed_inode(trans, node->root, path, node);
1129
}
1130
1131
/*
1132
* Called when committing the transaction.
1133
* Returns 0 on success.
1134
* Returns < 0 on error and returns with an aborted transaction with any
1135
* outstanding delayed items cleaned up.
1136
*/
1137
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1138
{
1139
struct btrfs_fs_info *fs_info = trans->fs_info;
1140
struct btrfs_delayed_node *curr_node, *prev_node;
1141
struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
1142
struct btrfs_path *path;
1143
struct btrfs_block_rsv *block_rsv;
1144
int ret = 0;
1145
bool count = (nr > 0);
1146
1147
if (TRANS_ABORTED(trans))
1148
return -EIO;
1149
1150
path = btrfs_alloc_path();
1151
if (!path)
1152
return -ENOMEM;
1153
1154
block_rsv = trans->block_rsv;
1155
trans->block_rsv = &fs_info->delayed_block_rsv;
1156
1157
curr_node = btrfs_first_delayed_node(fs_info, &curr_delayed_node_tracker);
1158
while (curr_node && (!count || nr--)) {
1159
ret = __btrfs_commit_inode_delayed_items(trans, path,
1160
curr_node);
1161
if (unlikely(ret)) {
1162
btrfs_abort_transaction(trans, ret);
1163
break;
1164
}
1165
1166
prev_node = curr_node;
1167
prev_delayed_node_tracker = curr_delayed_node_tracker;
1168
curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
1169
/*
1170
* See the comment below about releasing path before releasing
1171
* node. If the commit of delayed items was successful the path
1172
* should always be released, but in case of an error, it may
1173
* point to locked extent buffers (a leaf at the very least).
1174
*/
1175
ASSERT(path->nodes[0] == NULL);
1176
btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
1177
}
1178
1179
/*
1180
* Release the path to avoid a potential deadlock and lockdep splat when
1181
* releasing the delayed node, as that requires taking the delayed node's
1182
* mutex. If another task starts running delayed items before we take
1183
* the mutex, it will first lock the mutex and then it may try to lock
1184
* the same btree path (leaf).
1185
*/
1186
btrfs_free_path(path);
1187
1188
if (curr_node)
1189
btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker);
1190
trans->block_rsv = block_rsv;
1191
1192
return ret;
1193
}
1194
1195
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1196
{
1197
return __btrfs_run_delayed_items(trans, -1);
1198
}
1199
1200
int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1201
{
1202
return __btrfs_run_delayed_items(trans, nr);
1203
}
1204
1205
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1206
struct btrfs_inode *inode)
1207
{
1208
struct btrfs_ref_tracker delayed_node_tracker;
1209
struct btrfs_delayed_node *delayed_node =
1210
btrfs_get_delayed_node(inode, &delayed_node_tracker);
1211
BTRFS_PATH_AUTO_FREE(path);
1212
struct btrfs_block_rsv *block_rsv;
1213
int ret;
1214
1215
if (!delayed_node)
1216
return 0;
1217
1218
mutex_lock(&delayed_node->mutex);
1219
if (!delayed_node->count) {
1220
mutex_unlock(&delayed_node->mutex);
1221
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1222
return 0;
1223
}
1224
mutex_unlock(&delayed_node->mutex);
1225
1226
path = btrfs_alloc_path();
1227
if (!path) {
1228
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1229
return -ENOMEM;
1230
}
1231
1232
block_rsv = trans->block_rsv;
1233
trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1234
1235
ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1236
1237
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1238
trans->block_rsv = block_rsv;
1239
1240
return ret;
1241
}
1242
1243
int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1244
{
1245
struct btrfs_fs_info *fs_info = inode->root->fs_info;
1246
struct btrfs_trans_handle *trans;
1247
struct btrfs_ref_tracker delayed_node_tracker;
1248
struct btrfs_delayed_node *delayed_node;
1249
struct btrfs_path *path;
1250
struct btrfs_block_rsv *block_rsv;
1251
int ret;
1252
1253
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1254
if (!delayed_node)
1255
return 0;
1256
1257
mutex_lock(&delayed_node->mutex);
1258
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1259
mutex_unlock(&delayed_node->mutex);
1260
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1261
return 0;
1262
}
1263
mutex_unlock(&delayed_node->mutex);
1264
1265
trans = btrfs_join_transaction(delayed_node->root);
1266
if (IS_ERR(trans)) {
1267
ret = PTR_ERR(trans);
1268
goto out;
1269
}
1270
1271
path = btrfs_alloc_path();
1272
if (!path) {
1273
ret = -ENOMEM;
1274
goto trans_out;
1275
}
1276
1277
block_rsv = trans->block_rsv;
1278
trans->block_rsv = &fs_info->delayed_block_rsv;
1279
1280
mutex_lock(&delayed_node->mutex);
1281
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1282
ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1283
path, delayed_node);
1284
else
1285
ret = 0;
1286
mutex_unlock(&delayed_node->mutex);
1287
1288
btrfs_free_path(path);
1289
trans->block_rsv = block_rsv;
1290
trans_out:
1291
btrfs_end_transaction(trans);
