Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/extent-tree.c
49692 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2007 Oracle. All rights reserved.
4
*/
5
6
#include <linux/sched.h>
7
#include <linux/sched/signal.h>
8
#include <linux/pagemap.h>
9
#include <linux/writeback.h>
10
#include <linux/blkdev.h>
11
#include <linux/sort.h>
12
#include <linux/rcupdate.h>
13
#include <linux/kthread.h>
14
#include <linux/slab.h>
15
#include <linux/ratelimit.h>
16
#include <linux/percpu_counter.h>
17
#include <linux/lockdep.h>
18
#include <linux/crc32c.h>
19
#include "ctree.h"
20
#include "extent-tree.h"
21
#include "transaction.h"
22
#include "disk-io.h"
23
#include "print-tree.h"
24
#include "volumes.h"
25
#include "raid56.h"
26
#include "locking.h"
27
#include "free-space-cache.h"
28
#include "free-space-tree.h"
29
#include "qgroup.h"
30
#include "ref-verify.h"
31
#include "space-info.h"
32
#include "block-rsv.h"
33
#include "discard.h"
34
#include "zoned.h"
35
#include "dev-replace.h"
36
#include "fs.h"
37
#include "accessors.h"
38
#include "root-tree.h"
39
#include "file-item.h"
40
#include "orphan.h"
41
#include "tree-checker.h"
42
#include "raid-stripe-tree.h"
43
#include "delayed-inode.h"
44
45
#undef SCRAMBLE_DELAYED_REFS
46
47
48
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
49
struct btrfs_delayed_ref_head *href,
50
const struct btrfs_delayed_ref_node *node,
51
struct btrfs_delayed_extent_op *extra_op);
52
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
53
struct extent_buffer *leaf,
54
struct btrfs_extent_item *ei);
55
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
56
u64 parent, u64 root_objectid,
57
u64 flags, u64 owner, u64 offset,
58
struct btrfs_key *ins, int ref_mod, u64 oref_root);
59
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
60
const struct btrfs_delayed_ref_node *node,
61
struct btrfs_delayed_extent_op *extent_op);
62
static int find_next_key(const struct btrfs_path *path, int level,
63
struct btrfs_key *key);
64
65
static int block_group_bits(const struct btrfs_block_group *cache, u64 bits)
66
{
67
return (cache->flags & bits) == bits;
68
}
69
70
/* simple helper to search for an existing data extent at a given offset */
71
int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
72
{
73
struct btrfs_root *root = btrfs_extent_root(fs_info, start);
74
struct btrfs_key key;
75
BTRFS_PATH_AUTO_FREE(path);
76
77
path = btrfs_alloc_path();
78
if (!path)
79
return -ENOMEM;
80
81
key.objectid = start;
82
key.type = BTRFS_EXTENT_ITEM_KEY;
83
key.offset = len;
84
return btrfs_search_slot(NULL, root, &key, path, 0, 0);
85
}
86
87
/*
88
* helper function to lookup reference count and flags of a tree block.
89
*
90
* the head node for delayed ref is used to store the sum of all the
91
* reference count modifications queued up in the rbtree. the head
92
* node may also store the extent flags to set. This way you can check
93
* to see what the reference count and extent flags would be if all of
94
* the delayed refs are not processed.
95
*/
96
int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
97
struct btrfs_fs_info *fs_info, u64 bytenr,
98
u64 offset, int metadata, u64 *refs, u64 *flags,
99
u64 *owning_root)
100
{
101
struct btrfs_root *extent_root;
102
struct btrfs_delayed_ref_head *head;
103
struct btrfs_delayed_ref_root *delayed_refs;
104
BTRFS_PATH_AUTO_FREE(path);
105
struct btrfs_key key;
106
u64 num_refs;
107
u64 extent_flags;
108
u64 owner = 0;
109
int ret;
110
111
/*
112
* If we don't have skinny metadata, don't bother doing anything
113
* different
114
*/
115
if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
116
offset = fs_info->nodesize;
117
metadata = 0;
118
}
119
120
path = btrfs_alloc_path();
121
if (!path)
122
return -ENOMEM;
123
124
search_again:
125
key.objectid = bytenr;
126
if (metadata)
127
key.type = BTRFS_METADATA_ITEM_KEY;
128
else
129
key.type = BTRFS_EXTENT_ITEM_KEY;
130
key.offset = offset;
131
132
extent_root = btrfs_extent_root(fs_info, bytenr);
133
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
134
if (ret < 0)
135
return ret;
136
137
if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) {
138
if (path->slots[0]) {
139
path->slots[0]--;
140
btrfs_item_key_to_cpu(path->nodes[0], &key,
141
path->slots[0]);
142
if (key.objectid == bytenr &&
143
key.type == BTRFS_EXTENT_ITEM_KEY &&
144
key.offset == fs_info->nodesize)
145
ret = 0;
146
}
147
}
148
149
if (ret == 0) {
150
struct extent_buffer *leaf = path->nodes[0];
151
struct btrfs_extent_item *ei;
152
const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
153
154
if (unlikely(item_size < sizeof(*ei))) {
155
ret = -EUCLEAN;
156
btrfs_err(fs_info,
157
"unexpected extent item size, has %u expect >= %zu",
158
item_size, sizeof(*ei));
159
btrfs_abort_transaction(trans, ret);
160
return ret;
161
}
162
163
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
164
num_refs = btrfs_extent_refs(leaf, ei);
165
if (unlikely(num_refs == 0)) {
166
ret = -EUCLEAN;
167
btrfs_err(fs_info,
168
"unexpected zero reference count for extent item " BTRFS_KEY_FMT,
169
BTRFS_KEY_FMT_VALUE(&key));
170
btrfs_abort_transaction(trans, ret);
171
return ret;
172
}
173
extent_flags = btrfs_extent_flags(leaf, ei);
174
owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]);
175
} else {
176
num_refs = 0;
177
extent_flags = 0;
178
ret = 0;
179
}
180
181
delayed_refs = &trans->transaction->delayed_refs;
182
spin_lock(&delayed_refs->lock);
183
head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
184
if (head) {
185
if (!mutex_trylock(&head->mutex)) {
186
refcount_inc(&head->refs);
187
spin_unlock(&delayed_refs->lock);
188
189
btrfs_release_path(path);
190
191
/*
192
* Mutex was contended, block until it's released and try
193
* again
194
*/
195
mutex_lock(&head->mutex);
196
mutex_unlock(&head->mutex);
197
btrfs_put_delayed_ref_head(head);
198
goto search_again;
199
}
200
spin_lock(&head->lock);
201
if (head->extent_op && head->extent_op->update_flags)
202
extent_flags |= head->extent_op->flags_to_set;
203
204
num_refs += head->ref_mod;
205
spin_unlock(&head->lock);
206
mutex_unlock(&head->mutex);
207
}
208
spin_unlock(&delayed_refs->lock);
209
210
WARN_ON(num_refs == 0);
211
if (refs)
212
*refs = num_refs;
213
if (flags)
214
*flags = extent_flags;
215
if (owning_root)
216
*owning_root = owner;
217
218
return ret;
219
}
220
221
/*
222
* Back reference rules. Back refs have three main goals:
223
*
224
* 1) differentiate between all holders of references to an extent so that
225
* when a reference is dropped we can make sure it was a valid reference
226
* before freeing the extent.
227
*
228
* 2) Provide enough information to quickly find the holders of an extent
229
* if we notice a given block is corrupted or bad.
230
*
231
* 3) Make it easy to migrate blocks for FS shrinking or storage pool
232
* maintenance. This is actually the same as #2, but with a slightly
233
* different use case.
234
*
235
* There are two kinds of back refs. The implicit back refs is optimized
236
* for pointers in non-shared tree blocks. For a given pointer in a block,
237
* back refs of this kind provide information about the block's owner tree
238
* and the pointer's key. These information allow us to find the block by
239
* b-tree searching. The full back refs is for pointers in tree blocks not
240
* referenced by their owner trees. The location of tree block is recorded
241
* in the back refs. Actually the full back refs is generic, and can be
242
* used in all cases the implicit back refs is used. The major shortcoming
243
* of the full back refs is its overhead. Every time a tree block gets
244
* COWed, we have to update back refs entry for all pointers in it.
245
*
246
* For a newly allocated tree block, we use implicit back refs for
247
* pointers in it. This means most tree related operations only involve
248
* implicit back refs. For a tree block created in old transaction, the
249
* only way to drop a reference to it is COW it. So we can detect the
250
* event that tree block loses its owner tree's reference and do the
251
* back refs conversion.
252
*
253
* When a tree block is COWed through a tree, there are four cases:
254
*
255
* The reference count of the block is one and the tree is the block's
256
* owner tree. Nothing to do in this case.
257
*
258
* The reference count of the block is one and the tree is not the
259
* block's owner tree. In this case, full back refs is used for pointers
260
* in the block. Remove these full back refs, add implicit back refs for
261
* every pointers in the new block.
262
*
263
* The reference count of the block is greater than one and the tree is
264
* the block's owner tree. In this case, implicit back refs is used for
265
* pointers in the block. Add full back refs for every pointers in the
266
* block, increase lower level extents' reference counts. The original
267
* implicit back refs are entailed to the new block.
268
*
269
* The reference count of the block is greater than one and the tree is
270
* not the block's owner tree. Add implicit back refs for every pointer in
271
* the new block, increase lower level extents' reference count.
272
*
273
* Back Reference Key composing:
274
*
275
* The key objectid corresponds to the first byte in the extent,
276
* The key type is used to differentiate between types of back refs.
277
* There are different meanings of the key offset for different types
278
* of back refs.
279
*
280
* File extents can be referenced by:
281
*
282
* - multiple snapshots, subvolumes, or different generations in one subvol
283
* - different files inside a single subvolume
284
* - different offsets inside a file (bookend extents in file.c)
285
*
286
* The extent ref structure for the implicit back refs has fields for:
287
*
288
* - Objectid of the subvolume root
289
* - objectid of the file holding the reference
290
* - original offset in the file
291
* - how many bookend extents
292
*
293
* The key offset for the implicit back refs is hash of the first
294
* three fields.
295
*
296
* The extent ref structure for the full back refs has field for:
297
*
298
* - number of pointers in the tree leaf
299
*
300
* The key offset for the implicit back refs is the first byte of
301
* the tree leaf
302
*
303
* When a file extent is allocated, The implicit back refs is used.
304
* the fields are filled in:
305
*
306
* (root_key.objectid, inode objectid, offset in file, 1)
307
*
308
* When a file extent is removed file truncation, we find the
309
* corresponding implicit back refs and check the following fields:
310
*
311
* (btrfs_header_owner(leaf), inode objectid, offset in file)
312
*
313
* Btree extents can be referenced by:
314
*
315
* - Different subvolumes
316
*
317
* Both the implicit back refs and the full back refs for tree blocks
318
* only consist of key. The key offset for the implicit back refs is
319
* objectid of block's owner tree. The key offset for the full back refs
320
* is the first byte of parent block.
321
*
322
* When implicit back refs is used, information about the lowest key and
323
* level of the tree block are required. These information are stored in
324
* tree block info structure.
325
*/
326
327
/*
328
* is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
329
* is_data == BTRFS_REF_TYPE_DATA, data type is required,
330
* is_data == BTRFS_REF_TYPE_ANY, either type is OK.
331
*/
332
int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
333
const struct btrfs_extent_inline_ref *iref,
334
enum btrfs_inline_ref_type is_data)
335
{
336
struct btrfs_fs_info *fs_info = eb->fs_info;
337
int type = btrfs_extent_inline_ref_type(eb, iref);
338
u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
339
340
if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
341
ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
342
return type;
343
}
344
345
if (type == BTRFS_TREE_BLOCK_REF_KEY ||
346
type == BTRFS_SHARED_BLOCK_REF_KEY ||
347
type == BTRFS_SHARED_DATA_REF_KEY ||
348
type == BTRFS_EXTENT_DATA_REF_KEY) {
349
if (is_data == BTRFS_REF_TYPE_BLOCK) {
350
if (type == BTRFS_TREE_BLOCK_REF_KEY)
351
return type;
352
if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
353
ASSERT(fs_info);
354
/*
355
* Every shared one has parent tree block,
356
* which must be aligned to sector size.
357
*/
358
if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
359
return type;
360
}
361
} else if (is_data == BTRFS_REF_TYPE_DATA) {
362
if (type == BTRFS_EXTENT_DATA_REF_KEY)
363
return type;
364
if (type == BTRFS_SHARED_DATA_REF_KEY) {
365
ASSERT(fs_info);
366
/*
367
* Every shared one has parent tree block,
368
* which must be aligned to sector size.
369
*/
370
if (offset &&
371
IS_ALIGNED(offset, fs_info->sectorsize))
372
return type;
373
}
374
} else {
375
ASSERT(is_data == BTRFS_REF_TYPE_ANY);
376
return type;
377
}
378
}
379
380
WARN_ON(1);
381
btrfs_print_leaf(eb);
382
btrfs_err(fs_info,
383
"eb %llu iref 0x%lx invalid extent inline ref type %d",
384
eb->start, (unsigned long)iref, type);
385
386
return BTRFS_REF_TYPE_INVALID;
387
}
388
389
u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
390
{
391
u32 high_crc = ~(u32)0;
392
u32 low_crc = ~(u32)0;
393
__le64 lenum;
394
395
lenum = cpu_to_le64(root_objectid);
396
high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
397
lenum = cpu_to_le64(owner);
398
low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
399
lenum = cpu_to_le64(offset);
400
low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
401
402
return ((u64)high_crc << 31) ^ (u64)low_crc;
403
}
404
405
static u64 hash_extent_data_ref_item(const struct extent_buffer *leaf,
406
const struct btrfs_extent_data_ref *ref)
407
{
408
return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
409
btrfs_extent_data_ref_objectid(leaf, ref),
410
btrfs_extent_data_ref_offset(leaf, ref));
411
}
412
413
static bool match_extent_data_ref(const struct extent_buffer *leaf,
414
const struct btrfs_extent_data_ref *ref,
415
u64 root_objectid, u64 owner, u64 offset)
416
{
417
if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
418
btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
419
btrfs_extent_data_ref_offset(leaf, ref) != offset)
420
return false;
421
return true;
422
}
423
424
static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
425
struct btrfs_path *path,
426
u64 bytenr, u64 parent,
427
u64 root_objectid,
428
u64 owner, u64 offset)
429
{
430
struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
431
struct btrfs_key key;
432
struct btrfs_extent_data_ref *ref;
433
struct extent_buffer *leaf;
434
u32 nritems;
435
int recow;
436
int ret;
437
438
key.objectid = bytenr;
439
if (parent) {
440
key.type = BTRFS_SHARED_DATA_REF_KEY;
441
key.offset = parent;
442
} else {
443
key.type = BTRFS_EXTENT_DATA_REF_KEY;
444
key.offset = hash_extent_data_ref(root_objectid,
445
owner, offset);
446
}
447
again:
448
recow = 0;
449
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
450
if (ret < 0)
451
return ret;
452
453
if (parent) {
454
if (ret)
455
return -ENOENT;
456
return 0;
457
}
458
459
ret = -ENOENT;
460
leaf = path->nodes[0];
461
nritems = btrfs_header_nritems(leaf);
462
while (1) {
463
if (path->slots[0] >= nritems) {
464
ret = btrfs_next_leaf(root, path);
465
if (ret) {
466
if (ret > 0)
467
return -ENOENT;
468
return ret;
469
}
470
471
leaf = path->nodes[0];
472
nritems = btrfs_header_nritems(leaf);
473
recow = 1;
474
}
475
476
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
477
if (key.objectid != bytenr ||
478
key.type != BTRFS_EXTENT_DATA_REF_KEY)
479
goto fail;
480
481
ref = btrfs_item_ptr(leaf, path->slots[0],
482
struct btrfs_extent_data_ref);
483
484
if (match_extent_data_ref(leaf, ref, root_objectid,
485
owner, offset)) {
486
if (recow) {
487
btrfs_release_path(path);
488
goto again;
489
}
490
ret = 0;
491
break;
492
}
493
path->slots[0]++;
494
}
495
fail:
496
return ret;
497
}
498
499
static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
500
struct btrfs_path *path,
501
const struct btrfs_delayed_ref_node *node,
502
u64 bytenr)
503
{
504
struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
505
struct btrfs_key key;
506
struct extent_buffer *leaf;
507
u64 owner = btrfs_delayed_ref_owner(node);
508
u64 offset = btrfs_delayed_ref_offset(node);
509
u32 size;
510
u32 num_refs;
511
int ret;
512
513
key.objectid = bytenr;
514
if (node->parent) {
515
key.type = BTRFS_SHARED_DATA_REF_KEY;
516
key.offset = node->parent;
517
size = sizeof(struct btrfs_shared_data_ref);
518
} else {
519
key.type = BTRFS_EXTENT_DATA_REF_KEY;
520
key.offset = hash_extent_data_ref(node->ref_root, owner, offset);
521
size = sizeof(struct btrfs_extent_data_ref);
522
}
523
524
ret = btrfs_insert_empty_item(trans, root, path, &key, size);
525
if (ret && ret != -EEXIST)
526
goto fail;
527
528
leaf = path->nodes[0];
529
if (node->parent) {
530
struct btrfs_shared_data_ref *ref;
531
ref = btrfs_item_ptr(leaf, path->slots[0],
532
struct btrfs_shared_data_ref);
533
if (ret == 0) {
534
btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod);
535
} else {
536
num_refs = btrfs_shared_data_ref_count(leaf, ref);
537
num_refs += node->ref_mod;
538
btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
539
}
540
} else {
541
struct btrfs_extent_data_ref *ref;
542
while (ret == -EEXIST) {
543
ref = btrfs_item_ptr(leaf, path->slots[0],
544
struct btrfs_extent_data_ref);
545
if (match_extent_data_ref(leaf, ref, node->ref_root,
546
owner, offset))
547
break;
548
btrfs_release_path(path);
549
key.offset++;
550
ret = btrfs_insert_empty_item(trans, root, path, &key,
551
size);
552
if (ret && ret != -EEXIST)
553
goto fail;
554
555
leaf = path->nodes[0];
556
}
557
ref = btrfs_item_ptr(leaf, path->slots[0],
558
struct btrfs_extent_data_ref);
559
if (ret == 0) {
560
btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root);
561
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
562
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
563
btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod);
564
} else {
565
num_refs = btrfs_extent_data_ref_count(leaf, ref);
566
num_refs += node->ref_mod;
567
btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
568
}
569
}
570
ret = 0;
571
fail:
572
btrfs_release_path(path);
573
return ret;
574
}
575
576
static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
577
struct btrfs_root *root,
578
struct btrfs_path *path,
579
int refs_to_drop)
580
{
581
struct btrfs_key key;
582
struct btrfs_extent_data_ref *ref1 = NULL;
583
struct btrfs_shared_data_ref *ref2 = NULL;
584
struct extent_buffer *leaf;
585
u32 num_refs = 0;
586
int ret = 0;
587
588
leaf = path->nodes[0];
589
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
590
591
if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
592
ref1 = btrfs_item_ptr(leaf, path->slots[0],
593
struct btrfs_extent_data_ref);
594
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
595
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
596
ref2 = btrfs_item_ptr(leaf, path->slots[0],
597
struct btrfs_shared_data_ref);
598
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
599
} else {
600
btrfs_err(trans->fs_info,
601
"unrecognized backref key " BTRFS_KEY_FMT,
602
BTRFS_KEY_FMT_VALUE(&key));
603
btrfs_abort_transaction(trans, -EUCLEAN);
604
return -EUCLEAN;
605
}
606
607
BUG_ON(num_refs < refs_to_drop);
608
num_refs -= refs_to_drop;
609
610
if (num_refs == 0) {
611
ret = btrfs_del_item(trans, root, path);
612
} else {
613
if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
614
btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
615
else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
616
btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
617
}
618
return ret;
619
}
620
621
static noinline u32 extent_data_ref_count(const struct btrfs_path *path,
622
const struct btrfs_extent_inline_ref *iref)
623
{
624
struct btrfs_key key;
625
struct extent_buffer *leaf;
626
const struct btrfs_extent_data_ref *ref1;
627
const struct btrfs_shared_data_ref *ref2;
628
u32 num_refs = 0;
629
int type;
630
631
leaf = path->nodes[0];
632
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
633
634
if (iref) {
635
/*
636
* If type is invalid, we should have bailed out earlier than
637
* this call.
638
*/
639
type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
640
ASSERT(type != BTRFS_REF_TYPE_INVALID);
641
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
642
ref1 = (const struct btrfs_extent_data_ref *)(&iref->offset);
643
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
644
} else {
645
ref2 = (const struct btrfs_shared_data_ref *)(iref + 1);
646
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
647
}
648
} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
649
ref1 = btrfs_item_ptr(leaf, path->slots[0],
650
struct btrfs_extent_data_ref);
651
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
652
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
653
ref2 = btrfs_item_ptr(leaf, path->slots[0],
654
struct btrfs_shared_data_ref);
655
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
656
} else {
657
WARN_ON(1);
658
}
659
return num_refs;
660
}
661
662
static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
663
struct btrfs_path *path,
664
u64 bytenr, u64 parent,
665
u64 root_objectid)
666
{
667
struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
668
struct btrfs_key key;
669
int ret;
670
671
key.objectid = bytenr;
672
if (parent) {
673
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
674
key.offset = parent;
675
} else {
676
key.type = BTRFS_TREE_BLOCK_REF_KEY;
677
key.offset = root_objectid;
678
}
679
680
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
681
if (ret > 0)
682
ret = -ENOENT;
683
return ret;
684
}
685
686
static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
687
struct btrfs_path *path,
688
const struct btrfs_delayed_ref_node *node,
689
u64 bytenr)
690
{
691
struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
692
struct btrfs_key key;
693
int ret;
694
695
key.objectid = bytenr;
696
if (node->parent) {
697
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
698
key.offset = node->parent;
699
} else {
700
key.type = BTRFS_TREE_BLOCK_REF_KEY;
701
key.offset = node->ref_root;
702
}
703
704
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
705
btrfs_release_path(path);
706
return ret;
707
}
708
709
static inline int extent_ref_type(u64 parent, u64 owner)
710
{
711
int type;
712
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
713
if (parent > 0)
714
type = BTRFS_SHARED_BLOCK_REF_KEY;
715
else
716
type = BTRFS_TREE_BLOCK_REF_KEY;
717
} else {
718
if (parent > 0)
719
type = BTRFS_SHARED_DATA_REF_KEY;
720
else
721
type = BTRFS_EXTENT_DATA_REF_KEY;
722
}
723
return type;
724
}
725
726
static int find_next_key(const struct btrfs_path *path, int level,
727
struct btrfs_key *key)
728
729
{
730
for (; level < BTRFS_MAX_LEVEL; level++) {
731
if (!path->nodes[level])
732
break;
733
if (path->slots[level] + 1 >=
734
btrfs_header_nritems(path->nodes[level]))
735
continue;
736
if (level == 0)
737
btrfs_item_key_to_cpu(path->nodes[level], key,
738
path->slots[level] + 1);
739
else
740
btrfs_node_key_to_cpu(path->nodes[level], key,
741
path->slots[level] + 1);
742
return 0;
743
}
744
return 1;
745
}
746
747
/*
748
* look for inline back ref. if back ref is found, *ref_ret is set
749
* to the address of inline back ref, and 0 is returned.
750
*
751
* if back ref isn't found, *ref_ret is set to the address where it
752
* should be inserted, and -ENOENT is returned.
753
*
754
* if insert is true and there are too many inline back refs, the path
755
* points to the extent item, and -EAGAIN is returned.
756
*
757
* NOTE: inline back refs are ordered in the same way that back ref
758
* items in the tree are ordered.
759
*/
760
static noinline_for_stack
761
int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
762
struct btrfs_path *path,
763
struct btrfs_extent_inline_ref **ref_ret,
764
u64 bytenr, u64 num_bytes,
765
u64 parent, u64 root_objectid,
766
u64 owner, u64 offset, int insert)
767
{
768
struct btrfs_fs_info *fs_info = trans->fs_info;
769
struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
770
struct btrfs_key key;
771
struct extent_buffer *leaf;
772
struct btrfs_extent_item *ei;
773
struct btrfs_extent_inline_ref *iref;
774
u64 flags;
775
u64 item_size;
776
unsigned long ptr;
777
unsigned long end;
778
int extra_size;
779
int type;
780
int want;
781
int ret;
782
bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
783
int needed;
784
785
key.objectid = bytenr;
786
key.type = BTRFS_EXTENT_ITEM_KEY;
787
key.offset = num_bytes;
788
789
want = extent_ref_type(parent, owner);
790
if (insert) {
791
extra_size = btrfs_extent_inline_ref_size(want);
792
path->search_for_extension = true;
793
} else
794
extra_size = -1;
795
796
/*
797
* Owner is our level, so we can just add one to get the level for the
798
* block we are interested in.
799
*/
800
if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
801
key.type = BTRFS_METADATA_ITEM_KEY;
802
key.offset = owner;
803
}
804
805
again:
806
ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
807
if (ret < 0)
808
goto out;
809
810
/*
811
* We may be a newly converted file system which still has the old fat
812
* extent entries for metadata, so try and see if we have one of those.
