#include <linux/fsverity.h>
#include <linux/iomap.h>
#include "ctree.h"
#include "delalloc-space.h"
#include "direct-io.h"
#include "extent-tree.h"
#include "file.h"
#include "fs.h"
#include "transaction.h"
#include "volumes.h"
struct btrfs_dio_data {
ssize_t submitted;
struct extent_changeset *data_reserved;
struct btrfs_ordered_extent *ordered;
bool data_space_reserved;
bool nocow_done;
};
struct btrfs_dio_private {
u64 file_offset;
u32 bytes;
struct btrfs_bio bbio;
};
static struct bio_set btrfs_dio_bioset;
static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
struct extent_state **cached_state,
unsigned int iomap_flags)
{
const bool writing = (iomap_flags & IOMAP_WRITE);
const bool nowait = (iomap_flags & IOMAP_NOWAIT);
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct btrfs_ordered_extent *ordered;
int ret = 0;
if (nowait) {
if (!btrfs_try_lock_dio_extent(io_tree, lockstart, lockend, cached_state))
return -EAGAIN;
} else {
btrfs_lock_dio_extent(io_tree, lockstart, lockend, cached_state);
}
while (1) {
if (nowait) {
if (!btrfs_try_lock_extent(io_tree, lockstart, lockend,
cached_state)) {
ret = -EAGAIN;
break;
}
} else {
btrfs_lock_extent(io_tree, lockstart, lockend, cached_state);
}
ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
lockend - lockstart + 1);
if (!ordered &&
(!writing || !filemap_range_has_page(inode->i_mapping,
lockstart, lockend)))
break;
btrfs_unlock_extent(io_tree, lockstart, lockend, cached_state);
if (ordered) {
if (nowait) {
btrfs_put_ordered_extent(ordered);
ret = -EAGAIN;
break;
}
if (writing ||
test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
btrfs_start_ordered_extent(ordered);
else
ret = nowait ? -EAGAIN : -ENOTBLK;
btrfs_put_ordered_extent(ordered);
} else {
ret = nowait ? -EAGAIN : -ENOTBLK;
}
if (ret)
break;
cond_resched();
}
if (ret)
btrfs_unlock_dio_extent(io_tree, lockstart, lockend, cached_state);
return ret;
}
static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
struct btrfs_dio_data *dio_data,
const u64 start,
const struct btrfs_file_extent *file_extent,
const int type)
{
struct extent_map *em = NULL;
struct btrfs_ordered_extent *ordered;
if (type != BTRFS_ORDERED_NOCOW) {
em = btrfs_create_io_em(inode, start, file_extent, type);
if (IS_ERR(em))
goto out;
}
ordered = btrfs_alloc_ordered_extent(inode, start, file_extent,
(1U << type) |
(1U << BTRFS_ORDERED_DIRECT));
if (IS_ERR(ordered)) {
if (em) {
btrfs_free_extent_map(em);
btrfs_drop_extent_map_range(inode, start,
start + file_extent->num_bytes - 1, false);
}
em = ERR_CAST(ordered);
} else {
ASSERT(!dio_data->ordered);
dio_data->ordered = ordered;
}
out:
return em;
}
static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
struct btrfs_dio_data *dio_data,
u64 start, u64 len)
{
struct btrfs_root *root = inode->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_file_extent file_extent;
struct extent_map *em;
struct btrfs_key ins;
u64 alloc_hint;
int ret;
alloc_hint = btrfs_get_extent_allocation_hint(inode, start, len);
again:
ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
0, alloc_hint, &ins, 1, 1);
if (ret == -EAGAIN) {
ASSERT(btrfs_is_zoned(fs_info));
wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
TASK_UNINTERRUPTIBLE);
goto again;
}
if (ret)
return ERR_PTR(ret);
file_extent.disk_bytenr = ins.objectid;
file_extent.disk_num_bytes = ins.offset;
file_extent.num_bytes = ins.offset;
file_extent.ram_bytes = ins.offset;
file_extent.offset = 0;
file_extent.compression = BTRFS_COMPRESS_NONE;
em = btrfs_create_dio_extent(inode, dio_data, start, &file_extent,