1292
btrfs_btree_balance_dirty(fs_info);
1293
out:
1294
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1295
1296
return ret;
1297
}
1298
1299
void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1300
{
1301
struct btrfs_delayed_node *delayed_node;
1302
1303
delayed_node = READ_ONCE(inode->delayed_node);
1304
if (!delayed_node)
1305
return;
1306
1307
inode->delayed_node = NULL;
1308
1309
btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker);
1310
}
1311
1312
struct btrfs_async_delayed_work {
1313
struct btrfs_delayed_root *delayed_root;
1314
int nr;
1315
struct btrfs_work work;
1316
};
1317
1318
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1319
{
1320
struct btrfs_async_delayed_work *async_work;
1321
struct btrfs_delayed_root *delayed_root;
1322
struct btrfs_trans_handle *trans;
1323
struct btrfs_path *path;
1324
struct btrfs_delayed_node *delayed_node = NULL;
1325
struct btrfs_ref_tracker delayed_node_tracker;
1326
struct btrfs_root *root;
1327
struct btrfs_block_rsv *block_rsv;
1328
int total_done = 0;
1329
1330
async_work = container_of(work, struct btrfs_async_delayed_work, work);
1331
delayed_root = async_work->delayed_root;
1332
1333
path = btrfs_alloc_path();
1334
if (!path)
1335
goto out;
1336
1337
do {
1338
if (atomic_read(&delayed_root->items) <
1339
BTRFS_DELAYED_BACKGROUND / 2)
1340
break;
1341
1342
delayed_node = btrfs_first_prepared_delayed_node(delayed_root,
1343
&delayed_node_tracker);
1344
if (!delayed_node)
1345
break;
1346
1347
root = delayed_node->root;
1348
1349
trans = btrfs_join_transaction(root);
1350
if (IS_ERR(trans)) {
1351
btrfs_release_path(path);
1352
btrfs_release_prepared_delayed_node(delayed_node,
1353
&delayed_node_tracker);
1354
total_done++;
1355
continue;
1356
}
1357
1358
block_rsv = trans->block_rsv;
1359
trans->block_rsv = &root->fs_info->delayed_block_rsv;
1360
1361
__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1362
1363
trans->block_rsv = block_rsv;
1364
btrfs_end_transaction(trans);
1365
btrfs_btree_balance_dirty_nodelay(root->fs_info);
1366
1367
btrfs_release_path(path);
1368
btrfs_release_prepared_delayed_node(delayed_node,
1369
&delayed_node_tracker);
1370
total_done++;
1371
1372
} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1373
|| total_done < async_work->nr);
1374
1375
btrfs_free_path(path);
1376
out:
1377
wake_up(&delayed_root->wait);
1378
kfree(async_work);
1379
}
1380
1381
1382
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1383
struct btrfs_fs_info *fs_info, int nr)
1384
{
1385
struct btrfs_async_delayed_work *async_work;
1386
1387
async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1388
if (!async_work)
1389
return -ENOMEM;
1390
1391
async_work->delayed_root = delayed_root;
1392
btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1393
async_work->nr = nr;
1394
1395
btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1396
return 0;
1397
}
1398
1399
void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1400
{
1401
struct btrfs_ref_tracker delayed_node_tracker;
1402
struct btrfs_delayed_node *node;
1403
1404
node = btrfs_first_delayed_node(fs_info, &delayed_node_tracker);
1405
if (WARN_ON(node)) {
1406
btrfs_delayed_node_ref_tracker_free(node,
1407
&delayed_node_tracker);
1408
refcount_dec(&node->refs);
1409
}
1410
}
1411
1412
static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1413
{
1414
int val = atomic_read(&delayed_root->items_seq);
1415
1416
if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1417
return true;
1418
1419
if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1420
return true;
1421
1422
return false;
1423
}
1424
1425
void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1426
{
1427
struct btrfs_delayed_root *delayed_root = &fs_info->delayed_root;
1428
1429
if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1430
btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1431
return;
1432
1433
if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1434
int seq;
1435
int ret;
1436
1437
seq = atomic_read(&delayed_root->items_seq);
1438
1439
ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1440
if (ret)
1441
return;
1442
1443
wait_event_interruptible(delayed_root->wait,
1444
could_end_wait(delayed_root, seq));
1445
return;
1446
}
1447
1448
btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1449
}
1450
1451
static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1452
{
1453
struct btrfs_fs_info *fs_info = trans->fs_info;
1454
const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1455
1456
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1457
return;
1458
1459
/*
1460
* Adding the new dir index item does not require touching another
1461
* leaf, so we can release 1 unit of metadata that was previously
1462
* reserved when starting the transaction. This applies only to
1463
* the case where we had a transaction start and excludes the
1464
* transaction join case (when replaying log trees).
