Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/delayed-inode.c
49621 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2011 Fujitsu. All rights reserved.
4
* Written by Miao Xie <[email protected]>
5
*/
6
7
#include <linux/slab.h>
8
#include <linux/iversion.h>
9
#include "ctree.h"
10
#include "fs.h"
11
#include "messages.h"
12
#include "misc.h"
13
#include "delayed-inode.h"
14
#include "disk-io.h"
15
#include "transaction.h"
16
#include "qgroup.h"
17
#include "locking.h"
18
#include "inode-item.h"
19
#include "space-info.h"
20
#include "accessors.h"
21
#include "file-item.h"
22
23
#define BTRFS_DELAYED_WRITEBACK 512
24
#define BTRFS_DELAYED_BACKGROUND 128
25
#define BTRFS_DELAYED_BATCH 16
26
27
static struct kmem_cache *delayed_node_cache;
28
29
int __init btrfs_delayed_inode_init(void)
30
{
31
delayed_node_cache = KMEM_CACHE(btrfs_delayed_node, 0);
32
if (!delayed_node_cache)
33
return -ENOMEM;
34
return 0;
35
}
36
37
void __cold btrfs_delayed_inode_exit(void)
38
{
39
kmem_cache_destroy(delayed_node_cache);
40
}
41
42
void btrfs_init_delayed_root(struct btrfs_delayed_root *delayed_root)
43
{
44
atomic_set(&delayed_root->items, 0);
45
atomic_set(&delayed_root->items_seq, 0);
46
delayed_root->nodes = 0;
47
spin_lock_init(&delayed_root->lock);
48
init_waitqueue_head(&delayed_root->wait);
49
INIT_LIST_HEAD(&delayed_root->node_list);
50
INIT_LIST_HEAD(&delayed_root->prepare_list);
51
}
52
53
static inline void btrfs_init_delayed_node(
54
struct btrfs_delayed_node *delayed_node,
55
struct btrfs_root *root, u64 inode_id)
56
{
57
delayed_node->root = root;
58
delayed_node->inode_id = inode_id;
59
refcount_set(&delayed_node->refs, 0);
60
btrfs_delayed_node_ref_tracker_dir_init(delayed_node);
61
delayed_node->ins_root = RB_ROOT_CACHED;
62
delayed_node->del_root = RB_ROOT_CACHED;
63
mutex_init(&delayed_node->mutex);
64
INIT_LIST_HEAD(&delayed_node->n_list);
65
INIT_LIST_HEAD(&delayed_node->p_list);
66
}
67
68
static struct btrfs_delayed_node *btrfs_get_delayed_node(
69
struct btrfs_inode *btrfs_inode,
70
struct btrfs_ref_tracker *tracker)
71
{
72
struct btrfs_root *root = btrfs_inode->root;
73
u64 ino = btrfs_ino(btrfs_inode);
74
struct btrfs_delayed_node *node;
75
76
node = READ_ONCE(btrfs_inode->delayed_node);
77
if (node) {
78
refcount_inc(&node->refs);
79
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
80
return node;
81
}
82
83
xa_lock(&root->delayed_nodes);
84
node = xa_load(&root->delayed_nodes, ino);
85
86
if (node) {
87
if (btrfs_inode->delayed_node) {
88
refcount_inc(&node->refs); /* can be accessed */
89
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
90
BUG_ON(btrfs_inode->delayed_node != node);
91
xa_unlock(&root->delayed_nodes);
92
return node;
93
}
94
95
/*
96
* It's possible that we're racing into the middle of removing
97
* this node from the xarray. In this case, the refcount
98
* was zero and it should never go back to one. Just return
99
* NULL like it was never in the xarray at all; our release
100
* function is in the process of removing it.
101
*
102
* Some implementations of refcount_inc refuse to bump the
103
* refcount once it has hit zero. If we don't do this dance
104
* here, refcount_inc() may decide to just WARN_ONCE() instead
105
* of actually bumping the refcount.
106
*
107
* If this node is properly in the xarray, we want to bump the
108
* refcount twice, once for the inode and once for this get
109
* operation.
110
*/
111
if (refcount_inc_not_zero(&node->refs)) {
112
refcount_inc(&node->refs);
113
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
114
btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker,
115
GFP_ATOMIC);
116
btrfs_inode->delayed_node = node;
117
} else {
118
node = NULL;
119
}
120
121
xa_unlock(&root->delayed_nodes);
122
return node;
123
}
124
xa_unlock(&root->delayed_nodes);
125
126
return NULL;
127
}
128
129
/*
130
* Look up an existing delayed node associated with @btrfs_inode or create a new
131
* one and insert it to the delayed nodes of the root.
132
*
133
* Return the delayed node, or error pointer on failure.
134
*/
135
static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
136
struct btrfs_inode *btrfs_inode,
137
struct btrfs_ref_tracker *tracker)
138
{
139
struct btrfs_delayed_node *node;
140
struct btrfs_root *root = btrfs_inode->root;
141
u64 ino = btrfs_ino(btrfs_inode);
142
int ret;
143
void *ptr;
144
145
again:
146
node = btrfs_get_delayed_node(btrfs_inode, tracker);
147
if (node)
148
return node;
149
150
node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
151
if (!node)
152
return ERR_PTR(-ENOMEM);
153
btrfs_init_delayed_node(node, root, ino);
154
155
/* Cached in the inode and can be accessed. */
156
refcount_set(&node->refs, 2);
157
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_NOFS);
158
btrfs_delayed_node_ref_tracker_alloc(node, &node->inode_cache_tracker, GFP_NOFS);
159
160
/* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
161
ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
162
if (ret == -ENOMEM)
163
goto cleanup;
164
165
xa_lock(&root->delayed_nodes);
166
ptr = xa_load(&root->delayed_nodes, ino);
167
if (ptr) {
168
/* Somebody inserted it, go back and read it. */
169
xa_unlock(&root->delayed_nodes);
170
goto cleanup;
171
}
172
ptr = __xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
173
ASSERT(xa_err(ptr) != -EINVAL);
174
ASSERT(xa_err(ptr) != -ENOMEM);
175
ASSERT(ptr == NULL);
176
btrfs_inode->delayed_node = node;
177
xa_unlock(&root->delayed_nodes);
178
179
return node;
180
cleanup:
181
btrfs_delayed_node_ref_tracker_free(node, tracker);
182
btrfs_delayed_node_ref_tracker_free(node, &node->inode_cache_tracker);
183
btrfs_delayed_node_ref_tracker_dir_exit(node);
184
kmem_cache_free(delayed_node_cache, node);
185
if (ret)
186
return ERR_PTR(ret);
187
goto again;
188
}
189
190
/*
191
* Call it when holding delayed_node->mutex
192
*
193
* If mod = 1, add this node into the prepared list.
194
*/
195
static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
196
struct btrfs_delayed_node *node,
197
int mod)
198
{
199
spin_lock(&root->lock);
200
if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
201
if (!list_empty(&node->p_list))
202
list_move_tail(&node->p_list, &root->prepare_list);
203
else if (mod)
204
list_add_tail(&node->p_list, &root->prepare_list);
205
} else {
206
list_add_tail(&node->n_list, &root->node_list);
207
list_add_tail(&node->p_list, &root->prepare_list);
208
refcount_inc(&node->refs); /* inserted into list */
209
btrfs_delayed_node_ref_tracker_alloc(node, &node->node_list_tracker,
210
GFP_ATOMIC);
211
root->nodes++;
212
set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
213
}
214
spin_unlock(&root->lock);
215
}
216
217
/* Call it when holding delayed_node->mutex */
218
static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
219
struct btrfs_delayed_node *node)
220
{
221
spin_lock(&root->lock);
222
if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
223
root->nodes--;
224
btrfs_delayed_node_ref_tracker_free(node, &node->node_list_tracker);
225
refcount_dec(&node->refs); /* not in the list */
226
list_del_init(&node->n_list);
227
if (!list_empty(&node->p_list))
228
list_del_init(&node->p_list);
229
clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
230
}
231
spin_unlock(&root->lock);
232
}
233
234
static struct btrfs_delayed_node *btrfs_first_delayed_node(
235
struct btrfs_delayed_root *delayed_root,
236
struct btrfs_ref_tracker *tracker)
237
{
238
struct btrfs_delayed_node *node;
239
240
spin_lock(&delayed_root->lock);
241
node = list_first_entry_or_null(&delayed_root->node_list,
242
struct btrfs_delayed_node, n_list);
243
if (node) {
244
refcount_inc(&node->refs);
245
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
246
}
247
spin_unlock(&delayed_root->lock);
248
249
return node;
250
}
251
252
static struct btrfs_delayed_node *btrfs_next_delayed_node(
253
struct btrfs_delayed_node *node,
254
struct btrfs_ref_tracker *tracker)
255
{
256
struct btrfs_delayed_root *delayed_root;
257
struct list_head *p;
258
struct btrfs_delayed_node *next = NULL;
259
260
delayed_root = node->root->fs_info->delayed_root;
261
spin_lock(&delayed_root->lock);
262
if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
263
/* not in the list */
264
if (list_empty(&delayed_root->node_list))
265
goto out;
266
p = delayed_root->node_list.next;
267
} else if (list_is_last(&node->n_list, &delayed_root->node_list))
268
goto out;
269
else
270
p = node->n_list.next;
271
272
next = list_entry(p, struct btrfs_delayed_node, n_list);
273
refcount_inc(&next->refs);
274
btrfs_delayed_node_ref_tracker_alloc(next, tracker, GFP_ATOMIC);
275
out:
276
spin_unlock(&delayed_root->lock);
277
278
return next;
279
}
280
281
static void __btrfs_release_delayed_node(
282
struct btrfs_delayed_node *delayed_node,
283
int mod, struct btrfs_ref_tracker *tracker)
284
{
285
struct btrfs_delayed_root *delayed_root;
286
287
if (!delayed_node)
288
return;
289
290
delayed_root = delayed_node->root->fs_info->delayed_root;
291
292
mutex_lock(&delayed_node->mutex);
293
if (delayed_node->count)
294
btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
295
else
296
btrfs_dequeue_delayed_node(delayed_root, delayed_node);
297
mutex_unlock(&delayed_node->mutex);
298
299
btrfs_delayed_node_ref_tracker_free(delayed_node, tracker);
300
if (refcount_dec_and_test(&delayed_node->refs)) {
301
struct btrfs_root *root = delayed_node->root;
302
303
xa_erase(&root->delayed_nodes, delayed_node->inode_id);
304
/*
305
* Once our refcount goes to zero, nobody is allowed to bump it
306
* back up. We can delete it now.
