Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/delayed-ref.c
49830 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2009 Oracle. All rights reserved.
4
*/
5
6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/sort.h>
9
#include "messages.h"
10
#include "ctree.h"
11
#include "delayed-ref.h"
12
#include "extent-tree.h"
13
#include "transaction.h"
14
#include "qgroup.h"
15
#include "space-info.h"
16
#include "tree-mod-log.h"
17
#include "fs.h"
18
19
struct kmem_cache *btrfs_delayed_ref_head_cachep;
20
struct kmem_cache *btrfs_delayed_ref_node_cachep;
21
struct kmem_cache *btrfs_delayed_extent_op_cachep;
22
/*
23
* delayed back reference update tracking. For subvolume trees
24
* we queue up extent allocations and backref maintenance for
25
* delayed processing. This avoids deep call chains where we
26
* add extents in the middle of btrfs_search_slot, and it allows
27
* us to buffer up frequently modified backrefs in an rb tree instead
28
* of hammering updates on the extent allocation tree.
29
*/
30
31
bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
32
{
33
struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
34
struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
35
bool ret = false;
36
u64 reserved;
37
38
spin_lock(&global_rsv->lock);
39
reserved = global_rsv->reserved;
40
spin_unlock(&global_rsv->lock);
41
42
/*
43
* Since the global reserve is just kind of magic we don't really want
44
* to rely on it to save our bacon, so if our size is more than the
45
* delayed_refs_rsv and the global rsv then it's time to think about
46
* bailing.
47
*/
48
spin_lock(&delayed_refs_rsv->lock);
49
reserved += delayed_refs_rsv->reserved;
50
if (delayed_refs_rsv->size >= reserved)
51
ret = true;
52
spin_unlock(&delayed_refs_rsv->lock);
53
return ret;
54
}
55
56
/*
57
* Release a ref head's reservation.
58
*
59
* @fs_info: the filesystem
60
* @nr_refs: number of delayed refs to drop
61
* @nr_csums: number of csum items to drop
62
*
63
* Drops the delayed ref head's count from the delayed refs rsv and free any
64
* excess reservation we had.
65
*/
66
void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
67
{
68
struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
69
u64 num_bytes;
70
u64 released;
71
72
num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
73
num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
74
75
released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
76
if (released)
77
trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
78
0, released, 0);
79
}
80
81
/*
82
* Adjust the size of the delayed refs rsv.
83
*
84
* This is to be called anytime we may have adjusted trans->delayed_ref_updates
85
* or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
86
* add it to the delayed_refs_rsv.
87
*/
88
void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
89
{
90
struct btrfs_fs_info *fs_info = trans->fs_info;
91
struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
92
struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
93
u64 num_bytes;
94
u64 reserved_bytes;
95
96
if (btrfs_is_testing(fs_info))
97
return;
98
99
num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
100
num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
101
trans->delayed_ref_csum_deletions);
102
103
if (num_bytes == 0)
104
return;
105
106
/*
107
* Try to take num_bytes from the transaction's local delayed reserve.
108
* If not possible, try to take as much as it's available. If the local
109
* reserve doesn't have enough reserved space, the delayed refs reserve
110
* will be refilled next time btrfs_delayed_refs_rsv_refill() is called
111
* by someone or if a transaction commit is triggered before that, the
112
* global block reserve will be used. We want to minimize using the
113
* global block reserve for cases we can account for in advance, to
114
* avoid exhausting it and reach -ENOSPC during a transaction commit.
115
*/
116
spin_lock(&local_rsv->lock);
117
reserved_bytes = min(num_bytes, local_rsv->reserved);
118
local_rsv->reserved -= reserved_bytes;
119
local_rsv->full = (local_rsv->reserved >= local_rsv->size);
120
spin_unlock(&local_rsv->lock);
121
122
spin_lock(&delayed_rsv->lock);
123
delayed_rsv->size += num_bytes;
124
delayed_rsv->reserved += reserved_bytes;
125
delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
126
spin_unlock(&delayed_rsv->lock);
127
trans->delayed_ref_updates = 0;
128
trans->delayed_ref_csum_deletions = 0;
129
}
130
131
/*
132
* Adjust the size of the delayed refs block reserve for 1 block group item
133
* insertion, used after allocating a block group.
134
*/
135
void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
136
{
137
struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
138
139
spin_lock(&delayed_rsv->lock);
140
/*
141
* Inserting a block group item does not require changing the free space
142
* tree, only the extent tree or the block group tree, so this is all we
143
* need.
144
*/
145
delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
146
delayed_rsv->full = false;
147
spin_unlock(&delayed_rsv->lock);
148
}
149
150
/*
151
* Adjust the size of the delayed refs block reserve to release space for 1
152
* block group item insertion.
153
*/
154
void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
155
{
156
struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
157
const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
158
u64 released;
159
160
released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
161
if (released > 0)
162
trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
163
0, released, 0);
164
}
165
166
/*
167
* Adjust the size of the delayed refs block reserve for 1 block group item
168
* update.
169
*/
170
void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
171
{
172
struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
173
174
spin_lock(&delayed_rsv->lock);
175
/*
176
* Updating a block group item does not result in new nodes/leaves and
177
* does not require changing the free space tree, only the extent tree
178
* or the block group tree, so this is all we need.
179
*/
180
delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
181
delayed_rsv->full = false;
182
spin_unlock(&delayed_rsv->lock);
183
}
184
185
/*
186
* Adjust the size of the delayed refs block reserve to release space for 1
187
* block group item update.
188
*/
189
void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
190
{
191
struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
192
const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
193
u64 released;
194
195
released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
196
if (released > 0)
197
trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
198
0, released, 0);
199
}
200
201
/*
202
* Refill based on our delayed refs usage.
203
*
204
* @fs_info: the filesystem
205
* @flush: control how we can flush for this reservation.
206
*
207
* This will refill the delayed block_rsv up to 1 items size worth of space and
208
* will return -ENOSPC if we can't make the reservation.