1465
*/
1466
trace_btrfs_space_reservation(fs_info, "transaction",
1467
trans->transid, bytes, 0);
1468
btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1469
ASSERT(trans->bytes_reserved >= bytes);
1470
trans->bytes_reserved -= bytes;
1471
}
1472
1473
/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1474
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1475
const char *name, int name_len,
1476
struct btrfs_inode *dir,
1477
const struct btrfs_disk_key *disk_key, u8 flags,
1478
u64 index)
1479
{
1480
struct btrfs_fs_info *fs_info = trans->fs_info;
1481
const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1482
struct btrfs_delayed_node *delayed_node;
1483
struct btrfs_ref_tracker delayed_node_tracker;
1484
struct btrfs_delayed_item *delayed_item;
1485
struct btrfs_dir_item *dir_item;
1486
bool reserve_leaf_space;
1487
u32 data_len;
1488
int ret;
1489
1490
delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1491
if (IS_ERR(delayed_node))
1492
return PTR_ERR(delayed_node);
1493
1494
delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1495
delayed_node,
1496
BTRFS_DELAYED_INSERTION_ITEM);
1497
if (!delayed_item) {
1498
ret = -ENOMEM;
1499
goto release_node;
1500
}
1501
1502
delayed_item->index = index;
1503
1504
dir_item = (struct btrfs_dir_item *)delayed_item->data;
1505
dir_item->location = *disk_key;
1506
btrfs_set_stack_dir_transid(dir_item, trans->transid);
1507
btrfs_set_stack_dir_data_len(dir_item, 0);
1508
btrfs_set_stack_dir_name_len(dir_item, name_len);
1509
btrfs_set_stack_dir_flags(dir_item, flags);
1510
memcpy((char *)(dir_item + 1), name, name_len);
1511
1512
data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1513
1514
mutex_lock(&delayed_node->mutex);
1515
1516
/*
1517
* First attempt to insert the delayed item. This is to make the error
1518
* handling path simpler in case we fail (-EEXIST). There's no risk of
1519
* any other task coming in and running the delayed item before we do
1520
* the metadata space reservation below, because we are holding the
1521
* delayed node's mutex and that mutex must also be locked before the
1522
* node's delayed items can be run.
1523
*/
1524
ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1525
if (unlikely(ret)) {
1526
btrfs_err(trans->fs_info,
1527
"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1528
name_len, name, index, btrfs_root_id(delayed_node->root),
1529
delayed_node->inode_id, dir->index_cnt,
1530
delayed_node->index_cnt, ret);
1531
btrfs_release_delayed_item(delayed_item);
1532
btrfs_release_dir_index_item_space(trans);
1533
mutex_unlock(&delayed_node->mutex);
1534
goto release_node;
1535
}
1536
1537
if (delayed_node->index_item_leaves == 0 ||
1538
delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1539
delayed_node->curr_index_batch_size = data_len;
1540
reserve_leaf_space = true;
1541
} else {
1542
delayed_node->curr_index_batch_size += data_len;
1543
reserve_leaf_space = false;
1544
}
1545
1546
if (reserve_leaf_space) {
1547
ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1548
/*
1549
* Space was reserved for a dir index item insertion when we
1550
* started the transaction, so getting a failure here should be
1551
* impossible.