307
*/
308
ASSERT(refcount_read(&delayed_node->refs) == 0);
309
btrfs_delayed_node_ref_tracker_dir_exit(delayed_node);
310
kmem_cache_free(delayed_node_cache, delayed_node);
311
}
312
}
313
314
static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node,
315
struct btrfs_ref_tracker *tracker)
316
{
317
__btrfs_release_delayed_node(node, 0, tracker);
318
}
319
320
static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
321
struct btrfs_delayed_root *delayed_root,
322
struct btrfs_ref_tracker *tracker)
323
{
324
struct btrfs_delayed_node *node;
325
326
spin_lock(&delayed_root->lock);
327
node = list_first_entry_or_null(&delayed_root->prepare_list,
328
struct btrfs_delayed_node, p_list);
329
if (node) {
330
list_del_init(&node->p_list);
331
refcount_inc(&node->refs);
332
btrfs_delayed_node_ref_tracker_alloc(node, tracker, GFP_ATOMIC);
333
}
334
spin_unlock(&delayed_root->lock);
335
336
return node;
337
}
338
339
static inline void btrfs_release_prepared_delayed_node(
340
struct btrfs_delayed_node *node,
341
struct btrfs_ref_tracker *tracker)
342
{
343
__btrfs_release_delayed_node(node, 1, tracker);
344
}
345
346
static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
347
struct btrfs_delayed_node *node,
348
enum btrfs_delayed_item_type type)
349
{
350
struct btrfs_delayed_item *item;
351
352
item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
353
if (item) {
354
item->data_len = data_len;
355
item->type = type;
356
item->bytes_reserved = 0;
357
item->delayed_node = node;
358
RB_CLEAR_NODE(&item->rb_node);
359
INIT_LIST_HEAD(&item->log_list);
360
item->logged = false;
361
refcount_set(&item->refs, 1);
362
}
363
return item;
364
}
365
366
static int delayed_item_index_cmp(const void *key, const struct rb_node *node)
367
{
368
const u64 *index = key;
369
const struct btrfs_delayed_item *delayed_item = rb_entry(node,
370
struct btrfs_delayed_item, rb_node);
371
372
if (delayed_item->index < *index)
373
return 1;
374
else if (delayed_item->index > *index)
375
return -1;
376
377
return 0;
378
}
379
380
/*
381
* Look up the delayed item by key.
382
*
383
* @delayed_node: pointer to the delayed node
384
* @index: the dir index value to lookup (offset of a dir index key)
385
*
386
* Note: if we don't find the right item, we will return the prev item and
387
* the next item.
388
*/
389
static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
390
struct rb_root *root,
391
u64 index)
392
{
393
struct rb_node *node;
394
395
node = rb_find(&index, root, delayed_item_index_cmp);
396
return rb_entry_safe(node, struct btrfs_delayed_item, rb_node);
397
}
398
399
static int btrfs_delayed_item_cmp(const struct rb_node *new,
400
const struct rb_node *exist)
401
{
402
const struct btrfs_delayed_item *new_item =
403
rb_entry(new, struct btrfs_delayed_item, rb_node);
404
405
return delayed_item_index_cmp(&new_item->index, exist);
406
}
407
408
static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
409
struct btrfs_delayed_item *ins)
410
{
411
struct rb_root_cached *root;
412
struct rb_node *exist;
413
414
if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
415
root = &delayed_node->ins_root;
416
else
417
root = &delayed_node->del_root;
418
419
exist = rb_find_add_cached(&ins->rb_node, root, btrfs_delayed_item_cmp);
420
if (exist)
421
return -EEXIST;
422
423
if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
424
ins->index >= delayed_node->index_cnt)
425
delayed_node->index_cnt = ins->index + 1;
426
427
delayed_node->count++;
428
atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
429
return 0;
430
}
431
432
static void finish_one_item(struct btrfs_delayed_root *delayed_root)
433
{
434
int seq = atomic_inc_return(&delayed_root->items_seq);
435
436
/* atomic_dec_return implies a barrier */
437
if ((atomic_dec_return(&delayed_root->items) <
438
BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
439
cond_wake_up_nomb(&delayed_root->wait);
440
}
441
442
static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
443
{
444
struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
445
struct rb_root_cached *root;
446
struct btrfs_delayed_root *delayed_root;
447
448
/* Not inserted, ignore it. */
449
if (RB_EMPTY_NODE(&delayed_item->rb_node))
450
return;
451
452
/* If it's in a rbtree, then we need to have delayed node locked. */
453
lockdep_assert_held(&delayed_node->mutex);
454
455
delayed_root = delayed_node->root->fs_info->delayed_root;
456
457
if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
458
root = &delayed_node->ins_root;
459
else
460
root = &delayed_node->del_root;
461
462
rb_erase_cached(&delayed_item->rb_node, root);
463
RB_CLEAR_NODE(&delayed_item->rb_node);
464
delayed_node->count--;
465
466
finish_one_item(delayed_root);
467
}
468
469
static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
470
{
471
if (item) {
472
__btrfs_remove_delayed_item(item);
473
if (refcount_dec_and_test(&item->refs))
474
kfree(item);
475
}
476
}
477
478
static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
479
struct btrfs_delayed_node *delayed_node)
480
{
481
struct rb_node *p = rb_first_cached(&delayed_node->ins_root);
482
483
return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
484
}
485
486
static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
487
struct btrfs_delayed_node *delayed_node)
488
{
489
struct rb_node *p = rb_first_cached(&delayed_node->del_root);
490
491
return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
492
}
493
494
static struct btrfs_delayed_item *__btrfs_next_delayed_item(
495
struct btrfs_delayed_item *item)
496
{
497
struct rb_node *p = rb_next(&item->rb_node);
498
499
return rb_entry_safe(p, struct btrfs_delayed_item, rb_node);
500
}
501
502
static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
503
struct btrfs_delayed_item *item)
504
{
505
struct btrfs_block_rsv *src_rsv;
506
struct btrfs_block_rsv *dst_rsv;
507
struct btrfs_fs_info *fs_info = trans->fs_info;
508
u64 num_bytes;
509
int ret;
510
511
if (!trans->bytes_reserved)
512
return 0;
513
514
src_rsv = trans->block_rsv;
515
dst_rsv = &fs_info->delayed_block_rsv;
516
517
num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
518
519
/*
520
* Here we migrate space rsv from transaction rsv, since have already
521
* reserved space when starting a transaction. So no need to reserve
522
* qgroup space here.
523
*/
524
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
525
if (!ret) {
526
trace_btrfs_space_reservation(fs_info, "delayed_item",
527
item->delayed_node->inode_id,
528
num_bytes, 1);
529
/*
530
* For insertions we track reserved metadata space by accounting
531
* for the number of leaves that will be used, based on the delayed
532
* node's curr_index_batch_size and index_item_leaves fields.
533
*/
534
if (item->type == BTRFS_DELAYED_DELETION_ITEM)
535
item->bytes_reserved = num_bytes;
536
}
537
538
return ret;
539
}
540
541
static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
542
struct btrfs_delayed_item *item)
543
{
544
struct btrfs_block_rsv *rsv;
545
struct btrfs_fs_info *fs_info = root->fs_info;
546
547
if (!item->bytes_reserved)
548
return;
549
550
rsv = &fs_info->delayed_block_rsv;
551
/*
552
* Check btrfs_delayed_item_reserve_metadata() to see why we don't need
553
* to release/reserve qgroup space.