813
*/
814
if (ret > 0 && skinny_metadata) {
815
skinny_metadata = false;
816
if (path->slots[0]) {
817
path->slots[0]--;
818
btrfs_item_key_to_cpu(path->nodes[0], &key,
819
path->slots[0]);
820
if (key.objectid == bytenr &&
821
key.type == BTRFS_EXTENT_ITEM_KEY &&
822
key.offset == num_bytes)
823
ret = 0;
824
}
825
if (ret) {
826
key.objectid = bytenr;
827
key.type = BTRFS_EXTENT_ITEM_KEY;
828
key.offset = num_bytes;
829
btrfs_release_path(path);
830
goto again;
831
}
832
}
833
834
if (ret && !insert) {
835
ret = -ENOENT;
836
goto out;
837
} else if (WARN_ON(ret)) {
838
btrfs_print_leaf(path->nodes[0]);
839
btrfs_err(fs_info,
840
"extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
841
bytenr, num_bytes, parent, root_objectid, owner,
842
offset);
843
ret = -EUCLEAN;
844
goto out;
845
}
846
847
leaf = path->nodes[0];
848
item_size = btrfs_item_size(leaf, path->slots[0]);
849
if (unlikely(item_size < sizeof(*ei))) {
850
ret = -EUCLEAN;
851
btrfs_err(fs_info,
852
"unexpected extent item size, has %llu expect >= %zu",
853
item_size, sizeof(*ei));
854
btrfs_abort_transaction(trans, ret);
855
goto out;
856
}
857
858
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
859
flags = btrfs_extent_flags(leaf, ei);
860
861
ptr = (unsigned long)(ei + 1);
862
end = (unsigned long)ei + item_size;
863
864
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
865
ptr += sizeof(struct btrfs_tree_block_info);
866
BUG_ON(ptr > end);
867
}
868
869
if (owner >= BTRFS_FIRST_FREE_OBJECTID)
870
needed = BTRFS_REF_TYPE_DATA;
871
else
872
needed = BTRFS_REF_TYPE_BLOCK;
873
874
ret = -ENOENT;
875
while (ptr < end) {
876
iref = (struct btrfs_extent_inline_ref *)ptr;
877
type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
878
if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
879
ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
880
ptr += btrfs_extent_inline_ref_size(type);
881
continue;
882
}
883
if (unlikely(type == BTRFS_REF_TYPE_INVALID)) {
884
ret = -EUCLEAN;
885
goto out;
886
}
887
888
if (want < type)
889
break;
890
if (want > type) {
891
ptr += btrfs_extent_inline_ref_size(type);
892
continue;
893
}
894
895
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
896
struct btrfs_extent_data_ref *dref;
897
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
898
if (match_extent_data_ref(leaf, dref, root_objectid,
899
owner, offset)) {
900
ret = 0;
901
break;
902
}
903
if (hash_extent_data_ref_item(leaf, dref) <
904
hash_extent_data_ref(root_objectid, owner, offset))
905
break;
906
} else {
907
u64 ref_offset;
908
ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
909
if (parent > 0) {
910
if (parent == ref_offset) {
911
ret = 0;
912
break;
913
}
914
if (ref_offset < parent)
915
break;
916
} else {
917
if (root_objectid == ref_offset) {
918
ret = 0;
919
break;
920
}
921
if (ref_offset < root_objectid)
922
break;
923
}
924
}
925
ptr += btrfs_extent_inline_ref_size(type);
926
}
927
928
if (unlikely(ptr > end)) {
929
ret = -EUCLEAN;
930
btrfs_print_leaf(path->nodes[0]);
931
btrfs_crit(fs_info,
932
"overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
933
path->slots[0], root_objectid, owner, offset, parent);
934
goto out;
935
}
936
937
if (ret == -ENOENT && insert) {
938
if (item_size + extra_size >=
939
BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
940
ret = -EAGAIN;
941
goto out;
942
}
943
944
if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) {
945
struct btrfs_key tmp_key;
946
947
btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1);
948
if (tmp_key.objectid == bytenr &&
949
tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
950
ret = -EAGAIN;
951
goto out;
952
}
953
goto out_no_entry;
954
}
955
956
if (!path->keep_locks) {
957
btrfs_release_path(path);
958
path->keep_locks = true;
959
goto again;
960
}
961
962
/*
963
* To add new inline back ref, we have to make sure
964
* there is no corresponding back ref item.
965
* For simplicity, we just do not add new inline back
966
* ref if there is any kind of item for this block
967
*/
968
if (find_next_key(path, 0, &key) == 0 &&
969
key.objectid == bytenr &&
970
key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
971
ret = -EAGAIN;
972
goto out;
973
}
974
}
975
out_no_entry:
976
*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
977
out:
978
if (path->keep_locks) {
979
path->keep_locks = false;
980
btrfs_unlock_up_safe(path, 1);
981
}
982
if (insert)
983
path->search_for_extension = false;
984
return ret;
985
}
986
987
/*
988
* helper to add new inline back ref
989
*/
990
static noinline_for_stack
991
void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
992
struct btrfs_path *path,
993
struct btrfs_extent_inline_ref *iref,
994
u64 parent, u64 root_objectid,
995
u64 owner, u64 offset, int refs_to_add,
996
struct btrfs_delayed_extent_op *extent_op)
997
{
998
struct extent_buffer *leaf;
999
struct btrfs_extent_item *ei;
1000
unsigned long ptr;
1001
unsigned long end;
1002
unsigned long item_offset;
1003
u64 refs;
1004
int size;
1005
int type;
1006
1007
leaf = path->nodes[0];
1008
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1009
item_offset = (unsigned long)iref - (unsigned long)ei;
1010
1011
type = extent_ref_type(parent, owner);
1012
size = btrfs_extent_inline_ref_size(type);
1013
1014
btrfs_extend_item(trans, path, size);
1015
1016
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1017
refs = btrfs_extent_refs(leaf, ei);
1018
refs += refs_to_add;
1019
btrfs_set_extent_refs(leaf, ei, refs);
1020
if (extent_op)
1021
__run_delayed_extent_op(extent_op, leaf, ei);
1022
1023
ptr = (unsigned long)ei + item_offset;
1024
end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1025
if (ptr < end - size)
1026
memmove_extent_buffer(leaf, ptr + size, ptr,
1027
end - size - ptr);
1028
1029
iref = (struct btrfs_extent_inline_ref *)ptr;
1030
btrfs_set_extent_inline_ref_type(leaf, iref, type);
1031
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1032
struct btrfs_extent_data_ref *dref;
1033
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1034
btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1035
btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1036
btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1037
btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1038
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1039
struct btrfs_shared_data_ref *sref;
1040
sref = (struct btrfs_shared_data_ref *)(iref + 1);
1041
btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1042
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1043
} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1044
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1045
} else {
1046
btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1047
}
1048
}
1049
1050
static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1051
struct btrfs_path *path,
1052
struct btrfs_extent_inline_ref **ref_ret,
1053
u64 bytenr, u64 num_bytes, u64 parent,
1054
u64 root_objectid, u64 owner, u64 offset)
1055
{
1056
int ret;
1057
1058
ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1059
num_bytes, parent, root_objectid,
1060
owner, offset, 0);
1061
if (ret != -ENOENT)
1062
return ret;
1063
1064
btrfs_release_path(path);
1065
*ref_ret = NULL;
1066
1067
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1068
ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1069
root_objectid);
1070
} else {
1071
ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1072
root_objectid, owner, offset);
1073
}
1074
return ret;
1075
}
1076
1077
/*
1078
* helper to update/remove inline back ref
1079
*/
1080
static noinline_for_stack int update_inline_extent_backref(
1081
struct btrfs_trans_handle *trans,
1082
struct btrfs_path *path,
1083
struct btrfs_extent_inline_ref *iref,
1084
int refs_to_mod,
1085
struct btrfs_delayed_extent_op *extent_op)
1086
{
1087
struct extent_buffer *leaf = path->nodes[0];
1088
struct btrfs_fs_info *fs_info = leaf->fs_info;
1089
struct btrfs_extent_item *ei;
1090
struct btrfs_extent_data_ref *dref = NULL;
1091
struct btrfs_shared_data_ref *sref = NULL;
1092
unsigned long ptr;
1093
unsigned long end;
1094
u32 item_size;
1095
int size;
1096
int type;
1097
u64 refs;
1098
1099
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1100
refs = btrfs_extent_refs(leaf, ei);
1101
if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1102
struct btrfs_key key;
1103
u32 extent_size;
1104
1105
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1106
if (key.type == BTRFS_METADATA_ITEM_KEY)
1107
extent_size = fs_info->nodesize;
1108
else
1109
extent_size = key.offset;
1110
btrfs_print_leaf(leaf);
1111
btrfs_err(fs_info,
1112
"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1113
key.objectid, extent_size, refs_to_mod, refs);
1114
return -EUCLEAN;
1115
}
1116
refs += refs_to_mod;
1117
btrfs_set_extent_refs(leaf, ei, refs);
1118
if (extent_op)
1119
__run_delayed_extent_op(extent_op, leaf, ei);
1120
1121
type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1122
/*
1123
* Function btrfs_get_extent_inline_ref_type() has already printed
1124
* error messages.
1125
*/
1126
if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1127
return -EUCLEAN;
1128
1129
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1130
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1131
refs = btrfs_extent_data_ref_count(leaf, dref);
1132
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1133
sref = (struct btrfs_shared_data_ref *)(iref + 1);
1134
refs = btrfs_shared_data_ref_count(leaf, sref);
1135
} else {
1136
refs = 1;
1137
/*
1138
* For tree blocks we can only drop one ref for it, and tree
1139
* blocks should not have refs > 1.
1140
*
1141
* Furthermore if we're inserting a new inline backref, we
1142
* won't reach this path either. That would be
1143
* setup_inline_extent_backref().
1144
*/
1145
if (unlikely(refs_to_mod != -1)) {
1146
struct btrfs_key key;
1147
1148
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1149
1150
btrfs_print_leaf(leaf);
1151
btrfs_err(fs_info,
1152
"invalid refs_to_mod for tree block %llu, has %d expect -1",
1153
key.objectid, refs_to_mod);
1154
return -EUCLEAN;
1155
}
1156
}
1157
1158
if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1159
struct btrfs_key key;
1160
u32 extent_size;
1161
1162
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1163
if (key.type == BTRFS_METADATA_ITEM_KEY)
1164
extent_size = fs_info->nodesize;
1165
else
1166
extent_size = key.offset;
1167
btrfs_print_leaf(leaf);
1168
btrfs_err(fs_info,
1169
"invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1170
(unsigned long)iref, key.objectid, extent_size,
1171
refs_to_mod, refs);
1172
return -EUCLEAN;
1173
}
1174
refs += refs_to_mod;
1175
1176
if (refs > 0) {
1177
if (type == BTRFS_EXTENT_DATA_REF_KEY)
1178
btrfs_set_extent_data_ref_count(leaf, dref, refs);
1179
else
1180
btrfs_set_shared_data_ref_count(leaf, sref, refs);
1181
} else {
1182
size = btrfs_extent_inline_ref_size(type);
1183
item_size = btrfs_item_size(leaf, path->slots[0]);
1184
ptr = (unsigned long)iref;
1185
end = (unsigned long)ei + item_size;
1186
if (ptr + size < end)
1187
memmove_extent_buffer(leaf, ptr, ptr + size,
1188
end - ptr - size);
1189
item_size -= size;
1190
btrfs_truncate_item(trans, path, item_size, 1);
1191
}
1192
return 0;
1193
}
1194
1195
static noinline_for_stack
1196
int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1197
struct btrfs_path *path,
1198
u64 bytenr, u64 num_bytes, u64 parent,
1199
u64 root_objectid, u64 owner,
1200
u64 offset, int refs_to_add,
1201
struct btrfs_delayed_extent_op *extent_op)
1202
{
1203
struct btrfs_extent_inline_ref *iref;
1204
int ret;
1205
1206
ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1207
num_bytes, parent, root_objectid,
1208
owner, offset, 1);
1209
if (ret == 0) {
1210
/*
1211
* We're adding refs to a tree block we already own, this
1212
* should not happen at all.
1213
*/
1214
if (unlikely(owner < BTRFS_FIRST_FREE_OBJECTID)) {
1215
btrfs_print_leaf(path->nodes[0]);
1216
btrfs_crit(trans->fs_info,
1217
"adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1218
bytenr, num_bytes, root_objectid, path->slots[0]);
1219
return -EUCLEAN;
1220
}
1221
ret = update_inline_extent_backref(trans, path, iref,
1222
refs_to_add, extent_op);
1223
} else if (ret == -ENOENT) {
1224
setup_inline_extent_backref(trans, path, iref, parent,
1225
root_objectid, owner, offset,
1226
refs_to_add, extent_op);
1227
ret = 0;
1228
}
1229
return ret;
1230
}
1231
1232
static int remove_extent_backref(struct btrfs_trans_handle *trans,
1233
struct btrfs_root *root,
1234
struct btrfs_path *path,
1235
struct btrfs_extent_inline_ref *iref,
1236
int refs_to_drop, int is_data)
1237
{
1238
int ret = 0;
1239
1240
BUG_ON(!is_data && refs_to_drop != 1);
1241
if (iref)
1242
ret = update_inline_extent_backref(trans, path, iref,
1243
-refs_to_drop, NULL);
1244
else if (is_data)
1245
ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1246
else
1247
ret = btrfs_del_item(trans, root, path);
1248
return ret;
1249
}
1250
1251
static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1252
u64 *discarded_bytes)
1253
{
1254
int j, ret = 0;
1255
u64 bytes_left, end;
1256
u64 aligned_start = ALIGN(start, SECTOR_SIZE);
1257
1258
/* Adjust the range to be aligned to 512B sectors if necessary. */
1259
if (start != aligned_start) {
1260
len -= aligned_start - start;
1261
len = round_down(len, SECTOR_SIZE);
1262
start = aligned_start;
1263
}
1264
1265
*discarded_bytes = 0;
1266
1267
if (!len)
1268
return 0;
1269
1270
end = start + len;
1271
bytes_left = len;
1272
1273
/* Skip any superblocks on this device. */
1274
for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1275
u64 sb_start = btrfs_sb_offset(j);
1276
u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1277
u64 size = sb_start - start;
1278
1279
if (!in_range(sb_start, start, bytes_left) &&
1280
!in_range(sb_end, start, bytes_left) &&
1281
!in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1282
continue;
1283
1284
/*
1285
* Superblock spans beginning of range. Adjust start and
1286
* try again.
1287
*/
1288
if (sb_start <= start) {
1289
start += sb_end - start;
1290
if (start > end) {
1291
bytes_left = 0;
1292
break;
1293
}
1294
bytes_left = end - start;
1295
continue;
1296
}
1297
1298
if (size) {
1299
ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1300
size >> SECTOR_SHIFT,
1301
GFP_NOFS);
1302
if (!ret)
1303
*discarded_bytes += size;
1304
else if (ret != -EOPNOTSUPP)
1305
return ret;
1306
}
1307
1308
start = sb_end;
1309
if (start > end) {
1310
bytes_left = 0;
1311
break;
1312
}
1313
bytes_left = end - start;
1314
}
1315
1316
while (bytes_left) {
1317
u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1318
1319
ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1320
bytes_to_discard >> SECTOR_SHIFT,
1321
GFP_NOFS);
1322
1323
if (ret) {
1324
if (ret != -EOPNOTSUPP)
1325
break;
1326
continue;
1327
}
1328
1329
start += bytes_to_discard;
1330
bytes_left -= bytes_to_discard;
1331
*discarded_bytes += bytes_to_discard;
1332
1333
if (btrfs_trim_interrupted()) {
1334
ret = -ERESTARTSYS;
1335
break;
1336
}
1337
}
1338
1339
return ret;
1340
}
1341
1342
static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1343
{
1344
struct btrfs_device *dev = stripe->dev;
1345
struct btrfs_fs_info *fs_info = dev->fs_info;
1346
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1347
u64 phys = stripe->physical;
1348
u64 len = stripe->length;
1349
u64 discarded = 0;
1350
int ret = 0;
1351
1352
/* Zone reset on a zoned filesystem */
1353
if (btrfs_can_zone_reset(dev, phys, len)) {
1354
u64 src_disc;
1355
1356
ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1357
if (ret)
1358
goto out;
1359
1360
if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1361
dev != dev_replace->srcdev)
1362
goto out;
1363
1364
src_disc = discarded;
1365
1366
/* Send to replace target as well */
1367
ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1368
&discarded);
1369
discarded += src_disc;
1370
} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1371
ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1372
} else {
1373
ret = 0;
1374
*bytes = 0;
1375
}
1376
1377
out:
1378
*bytes = discarded;
1379
return ret;
1380
}
1381
1382
int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1383
u64 num_bytes, u64 *actual_bytes)
1384
{
1385
int ret = 0;
1386
u64 discarded_bytes = 0;
1387
u64 end = bytenr + num_bytes;
1388
u64 cur = bytenr;
1389
1390
/*
1391
* Avoid races with device replace and make sure the devices in the
1392
* stripes don't go away while we are discarding.
1393
*/
1394
btrfs_bio_counter_inc_blocked(fs_info);
1395
while (cur < end) {
1396
struct btrfs_discard_stripe *stripes;
1397
unsigned int num_stripes;
1398
int i;
1399
1400
num_bytes = end - cur;
1401
stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1402
if (IS_ERR(stripes)) {
1403
ret = PTR_ERR(stripes);
1404
if (ret == -EOPNOTSUPP)
1405
ret = 0;
1406
break;
1407
}
1408
1409
for (i = 0; i < num_stripes; i++) {
1410
struct btrfs_discard_stripe *stripe = stripes + i;
1411
u64 bytes;
1412
1413
if (!stripe->dev->bdev) {
1414
ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1415
continue;
1416
}
1417
1418
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1419
&stripe->dev->dev_state))
1420
continue;
1421
1422
ret = do_discard_extent(stripe, &bytes);
1423
if (ret) {
1424
/*
1425
* Keep going if discard is not supported by the
1426
* device.
1427
*/
1428
if (ret != -EOPNOTSUPP)
1429
break;
1430
ret = 0;
1431
} else {
1432
discarded_bytes += bytes;
1433
}
1434
}
1435
kfree(stripes);
1436
if (ret)
1437
break;
1438
cur += num_bytes;
1439
}
1440
btrfs_bio_counter_dec(fs_info);
1441
if (actual_bytes)
1442
*actual_bytes = discarded_bytes;
1443
return ret;
1444
}
1445
1446
/* Can return -ENOMEM */
1447
int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1448
struct btrfs_ref *generic_ref)
1449
{
1450
struct btrfs_fs_info *fs_info = trans->fs_info;
1451
int ret;
1452
1453
ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1454
generic_ref->action);
1455
BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1456
generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID);
1457
1458
if (generic_ref->type == BTRFS_REF_METADATA)
1459
ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1460
else
1461
ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1462
1463
btrfs_ref_tree_mod(fs_info, generic_ref);
1464
1465
return ret;
1466
}
1467
1468
/*
1469
* Insert backreference for a given extent.
1470
*
1471
* The counterpart is in __btrfs_free_extent(), with examples and more details
1472
* how it works.
1473
*
1474
* @trans: Handle of transaction
1475
*
1476
* @node: The delayed ref node used to get the bytenr/length for
1477
* extent whose references are incremented.
1478
*
1479
* @extent_op Pointer to a structure, holding information necessary when
1480
* updating a tree block's flags
1481
*
1482
*/
1483
static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1484
const struct btrfs_delayed_ref_node *node,
1485
struct btrfs_delayed_extent_op *extent_op)
1486
{
1487
BTRFS_PATH_AUTO_FREE(path);
1488
struct extent_buffer *leaf;
1489
struct btrfs_extent_item *item;
1490
struct btrfs_key key;
1491
u64 bytenr = node->bytenr;
1492
u64 num_bytes = node->num_bytes;
1493
u64 owner = btrfs_delayed_ref_owner(node);
1494
u64 offset = btrfs_delayed_ref_offset(node);
1495
u64 refs;
1496
int refs_to_add = node->ref_mod;
1497
int ret;
1498
1499
path = btrfs_alloc_path();
1500
if (!path)
1501
return -ENOMEM;
1502
1503
/* this will setup the path even if it fails to insert the back ref */
1504
ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1505
node->parent, node->ref_root, owner,
1506
offset, refs_to_add, extent_op);
1507
if ((ret < 0 && ret != -EAGAIN) || !ret)
1508
return ret;
1509
1510
/*
1511
* Ok we had -EAGAIN which means we didn't have space to insert and
1512
* inline extent ref, so just update the reference count and add a
1513
* normal backref.
1514
*/
1515
leaf = path->nodes[0];
1516
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1517
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1518
refs = btrfs_extent_refs(leaf, item);
1519
btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1520
if (extent_op)
1521
__run_delayed_extent_op(extent_op, leaf, item);
1522
1523
btrfs_release_path(path);
1524
1525
/* now insert the actual backref */
1526
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1527
ret = insert_tree_block_ref(trans, path, node, bytenr);
1528
if (ret)
1529
btrfs_abort_transaction(trans, ret);
1530
} else {
1531
ret = insert_extent_data_ref(trans, path, node, bytenr);
1532
if (ret)
1533
btrfs_abort_transaction(trans, ret);
1534
}
1535
1536
return ret;
1537
}
1538
1539
static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1540
const struct btrfs_delayed_ref_head *href)
1541
{
1542
u64 root = href->owning_root;
1543
1544
/*
1545
* Don't check must_insert_reserved, as this is called from contexts
1546
* where it has already been unset.
1547
*/
1548
if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1549
!href->is_data || !btrfs_is_fstree(root))
1550
return;
1551
1552
btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1553
BTRFS_QGROUP_RSV_DATA);
1554
}
1555
1556
static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1557
struct btrfs_delayed_ref_head *href,
1558
const struct btrfs_delayed_ref_node *node,
1559
struct btrfs_delayed_extent_op *extent_op,
1560
bool insert_reserved)
1561
{
1562
int ret = 0;
1563
u64 parent = 0;
1564
u64 flags = 0;
1565
1566
trace_run_delayed_data_ref(trans->fs_info, node);
1567
1568
if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1569
parent = node->parent;
1570
1571
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1572
struct btrfs_key key;
1573
struct btrfs_squota_delta delta = {
1574
.root = href->owning_root,
1575
.num_bytes = node->num_bytes,
1576
.is_data = true,
1577
.is_inc = true,
1578
.generation = trans->transid,
1579
};
1580
u64 owner = btrfs_delayed_ref_owner(node);
1581
u64 offset = btrfs_delayed_ref_offset(node);
1582
1583
if (extent_op)
1584
flags |= extent_op->flags_to_set;
1585
1586
key.objectid = node->bytenr;
1587
key.type = BTRFS_EXTENT_ITEM_KEY;
1588
key.offset = node->num_bytes;
1589
1590
ret = alloc_reserved_file_extent(trans, parent, node->ref_root,
1591
flags, owner, offset, &key,
1592
node->ref_mod,
1593
href->owning_root);
1594
free_head_ref_squota_rsv(trans->fs_info, href);
1595
if (!ret)
1596
ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1597
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1598
ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1599
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1600
ret = __btrfs_free_extent(trans, href, node, extent_op);
1601
} else {
1602
BUG();
1603
}
1604
return ret;
1605
}
1606
1607
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1608
struct extent_buffer *leaf,
1609
struct btrfs_extent_item *ei)
1610
{
1611
u64 flags = btrfs_extent_flags(leaf, ei);
1612
if (extent_op->update_flags) {
1613
flags |= extent_op->flags_to_set;
1614
btrfs_set_extent_flags(leaf, ei, flags);
1615
}
1616
1617
if (extent_op->update_key) {
1618
struct btrfs_tree_block_info *bi;
1619
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1620
bi = (struct btrfs_tree_block_info *)(ei + 1);
1621
btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1622
}
1623
}
1624
1625
static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1626
const struct btrfs_delayed_ref_head *head,
1627
struct btrfs_delayed_extent_op *extent_op)
1628
{
1629
struct btrfs_fs_info *fs_info = trans->fs_info;
1630
struct btrfs_root *root;
1631
struct btrfs_key key;
1632
BTRFS_PATH_AUTO_FREE(path);
1633
struct btrfs_extent_item *ei;
1634
struct extent_buffer *leaf;
1635
u32 item_size;
1636
int ret;
1637
int metadata = 1;
1638
1639
if (TRANS_ABORTED(trans))
1640
return 0;
1641
1642
if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1643
metadata = 0;
1644
1645
path = btrfs_alloc_path();
1646
if (!path)
1647
return -ENOMEM;
1648
1649
key.objectid = head->bytenr;
1650
1651
if (metadata) {
1652
key.type = BTRFS_METADATA_ITEM_KEY;
1653
key.offset = head->level;
1654
} else {
1655
key.type = BTRFS_EXTENT_ITEM_KEY;
1656
key.offset = head->num_bytes;
1657
}
1658
1659
root = btrfs_extent_root(fs_info, key.objectid);
1660
again:
1661
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1662
if (ret < 0) {
1663
return ret;
1664
} else if (ret > 0) {
1665
if (metadata) {
1666
if (path->slots[0] > 0) {
1667
path->slots[0]--;
1668
btrfs_item_key_to_cpu(path->nodes[0], &key,
1669
path->slots[0]);
1670
if (key.objectid == head->bytenr &&
1671
key.type == BTRFS_EXTENT_ITEM_KEY &&
1672
key.offset == head->num_bytes)
1673
ret = 0;
1674
}
1675
if (ret > 0) {
1676
btrfs_release_path(path);
1677
metadata = 0;
1678
1679
key.objectid = head->bytenr;
1680
key.type = BTRFS_EXTENT_ITEM_KEY;
1681
key.offset = head->num_bytes;
1682
goto again;
1683
}
1684
} else {
1685
ret = -EUCLEAN;
1686
btrfs_err(fs_info,
1687
"missing extent item for extent %llu num_bytes %llu level %d",
1688
head->bytenr, head->num_bytes, head->level);
1689
return ret;
1690
}
1691
}
1692
1693
leaf = path->nodes[0];
1694
item_size = btrfs_item_size(leaf, path->slots[0]);
1695
1696
if (unlikely(item_size < sizeof(*ei))) {
1697
ret = -EUCLEAN;
1698
btrfs_err(fs_info,
1699
"unexpected extent item size, has %u expect >= %zu",
1700
item_size, sizeof(*ei));
1701
btrfs_abort_transaction(trans, ret);
1702
return ret;
1703
}
1704
1705
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1706
__run_delayed_extent_op(extent_op, leaf, ei);
1707
1708
return ret;
1709
}
1710
1711
static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1712
struct btrfs_delayed_ref_head *href,
1713
const struct btrfs_delayed_ref_node *node,
1714
struct btrfs_delayed_extent_op *extent_op,
1715
bool insert_reserved)
1716
{
1717
int ret = 0;
1718
struct btrfs_fs_info *fs_info = trans->fs_info;
1719
u64 parent = 0;
1720
u64 ref_root = 0;
1721
1722
trace_run_delayed_tree_ref(trans->fs_info, node);
1723
1724
if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1725
parent = node->parent;
1726
ref_root = node->ref_root;
1727
1728
if (unlikely(node->ref_mod != 1)) {
1729
btrfs_err(trans->fs_info,
1730
"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1731
node->bytenr, node->ref_mod, node->action, ref_root,
1732
parent);
1733
return -EUCLEAN;
1734
}
1735
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1736
struct btrfs_squota_delta delta = {
1737
.root = href->owning_root,
1738
.num_bytes = fs_info->nodesize,
1739
.is_data = false,
1740
.is_inc = true,
1741
.generation = trans->transid,
1742
};
1743
1744
ret = alloc_reserved_tree_block(trans, node, extent_op);
1745
if (!ret)
1746
btrfs_record_squota_delta(fs_info, &delta);
1747
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1748
ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1749
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1750
ret = __btrfs_free_extent(trans, href, node, extent_op);
1751
} else {
1752
BUG();
1753
}
1754
return ret;
1755
}
1756
1757
/* helper function to actually process a single delayed ref entry */
1758
static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1759
struct btrfs_delayed_ref_head *href,
1760
const struct btrfs_delayed_ref_node *node,
1761
struct btrfs_delayed_extent_op *extent_op,
1762
bool insert_reserved)
1763
{
1764
int ret = 0;
1765
1766
if (TRANS_ABORTED(trans)) {
1767
if (insert_reserved) {
1768
btrfs_pin_extent(trans, node->bytenr, node->num_bytes);
1769
free_head_ref_squota_rsv(trans->fs_info, href);
1770
}
1771
return 0;
1772
}
1773
1774
if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1775
node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1776
ret = run_delayed_tree_ref(trans, href, node, extent_op,
1777
insert_reserved);
1778
else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1779
node->type == BTRFS_SHARED_DATA_REF_KEY)
1780
ret = run_delayed_data_ref(trans, href, node, extent_op,
1781
insert_reserved);
1782
else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1783
ret = 0;
1784
else
1785
BUG();
1786
if (ret && insert_reserved)
1787
btrfs_pin_extent(trans, node->bytenr, node->num_bytes);
1788
if (ret < 0)
1789
btrfs_err(trans->fs_info,
1790
"failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1791
node->bytenr, node->num_bytes, node->type,
1792
node->action, node->ref_mod, ret);
1793
return ret;
1794
}
1795
1796
static struct btrfs_delayed_extent_op *cleanup_extent_op(
1797
struct btrfs_delayed_ref_head *head)
1798
{
1799
struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1800
1801
if (!extent_op)
1802
return NULL;
1803
1804
if (head->must_insert_reserved) {
1805
head->extent_op = NULL;
1806
btrfs_free_delayed_extent_op(extent_op);
1807
return NULL;
1808
}
1809
return extent_op;
1810
}
1811
1812
static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1813
struct btrfs_delayed_ref_head *head)
1814
{
1815
struct btrfs_delayed_extent_op *extent_op;
1816
int ret;
1817
1818
extent_op = cleanup_extent_op(head);
1819
if (!extent_op)
1820
return 0;
1821
head->extent_op = NULL;
1822
spin_unlock(&head->lock);
1823
ret = run_delayed_extent_op(trans, head, extent_op);
1824
btrfs_free_delayed_extent_op(extent_op);
1825
return ret ? ret : 1;
1826
}
1827
1828
u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1829
struct btrfs_delayed_ref_root *delayed_refs,
1830
struct btrfs_delayed_ref_head *head)
1831
{
1832
u64 ret = 0;
1833
1834
/*
1835
* We had csum deletions accounted for in our delayed refs rsv, we need
1836
* to drop the csum leaves for this update from our delayed_refs_rsv.