BTRFS_ORDERED_REGULAR);
btrfs_dec_block_group_reservations(fs_info, ins.objectid);
if (IS_ERR(em))
btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true);
return em;
}
static int btrfs_get_blocks_direct_write(struct extent_map **map,
struct inode *inode,
struct btrfs_dio_data *dio_data,
u64 start, u64 *lenp,
unsigned int iomap_flags)
{
const bool nowait = (iomap_flags & IOMAP_NOWAIT);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct btrfs_file_extent file_extent;
struct extent_map *em = *map;
int type;
u64 block_start;
struct btrfs_block_group *bg;
bool can_nocow = false;
bool space_reserved = false;
u64 len = *lenp;
u64 prev_len;
int ret = 0;
if ((em->flags & EXTENT_FLAG_PREALLOC) ||
((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
em->disk_bytenr != EXTENT_MAP_HOLE)) {
if (em->flags & EXTENT_FLAG_PREALLOC)
type = BTRFS_ORDERED_PREALLOC;
else
type = BTRFS_ORDERED_NOCOW;
len = min(len, em->len - (start - em->start));
block_start = btrfs_extent_map_block_start(em) + (start - em->start);
if (can_nocow_extent(BTRFS_I(inode), start, &len, &file_extent,
false) == 1) {
bg = btrfs_inc_nocow_writers(fs_info, block_start);
if (bg)
can_nocow = true;
}
}
prev_len = len;
if (can_nocow) {
struct extent_map *em2;
ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
nowait);
if (ret < 0) {
btrfs_free_extent_map(em);
*map = NULL;
btrfs_dec_nocow_writers(bg);
if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
ret = -EAGAIN;
goto out;
}
space_reserved = true;
em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start,
&file_extent, type);
btrfs_dec_nocow_writers(bg);
if (type == BTRFS_ORDERED_PREALLOC) {
btrfs_free_extent_map(em);
*map = em2;
em = em2;
}
if (IS_ERR(em2)) {
ret = PTR_ERR(em2);
goto out;
}
dio_data->nocow_done = true;
} else {
btrfs_free_extent_map(em);
*map = NULL;
if (nowait) {
ret = -EAGAIN;
goto out;
}
if (!dio_data->data_space_reserved) {
ret = -ENOSPC;
goto out;
}
ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
false);
if (ret < 0)
goto out;
space_reserved = true;
em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
goto out;
}
*map = em;
len = min(len, em->len - (start - em->start));
if (len < prev_len)
btrfs_delalloc_release_metadata(BTRFS_I(inode),
prev_len - len, true);
}
btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
if (start + len > i_size_read(inode))
i_size_write(inode, start + len);
out:
if (ret && space_reserved) {
btrfs_delalloc_release_extents(BTRFS_I(inode), len);
btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
}
*lenp = len;
return ret;
}
static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
loff_t length, unsigned int flags, struct iomap *iomap,
struct iomap *srcmap)
{
struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct extent_map *em;
struct extent_state *cached_state = NULL;
struct btrfs_dio_data *dio_data = iter->private;
u64 lockstart, lockend;
const bool write = !!(flags & IOMAP_WRITE);
int ret = 0;
u64 len = length;
const u64 data_alloc_len = length;
u32 unlock_bits = EXTENT_LOCKED;
if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
return -EAGAIN;
if (!write)
len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
lockstart = start;
lockend = start + len - 1;
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
&BTRFS_I(inode)->runtime_flags)) {
if (flags & IOMAP_NOWAIT) {
if (filemap_range_needs_writeback(inode->i_mapping,
lockstart, lockend))
return -EAGAIN;
} else {
ret = filemap_fdatawrite_range(inode->i_mapping, start,