554
*/
555
trace_btrfs_space_reservation(fs_info, "delayed_item",
556
item->delayed_node->inode_id,
557
item->bytes_reserved, 0);
558
btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
559
}
560
561
static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
562
unsigned int num_leaves)
563
{
564
struct btrfs_fs_info *fs_info = node->root->fs_info;
565
const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
566
567
/* There are no space reservations during log replay, bail out. */
568
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
569
return;
570
571
trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
572
bytes, 0);
573
btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
574
}
575
576
static int btrfs_delayed_inode_reserve_metadata(
577
struct btrfs_trans_handle *trans,
578
struct btrfs_root *root,
579
struct btrfs_delayed_node *node)
580
{
581
struct btrfs_fs_info *fs_info = root->fs_info;
582
struct btrfs_block_rsv *src_rsv;
583
struct btrfs_block_rsv *dst_rsv;
584
u64 num_bytes;
585
int ret;
586
587
src_rsv = trans->block_rsv;
588
dst_rsv = &fs_info->delayed_block_rsv;
589
590
num_bytes = btrfs_calc_metadata_size(fs_info, 1);
591
592
/*
593
* btrfs_dirty_inode will update the inode under btrfs_join_transaction
594
* which doesn't reserve space for speed. This is a problem since we
595
* still need to reserve space for this update, so try to reserve the
596
* space.
597
*
598
* Now if src_rsv == delalloc_block_rsv we'll let it just steal since
599
* we always reserve enough to update the inode item.
600
*/
601
if (!src_rsv || (!trans->bytes_reserved &&
602
src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
603
ret = btrfs_qgroup_reserve_meta(root, num_bytes,
604
BTRFS_QGROUP_RSV_META_PREALLOC, true);
605
if (ret < 0)
606
return ret;
607
ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
608
BTRFS_RESERVE_NO_FLUSH);
609
/* NO_FLUSH could only fail with -ENOSPC */
610
ASSERT(ret == 0 || ret == -ENOSPC);
611
if (ret)
612
btrfs_qgroup_free_meta_prealloc(root, num_bytes);
613
} else {
614
ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
615
}
616
617
if (!ret) {
618
trace_btrfs_space_reservation(fs_info, "delayed_inode",
619
node->inode_id, num_bytes, 1);
620
node->bytes_reserved = num_bytes;
621
}
622
623
return ret;
624
}
625
626
static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
627
struct btrfs_delayed_node *node,
628
bool qgroup_free)
629
{
630
struct btrfs_block_rsv *rsv;
631
632
if (!node->bytes_reserved)
633
return;
634
635
rsv = &fs_info->delayed_block_rsv;
636
trace_btrfs_space_reservation(fs_info, "delayed_inode",
637
node->inode_id, node->bytes_reserved, 0);
638
btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
639
if (qgroup_free)
640
btrfs_qgroup_free_meta_prealloc(node->root,
641
node->bytes_reserved);
642
else
643
btrfs_qgroup_convert_reserved_meta(node->root,
644
node->bytes_reserved);
645
node->bytes_reserved = 0;
646
}
647
648
/*
649
* Insert a single delayed item or a batch of delayed items, as many as possible
650
* that fit in a leaf. The delayed items (dir index keys) are sorted by their key
651
* in the rbtree, and if there's a gap between two consecutive dir index items,
652
* then it means at some point we had delayed dir indexes to add but they got
653
* removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
654
* into the subvolume tree. Dir index keys also have their offsets coming from a
655
* monotonically increasing counter, so we can't get new keys with an offset that
656
* fits within a gap between delayed dir index items.
657
*/
658
static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
659
struct btrfs_root *root,
660
struct btrfs_path *path,
661
struct btrfs_delayed_item *first_item)
662
{
663
struct btrfs_fs_info *fs_info = root->fs_info;
664
struct btrfs_delayed_node *node = first_item->delayed_node;
665
LIST_HEAD(item_list);
666
struct btrfs_delayed_item *curr;
667
struct btrfs_delayed_item *next;
668
const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
669
struct btrfs_item_batch batch;
670
struct btrfs_key first_key;
671
const u32 first_data_size = first_item->data_len;
672
int total_size;
673
char AUTO_KFREE(ins_data);
674
int ret;
675
bool continuous_keys_only = false;
676
677
lockdep_assert_held(&node->mutex);
678
679
/*
680
* During normal operation the delayed index offset is continuously
681
* increasing, so we can batch insert all items as there will not be any
682
* overlapping keys in the tree.
683
*
684
* The exception to this is log replay, where we may have interleaved
685
* offsets in the tree, so our batch needs to be continuous keys only in
686
* order to ensure we do not end up with out of order items in our leaf.
687
*/
688
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
689
continuous_keys_only = true;
690
691
/*
692
* For delayed items to insert, we track reserved metadata bytes based
693
* on the number of leaves that we will use.
694
* See btrfs_insert_delayed_dir_index() and
695
* btrfs_delayed_item_reserve_metadata()).
696
*/
697
ASSERT(first_item->bytes_reserved == 0);
698
699
list_add_tail(&first_item->tree_list, &item_list);
700
batch.total_data_size = first_data_size;
701
batch.nr = 1;
702
total_size = first_data_size + sizeof(struct btrfs_item);
703
curr = first_item;
704
705
while (true) {
706
int next_size;
707
708
next = __btrfs_next_delayed_item(curr);
709
if (!next)
710
break;
711
712
/*
713
* We cannot allow gaps in the key space if we're doing log
714
* replay.
715
*/
716
if (continuous_keys_only && (next->index != curr->index + 1))
717
break;
718
719
ASSERT(next->bytes_reserved == 0);
720
721
next_size = next->data_len + sizeof(struct btrfs_item);
722
if (total_size + next_size > max_size)
723
break;
724
725
list_add_tail(&next->tree_list, &item_list);
726
batch.nr++;
727
total_size += next_size;
728
batch.total_data_size += next->data_len;
729
curr = next;
730
}
731
732
if (batch.nr == 1) {
733
first_key.objectid = node->inode_id;
734
first_key.type = BTRFS_DIR_INDEX_KEY;
735
first_key.offset = first_item->index;
736
batch.keys = &first_key;
737
batch.data_sizes = &first_data_size;
738
} else {
739
struct btrfs_key *ins_keys;
740
u32 *ins_sizes;
741
int i = 0;
742
743
ins_data = kmalloc_array(batch.nr,
744
sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS);
745
if (!ins_data)
746
return -ENOMEM;
747
ins_sizes = (u32 *)ins_data;
748
ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
749
batch.keys = ins_keys;
750
batch.data_sizes = ins_sizes;
751
list_for_each_entry(curr, &item_list, tree_list) {
752
ins_keys[i].objectid = node->inode_id;
753
ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
754
ins_keys[i].offset = curr->index;
755
ins_sizes[i] = curr->data_len;
756
i++;
757
}
758
}
759
760
ret = btrfs_insert_empty_items(trans, root, path, &batch);
761
if (ret)
762
return ret;
763
764
list_for_each_entry(curr, &item_list, tree_list) {
765
char *data_ptr;
766
767
data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
768
write_extent_buffer(path->nodes[0], &curr->data,
769
(unsigned long)data_ptr, curr->data_len);
770
path->slots[0]++;
771
}
772
773
/*
774
* Now release our path before releasing the delayed items and their
775
* metadata reservations, so that we don't block other tasks for more
776
* time than needed.
777
*/
778
btrfs_release_path(path);
779
780
ASSERT(node->index_item_leaves > 0);
781
782
/*
783
* For normal operations we will batch an entire leaf's worth of delayed
784
* items, so if there are more items to process we can decrement
785
* index_item_leaves by 1 as we inserted 1 leaf's worth of items.
786
*
787
* However for log replay we may not have inserted an entire leaf's
788
* worth of items, we may have not had continuous items, so decrementing
789
* here would mess up the index_item_leaves accounting. For this case
790
* only clean up the accounting when there are no items left.
791
*/
792
if (next && !continuous_keys_only) {
793
/*
794
* We inserted one batch of items into a leaf a there are more
795
* items to flush in a future batch, now release one unit of
796
* metadata space from the delayed block reserve, corresponding
797
* the leaf we just flushed to.
798
*/
799
btrfs_delayed_item_release_leaves(node, 1);
800
node->index_item_leaves--;
801
} else if (!next) {
802
/*
803
* There are no more items to insert. We can have a number of
804
* reserved leaves > 1 here - this happens when many dir index
805
* items are added and then removed before they are flushed (file
806
* names with a very short life, never span a transaction). So
807
* release all remaining leaves.
808
*/
809
btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
810
node->index_item_leaves = 0;
811
}
812
813
list_for_each_entry_safe(curr, next, &item_list, tree_list) {
814
list_del(&curr->tree_list);
815
btrfs_release_delayed_item(curr);
816
}
817
818
return 0;
819
}
820
821
static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
822
struct btrfs_path *path,
823
struct btrfs_root *root,
824
struct btrfs_delayed_node *node)
825
{
826
int ret = 0;
827
828
while (ret == 0) {
829
struct btrfs_delayed_item *curr;
830
831
mutex_lock(&node->mutex);
832
curr = __btrfs_first_delayed_insertion_item(node);
833
if (!curr) {
834
mutex_unlock(&node->mutex);
835
break;
836
}
837
ret = btrfs_insert_delayed_item(trans, root, path, curr);
838
mutex_unlock(&node->mutex);
839
}
840
841
return ret;
842
}
843
844
static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
845
struct btrfs_root *root,
846
struct btrfs_path *path,
847
struct btrfs_delayed_item *item)
848
{
849
const u64 ino = item->delayed_node->inode_id;
850
struct btrfs_fs_info *fs_info = root->fs_info;
851
struct btrfs_delayed_item *curr, *next;
852
struct extent_buffer *leaf = path->nodes[0];
853
LIST_HEAD(batch_list);
854
int nitems, slot, last_slot;
855
int ret;
856
u64 total_reserved_size = item->bytes_reserved;
857
858
ASSERT(leaf != NULL);
859
860
slot = path->slots[0];
861
last_slot = btrfs_header_nritems(leaf) - 1;
862
/*
863
* Our caller always gives us a path pointing to an existing item, so
864
* this can not happen.