1837
*/
1838
if (head->total_ref_mod < 0 && head->is_data) {
1839
int nr_csums;
1840
1841
spin_lock(&delayed_refs->lock);
1842
delayed_refs->pending_csums -= head->num_bytes;
1843
spin_unlock(&delayed_refs->lock);
1844
nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1845
1846
btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1847
1848
ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1849
}
1850
/* must_insert_reserved can be set only if we didn't run the head ref. */
1851
if (head->must_insert_reserved)
1852
free_head_ref_squota_rsv(fs_info, head);
1853
1854
return ret;
1855
}
1856
1857
static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1858
struct btrfs_delayed_ref_head *head,
1859
u64 *bytes_released)
1860
{
1861
1862
struct btrfs_fs_info *fs_info = trans->fs_info;
1863
struct btrfs_delayed_ref_root *delayed_refs;
1864
int ret;
1865
1866
delayed_refs = &trans->transaction->delayed_refs;
1867
1868
ret = run_and_cleanup_extent_op(trans, head);
1869
if (ret < 0) {
1870
btrfs_unselect_ref_head(delayed_refs, head);
1871
btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1872
return ret;
1873
} else if (ret) {
1874
return ret;
1875
}
1876
1877
/*
1878
* Need to drop our head ref lock and re-acquire the delayed ref lock
1879
* and then re-check to make sure nobody got added.
1880
*/
1881
spin_unlock(&head->lock);
1882
spin_lock(&delayed_refs->lock);
1883
spin_lock(&head->lock);
1884
if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1885
spin_unlock(&head->lock);
1886
spin_unlock(&delayed_refs->lock);
1887
return 1;
1888
}
1889
btrfs_delete_ref_head(fs_info, delayed_refs, head);
1890
spin_unlock(&head->lock);
1891
spin_unlock(&delayed_refs->lock);
1892
1893
if (head->must_insert_reserved) {
1894
btrfs_pin_extent(trans, head->bytenr, head->num_bytes);
1895
if (head->is_data) {
1896
struct btrfs_root *csum_root;
1897
1898
csum_root = btrfs_csum_root(fs_info, head->bytenr);
1899
ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1900
head->num_bytes);
1901
}
1902
}
1903
1904
*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1905
1906
trace_run_delayed_ref_head(fs_info, head, 0);
1907
btrfs_delayed_ref_unlock(head);
1908
btrfs_put_delayed_ref_head(head);
1909
return ret;
1910
}
1911
1912
static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1913
struct btrfs_delayed_ref_head *locked_ref,
1914
u64 *bytes_released)
1915
{
1916
struct btrfs_fs_info *fs_info = trans->fs_info;
1917
struct btrfs_delayed_ref_root *delayed_refs;
1918
struct btrfs_delayed_extent_op *extent_op;
1919
struct btrfs_delayed_ref_node *ref;
1920
bool must_insert_reserved;
1921
int ret;
1922
1923
delayed_refs = &trans->transaction->delayed_refs;
1924
1925
lockdep_assert_held(&locked_ref->mutex);
1926
lockdep_assert_held(&locked_ref->lock);
1927
1928
while ((ref = btrfs_select_delayed_ref(locked_ref))) {
1929
if (ref->seq &&
1930
btrfs_check_delayed_seq(fs_info, ref->seq)) {
1931
spin_unlock(&locked_ref->lock);
1932
btrfs_unselect_ref_head(delayed_refs, locked_ref);
1933
return -EAGAIN;
1934
}
1935
1936
rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1937
RB_CLEAR_NODE(&ref->ref_node);
1938
if (!list_empty(&ref->add_list))
1939
list_del(&ref->add_list);
1940
/*
1941
* When we play the delayed ref, also correct the ref_mod on
1942
* head
1943
*/
1944
switch (ref->action) {
1945
case BTRFS_ADD_DELAYED_REF:
1946
case BTRFS_ADD_DELAYED_EXTENT:
1947
locked_ref->ref_mod -= ref->ref_mod;
1948
break;
1949
case BTRFS_DROP_DELAYED_REF:
1950
locked_ref->ref_mod += ref->ref_mod;
1951
break;
1952
default:
1953
WARN_ON(1);
1954
}
1955
1956
/*
1957
* Record the must_insert_reserved flag before we drop the
1958
* spin lock.
1959
*/
1960
must_insert_reserved = locked_ref->must_insert_reserved;
1961
/*
1962
* Unsetting this on the head ref relinquishes ownership of
1963
* the rsv_bytes, so it is critical that every possible code
1964
* path from here forward frees all reserves including qgroup
1965
* reserve.
1966
*/
1967
locked_ref->must_insert_reserved = false;
1968
1969
extent_op = locked_ref->extent_op;
1970
locked_ref->extent_op = NULL;
1971
spin_unlock(&locked_ref->lock);
1972
1973
ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
1974
must_insert_reserved);
1975
btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
1976
*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
1977
1978
btrfs_free_delayed_extent_op(extent_op);
1979
if (ret) {
1980
btrfs_unselect_ref_head(delayed_refs, locked_ref);
1981
btrfs_put_delayed_ref(ref);
1982
return ret;
1983
}
1984
1985
btrfs_put_delayed_ref(ref);
1986
cond_resched();
1987
1988
spin_lock(&locked_ref->lock);
1989
btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
1990
}
1991
1992
return 0;
1993
}
1994
1995
/*
1996
* Returns 0 on success or if called with an already aborted transaction.
1997
* Returns -ENOMEM or -EIO on failure and will abort the transaction.
1998
*/
1999
static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2000
u64 min_bytes)
2001
{
2002
struct btrfs_fs_info *fs_info = trans->fs_info;
2003
struct btrfs_delayed_ref_root *delayed_refs;
2004
struct btrfs_delayed_ref_head *locked_ref = NULL;
2005
int ret;
2006
unsigned long count = 0;
2007
unsigned long max_count = 0;
2008
u64 bytes_processed = 0;
2009
2010
delayed_refs = &trans->transaction->delayed_refs;
2011
if (min_bytes == 0) {
2012
/*
2013
* We may be subject to a harmless race if some task is
2014
* concurrently adding or removing a delayed ref, so silence
2015
* KCSAN and similar tools.
2016
*/
2017
max_count = data_race(delayed_refs->num_heads_ready);
2018
min_bytes = U64_MAX;
2019
}
2020
2021
do {
2022
if (!locked_ref) {
2023
locked_ref = btrfs_select_ref_head(fs_info, delayed_refs);
2024
if (IS_ERR_OR_NULL(locked_ref)) {
2025
if (PTR_ERR(locked_ref) == -EAGAIN) {
2026
continue;
2027
} else {
2028
break;
2029
}
2030
}
2031
count++;
2032
}
2033
/*
2034
* We need to try and merge add/drops of the same ref since we
2035
* can run into issues with relocate dropping the implicit ref
2036
* and then it being added back again before the drop can
2037
* finish. If we merged anything we need to re-loop so we can
2038
* get a good ref.
2039
* Or we can get node references of the same type that weren't
2040
* merged when created due to bumps in the tree mod seq, and
2041
* we need to merge them to prevent adding an inline extent
2042
* backref before dropping it (triggering a BUG_ON at
2043
* insert_inline_extent_backref()).
2044
*/
2045
spin_lock(&locked_ref->lock);
2046
btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2047
2048
ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2049
if (ret < 0 && ret != -EAGAIN) {
2050
/*
2051
* Error, btrfs_run_delayed_refs_for_head already
2052
* unlocked everything so just bail out
2053
*/
2054
return ret;
2055
} else if (!ret) {
2056
/*
2057
* Success, perform the usual cleanup of a processed
2058
* head
2059
*/
2060
ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2061
if (ret > 0 ) {
2062
/* We dropped our lock, we need to loop. */
2063
ret = 0;
2064
continue;
2065
} else if (ret) {
2066
return ret;
2067
}
2068
}
2069
2070
/*
2071
* Either success case or btrfs_run_delayed_refs_for_head
2072
* returned -EAGAIN, meaning we need to select another head
2073
*/
2074
2075
locked_ref = NULL;
2076
cond_resched();
2077
} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2078
(max_count > 0 && count < max_count) ||
2079
locked_ref);
2080
2081
return 0;
2082
}
2083
2084
#ifdef SCRAMBLE_DELAYED_REFS
2085
/*
2086
* Normally delayed refs get processed in ascending bytenr order. This
2087
* correlates in most cases to the order added. To expose dependencies on this
2088
* order, we start to process the tree in the middle instead of the beginning
2089
*/
2090
static u64 find_middle(struct rb_root *root)
2091
{
2092
struct rb_node *n = root->rb_node;
2093
struct btrfs_delayed_ref_node *entry;
2094
int alt = 1;
2095
u64 middle;
2096
u64 first = 0, last = 0;
2097
2098
n = rb_first(root);
2099
if (n) {
2100
entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2101
first = entry->bytenr;
2102
}
2103
n = rb_last(root);
2104
if (n) {
2105
entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2106
last = entry->bytenr;
2107
}
2108
n = root->rb_node;
2109
2110
while (n) {
2111
entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2112
WARN_ON(!entry->in_tree);
2113
2114
middle = entry->bytenr;
2115
2116
if (alt)
2117
n = n->rb_left;
2118
else
2119
n = n->rb_right;
2120
2121
alt = 1 - alt;
2122
}
2123
return middle;
2124
}
2125
#endif
2126
2127
/*
2128
* Start processing the delayed reference count updates and extent insertions
2129
* we have queued up so far.
2130
*
2131
* @trans: Transaction handle.
2132
* @min_bytes: How many bytes of delayed references to process. After this
2133
* many bytes we stop processing delayed references if there are
2134
* any more. If 0 it means to run all existing delayed references,
2135
* but not new ones added after running all existing ones.
2136
* Use (u64)-1 (U64_MAX) to run all existing delayed references
2137
* plus any new ones that are added.
2138
*
2139
* Returns 0 on success or if called with an aborted transaction
2140
* Returns <0 on error and aborts the transaction
2141
*/
2142
int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2143
{
2144
struct btrfs_fs_info *fs_info = trans->fs_info;
2145
struct btrfs_delayed_ref_root *delayed_refs;
2146
int ret;
2147
2148
/* We'll clean this up in btrfs_cleanup_transaction */
2149
if (TRANS_ABORTED(trans))
2150
return 0;
2151
2152
if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2153
return 0;
2154
2155
delayed_refs = &trans->transaction->delayed_refs;
2156
again:
2157
#ifdef SCRAMBLE_DELAYED_REFS
2158
delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2159
#endif
2160
ret = __btrfs_run_delayed_refs(trans, min_bytes);
2161
if (unlikely(ret < 0)) {
2162
btrfs_abort_transaction(trans, ret);
2163
return ret;
2164
}
2165
2166
if (min_bytes == U64_MAX) {
2167
btrfs_create_pending_block_groups(trans);
2168
2169
spin_lock(&delayed_refs->lock);
2170
if (xa_empty(&delayed_refs->head_refs)) {
2171
spin_unlock(&delayed_refs->lock);
2172
return 0;
2173
}
2174
spin_unlock(&delayed_refs->lock);
2175
2176
cond_resched();
2177
goto again;
2178
}
2179
2180
return 0;
2181
}
2182
2183
int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2184
struct extent_buffer *eb, u64 flags)
2185
{
2186
struct btrfs_delayed_extent_op *extent_op;
2187
int ret;
2188
2189
extent_op = btrfs_alloc_delayed_extent_op();
2190
if (!extent_op)
2191
return -ENOMEM;
2192
2193
extent_op->flags_to_set = flags;
2194
extent_op->update_flags = true;
2195
extent_op->update_key = false;
2196
2197
ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len,
2198
btrfs_header_level(eb), extent_op);
2199
if (ret)
2200
btrfs_free_delayed_extent_op(extent_op);
2201
return ret;
2202
}
2203
2204
static noinline int check_delayed_ref(struct btrfs_inode *inode,
2205
struct btrfs_path *path,
2206
u64 offset, u64 bytenr)
2207
{
2208
struct btrfs_root *root = inode->root;
2209
struct btrfs_delayed_ref_head *head;
2210
struct btrfs_delayed_ref_node *ref;
2211
struct btrfs_delayed_ref_root *delayed_refs;
2212
struct btrfs_transaction *cur_trans;
2213
struct rb_node *node;
2214
int ret = 0;
2215
2216
spin_lock(&root->fs_info->trans_lock);
2217
cur_trans = root->fs_info->running_transaction;
2218
if (cur_trans)
2219
refcount_inc(&cur_trans->use_count);
2220
spin_unlock(&root->fs_info->trans_lock);
2221
if (!cur_trans)
2222
return 0;
2223
2224
delayed_refs = &cur_trans->delayed_refs;
2225
spin_lock(&delayed_refs->lock);
2226
head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
2227
if (!head) {
2228
spin_unlock(&delayed_refs->lock);
2229
btrfs_put_transaction(cur_trans);
2230
return 0;
2231
}
2232
2233
if (!mutex_trylock(&head->mutex)) {
2234
if (path->nowait) {
2235
spin_unlock(&delayed_refs->lock);
2236
btrfs_put_transaction(cur_trans);
2237
return -EAGAIN;
2238
}
2239
2240
refcount_inc(&head->refs);
2241
spin_unlock(&delayed_refs->lock);
2242
2243
btrfs_release_path(path);
2244
2245
/*
2246
* Mutex was contended, block until it's released and let
2247
* caller try again
2248
*/
2249
mutex_lock(&head->mutex);
2250
mutex_unlock(&head->mutex);
2251
btrfs_put_delayed_ref_head(head);
2252
btrfs_put_transaction(cur_trans);
2253
return -EAGAIN;
2254
}
2255
spin_unlock(&delayed_refs->lock);
2256
2257
spin_lock(&head->lock);
2258
/*
2259
* XXX: We should replace this with a proper search function in the
2260
* future.
2261
*/
2262
for (node = rb_first_cached(&head->ref_tree); node;
2263
node = rb_next(node)) {
2264
u64 ref_owner;
2265
u64 ref_offset;
2266
2267
ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2268
/* If it's a shared ref we know a cross reference exists */
2269
if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2270
ret = 1;
2271
break;
2272
}
2273
2274
ref_owner = btrfs_delayed_ref_owner(ref);
2275
ref_offset = btrfs_delayed_ref_offset(ref);
2276
2277
/*
2278
* If our ref doesn't match the one we're currently looking at
2279
* then we have a cross reference.
2280
*/
2281
if (ref->ref_root != btrfs_root_id(root) ||
2282
ref_owner != btrfs_ino(inode) || ref_offset != offset) {
2283
ret = 1;
2284
break;
2285
}
2286
}
2287
spin_unlock(&head->lock);
2288
mutex_unlock(&head->mutex);
2289
btrfs_put_transaction(cur_trans);
2290
return ret;
2291
}
2292
2293
/*
2294
* Check if there are references for a data extent other than the one belonging
2295
* to the given inode and offset.
2296
*
2297
* @inode: The only inode we expect to find associated with the data extent.
2298
* @path: A path to use for searching the extent tree.
2299
* @offset: The only offset we expect to find associated with the data extent.
2300
* @bytenr: The logical address of the data extent.
2301
*
2302
* When the extent does not have any other references other than the one we
2303
* expect to find, we always return a value of 0 with the path having a locked
2304
* leaf that contains the extent's extent item - this is necessary to ensure
2305
* we don't race with a task running delayed references, and our caller must
2306
* have such a path when calling check_delayed_ref() - it must lock a delayed
2307
* ref head while holding the leaf locked. In case the extent item is not found
2308
* in the extent tree, we return -ENOENT with the path having the leaf (locked)
2309
* where the extent item should be, in order to prevent races with another task
2310
* running delayed references, so that we don't miss any reference when calling
2311
* check_delayed_ref().
2312
*
2313
* Note: this may return false positives, and this is because we want to be
2314
* quick here as we're called in write paths (when flushing delalloc and
2315
* in the direct IO write path). For example we can have an extent with
2316
* a single reference but that reference is not inlined, or we may have
2317
* many references in the extent tree but we also have delayed references
2318
* that cancel all the reference except the one for our inode and offset,
2319
* but it would be expensive to do such checks and complex due to all
2320
* locking to avoid races between the checks and flushing delayed refs,
2321
* plus non-inline references may be located on leaves other than the one
2322
* that contains the extent item in the extent tree. The important thing
2323
* here is to not return false negatives and that the false positives are
2324
* not very common.
2325
*
2326
* Returns: 0 if there are no cross references and with the path having a locked
2327
* leaf from the extent tree that contains the extent's extent item.
2328
*
2329
* 1 if there are cross references (false positives can happen).
2330
*
2331
* < 0 in case of an error. In case of -ENOENT the leaf in the extent
2332
* tree where the extent item should be located at is read locked and
2333
* accessible in the given path.
2334
*/
2335
static noinline int check_committed_ref(struct btrfs_inode *inode,
2336
struct btrfs_path *path,
2337
u64 offset, u64 bytenr)
2338
{
2339
struct btrfs_root *root = inode->root;
2340
struct btrfs_fs_info *fs_info = root->fs_info;
2341
struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2342
struct extent_buffer *leaf;
2343
struct btrfs_extent_data_ref *ref;
2344
struct btrfs_extent_inline_ref *iref;
2345
struct btrfs_extent_item *ei;
2346
struct btrfs_key key;
2347
u32 item_size;
2348
u32 expected_size;
2349
int type;
2350
int ret;
2351
2352
key.objectid = bytenr;
2353
key.type = BTRFS_EXTENT_ITEM_KEY;
2354
key.offset = (u64)-1;
2355
2356
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2357
if (ret < 0)
2358
return ret;
2359
if (unlikely(ret == 0)) {
2360
/*
2361
* Key with offset -1 found, there would have to exist an extent
2362
* item with such offset, but this is out of the valid range.
2363
*/
2364
return -EUCLEAN;
2365
}
2366
2367
if (path->slots[0] == 0)
2368
return -ENOENT;
2369
2370
path->slots[0]--;
2371
leaf = path->nodes[0];
2372
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2373
2374
if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2375
return -ENOENT;
2376
2377
item_size = btrfs_item_size(leaf, path->slots[0]);
2378
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2379
expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2380
2381
/* No inline refs; we need to bail before checking for owner ref. */
2382
if (item_size == sizeof(*ei))
2383
return 1;
2384
2385
/* Check for an owner ref; skip over it to the real inline refs. */
2386
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2387
type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2388
if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2389
expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2390
iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2391
type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2392
}
2393
2394
/* If extent item has more than 1 inline ref then it's shared */
2395
if (item_size != expected_size)
2396
return 1;
2397
2398
/* If this extent has SHARED_DATA_REF then it's shared */
2399
if (type != BTRFS_EXTENT_DATA_REF_KEY)
2400
return 1;
2401
2402
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2403
if (btrfs_extent_refs(leaf, ei) !=
2404
btrfs_extent_data_ref_count(leaf, ref) ||
2405
btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) ||
2406
btrfs_extent_data_ref_objectid(leaf, ref) != btrfs_ino(inode) ||
2407
btrfs_extent_data_ref_offset(leaf, ref) != offset)
2408
return 1;
2409
2410
return 0;
2411
}
2412
2413
int btrfs_cross_ref_exist(struct btrfs_inode *inode, u64 offset,
2414
u64 bytenr, struct btrfs_path *path)
2415
{
2416
int ret;
2417
2418
do {
2419
ret = check_committed_ref(inode, path, offset, bytenr);
2420
if (ret && ret != -ENOENT)
2421
goto out;
2422
2423
/*
2424
* The path must have a locked leaf from the extent tree where
2425
* the extent item for our extent is located, in case it exists,
2426
* or where it should be located in case it doesn't exist yet
2427
* because it's new and its delayed ref was not yet flushed.
2428
* We need to lock the delayed ref head at check_delayed_ref(),
2429
* if one exists, while holding the leaf locked in order to not
2430
* race with delayed ref flushing, missing references and
2431
* incorrectly reporting that the extent is not shared.