start + length - 1);
if (ret)
return ret;
}
}
memset(dio_data, 0, sizeof(*dio_data));
if (write && !(flags & IOMAP_NOWAIT)) {
ret = btrfs_check_data_free_space(BTRFS_I(inode),
&dio_data->data_reserved,
start, data_alloc_len, false);
if (!ret)
dio_data->data_space_reserved = true;
else if (!(BTRFS_I(inode)->flags &
(BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
goto err;
}
ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
if (ret < 0)
goto err;
em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
goto unlock_err;
}
if (btrfs_extent_map_is_compressed(em) || em->disk_bytenr == EXTENT_MAP_INLINE) {
btrfs_free_extent_map(em);
ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
goto unlock_err;
}
len = min(len, em->len - (start - em->start));
if ((flags & IOMAP_NOWAIT) && len < length) {
btrfs_free_extent_map(em);
ret = -EAGAIN;
goto unlock_err;
}
if (write) {
ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
start, &len, flags);
if (ret < 0)
goto unlock_err;
len = min(len, em->len - (start - em->start));
if (dio_data->data_space_reserved) {
u64 release_offset;
u64 release_len = 0;
if (dio_data->nocow_done) {
release_offset = start;
release_len = data_alloc_len;
} else if (len < data_alloc_len) {
release_offset = start + len;
release_len = data_alloc_len - len;
}
if (release_len > 0)
btrfs_free_reserved_data_space(BTRFS_I(inode),
dio_data->data_reserved,
release_offset,
release_len);
}
}
if ((em->disk_bytenr == EXTENT_MAP_HOLE) ||
((em->flags & EXTENT_FLAG_PREALLOC) && !write)) {
iomap->addr = IOMAP_NULL_ADDR;
iomap->type = IOMAP_HOLE;
} else {
iomap->addr = btrfs_extent_map_block_start(em) + (start - em->start);
iomap->type = IOMAP_MAPPED;
}
iomap->offset = start;
iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
iomap->length = len;
btrfs_free_extent_map(em);
if (write)
unlock_bits |= EXTENT_DIO_LOCKED;
btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
unlock_bits, &cached_state);
if (!write && (start + len) < lockend)
btrfs_unlock_dio_extent(&BTRFS_I(inode)->io_tree, start + len,
lockend, NULL);
return 0;
unlock_err:
btrfs_clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
EXTENT_LOCKED | EXTENT_DIO_LOCKED, &cached_state);
err:
if (dio_data->data_space_reserved) {
btrfs_free_reserved_data_space(BTRFS_I(inode),
dio_data->data_reserved,
start, data_alloc_len);
extent_changeset_free(dio_data->data_reserved);
}
return ret;
}
static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
ssize_t written, unsigned int flags, struct iomap *iomap)
{
struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
struct btrfs_dio_data *dio_data = iter->private;
size_t submitted = dio_data->submitted;
const bool write = !!(flags & IOMAP_WRITE);
int ret = 0;
if (!write && (iomap->type == IOMAP_HOLE)) {
btrfs_unlock_dio_extent(&BTRFS_I(inode)->io_tree, pos,
pos + length - 1, NULL);
return 0;
}
if (submitted < length) {
pos += submitted;
length -= submitted;
if (write)
btrfs_finish_ordered_extent(dio_data->ordered, NULL,
pos, length, false);
else
btrfs_unlock_dio_extent(&BTRFS_I(inode)->io_tree, pos,
pos + length - 1, NULL);
ret = -ENOTBLK;
}
if (write) {
btrfs_put_ordered_extent(dio_data->ordered);
dio_data->ordered = NULL;
}
if (write)
extent_changeset_free(dio_data->data_reserved);
return ret;
}
static void btrfs_dio_end_io(struct btrfs_bio *bbio)
{
struct btrfs_dio_private *dip =
container_of(bbio, struct btrfs_dio_private, bbio);
struct btrfs_inode *inode = bbio->inode;
struct bio *bio = &bbio->bio;
if (bio->bi_status) {
btrfs_warn(inode->root->fs_info,