865
*/
866
ASSERT(slot <= last_slot);
867
if (WARN_ON(slot > last_slot))
868
return -ENOENT;
869
870
nitems = 1;
871
curr = item;
872
list_add_tail(&curr->tree_list, &batch_list);
873
874
/*
875
* Keep checking if the next delayed item matches the next item in the
876
* leaf - if so, we can add it to the batch of items to delete from the
877
* leaf.
878
*/
879
while (slot < last_slot) {
880
struct btrfs_key key;
881
882
next = __btrfs_next_delayed_item(curr);
883
if (!next)
884
break;
885
886
slot++;
887
btrfs_item_key_to_cpu(leaf, &key, slot);
888
if (key.objectid != ino ||
889
key.type != BTRFS_DIR_INDEX_KEY ||
890
key.offset != next->index)
891
break;
892
nitems++;
893
curr = next;
894
list_add_tail(&curr->tree_list, &batch_list);
895
total_reserved_size += curr->bytes_reserved;
896
}
897
898
ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
899
if (ret)
900
return ret;
901
902
/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
903
if (total_reserved_size > 0) {
904
/*
905
* Check btrfs_delayed_item_reserve_metadata() to see why we
906
* don't need to release/reserve qgroup space.
907
*/
908
trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
909
total_reserved_size, 0);
910
btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
911
total_reserved_size, NULL);
912
}
913
914
list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
915
list_del(&curr->tree_list);
916
btrfs_release_delayed_item(curr);
917
}
918
919
return 0;
920
}
921
922
static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
923
struct btrfs_path *path,
924
struct btrfs_root *root,
925
struct btrfs_delayed_node *node)
926
{
927
struct btrfs_key key;
928
int ret = 0;
929
930
key.objectid = node->inode_id;
931
key.type = BTRFS_DIR_INDEX_KEY;
932
933
while (ret == 0) {
934
struct btrfs_delayed_item *item;
935
936
mutex_lock(&node->mutex);
937
item = __btrfs_first_delayed_deletion_item(node);
938
if (!item) {
939
mutex_unlock(&node->mutex);
940
break;
941
}
942
943
key.offset = item->index;
944
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
945
if (ret > 0) {
946
/*
947
* There's no matching item in the leaf. This means we
948
* have already deleted this item in a past run of the
949
* delayed items. We ignore errors when running delayed
950
* items from an async context, through a work queue job
951
* running btrfs_async_run_delayed_root(), and don't
952
* release delayed items that failed to complete. This
953
* is because we will retry later, and at transaction
954
* commit time we always run delayed items and will
955
* then deal with errors if they fail to run again.
956
*
957
* So just release delayed items for which we can't find
958
* an item in the tree, and move to the next item.
959
*/
960
btrfs_release_path(path);
961
btrfs_release_delayed_item(item);
962
ret = 0;
963
} else if (ret == 0) {
964
ret = btrfs_batch_delete_items(trans, root, path, item);
965
btrfs_release_path(path);
966
}
967
968
/*
969
* We unlock and relock on each iteration, this is to prevent
970
* blocking other tasks for too long while we are being run from
971
* the async context (work queue job). Those tasks are typically
972
* running system calls like creat/mkdir/rename/unlink/etc which
973
* need to add delayed items to this delayed node.
974
*/
975
mutex_unlock(&node->mutex);
976
}
977
978
return ret;
979
}
980
981
static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
982
{
983
struct btrfs_delayed_root *delayed_root;
984
985
if (delayed_node &&
986
test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
987
ASSERT(delayed_node->root);
988
clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
989
delayed_node->count--;
990
991
delayed_root = delayed_node->root->fs_info->delayed_root;
992
finish_one_item(delayed_root);
993
}
994
}
995
996
static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
997
{
998
999
if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
1000
struct btrfs_delayed_root *delayed_root;
1001
1002
ASSERT(delayed_node->root);
1003
delayed_node->count--;
1004
1005
delayed_root = delayed_node->root->fs_info->delayed_root;
1006
finish_one_item(delayed_root);
1007
}
1008
}
1009
1010
static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1011
struct btrfs_root *root,
1012
struct btrfs_path *path,
1013
struct btrfs_delayed_node *node)
1014
{
1015
struct btrfs_fs_info *fs_info = root->fs_info;
1016
struct btrfs_key key;
1017
struct btrfs_inode_item *inode_item;
1018
struct extent_buffer *leaf;
1019
int mod;
1020
int ret;
1021
1022
key.objectid = node->inode_id;
1023
key.type = BTRFS_INODE_ITEM_KEY;
1024
key.offset = 0;
1025
1026
if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1027
mod = -1;
1028
else
1029
mod = 1;
1030
1031
ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1032
if (ret > 0)
1033
ret = -ENOENT;
1034
if (ret < 0) {
1035
/*
1036
* If we fail to update the delayed inode we need to abort the
1037
* transaction, because we could leave the inode with the
1038
* improper counts behind.
1039
*/
1040
if (unlikely(ret != -ENOENT))
1041
btrfs_abort_transaction(trans, ret);
1042
goto out;
1043
}
1044
1045
leaf = path->nodes[0];
1046
inode_item = btrfs_item_ptr(leaf, path->slots[0],
1047
struct btrfs_inode_item);
1048
write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1049
sizeof(struct btrfs_inode_item));
1050
1051
if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1052
goto out;
1053
1054
/*
1055
* Now we're going to delete the INODE_REF/EXTREF, which should be the
1056
* only one ref left. Check if the next item is an INODE_REF/EXTREF.
1057
*
1058
* But if we're the last item already, release and search for the last
1059
* INODE_REF/EXTREF.
1060
*/
1061
if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1062
key.objectid = node->inode_id;
1063
key.type = BTRFS_INODE_EXTREF_KEY;
1064
key.offset = (u64)-1;
1065
1066
btrfs_release_path(path);
1067
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1068
if (unlikely(ret < 0)) {
1069
btrfs_abort_transaction(trans, ret);
1070
goto err_out;
1071
}
1072
ASSERT(ret > 0);
1073
ASSERT(path->slots[0] > 0);
1074
ret = 0;
1075
path->slots[0]--;
1076
leaf = path->nodes[0];
1077
} else {
1078
path->slots[0]++;
1079
}
1080
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1081
if (key.objectid != node->inode_id)
1082
goto out;
1083
if (key.type != BTRFS_INODE_REF_KEY &&
1084
key.type != BTRFS_INODE_EXTREF_KEY)
1085
goto out;
1086
1087
/*
1088
* Delayed iref deletion is for the inode who has only one link,
1089
* so there is only one iref. The case that several irefs are
1090
* in the same item doesn't exist.
1091
*/
1092
ret = btrfs_del_item(trans, root, path);
1093
if (ret < 0)
1094
btrfs_abort_transaction(trans, ret);
1095
out:
1096
btrfs_release_delayed_iref(node);
1097
btrfs_release_path(path);
1098
err_out:
1099
btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1100
btrfs_release_delayed_inode(node);
1101
return ret;
1102
}
1103
1104
static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1105
struct btrfs_root *root,
1106
struct btrfs_path *path,
1107
struct btrfs_delayed_node *node)
1108
{
1109
int ret;
1110
1111
mutex_lock(&node->mutex);
1112
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1113
mutex_unlock(&node->mutex);
1114
return 0;
1115
}
1116
1117
ret = __btrfs_update_delayed_inode(trans, root, path, node);
1118
mutex_unlock(&node->mutex);
1119
return ret;
1120
}
1121
1122
static inline int
1123
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1124
struct btrfs_path *path,
1125
struct btrfs_delayed_node *node)
1126
{
1127
int ret;
1128
1129
ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1130
if (ret)
1131
return ret;
1132
1133
ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1134
if (ret)
1135
return ret;
1136
1137
ret = btrfs_record_root_in_trans(trans, node->root);
1138
if (ret)
1139
return ret;
1140
ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1141
return ret;
1142
}
1143
1144
/*
1145
* Called when committing the transaction.
1146
* Returns 0 on success.
1147
* Returns < 0 on error and returns with an aborted transaction with any
1148
* outstanding delayed items cleaned up.