2432
*/
2433
if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) {
2434
struct extent_buffer *leaf = path->nodes[0];
2435
2436
ASSERT(leaf != NULL);
2437
btrfs_assert_tree_read_locked(leaf);
2438
2439
if (ret != -ENOENT) {
2440
struct btrfs_key key;
2441
2442
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2443
ASSERT(key.objectid == bytenr);
2444
ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY);
2445
}
2446
}
2447
2448
ret = check_delayed_ref(inode, path, offset, bytenr);
2449
} while (ret == -EAGAIN && !path->nowait);
2450
2451
out:
2452
btrfs_release_path(path);
2453
if (btrfs_is_data_reloc_root(inode->root))
2454
WARN_ON(ret > 0);
2455
return ret;
2456
}
2457
2458
static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2459
struct btrfs_root *root,
2460
struct extent_buffer *buf,
2461
bool full_backref, bool inc)
2462
{
2463
struct btrfs_fs_info *fs_info = root->fs_info;
2464
u64 parent;
2465
u64 ref_root;
2466
u32 nritems;
2467
struct btrfs_key key;
2468
struct btrfs_file_extent_item *fi;
2469
bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2470
int i;
2471
int action;
2472
int level;
2473
int ret = 0;
2474
2475
if (btrfs_is_testing(fs_info))
2476
return 0;
2477
2478
ref_root = btrfs_header_owner(buf);
2479
nritems = btrfs_header_nritems(buf);
2480
level = btrfs_header_level(buf);
2481
2482
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2483
return 0;
2484
2485
if (full_backref)
2486
parent = buf->start;
2487
else
2488
parent = 0;
2489
if (inc)
2490
action = BTRFS_ADD_DELAYED_REF;
2491
else
2492
action = BTRFS_DROP_DELAYED_REF;
2493
2494
for (i = 0; i < nritems; i++) {
2495
struct btrfs_ref ref = {
2496
.action = action,
2497
.parent = parent,
2498
.ref_root = ref_root,
2499
};
2500
2501
if (level == 0) {
2502
btrfs_item_key_to_cpu(buf, &key, i);
2503
if (key.type != BTRFS_EXTENT_DATA_KEY)
2504
continue;
2505
fi = btrfs_item_ptr(buf, i,
2506
struct btrfs_file_extent_item);
2507
if (btrfs_file_extent_type(buf, fi) ==
2508
BTRFS_FILE_EXTENT_INLINE)
2509
continue;
2510
ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2511
if (ref.bytenr == 0)
2512
continue;
2513
2514
ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2515
ref.owning_root = ref_root;
2516
2517
key.offset -= btrfs_file_extent_offset(buf, fi);
2518
btrfs_init_data_ref(&ref, key.objectid, key.offset,
2519
btrfs_root_id(root), for_reloc);
2520
if (inc)
2521
ret = btrfs_inc_extent_ref(trans, &ref);
2522
else
2523
ret = btrfs_free_extent(trans, &ref);
2524
if (ret)
2525
goto fail;
2526
} else {
2527
/* We don't know the owning_root, leave as 0. */
2528
ref.bytenr = btrfs_node_blockptr(buf, i);
2529
ref.num_bytes = fs_info->nodesize;
2530
2531
btrfs_init_tree_ref(&ref, level - 1,
2532
btrfs_root_id(root), for_reloc);
2533
if (inc)
2534
ret = btrfs_inc_extent_ref(trans, &ref);
2535
else
2536
ret = btrfs_free_extent(trans, &ref);
2537
if (ret)
2538
goto fail;
2539
}
2540
}
2541
return 0;
2542
fail:
2543
return ret;
2544
}
2545
2546
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2547
struct extent_buffer *buf, bool full_backref)
2548
{
2549
return __btrfs_mod_ref(trans, root, buf, full_backref, true);
2550
}
2551
2552
int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2553
struct extent_buffer *buf, bool full_backref)
2554
{
2555
return __btrfs_mod_ref(trans, root, buf, full_backref, false);
2556
}
2557
2558
static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2559
{
2560
struct btrfs_fs_info *fs_info = root->fs_info;
2561
u64 flags;
2562
u64 ret;
2563
2564
if (data)
2565
flags = BTRFS_BLOCK_GROUP_DATA;
2566
else if (root == fs_info->chunk_root)
2567
flags = BTRFS_BLOCK_GROUP_SYSTEM;
2568
else
2569
flags = BTRFS_BLOCK_GROUP_METADATA;
2570
2571
ret = btrfs_get_alloc_profile(fs_info, flags);
2572
return ret;
2573
}
2574
2575
static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2576
{
2577
struct rb_node *leftmost;
2578
u64 bytenr = 0;
2579
2580
read_lock(&fs_info->block_group_cache_lock);
2581
/* Get the block group with the lowest logical start address. */
2582
leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2583
if (leftmost) {
2584
struct btrfs_block_group *bg;
2585
2586
bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2587
bytenr = bg->start;
2588
}
2589
read_unlock(&fs_info->block_group_cache_lock);
2590
2591
return bytenr;
2592
}
2593
2594
static int pin_down_extent(struct btrfs_trans_handle *trans,
2595
struct btrfs_block_group *bg,
2596
u64 bytenr, u64 num_bytes, bool reserved)
2597
{
2598
struct btrfs_space_info *space_info = bg->space_info;
2599
const u64 reserved_bytes = (reserved ? num_bytes : 0);
2600
2601
spin_lock(&space_info->lock);
2602
spin_lock(&bg->lock);
2603
bg->pinned += num_bytes;
2604
bg->reserved -= reserved_bytes;
2605
spin_unlock(&bg->lock);
2606
space_info->bytes_reserved -= reserved_bytes;
2607
btrfs_space_info_update_bytes_pinned(space_info, num_bytes);
2608
spin_unlock(&space_info->lock);
2609
2610
btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2611
bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2612
return 0;
2613
}
2614
2615
int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes)
2616
{
2617
struct btrfs_block_group *cache;
2618
2619
cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2620
BUG_ON(!cache); /* Logic error */
2621
2622
pin_down_extent(trans, cache, bytenr, num_bytes, true);
2623
2624
btrfs_put_block_group(cache);
2625
return 0;
2626
}
2627
2628
int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2629
const struct extent_buffer *eb)
2630
{
2631
struct btrfs_block_group *cache;
2632
int ret;
2633
2634
cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2635
if (!cache)
2636
return -EINVAL;
2637
2638
/*
2639
* Fully cache the free space first so that our pin removes the free space
2640
* from the cache.
2641
*/
2642
ret = btrfs_cache_block_group(cache, true);
2643
if (ret)
2644
goto out;
2645
2646
pin_down_extent(trans, cache, eb->start, eb->len, false);
2647
2648
/* remove us from the free space cache (if we're there at all) */
2649
ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2650
out:
2651
btrfs_put_block_group(cache);
2652
return ret;
2653
}
2654
2655
static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2656
u64 start, u64 num_bytes)
2657
{
2658
int ret;
2659
struct btrfs_block_group *block_group;
2660
2661
block_group = btrfs_lookup_block_group(fs_info, start);
2662
if (!block_group)
2663
return -EINVAL;
2664
2665
ret = btrfs_cache_block_group(block_group, true);
2666
if (ret)
2667
goto out;
2668
2669
ret = btrfs_remove_free_space(block_group, start, num_bytes);
2670
out:
2671
btrfs_put_block_group(block_group);
2672
return ret;
2673
}
2674
2675
int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2676
{
2677
struct btrfs_fs_info *fs_info = eb->fs_info;
2678
struct btrfs_file_extent_item *item;
2679
struct btrfs_key key;
2680
int found_type;
2681
int i;
2682
int ret = 0;
2683
2684
if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2685
return 0;
2686
2687
for (i = 0; i < btrfs_header_nritems(eb); i++) {
2688
btrfs_item_key_to_cpu(eb, &key, i);
2689
if (key.type != BTRFS_EXTENT_DATA_KEY)
2690
continue;
2691
item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2692
found_type = btrfs_file_extent_type(eb, item);
2693
if (found_type == BTRFS_FILE_EXTENT_INLINE)
2694
continue;
2695
if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2696
continue;
2697
key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2698
key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2699
ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2700
if (ret)
2701
break;
2702
}
2703
2704
return ret;
2705
}
2706
2707
static void
2708
btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2709
{
2710
atomic_inc(&bg->reservations);
2711
}
2712
2713
/*
2714
* Returns the free cluster for the given space info and sets empty_cluster to
2715
* what it should be based on the mount options.
2716
*/
2717
static struct btrfs_free_cluster *
2718
fetch_cluster_info(struct btrfs_fs_info *fs_info,
2719
struct btrfs_space_info *space_info, u64 *empty_cluster)
2720
{
2721
struct btrfs_free_cluster *ret = NULL;
2722
2723
*empty_cluster = 0;
2724
if (btrfs_mixed_space_info(space_info))
2725
return ret;
2726
2727
if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2728
ret = &fs_info->meta_alloc_cluster;
2729
if (btrfs_test_opt(fs_info, SSD))
2730
*empty_cluster = SZ_2M;
2731
else
2732
*empty_cluster = SZ_64K;
2733
} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2734
btrfs_test_opt(fs_info, SSD_SPREAD)) {
2735
*empty_cluster = SZ_2M;
2736
ret = &fs_info->data_alloc_cluster;
2737
}
2738
2739
return ret;
2740
}
2741
2742
static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2743
u64 start, u64 end,
2744
const bool return_free_space)
2745
{
2746
struct btrfs_block_group *cache = NULL;
2747
struct btrfs_space_info *space_info;
2748
struct btrfs_free_cluster *cluster = NULL;
2749
u64 total_unpinned = 0;
2750
u64 empty_cluster = 0;
2751
2752
while (start <= end) {
2753
u64 len;
2754
bool readonly;
2755
2756
if (!cache ||
2757
start >= cache->start + cache->length) {
2758
if (cache)
2759
btrfs_put_block_group(cache);
2760
total_unpinned = 0;
2761
cache = btrfs_lookup_block_group(fs_info, start);
2762
if (unlikely(cache == NULL)) {
2763
/* Logic error, something removed the block group. */
2764
return -EUCLEAN;
2765
}
2766
2767
cluster = fetch_cluster_info(fs_info,
2768
cache->space_info,
2769
&empty_cluster);
2770
empty_cluster <<= 1;
2771
}
2772
2773
len = cache->start + cache->length - start;
2774
len = min(len, end + 1 - start);
2775
2776
if (return_free_space)
2777
btrfs_add_free_space(cache, start, len);
2778
2779
start += len;
2780
total_unpinned += len;
2781
space_info = cache->space_info;
2782
2783
/*
2784
* If this space cluster has been marked as fragmented and we've
2785
* unpinned enough in this block group to potentially allow a
2786
* cluster to be created inside of it go ahead and clear the
2787
* fragmented check.
2788
*/
2789
if (cluster && cluster->fragmented &&
2790
total_unpinned > empty_cluster) {
2791
spin_lock(&cluster->lock);
2792
cluster->fragmented = 0;
2793
spin_unlock(&cluster->lock);
2794
}
2795
2796
spin_lock(&space_info->lock);
2797
spin_lock(&cache->lock);
2798
readonly = cache->ro;
2799
cache->pinned -= len;
2800
spin_unlock(&cache->lock);
2801
2802
btrfs_space_info_update_bytes_pinned(space_info, -len);
2803
space_info->max_extent_size = 0;
2804
2805
if (readonly) {
2806
space_info->bytes_readonly += len;
2807
} else if (btrfs_is_zoned(fs_info)) {
2808
/* Need reset before reusing in a zoned block group */
2809
btrfs_space_info_update_bytes_zone_unusable(space_info, len);
2810
} else if (return_free_space) {
2811
btrfs_return_free_space(space_info, len);
2812
}
2813
spin_unlock(&space_info->lock);
2814
}
2815
2816
if (cache)
2817
btrfs_put_block_group(cache);
2818
2819
return 0;
2820
}
2821
2822
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2823
{
2824
struct btrfs_fs_info *fs_info = trans->fs_info;
2825
struct btrfs_block_group *block_group, *tmp;
2826
struct list_head *deleted_bgs;
2827
struct extent_io_tree *unpin = &trans->transaction->pinned_extents;
2828
struct extent_state *cached_state = NULL;
2829
u64 start;
2830
u64 end;
2831
int unpin_error = 0;
2832
int ret;
2833
2834
mutex_lock(&fs_info->unused_bg_unpin_mutex);
2835
btrfs_find_first_extent_bit(unpin, 0, &start, &end, EXTENT_DIRTY, &cached_state);
2836
2837
while (!TRANS_ABORTED(trans) && cached_state) {
2838
struct extent_state *next_state;
2839
2840
if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2841
ret = btrfs_discard_extent(fs_info, start,
2842
end + 1 - start, NULL);
2843
2844
next_state = btrfs_next_extent_state(unpin, cached_state);
2845
btrfs_clear_extent_dirty(unpin, start, end, &cached_state);
2846
ret = unpin_extent_range(fs_info, start, end, true);
2847
/*
2848
* If we get an error unpinning an extent range, store the first
2849
* error to return later after trying to unpin all ranges and do
2850
* the sync discards. Our caller will abort the transaction
2851
* (which already wrote new superblocks) and on the next mount
2852
* the space will be available as it was pinned by in-memory
2853
* only structures in this phase.
2854
*/
2855
if (ret) {
2856
btrfs_err_rl(fs_info,
2857
"failed to unpin extent range [%llu, %llu] when committing transaction %llu: %s (%d)",
2858
start, end, trans->transid,
2859
btrfs_decode_error(ret), ret);
2860
if (!unpin_error)
2861
unpin_error = ret;
2862
}
2863
2864
btrfs_free_extent_state(cached_state);
2865
2866
if (need_resched()) {
2867
btrfs_free_extent_state(next_state);
2868
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2869
cond_resched();
2870
cached_state = NULL;
2871
mutex_lock(&fs_info->unused_bg_unpin_mutex);
2872
btrfs_find_first_extent_bit(unpin, 0, &start, &end,
2873
EXTENT_DIRTY, &cached_state);
2874
} else {
2875
cached_state = next_state;
2876
if (cached_state) {
2877
start = cached_state->start;
2878
end = cached_state->end;
2879
}
2880
}
2881
}
2882
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2883
btrfs_free_extent_state(cached_state);
2884
2885
if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2886
btrfs_discard_calc_delay(&fs_info->discard_ctl);
2887
btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2888
}
2889
2890
/*
2891
* Transaction is finished. We don't need the lock anymore. We
2892
* do need to clean up the block groups in case of a transaction
2893
* abort.
2894
*/
2895
deleted_bgs = &trans->transaction->deleted_bgs;
2896
list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2897
ret = -EROFS;
2898
if (!TRANS_ABORTED(trans))
2899
ret = btrfs_discard_extent(fs_info, block_group->start,
2900
block_group->length, NULL);
2901
2902
/*
2903
* Not strictly necessary to lock, as the block_group should be
2904
* read-only from btrfs_delete_unused_bgs().
2905
*/
2906
ASSERT(block_group->ro);
2907
spin_lock(&fs_info->unused_bgs_lock);
2908
list_del_init(&block_group->bg_list);
2909
spin_unlock(&fs_info->unused_bgs_lock);
2910
2911
btrfs_unfreeze_block_group(block_group);
2912
btrfs_put_block_group(block_group);
2913
2914
if (ret) {
2915
const char *errstr = btrfs_decode_error(ret);
2916
btrfs_warn(fs_info,
2917
"discard failed while removing blockgroup: errno=%d %s",
2918
ret, errstr);
2919
}
2920
}
2921
2922
return unpin_error;
2923
}
2924
2925
/*
2926
* Parse an extent item's inline extents looking for a simple quotas owner ref.
2927
*
2928
* @fs_info: the btrfs_fs_info for this mount
2929
* @leaf: a leaf in the extent tree containing the extent item
2930
* @slot: the slot in the leaf where the extent item is found
2931
*
2932
* Returns the objectid of the root that originally allocated the extent item
2933
* if the inline owner ref is expected and present, otherwise 0.
2934
*
2935
* If an extent item has an owner ref item, it will be the first inline ref
2936
* item. Therefore the logic is to check whether there are any inline ref
2937
* items, then check the type of the first one.
2938
*/
2939
u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2940
struct extent_buffer *leaf, int slot)
2941
{
2942
struct btrfs_extent_item *ei;
2943
struct btrfs_extent_inline_ref *iref;
2944
struct btrfs_extent_owner_ref *oref;
2945
unsigned long ptr;
2946
unsigned long end;
2947
int type;
2948
2949
if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2950
return 0;
2951
2952
ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2953
ptr = (unsigned long)(ei + 1);
2954
end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2955
2956
/* No inline ref items of any kind, can't check type. */
2957
if (ptr == end)
2958
return 0;
2959
2960
iref = (struct btrfs_extent_inline_ref *)ptr;
2961
type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2962
2963
/* We found an owner ref, get the root out of it. */
2964
if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2965
oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2966
return btrfs_extent_owner_ref_root_id(leaf, oref);
2967
}
2968
2969
/* We have inline refs, but not an owner ref. */
2970
return 0;
2971
}
2972
2973
static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2974
u64 bytenr, struct btrfs_squota_delta *delta)
2975
{
2976
int ret;
2977
u64 num_bytes = delta->num_bytes;
2978
2979
if (delta->is_data) {
2980
struct btrfs_root *csum_root;
2981
2982
csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2983
ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2984
if (unlikely(ret)) {
2985
btrfs_abort_transaction(trans, ret);
2986
return ret;
2987
}
2988
2989
ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2990
if (unlikely(ret)) {
2991
btrfs_abort_transaction(trans, ret);
2992
return ret;
2993
}
2994
}
2995
2996
ret = btrfs_record_squota_delta(trans->fs_info, delta);
2997
if (unlikely(ret)) {
2998
btrfs_abort_transaction(trans, ret);
2999
return ret;
3000
}
3001
3002
ret = btrfs_add_to_free_space_tree(trans, bytenr, num_bytes);
3003
if (unlikely(ret)) {
3004
btrfs_abort_transaction(trans, ret);
3005
return ret;
3006
}
3007
3008
ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
3009
if (ret)
3010
btrfs_abort_transaction(trans, ret);
3011
3012
return ret;
3013
}
3014
3015
#define abort_and_dump(trans, path, fmt, args...) \
3016
({ \
3017
btrfs_abort_transaction(trans, -EUCLEAN); \
3018
btrfs_print_leaf(path->nodes[0]); \
3019
btrfs_crit(trans->fs_info, fmt, ##args); \
3020
})
3021
3022
/*
3023
* Drop one or more refs of @node.
3024
*
3025
* 1. Locate the extent refs.
3026
* It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
3027
* Locate it, then reduce the refs number or remove the ref line completely.
3028
*
3029
* 2. Update the refs count in EXTENT/METADATA_ITEM
3030
*
3031
* Inline backref case:
3032
*
3033
* in extent tree we have:
3034
*
3035
* item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3036
* refs 2 gen 6 flags DATA
3037
* extent data backref root FS_TREE objectid 258 offset 0 count 1
3038
* extent data backref root FS_TREE objectid 257 offset 0 count 1
3039
*
3040
* This function gets called with:
3041
*
3042
* node->bytenr = 13631488
3043
* node->num_bytes = 1048576
3044
* root_objectid = FS_TREE
3045
* owner_objectid = 257
3046
* owner_offset = 0
3047
* refs_to_drop = 1
3048
*
3049
* Then we should get some like:
3050
*
3051
* item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3052
* refs 1 gen 6 flags DATA
3053
* extent data backref root FS_TREE objectid 258 offset 0 count 1
3054
*
3055
* Keyed backref case:
3056
*
3057
* in extent tree we have:
3058
*
3059
* item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3060
* refs 754 gen 6 flags DATA
3061
* [...]
3062
* item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3063
* extent data backref root FS_TREE objectid 866 offset 0 count 1
3064
*
3065
* This function get called with:
3066
*
3067
* node->bytenr = 13631488
3068
* node->num_bytes = 1048576
3069
* root_objectid = FS_TREE
3070
* owner_objectid = 866
3071
* owner_offset = 0
3072
* refs_to_drop = 1
3073
*
3074
* Then we should get some like:
3075
*
3076
* item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3077
* refs 753 gen 6 flags DATA
3078
*
3079
* And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3080
*/
3081
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3082
struct btrfs_delayed_ref_head *href,
3083
const struct btrfs_delayed_ref_node *node,
3084
struct btrfs_delayed_extent_op *extent_op)
3085
{
3086
struct btrfs_fs_info *info = trans->fs_info;
3087
struct btrfs_key key;
3088
BTRFS_PATH_AUTO_FREE(path);
3089
struct btrfs_root *extent_root;
3090
struct extent_buffer *leaf;
3091
struct btrfs_extent_item *ei;
3092
struct btrfs_extent_inline_ref *iref;
3093
int ret;
3094
int is_data;
3095
int extent_slot = 0;
3096
int found_extent = 0;
3097
int num_to_del = 1;
3098
int refs_to_drop = node->ref_mod;
3099
u32 item_size;
3100
u64 refs;
3101
u64 bytenr = node->bytenr;
3102
u64 num_bytes = node->num_bytes;
3103
u64 owner_objectid = btrfs_delayed_ref_owner(node);
3104
u64 owner_offset = btrfs_delayed_ref_offset(node);
3105
bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3106
u64 delayed_ref_root = href->owning_root;
3107
3108
extent_root = btrfs_extent_root(info, bytenr);
3109
ASSERT(extent_root);
3110
3111
path = btrfs_alloc_path();
3112
if (!path)
3113
return -ENOMEM;
3114
3115
is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3116
3117
if (unlikely(!is_data && refs_to_drop != 1)) {
3118
btrfs_crit(info,
3119
"invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3120
node->bytenr, refs_to_drop);
3121
ret = -EINVAL;
3122
btrfs_abort_transaction(trans, ret);
3123
return ret;
3124
}
3125
3126
if (is_data)
3127
skinny_metadata = false;
3128
3129
ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3130
node->parent, node->ref_root, owner_objectid,
3131
owner_offset);
3132
if (ret == 0) {
3133
/*
3134
* Either the inline backref or the SHARED_DATA_REF/
3135
* SHARED_BLOCK_REF is found
3136
*
3137
* Here is a quick path to locate EXTENT/METADATA_ITEM.
3138
* It's possible the EXTENT/METADATA_ITEM is near current slot.
3139
*/
3140
extent_slot = path->slots[0];
3141
while (extent_slot >= 0) {
3142
btrfs_item_key_to_cpu(path->nodes[0], &key,
3143
extent_slot);
3144
if (key.objectid != bytenr)
3145
break;
3146
if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3147
key.offset == num_bytes) {
3148
found_extent = 1;
3149
break;
3150
}
3151
if (key.type == BTRFS_METADATA_ITEM_KEY &&
3152
key.offset == owner_objectid) {
3153
found_extent = 1;
3154
break;
3155
}
3156
3157
/* Quick path didn't find the EXTENT/METADATA_ITEM */
3158
if (path->slots[0] - extent_slot > 5)
3159
break;
3160
extent_slot--;
3161
}
3162
3163
if (!found_extent) {
3164
if (unlikely(iref)) {
3165
abort_and_dump(trans, path,
3166
"invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3167
path->slots[0]);
3168
return -EUCLEAN;
3169
}
3170
/* Must be SHARED_* item, remove the backref first */
3171
ret = remove_extent_backref(trans, extent_root, path,
3172
NULL, refs_to_drop, is_data);
3173
if (unlikely(ret)) {
3174
btrfs_abort_transaction(trans, ret);
3175
return ret;
3176
}
3177
btrfs_release_path(path);
3178
3179
/* Slow path to locate EXTENT/METADATA_ITEM */
3180
key.objectid = bytenr;
3181
key.type = BTRFS_EXTENT_ITEM_KEY;
3182
key.offset = num_bytes;
3183
3184
if (!is_data && skinny_metadata) {
3185
key.type = BTRFS_METADATA_ITEM_KEY;
3186
key.offset = owner_objectid;
3187
}
3188
3189
ret = btrfs_search_slot(trans, extent_root,
3190
&key, path, -1, 1);
3191
if (ret > 0 && skinny_metadata && path->slots[0]) {
3192
/*
3193
* Couldn't find our skinny metadata item,
3194
* see if we have ye olde extent item.
3195
*/
3196
path->slots[0]--;
3197
btrfs_item_key_to_cpu(path->nodes[0], &key,
3198
path->slots[0]);
3199
if (key.objectid == bytenr &&
3200
key.type == BTRFS_EXTENT_ITEM_KEY &&
3201
key.offset == num_bytes)
3202
ret = 0;
3203
}
3204
3205
if (ret > 0 && skinny_metadata) {
3206
skinny_metadata = false;
3207
key.objectid = bytenr;
3208
key.type = BTRFS_EXTENT_ITEM_KEY;
3209
key.offset = num_bytes;
3210
btrfs_release_path(path);
3211
ret = btrfs_search_slot(trans, extent_root,
3212
&key, path, -1, 1);
3213
}
3214
3215
if (ret) {
3216
if (ret > 0)
3217
btrfs_print_leaf(path->nodes[0]);
3218
btrfs_err(info,
3219
"umm, got %d back from search, was looking for %llu, slot %d",
3220
ret, bytenr, path->slots[0]);
3221
}
3222
if (unlikely(ret < 0)) {
3223
btrfs_abort_transaction(trans, ret);
3224
return ret;
3225
}
3226
extent_slot = path->slots[0];
3227
}
3228
} else if (WARN_ON(ret == -ENOENT)) {
3229
abort_and_dump(trans, path,
3230
"unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3231
bytenr, node->parent, node->ref_root, owner_objectid,
3232
owner_offset, path->slots[0]);
3233
return ret;
3234
} else {
3235
btrfs_abort_transaction(trans, ret);
3236
return ret;
3237
}
3238
3239
leaf = path->nodes[0];
3240
item_size = btrfs_item_size(leaf, extent_slot);
3241
if (unlikely(item_size < sizeof(*ei))) {
3242
ret = -EUCLEAN;
3243
btrfs_err(trans->fs_info,
3244
"unexpected extent item size, has %u expect >= %zu",
3245
item_size, sizeof(*ei));
3246
btrfs_abort_transaction(trans, ret);
3247
return ret;
3248
}
3249
ei = btrfs_item_ptr(leaf, extent_slot,
3250
struct btrfs_extent_item);
3251
if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3252
key.type == BTRFS_EXTENT_ITEM_KEY) {
3253
struct btrfs_tree_block_info *bi;
3254
3255
if (unlikely(item_size < sizeof(*ei) + sizeof(*bi))) {
3256
abort_and_dump(trans, path,
3257
"invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3258
key.objectid, key.type, key.offset,
3259
path->slots[0], owner_objectid, item_size,
3260
sizeof(*ei) + sizeof(*bi));
3261
return -EUCLEAN;
3262
}
3263
bi = (struct btrfs_tree_block_info *)(ei + 1);
3264
WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3265
}
3266
3267
refs = btrfs_extent_refs(leaf, ei);
3268
if (unlikely(refs < refs_to_drop)) {
3269
abort_and_dump(trans, path,
3270
"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3271
refs_to_drop, refs, bytenr, path->slots[0]);
3272
return -EUCLEAN;
3273
}
3274
refs -= refs_to_drop;
3275
3276
if (refs > 0) {
3277
if (extent_op)
3278
__run_delayed_extent_op(extent_op, leaf, ei);
3279
/*
3280
* In the case of inline back ref, reference count will
3281
* be updated by remove_extent_backref
3282
*/
3283
if (iref) {
3284
if (unlikely(!found_extent)) {
3285
abort_and_dump(trans, path,
3286
"invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3287
path->slots[0]);
3288
return -EUCLEAN;
3289
}
3290
} else {
3291
btrfs_set_extent_refs(leaf, ei, refs);
3292
}
3293
if (found_extent) {
3294
ret = remove_extent_backref(trans, extent_root, path,
3295
iref, refs_to_drop, is_data);
3296
if (unlikely(ret)) {
3297
btrfs_abort_transaction(trans, ret);
3298
return ret;
3299
}
3300
}
3301
} else {
3302
struct btrfs_squota_delta delta = {
3303
.root = delayed_ref_root,
3304
.num_bytes = num_bytes,
3305
.is_data = is_data,
3306
.is_inc = false,
3307
.generation = btrfs_extent_generation(leaf, ei),
3308
};
3309
3310
/* In this branch refs == 1 */
3311
if (found_extent) {
3312
if (unlikely(is_data && refs_to_drop !=
3313
extent_data_ref_count(path, iref))) {
3314
abort_and_dump(trans, path,
3315
"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3316
extent_data_ref_count(path, iref),
3317
refs_to_drop, path->slots[0]);
3318
return -EUCLEAN;
3319
}
3320
if (iref) {
3321
if (unlikely(path->slots[0] != extent_slot)) {
3322
abort_and_dump(trans, path,
3323
"invalid iref, extent item key " BTRFS_KEY_FMT " slot %u doesn't have wanted iref",
3324
BTRFS_KEY_FMT_VALUE(&key),
3325
path->slots[0]);
3326
return -EUCLEAN;
3327
}
3328
} else {
3329
/*
3330
* No inline ref, we must be at SHARED_* item,
3331
* And it's single ref, it must be:
3332
* | extent_slot ||extent_slot + 1|
3333
* [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3334
*/
3335
if (unlikely(path->slots[0] != extent_slot + 1)) {
3336
abort_and_dump(trans, path,
3337
"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3338
path->slots[0]);
3339
return -EUCLEAN;
3340
}
3341
path->slots[0] = extent_slot;
3342
num_to_del = 2;
3343
}
3344
}
3345
/*
3346
* We can't infer the data owner from the delayed ref, so we need
3347
* to try to get it from the owning ref item.