"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
btrfs_ino(inode), bio->bi_opf,
dip->file_offset, dip->bytes, bio->bi_status);
}
if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
btrfs_finish_ordered_extent(bbio->ordered, NULL,
dip->file_offset, dip->bytes,
!bio->bi_status);
} else {
btrfs_unlock_dio_extent(&inode->io_tree, dip->file_offset,
dip->file_offset + dip->bytes - 1, NULL);
}
bbio->bio.bi_private = bbio->private;
iomap_dio_bio_end_io(bio);
}
static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
struct btrfs_ordered_extent *ordered)
{
u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
u64 len = bbio->bio.bi_iter.bi_size;
struct btrfs_ordered_extent *new;
int ret;
if (WARN_ON_ONCE(start != ordered->disk_bytenr))
return -EINVAL;
if (ordered->disk_num_bytes == len) {
refcount_inc(&ordered->refs);
bbio->ordered = ordered;
return 0;
}
if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
ret = btrfs_split_extent_map(bbio->inode, bbio->file_offset,
ordered->num_bytes, len,
ordered->disk_bytenr);
if (ret)
return ret;
}
new = btrfs_split_ordered_extent(ordered, len);
if (IS_ERR(new))
return PTR_ERR(new);
bbio->ordered = new;
return 0;
}
static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
loff_t file_offset)
{
struct btrfs_bio *bbio = btrfs_bio(bio);
struct btrfs_dio_private *dip =
container_of(bbio, struct btrfs_dio_private, bbio);
struct btrfs_dio_data *dio_data = iter->private;
btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
btrfs_dio_end_io, bio->bi_private);
bbio->inode = BTRFS_I(iter->inode);
bbio->file_offset = file_offset;
dip->file_offset = file_offset;
dip->bytes = bio->bi_iter.bi_size;
dio_data->submitted += bio->bi_iter.bi_size;
if (iter->flags & IOMAP_WRITE) {
int ret;
ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
if (ret) {
btrfs_finish_ordered_extent(dio_data->ordered, NULL,
file_offset, dip->bytes,
!ret);
bio->bi_status = errno_to_blk_status(ret);
iomap_dio_bio_end_io(bio);
return;
}
}
btrfs_submit_bbio(bbio, 0);
}
static const struct iomap_ops btrfs_dio_iomap_ops = {
.iomap_begin = btrfs_dio_iomap_begin,
.iomap_end = btrfs_dio_iomap_end,
};
static const struct iomap_dio_ops btrfs_dio_ops = {
.submit_io = btrfs_dio_submit_io,
.bio_set = &btrfs_dio_bioset,
};
static ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter,
size_t done_before)
{
struct btrfs_dio_data data = { 0 };
return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
IOMAP_DIO_PARTIAL, &data, done_before);
}
static struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
size_t done_before)
{
struct btrfs_dio_data data = { 0 };
return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
IOMAP_DIO_PARTIAL, &data, done_before);
}
static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
const struct iov_iter *iter, loff_t offset)
{
const u32 blocksize_mask = fs_info->sectorsize - 1;
if (offset & blocksize_mask)
return -EINVAL;
if (iov_iter_alignment(iter) & blocksize_mask)
return -EINVAL;
return 0;
}
ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
loff_t pos;
ssize_t written = 0;
ssize_t written_buffered;
size_t prev_left = 0;
loff_t endbyte;
ssize_t ret;
unsigned int ilock_flags = 0;
struct iomap_dio *dio;
if (iocb->ki_flags & IOCB_NOWAIT)
ilock_flags |= BTRFS_ILOCK_TRY;
if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
ilock_flags |= BTRFS_ILOCK_SHARED;
relock:
ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
if (ret < 0)
return ret;
if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