1552
*/
1553
if (WARN_ON(ret)) {
1554
btrfs_release_delayed_item(delayed_item);
1555
mutex_unlock(&delayed_node->mutex);
1556
goto release_node;
1557
}
1558
1559
delayed_node->index_item_leaves++;
1560
} else {
1561
btrfs_release_dir_index_item_space(trans);
1562
}
1563
mutex_unlock(&delayed_node->mutex);
1564
1565
release_node:
1566
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1567
return ret;
1568
}
1569
1570
static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node,
1571
u64 index)
1572
{
1573
struct btrfs_delayed_item *item;
1574
1575
mutex_lock(&node->mutex);
1576
item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1577
if (!item) {
1578
mutex_unlock(&node->mutex);
1579
return false;
1580
}
1581
1582
/*
1583
* For delayed items to insert, we track reserved metadata bytes based
1584
* on the number of leaves that we will use.
1585
* See btrfs_insert_delayed_dir_index() and
1586
* btrfs_delayed_item_reserve_metadata()).
1587
*/
1588
ASSERT(item->bytes_reserved == 0);
1589
ASSERT(node->index_item_leaves > 0);
1590
1591
/*
1592
* If there's only one leaf reserved, we can decrement this item from the
1593
* current batch, otherwise we can not because we don't know which leaf
1594
* it belongs to. With the current limit on delayed items, we rarely
1595
* accumulate enough dir index items to fill more than one leaf (even
1596
* when using a leaf size of 4K).
1597
*/
1598
if (node->index_item_leaves == 1) {
1599
const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1600
1601
ASSERT(node->curr_index_batch_size >= data_len);
1602
node->curr_index_batch_size -= data_len;
1603
}
1604
1605
btrfs_release_delayed_item(item);
1606
1607
/* If we now have no more dir index items, we can release all leaves. */
1608
if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1609
btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1610
node->index_item_leaves = 0;
1611
}
1612
1613
mutex_unlock(&node->mutex);
1614
return true;
1615
}
1616
1617
int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1618
struct btrfs_inode *dir, u64 index)
1619
{
1620
struct btrfs_delayed_node *node;
1621
struct btrfs_ref_tracker delayed_node_tracker;
1622
struct btrfs_delayed_item *item;
1623
int ret;
1624
1625
node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1626
if (IS_ERR(node))
1627
return PTR_ERR(node);
1628
1629
if (btrfs_delete_delayed_insertion_item(node, index)) {
1630
ret = 0;
1631
goto end;
1632
}
1633
1634
item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1635
if (!item) {
1636
ret = -ENOMEM;
1637
goto end;
1638
}
1639
1640
item->index = index;
1641
1642
ret = btrfs_delayed_item_reserve_metadata(trans, item);
1643
/*
1644
* we have reserved enough space when we start a new transaction,
1645
* so reserving metadata failure is impossible.
1646
*/
1647
if (ret < 0) {
1648
btrfs_err(trans->fs_info,
1649
"metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d",
1650
index, btrfs_root_id(node->root), node->inode_id, ret);
1651
btrfs_release_delayed_item(item);
1652
goto end;
1653
}
1654
1655
mutex_lock(&node->mutex);
1656
ret = __btrfs_add_delayed_item(node, item);
1657
if (unlikely(ret)) {
1658
btrfs_err(trans->fs_info,
1659
"failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d",
1660
index, btrfs_root_id(node->root), node->inode_id, ret);
1661
btrfs_delayed_item_release_metadata(dir->root, item);
1662
btrfs_release_delayed_item(item);
1663
}
1664
mutex_unlock(&node->mutex);
1665
end:
1666
btrfs_release_delayed_node(node, &delayed_node_tracker);
1667
return ret;
1668
}
1669
1670
int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1671
{
1672
struct btrfs_ref_tracker delayed_node_tracker;
1673
struct btrfs_delayed_node *delayed_node;
1674
1675
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1676
if (!delayed_node)
1677
return -ENOENT;
1678
1679
/*
1680
* Since we have held i_mutex of this directory, it is impossible that
1681
* a new directory index is added into the delayed node and index_cnt
1682
* is updated now. So we needn't lock the delayed node.
1683
*/
1684
if (!delayed_node->index_cnt) {
1685
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1686
return -EINVAL;
1687
}
1688
1689
inode->index_cnt = delayed_node->index_cnt;
1690
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1691
return 0;
1692
}
1693
1694
bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1695
u64 last_index,
1696
struct list_head *ins_list,
1697
struct list_head *del_list)
1698
{
1699
struct btrfs_delayed_node *delayed_node;
1700
struct btrfs_delayed_item *item;
1701
struct btrfs_ref_tracker delayed_node_tracker;
1702
1703
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1704
if (!delayed_node)
1705
return false;
1706
1707
/*
1708
* We can only do one readdir with delayed items at a time because of
1709
* item->readdir_list.