3348
*
3349
* If it is not present, then that extent was not written under
3350
* simple quotas mode, so we don't need to account for its deletion.
3351
*/
3352
if (is_data)
3353
delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3354
leaf, extent_slot);
3355
3356
ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3357
num_to_del);
3358
if (unlikely(ret)) {
3359
btrfs_abort_transaction(trans, ret);
3360
return ret;
3361
}
3362
btrfs_release_path(path);
3363
3364
ret = do_free_extent_accounting(trans, bytenr, &delta);
3365
}
3366
btrfs_release_path(path);
3367
3368
return ret;
3369
}
3370
3371
/*
3372
* when we free an block, it is possible (and likely) that we free the last
3373
* delayed ref for that extent as well. This searches the delayed ref tree for
3374
* a given extent, and if there are no other delayed refs to be processed, it
3375
* removes it from the tree.
3376
*/
3377
static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3378
u64 bytenr)
3379
{
3380
struct btrfs_fs_info *fs_info = trans->fs_info;
3381
struct btrfs_delayed_ref_head *head;
3382
struct btrfs_delayed_ref_root *delayed_refs;
3383
int ret = 0;
3384
3385
delayed_refs = &trans->transaction->delayed_refs;
3386
spin_lock(&delayed_refs->lock);
3387
head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
3388
if (!head)
3389
goto out_delayed_unlock;
3390
3391
spin_lock(&head->lock);
3392
if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3393
goto out;
3394
3395
if (cleanup_extent_op(head) != NULL)
3396
goto out;
3397
3398
/*
3399
* waiting for the lock here would deadlock. If someone else has it
3400
* locked they are already in the process of dropping it anyway
3401
*/
3402
if (!mutex_trylock(&head->mutex))
3403
goto out;
3404
3405
btrfs_delete_ref_head(fs_info, delayed_refs, head);
3406
head->processing = false;
3407
3408
spin_unlock(&head->lock);
3409
spin_unlock(&delayed_refs->lock);
3410
3411
BUG_ON(head->extent_op);
3412
if (head->must_insert_reserved)
3413
ret = 1;
3414
3415
btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
3416
mutex_unlock(&head->mutex);
3417
btrfs_put_delayed_ref_head(head);
3418
return ret;
3419
out:
3420
spin_unlock(&head->lock);
3421
3422
out_delayed_unlock:
3423
spin_unlock(&delayed_refs->lock);
3424
return 0;
3425
}
3426
3427
int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3428
u64 root_id,
3429
struct extent_buffer *buf,
3430
u64 parent, int last_ref)
3431
{
3432
struct btrfs_fs_info *fs_info = trans->fs_info;
3433
struct btrfs_block_group *bg;
3434
int ret;
3435
3436
if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3437
struct btrfs_ref generic_ref = {
3438
.action = BTRFS_DROP_DELAYED_REF,
3439
.bytenr = buf->start,
3440
.num_bytes = buf->len,
3441
.parent = parent,
3442
.owning_root = btrfs_header_owner(buf),
3443
.ref_root = root_id,
3444
};
3445
3446
/*
3447
* Assert that the extent buffer is not cleared due to
3448
* EXTENT_BUFFER_ZONED_ZEROOUT. Please refer
3449
* btrfs_clear_buffer_dirty() and btree_csum_one_bio() for
3450
* detail.
3451
*/
3452
ASSERT(btrfs_header_bytenr(buf) != 0);
3453
3454
btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false);
3455
btrfs_ref_tree_mod(fs_info, &generic_ref);
3456
ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3457
if (ret < 0)
3458
return ret;
3459
}
3460
3461
if (!last_ref)
3462
return 0;
3463
3464
if (btrfs_header_generation(buf) != trans->transid)
3465
goto out;
3466
3467
if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3468
ret = check_ref_cleanup(trans, buf->start);
3469
if (!ret)
3470
goto out;
3471
}
3472
3473
bg = btrfs_lookup_block_group(fs_info, buf->start);
3474
3475
if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3476
pin_down_extent(trans, bg, buf->start, buf->len, true);
3477
btrfs_put_block_group(bg);
3478
goto out;
3479
}
3480
3481
/*
3482
* If there are tree mod log users we may have recorded mod log
3483
* operations for this node. If we re-allocate this node we
3484
* could replay operations on this node that happened when it
3485
* existed in a completely different root. For example if it
3486
* was part of root A, then was reallocated to root B, and we
3487
* are doing a btrfs_old_search_slot(root b), we could replay
3488
* operations that happened when the block was part of root A,
3489
* giving us an inconsistent view of the btree.
3490
*
3491
* We are safe from races here because at this point no other
3492
* node or root points to this extent buffer, so if after this
3493
* check a new tree mod log user joins we will not have an
3494
* existing log of operations on this node that we have to
3495
* contend with.
3496
*/
3497
3498
if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3499
|| btrfs_is_zoned(fs_info)) {
3500
pin_down_extent(trans, bg, buf->start, buf->len, true);
3501
btrfs_put_block_group(bg);
3502
goto out;
3503
}
3504
3505
WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3506
3507
btrfs_add_free_space(bg, buf->start, buf->len);
3508
btrfs_free_reserved_bytes(bg, buf->len, false);
3509
btrfs_put_block_group(bg);
3510
trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3511
3512
out:
3513
return 0;
3514
}
3515
3516
/* Can return -ENOMEM */
3517
int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3518
{
3519
struct btrfs_fs_info *fs_info = trans->fs_info;
3520
int ret;
3521
3522
if (btrfs_is_testing(fs_info))
3523
return 0;
3524
3525
/*
3526
* tree log blocks never actually go into the extent allocation
3527
* tree, just update pinning info and exit early.
3528
*/
3529
if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) {
3530
btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes);
3531
ret = 0;
3532
} else if (ref->type == BTRFS_REF_METADATA) {
3533
ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3534
} else {
3535
ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3536
}
3537
3538
if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID)
3539
btrfs_ref_tree_mod(fs_info, ref);
3540
3541
return ret;
3542
}
3543
3544
enum btrfs_loop_type {
3545
/*
3546
* Start caching block groups but do not wait for progress or for them
3547
* to be done.
3548
*/
3549
LOOP_CACHING_NOWAIT,
3550
3551
/*
3552
* Wait for the block group free_space >= the space we're waiting for if
3553
* the block group isn't cached.
3554
*/
3555
LOOP_CACHING_WAIT,
3556
3557
/*
3558
* Allow allocations to happen from block groups that do not yet have a
3559
* size classification.
3560
*/
3561
LOOP_UNSET_SIZE_CLASS,
3562
3563
/*
3564
* Allocate a chunk and then retry the allocation.
3565
*/
3566
LOOP_ALLOC_CHUNK,
3567
3568
/*
3569
* Ignore the size class restrictions for this allocation.
3570
*/
3571
LOOP_WRONG_SIZE_CLASS,
3572
3573
/*
3574
* Ignore the empty size, only try to allocate the number of bytes
3575
* needed for this allocation.
3576
*/
3577
LOOP_NO_EMPTY_SIZE,
3578
};
3579
3580
static inline void
3581
btrfs_lock_block_group(struct btrfs_block_group *cache, bool delalloc)
3582
{
3583
if (delalloc)
3584
down_read(&cache->data_rwsem);
3585
}
3586
3587
static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3588
bool delalloc)
3589
{
3590
btrfs_get_block_group(cache);
3591
if (delalloc)
3592
down_read(&cache->data_rwsem);
3593
}
3594
3595
static struct btrfs_block_group *btrfs_lock_cluster(
3596
struct btrfs_block_group *block_group,
3597
struct btrfs_free_cluster *cluster,
3598
bool delalloc)
3599
__acquires(&cluster->refill_lock)
3600
{
3601
struct btrfs_block_group *used_bg = NULL;
3602
3603
spin_lock(&cluster->refill_lock);
3604
while (1) {
3605
used_bg = cluster->block_group;
3606
if (!used_bg)
3607
return NULL;
3608
3609
if (used_bg == block_group)
3610
return used_bg;
3611
3612
btrfs_get_block_group(used_bg);
3613
3614
if (!delalloc)
3615
return used_bg;
3616
3617
if (down_read_trylock(&used_bg->data_rwsem))
3618
return used_bg;
3619
3620
spin_unlock(&cluster->refill_lock);
3621
3622
/* We should only have one-level nested. */
3623
down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3624
3625
spin_lock(&cluster->refill_lock);
3626
if (used_bg == cluster->block_group)
3627
return used_bg;
3628
3629
up_read(&used_bg->data_rwsem);
3630
btrfs_put_block_group(used_bg);
3631
}
3632
}
3633
3634
static inline void
3635
btrfs_release_block_group(struct btrfs_block_group *cache, bool delalloc)
3636
{
3637
if (delalloc)
3638
up_read(&cache->data_rwsem);
3639
btrfs_put_block_group(cache);
3640
}
3641
3642
static bool find_free_extent_check_size_class(const struct find_free_extent_ctl *ffe_ctl,
3643
const struct btrfs_block_group *bg)
3644
{
3645
if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
3646
return true;
3647
if (!btrfs_block_group_should_use_size_class(bg))
3648
return true;
3649
if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
3650
return true;
3651
if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
3652
bg->size_class == BTRFS_BG_SZ_NONE)
3653
return true;
3654
return ffe_ctl->size_class == bg->size_class;
3655
}
3656
3657
/*
3658
* Helper function for find_free_extent().
3659
*
3660
* Return -ENOENT to inform caller that we need fallback to unclustered mode.
3661
* Return >0 to inform caller that we find nothing
3662
* Return 0 means we have found a location and set ffe_ctl->found_offset.
3663
*/
3664
static int find_free_extent_clustered(struct btrfs_block_group *bg,
3665
struct find_free_extent_ctl *ffe_ctl,
3666
struct btrfs_block_group **cluster_bg_ret)
3667
{
3668
struct btrfs_block_group *cluster_bg;
3669
struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3670
u64 aligned_cluster;
3671
u64 offset;
3672
int ret;
3673
3674
cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3675
if (!cluster_bg)
3676
goto refill_cluster;
3677
if (cluster_bg != bg && (cluster_bg->ro ||
3678
!block_group_bits(cluster_bg, ffe_ctl->flags) ||
3679
!find_free_extent_check_size_class(ffe_ctl, cluster_bg)))
3680
goto release_cluster;
3681
3682
offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3683
ffe_ctl->num_bytes, cluster_bg->start,
3684
&ffe_ctl->max_extent_size);
3685
if (offset) {
3686
/* We have a block, we're done */
3687
spin_unlock(&last_ptr->refill_lock);
3688
trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3689
*cluster_bg_ret = cluster_bg;
3690
ffe_ctl->found_offset = offset;
3691
return 0;
3692
}
3693
WARN_ON(last_ptr->block_group != cluster_bg);
3694
3695
release_cluster:
3696
/*
3697
* If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3698
* lets just skip it and let the allocator find whatever block it can
3699
* find. If we reach this point, we will have tried the cluster
3700
* allocator plenty of times and not have found anything, so we are
3701
* likely way too fragmented for the clustering stuff to find anything.
3702
*
3703
* However, if the cluster is taken from the current block group,
3704
* release the cluster first, so that we stand a better chance of
3705
* succeeding in the unclustered allocation.
3706
*/
3707
if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3708
spin_unlock(&last_ptr->refill_lock);
3709
btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3710
return -ENOENT;
3711
}
3712
3713
/* This cluster didn't work out, free it and start over */
3714
btrfs_return_cluster_to_free_space(NULL, last_ptr);
3715
3716
if (cluster_bg != bg)
3717
btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3718
3719
refill_cluster:
3720
if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3721
spin_unlock(&last_ptr->refill_lock);
3722
return -ENOENT;
3723
}
3724
3725
aligned_cluster = max_t(u64,
3726
ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3727
bg->full_stripe_len);
3728
ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3729
ffe_ctl->num_bytes, aligned_cluster);
3730
if (ret == 0) {
3731
/* Now pull our allocation out of this cluster */
3732
offset = btrfs_alloc_from_cluster(bg, last_ptr,
3733
ffe_ctl->num_bytes, ffe_ctl->search_start,
3734
&ffe_ctl->max_extent_size);
3735
if (offset) {
3736
/* We found one, proceed */
3737
spin_unlock(&last_ptr->refill_lock);
3738
ffe_ctl->found_offset = offset;
3739
trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3740
return 0;
3741
}
3742
}
3743
/*
3744
* At this point we either didn't find a cluster or we weren't able to
3745
* allocate a block from our cluster. Free the cluster we've been
3746
* trying to use, and go to the next block group.
3747
*/
3748
btrfs_return_cluster_to_free_space(NULL, last_ptr);
3749
spin_unlock(&last_ptr->refill_lock);
3750
return 1;
3751
}
3752
3753
/*
3754
* Return >0 to inform caller that we find nothing
3755
* Return 0 when we found an free extent and set ffe_ctrl->found_offset
3756
*/
3757
static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3758
struct find_free_extent_ctl *ffe_ctl)
3759
{
3760
struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3761
u64 offset;
3762
3763
/*
3764
* We are doing an unclustered allocation, set the fragmented flag so
3765
* we don't bother trying to setup a cluster again until we get more
3766
* space.
3767
*/
3768
if (unlikely(last_ptr)) {
3769
spin_lock(&last_ptr->lock);
3770
last_ptr->fragmented = 1;
3771
spin_unlock(&last_ptr->lock);
3772
}
3773
if (ffe_ctl->cached) {
3774
struct btrfs_free_space_ctl *free_space_ctl;
3775
3776
free_space_ctl = bg->free_space_ctl;
3777
spin_lock(&free_space_ctl->tree_lock);
3778
if (free_space_ctl->free_space <
3779
ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3780
ffe_ctl->empty_size) {
3781
ffe_ctl->total_free_space = max_t(u64,
3782
ffe_ctl->total_free_space,
3783
free_space_ctl->free_space);
3784
spin_unlock(&free_space_ctl->tree_lock);
3785
return 1;
3786
}
3787
spin_unlock(&free_space_ctl->tree_lock);
3788
}
3789
3790
offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3791
ffe_ctl->num_bytes, ffe_ctl->empty_size,
3792
&ffe_ctl->max_extent_size);
3793
if (!offset)
3794
return 1;
3795
ffe_ctl->found_offset = offset;
3796
return 0;
3797
}
3798
3799
static int do_allocation_clustered(struct btrfs_block_group *block_group,
3800
struct find_free_extent_ctl *ffe_ctl,
3801
struct btrfs_block_group **bg_ret)
3802
{
3803
int ret;
3804
3805
/* We want to try and use the cluster allocator, so lets look there */
3806
if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3807
ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3808
if (ret >= 0)
3809
return ret;
3810
/* ret == -ENOENT case falls through */
3811
}
3812
3813
return find_free_extent_unclustered(block_group, ffe_ctl);
3814
}
3815
3816
/*
3817
* Tree-log block group locking
3818
* ============================
3819
*
3820
* fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3821
* indicates the starting address of a block group, which is reserved only
3822
* for tree-log metadata.
3823
*
3824
* Lock nesting
3825
* ============
3826
*
3827
* space_info::lock
3828
* block_group::lock
3829
* fs_info::treelog_bg_lock
3830
*/
3831
3832
/*
3833
* Simple allocator for sequential-only block group. It only allows sequential
3834
* allocation. No need to play with trees. This function also reserves the
3835
* bytes as in btrfs_add_reserved_bytes.
3836
*/
3837
static int do_allocation_zoned(struct btrfs_block_group *block_group,
3838
struct find_free_extent_ctl *ffe_ctl,
3839
struct btrfs_block_group **bg_ret)
3840
{
3841
struct btrfs_fs_info *fs_info = block_group->fs_info;
3842
struct btrfs_space_info *space_info = block_group->space_info;
3843
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3844
u64 start = block_group->start;
3845
u64 num_bytes = ffe_ctl->num_bytes;
3846
u64 avail;
3847
u64 bytenr = block_group->start;
3848
u64 log_bytenr;
3849
u64 data_reloc_bytenr;
3850
int ret = 0;
3851
bool skip = false;
3852
3853
ASSERT(btrfs_is_zoned(block_group->fs_info));
3854
3855
/*
3856
* Do not allow non-tree-log blocks in the dedicated tree-log block
3857
* group, and vice versa.
3858
*/
3859
spin_lock(&fs_info->treelog_bg_lock);
3860
log_bytenr = fs_info->treelog_bg;
3861
if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3862
(!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3863
skip = true;
3864
spin_unlock(&fs_info->treelog_bg_lock);
3865
if (skip)
3866
return 1;
3867
3868
/*
3869
* Do not allow non-relocation blocks in the dedicated relocation block
3870
* group, and vice versa.
3871
*/
3872
spin_lock(&fs_info->relocation_bg_lock);
3873
data_reloc_bytenr = fs_info->data_reloc_bg;
3874
if (data_reloc_bytenr &&
3875
((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3876
(!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3877
skip = true;
3878
spin_unlock(&fs_info->relocation_bg_lock);
3879
if (skip)
3880
return 1;
3881
3882
/* Check RO and no space case before trying to activate it */
3883
spin_lock(&block_group->lock);
3884
if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3885
ret = 1;
3886
/*
3887
* May need to clear fs_info->{treelog,data_reloc}_bg.
3888
* Return the error after taking the locks.
3889
*/
3890
}
3891
spin_unlock(&block_group->lock);
3892
3893
/* Metadata block group is activated at write time. */
3894
if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3895
!btrfs_zone_activate(block_group)) {
3896
ret = 1;
3897
/*
3898
* May need to clear fs_info->{treelog,data_reloc}_bg.
3899
* Return the error after taking the locks.
3900
*/
3901
}
3902
3903
spin_lock(&space_info->lock);
3904
spin_lock(&block_group->lock);
3905
spin_lock(&fs_info->treelog_bg_lock);
3906
spin_lock(&fs_info->relocation_bg_lock);
3907
3908
if (ret)
3909
goto out;
3910
3911
ASSERT(!ffe_ctl->for_treelog ||
3912
block_group->start == fs_info->treelog_bg ||
3913
fs_info->treelog_bg == 0);
3914
ASSERT(!ffe_ctl->for_data_reloc ||
3915
block_group->start == fs_info->data_reloc_bg ||
3916
fs_info->data_reloc_bg == 0);
3917
3918
if (block_group->ro ||
3919
(!ffe_ctl->for_data_reloc &&
3920
test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3921
ret = 1;
3922
goto out;
3923
}
3924
3925
/*
3926
* Do not allow currently using block group to be tree-log dedicated
3927
* block group.
3928
*/
3929
if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3930
(block_group->used || block_group->reserved)) {
3931
ret = 1;
3932
goto out;
3933
}
3934
3935
/*
3936
* Do not allow currently used block group to be the data relocation
3937
* dedicated block group.
3938
*/
3939
if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3940
(block_group->used || block_group->reserved)) {
3941
ret = 1;
3942
goto out;
3943
}
3944
3945
WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3946
avail = block_group->zone_capacity - block_group->alloc_offset;
3947
if (avail < num_bytes) {
3948
if (ffe_ctl->max_extent_size < avail) {
3949
/*
3950
* With sequential allocator, free space is always
3951
* contiguous
3952
*/
3953
ffe_ctl->max_extent_size = avail;
3954
ffe_ctl->total_free_space = avail;
3955
}
3956
ret = 1;
3957
goto out;
3958
}
3959
3960
if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3961
fs_info->treelog_bg = block_group->start;
3962
3963
if (ffe_ctl->for_data_reloc) {
3964
if (!fs_info->data_reloc_bg)
3965
fs_info->data_reloc_bg = block_group->start;
3966
/*
3967
* Do not allow allocations from this block group, unless it is
3968
* for data relocation. Compared to increasing the ->ro, setting
3969
* the ->zoned_data_reloc_ongoing flag still allows nocow
3970
* writers to come in. See btrfs_inc_nocow_writers().
3971
*
3972
* We need to disable an allocation to avoid an allocation of
3973
* regular (non-relocation data) extent. With mix of relocation
3974
* extents and regular extents, we can dispatch WRITE commands
3975
* (for relocation extents) and ZONE APPEND commands (for
3976
* regular extents) at the same time to the same zone, which
3977
* easily break the write pointer.
3978
*
3979
* Also, this flag avoids this block group to be zone finished.
3980
*/
3981
set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3982
}
3983
3984
ffe_ctl->found_offset = start + block_group->alloc_offset;
3985
block_group->alloc_offset += num_bytes;
3986
spin_lock(&ctl->tree_lock);
3987
ctl->free_space -= num_bytes;
3988
spin_unlock(&ctl->tree_lock);
3989
3990
/*
3991
* We do not check if found_offset is aligned to stripesize. The
3992
* address is anyway rewritten when using zone append writing.
3993
*/
3994
3995
ffe_ctl->search_start = ffe_ctl->found_offset;
3996
3997
out:
3998
if (ret && ffe_ctl->for_treelog)
3999
fs_info->treelog_bg = 0;
4000
if (ret && ffe_ctl->for_data_reloc)
4001
fs_info->data_reloc_bg = 0;
4002
spin_unlock(&fs_info->relocation_bg_lock);
4003
spin_unlock(&fs_info->treelog_bg_lock);
4004
spin_unlock(&block_group->lock);
4005
spin_unlock(&space_info->lock);
4006
return ret;
4007
}
4008
4009
static int do_allocation(struct btrfs_block_group *block_group,
4010
struct find_free_extent_ctl *ffe_ctl,
4011
struct btrfs_block_group **bg_ret)
4012
{
4013
switch (ffe_ctl->policy) {
4014
case BTRFS_EXTENT_ALLOC_CLUSTERED:
4015
return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
4016
case BTRFS_EXTENT_ALLOC_ZONED:
4017
return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
4018
default:
4019
BUG();
4020
}
4021
}
4022
4023
static void release_block_group(struct btrfs_block_group *block_group,
4024
struct find_free_extent_ctl *ffe_ctl,
4025
bool delalloc)
4026
{
4027
switch (ffe_ctl->policy) {
4028
case BTRFS_EXTENT_ALLOC_CLUSTERED:
4029
ffe_ctl->retry_uncached = false;
4030
break;
4031
case BTRFS_EXTENT_ALLOC_ZONED:
4032
/* Nothing to do */
4033
break;
4034
default:
4035
BUG();
4036
}
4037
4038
BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4039
ffe_ctl->index);
4040
btrfs_release_block_group(block_group, delalloc);
4041
}
4042
4043
static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4044
struct btrfs_key *ins)
4045
{
4046
struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4047
4048
if (!ffe_ctl->use_cluster && last_ptr) {
4049
spin_lock(&last_ptr->lock);
4050
last_ptr->window_start = ins->objectid;
4051
spin_unlock(&last_ptr->lock);
4052
}
4053
}
4054
4055
static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4056
struct btrfs_key *ins)
4057
{
4058
switch (ffe_ctl->policy) {
4059
case BTRFS_EXTENT_ALLOC_CLUSTERED:
4060
found_extent_clustered(ffe_ctl, ins);
4061
break;
4062
case BTRFS_EXTENT_ALLOC_ZONED:
4063
/* Nothing to do */
4064
break;
4065
default:
4066
BUG();
4067
}
4068
}
4069
4070
static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4071
struct find_free_extent_ctl *ffe_ctl)
4072
{
4073
/* Block group's activeness is not a requirement for METADATA block groups. */
4074
if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4075
return 0;
4076
4077
/* If we can activate new zone, just allocate a chunk and use it */
4078
if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4079
return 0;
4080
4081
/*
4082
* We already reached the max active zones. Try to finish one block
4083
* group to make a room for a new block group. This is only possible
4084
* for a data block group because btrfs_zone_finish() may need to wait
4085
* for a running transaction which can cause a deadlock for metadata
4086
* allocation.
4087
*/
4088
if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4089
int ret = btrfs_zone_finish_one_bg(fs_info);
4090
4091
if (ret == 1)
4092
return 0;
4093
else if (ret < 0)
4094
return ret;
4095
}
4096
4097
/*
4098
* If we have enough free space left in an already active block group
4099
* and we can't activate any other zone now, do not allow allocating a
4100
* new chunk and let find_free_extent() retry with a smaller size.