ilock_flags &= ~BTRFS_ILOCK_SHARED;
goto relock;
}
ret = generic_write_checks(iocb, from);
if (ret <= 0) {
btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
return ret;
}
ret = btrfs_write_check(iocb, ret);
if (ret < 0) {
btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
goto out;
}
pos = iocb->ki_pos;
if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
pos + iov_iter_count(from) > i_size_read(inode)) {
btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
ilock_flags &= ~BTRFS_ILOCK_SHARED;
goto relock;
}
if (check_direct_IO(fs_info, from, pos)) {
btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
goto buffered;
}
if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
goto buffered;
}
again:
from->nofault = true;
dio = btrfs_dio_write(iocb, from, written);
from->nofault = false;
if (IS_ERR_OR_NULL(dio)) {
ret = PTR_ERR_OR_ZERO(dio);
} else {
ASSERT(current->journal_info == NULL);
current->journal_info = BTRFS_TRANS_DIO_WRITE_STUB;
ret = iomap_dio_complete(dio);
current->journal_info = NULL;
}
if (ret > 0)
written = ret;
if (iov_iter_count(from) > 0 && (ret == -EFAULT || ret > 0)) {
const size_t left = iov_iter_count(from);
if (left == prev_left) {
ret = -ENOTBLK;
} else {
fault_in_iov_iter_readable(from, left);
prev_left = left;
goto again;
}
}
btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
if ((ret < 0 && ret != -ENOTBLK) || !iov_iter_count(from))
goto out;
buffered:
if (iocb->ki_flags & IOCB_NOWAIT) {
ret = -EAGAIN;
goto out;
}
pos = iocb->ki_pos;
written_buffered = btrfs_buffered_write(iocb, from);
if (written_buffered < 0) {
ret = written_buffered;
goto out;
}
endbyte = pos + written_buffered - 1;
ret = btrfs_fdatawrite_range(BTRFS_I(inode), pos, endbyte);
if (ret)
goto out;
ret = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
if (ret)
goto out;
written += written_buffered;
iocb->ki_pos = pos + written_buffered;
invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
endbyte >> PAGE_SHIFT);
out:
return ret < 0 ? ret : written;
}
static int check_direct_read(struct btrfs_fs_info *fs_info,
const struct iov_iter *iter, loff_t offset)
{
int ret;
int i, seg;
ret = check_direct_IO(fs_info, iter, offset);
if (ret < 0)
return ret;
if (!iter_is_iovec(iter))
return 0;
for (seg = 0; seg < iter->nr_segs; seg++) {
for (i = seg + 1; i < iter->nr_segs; i++) {
const struct iovec *iov1 = iter_iov(iter) + seg;
const struct iovec *iov2 = iter_iov(iter) + i;
if (iov1->iov_base == iov2->iov_base)
return -EINVAL;
}
}
return 0;
}
ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
{
struct inode *inode = file_inode(iocb->ki_filp);
size_t prev_left = 0;
ssize_t read = 0;
ssize_t ret;
if (fsverity_active(inode))
return 0;
if (check_direct_read(inode_to_fs_info(inode), to, iocb->ki_pos))
return 0;
btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
again:
pagefault_disable();
to->nofault = true;
ret = btrfs_dio_read(iocb, to, read);
to->nofault = false;
pagefault_enable();
if (ret > 0)
read = ret;
if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
const size_t left = iov_iter_count(to);
if (left == prev_left) {
ret = read;
} else {
fault_in_iov_iter_writeable(to, left);
prev_left = left;
goto again;
}
}
btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
return ret < 0 ? ret : read;
}
int __init btrfs_init_dio(void)
{
if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
offsetof(struct btrfs_dio_private, bbio.bio),
BIOSET_NEED_BVECS))
return -ENOMEM;
return 0;
}
void __cold btrfs_destroy_dio(void)
{
bioset_exit(&btrfs_dio_bioset);
}