1149
*/
1150
static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1151
{
1152
struct btrfs_fs_info *fs_info = trans->fs_info;
1153
struct btrfs_delayed_root *delayed_root;
1154
struct btrfs_delayed_node *curr_node, *prev_node;
1155
struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
1156
struct btrfs_path *path;
1157
struct btrfs_block_rsv *block_rsv;
1158
int ret = 0;
1159
bool count = (nr > 0);
1160
1161
if (TRANS_ABORTED(trans))
1162
return -EIO;
1163
1164
path = btrfs_alloc_path();
1165
if (!path)
1166
return -ENOMEM;
1167
1168
block_rsv = trans->block_rsv;
1169
trans->block_rsv = &fs_info->delayed_block_rsv;
1170
1171
delayed_root = fs_info->delayed_root;
1172
1173
curr_node = btrfs_first_delayed_node(delayed_root, &curr_delayed_node_tracker);
1174
while (curr_node && (!count || nr--)) {
1175
ret = __btrfs_commit_inode_delayed_items(trans, path,
1176
curr_node);
1177
if (unlikely(ret)) {
1178
btrfs_abort_transaction(trans, ret);
1179
break;
1180
}
1181
1182
prev_node = curr_node;
1183
prev_delayed_node_tracker = curr_delayed_node_tracker;
1184
curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
1185
/*
1186
* See the comment below about releasing path before releasing
1187
* node. If the commit of delayed items was successful the path
1188
* should always be released, but in case of an error, it may
1189
* point to locked extent buffers (a leaf at the very least).
1190
*/
1191
ASSERT(path->nodes[0] == NULL);
1192
btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
1193
}
1194
1195
/*
1196
* Release the path to avoid a potential deadlock and lockdep splat when
1197
* releasing the delayed node, as that requires taking the delayed node's
1198
* mutex. If another task starts running delayed items before we take
1199
* the mutex, it will first lock the mutex and then it may try to lock
1200
* the same btree path (leaf).
1201
*/
1202
btrfs_free_path(path);
1203
1204
if (curr_node)
1205
btrfs_release_delayed_node(curr_node, &curr_delayed_node_tracker);
1206
trans->block_rsv = block_rsv;
1207
1208
return ret;
1209
}
1210
1211
int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1212
{
1213
return __btrfs_run_delayed_items(trans, -1);
1214
}
1215
1216
int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1217
{
1218
return __btrfs_run_delayed_items(trans, nr);
1219
}
1220
1221
int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1222
struct btrfs_inode *inode)
1223
{
1224
struct btrfs_ref_tracker delayed_node_tracker;
1225
struct btrfs_delayed_node *delayed_node =
1226
btrfs_get_delayed_node(inode, &delayed_node_tracker);
1227
BTRFS_PATH_AUTO_FREE(path);
1228
struct btrfs_block_rsv *block_rsv;
1229
int ret;
1230
1231
if (!delayed_node)
1232
return 0;
1233
1234
mutex_lock(&delayed_node->mutex);
1235
if (!delayed_node->count) {
1236
mutex_unlock(&delayed_node->mutex);
1237
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1238
return 0;
1239
}
1240
mutex_unlock(&delayed_node->mutex);
1241
1242
path = btrfs_alloc_path();
1243
if (!path) {
1244
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1245
return -ENOMEM;
1246
}
1247
1248
block_rsv = trans->block_rsv;
1249
trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1250
1251
ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1252
1253
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1254
trans->block_rsv = block_rsv;
1255
1256
return ret;
1257
}
1258
1259
int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1260
{
1261
struct btrfs_fs_info *fs_info = inode->root->fs_info;
1262
struct btrfs_trans_handle *trans;
1263
struct btrfs_ref_tracker delayed_node_tracker;
1264
struct btrfs_delayed_node *delayed_node;
1265
struct btrfs_path *path;
1266
struct btrfs_block_rsv *block_rsv;
1267
int ret;
1268
1269
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1270
if (!delayed_node)
1271
return 0;
1272
1273
mutex_lock(&delayed_node->mutex);
1274
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1275
mutex_unlock(&delayed_node->mutex);
1276
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1277
return 0;
1278
}
1279
mutex_unlock(&delayed_node->mutex);
1280
1281
trans = btrfs_join_transaction(delayed_node->root);
1282
if (IS_ERR(trans)) {
1283
ret = PTR_ERR(trans);
1284
goto out;
1285
}
1286
1287
path = btrfs_alloc_path();
1288
if (!path) {
1289
ret = -ENOMEM;
1290
goto trans_out;
1291
}
1292
1293
block_rsv = trans->block_rsv;
1294
trans->block_rsv = &fs_info->delayed_block_rsv;
1295
1296
mutex_lock(&delayed_node->mutex);
1297
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1298
ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1299
path, delayed_node);
1300
else
1301
ret = 0;
1302
mutex_unlock(&delayed_node->mutex);
1303
1304
btrfs_free_path(path);
1305
trans->block_rsv = block_rsv;
1306
trans_out:
1307
btrfs_end_transaction(trans);
1308
btrfs_btree_balance_dirty(fs_info);
1309
out:
1310
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1311
1312
return ret;
1313
}
1314
1315
void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1316
{
1317
struct btrfs_delayed_node *delayed_node;
1318
1319
delayed_node = READ_ONCE(inode->delayed_node);
1320
if (!delayed_node)
1321
return;
1322
1323
inode->delayed_node = NULL;
1324
1325
btrfs_release_delayed_node(delayed_node, &delayed_node->inode_cache_tracker);
1326
}
1327
1328
struct btrfs_async_delayed_work {
1329
struct btrfs_delayed_root *delayed_root;
1330
int nr;
1331
struct btrfs_work work;
1332
};
1333
1334
static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1335
{
1336
struct btrfs_async_delayed_work *async_work;
1337
struct btrfs_delayed_root *delayed_root;
1338
struct btrfs_trans_handle *trans;
1339
struct btrfs_path *path;
1340
struct btrfs_delayed_node *delayed_node = NULL;
1341
struct btrfs_ref_tracker delayed_node_tracker;
1342
struct btrfs_root *root;
1343
struct btrfs_block_rsv *block_rsv;
1344
int total_done = 0;
1345
1346
async_work = container_of(work, struct btrfs_async_delayed_work, work);
1347
delayed_root = async_work->delayed_root;
1348
1349
path = btrfs_alloc_path();
1350
if (!path)
1351
goto out;
1352
1353
do {
1354
if (atomic_read(&delayed_root->items) <
1355
BTRFS_DELAYED_BACKGROUND / 2)
1356
break;
1357
1358
delayed_node = btrfs_first_prepared_delayed_node(delayed_root,
1359
&delayed_node_tracker);
1360
if (!delayed_node)
1361
break;
1362
1363
root = delayed_node->root;
1364
1365
trans = btrfs_join_transaction(root);
1366
if (IS_ERR(trans)) {
1367
btrfs_release_path(path);
1368
btrfs_release_prepared_delayed_node(delayed_node,
1369
&delayed_node_tracker);
1370
total_done++;
1371
continue;
1372
}
1373
1374
block_rsv = trans->block_rsv;
1375
trans->block_rsv = &root->fs_info->delayed_block_rsv;
1376
1377
__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1378
1379
trans->block_rsv = block_rsv;
1380
btrfs_end_transaction(trans);
1381
btrfs_btree_balance_dirty_nodelay(root->fs_info);
1382
1383
btrfs_release_path(path);
1384
btrfs_release_prepared_delayed_node(delayed_node,
1385
&delayed_node_tracker);
1386
total_done++;
1387
1388
} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1389
|| total_done < async_work->nr);
1390
1391
btrfs_free_path(path);
1392
out:
1393
wake_up(&delayed_root->wait);
1394
kfree(async_work);
1395
}
1396
1397
1398
static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1399
struct btrfs_fs_info *fs_info, int nr)
1400
{
1401
struct btrfs_async_delayed_work *async_work;
1402
1403
async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1404
if (!async_work)
1405
return -ENOMEM;
1406
1407
async_work->delayed_root = delayed_root;
1408
btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1409
async_work->nr = nr;
1410
1411
btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1412
return 0;
1413
}
1414
1415
void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1416
{
1417
struct btrfs_ref_tracker delayed_node_tracker;
1418
struct btrfs_delayed_node *node;
1419
1420
node = btrfs_first_delayed_node( fs_info->delayed_root, &delayed_node_tracker);
1421
if (WARN_ON(node)) {
1422
btrfs_delayed_node_ref_tracker_free(node,
1423
&delayed_node_tracker);
1424
refcount_dec(&node->refs);
1425
}
1426
}
1427
1428
static bool could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1429
{
1430
int val = atomic_read(&delayed_root->items_seq);
1431
1432
if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1433
return true;
1434
1435
if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1436
return true;
1437
1438
return false;
1439
}
1440
1441
void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1442
{
1443
struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1444
1445
if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1446
btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1447
return;
1448
1449
if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1450
int seq;
1451
int ret;
1452
1453
seq = atomic_read(&delayed_root->items_seq);
1454
1455
ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1456
if (ret)
1457
return;
1458
1459
wait_event_interruptible(delayed_root->wait,
1460
could_end_wait(delayed_root, seq));
1461
return;
1462
}
1463
1464
btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1465
}
1466
1467
static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1468
{
1469
struct btrfs_fs_info *fs_info = trans->fs_info;
1470
const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1471
1472
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1473
return;
1474
1475
/*
1476
* Adding the new dir index item does not require touching another
1477
* leaf, so we can release 1 unit of metadata that was previously
1478
* reserved when starting the transaction. This applies only to
1479
* the case where we had a transaction start and excludes the
1480
* transaction join case (when replaying log trees).