209
*/
210
int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
211
enum btrfs_reserve_flush_enum flush)
212
{
213
struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
214
struct btrfs_space_info *space_info = block_rsv->space_info;
215
u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
216
u64 num_bytes = 0;
217
u64 refilled_bytes;
218
u64 to_free;
219
int ret = -ENOSPC;
220
221
spin_lock(&block_rsv->lock);
222
if (block_rsv->reserved < block_rsv->size) {
223
num_bytes = block_rsv->size - block_rsv->reserved;
224
num_bytes = min(num_bytes, limit);
225
}
226
spin_unlock(&block_rsv->lock);
227
228
if (!num_bytes)
229
return 0;
230
231
ret = btrfs_reserve_metadata_bytes(space_info, num_bytes, flush);
232
if (ret)
233
return ret;
234
235
/*
236
* We may have raced with someone else, so check again if we the block
237
* reserve is still not full and release any excess space.
238
*/
239
spin_lock(&block_rsv->lock);
240
if (block_rsv->reserved < block_rsv->size) {
241
u64 needed = block_rsv->size - block_rsv->reserved;
242
243
if (num_bytes >= needed) {
244
block_rsv->reserved += needed;
245
block_rsv->full = true;
246
to_free = num_bytes - needed;
247
refilled_bytes = needed;
248
} else {
249
block_rsv->reserved += num_bytes;
250
to_free = 0;
251
refilled_bytes = num_bytes;
252
}
253
} else {
254
to_free = num_bytes;
255
refilled_bytes = 0;
256
}
257
spin_unlock(&block_rsv->lock);
258
259
if (to_free > 0)
260
btrfs_space_info_free_bytes_may_use(space_info, to_free);
261
262
if (refilled_bytes > 0)
263
trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
264
refilled_bytes, 1);
265
return 0;
266
}
267
268
/*
269
* compare two delayed data backrefs with same bytenr and type
270
*/
271
static int comp_data_refs(const struct btrfs_delayed_ref_node *ref1,
272
const struct btrfs_delayed_ref_node *ref2)
273
{
274
if (ref1->data_ref.objectid < ref2->data_ref.objectid)
275
return -1;
276
if (ref1->data_ref.objectid > ref2->data_ref.objectid)
277
return 1;
278
if (ref1->data_ref.offset < ref2->data_ref.offset)
279
return -1;
280
if (ref1->data_ref.offset > ref2->data_ref.offset)
281
return 1;
282
return 0;
283
}
284
285
static int comp_refs(const struct btrfs_delayed_ref_node *ref1,
286
const struct btrfs_delayed_ref_node *ref2,
287
bool check_seq)
288
{
289
int ret = 0;
290
291
if (ref1->type < ref2->type)
292
return -1;
293
if (ref1->type > ref2->type)
294
return 1;
295
if (ref1->type == BTRFS_SHARED_BLOCK_REF_KEY ||
296
ref1->type == BTRFS_SHARED_DATA_REF_KEY) {
297
if (ref1->parent < ref2->parent)
298
return -1;
299
if (ref1->parent > ref2->parent)
300
return 1;
301
} else {
302
if (ref1->ref_root < ref2->ref_root)
303
return -1;
304
if (ref1->ref_root > ref2->ref_root)
305
return 1;
306
if (ref1->type == BTRFS_EXTENT_DATA_REF_KEY)
307
ret = comp_data_refs(ref1, ref2);
308
}
309
if (ret)
310
return ret;
311
if (check_seq) {
312
if (ref1->seq < ref2->seq)
313
return -1;
314
if (ref1->seq > ref2->seq)
315
return 1;
316
}
317
return 0;
318
}
319
320
static int cmp_refs_node(const struct rb_node *new, const struct rb_node *exist)
321
{
322
const struct btrfs_delayed_ref_node *new_node =
323
rb_entry(new, struct btrfs_delayed_ref_node, ref_node);
324
const struct btrfs_delayed_ref_node *exist_node =
325
rb_entry(exist, struct btrfs_delayed_ref_node, ref_node);
326
327
return comp_refs(new_node, exist_node, true);
328
}
329
330
static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
331
struct btrfs_delayed_ref_node *ins)
332
{
333
struct rb_node *node = &ins->ref_node;
334
struct rb_node *exist = rb_find_add_cached(node, root, cmp_refs_node);
335
336
return rb_entry_safe(exist, struct btrfs_delayed_ref_node, ref_node);
337
}
338
339
static struct btrfs_delayed_ref_head *find_first_ref_head(
340
struct btrfs_delayed_ref_root *dr)
341
{
342
unsigned long from = 0;
343
344
lockdep_assert_held(&dr->lock);
345
346
return xa_find(&dr->head_refs, &from, ULONG_MAX, XA_PRESENT);
347
}
348
349
static bool btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
350
struct btrfs_delayed_ref_head *head)
351
{
352
lockdep_assert_held(&delayed_refs->lock);
353
if (mutex_trylock(&head->mutex))
354
return true;
355
356
refcount_inc(&head->refs);
357
spin_unlock(&delayed_refs->lock);
358
359
mutex_lock(&head->mutex);
360
spin_lock(&delayed_refs->lock);
361
if (!head->tracked) {
362
mutex_unlock(&head->mutex);
363
btrfs_put_delayed_ref_head(head);
364
return false;
365
}
366
btrfs_put_delayed_ref_head(head);
367
return true;
368
}
369
370
static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
371
struct btrfs_delayed_ref_root *delayed_refs,
372
struct btrfs_delayed_ref_head *head,
373
struct btrfs_delayed_ref_node *ref)
374
{
375
lockdep_assert_held(&head->lock);
376
rb_erase_cached(&ref->ref_node, &head->ref_tree);
377
RB_CLEAR_NODE(&ref->ref_node);
378
if (!list_empty(&ref->add_list))
379
list_del(&ref->add_list);
380
btrfs_put_delayed_ref(ref);
381
btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
382
}
383
384
static bool merge_ref(struct btrfs_fs_info *fs_info,
385
struct btrfs_delayed_ref_root *delayed_refs,
386
struct btrfs_delayed_ref_head *head,
387
struct btrfs_delayed_ref_node *ref,
388
u64 seq)
389
{
390
struct btrfs_delayed_ref_node *next;
391
struct rb_node *node = rb_next(&ref->ref_node);
392
bool done = false;
393
394
while (!done && node) {
395
int mod;
396
397
next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
398
node = rb_next(node);
399
if (seq && next->seq >= seq)
400
break;
401
if (comp_refs(ref, next, false))
402
break;
403
404
if (ref->action == next->action) {
405
mod = next->ref_mod;
406
} else {
407
if (ref->ref_mod < next->ref_mod) {
408
swap(ref, next);
409
done = true;
410
}
411
mod = -next->ref_mod;
412
}
413
414
drop_delayed_ref(fs_info, delayed_refs, head, next);
415
ref->ref_mod += mod;
416
if (ref->ref_mod == 0) {
417
drop_delayed_ref(fs_info, delayed_refs, head, ref);
418
done = true;
419
} else {
420
/*
421
* Can't have multiples of the same ref on a tree block.