4101
*/
4102
if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4103
return -ENOSPC;
4104
4105
/*
4106
* Even min_alloc_size is not left in any block groups. Since we cannot
4107
* activate a new block group, allocating it may not help. Let's tell a
4108
* caller to try again and hope it progress something by writing some
4109
* parts of the region. That is only possible for data block groups,
4110
* where a part of the region can be written.
4111
*/
4112
if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4113
return -EAGAIN;
4114
4115
/*
4116
* We cannot activate a new block group and no enough space left in any
4117
* block groups. So, allocating a new block group may not help. But,
4118
* there is nothing to do anyway, so let's go with it.
4119
*/
4120
return 0;
4121
}
4122
4123
static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4124
struct find_free_extent_ctl *ffe_ctl)
4125
{
4126
switch (ffe_ctl->policy) {
4127
case BTRFS_EXTENT_ALLOC_CLUSTERED:
4128
return 0;
4129
case BTRFS_EXTENT_ALLOC_ZONED:
4130
return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4131
default:
4132
BUG();
4133
}
4134
}
4135
4136
/*
4137
* Return >0 means caller needs to re-search for free extent
4138
* Return 0 means we have the needed free extent.
4139
* Return <0 means we failed to locate any free extent.
4140
*/
4141
static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4142
struct btrfs_key *ins,
4143
struct find_free_extent_ctl *ffe_ctl,
4144
struct btrfs_space_info *space_info,
4145
bool full_search)
4146
{
4147
struct btrfs_root *root = fs_info->chunk_root;
4148
int ret;
4149
4150
if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4151
ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4152
ffe_ctl->orig_have_caching_bg = true;
4153
4154
if (ins->objectid) {
4155
found_extent(ffe_ctl, ins);
4156
return 0;
4157
}
4158
4159
if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4160
return 1;
4161
4162
ffe_ctl->index++;
4163
if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4164
return 1;
4165
4166
/* See the comments for btrfs_loop_type for an explanation of the phases. */
4167
if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4168
ffe_ctl->index = 0;
4169
/*
4170
* We want to skip the LOOP_CACHING_WAIT step if we don't have
4171
* any uncached bgs and we've already done a full search
4172
* through.
4173
*/
4174
if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4175
(!ffe_ctl->orig_have_caching_bg && full_search))
4176
ffe_ctl->loop++;
4177
ffe_ctl->loop++;
4178
4179
if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4180
struct btrfs_trans_handle *trans;
4181
int exist = 0;
4182
4183
/* Check if allocation policy allows to create a new chunk */
4184
ret = can_allocate_chunk(fs_info, ffe_ctl);
4185
if (ret)
4186
return ret;
4187
4188
trans = current->journal_info;
4189
if (trans)
4190
exist = 1;
4191
else
4192
trans = btrfs_join_transaction(root);
4193
4194
if (IS_ERR(trans)) {
4195
ret = PTR_ERR(trans);
4196
return ret;
4197
}
4198
4199
ret = btrfs_chunk_alloc(trans, space_info, ffe_ctl->flags,
4200
CHUNK_ALLOC_FORCE_FOR_EXTENT);
4201
4202
/* Do not bail out on ENOSPC since we can do more. */
4203
if (ret == -ENOSPC) {
4204
ret = 0;
4205
ffe_ctl->loop++;
4206
}
4207
else if (ret < 0)
4208
btrfs_abort_transaction(trans, ret);
4209
else
4210
ret = 0;
4211
if (!exist)
4212
btrfs_end_transaction(trans);
4213
if (ret)
4214
return ret;
4215
}
4216
4217
if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4218
if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4219
return -ENOSPC;
4220
4221
/*
4222
* Don't loop again if we already have no empty_size and
4223
* no empty_cluster.
4224
*/
4225
if (ffe_ctl->empty_size == 0 &&
4226
ffe_ctl->empty_cluster == 0)
4227
return -ENOSPC;
4228
ffe_ctl->empty_size = 0;
4229
ffe_ctl->empty_cluster = 0;
4230
}
4231
return 1;
4232
}
4233
return -ENOSPC;
4234
}
4235
4236
static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4237
struct find_free_extent_ctl *ffe_ctl,
4238
struct btrfs_space_info *space_info,
4239
struct btrfs_key *ins)
4240
{
4241
/*
4242
* If our free space is heavily fragmented we may not be able to make
4243
* big contiguous allocations, so instead of doing the expensive search
4244
* for free space, simply return ENOSPC with our max_extent_size so we
4245
* can go ahead and search for a more manageable chunk.
4246
*
4247
* If our max_extent_size is large enough for our allocation simply
4248
* disable clustering since we will likely not be able to find enough
4249
* space to create a cluster and induce latency trying.
4250
*/
4251
if (space_info->max_extent_size) {
4252
spin_lock(&space_info->lock);
4253
if (space_info->max_extent_size &&
4254
ffe_ctl->num_bytes > space_info->max_extent_size) {
4255
ins->offset = space_info->max_extent_size;
4256
spin_unlock(&space_info->lock);
4257
return -ENOSPC;
4258
} else if (space_info->max_extent_size) {
4259
ffe_ctl->use_cluster = false;
4260
}
4261
spin_unlock(&space_info->lock);
4262
}
4263
4264
ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4265
&ffe_ctl->empty_cluster);
4266
if (ffe_ctl->last_ptr) {
4267
struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4268
4269
spin_lock(&last_ptr->lock);
4270
if (last_ptr->block_group)
4271
ffe_ctl->hint_byte = last_ptr->window_start;
4272
if (last_ptr->fragmented) {
4273
/*
4274
* We still set window_start so we can keep track of the
4275
* last place we found an allocation to try and save
4276
* some time.
4277
*/
4278
ffe_ctl->hint_byte = last_ptr->window_start;
4279
ffe_ctl->use_cluster = false;
4280
}
4281
spin_unlock(&last_ptr->lock);
4282
}
4283
4284
return 0;
4285
}
4286
4287
static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4288
struct find_free_extent_ctl *ffe_ctl,
4289
struct btrfs_space_info *space_info)
4290
{
4291
if (ffe_ctl->for_treelog) {
4292
spin_lock(&fs_info->treelog_bg_lock);
4293
if (fs_info->treelog_bg)
4294
ffe_ctl->hint_byte = fs_info->treelog_bg;
4295
spin_unlock(&fs_info->treelog_bg_lock);
4296
} else if (ffe_ctl->for_data_reloc) {
4297
spin_lock(&fs_info->relocation_bg_lock);
4298
if (fs_info->data_reloc_bg)
4299
ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4300
spin_unlock(&fs_info->relocation_bg_lock);
4301
} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4302
struct btrfs_block_group *block_group;
4303
4304
spin_lock(&fs_info->zone_active_bgs_lock);
4305
list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4306
/*
4307
* No lock is OK here because avail is monotonically
4308
* decreasing, and this is just a hint.
4309
*/
4310
u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4311
4312
if (block_group_bits(block_group, ffe_ctl->flags) &&
4313
block_group->space_info == space_info &&
4314
avail >= ffe_ctl->num_bytes) {
4315
ffe_ctl->hint_byte = block_group->start;
4316
break;
4317
}
4318
}
4319
spin_unlock(&fs_info->zone_active_bgs_lock);
4320
}
4321
4322
return 0;
4323
}
4324
4325
static int prepare_allocation(struct btrfs_fs_info *fs_info,
4326
struct find_free_extent_ctl *ffe_ctl,
4327
struct btrfs_space_info *space_info,
4328
struct btrfs_key *ins)
4329
{
4330
switch (ffe_ctl->policy) {
4331
case BTRFS_EXTENT_ALLOC_CLUSTERED:
4332
return prepare_allocation_clustered(fs_info, ffe_ctl,
4333
space_info, ins);
4334
case BTRFS_EXTENT_ALLOC_ZONED:
4335
return prepare_allocation_zoned(fs_info, ffe_ctl, space_info);
4336
default:
4337
BUG();
4338
}
4339
}
4340
4341
/*
4342
* walks the btree of allocated extents and find a hole of a given size.
4343
* The key ins is changed to record the hole:
4344
* ins->objectid == start position
4345
* ins->flags = BTRFS_EXTENT_ITEM_KEY
4346
* ins->offset == the size of the hole.
4347
* Any available blocks before search_start are skipped.
4348
*
4349
* If there is no suitable free space, we will record the max size of
4350
* the free space extent currently.
4351
*
4352
* The overall logic and call chain:
4353
*
4354
* find_free_extent()
4355
* |- Iterate through all block groups
4356
* | |- Get a valid block group
4357
* | |- Try to do clustered allocation in that block group
4358
* | |- Try to do unclustered allocation in that block group
4359
* | |- Check if the result is valid
4360
* | | |- If valid, then exit
4361
* | |- Jump to next block group
4362
* |
4363
* |- Push harder to find free extents
4364
* |- If not found, re-iterate all block groups
4365
*/
4366
static noinline int find_free_extent(struct btrfs_root *root,
4367
struct btrfs_key *ins,
4368
struct find_free_extent_ctl *ffe_ctl)
4369
{
4370
struct btrfs_fs_info *fs_info = root->fs_info;
4371
int ret = 0;
4372
int cache_block_group_error = 0;
4373
struct btrfs_block_group *block_group = NULL;
4374
struct btrfs_space_info *space_info;
4375
bool full_search = false;
4376
4377
WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4378
4379
ffe_ctl->search_start = 0;
4380
/* For clustered allocation */
4381
ffe_ctl->empty_cluster = 0;
4382
ffe_ctl->last_ptr = NULL;
4383
ffe_ctl->use_cluster = true;
4384
ffe_ctl->have_caching_bg = false;
4385
ffe_ctl->orig_have_caching_bg = false;
4386
ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4387
ffe_ctl->loop = 0;
4388
ffe_ctl->retry_uncached = false;
4389
ffe_ctl->cached = 0;
4390
ffe_ctl->max_extent_size = 0;
4391
ffe_ctl->total_free_space = 0;
4392
ffe_ctl->found_offset = 0;
4393
ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4394
ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4395
4396
if (btrfs_is_zoned(fs_info))
4397
ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4398
4399
ins->type = BTRFS_EXTENT_ITEM_KEY;
4400
ins->objectid = 0;
4401
ins->offset = 0;
4402
4403
trace_btrfs_find_free_extent(root, ffe_ctl);
4404
4405
space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4406
if (btrfs_is_zoned(fs_info) && space_info) {
4407
/* Use dedicated sub-space_info for dedicated block group users. */
4408
if (ffe_ctl->for_data_reloc) {
4409
space_info = space_info->sub_group[0];
4410
ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC);
4411
} else if (ffe_ctl->for_treelog) {
4412
space_info = space_info->sub_group[0];
4413
ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_TREELOG);
4414
}
4415
}
4416
if (!space_info) {
4417
btrfs_err(fs_info, "no space info for %llu, tree-log %d, relocation %d",
4418
ffe_ctl->flags, ffe_ctl->for_treelog, ffe_ctl->for_data_reloc);
4419
return -ENOSPC;
4420
}
4421
4422
ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4423
if (ret < 0)
4424
return ret;
4425
4426
ffe_ctl->search_start = max(ffe_ctl->search_start,
4427
first_logical_byte(fs_info));
4428
ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4429
if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4430
block_group = btrfs_lookup_block_group(fs_info,
4431
ffe_ctl->search_start);
4432
/*
4433
* we don't want to use the block group if it doesn't match our
4434
* allocation bits, or if its not cached.
4435
*
4436
* However if we are re-searching with an ideal block group
4437
* picked out then we don't care that the block group is cached.
4438
*/
4439
if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4440
block_group->space_info == space_info &&
4441
block_group->cached != BTRFS_CACHE_NO) {
4442
down_read(&space_info->groups_sem);
4443
if (list_empty(&block_group->list) ||
4444
block_group->ro) {
4445
/*
4446
* someone is removing this block group,
4447
* we can't jump into the have_block_group
4448
* target because our list pointers are not
4449
* valid
4450
*/
4451
btrfs_put_block_group(block_group);
4452
up_read(&space_info->groups_sem);
4453
} else {
4454
ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4455
block_group->flags);
4456
btrfs_lock_block_group(block_group,
4457
ffe_ctl->delalloc);
4458
ffe_ctl->hinted = true;
4459
goto have_block_group;
4460
}
4461
} else if (block_group) {
4462
btrfs_put_block_group(block_group);
4463
}
4464
}
4465
search:
4466
trace_btrfs_find_free_extent_search_loop(root, ffe_ctl);
4467
ffe_ctl->have_caching_bg = false;
4468
if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4469
ffe_ctl->index == 0)
4470
full_search = true;
4471
down_read(&space_info->groups_sem);
4472
list_for_each_entry(block_group,
4473
&space_info->block_groups[ffe_ctl->index], list) {
4474
struct btrfs_block_group *bg_ret;
4475
4476
ffe_ctl->hinted = false;
4477
/* If the block group is read-only, we can skip it entirely. */
4478
if (unlikely(block_group->ro)) {
4479
if (ffe_ctl->for_treelog)
4480
btrfs_clear_treelog_bg(block_group);
4481
if (ffe_ctl->for_data_reloc)
4482
btrfs_clear_data_reloc_bg(block_group);
4483
continue;
4484
}
4485
4486
btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4487
ffe_ctl->search_start = block_group->start;
4488
4489
/*
4490
* this can happen if we end up cycling through all the
4491
* raid types, but we want to make sure we only allocate
4492
* for the proper type.
4493
*/
4494
if (!block_group_bits(block_group, ffe_ctl->flags)) {
4495
u64 extra = BTRFS_BLOCK_GROUP_DUP |
4496
BTRFS_BLOCK_GROUP_RAID1_MASK |
4497
BTRFS_BLOCK_GROUP_RAID56_MASK |
4498
BTRFS_BLOCK_GROUP_RAID10;
4499
4500
/*
4501
* if they asked for extra copies and this block group
4502
* doesn't provide them, bail. This does allow us to
4503
* fill raid0 from raid1.
4504
*/
4505
if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4506
goto loop;
4507
4508
/*
4509
* This block group has different flags than we want.
4510
* It's possible that we have MIXED_GROUP flag but no
4511
* block group is mixed. Just skip such block group.
4512
*/
4513
btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4514
continue;
4515
}
4516
4517
have_block_group:
4518
trace_btrfs_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4519
ffe_ctl->cached = btrfs_block_group_done(block_group);
4520
if (unlikely(!ffe_ctl->cached)) {
4521
ffe_ctl->have_caching_bg = true;
4522
ret = btrfs_cache_block_group(block_group, false);
4523
4524
/*
4525
* If we get ENOMEM here or something else we want to
4526
* try other block groups, because it may not be fatal.
4527
* However if we can't find anything else we need to
4528
* save our return here so that we return the actual
4529
* error that caused problems, not ENOSPC.
4530
*/
4531
if (ret < 0) {
4532
if (!cache_block_group_error)
4533
cache_block_group_error = ret;
4534
ret = 0;
4535
goto loop;
4536
}
4537
ret = 0;
4538
}
4539
4540
if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4541
if (!cache_block_group_error)
4542
cache_block_group_error = -EIO;
4543
goto loop;
4544
}
4545
4546
if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4547
goto loop;
4548
4549
bg_ret = NULL;
4550
ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4551
if (ret > 0)
4552
goto loop;
4553
4554
if (bg_ret && bg_ret != block_group) {
4555
btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4556
block_group = bg_ret;
4557
}
4558
4559
/* Checks */
4560
ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4561
fs_info->stripesize);
4562
4563
/* move on to the next group */
4564
if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4565
block_group->start + block_group->length) {
4566
btrfs_add_free_space_unused(block_group,
4567
ffe_ctl->found_offset,
4568
ffe_ctl->num_bytes);
4569
goto loop;
4570
}
4571
4572
if (ffe_ctl->found_offset < ffe_ctl->search_start)
4573
btrfs_add_free_space_unused(block_group,
4574
ffe_ctl->found_offset,
4575
ffe_ctl->search_start - ffe_ctl->found_offset);
4576
4577
ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4578
ffe_ctl->num_bytes,
4579
ffe_ctl->delalloc,
4580
ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4581
if (ret == -EAGAIN) {
4582
btrfs_add_free_space_unused(block_group,
4583
ffe_ctl->found_offset,
4584
ffe_ctl->num_bytes);
4585
goto loop;
4586
}
4587
btrfs_inc_block_group_reservations(block_group);
4588
4589
/* we are all good, lets return */
4590
ins->objectid = ffe_ctl->search_start;
4591
ins->offset = ffe_ctl->num_bytes;
4592
4593
trace_btrfs_reserve_extent(block_group, ffe_ctl);
4594
btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4595
break;
4596
loop:
4597
if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4598
!ffe_ctl->retry_uncached) {
4599
ffe_ctl->retry_uncached = true;
4600
btrfs_wait_block_group_cache_progress(block_group,
4601
ffe_ctl->num_bytes +
4602
ffe_ctl->empty_cluster +
4603
ffe_ctl->empty_size);
4604
goto have_block_group;
4605
}
4606
release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4607
cond_resched();
4608
}
4609
up_read(&space_info->groups_sem);
4610
4611
ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, space_info,
4612
full_search);
4613
if (ret > 0)
4614
goto search;
4615
4616
if (ret == -ENOSPC && !cache_block_group_error) {
4617
/*
4618
* Use ffe_ctl->total_free_space as fallback if we can't find
4619
* any contiguous hole.
4620
*/
4621
if (!ffe_ctl->max_extent_size)
4622
ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4623
spin_lock(&space_info->lock);
4624
space_info->max_extent_size = ffe_ctl->max_extent_size;
4625
spin_unlock(&space_info->lock);
4626
ins->offset = ffe_ctl->max_extent_size;
4627
} else if (ret == -ENOSPC) {
4628
ret = cache_block_group_error;
4629
}
4630
return ret;
4631
}
4632
4633
/*
4634
* Entry point to the extent allocator. Tries to find a hole that is at least
4635
* as big as @num_bytes.
4636
*
4637
* @root - The root that will contain this extent
4638
*
4639
* @ram_bytes - The amount of space in ram that @num_bytes take. This
4640
* is used for accounting purposes. This value differs
4641
* from @num_bytes only in the case of compressed extents.
4642
*
4643
* @num_bytes - Number of bytes to allocate on-disk.
4644
*
4645
* @min_alloc_size - Indicates the minimum amount of space that the
4646
* allocator should try to satisfy. In some cases
4647
* @num_bytes may be larger than what is required and if
4648
* the filesystem is fragmented then allocation fails.
4649
* However, the presence of @min_alloc_size gives a
4650
* chance to try and satisfy the smaller allocation.
4651
*
4652
* @empty_size - A hint that you plan on doing more COW. This is the
4653
* size in bytes the allocator should try to find free
4654
* next to the block it returns. This is just a hint and
4655
* may be ignored by the allocator.
4656
*
4657
* @hint_byte - Hint to the allocator to start searching above the byte
4658
* address passed. It might be ignored.
4659
*
4660
* @ins - This key is modified to record the found hole. It will
4661
* have the following values:
4662
* ins->objectid == start position
4663
* ins->flags = BTRFS_EXTENT_ITEM_KEY
4664
* ins->offset == the size of the hole.
4665
*
4666
* @is_data - Boolean flag indicating whether an extent is
4667
* allocated for data (true) or metadata (false)
4668
*
4669
* @delalloc - Boolean flag indicating whether this allocation is for
4670
* delalloc or not. If 'true' data_rwsem of block groups
4671
* is going to be acquired.
4672
*
4673
*
4674
* Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4675
* case -ENOSPC is returned then @ins->offset will contain the size of the
4676
* largest available hole the allocator managed to find.
4677
*/
4678
int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4679
u64 num_bytes, u64 min_alloc_size,
4680
u64 empty_size, u64 hint_byte,
4681
struct btrfs_key *ins, bool is_data, bool delalloc)
4682
{
4683
struct btrfs_fs_info *fs_info = root->fs_info;
4684
struct find_free_extent_ctl ffe_ctl = {};
4685
bool final_tried = num_bytes == min_alloc_size;
4686
u64 flags;
4687
int ret;
4688
bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
4689
bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4690
4691
flags = get_alloc_profile_by_root(root, is_data);
4692
again:
4693
WARN_ON(num_bytes < fs_info->sectorsize);
4694
4695
ffe_ctl.ram_bytes = ram_bytes;
4696
ffe_ctl.num_bytes = num_bytes;
4697
ffe_ctl.min_alloc_size = min_alloc_size;
4698
ffe_ctl.empty_size = empty_size;
4699
ffe_ctl.flags = flags;
4700
ffe_ctl.delalloc = delalloc;
4701
ffe_ctl.hint_byte = hint_byte;
4702
ffe_ctl.for_treelog = for_treelog;
4703
ffe_ctl.for_data_reloc = for_data_reloc;
4704
4705
ret = find_free_extent(root, ins, &ffe_ctl);
4706
if (!ret && !is_data) {
4707
btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4708
} else if (ret == -ENOSPC) {
4709
if (!final_tried && ins->offset) {
4710
num_bytes = min(num_bytes >> 1, ins->offset);
4711
num_bytes = round_down(num_bytes,
4712
fs_info->sectorsize);
4713
num_bytes = max(num_bytes, min_alloc_size);
4714
ram_bytes = num_bytes;
4715
if (num_bytes == min_alloc_size)
4716
final_tried = true;
4717
goto again;
4718
} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4719
struct btrfs_space_info *sinfo;
4720
4721
sinfo = btrfs_find_space_info(fs_info, flags);
4722
btrfs_err(fs_info,
4723
"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4724
flags, num_bytes, for_treelog, for_data_reloc);
4725
if (sinfo)
4726
btrfs_dump_space_info(sinfo, num_bytes, 1);
4727
}
4728
}
4729
4730
return ret;
4731
}
4732
4733
int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len,
4734
bool is_delalloc)
4735
{
4736
struct btrfs_block_group *cache;
4737
4738
cache = btrfs_lookup_block_group(fs_info, start);
4739
if (!cache) {
4740
btrfs_err(fs_info, "Unable to find block group for %llu",
4741
start);
4742
return -ENOSPC;
4743
}
4744
4745
btrfs_add_free_space(cache, start, len);
4746
btrfs_free_reserved_bytes(cache, len, is_delalloc);
4747
trace_btrfs_reserved_extent_free(fs_info, start, len);
4748
4749
btrfs_put_block_group(cache);
4750
return 0;
4751
}
4752
4753
int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4754
const struct extent_buffer *eb)
4755
{
4756
struct btrfs_block_group *cache;
4757
int ret = 0;
4758
4759
cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4760
if (!cache) {
4761
btrfs_err(trans->fs_info, "unable to find block group for %llu",
4762
eb->start);
4763
return -ENOSPC;
4764
}
4765
4766
ret = pin_down_extent(trans, cache, eb->start, eb->len, true);
4767
btrfs_put_block_group(cache);
4768
return ret;
4769
}
4770
4771
static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4772
u64 num_bytes)
4773
{
4774
struct btrfs_fs_info *fs_info = trans->fs_info;
4775
int ret;
4776
4777
ret = btrfs_remove_from_free_space_tree(trans, bytenr, num_bytes);
4778
if (ret)
4779
return ret;
4780
4781
ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4782
if (ret) {
4783
ASSERT(!ret);
4784
btrfs_err(fs_info, "update block group failed for %llu %llu",
4785
bytenr, num_bytes);
4786
return ret;
4787
}
4788
4789
trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4790
return 0;
4791
}
4792
4793
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4794
u64 parent, u64 root_objectid,
4795
u64 flags, u64 owner, u64 offset,
4796
struct btrfs_key *ins, int ref_mod, u64 oref_root)
4797
{
4798
struct btrfs_fs_info *fs_info = trans->fs_info;
4799
struct btrfs_root *extent_root;
4800
int ret;
4801
struct btrfs_extent_item *extent_item;
4802
struct btrfs_extent_owner_ref *oref;
4803
struct btrfs_extent_inline_ref *iref;
4804
struct btrfs_path *path;
4805
struct extent_buffer *leaf;
4806
int type;
4807
u32 size;
4808
const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4809
4810
if (parent > 0)
4811
type = BTRFS_SHARED_DATA_REF_KEY;
4812
else
4813
type = BTRFS_EXTENT_DATA_REF_KEY;
4814
4815
size = sizeof(*extent_item);
4816
if (simple_quota)
4817
size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4818
size += btrfs_extent_inline_ref_size(type);
4819
4820
path = btrfs_alloc_path();
4821
if (!path)
4822
return -ENOMEM;
4823
4824
extent_root = btrfs_extent_root(fs_info, ins->objectid);
4825
ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4826
if (ret) {
4827
btrfs_free_path(path);
4828
return ret;
4829
}
4830
4831
leaf = path->nodes[0];
4832
extent_item = btrfs_item_ptr(leaf, path->slots[0],
4833
struct btrfs_extent_item);
4834
btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4835
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4836
btrfs_set_extent_flags(leaf, extent_item,
4837
flags | BTRFS_EXTENT_FLAG_DATA);
4838
4839
iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4840
if (simple_quota) {
4841
btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4842
oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4843
btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4844
iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4845
}
4846
btrfs_set_extent_inline_ref_type(leaf, iref, type);
4847
4848
if (parent > 0) {
4849
struct btrfs_shared_data_ref *ref;
4850
ref = (struct btrfs_shared_data_ref *)(iref + 1);
4851
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4852
btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4853
} else {
4854
struct btrfs_extent_data_ref *ref;
4855
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4856
btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4857
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4858
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4859
btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4860
}
4861
4862
btrfs_free_path(path);
4863
4864
return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4865
}
4866
4867
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4868
const struct btrfs_delayed_ref_node *node,
4869
struct btrfs_delayed_extent_op *extent_op)
4870
{
4871
struct btrfs_fs_info *fs_info = trans->fs_info;
4872
struct btrfs_root *extent_root;
4873
int ret;
4874
struct btrfs_extent_item *extent_item;
4875
struct btrfs_key extent_key;
4876
struct btrfs_tree_block_info *block_info;
4877
struct btrfs_extent_inline_ref *iref;
4878
struct btrfs_path *path;
4879
struct extent_buffer *leaf;
4880
u32 size = sizeof(*extent_item) + sizeof(*iref);
4881
const u64 flags = (extent_op ? extent_op->flags_to_set : 0);
4882
/* The owner of a tree block is the level. */
4883
int level = btrfs_delayed_ref_owner(node);
4884
bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4885
4886
extent_key.objectid = node->bytenr;
4887
if (skinny_metadata) {
4888
/* The owner of a tree block is the level. */
4889
extent_key.offset = level;
4890
extent_key.type = BTRFS_METADATA_ITEM_KEY;
4891
} else {
4892
extent_key.offset = node->num_bytes;
4893
extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4894
size += sizeof(*block_info);
4895
}
4896
4897
path = btrfs_alloc_path();
4898
if (!path)
4899
return -ENOMEM;
4900
4901
extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4902
ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4903
size);
4904
if (ret) {
4905
btrfs_free_path(path);
4906
return ret;
4907
}
4908
4909
leaf = path->nodes[0];
4910
extent_item = btrfs_item_ptr(leaf, path->slots[0],
4911
struct btrfs_extent_item);
4912
btrfs_set_extent_refs(leaf, extent_item, 1);
4913
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4914
btrfs_set_extent_flags(leaf, extent_item,
4915
flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4916
4917
if (skinny_metadata) {
4918
iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4919
} else {
4920
block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4921
btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4922
btrfs_set_tree_block_level(leaf, block_info, level);
4923
iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4924
}
4925
4926
if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4927
btrfs_set_extent_inline_ref_type(leaf, iref,
4928
BTRFS_SHARED_BLOCK_REF_KEY);
4929
btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent);
4930
} else {
4931
btrfs_set_extent_inline_ref_type(leaf, iref,
4932
BTRFS_TREE_BLOCK_REF_KEY);
4933
btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root);
4934
}
4935
4936
btrfs_free_path(path);
4937
4938
return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4939
}
4940
4941
int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4942
struct btrfs_root *root, u64 owner,
4943
u64 offset, u64 ram_bytes,
4944
struct btrfs_key *ins)
4945
{
4946
struct btrfs_ref generic_ref = {
4947
.action = BTRFS_ADD_DELAYED_EXTENT,
4948
.bytenr = ins->objectid,
4949
.num_bytes = ins->offset,
4950
.owning_root = btrfs_root_id(root),
4951
.ref_root = btrfs_root_id(root),
4952
};
4953
4954
ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID);
4955
4956
if (btrfs_is_data_reloc_root(root) && btrfs_is_fstree(root->relocation_src_root))
4957
generic_ref.owning_root = root->relocation_src_root;
4958
4959
btrfs_init_data_ref(&generic_ref, owner, offset, 0, false);
4960
btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4961
4962
return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4963
}
4964
4965
/*
4966
* this is used by the tree logging recovery code. It records that
4967
* an extent has been allocated and makes sure to clear the free
4968
* space cache bits as well
4969
*/
4970
int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4971
u64 root_objectid, u64 owner, u64 offset,
4972
struct btrfs_key *ins)
4973
{
4974
struct btrfs_fs_info *fs_info = trans->fs_info;
4975
int ret;
4976
struct btrfs_block_group *block_group;
4977
struct btrfs_space_info *space_info;
4978
const struct btrfs_squota_delta delta = {
4979
.root = root_objectid,
4980
.num_bytes = ins->offset,
4981
.generation = trans->transid,
4982
.is_data = true,
4983
.is_inc = true,
4984
};
4985
4986
/*
4987
* Mixed block groups will exclude before processing the log so we only
4988
* need to do the exclude dance if this fs isn't mixed.