1481
*/
1482
trace_btrfs_space_reservation(fs_info, "transaction",
1483
trans->transid, bytes, 0);
1484
btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1485
ASSERT(trans->bytes_reserved >= bytes);
1486
trans->bytes_reserved -= bytes;
1487
}
1488
1489
/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1490
int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1491
const char *name, int name_len,
1492
struct btrfs_inode *dir,
1493
const struct btrfs_disk_key *disk_key, u8 flags,
1494
u64 index)
1495
{
1496
struct btrfs_fs_info *fs_info = trans->fs_info;
1497
const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1498
struct btrfs_delayed_node *delayed_node;
1499
struct btrfs_ref_tracker delayed_node_tracker;
1500
struct btrfs_delayed_item *delayed_item;
1501
struct btrfs_dir_item *dir_item;
1502
bool reserve_leaf_space;
1503
u32 data_len;
1504
int ret;
1505
1506
delayed_node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1507
if (IS_ERR(delayed_node))
1508
return PTR_ERR(delayed_node);
1509
1510
delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1511
delayed_node,
1512
BTRFS_DELAYED_INSERTION_ITEM);
1513
if (!delayed_item) {
1514
ret = -ENOMEM;
1515
goto release_node;
1516
}
1517
1518
delayed_item->index = index;
1519
1520
dir_item = (struct btrfs_dir_item *)delayed_item->data;
1521
dir_item->location = *disk_key;
1522
btrfs_set_stack_dir_transid(dir_item, trans->transid);
1523
btrfs_set_stack_dir_data_len(dir_item, 0);
1524
btrfs_set_stack_dir_name_len(dir_item, name_len);
1525
btrfs_set_stack_dir_flags(dir_item, flags);
1526
memcpy((char *)(dir_item + 1), name, name_len);
1527
1528
data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1529
1530
mutex_lock(&delayed_node->mutex);
1531
1532
/*
1533
* First attempt to insert the delayed item. This is to make the error
1534
* handling path simpler in case we fail (-EEXIST). There's no risk of
1535
* any other task coming in and running the delayed item before we do
1536
* the metadata space reservation below, because we are holding the
1537
* delayed node's mutex and that mutex must also be locked before the
1538
* node's delayed items can be run.
1539
*/
1540
ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1541
if (unlikely(ret)) {
1542
btrfs_err(trans->fs_info,
1543
"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1544
name_len, name, index, btrfs_root_id(delayed_node->root),
1545
delayed_node->inode_id, dir->index_cnt,
1546
delayed_node->index_cnt, ret);
1547
btrfs_release_delayed_item(delayed_item);
1548
btrfs_release_dir_index_item_space(trans);
1549
mutex_unlock(&delayed_node->mutex);
1550
goto release_node;
1551
}
1552
1553
if (delayed_node->index_item_leaves == 0 ||
1554
delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1555
delayed_node->curr_index_batch_size = data_len;
1556
reserve_leaf_space = true;
1557
} else {
1558
delayed_node->curr_index_batch_size += data_len;
1559
reserve_leaf_space = false;
1560
}
1561
1562
if (reserve_leaf_space) {
1563
ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1564
/*
1565
* Space was reserved for a dir index item insertion when we
1566
* started the transaction, so getting a failure here should be
1567
* impossible.
1568
*/
1569
if (WARN_ON(ret)) {
1570
btrfs_release_delayed_item(delayed_item);
1571
mutex_unlock(&delayed_node->mutex);
1572
goto release_node;
1573
}
1574
1575
delayed_node->index_item_leaves++;
1576
} else {
1577
btrfs_release_dir_index_item_space(trans);
1578
}
1579
mutex_unlock(&delayed_node->mutex);
1580
1581
release_node:
1582
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1583
return ret;
1584
}
1585
1586
static bool btrfs_delete_delayed_insertion_item(struct btrfs_delayed_node *node,
1587
u64 index)
1588
{
1589
struct btrfs_delayed_item *item;
1590
1591
mutex_lock(&node->mutex);
1592
item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1593
if (!item) {
1594
mutex_unlock(&node->mutex);
1595
return false;
1596
}
1597
1598
/*
1599
* For delayed items to insert, we track reserved metadata bytes based
1600
* on the number of leaves that we will use.
1601
* See btrfs_insert_delayed_dir_index() and
1602
* btrfs_delayed_item_reserve_metadata()).
1603
*/
1604
ASSERT(item->bytes_reserved == 0);
1605
ASSERT(node->index_item_leaves > 0);
1606
1607
/*
1608
* If there's only one leaf reserved, we can decrement this item from the
1609
* current batch, otherwise we can not because we don't know which leaf
1610
* it belongs to. With the current limit on delayed items, we rarely
1611
* accumulate enough dir index items to fill more than one leaf (even
1612
* when using a leaf size of 4K).
1613
*/
1614
if (node->index_item_leaves == 1) {
1615
const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1616
1617
ASSERT(node->curr_index_batch_size >= data_len);
1618
node->curr_index_batch_size -= data_len;
1619
}
1620
1621
btrfs_release_delayed_item(item);
1622
1623
/* If we now have no more dir index items, we can release all leaves. */
1624
if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1625
btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1626
node->index_item_leaves = 0;
1627
}
1628
1629
mutex_unlock(&node->mutex);
1630
return true;
1631
}
1632
1633
int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1634
struct btrfs_inode *dir, u64 index)
1635
{
1636
struct btrfs_delayed_node *node;
1637
struct btrfs_ref_tracker delayed_node_tracker;
1638
struct btrfs_delayed_item *item;
1639
int ret;
1640
1641
node = btrfs_get_or_create_delayed_node(dir, &delayed_node_tracker);
1642
if (IS_ERR(node))
1643
return PTR_ERR(node);
1644
1645
if (btrfs_delete_delayed_insertion_item(node, index)) {
1646
ret = 0;
1647
goto end;
1648
}
1649
1650
item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1651
if (!item) {
1652
ret = -ENOMEM;
1653
goto end;
1654
}
1655
1656
item->index = index;
1657
1658
ret = btrfs_delayed_item_reserve_metadata(trans, item);
1659
/*
1660
* we have reserved enough space when we start a new transaction,
1661
* so reserving metadata failure is impossible.
1662
*/
1663
if (ret < 0) {
1664
btrfs_err(trans->fs_info,
1665
"metadata reservation failed for delayed dir item deletion, index: %llu, root: %llu, inode: %llu, error: %d",
1666
index, btrfs_root_id(node->root), node->inode_id, ret);
1667
btrfs_release_delayed_item(item);
1668
goto end;
1669
}
1670
1671
mutex_lock(&node->mutex);
1672
ret = __btrfs_add_delayed_item(node, item);
1673
if (unlikely(ret)) {
1674
btrfs_err(trans->fs_info,
1675
"failed to add delayed dir index item, root: %llu, inode: %llu, index: %llu, error: %d",
1676
index, btrfs_root_id(node->root), node->inode_id, ret);
1677
btrfs_delayed_item_release_metadata(dir->root, item);
1678
btrfs_release_delayed_item(item);
1679
}
1680
mutex_unlock(&node->mutex);
1681
end:
1682
btrfs_release_delayed_node(node, &delayed_node_tracker);
1683
return ret;
1684
}
1685
1686
int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1687
{
1688
struct btrfs_ref_tracker delayed_node_tracker;
1689
struct btrfs_delayed_node *delayed_node;
1690
1691
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1692
if (!delayed_node)
1693
return -ENOENT;
1694
1695
/*
1696
* Since we have held i_mutex of this directory, it is impossible that
1697
* a new directory index is added into the delayed node and index_cnt
1698
* is updated now. So we needn't lock the delayed node.
1699
*/
1700
if (!delayed_node->index_cnt) {
1701
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1702
return -EINVAL;
1703
}
1704
1705
inode->index_cnt = delayed_node->index_cnt;
1706
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1707
return 0;
1708
}
1709
1710
bool btrfs_readdir_get_delayed_items(struct btrfs_inode *inode,
1711
u64 last_index,
1712
struct list_head *ins_list,
1713
struct list_head *del_list)
1714
{
1715
struct btrfs_delayed_node *delayed_node;
1716
struct btrfs_delayed_item *item;
1717
struct btrfs_ref_tracker delayed_node_tracker;
1718
1719
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1720
if (!delayed_node)
1721
return false;
1722
1723
/*
1724
* We can only do one readdir with delayed items at a time because of
1725
* item->readdir_list.
1726
*/
1727
btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1728
btrfs_inode_lock(inode, 0);
1729
1730
mutex_lock(&delayed_node->mutex);
1731
item = __btrfs_first_delayed_insertion_item(delayed_node);
1732
while (item && item->index <= last_index) {
1733
refcount_inc(&item->refs);
1734
list_add_tail(&item->readdir_list, ins_list);
1735
item = __btrfs_next_delayed_item(item);
1736
}
1737
1738
item = __btrfs_first_delayed_deletion_item(delayed_node);
1739
while (item && item->index <= last_index) {
1740
refcount_inc(&item->refs);
1741
list_add_tail(&item->readdir_list, del_list);
1742
item = __btrfs_next_delayed_item(item);
1743
}
1744
mutex_unlock(&delayed_node->mutex);
1745
/*
1746
* This delayed node is still cached in the btrfs inode, so refs
1747
* must be > 1 now, and we needn't check it is going to be freed
1748
* or not.