422
*/
423
WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
424
ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
425
}
426
}
427
428
return done;
429
}
430
431
void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
432
struct btrfs_delayed_ref_root *delayed_refs,
433
struct btrfs_delayed_ref_head *head)
434
{
435
struct btrfs_delayed_ref_node *ref;
436
struct rb_node *node;
437
u64 seq = 0;
438
439
lockdep_assert_held(&head->lock);
440
441
if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
442
return;
443
444
/* We don't have too many refs to merge for data. */
445
if (head->is_data)
446
return;
447
448
seq = btrfs_tree_mod_log_lowest_seq(fs_info);
449
again:
450
for (node = rb_first_cached(&head->ref_tree); node;
451
node = rb_next(node)) {
452
ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
453
if (seq && ref->seq >= seq)
454
continue;
455
if (merge_ref(fs_info, delayed_refs, head, ref, seq))
456
goto again;
457
}
458
}
459
460
int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
461
{
462
int ret = 0;
463
u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
464
465
if (min_seq != 0 && seq >= min_seq) {
466
btrfs_debug(fs_info,
467
"holding back delayed_ref %llu, lowest is %llu",
468
seq, min_seq);
469
ret = 1;
470
}
471
472
return ret;
473
}
474
475
struct btrfs_delayed_ref_head *btrfs_select_ref_head(
476
const struct btrfs_fs_info *fs_info,
477
struct btrfs_delayed_ref_root *delayed_refs)
478
{
479
struct btrfs_delayed_ref_head *head;
480
unsigned long start_index;
481
unsigned long found_index;
482
bool found_head = false;
483
bool locked;
484
485
spin_lock(&delayed_refs->lock);
486
again:
487
start_index = (delayed_refs->run_delayed_start >> fs_info->sectorsize_bits);
488
xa_for_each_start(&delayed_refs->head_refs, found_index, head, start_index) {
489
if (!head->processing) {
490
found_head = true;
491
break;
492
}
493
}
494
if (!found_head) {
495
if (delayed_refs->run_delayed_start == 0) {
496
spin_unlock(&delayed_refs->lock);
497
return NULL;
498
}
499
delayed_refs->run_delayed_start = 0;
500
goto again;
501
}
502
503
head->processing = true;
504
WARN_ON(delayed_refs->num_heads_ready == 0);
505
delayed_refs->num_heads_ready--;
506
delayed_refs->run_delayed_start = head->bytenr +
507
head->num_bytes;
508
509
locked = btrfs_delayed_ref_lock(delayed_refs, head);
510
spin_unlock(&delayed_refs->lock);
511
512
/*
513
* We may have dropped the spin lock to get the head mutex lock, and
514
* that might have given someone else time to free the head. If that's
515
* true, it has been removed from our list and we can move on.
516
*/
517
if (!locked)
518
return ERR_PTR(-EAGAIN);
519
520
return head;
521
}
522
523
void btrfs_unselect_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
524
struct btrfs_delayed_ref_head *head)
525
{
526
spin_lock(&delayed_refs->lock);
527
head->processing = false;
528
delayed_refs->num_heads_ready++;
529
spin_unlock(&delayed_refs->lock);
530
btrfs_delayed_ref_unlock(head);
531
}
532
533
void btrfs_delete_ref_head(const struct btrfs_fs_info *fs_info,
534
struct btrfs_delayed_ref_root *delayed_refs,
535
struct btrfs_delayed_ref_head *head)
536
{
537
const unsigned long index = (head->bytenr >> fs_info->sectorsize_bits);
538
539
lockdep_assert_held(&delayed_refs->lock);
540
lockdep_assert_held(&head->lock);
541
542
xa_erase(&delayed_refs->head_refs, index);
543
head->tracked = false;
544
delayed_refs->num_heads--;
545
if (!head->processing)
546
delayed_refs->num_heads_ready--;
547
}
548
549
struct btrfs_delayed_ref_node *btrfs_select_delayed_ref(struct btrfs_delayed_ref_head *head)
550
{
551
struct btrfs_delayed_ref_node *ref;
552
553
lockdep_assert_held(&head->mutex);
554
lockdep_assert_held(&head->lock);
555
556
if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
557
return NULL;
558
559
/*
560
* Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
561
* This is to prevent a ref count from going down to zero, which deletes
562
* the extent item from the extent tree, when there still are references
563
* to add, which would fail because they would not find the extent item.
564
*/
565
if (!list_empty(&head->ref_add_list))
566
return list_first_entry(&head->ref_add_list,
567
struct btrfs_delayed_ref_node, add_list);
568
569
ref = rb_entry(rb_first_cached(&head->ref_tree),
570
struct btrfs_delayed_ref_node, ref_node);
571
ASSERT(list_empty(&ref->add_list));
572
return ref;
573
}
574
575
/*
576
* Helper to insert the ref_node to the tail or merge with tail.