4989
*/
4990
if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4991
ret = __exclude_logged_extent(fs_info, ins->objectid,
4992
ins->offset);
4993
if (ret)
4994
return ret;
4995
}
4996
4997
block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4998
if (!block_group)
4999
return -EINVAL;
5000
5001
space_info = block_group->space_info;
5002
spin_lock(&space_info->lock);
5003
spin_lock(&block_group->lock);
5004
space_info->bytes_reserved += ins->offset;
5005
block_group->reserved += ins->offset;
5006
spin_unlock(&block_group->lock);
5007
spin_unlock(&space_info->lock);
5008
5009
ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
5010
offset, ins, 1, root_objectid);
5011
if (ret)
5012
btrfs_pin_extent(trans, ins->objectid, ins->offset);
5013
ret = btrfs_record_squota_delta(fs_info, &delta);
5014
btrfs_put_block_group(block_group);
5015
return ret;
5016
}
5017
5018
#ifdef CONFIG_BTRFS_DEBUG
5019
/*
5020
* Extra safety check in case the extent tree is corrupted and extent allocator
5021
* chooses to use a tree block which is already used and locked.
5022
*/
5023
static bool check_eb_lock_owner(const struct extent_buffer *eb)
5024
{
5025
if (eb->lock_owner == current->pid) {
5026
btrfs_err_rl(eb->fs_info,
5027
"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
5028
eb->start, btrfs_header_owner(eb), current->pid);
5029
return true;
5030
}
5031
return false;
5032
}
5033
#else
5034
static bool check_eb_lock_owner(struct extent_buffer *eb)
5035
{
5036
return false;
5037
}
5038
#endif
5039
5040
static struct extent_buffer *
5041
btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5042
u64 bytenr, int level, u64 owner,
5043
enum btrfs_lock_nesting nest)
5044
{
5045
struct btrfs_fs_info *fs_info = root->fs_info;
5046
struct extent_buffer *buf;
5047
u64 lockdep_owner = owner;
5048
5049
buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5050
if (IS_ERR(buf))
5051
return buf;
5052
5053
if (unlikely(check_eb_lock_owner(buf))) {
5054
free_extent_buffer(buf);
5055
return ERR_PTR(-EUCLEAN);
5056
}
5057
5058
/*
5059
* The reloc trees are just snapshots, so we need them to appear to be
5060
* just like any other fs tree WRT lockdep.
5061
*
5062
* The exception however is in replace_path() in relocation, where we
5063
* hold the lock on the original fs root and then search for the reloc
5064
* root. At that point we need to make sure any reloc root buffers are
5065
* set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5066
* lockdep happy.
5067
*/
5068
if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5069
!test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5070
lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5071
5072
/* btrfs_clear_buffer_dirty() accesses generation field. */
5073
btrfs_set_header_generation(buf, trans->transid);
5074
5075
/*
5076
* This needs to stay, because we could allocate a freed block from an
5077
* old tree into a new tree, so we need to make sure this new block is
5078
* set to the appropriate level and owner.
5079
*/
5080
btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5081
5082
btrfs_tree_lock_nested(buf, nest);
5083
btrfs_clear_buffer_dirty(trans, buf);
5084
clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5085
clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5086
5087
set_extent_buffer_uptodate(buf);
5088
5089
memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5090
btrfs_set_header_level(buf, level);
5091
btrfs_set_header_bytenr(buf, buf->start);
5092
btrfs_set_header_generation(buf, trans->transid);
5093
btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5094
btrfs_set_header_owner(buf, owner);
5095
write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5096
write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5097
if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
5098
buf->log_index = root->log_transid % 2;
5099
/*
5100
* we allow two log transactions at a time, use different
5101
* EXTENT bit to differentiate dirty pages.
5102
*/
5103
if (buf->log_index == 0)
5104
btrfs_set_extent_bit(&root->dirty_log_pages, buf->start,
5105
buf->start + buf->len - 1,
5106
EXTENT_DIRTY_LOG1, NULL);
5107
else
5108
btrfs_set_extent_bit(&root->dirty_log_pages, buf->start,
5109
buf->start + buf->len - 1,
5110
EXTENT_DIRTY_LOG2, NULL);
5111
} else {
5112
buf->log_index = -1;
5113
btrfs_set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5114
buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5115
}
5116
/* this returns a buffer locked for blocking */
5117
return buf;
5118
}
5119
5120
/*
5121
* finds a free extent and does all the dirty work required for allocation
5122
* returns the tree buffer or an ERR_PTR on error.
5123
*/
5124
struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5125
struct btrfs_root *root,
5126
u64 parent, u64 root_objectid,
5127
const struct btrfs_disk_key *key,
5128
int level, u64 hint,
5129
u64 empty_size,
5130
u64 reloc_src_root,
5131
enum btrfs_lock_nesting nest)
5132
{
5133
struct btrfs_fs_info *fs_info = root->fs_info;
5134
struct btrfs_key ins;
5135
struct btrfs_block_rsv *block_rsv;
5136
struct extent_buffer *buf;
5137
u64 flags = 0;
5138
int ret;
5139
u32 blocksize = fs_info->nodesize;
5140
bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5141
u64 owning_root;
5142
5143
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5144
if (btrfs_is_testing(fs_info)) {
5145
buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5146
level, root_objectid, nest);
5147
if (!IS_ERR(buf))
5148
root->alloc_bytenr += blocksize;
5149
return buf;
5150
}
5151
#endif
5152
5153
block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5154
if (IS_ERR(block_rsv))
5155
return ERR_CAST(block_rsv);
5156
5157
ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5158
empty_size, hint, &ins, false, false);
5159
if (ret)
5160
goto out_unuse;
5161
5162
buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5163
root_objectid, nest);
5164
if (IS_ERR(buf)) {
5165
ret = PTR_ERR(buf);
5166
goto out_free_reserved;
5167
}
5168
owning_root = btrfs_header_owner(buf);
5169
5170
if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5171
if (parent == 0)
5172
parent = ins.objectid;
5173
flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5174
owning_root = reloc_src_root;
5175
} else
5176
BUG_ON(parent > 0);
5177
5178
if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5179
struct btrfs_delayed_extent_op *extent_op;
5180
struct btrfs_ref generic_ref = {
5181
.action = BTRFS_ADD_DELAYED_EXTENT,
5182
.bytenr = ins.objectid,
5183
.num_bytes = ins.offset,
5184
.parent = parent,
5185
.owning_root = owning_root,
5186
.ref_root = root_objectid,
5187
};
5188
5189
if (!skinny_metadata || flags != 0) {
5190
extent_op = btrfs_alloc_delayed_extent_op();
5191
if (!extent_op) {
5192
ret = -ENOMEM;
5193
goto out_free_buf;
5194
}
5195
if (key)
5196
memcpy(&extent_op->key, key, sizeof(extent_op->key));
5197
else
5198
memset(&extent_op->key, 0, sizeof(extent_op->key));
5199
extent_op->flags_to_set = flags;
5200
extent_op->update_key = (skinny_metadata ? false : true);
5201
extent_op->update_flags = (flags != 0);
5202
} else {
5203
extent_op = NULL;
5204
}
5205
5206
btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false);
5207
btrfs_ref_tree_mod(fs_info, &generic_ref);
5208
ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5209
if (ret) {
5210
btrfs_free_delayed_extent_op(extent_op);
5211
goto out_free_buf;
5212
}
5213
}
5214
return buf;
5215
5216
out_free_buf:
5217
btrfs_tree_unlock(buf);
5218
free_extent_buffer(buf);
5219
out_free_reserved:
5220
btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, false);
5221
out_unuse:
5222
btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5223
return ERR_PTR(ret);
5224
}
5225
5226
struct walk_control {
5227
u64 refs[BTRFS_MAX_LEVEL];
5228
u64 flags[BTRFS_MAX_LEVEL];
5229
struct btrfs_key update_progress;
5230
struct btrfs_key drop_progress;
5231
int drop_level;
5232
int stage;
5233
int level;
5234
int shared_level;
5235
int update_ref;
5236
int keep_locks;
5237
int reada_slot;
5238
int reada_count;
5239
int restarted;
5240
/* Indicate that extent info needs to be looked up when walking the tree. */
5241
int lookup_info;
5242
};
5243
5244
/*
5245
* This is our normal stage. We are traversing blocks the current snapshot owns
5246
* and we are dropping any of our references to any children we are able to, and
5247
* then freeing the block once we've processed all of the children.
5248
*/
5249
#define DROP_REFERENCE 1
5250
5251
/*
5252
* We enter this stage when we have to walk into a child block (meaning we can't
5253
* simply drop our reference to it from our current parent node) and there are
5254
* more than one reference on it. If we are the owner of any of the children
5255
* blocks from the current parent node then we have to do the FULL_BACKREF dance
5256
* on them in order to drop our normal ref and add the shared ref.
5257
*/
5258
#define UPDATE_BACKREF 2
5259
5260
/*
5261
* Decide if we need to walk down into this node to adjust the references.
5262
*
5263
* @root: the root we are currently deleting
5264
* @wc: the walk control for this deletion
5265
* @eb: the parent eb that we're currently visiting
5266
* @refs: the number of refs for wc->level - 1
5267
* @flags: the flags for wc->level - 1
5268
* @slot: the slot in the eb that we're currently checking
5269
*
5270
* This is meant to be called when we're evaluating if a node we point to at
5271
* wc->level should be read and walked into, or if we can simply delete our
5272
* reference to it. We return true if we should walk into the node, false if we
5273
* can skip it.
5274
*
5275
* We have assertions in here to make sure this is called correctly. We assume
5276
* that sanity checking on the blocks read to this point has been done, so any
5277
* corrupted file systems must have been caught before calling this function.
5278
*/
5279
static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc,
5280
struct extent_buffer *eb, u64 flags, int slot)
5281
{
5282
struct btrfs_key key;
5283
u64 generation;
5284
int level = wc->level;
5285
5286
ASSERT(level > 0);
5287
ASSERT(wc->refs[level - 1] > 0);
5288
5289
/*
5290
* The update backref stage we only want to skip if we already have
5291
* FULL_BACKREF set, otherwise we need to read.
5292
*/
5293
if (wc->stage == UPDATE_BACKREF) {
5294
if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5295
return false;
5296
return true;
5297
}
5298
5299
/*
5300
* We're the last ref on this block, we must walk into it and process
5301
* any refs it's pointing at.
5302
*/
5303
if (wc->refs[level - 1] == 1)
5304
return true;
5305
5306
/*
5307
* If we're already FULL_BACKREF then we know we can just drop our
5308
* current reference.
5309
*/
5310
if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5311
return false;
5312
5313
/*
5314
* This block is older than our creation generation, we can drop our
5315
* reference to it.
5316
*/
5317
generation = btrfs_node_ptr_generation(eb, slot);
5318
if (!wc->update_ref || generation <= btrfs_root_origin_generation(root))
5319
return false;
5320
5321
/*
5322
* This block was processed from a previous snapshot deletion run, we
5323
* can skip it.
5324
*/
5325
btrfs_node_key_to_cpu(eb, &key, slot);
5326
if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0)
5327
return false;
5328
5329
/* All other cases we need to wander into the node. */
5330
return true;
5331
}
5332
5333
static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5334
struct btrfs_root *root,
5335
struct walk_control *wc,
5336
struct btrfs_path *path)
5337
{
5338
struct btrfs_fs_info *fs_info = root->fs_info;
5339
u64 bytenr;
5340
u64 generation;
5341
u64 refs;
5342
u64 flags;
5343
u32 nritems;
5344
struct extent_buffer *eb;
5345
int ret;
5346
int slot;
5347
int nread = 0;
5348
5349
if (path->slots[wc->level] < wc->reada_slot) {
5350
wc->reada_count = wc->reada_count * 2 / 3;
5351
wc->reada_count = max(wc->reada_count, 2);
5352
} else {
5353
wc->reada_count = wc->reada_count * 3 / 2;
5354
wc->reada_count = min_t(int, wc->reada_count,
5355
BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5356
}
5357
5358
eb = path->nodes[wc->level];
5359
nritems = btrfs_header_nritems(eb);
5360
5361
for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5362
if (nread >= wc->reada_count)
5363
break;
5364
5365
cond_resched();
5366
bytenr = btrfs_node_blockptr(eb, slot);
5367
generation = btrfs_node_ptr_generation(eb, slot);
5368
5369
if (slot == path->slots[wc->level])
5370
goto reada;
5371
5372
if (wc->stage == UPDATE_BACKREF &&
5373
generation <= btrfs_root_origin_generation(root))
5374
continue;
5375
5376
/* We don't lock the tree block, it's OK to be racy here */
5377
ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5378
wc->level - 1, 1, &refs,
5379
&flags, NULL);
5380
/* We don't care about errors in readahead. */
5381
if (ret < 0)
5382
continue;
5383
5384
/*
5385
* This could be racey, it's conceivable that we raced and end
5386
* up with a bogus refs count, if that's the case just skip, if
5387
* we are actually corrupt we will notice when we look up
5388
* everything again with our locks.
5389
*/
5390
if (refs == 0)
5391
continue;
5392
5393
/* If we don't need to visit this node don't reada. */
5394
if (!visit_node_for_delete(root, wc, eb, flags, slot))
5395
continue;
5396
reada:
5397
btrfs_readahead_node_child(eb, slot);
5398
nread++;
5399
}
5400
wc->reada_slot = slot;
5401
}
5402
5403
/*
5404
* helper to process tree block while walking down the tree.
5405
*
5406
* when wc->stage == UPDATE_BACKREF, this function updates
5407
* back refs for pointers in the block.
5408
*
5409
* NOTE: return value 1 means we should stop walking down.
5410
*/
5411
static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5412
struct btrfs_root *root,
5413
struct btrfs_path *path,
5414
struct walk_control *wc)
5415
{
5416
struct btrfs_fs_info *fs_info = root->fs_info;
5417
int level = wc->level;
5418
struct extent_buffer *eb = path->nodes[level];
5419
u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5420
int ret;
5421
5422
if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root))
5423
return 1;
5424
5425
/*
5426
* when reference count of tree block is 1, it won't increase
5427
* again. once full backref flag is set, we never clear it.
5428
*/
5429
if (wc->lookup_info &&
5430
((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5431
(wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5432
ASSERT(path->locks[level]);
5433
ret = btrfs_lookup_extent_info(trans, fs_info,
5434
eb->start, level, 1,
5435
&wc->refs[level],
5436
&wc->flags[level],
5437
NULL);
5438
if (ret)
5439
return ret;
5440
if (unlikely(wc->refs[level] == 0)) {
5441
btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5442
eb->start);
5443
return -EUCLEAN;
5444
}
5445
}
5446
5447
if (wc->stage == DROP_REFERENCE) {
5448
if (wc->refs[level] > 1)
5449
return 1;
5450
5451
if (path->locks[level] && !wc->keep_locks) {
5452
btrfs_tree_unlock_rw(eb, path->locks[level]);
5453
path->locks[level] = 0;
5454
}
5455
return 0;
5456
}
5457
5458
/* wc->stage == UPDATE_BACKREF */
5459
if (!(wc->flags[level] & flag)) {
5460
ASSERT(path->locks[level]);
5461
ret = btrfs_inc_ref(trans, root, eb, 1);
5462
if (unlikely(ret)) {
5463
btrfs_abort_transaction(trans, ret);
5464
return ret;
5465
}
5466
ret = btrfs_dec_ref(trans, root, eb, 0);
5467
if (unlikely(ret)) {
5468
btrfs_abort_transaction(trans, ret);
5469
return ret;
5470
}
5471
ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5472
if (unlikely(ret)) {
5473
btrfs_abort_transaction(trans, ret);
5474
return ret;
5475
}
5476
wc->flags[level] |= flag;
5477
}
5478
5479
/*
5480
* the block is shared by multiple trees, so it's not good to
5481
* keep the tree lock
5482
*/
5483
if (path->locks[level] && level > 0) {
5484
btrfs_tree_unlock_rw(eb, path->locks[level]);
5485
path->locks[level] = 0;
5486
}
5487
return 0;
5488
}
5489
5490
/*
5491
* This is used to verify a ref exists for this root to deal with a bug where we
5492
* would have a drop_progress key that hadn't been updated properly.
5493
*/
5494
static int check_ref_exists(struct btrfs_trans_handle *trans,
5495
struct btrfs_root *root, u64 bytenr, u64 parent,
5496
int level)
5497
{
5498
struct btrfs_delayed_ref_root *delayed_refs;
5499
struct btrfs_delayed_ref_head *head;
5500
BTRFS_PATH_AUTO_FREE(path);
5501
struct btrfs_extent_inline_ref *iref;
5502
int ret;
5503
bool exists = false;
5504
5505
path = btrfs_alloc_path();
5506
if (!path)
5507
return -ENOMEM;
5508
again:
5509
ret = lookup_extent_backref(trans, path, &iref, bytenr,
5510
root->fs_info->nodesize, parent,
5511
btrfs_root_id(root), level, 0);
5512
if (ret != -ENOENT) {
5513
/*
5514
* If we get 0 then we found our reference, return 1, else
5515
* return the error if it's not -ENOENT;
5516
*/
5517
return (ret < 0 ) ? ret : 1;
5518
}
5519
5520
/*
5521
* We could have a delayed ref with this reference, so look it up while
5522
* we're holding the path open to make sure we don't race with the
5523
* delayed ref running.
5524
*/
5525
delayed_refs = &trans->transaction->delayed_refs;
5526
spin_lock(&delayed_refs->lock);
5527
head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
5528
if (!head)
5529
goto out;
5530
if (!mutex_trylock(&head->mutex)) {
5531
/*
5532
* We're contended, means that the delayed ref is running, get a
5533
* reference and wait for the ref head to be complete and then
5534
* try again.
5535
*/
5536
refcount_inc(&head->refs);
5537
spin_unlock(&delayed_refs->lock);
5538
5539
btrfs_release_path(path);
5540
5541
mutex_lock(&head->mutex);
5542
mutex_unlock(&head->mutex);
5543
btrfs_put_delayed_ref_head(head);
5544
goto again;
5545
}
5546
5547
exists = btrfs_find_delayed_tree_ref(head, btrfs_root_id(root), parent);
5548
mutex_unlock(&head->mutex);
5549
out:
5550
spin_unlock(&delayed_refs->lock);
5551
return exists ? 1 : 0;
5552
}
5553
5554
/*
5555
* We may not have an uptodate block, so if we are going to walk down into this
5556
* block we need to drop the lock, read it off of the disk, re-lock it and
5557
* return to continue dropping the snapshot.
5558
*/
5559
static int check_next_block_uptodate(struct btrfs_trans_handle *trans,
5560
struct btrfs_root *root,
5561
struct btrfs_path *path,
5562
struct walk_control *wc,
5563
struct extent_buffer *next)
5564
{
5565
struct btrfs_tree_parent_check check = { 0 };
5566
u64 generation;
5567
int level = wc->level;
5568
int ret;
5569
5570
btrfs_assert_tree_write_locked(next);
5571
5572
generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]);
5573
5574
if (btrfs_buffer_uptodate(next, generation, false))
5575
return 0;
5576
5577
check.level = level - 1;
5578
check.transid = generation;
5579
check.owner_root = btrfs_root_id(root);
5580
check.has_first_key = true;
5581
btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]);
5582
5583
btrfs_tree_unlock(next);
5584
if (level == 1)
5585
reada_walk_down(trans, root, wc, path);
5586
ret = btrfs_read_extent_buffer(next, &check);
5587
if (ret) {
5588
free_extent_buffer(next);
5589
return ret;
5590
}
5591
btrfs_tree_lock(next);
5592
wc->lookup_info = 1;
5593
return 0;
5594
}
5595
5596
/*
5597
* If we determine that we don't have to visit wc->level - 1 then we need to
5598
* determine if we can drop our reference.
5599
*
5600
* If we are UPDATE_BACKREF then we will not, we need to update our backrefs.
5601
*
5602
* If we are DROP_REFERENCE this will figure out if we need to drop our current
5603
* reference, skipping it if we dropped it from a previous uncompleted drop, or
5604
* dropping it if we still have a reference to it.
5605
*/
5606
static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5607
struct btrfs_path *path, struct walk_control *wc,
5608
struct extent_buffer *next, u64 owner_root)
5609
{
5610
struct btrfs_ref ref = {
5611
.action = BTRFS_DROP_DELAYED_REF,
5612
.bytenr = next->start,
5613
.num_bytes = root->fs_info->nodesize,
5614
.owning_root = owner_root,
5615
.ref_root = btrfs_root_id(root),
5616
};
5617
int level = wc->level;
5618
int ret;
5619
5620
/* We are UPDATE_BACKREF, we're not dropping anything. */
5621
if (wc->stage == UPDATE_BACKREF)
5622
return 0;
5623
5624
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5625
ref.parent = path->nodes[level]->start;
5626
} else {
5627
ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level]));
5628
if (unlikely(btrfs_root_id(root) != btrfs_header_owner(path->nodes[level]))) {
5629
btrfs_err(root->fs_info, "mismatched block owner");
5630
return -EIO;
5631
}
5632
}
5633
5634
/*
5635
* If we had a drop_progress we need to verify the refs are set as
5636
* expected. If we find our ref then we know that from here on out
5637
* everything should be correct, and we can clear the
5638
* ->restarted flag.
5639
*/
5640
if (wc->restarted) {
5641
ret = check_ref_exists(trans, root, next->start, ref.parent,
5642
level - 1);
5643
if (ret <= 0)
5644
return ret;
5645
ret = 0;
5646
wc->restarted = 0;
5647
}
5648
5649
/*
5650
* Reloc tree doesn't contribute to qgroup numbers, and we have already
5651
* accounted them at merge time (replace_path), thus we could skip
5652
* expensive subtree trace here.
5653
*/
5654
if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
5655
wc->refs[level - 1] > 1) {
5656
u64 generation = btrfs_node_ptr_generation(path->nodes[level],
5657
path->slots[level]);
5658
5659
ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1);
5660
if (ret) {
5661
btrfs_err_rl(root->fs_info,
5662
"error %d accounting shared subtree, quota is out of sync, rescan required",
5663
ret);
5664
}
5665
}
5666
5667
/*
5668
* We need to update the next key in our walk control so we can update
5669
* the drop_progress key accordingly. We don't care if find_next_key
5670
* doesn't find a key because that means we're at the end and are going
5671
* to clean up now.