1710
*/
1711
btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1712
btrfs_inode_lock(inode, 0);
1713
1714
mutex_lock(&delayed_node->mutex);
1715
item = __btrfs_first_delayed_insertion_item(delayed_node);
1716
while (item && item->index <= last_index) {
1717
refcount_inc(&item->refs);
1718
list_add_tail(&item->readdir_list, ins_list);
1719
item = __btrfs_next_delayed_item(item);
1720
}
1721
1722
item = __btrfs_first_delayed_deletion_item(delayed_node);
1723
while (item && item->index <= last_index) {
1724
refcount_inc(&item->refs);
1725
list_add_tail(&item->readdir_list, del_list);
1726
item = __btrfs_next_delayed_item(item);
1727
}
1728
mutex_unlock(&delayed_node->mutex);
1729
/*
1730
* This delayed node is still cached in the btrfs inode, so refs
1731
* must be > 1 now, and we needn't check it is going to be freed
1732
* or not.
1733
*
1734
* Besides that, this function is used to read dir, we do not
1735
* insert/delete delayed items in this period. So we also needn't
1736
* requeue or dequeue this delayed node.
1737
*/
1738
btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker);
1739
refcount_dec(&delayed_node->refs);
1740
1741
return true;
1742
}
1743
1744
void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1745
struct list_head *ins_list,
1746
struct list_head *del_list)
1747
{
1748
struct btrfs_delayed_item *curr, *next;
1749
1750
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1751
list_del(&curr->readdir_list);
1752
if (refcount_dec_and_test(&curr->refs))
1753
kfree(curr);
1754
}
1755
1756
list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1757
list_del(&curr->readdir_list);
1758
if (refcount_dec_and_test(&curr->refs))
1759
kfree(curr);
1760
}
1761
1762
/*
1763
* The VFS is going to do up_read(), so we need to downgrade back to a
1764
* read lock.
1765
*/
1766
downgrade_write(&inode->vfs_inode.i_rwsem);
1767
}
1768
1769
bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index)
1770
{
1771
struct btrfs_delayed_item *curr;
1772
bool ret = false;
1773
1774
list_for_each_entry(curr, del_list, readdir_list) {
1775
if (curr->index > index)
1776
break;
1777
if (curr->index == index) {
1778
ret = true;
1779
break;
1780
}
1781
}
1782
return ret;
1783
}
1784
1785
/*
1786
* Read dir info stored in the delayed tree.
1787
*/
1788
bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1789
const struct list_head *ins_list)
1790
{
1791
struct btrfs_dir_item *di;
1792
struct btrfs_delayed_item *curr, *next;
1793
struct btrfs_key location;
1794
char *name;
1795
int name_len;
1796
unsigned char d_type;
1797
1798
/*
1799
* Changing the data of the delayed item is impossible. So
1800
* we needn't lock them. And we have held i_mutex of the
1801
* directory, nobody can delete any directory indexes now.