577
*
578
* Return false if the ref was inserted.
579
* Return true if the ref was merged into an existing one (and therefore can be
580
* freed by the caller).
581
*/
582
static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
583
struct btrfs_delayed_ref_head *href,
584
struct btrfs_delayed_ref_node *ref)
585
{
586
struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
587
struct btrfs_delayed_ref_node *exist;
588
int mod;
589
590
spin_lock(&href->lock);
591
exist = tree_insert(&href->ref_tree, ref);
592
if (!exist) {
593
if (ref->action == BTRFS_ADD_DELAYED_REF)
594
list_add_tail(&ref->add_list, &href->ref_add_list);
595
spin_unlock(&href->lock);
596
trans->delayed_ref_updates++;
597
return false;
598
}
599
600
/* Now we are sure we can merge */
601
if (exist->action == ref->action) {
602
mod = ref->ref_mod;
603
} else {
604
/* Need to change action */
605
if (exist->ref_mod < ref->ref_mod) {
606
exist->action = ref->action;
607
mod = -exist->ref_mod;
608
exist->ref_mod = ref->ref_mod;
609
if (ref->action == BTRFS_ADD_DELAYED_REF)
610
list_add_tail(&exist->add_list,
611
&href->ref_add_list);
612
else if (ref->action == BTRFS_DROP_DELAYED_REF) {
613
ASSERT(!list_empty(&exist->add_list));
614
list_del_init(&exist->add_list);
615
} else {
616
ASSERT(0);
617
}
618
} else
619
mod = -ref->ref_mod;
620
}
621
exist->ref_mod += mod;
622
623
/* remove existing tail if its ref_mod is zero */
624
if (exist->ref_mod == 0)
625
drop_delayed_ref(trans->fs_info, root, href, exist);
626
spin_unlock(&href->lock);
627
return true;
628
}
629
630
/*
631
* helper function to update the accounting in the head ref
632
* existing and update must have the same bytenr
633
*/
634
static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
635
struct btrfs_delayed_ref_head *existing,
636
struct btrfs_delayed_ref_head *update)
637
{
638
struct btrfs_delayed_ref_root *delayed_refs =
639
&trans->transaction->delayed_refs;
640
struct btrfs_fs_info *fs_info = trans->fs_info;
641
int old_ref_mod;
642
643
BUG_ON(existing->is_data != update->is_data);
644
645
spin_lock(&existing->lock);
646
647
/*
648
* When freeing an extent, we may not know the owning root when we
649
* first create the head_ref. However, some deref before the last deref
650
* will know it, so we just need to update the head_ref accordingly.
651
*/
652
if (!existing->owning_root)
653
existing->owning_root = update->owning_root;
654
655
if (update->must_insert_reserved) {
656
/* if the extent was freed and then
657
* reallocated before the delayed ref
658
* entries were processed, we can end up
659
* with an existing head ref without
660
* the must_insert_reserved flag set.
661
* Set it again here
662
*/
663
existing->must_insert_reserved = update->must_insert_reserved;
664
existing->owning_root = update->owning_root;
665
666
/*
667
* update the num_bytes so we make sure the accounting
668
* is done correctly
669
*/
670
existing->num_bytes = update->num_bytes;
671
672
}
673
674
if (update->extent_op) {
675
if (!existing->extent_op) {
676
existing->extent_op = update->extent_op;
677
} else {
678
if (update->extent_op->update_key) {
679
memcpy(&existing->extent_op->key,
680
&update->extent_op->key,
681
sizeof(update->extent_op->key));
682
existing->extent_op->update_key = true;
683
}
684
if (update->extent_op->update_flags) {
685
existing->extent_op->flags_to_set |=
686
update->extent_op->flags_to_set;
687
existing->extent_op->update_flags = true;
688
}
689
btrfs_free_delayed_extent_op(update->extent_op);
690
}
691
}
692
/*
693
* update the reference mod on the head to reflect this new operation,
694
* only need the lock for this case cause we could be processing it
695
* currently, for refs we just added we know we're a-ok.
696
*/
697
old_ref_mod = existing->total_ref_mod;
698
existing->ref_mod += update->ref_mod;
699
existing->total_ref_mod += update->ref_mod;
700
701
/*
702
* If we are going to from a positive ref mod to a negative or vice
703
* versa we need to make sure to adjust pending_csums accordingly.
704
* We reserve bytes for csum deletion when adding or updating a ref head
705
* see add_delayed_ref_head() for more details.
706
*/
707
if (existing->is_data) {
708
u64 csum_leaves =
709
btrfs_csum_bytes_to_leaves(fs_info,
710
existing->num_bytes);
711
712
if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
713
delayed_refs->pending_csums -= existing->num_bytes;
714
btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
715
}
716
if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
717
delayed_refs->pending_csums += existing->num_bytes;
718
trans->delayed_ref_csum_deletions += csum_leaves;
719
}
720
}
721
722
spin_unlock(&existing->lock);
723
}
724
725
static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
726
struct btrfs_ref *generic_ref,
727
struct btrfs_qgroup_extent_record *qrecord,
728
u64 reserved)
729
{
730
int count_mod = 1;
731
bool must_insert_reserved = false;
732
733
/* If reserved is provided, it must be a data extent. */
734
BUG_ON(generic_ref->type != BTRFS_REF_DATA && reserved);
735
736
switch (generic_ref->action) {
737
case BTRFS_ADD_DELAYED_REF:
738
/* count_mod is already set to 1. */
739
break;
740
case BTRFS_UPDATE_DELAYED_HEAD:
741
count_mod = 0;
742
break;
743
case BTRFS_DROP_DELAYED_REF:
744
/*
745
* The head node stores the sum of all the mods, so dropping a ref
746
* should drop the sum in the head node by one.