1749
*
1750
* Besides that, this function is used to read dir, we do not
1751
* insert/delete delayed items in this period. So we also needn't
1752
* requeue or dequeue this delayed node.
1753
*/
1754
btrfs_delayed_node_ref_tracker_free(delayed_node, &delayed_node_tracker);
1755
refcount_dec(&delayed_node->refs);
1756
1757
return true;
1758
}
1759
1760
void btrfs_readdir_put_delayed_items(struct btrfs_inode *inode,
1761
struct list_head *ins_list,
1762
struct list_head *del_list)
1763
{
1764
struct btrfs_delayed_item *curr, *next;
1765
1766
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1767
list_del(&curr->readdir_list);
1768
if (refcount_dec_and_test(&curr->refs))
1769
kfree(curr);
1770
}
1771
1772
list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1773
list_del(&curr->readdir_list);
1774
if (refcount_dec_and_test(&curr->refs))
1775
kfree(curr);
1776
}
1777
1778
/*
1779
* The VFS is going to do up_read(), so we need to downgrade back to a
1780
* read lock.
1781
*/
1782
downgrade_write(&inode->vfs_inode.i_rwsem);
1783
}
1784
1785
bool btrfs_should_delete_dir_index(const struct list_head *del_list, u64 index)
1786
{
1787
struct btrfs_delayed_item *curr;
1788
bool ret = false;
1789
1790
list_for_each_entry(curr, del_list, readdir_list) {
1791
if (curr->index > index)
1792
break;
1793
if (curr->index == index) {
1794
ret = true;
1795
break;
1796
}
1797
}
1798
return ret;
1799
}
1800
1801
/*
1802
* Read dir info stored in the delayed tree.
1803
*/
1804
bool btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1805
const struct list_head *ins_list)
1806
{
1807
struct btrfs_dir_item *di;
1808
struct btrfs_delayed_item *curr, *next;
1809
struct btrfs_key location;
1810
char *name;
1811
int name_len;
1812
unsigned char d_type;
1813
1814
/*
1815
* Changing the data of the delayed item is impossible. So
1816
* we needn't lock them. And we have held i_mutex of the
1817
* directory, nobody can delete any directory indexes now.
1818
*/
1819
list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1820
bool over;
1821
1822
list_del(&curr->readdir_list);
1823
1824
if (curr->index < ctx->pos) {
1825
if (refcount_dec_and_test(&curr->refs))
1826
kfree(curr);
1827
continue;
1828
}
1829
1830
ctx->pos = curr->index;
1831
1832
di = (struct btrfs_dir_item *)curr->data;
1833
name = (char *)(di + 1);
1834
name_len = btrfs_stack_dir_name_len(di);
1835
1836
d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1837
btrfs_disk_key_to_cpu(&location, &di->location);
1838
1839
over = !dir_emit(ctx, name, name_len, location.objectid, d_type);
1840
1841
if (refcount_dec_and_test(&curr->refs))
1842
kfree(curr);
1843
1844
if (over)
1845
return true;
1846
ctx->pos++;
1847
}
1848
return false;
1849
}
1850
1851
static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1852
struct btrfs_inode_item *inode_item,
1853
struct btrfs_inode *inode)
1854
{
1855
struct inode *vfs_inode = &inode->vfs_inode;
1856
u64 flags;
1857
1858
btrfs_set_stack_inode_uid(inode_item, i_uid_read(vfs_inode));
1859
btrfs_set_stack_inode_gid(inode_item, i_gid_read(vfs_inode));
1860
btrfs_set_stack_inode_size(inode_item, inode->disk_i_size);
1861
btrfs_set_stack_inode_mode(inode_item, vfs_inode->i_mode);
1862
btrfs_set_stack_inode_nlink(inode_item, vfs_inode->i_nlink);
1863
btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(vfs_inode));
1864
btrfs_set_stack_inode_generation(inode_item, inode->generation);
1865
btrfs_set_stack_inode_sequence(inode_item,
1866
inode_peek_iversion(vfs_inode));
1867
btrfs_set_stack_inode_transid(inode_item, trans->transid);
1868
btrfs_set_stack_inode_rdev(inode_item, vfs_inode->i_rdev);
1869
flags = btrfs_inode_combine_flags(inode->flags, inode->ro_flags);
1870
btrfs_set_stack_inode_flags(inode_item, flags);
1871
btrfs_set_stack_inode_block_group(inode_item, 0);
1872
1873
btrfs_set_stack_timespec_sec(&inode_item->atime,
1874
inode_get_atime_sec(vfs_inode));
1875
btrfs_set_stack_timespec_nsec(&inode_item->atime,
1876
inode_get_atime_nsec(vfs_inode));
1877
1878
btrfs_set_stack_timespec_sec(&inode_item->mtime,
1879
inode_get_mtime_sec(vfs_inode));
1880
btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1881
inode_get_mtime_nsec(vfs_inode));
1882
1883
btrfs_set_stack_timespec_sec(&inode_item->ctime,
1884
inode_get_ctime_sec(vfs_inode));
1885
btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1886
inode_get_ctime_nsec(vfs_inode));
1887
1888
btrfs_set_stack_timespec_sec(&inode_item->otime, inode->i_otime_sec);
1889
btrfs_set_stack_timespec_nsec(&inode_item->otime, inode->i_otime_nsec);
1890
}
1891
1892
int btrfs_fill_inode(struct btrfs_inode *inode, u32 *rdev)
1893
{
1894
struct btrfs_delayed_node *delayed_node;
1895
struct btrfs_ref_tracker delayed_node_tracker;
1896
struct btrfs_inode_item *inode_item;
1897
struct inode *vfs_inode = &inode->vfs_inode;
1898
1899
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
1900
if (!delayed_node)
1901
return -ENOENT;
1902
1903
mutex_lock(&delayed_node->mutex);
1904
if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1905
mutex_unlock(&delayed_node->mutex);
1906
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1907
return -ENOENT;
1908
}
1909
1910
inode_item = &delayed_node->inode_item;
1911
1912
i_uid_write(vfs_inode, btrfs_stack_inode_uid(inode_item));
1913
i_gid_write(vfs_inode, btrfs_stack_inode_gid(inode_item));
1914
btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1915
vfs_inode->i_mode = btrfs_stack_inode_mode(inode_item);
1916
set_nlink(vfs_inode, btrfs_stack_inode_nlink(inode_item));
1917
inode_set_bytes(vfs_inode, btrfs_stack_inode_nbytes(inode_item));
1918
inode->generation = btrfs_stack_inode_generation(inode_item);
1919
inode->last_trans = btrfs_stack_inode_transid(inode_item);
1920
1921
inode_set_iversion_queried(vfs_inode, btrfs_stack_inode_sequence(inode_item));
1922
vfs_inode->i_rdev = 0;
1923
*rdev = btrfs_stack_inode_rdev(inode_item);
1924
btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1925
&inode->flags, &inode->ro_flags);
1926
1927
inode_set_atime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->atime),
1928
btrfs_stack_timespec_nsec(&inode_item->atime));
1929
1930
inode_set_mtime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1931
btrfs_stack_timespec_nsec(&inode_item->mtime));
1932
1933
inode_set_ctime(vfs_inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1934
btrfs_stack_timespec_nsec(&inode_item->ctime));
1935
1936
inode->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1937
inode->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1938
1939
vfs_inode->i_generation = inode->generation;
1940
if (S_ISDIR(vfs_inode->i_mode))
1941
inode->index_cnt = (u64)-1;
1942
1943
mutex_unlock(&delayed_node->mutex);
1944
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1945
return 0;
1946
}
1947
1948
int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1949
struct btrfs_inode *inode)
1950
{
1951
struct btrfs_root *root = inode->root;
1952
struct btrfs_delayed_node *delayed_node;
1953
struct btrfs_ref_tracker delayed_node_tracker;
1954
int ret = 0;
1955
1956
delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1957
if (IS_ERR(delayed_node))
1958
return PTR_ERR(delayed_node);
1959
1960
mutex_lock(&delayed_node->mutex);
1961
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1962
fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1963
goto release_node;
1964
}
1965
1966
ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1967
if (ret)
1968
goto release_node;
1969
1970
fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1971
set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1972
delayed_node->count++;
1973
atomic_inc(&root->fs_info->delayed_root->items);
1974
release_node:
1975
mutex_unlock(&delayed_node->mutex);
1976
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
1977
return ret;
1978
}
1979
1980
int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1981
{
1982
struct btrfs_fs_info *fs_info = inode->root->fs_info;
1983
struct btrfs_delayed_node *delayed_node;
1984
struct btrfs_ref_tracker delayed_node_tracker;
1985
1986
/*
1987
* we don't do delayed inode updates during log recovery because it
1988
* leads to enospc problems. This means we also can't do
1989
* delayed inode refs
1990
*/
1991
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1992
return -EAGAIN;
1993
1994
delayed_node = btrfs_get_or_create_delayed_node(inode, &delayed_node_tracker);
1995
if (IS_ERR(delayed_node))
1996
return PTR_ERR(delayed_node);
1997
1998
/*
1999
* We don't reserve space for inode ref deletion is because:
2000
* - We ONLY do async inode ref deletion for the inode who has only
2001
* one link(i_nlink == 1), it means there is only one inode ref.