1802
*/
1803
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1804
bool over;
1805
1806
list_del(&curr->readdir_list);
1807
1808
if (curr->index < ctx->pos) {
1809
if (refcount_dec_and_test(&curr->refs))
1810
kfree(curr);
1811
continue;
1812
}
1813
1814
ctx->pos = curr->index;
1815
1816
di = (struct btrfs_dir_item *)curr->data;
1817
name = (char *)(di + 1);
1818
name_len = btrfs_stack_dir_name_len(di);
1819
1820
d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1821
btrfs_disk_key_to_cpu(&location, &di->location);
1822
1823
over = !dir_emit(ctx, name, name_len, location.objectid, d_type);
1824
1825
if (refcount_dec_and_test(&curr->refs))
1826
kfree(curr);
1827
1828
if (over)
1829
return true;
1830
ctx->pos++;
1831
}
1832
return false;
1833
}
1834
1835
static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1836
struct btrfs_inode_item *inode_item,
1837
struct btrfs_inode *inode)
1838
{
1839
struct inode *vfs_inode = &inode->vfs_inode;
1840
u64 flags;
1841
1842
btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode));
1843
btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode));
1844
btrfs_set_stack_inode_size(inode_item, inode->disk_i_size);
1845
btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode);
1846
btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink);
1847
btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode));
1848
btrfs_set_stack_inode_generation(inode_item, inode->generation);
1849
btrfs_set_stack_inode_sequence(inode_item,
1850
inode_peek_iversion(vfs_inode));
1851
btrfs_set_stack_inode_transid(inode_item, trans->transid);
1852
btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev);
1853
flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags);
1854
btrfs_set_stack_inode_flags(inode_item, flags);
1855
btrfs_set_stack_inode_block_group(inode_item, 0);
1856
1857
btrfs_set_stack_timespec_sec(&inode_item->atime,
1858
inode_get_atime_sec(vfs_inode));
1859
btrfs_set_stack_timespec_nsec(&inode_item->atime,
1860
inode_get_atime_nsec(vfs_inode));
1861
1862
btrfs_set_stack_timespec_sec(&inode_item->mtime,
1863
inode_get_mtime_sec(vfs_inode));
1864
btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1865
inode_get_mtime_nsec(vfs_inode));
1866
1867
btrfs_set_stack_timespec_sec(&inode_item->ctime,
1868
inode_get_ctime_sec(vfs_inode));
1869
btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1870
inode_get_ctime_nsec(vfs_inode));
1871
1872
btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec);
1873
btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec);
1874
}
1875
1876
int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev)
1877
{
1878
struct btrfs_delayed_node *delayed_node;
1879
struct btrfs_ref_tracker delayed_node_tracker;
1880
struct btrfs_inode_item *inode_item;
1881
struct inode *vfs_inode = &inode->vfs_inode;
1882
1883
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1884
if (!delayed_node)
1885
return -ENOENT;
1886
1887
mutex_lock(&delayed_node->mutex);
1888
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1889
mutex_unlock(&delayed_node->mutex);
1890
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1891
return -ENOENT;
1892
}
1893
1894
inode_item = &delayed_node->inode_item;
1895
1896
i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item));
1897
i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item));
1898
btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1899
vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item);
1900
set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item));
1901
inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item));
1902
inode->generation = btrfs_stack_inode_generation(inode_item);
1903
inode->last_trans = btrfs_stack_inode_transid(inode_item);
1904
1905
inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item));
1906
vfs_inode->i_rdev = 0;
1907
*rdev = btrfs_stack_inode_rdev(inode_item);
1908
btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1909
&inode->flags, &inode->ro_flags);
1910
1911
inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime),
1912
btrfs_stack_timespec_nsec(&inode_item->atime));
1913
1914
inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1915
btrfs_stack_timespec_nsec(&inode_item->mtime));
1916
1917
inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1918
btrfs_stack_timespec_nsec(&inode_item->ctime));
1919
1920
inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1921
inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1922
1923
vfs_inode->i_generation = inode->generation;
1924
if (S_ISDIR(vfs_inode->i_mode))
1925
inode->index_cnt = (u64)-1;
1926
1927
mutex_unlock(&delayed_node->mutex);
1928
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1929
return 0;
1930
}
1931
1932
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1933
struct btrfs_inode *inode)
1934
{
1935
struct btrfs_root *root = inode->root;
1936
struct btrfs_delayed_node *delayed_node;
1937
struct btrfs_ref_tracker delayed_node_tracker;
1938
int ret = 0;
1939
1940
delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1941
if (IS_ERR(delayed_node))
1942
return PTR_ERR(delayed_node);
1943
1944
mutex_lock(&delayed_node->mutex);
1945
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1946
fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1947
goto release_node;
1948
}
1949
1950
ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1951
if (ret)
1952
goto release_node;
1953
1954
fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1955
set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1956
delayed_node->count++;
1957
atomic_inc(&root->fs_info->delayed_root.items);
1958
release_node:
1959
mutex_unlock(&delayed_node->mutex);
1960
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1961
return ret;
1962
}
1963
1964
int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1965
{
1966
struct btrfs_fs_info *fs_info = inode->root->fs_info;
1967
struct btrfs_delayed_node *delayed_node;
1968
struct btrfs_ref_tracker delayed_node_tracker;
1969
1970
/*
1971
* we don't do delayed inode updates during log recovery because it
1972
* leads to enospc problems. This means we also can't do
1973
* delayed inode refs
1974
*/
1975
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1976
return -EAGAIN;
1977
1978
delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1979
if (IS_ERR(delayed_node))
1980
return PTR_ERR(delayed_node);
1981
1982
/*
1983
* We don't reserve space for inode ref deletion is because:
1984
* - We ONLY do async inode ref deletion for the inode who has only
1985
* one link(i_nlink == 1), it means there is only one inode ref.