747
*/
748
count_mod = -1;
749
break;
750
case BTRFS_ADD_DELAYED_EXTENT:
751
/*
752
* BTRFS_ADD_DELAYED_EXTENT means that we need to update the
753
* reserved accounting when the extent is finally added, or if a
754
* later modification deletes the delayed ref without ever
755
* inserting the extent into the extent allocation tree.
756
* ref->must_insert_reserved is the flag used to record that
757
* accounting mods are required.
758
*
759
* Once we record must_insert_reserved, switch the action to
760
* BTRFS_ADD_DELAYED_REF because other special casing is not
761
* required.
762
*/
763
must_insert_reserved = true;
764
break;
765
}
766
767
refcount_set(&head_ref->refs, 1);
768
head_ref->bytenr = generic_ref->bytenr;
769
head_ref->num_bytes = generic_ref->num_bytes;
770
head_ref->ref_mod = count_mod;
771
head_ref->reserved_bytes = reserved;
772
head_ref->must_insert_reserved = must_insert_reserved;
773
head_ref->owning_root = generic_ref->owning_root;
774
head_ref->is_data = (generic_ref->type == BTRFS_REF_DATA);
775
head_ref->is_system = (generic_ref->ref_root == BTRFS_CHUNK_TREE_OBJECTID);
776
head_ref->ref_tree = RB_ROOT_CACHED;
777
INIT_LIST_HEAD(&head_ref->ref_add_list);
778
head_ref->tracked = false;
779
head_ref->processing = false;
780
head_ref->total_ref_mod = count_mod;
781
spin_lock_init(&head_ref->lock);
782
mutex_init(&head_ref->mutex);
783
784
/* If not metadata set an impossible level to help debugging. */
785
if (generic_ref->type == BTRFS_REF_METADATA)
786
head_ref->level = generic_ref->tree_ref.level;
787
else
788
head_ref->level = U8_MAX;
789
790
if (qrecord) {
791
if (generic_ref->ref_root && reserved) {
792
qrecord->data_rsv = reserved;
793
qrecord->data_rsv_refroot = generic_ref->ref_root;
794
}
795
qrecord->num_bytes = generic_ref->num_bytes;
796
qrecord->old_roots = NULL;
797
}
798
}
799
800
/*
801
* Helper function to actually insert a head node into the xarray. This does all
802
* the dirty work in terms of maintaining the correct overall modification
803
* count.
804
*
805
* The caller is responsible for calling kfree() on @qrecord. More specifically,
806
* if this function reports that it did not insert it as noted in
807
* @qrecord_inserted_ret, then it's safe to call kfree() on it.
808
*
809
* Returns an error pointer in case of an error.
810
*/
811
static noinline struct btrfs_delayed_ref_head *
812
add_delayed_ref_head(struct btrfs_trans_handle *trans,
813
struct btrfs_delayed_ref_head *head_ref,
814
struct btrfs_qgroup_extent_record *qrecord,
815
int action, bool *qrecord_inserted_ret)
816
{
817
struct btrfs_fs_info *fs_info = trans->fs_info;
818
struct btrfs_delayed_ref_head *existing;
819
struct btrfs_delayed_ref_root *delayed_refs;
820
const unsigned long index = (head_ref->bytenr >> fs_info->sectorsize_bits);
821
822
/*
823
* If 'qrecord_inserted_ret' is provided, then the first thing we need
824
* to do is to initialize it to false just in case we have an exit
825
* before trying to insert the record.
826
*/
827
if (qrecord_inserted_ret)
828
*qrecord_inserted_ret = false;
829
830
delayed_refs = &trans->transaction->delayed_refs;
831
lockdep_assert_held(&delayed_refs->lock);
832
833
#if BITS_PER_LONG == 32
834
if (head_ref->bytenr >= MAX_LFS_FILESIZE) {
835
if (qrecord)
836
xa_release(&delayed_refs->dirty_extents, index);
837
btrfs_err_rl(fs_info,
838
"delayed ref head %llu is beyond 32bit page cache and xarray index limit",
839
head_ref->bytenr);
840
btrfs_err_32bit_limit(fs_info);
841
return ERR_PTR(-EOVERFLOW);
842
}
843
#endif
844
845
/* Record qgroup extent info if provided */
846
if (qrecord) {
847
/*
848
* Setting 'qrecord' but not 'qrecord_inserted_ret' will likely
849
* result in a memory leakage.
850
*/
851
ASSERT(qrecord_inserted_ret != NULL);
852
853
int ret;
854
855
ret = btrfs_qgroup_trace_extent_nolock(fs_info, delayed_refs, qrecord,
856
head_ref->bytenr);
857
if (ret) {
858
/* Clean up if insertion fails or item exists. */
859
xa_release(&delayed_refs->dirty_extents, index);
860
if (ret < 0)
861
return ERR_PTR(ret);
862
} else if (qrecord_inserted_ret) {
863
*qrecord_inserted_ret = true;
864
}
865
}
866
867
trace_add_delayed_ref_head(fs_info, head_ref, action);
868
869
existing = xa_load(&delayed_refs->head_refs, index);
870
if (existing) {
871
update_existing_head_ref(trans, existing, head_ref);
872
/*
873
* we've updated the existing ref, free the newly
874
* allocated ref
875
*/
876
kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
877
head_ref = existing;
878
} else {
879
existing = xa_store(&delayed_refs->head_refs, index, head_ref, GFP_ATOMIC);
880
if (xa_is_err(existing)) {
881
/* Memory was preallocated by the caller. */
882
ASSERT(xa_err(existing) != -ENOMEM);
883
return ERR_PTR(xa_err(existing));
884
} else if (WARN_ON(existing)) {
885
/*
886
* Shouldn't happen we just did a lookup before under
887
* delayed_refs->lock.
888
*/
889
return ERR_PTR(-EEXIST);
890
}
891
head_ref->tracked = true;
892
/*
893
* We reserve the amount of bytes needed to delete csums when
894
* adding the ref head and not when adding individual drop refs
895
* since the csum items are deleted only after running the last
896
* delayed drop ref (the data extent's ref count drops to 0).