2002
* And in most case, the inode ref and the inode item are in the
2003
* same leaf, and we will deal with them at the same time.
2004
* Since we are sure we will reserve the space for the inode item,
2005
* it is unnecessary to reserve space for inode ref deletion.
2006
* - If the inode ref and the inode item are not in the same leaf,
2007
* We also needn't worry about enospc problem, because we reserve
2008
* much more space for the inode update than it needs.
2009
* - At the worst, we can steal some space from the global reservation.
2010
* It is very rare.
2011
*/
2012
mutex_lock(&delayed_node->mutex);
2013
if (!test_and_set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
2014
delayed_node->count++;
2015
atomic_inc(&fs_info->delayed_root->items);
2016
}
2017
mutex_unlock(&delayed_node->mutex);
2018
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2019
return 0;
2020
}
2021
2022
static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
2023
{
2024
struct btrfs_root *root = delayed_node->root;
2025
struct btrfs_fs_info *fs_info = root->fs_info;
2026
struct btrfs_delayed_item *curr_item, *prev_item;
2027
2028
mutex_lock(&delayed_node->mutex);
2029
curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2030
while (curr_item) {
2031
prev_item = curr_item;
2032
curr_item = __btrfs_next_delayed_item(prev_item);
2033
btrfs_release_delayed_item(prev_item);
2034
}
2035
2036
if (delayed_node->index_item_leaves > 0) {
2037
btrfs_delayed_item_release_leaves(delayed_node,
2038
delayed_node->index_item_leaves);
2039
delayed_node->index_item_leaves = 0;
2040
}
2041
2042
curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2043
while (curr_item) {
2044
btrfs_delayed_item_release_metadata(root, curr_item);
2045
prev_item = curr_item;
2046
curr_item = __btrfs_next_delayed_item(prev_item);
2047
btrfs_release_delayed_item(prev_item);
2048
}
2049
2050
btrfs_release_delayed_iref(delayed_node);
2051
2052
if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2053
btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2054
btrfs_release_delayed_inode(delayed_node);
2055
}
2056
mutex_unlock(&delayed_node->mutex);
2057
}
2058
2059
void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2060
{
2061
struct btrfs_delayed_node *delayed_node;
2062
struct btrfs_ref_tracker delayed_node_tracker;
2063
2064
delayed_node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2065
if (!delayed_node)
2066
return;
2067
2068
__btrfs_kill_delayed_node(delayed_node);
2069
btrfs_release_delayed_node(delayed_node, &delayed_node_tracker);
2070
}
2071
2072
void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2073
{
2074
unsigned long index = 0;
2075
struct btrfs_delayed_node *delayed_nodes[8];
2076
struct btrfs_ref_tracker delayed_node_trackers[8];
2077
2078
while (1) {
2079
struct btrfs_delayed_node *node;
2080
int count;
2081
2082
xa_lock(&root->delayed_nodes);
2083
if (xa_empty(&root->delayed_nodes)) {
2084
xa_unlock(&root->delayed_nodes);
2085
return;
2086
}
2087
2088
count = 0;
2089
xa_for_each_start(&root->delayed_nodes, index, node, index) {
2090
/*
2091
* Don't increase refs in case the node is dead and
2092
* about to be removed from the tree in the loop below
2093
*/
2094
if (refcount_inc_not_zero(&node->refs)) {
2095
btrfs_delayed_node_ref_tracker_alloc(node,
2096
&delayed_node_trackers[count],
2097
GFP_ATOMIC);
2098
delayed_nodes[count] = node;
2099
count++;
2100
}
2101
if (count >= ARRAY_SIZE(delayed_nodes))
2102
break;
2103
}
2104
xa_unlock(&root->delayed_nodes);
2105
index++;
2106
2107
for (int i = 0; i < count; i++) {
2108
__btrfs_kill_delayed_node(delayed_nodes[i]);
2109
btrfs_delayed_node_ref_tracker_dir_print(delayed_nodes[i]);
2110
btrfs_release_delayed_node(delayed_nodes[i],
2111
&delayed_node_trackers[i]);
2112
}
2113
}
2114
}
2115
2116
void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2117
{
2118
struct btrfs_delayed_node *curr_node, *prev_node;
2119
struct btrfs_ref_tracker curr_delayed_node_tracker, prev_delayed_node_tracker;
2120
2121
curr_node = btrfs_first_delayed_node(fs_info->delayed_root,
2122
&curr_delayed_node_tracker);
2123
while (curr_node) {
2124
__btrfs_kill_delayed_node(curr_node);
2125
2126
prev_node = curr_node;
2127
prev_delayed_node_tracker = curr_delayed_node_tracker;
2128
curr_node = btrfs_next_delayed_node(curr_node, &curr_delayed_node_tracker);
2129
btrfs_release_delayed_node(prev_node, &prev_delayed_node_tracker);
2130
}
2131
}
2132
2133
void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2134
struct list_head *ins_list,
2135
struct list_head *del_list)
2136
{
2137
struct btrfs_delayed_node *node;
2138
struct btrfs_delayed_item *item;
2139
struct btrfs_ref_tracker delayed_node_tracker;
2140
2141
node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2142
if (!node)
2143
return;
2144
2145
mutex_lock(&node->mutex);
2146
item = __btrfs_first_delayed_insertion_item(node);
2147
while (item) {
2148
/*
2149
* It's possible that the item is already in a log list. This
2150
* can happen in case two tasks are trying to log the same
2151
* directory. For example if we have tasks A and task B:
2152
*
2153
* Task A collected the delayed items into a log list while
2154
* under the inode's log_mutex (at btrfs_log_inode()), but it
2155
* only releases the items after logging the inodes they point
2156
* to (if they are new inodes), which happens after unlocking
2157
* the log mutex;
2158
*
2159
* Task B enters btrfs_log_inode() and acquires the log_mutex
2160
* of the same directory inode, before task B releases the
2161
* delayed items. This can happen for example when logging some
2162
* inode we need to trigger logging of its parent directory, so
2163
* logging two files that have the same parent directory can
2164
* lead to this.
2165
*
2166
* If this happens, just ignore delayed items already in a log
2167
* list. All the tasks logging the directory are under a log
2168
* transaction and whichever finishes first can not sync the log
2169
* before the other completes and leaves the log transaction.
2170
*/
2171
if (!item->logged && list_empty(&item->log_list)) {
2172
refcount_inc(&item->refs);
2173
list_add_tail(&item->log_list, ins_list);
2174
}
2175
item = __btrfs_next_delayed_item(item);
2176
}
2177
2178
item = __btrfs_first_delayed_deletion_item(node);
2179
while (item) {
2180
/* It may be non-empty, for the same reason mentioned above. */
2181
if (!item->logged && list_empty(&item->log_list)) {
2182
refcount_inc(&item->refs);
2183
list_add_tail(&item->log_list, del_list);
2184
}
2185
item = __btrfs_next_delayed_item(item);
2186
}
2187
mutex_unlock(&node->mutex);
2188
2189
/*
2190
* We are called during inode logging, which means the inode is in use
2191
* and can not be evicted before we finish logging the inode. So we never
2192
* have the last reference on the delayed inode.
2193
* Also, we don't use btrfs_release_delayed_node() because that would
2194
* requeue the delayed inode (change its order in the list of prepared
2195
* nodes) and we don't want to do such change because we don't create or
2196
* delete delayed items.
2197
*/
2198
ASSERT(refcount_read(&node->refs) > 1);
2199
btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2200
refcount_dec(&node->refs);
2201
}
2202
2203
void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2204
struct list_head *ins_list,
2205
struct list_head *del_list)
2206
{
2207
struct btrfs_delayed_node *node;
2208
struct btrfs_delayed_item *item;
2209
struct btrfs_delayed_item *next;
2210
struct btrfs_ref_tracker delayed_node_tracker;
2211
2212
node = btrfs_get_delayed_node(inode, &delayed_node_tracker);
2213
if (!node)
2214
return;
2215
2216
mutex_lock(&node->mutex);
2217
2218
list_for_each_entry_safe(item, next, ins_list, log_list) {
2219
item->logged = true;
2220
list_del_init(&item->log_list);
2221
if (refcount_dec_and_test(&item->refs))
2222
kfree(item);
2223
}
2224
2225
list_for_each_entry_safe(item, next, del_list, log_list) {
2226
item->logged = true;
2227
list_del_init(&item->log_list);
2228
if (refcount_dec_and_test(&item->refs))
2229
kfree(item);
2230
}
2231
2232
mutex_unlock(&node->mutex);
2233
2234
/*
2235
* We are called during inode logging, which means the inode is in use
2236
* and can not be evicted before we finish logging the inode. So we never
2237
* have the last reference on the delayed inode.
2238
* Also, we don't use btrfs_release_delayed_node() because that would
2239
* requeue the delayed inode (change its order in the list of prepared
2240
* nodes) and we don't want to do such change because we don't create or
2241
* delete delayed items.
2242
*/
2243
ASSERT(refcount_read(&node->refs) > 1);
2244
btrfs_delayed_node_ref_tracker_free(node, &delayed_node_tracker);
2245
refcount_dec(&node->refs);
2246
}
2247
2248