1986
* And in most case, the inode ref and the inode item are in the
1987
* same leaf, and we will deal with them at the same time.
1988
* Since we are sure we will reserve the space for the inode item,
1989
* it is unnecessary to reserve space for inode ref deletion.
1990
* - If the inode ref and the inode item are not in the same leaf,
1991
* We also needn't worry about enospc problem, because we reserve
1992
* much more space for the inode update than it needs.
1993
* - At the worst, we can steal some space from the global reservation.
1994
* It is very rare.
1995
*/
1996
mutex_lock(&delayed_node->mutex);
1997
if (!test_and_set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
1998
delayed_node->count++;
1999
atomic_inc(&fs_info->delayed_root.items);
2000
}
2001
mutex_unlock(&delayed_node->mutex);
2002
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2003
return 0;
2004
}
2005
2006
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2007
{
2008
struct btrfs_root *root = delayed_node->root;
2009
struct btrfs_fs_info *fs_info = root->fs_info;
2010
struct btrfs_delayed_item *curr_item, *prev_item;
2011
2012
mutex_lock(&delayed_node->mutex);
2013
curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2014
while (curr_item) {
2015
prev_item = curr_item;
2016
curr_item = __btrfs_next_delayed_item(prev_item);
2017
btrfs_release_delayed_item(prev_item);
2018
}
2019
2020
if (delayed_node->index_item_leaves > 0) {
2021
btrfs_delayed_item_release_leaves(delayed_node,
2022
delayed_node->index_item_leaves);
2023
delayed_node->index_item_leaves = 0;
2024
}
2025
2026
curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2027
while (curr_item) {
2028
btrfs_delayed_item_release_metadata(root, curr_item);
2029
prev_item = curr_item;
2030
curr_item = __btrfs_next_delayed_item(prev_item);
2031
btrfs_release_delayed_item(prev_item);
2032
}
2033
2034
btrfs_release_delayed_iref(delayed_node);
2035
2036
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2037
btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2038
btrfs_release_delayed_inode(delayed_node);
2039
}
2040
mutex_unlock(&delayed_node->mutex);
2041
}
2042
2043
void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2044
{
2045
struct btrfs_delayed_node *delayed_node;
2046
struct btrfs_ref_tracker delayed_node_tracker;
2047
2048
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2049
if (!delayed_node)
2050
return;
2051
2052
__btrfs_kill_delayed_node(delayed_node);
2053
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2054
}
2055
2056
void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2057
{
2058
unsigned long index = 0;
2059
struct btrfs_delayed_node *delayed_nodes[8];
2060
struct btrfs_ref_tracker delayed_node_trackers[8];
2061
2062
while (1) {
2063
struct btrfs_delayed_node *node;
2064
int count;
2065
2066
xa_lock(&root->delayed_nodes);
2067
if (xa_empty(&root->delayed_nodes)) {
2068
xa_unlock(&root->delayed_nodes);
2069
return;
2070
}
2071
2072
count = 0;
2073
xa_for_each_start(&root->delayed_nodes, index, node, index) {
2074
/*
2075
* Don't increase refs in case the node is dead and
2076
* about to be removed from the tree in the loop below
2077
*/
2078
if (refcount_inc_not_zero(&node->refs)) {
2079
btrfs_delayed_node_ref_tracker_alloc(node,
2080
&delayed_node_trackers[count],
2081
GFP_ATOMIC);
2082
delayed_nodes[count] = node;
2083
count++;
2084
}
2085
if (count >= ARRAY_SIZE(delayed_nodes))
2086
break;
2087
}
2088
xa_unlock(&root->delayed_nodes);
2089
index++;
2090
2091
for (int i = 0; i < count; i++) {
2092
__btrfs_kill_delayed_node(delayed_nodes[i]);
2093
btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]);
2094
btrfs_release_delayed_node(delayed_nodes[i],
2095
&delayed_node_trackers[i]);
2096
}
2097
}
2098
}
2099
2100
void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2101
{
2102
struct btrfs_delayed_node *curr_node, *prev_node;
2103
struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
2104
2105
curr_node = btrfs_first_delayed_node(fs_info, &curr_delayed_node_tracker);
2106
while (curr_node) {
2107
__btrfs_kill_delayed_node(curr_node);
2108
2109
prev_node = curr_node;
2110
prev_delayed_node_tracker = curr_delayed_node_tracker;
2111
curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
2112
btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
2113