897
*/
898
if (head_ref->is_data && head_ref->ref_mod < 0) {
899
delayed_refs->pending_csums += head_ref->num_bytes;
900
trans->delayed_ref_csum_deletions +=
901
btrfs_csum_bytes_to_leaves(fs_info, head_ref->num_bytes);
902
}
903
delayed_refs->num_heads++;
904
delayed_refs->num_heads_ready++;
905
}
906
907
return head_ref;
908
}
909
910
/*
911
* Initialize the structure which represents a modification to an extent.
912
*
913
* @fs_info: Internal to the mounted filesystem mount structure.
914
*
915
* @ref: The structure which is going to be initialized.
916
*
917
* @bytenr: The logical address of the extent for which a modification is
918
* going to be recorded.
919
*
920
* @num_bytes: Size of the extent whose modification is being recorded.
921
*
922
* @ref_root: The id of the root where this modification has originated, this
923
* can be either one of the well-known metadata trees or the
924
* subvolume id which references this extent.
925
*
926
* @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
927
* BTRFS_ADD_DELAYED_EXTENT
928
*
929
* @ref_type: Holds the type of the extent which is being recorded, can be
930
* one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
931
* when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
932
* BTRFS_EXTENT_DATA_REF_KEY when recording data extent
933
*/
934
static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
935
struct btrfs_delayed_ref_node *ref,
936
struct btrfs_ref *generic_ref)
937
{
938
int action = generic_ref->action;
939
u64 seq = 0;
940
941
if (action == BTRFS_ADD_DELAYED_EXTENT)
942
action = BTRFS_ADD_DELAYED_REF;
943
944
if (btrfs_is_fstree(generic_ref->ref_root))
945
seq = atomic64_read(&fs_info->tree_mod_seq);
946
947
refcount_set(&ref->refs, 1);
948
ref->bytenr = generic_ref->bytenr;
949
ref->num_bytes = generic_ref->num_bytes;
950
ref->ref_mod = 1;
951
ref->action = action;
952
ref->seq = seq;
953
ref->type = btrfs_ref_type(generic_ref);
954
ref->ref_root = generic_ref->ref_root;
955
ref->parent = generic_ref->parent;
956
RB_CLEAR_NODE(&ref->ref_node);
957
INIT_LIST_HEAD(&ref->add_list);
958
959
if (generic_ref->type == BTRFS_REF_DATA)
960
ref->data_ref = generic_ref->data_ref;
961
else
962
ref->tree_ref = generic_ref->tree_ref;
963
}
964
965
void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root,
966
bool skip_qgroup)
967
{
968
#ifdef CONFIG_BTRFS_DEBUG
969
/* If @real_root not set, use @root as fallback */
970
generic_ref->real_root = mod_root ?: generic_ref->ref_root;
971
#endif
972
generic_ref->tree_ref.level = level;
973
generic_ref->type = BTRFS_REF_METADATA;
974
if (skip_qgroup || !(btrfs_is_fstree(generic_ref->ref_root) &&
975
(!mod_root || btrfs_is_fstree(mod_root))))
976
generic_ref->skip_qgroup = true;
977
else
978
generic_ref->skip_qgroup = false;
979
980
}
981
982
void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset,
983
u64 mod_root, bool skip_qgroup)
984
{
985
#ifdef CONFIG_BTRFS_DEBUG
986
/* If @real_root not set, use @root as fallback */
987
generic_ref->real_root = mod_root ?: generic_ref->ref_root;
988
#endif
989
generic_ref->data_ref.objectid = ino;
990
generic_ref->data_ref.offset = offset;
991
generic_ref->type = BTRFS_REF_DATA;
992
if (skip_qgroup || !(btrfs_is_fstree(generic_ref->ref_root) &&
993
(!mod_root || btrfs_is_fstree(mod_root))))
994
generic_ref->skip_qgroup = true;
995
else
996
generic_ref->skip_qgroup = false;
997
}
998
999
static int add_delayed_ref(struct btrfs_trans_handle *trans,
1000
struct btrfs_ref *generic_ref,
1001
struct btrfs_delayed_extent_op *extent_op,
1002
u64 reserved)
1003
{
1004
struct btrfs_fs_info *fs_info = trans->fs_info;
1005
struct btrfs_delayed_ref_node *node;
1006
struct btrfs_delayed_ref_head *head_ref;
1007
struct btrfs_delayed_ref_head *new_head_ref;
1008
struct btrfs_delayed_ref_root *delayed_refs;
1009
struct btrfs_qgroup_extent_record *record = NULL;
1010
const unsigned long index = (generic_ref->bytenr >> fs_info->sectorsize_bits);
1011
bool qrecord_reserved = false;
1012
bool qrecord_inserted;
1013
int action = generic_ref->action;
1014
bool merged;
1015
int ret;
1016
1017
node = kmem_cache_alloc(btrfs_delayed_ref_node_cachep, GFP_NOFS);
1018
if (!node)
1019
return -ENOMEM;
1020
1021
head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1022
if (!head_ref) {
1023
ret = -ENOMEM;
1024
goto free_node;
1025
}
1026
1027
delayed_refs = &trans->transaction->delayed_refs;
1028
1029
if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1030
record = kzalloc(sizeof(*record), GFP_NOFS);
1031
if (!record) {
1032
ret = -ENOMEM;
1033
goto free_head_ref;
1034
}
1035
if (xa_reserve(&delayed_refs->dirty_extents, index, GFP_NOFS)) {
1036
ret = -ENOMEM;
1037
goto free_record;
1038
}
1039
qrecord_reserved = true;
1040
}
1041
1042
ret = xa_reserve(&delayed_refs->head_refs, index, GFP_NOFS);
1043
if (ret) {
1044
if (qrecord_reserved)
1045
xa_release(&delayed_refs->dirty_extents, index);
1046
goto free_record;
1047
}
1048
1049
init_delayed_ref_common(fs_info, node, generic_ref);
1050
init_delayed_ref_head(head_ref, generic_ref, record, reserved);
1051
head_ref->extent_op = extent_op;
1052
1053
spin_lock(&delayed_refs->lock);
1054
1055
/*
1056
* insert both the head node and the new ref without dropping
1057
* the spin lock
1058
*/
1059
new_head_ref = add_delayed_ref_head(trans, head_ref, record,
1060
action, &qrecord_inserted);
1061
if (IS_ERR(new_head_ref)) {
1062
xa_release(&delayed_refs->head_refs, index);
1063
spin_unlock(&delayed_refs->lock);
1064
ret = PTR_ERR(new_head_ref);
1065
1066
/*
1067
* It's only safe to call kfree() on 'qrecord' if
1068
* add_delayed_ref_head() has _not_ inserted it for
1069
* tracing. Otherwise we need to handle this here.
1070
*/
1071
if (!qrecord_reserved || qrecord_inserted)
1072
goto free_head_ref;
1073
goto free_record;
1074
}
1075
head_ref = new_head_ref;
1076
1077
merged = insert_delayed_ref(trans, head_ref, node);
1078
spin_unlock(&delayed_refs->lock);
1079
1080
/*
1081
* Need to update the delayed_refs_rsv with any changes we may have
1082
* made.
1083
*/
1084
btrfs_update_delayed_refs_rsv(trans);
1085
1086
if (generic_ref->type == BTRFS_REF_DATA)
1087
trace_add_delayed_data_ref(trans->fs_info, node);
1088
else
1089
trace_add_delayed_tree_ref(trans->fs_info, node);
1090
if (merged)
1091
kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1092
1093
if (qrecord_inserted)
1094
return btrfs_qgroup_trace_extent_post(trans, record, generic_ref->bytenr);
1095
1096
kfree(record);
1097
return 0;
1098
1099
free_record:
1100
kfree(record);
1101
free_head_ref:
1102
kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1103
free_node:
1104
kmem_cache_free(btrfs_delayed_ref_node_cachep, node);
1105
return ret;
1106
}
1107
1108
/*
1109
* Add a delayed tree ref. This does all of the accounting required to make sure
1110
* the delayed ref is eventually processed before this transaction commits.
1111
*/
1112
int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1113
struct btrfs_ref *generic_ref,
1114
struct btrfs_delayed_extent_op *extent_op)
1115
{
1116
ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1117
return add_delayed_ref(trans, generic_ref, extent_op, 0);
1118
}
1119
1120
/*
1121
* add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1122
*/
1123
int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1124
struct btrfs_ref *generic_ref,
1125
u64 reserved)
1126
{
1127
ASSERT(generic_ref->type == BTRFS_REF_DATA && generic_ref->action);
1128
return add_delayed_ref(trans, generic_ref, NULL, reserved);
1129
}
1130
1131
int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1132
u64 bytenr, u64 num_bytes, u8 level,
1133
struct btrfs_delayed_extent_op *extent_op)
1134
{
1135
const unsigned long index = (bytenr >> trans->fs_info->sectorsize_bits);
1136
struct btrfs_delayed_ref_head *head_ref;
1137
struct btrfs_delayed_ref_head *head_ref_ret;
1138
struct btrfs_delayed_ref_root *delayed_refs;
1139
struct btrfs_ref generic_ref = {
1140
.type = BTRFS_REF_METADATA,
1141
.action = BTRFS_UPDATE_DELAYED_HEAD,
1142
.bytenr = bytenr,
1143
.num_bytes = num_bytes,
1144
.tree_ref.level = level,
1145
};
1146
int ret;
1147
1148
head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1149
if (!head_ref)
1150
return -ENOMEM;
1151
1152
init_delayed_ref_head(head_ref, &generic_ref, NULL, 0);
1153
head_ref->extent_op = extent_op;
1154
1155
delayed_refs = &trans->transaction->delayed_refs;
1156
1157
ret = xa_reserve(&delayed_refs->head_refs, index, GFP_NOFS);
1158
if (ret) {
1159
kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1160
return ret;
1161
}
1162
1163
spin_lock(&delayed_refs->lock);
1164
head_ref_ret = add_delayed_ref_head(trans, head_ref, NULL,
1165
BTRFS_UPDATE_DELAYED_HEAD, NULL);
1166
if (IS_ERR(head_ref_ret)) {
1167
xa_release(&delayed_refs->head_refs, index);
1168
spin_unlock(&delayed_refs->lock);
1169
kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1170
return PTR_ERR(head_ref_ret);
1171
}
1172
spin_unlock(&delayed_refs->lock);
1173
1174
/*
1175
* Need to update the delayed_refs_rsv with any changes we may have
1176
* made.
1177
*/
1178
btrfs_update_delayed_refs_rsv(trans);
1179
return 0;
1180
}
1181
1182
void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
1183
{
1184
if (refcount_dec_and_test(&ref->refs)) {
1185
WARN_ON(!RB_EMPTY_NODE(&ref->ref_node));
1186
kmem_cache_free(btrfs_delayed_ref_node_cachep, ref);
1187
}
1188
}
1189
1190
/*
1191
* This does a simple search for the head node for a given extent. Returns the
1192
* head node if found, or NULL if not.
1193
*/
1194
struct btrfs_delayed_ref_head *
1195
btrfs_find_delayed_ref_head(const struct btrfs_fs_info *fs_info,
1196
struct btrfs_delayed_ref_root *delayed_refs,
1197
u64 bytenr)
1198
{
1199
const unsigned long index = (bytenr >> fs_info->sectorsize_bits);
1200
1201
lockdep_assert_held(&delayed_refs->lock);
1202
1203
return xa_load(&delayed_refs->head_refs, index);
1204
}
1205
1206
static int find_comp(struct btrfs_delayed_ref_node *entry, u64 root, u64 parent)
1207
{
1208
int type = parent ? BTRFS_SHARED_BLOCK_REF_KEY : BTRFS_TREE_BLOCK_REF_KEY;
1209
1210
if (type < entry->type)
1211
return -1;
1212
if (type > entry->type)
1213
return 1;
1214
1215
if (type == BTRFS_TREE_BLOCK_REF_KEY) {
1216
if (root < entry->ref_root)
1217
return -1;
1218
if (root > entry->ref_root)
1219
return 1;
1220
} else {
1221
if (parent < entry->parent)
1222
return -1;
1223
if (parent > entry->parent)
1224
return 1;
1225
}
1226
return 0;
1227
}
1228
1229
/*
1230
* Check to see if a given root/parent reference is attached to the head. This
1231
* only checks for BTRFS_ADD_DELAYED_REF references that match, as that
1232
* indicates the reference exists for the given root or parent. This is for
1233
* tree blocks only.