}
2114
}
2115
2116
void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2117
struct list_head *ins_list,
2118
struct list_head *del_list)
2119
{
2120
struct btrfs_delayed_node *node;
2121
struct btrfs_delayed_item *item;
2122
struct btrfs_ref_tracker delayed_node_tracker;
2123
2124
node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2125
if (!node)
2126
return;
2127
2128
mutex_lock(&node->mutex);
2129
item = __btrfs_first_delayed_insertion_item(node);
2130
while (item) {
2131
/*
2132
* It's possible that the item is already in a log list. This
2133
* can happen in case two tasks are trying to log the same
2134
* directory. For example if we have tasks A and task B:
2135
*
2136
* Task A collected the delayed items into a log list while
2137
* under the inode's log_mutex (at btrfs_log_inode()), but it
2138
* only releases the items after logging the inodes they point
2139
* to (if they are new inodes), which happens after unlocking
2140
* the log mutex;
2141
*
2142
* Task B enters btrfs_log_inode() and acquires the log_mutex
2143
* of the same directory inode, before task B releases the
2144
* delayed items. This can happen for example when logging some
2145
* inode we need to trigger logging of its parent directory, so
2146
* logging two files that have the same parent directory can
2147
* lead to this.
2148
*
2149
* If this happens, just ignore delayed items already in a log
2150
* list. All the tasks logging the directory are under a log
2151
* transaction and whichever finishes first can not sync the log
2152
* before the other completes and leaves the log transaction.
2153
*/
2154
if (!item->logged && list_empty(&item->log_list)) {
2155
refcount_inc(&item->refs);
2156
list_add_tail(&item->log_list, ins_list);
2157
}
2158
item = __btrfs_next_delayed_item(item);
2159
}
2160
2161
item = __btrfs_first_delayed_deletion_item(node);
2162
while (item) {
2163
/* It may be non-empty, for the same reason mentioned above. */
2164
if (!item->logged && list_empty(&item->log_list)) {
2165
refcount_inc(&item->refs);
2166
list_add_tail(&item->log_list, del_list);
2167
}
2168
item = __btrfs_next_delayed_item(item);
2169
}
2170
mutex_unlock(&node->mutex);
2171
2172
/*
2173
* We are called during inode logging, which means the inode is in use
2174
* and can not be evicted before we finish logging the inode. So we never
2175
* have the last reference on the delayed inode.
2176
* Also, we don't use btrfs_release_delayed_node() because that would
2177
* requeue the delayed inode (change its order in the list of prepared
2178
* nodes) and we don't want to do such change because we don't create or
2179
* delete delayed items.
2180
*/
2181
ASSERT(refcount_read(&node->refs) > 1);
2182
btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2183
refcount_dec(&node->refs);
2184
}
2185
2186
void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2187
struct list_head *ins_list,
2188
struct list_head *del_list)
2189
{
2190
struct btrfs_delayed_node *node;
2191
struct btrfs_delayed_item *item;
2192
struct btrfs_delayed_item *next;
2193
struct btrfs_ref_tracker delayed_node_tracker;
2194
2195
node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2196
if (!node)
2197
return;
2198
2199
mutex_lock(&node->mutex);
2200
2201
list_for_each_entry_safe(item, next, ins_list, log_list) {
2202
item->logged = true;
2203
list_del_init(&item->log_list);
2204
if (refcount_dec_and_test(&item->refs))
2205
kfree(item);
2206
}
2207
2208
list_for_each_entry_safe(item, next, del_list, log_list) {
2209
item->logged = true;
2210
list_del_init(&item->log_list);
2211
if (refcount_dec_and_test(&item->refs))
2212
kfree(item);
2213
}
2214
2215
mutex_unlock(&node->mutex);
2216
2217
/*
2218
* We are called during inode logging, which means the inode is in use
2219
* and can not be evicted before we finish logging the inode. So we never
2220
* have the last reference on the delayed inode.
2221
* Also, we don't use btrfs_release_delayed_node() because that would
2222
* requeue the delayed inode (change its order in the list of prepared
2223
* nodes) and we don't want to do such change because we don't create or
2224
* delete delayed items.
2225
*/
2226
ASSERT(refcount_read(&node->refs) > 1);
2227
btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2228
refcount_dec(&node->refs);
2229
}
2230
2231