1234
*
1235
* @head: the head of the bytenr we're searching.
1236
* @root: the root objectid of the reference if it is a normal reference.
1237
* @parent: the parent if this is a shared backref.
1238
*/
1239
bool btrfs_find_delayed_tree_ref(struct btrfs_delayed_ref_head *head,
1240
u64 root, u64 parent)
1241
{
1242
struct rb_node *node;
1243
bool found = false;
1244
1245
lockdep_assert_held(&head->mutex);
1246
1247
spin_lock(&head->lock);
1248
node = head->ref_tree.rb_root.rb_node;
1249
while (node) {
1250
struct btrfs_delayed_ref_node *entry;
1251
int ret;
1252
1253
entry = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
1254
ret = find_comp(entry, root, parent);
1255
if (ret < 0) {
1256
node = node->rb_left;
1257
} else if (ret > 0) {
1258
node = node->rb_right;
1259
} else {
1260
/*
1261
* We only want to count ADD actions, as drops mean the
1262
* ref doesn't exist.
1263
*/
1264
if (entry->action == BTRFS_ADD_DELAYED_REF)
1265
found = true;
1266
break;
1267
}
1268
}
1269
spin_unlock(&head->lock);
1270
return found;
1271
}
1272
1273
void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans)
1274
{
1275
struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs;
1276
struct btrfs_fs_info *fs_info = trans->fs_info;
1277
1278
spin_lock(&delayed_refs->lock);
1279
while (true) {
1280
struct btrfs_delayed_ref_head *head;
1281
struct rb_node *n;
1282
bool pin_bytes = false;
1283
1284
head = find_first_ref_head(delayed_refs);
1285
if (!head)
1286
break;
1287
1288
if (!btrfs_delayed_ref_lock(delayed_refs, head))
1289
continue;
1290
1291
spin_lock(&head->lock);
1292
while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
1293
struct btrfs_delayed_ref_node *ref;
1294
1295
ref = rb_entry(n, struct btrfs_delayed_ref_node, ref_node);
1296
drop_delayed_ref(fs_info, delayed_refs, head, ref);
1297
}
1298
if (head->must_insert_reserved)
1299
pin_bytes = true;
1300
btrfs_free_delayed_extent_op(head->extent_op);
1301
btrfs_delete_ref_head(fs_info, delayed_refs, head);
1302
spin_unlock(&head->lock);
1303
spin_unlock(&delayed_refs->lock);
1304
mutex_unlock(&head->mutex);
1305
1306
if (!btrfs_is_testing(fs_info) && pin_bytes) {
1307
struct btrfs_block_group *bg;
1308
1309
bg = btrfs_lookup_block_group(fs_info, head->bytenr);
1310
if (WARN_ON_ONCE(bg == NULL)) {
1311
/*
1312
* Unexpected and there's nothing we can do here
1313
* because we are in a transaction abort path,
1314
* so any errors can only be ignored or reported
1315
* while attempting to cleanup all resources.
1316
*/
1317
btrfs_err(fs_info,
1318
"block group for delayed ref at %llu was not found while destroying ref head",
1319
head->bytenr);
1320
} else {
1321
spin_lock(&bg->space_info->lock);
1322
spin_lock(&bg->lock);
1323
bg->pinned += head->num_bytes;
1324
btrfs_space_info_update_bytes_pinned(bg->space_info,
1325
head->num_bytes);
1326
bg->reserved -= head->num_bytes;
1327
bg->space_info->bytes_reserved -= head->num_bytes;
1328
spin_unlock(&bg->lock);
1329
spin_unlock(&bg->space_info->lock);
1330
1331
btrfs_put_block_group(bg);
1332
}
1333
1334
btrfs_error_unpin_extent_range(fs_info, head->bytenr,
1335
head->bytenr + head->num_bytes - 1);
1336
}
1337
if (!btrfs_is_testing(fs_info))
1338
btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1339
btrfs_put_delayed_ref_head(head);
1340
cond_resched();
1341
spin_lock(&delayed_refs->lock);
1342
}
1343
1344
if (!btrfs_is_testing(fs_info))
1345
btrfs_qgroup_destroy_extent_records(trans);
1346
1347
spin_unlock(&delayed_refs->lock);
1348
}
1349
1350
void __cold btrfs_delayed_ref_exit(void)
1351
{
1352
kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1353
kmem_cache_destroy(btrfs_delayed_ref_node_cachep);
1354
kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1355
}
1356
1357
int __init btrfs_delayed_ref_init(void)
1358
{
1359
btrfs_delayed_ref_head_cachep = KMEM_CACHE(btrfs_delayed_ref_head, 0);
1360
if (!btrfs_delayed_ref_head_cachep)
1361
return -ENOMEM;
1362
1363
btrfs_delayed_ref_node_cachep = KMEM_CACHE(btrfs_delayed_ref_node, 0);
1364
if (!btrfs_delayed_ref_node_cachep)
1365
goto fail;
1366
1367
btrfs_delayed_extent_op_cachep = KMEM_CACHE(btrfs_delayed_extent_op, 0);
1368
if (!btrfs_delayed_extent_op_cachep)
1369
goto fail;
1370
1371
return 0;
1372
fail:
1373
btrfs_delayed_ref_exit();
1374
return -ENOMEM;
1375
}
1376
1377