5672
*/
5673
wc->drop_level = level;
5674
find_next_key(path, level, &wc->drop_progress);
5675
5676
btrfs_init_tree_ref(&ref, level - 1, 0, false);
5677
return btrfs_free_extent(trans, &ref);
5678
}
5679
5680
/*
5681
* helper to process tree block pointer.
5682
*
5683
* when wc->stage == DROP_REFERENCE, this function checks
5684
* reference count of the block pointed to. if the block
5685
* is shared and we need update back refs for the subtree
5686
* rooted at the block, this function changes wc->stage to
5687
* UPDATE_BACKREF. if the block is shared and there is no
5688
* need to update back, this function drops the reference
5689
* to the block.
5690
*
5691
* NOTE: return value 1 means we should stop walking down.
5692
*/
5693
static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5694
struct btrfs_root *root,
5695
struct btrfs_path *path,
5696
struct walk_control *wc)
5697
{
5698
struct btrfs_fs_info *fs_info = root->fs_info;
5699
u64 bytenr;
5700
u64 generation;
5701
u64 owner_root = 0;
5702
struct extent_buffer *next;
5703
int level = wc->level;
5704
int ret = 0;
5705
5706
generation = btrfs_node_ptr_generation(path->nodes[level],
5707
path->slots[level]);
5708
/*
5709
* if the lower level block was created before the snapshot
5710
* was created, we know there is no need to update back refs
5711
* for the subtree
5712
*/
5713
if (wc->stage == UPDATE_BACKREF &&
5714
generation <= btrfs_root_origin_generation(root)) {
5715
wc->lookup_info = 1;
5716
return 1;
5717
}
5718
5719
bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5720
5721
next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root),
5722
level - 1);
5723
if (IS_ERR(next))
5724
return PTR_ERR(next);
5725
5726
btrfs_tree_lock(next);
5727
5728
ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5729
&wc->refs[level - 1],
5730
&wc->flags[level - 1],
5731
&owner_root);
5732
if (ret < 0)
5733
goto out_unlock;
5734
5735
if (unlikely(wc->refs[level - 1] == 0)) {
5736
btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5737
bytenr);
5738
ret = -EUCLEAN;
5739
goto out_unlock;
5740
}
5741
wc->lookup_info = 0;
5742
5743
/* If we don't have to walk into this node skip it. */
5744
if (!visit_node_for_delete(root, wc, path->nodes[level],
5745
wc->flags[level - 1], path->slots[level]))
5746
goto skip;
5747
5748
/*
5749
* We have to walk down into this node, and if we're currently at the
5750
* DROP_REFERENCE stage and this block is shared then we need to switch
5751
* to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF.
5752
*/
5753
if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) {
5754
wc->stage = UPDATE_BACKREF;
5755
wc->shared_level = level - 1;
5756
}
5757
5758
ret = check_next_block_uptodate(trans, root, path, wc, next);
5759
if (ret)
5760
return ret;
5761
5762
level--;
5763
ASSERT(level == btrfs_header_level(next));
5764
if (unlikely(level != btrfs_header_level(next))) {
5765
btrfs_err(root->fs_info, "mismatched level");
5766
ret = -EIO;
5767
goto out_unlock;
5768
}
5769
path->nodes[level] = next;
5770
path->slots[level] = 0;
5771
path->locks[level] = BTRFS_WRITE_LOCK;
5772
wc->level = level;
5773
if (wc->level == 1)
5774
wc->reada_slot = 0;
5775
return 0;
5776
skip:
5777
ret = maybe_drop_reference(trans, root, path, wc, next, owner_root);
5778
if (ret)
5779
goto out_unlock;
5780
wc->refs[level - 1] = 0;
5781
wc->flags[level - 1] = 0;
5782
wc->lookup_info = 1;
5783
ret = 1;
5784
5785
out_unlock:
5786
btrfs_tree_unlock(next);
5787
free_extent_buffer(next);
5788
5789
return ret;
5790
}
5791
5792
/*
5793
* helper to process tree block while walking up the tree.
5794
*
5795
* when wc->stage == DROP_REFERENCE, this function drops
5796
* reference count on the block.
5797
*
5798
* when wc->stage == UPDATE_BACKREF, this function changes
5799
* wc->stage back to DROP_REFERENCE if we changed wc->stage
5800
* to UPDATE_BACKREF previously while processing the block.
5801
*
5802
* NOTE: return value 1 means we should stop walking up.
5803
*/
5804
static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5805
struct btrfs_root *root,
5806
struct btrfs_path *path,
5807
struct walk_control *wc)
5808
{
5809
struct btrfs_fs_info *fs_info = root->fs_info;
5810
int ret = 0;
5811
int level = wc->level;
5812
struct extent_buffer *eb = path->nodes[level];
5813
u64 parent = 0;
5814
5815
if (wc->stage == UPDATE_BACKREF) {
5816
ASSERT(wc->shared_level >= level);
5817
if (level < wc->shared_level)
5818
goto out;
5819
5820
ret = find_next_key(path, level + 1, &wc->update_progress);
5821
if (ret > 0)
5822
wc->update_ref = 0;
5823
5824
wc->stage = DROP_REFERENCE;
5825
wc->shared_level = -1;
5826
path->slots[level] = 0;
5827
5828
/*
5829
* check reference count again if the block isn't locked.
5830
* we should start walking down the tree again if reference
5831
* count is one.
5832
*/
5833
if (!path->locks[level]) {
5834
ASSERT(level > 0);
5835
btrfs_tree_lock(eb);
5836
path->locks[level] = BTRFS_WRITE_LOCK;
5837
5838
ret = btrfs_lookup_extent_info(trans, fs_info,
5839
eb->start, level, 1,
5840
&wc->refs[level],
5841
&wc->flags[level],
5842
NULL);
5843
if (ret < 0) {
5844
btrfs_tree_unlock_rw(eb, path->locks[level]);
5845
path->locks[level] = 0;
5846
return ret;
5847
}
5848
if (unlikely(wc->refs[level] == 0)) {
5849
btrfs_tree_unlock_rw(eb, path->locks[level]);
5850
btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5851
eb->start);
5852
return -EUCLEAN;
5853
}
5854
if (wc->refs[level] == 1) {
5855
btrfs_tree_unlock_rw(eb, path->locks[level]);
5856
path->locks[level] = 0;
5857
return 1;
5858
}
5859
}
5860
}
5861
5862
/* wc->stage == DROP_REFERENCE */
5863
ASSERT(path->locks[level] || wc->refs[level] == 1);
5864
5865
if (wc->refs[level] == 1) {
5866
if (level == 0) {
5867
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5868
ret = btrfs_dec_ref(trans, root, eb, 1);
5869
if (ret) {
5870
btrfs_abort_transaction(trans, ret);
5871
return ret;
5872
}
5873
} else {
5874
ret = btrfs_dec_ref(trans, root, eb, 0);
5875
if (unlikely(ret)) {
5876
btrfs_abort_transaction(trans, ret);
5877
return ret;
5878
}
5879
}
5880
if (btrfs_is_fstree(btrfs_root_id(root))) {
5881
ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5882
if (ret) {
5883
btrfs_err_rl(fs_info,
5884
"error %d accounting leaf items, quota is out of sync, rescan required",
5885
ret);
5886
}
5887
}
5888
}
5889
/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5890
if (!path->locks[level]) {
5891
btrfs_tree_lock(eb);
5892
path->locks[level] = BTRFS_WRITE_LOCK;
5893
}
5894
btrfs_clear_buffer_dirty(trans, eb);
5895
}
5896
5897
if (eb == root->node) {
5898
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5899
parent = eb->start;
5900
else if (unlikely(btrfs_root_id(root) != btrfs_header_owner(eb)))
5901
goto owner_mismatch;
5902
} else {
5903
if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5904
parent = path->nodes[level + 1]->start;
5905
else if (unlikely(btrfs_root_id(root) !=
5906
btrfs_header_owner(path->nodes[level + 1])))
5907
goto owner_mismatch;
5908
}
5909
5910
ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5911
wc->refs[level] == 1);
5912
if (ret < 0)
5913
btrfs_abort_transaction(trans, ret);
5914
out:
5915
wc->refs[level] = 0;
5916
wc->flags[level] = 0;
5917
return ret;
5918
5919
owner_mismatch:
5920
btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5921
btrfs_header_owner(eb), btrfs_root_id(root));
5922
return -EUCLEAN;
5923
}
5924
5925
/*
5926
* walk_down_tree consists of two steps.
5927
*
5928
* walk_down_proc(). Look up the reference count and reference of our current
5929
* wc->level. At this point path->nodes[wc->level] should be populated and
5930
* uptodate, and in most cases should already be locked. If we are in
5931
* DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and
5932
* we can walk back up the tree. If we are UPDATE_BACKREF we have to set
5933
* FULL_BACKREF on this node if it's not already set, and then do the
5934
* FULL_BACKREF conversion dance, which is to drop the root reference and add
5935
* the shared reference to all of this nodes children.
5936
*
5937
* do_walk_down(). This is where we actually start iterating on the children of
5938
* our current path->nodes[wc->level]. For DROP_REFERENCE that means dropping
5939
* our reference to the children that return false from visit_node_for_delete(),
5940
* which has various conditions where we know we can just drop our reference
5941
* without visiting the node. For UPDATE_BACKREF we will skip any children that
5942
* visit_node_for_delete() returns false for, only walking down when necessary.
5943
* The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of
5944
* snapshot deletion.
5945
*/
5946
static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5947
struct btrfs_root *root,
5948
struct btrfs_path *path,
5949
struct walk_control *wc)
5950
{
5951
int level = wc->level;
5952
int ret = 0;
5953
5954
wc->lookup_info = 1;
5955
while (level >= 0) {
5956
ret = walk_down_proc(trans, root, path, wc);
5957
if (ret)
5958
break;
5959
5960
if (level == 0)
5961
break;
5962
5963
if (path->slots[level] >=
5964
btrfs_header_nritems(path->nodes[level]))
5965
break;
5966
5967
ret = do_walk_down(trans, root, path, wc);
5968
if (ret > 0) {
5969
path->slots[level]++;
5970
continue;
5971
} else if (ret < 0)
5972
break;
5973
level = wc->level;
5974
}
5975
return (ret == 1) ? 0 : ret;
5976
}
5977
5978
/*
5979
* walk_up_tree() is responsible for making sure we visit every slot on our
5980
* current node, and if we're at the end of that node then we call
5981
* walk_up_proc() on our current node which will do one of a few things based on
5982
* our stage.
5983
*
5984
* UPDATE_BACKREF. If we wc->level is currently less than our wc->shared_level
5985
* then we need to walk back up the tree, and then going back down into the
5986
* other slots via walk_down_tree to update any other children from our original
5987
* wc->shared_level. Once we're at or above our wc->shared_level we can switch
5988
* back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on.
5989
*
5990
* DROP_REFERENCE. If our refs == 1 then we're going to free this tree block.
5991
* If we're level 0 then we need to btrfs_dec_ref() on all of the data extents
5992
* in our current leaf. After that we call btrfs_free_tree_block() on the
5993
* current node and walk up to the next node to walk down the next slot.
5994
*/
5995
static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5996
struct btrfs_root *root,
5997
struct btrfs_path *path,
5998
struct walk_control *wc, int max_level)
5999
{
6000
int level = wc->level;
6001
int ret;
6002
6003
path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6004
while (level < max_level && path->nodes[level]) {
6005
wc->level = level;
6006
if (path->slots[level] + 1 <
6007
btrfs_header_nritems(path->nodes[level])) {
6008
path->slots[level]++;
6009
return 0;
6010
} else {
6011
ret = walk_up_proc(trans, root, path, wc);
6012
if (ret > 0)
6013
return 0;
6014
if (ret < 0)
6015
return ret;
6016
6017
if (path->locks[level]) {
6018
btrfs_tree_unlock_rw(path->nodes[level],
6019
path->locks[level]);
6020
path->locks[level] = 0;
6021
}
6022
free_extent_buffer(path->nodes[level]);
6023
path->nodes[level] = NULL;
6024
level++;
6025
}
6026
}
6027
return 1;
6028
}
6029
6030
/*
6031
* drop a subvolume tree.
6032
*
6033
* this function traverses the tree freeing any blocks that only
6034
* referenced by the tree.
6035
*
6036
* when a shared tree block is found. this function decreases its
6037
* reference count by one. if update_ref is true, this function
6038
* also make sure backrefs for the shared block and all lower level
6039
* blocks are properly updated.
6040
*
6041
* If called with for_reloc set, may exit early with -EAGAIN
6042
*/
6043
int btrfs_drop_snapshot(struct btrfs_root *root, bool update_ref, bool for_reloc)
6044
{
6045
const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID);
6046
struct btrfs_fs_info *fs_info = root->fs_info;
6047
struct btrfs_path *path;
6048
struct btrfs_trans_handle *trans;
6049
struct btrfs_root *tree_root = fs_info->tree_root;
6050
struct btrfs_root_item *root_item = &root->root_item;
6051
struct walk_control AUTO_KFREE(wc);
6052
struct btrfs_key key;
6053
const u64 rootid = btrfs_root_id(root);
6054
int ret = 0;
6055
int level;
6056
bool root_dropped = false;
6057
bool unfinished_drop = false;
6058
6059
btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root));
6060
6061
path = btrfs_alloc_path();
6062
if (!path) {
6063
ret = -ENOMEM;
6064
goto out;
6065
}
6066
6067
wc = kzalloc(sizeof(*wc), GFP_NOFS);
6068
if (!wc) {
6069
ret = -ENOMEM;
6070
goto out_free;
6071
}
6072
6073
/*
6074
* Use join to avoid potential EINTR from transaction start. See
6075
* wait_reserve_ticket and the whole reservation callchain.
6076
*/
6077
if (for_reloc)
6078
trans = btrfs_join_transaction(tree_root);
6079
else
6080
trans = btrfs_start_transaction(tree_root, 0);
6081
if (IS_ERR(trans)) {
6082
ret = PTR_ERR(trans);
6083
goto out_free;
6084
}
6085
6086
ret = btrfs_run_delayed_items(trans);
6087
if (ret)
6088
goto out_end_trans;
6089
6090
/*
6091
* This will help us catch people modifying the fs tree while we're
6092
* dropping it. It is unsafe to mess with the fs tree while it's being
6093
* dropped as we unlock the root node and parent nodes as we walk down
6094
* the tree, assuming nothing will change. If something does change
6095
* then we'll have stale information and drop references to blocks we've
6096
* already dropped.
6097
*/
6098
set_bit(BTRFS_ROOT_DELETING, &root->state);
6099
unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
6100
6101
if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6102
level = btrfs_header_level(root->node);
6103
path->nodes[level] = btrfs_lock_root_node(root);
6104
path->slots[level] = 0;
6105
path->locks[level] = BTRFS_WRITE_LOCK;
6106
memset(&wc->update_progress, 0,
6107
sizeof(wc->update_progress));
6108
} else {
6109
btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6110
memcpy(&wc->update_progress, &key,
6111
sizeof(wc->update_progress));
6112
6113
level = btrfs_root_drop_level(root_item);
6114
BUG_ON(level == 0);
6115
path->lowest_level = level;
6116
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6117
path->lowest_level = 0;
6118
if (ret < 0)
6119
goto out_end_trans;
6120
6121
WARN_ON(ret > 0);
6122
ret = 0;
6123
6124
/*
6125
* unlock our path, this is safe because only this
6126
* function is allowed to delete this snapshot
6127
*/
6128
btrfs_unlock_up_safe(path, 0);
6129
6130
level = btrfs_header_level(root->node);
6131
while (1) {
6132
btrfs_tree_lock(path->nodes[level]);
6133
path->locks[level] = BTRFS_WRITE_LOCK;
6134
6135
/*
6136
* btrfs_lookup_extent_info() returns 0 for success,
6137
* or < 0 for error.
6138
*/
6139
ret = btrfs_lookup_extent_info(trans, fs_info,
6140
path->nodes[level]->start,
6141
level, 1, &wc->refs[level],
6142
&wc->flags[level], NULL);
6143
if (ret < 0)
6144
goto out_end_trans;
6145
6146
BUG_ON(wc->refs[level] == 0);
6147
6148
if (level == btrfs_root_drop_level(root_item))
6149
break;
6150
6151
btrfs_tree_unlock(path->nodes[level]);
6152
path->locks[level] = 0;
6153
WARN_ON(wc->refs[level] != 1);
6154
level--;
6155
}
6156
}
6157
6158
wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
6159
wc->level = level;
6160
wc->shared_level = -1;
6161
wc->stage = DROP_REFERENCE;
6162
wc->update_ref = update_ref;
6163
wc->keep_locks = 0;
6164
wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6165
6166
while (1) {
6167
6168
ret = walk_down_tree(trans, root, path, wc);
6169
if (unlikely(ret < 0)) {
6170
btrfs_abort_transaction(trans, ret);
6171
break;
6172
}
6173
6174
ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6175
if (unlikely(ret < 0)) {
6176
btrfs_abort_transaction(trans, ret);
6177
break;
6178
}
6179
6180
if (ret > 0) {
6181
BUG_ON(wc->stage != DROP_REFERENCE);
6182
ret = 0;
6183
break;
6184
}
6185
6186
if (wc->stage == DROP_REFERENCE) {
6187
wc->drop_level = wc->level;
6188
btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
6189
&wc->drop_progress,
6190
path->slots[wc->drop_level]);
6191
}
6192
btrfs_cpu_key_to_disk(&root_item->drop_progress,
6193
&wc->drop_progress);
6194
btrfs_set_root_drop_level(root_item, wc->drop_level);
6195
6196
BUG_ON(wc->level == 0);
6197
if (btrfs_should_end_transaction(trans) ||
6198
(!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6199
ret = btrfs_update_root(trans, tree_root,
6200
&root->root_key,
6201
root_item);
6202
if (unlikely(ret)) {
6203
btrfs_abort_transaction(trans, ret);
6204
goto out_end_trans;
6205
}
6206
6207
if (!is_reloc_root)
6208
btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6209
6210
btrfs_end_transaction_throttle(trans);
6211
if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6212
btrfs_debug(fs_info,
6213
"drop snapshot early exit");
6214
ret = -EAGAIN;
6215
goto out_free;
6216
}
6217
6218
/*
6219
* Use join to avoid potential EINTR from transaction
6220
* start. See wait_reserve_ticket and the whole
6221
* reservation callchain.
6222
*/
6223
if (for_reloc)
6224
trans = btrfs_join_transaction(tree_root);
6225
else
6226
trans = btrfs_start_transaction(tree_root, 0);
6227
if (IS_ERR(trans)) {
6228
ret = PTR_ERR(trans);
6229
goto out_free;
6230
}
6231
}
6232
}
6233
btrfs_release_path(path);
6234
if (ret)
6235
goto out_end_trans;
6236
6237
ret = btrfs_del_root(trans, &root->root_key);
6238
if (unlikely(ret)) {
6239
btrfs_abort_transaction(trans, ret);
6240
goto out_end_trans;
6241
}
6242
6243
if (!is_reloc_root) {
6244
ret = btrfs_find_root(tree_root, &root->root_key, path,
6245
NULL, NULL);
6246
if (unlikely(ret < 0)) {
6247
btrfs_abort_transaction(trans, ret);
6248
goto out_end_trans;
6249
} else if (ret > 0) {
6250
ret = 0;
6251
/*
6252
* If we fail to delete the orphan item this time
6253
* around, it'll get picked up the next time.
6254
*
6255
* The most common failure here is just -ENOENT.
6256
*/
6257
btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root));
6258
}
6259
}
6260
6261
/*
6262
* This subvolume is going to be completely dropped, and won't be
6263
* recorded as dirty roots, thus pertrans meta rsv will not be freed at
6264
* commit transaction time. So free it here manually.
6265
*/
6266
btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6267
btrfs_qgroup_free_meta_all_pertrans(root);
6268
6269
if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6270
btrfs_add_dropped_root(trans, root);
6271
else
6272
btrfs_put_root(root);
6273
root_dropped = true;
6274
out_end_trans:
6275
if (!is_reloc_root)
6276
btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6277
6278
btrfs_end_transaction_throttle(trans);
6279
out_free:
6280
btrfs_free_path(path);
6281
out:
6282
if (!ret && root_dropped) {
6283
ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid);
6284
if (ret < 0)
6285
btrfs_warn_rl(fs_info,
6286
"failed to cleanup qgroup 0/%llu: %d",
6287
rootid, ret);
6288
ret = 0;
6289
}
6290
/*
6291
* We were an unfinished drop root, check to see if there are any
6292
* pending, and if not clear and wake up any waiters.
6293
*/
6294
if (!ret && unfinished_drop)
6295
btrfs_maybe_wake_unfinished_drop(fs_info);
6296
6297
/*
6298
* So if we need to stop dropping the snapshot for whatever reason we
6299
* need to make sure to add it back to the dead root list so that we
6300
* keep trying to do the work later. This also cleans up roots if we
6301
* don't have it in the radix (like when we recover after a power fail
6302
* or unmount) so we don't leak memory.
6303
*/
6304
if (!for_reloc && !root_dropped)
6305
btrfs_add_dead_root(root);
6306
return ret;
6307
}
6308
6309
/*
6310
* drop subtree rooted at tree block 'node'.
6311
*
6312
* NOTE: this function will unlock and release tree block 'node'
6313
* only used by relocation code
6314
*/
6315
int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6316
struct btrfs_root *root,
6317
struct extent_buffer *node,
6318
struct extent_buffer *parent)
6319
{
6320
struct btrfs_fs_info *fs_info = root->fs_info;
6321
BTRFS_PATH_AUTO_FREE(path);
6322
struct walk_control AUTO_KFREE(wc);
6323
int level;
6324
int parent_level;
6325
int ret = 0;
6326
6327
BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
6328
6329
path = btrfs_alloc_path();
6330
if (!path)
6331
return -ENOMEM;
6332
6333
wc = kzalloc(sizeof(*wc), GFP_NOFS);
6334
if (!wc)
6335
return -ENOMEM;
6336
6337
btrfs_assert_tree_write_locked(parent);
6338
parent_level = btrfs_header_level(parent);
6339
refcount_inc(&parent->refs);
6340
path->nodes[parent_level] = parent;
6341
path->slots[parent_level] = btrfs_header_nritems(parent);
6342
6343
btrfs_assert_tree_write_locked(node);
6344
level = btrfs_header_level(node);
6345
path->nodes[level] = node;
6346
path->slots[level] = 0;
6347
path->locks[level] = BTRFS_WRITE_LOCK;
6348
6349
wc->refs[parent_level] = 1;
6350
wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6351
wc->level = level;
6352
wc->shared_level = -1;
6353
wc->stage = DROP_REFERENCE;
6354
wc->update_ref = 0;
6355
wc->keep_locks = 1;
6356
wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6357
6358
while (1) {
6359
ret = walk_down_tree(trans, root, path, wc);
6360
if (ret < 0)
6361
return ret;
6362
6363
ret = walk_up_tree(trans, root, path, wc, parent_level);
6364
if (ret) {
6365
if (ret < 0)
6366
return ret;
6367
break;
6368
}
6369
}
6370
6371
return 0;
6372
}
6373
6374
/*
6375
* Unpin the extent range in an error context and don't add the space back.
6376
* Errors are not propagated further.
6377
*/
6378
void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
6379
{
6380
unpin_extent_range(fs_info, start, end, false);
6381
}
6382
6383
/*
6384
* It used to be that old block groups would be left around forever.
6385
* Iterating over them would be enough to trim unused space. Since we
6386
* now automatically remove them, we also need to iterate over unallocated
6387
* space.
6388
*
6389
* We don't want a transaction for this since the discard may take a
6390
* substantial amount of time. We don't require that a transaction be
6391
* running, but we do need to take a running transaction into account
6392
* to ensure that we're not discarding chunks that were released or
6393
* allocated in the current transaction.
6394
*
6395
* Holding the chunks lock will prevent other threads from allocating
6396
* or releasing chunks, but it won't prevent a running transaction
6397
* from committing and releasing the memory that the pending chunks
6398
* list head uses. For that, we need to take a reference to the
6399
* transaction and hold the commit root sem. We only need to hold
6400
* it while performing the free space search since we have already
6401
* held back allocations.
6402
*/
6403
static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6404
{
6405
u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6406
int ret;
6407
6408
*trimmed = 0;
6409
6410
/* Discard not supported = nothing to do. */
6411
if (!bdev_max_discard_sectors(device->bdev))
6412
return 0;
6413
6414
/* Not writable = nothing to do. */
6415
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6416
return 0;
6417
6418
/* No free space = nothing to do. */
6419
if (device->total_bytes <= device->bytes_used)
6420
return 0;
6421
6422
ret = 0;
6423
6424
while (1) {
6425
struct btrfs_fs_info *fs_info = device->fs_info;
6426
u64 bytes;
6427
6428
ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6429
if (ret)
6430
break;
6431
6432
btrfs_find_first_clear_extent_bit(&device->alloc_state, start,
6433
&start, &end,
6434
CHUNK_TRIMMED | CHUNK_ALLOCATED);
6435
6436
/* Check if there are any CHUNK_* bits left */
6437
if (start > device->total_bytes) {
6438
DEBUG_WARN();
6439
btrfs_warn(fs_info,
6440
"ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6441
start, end - start + 1,
6442
btrfs_dev_name(device),
6443
device->total_bytes);
6444
mutex_unlock(&fs_info->chunk_mutex);
6445
ret = 0;
6446
break;
6447
}
6448
6449
/* Ensure we skip the reserved space on each device. */
6450
start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6451
6452
/*
6453
* If find_first_clear_extent_bit find a range that spans the
6454
* end of the device it will set end to -1, in this case it's up
6455
* to the caller to trim the value to the size of the device.
6456
*/
6457
end = min(end, device->total_bytes - 1);
6458
6459
len = end - start + 1;
6460
6461
/* We didn't find any extents */
6462
if (!len) {
6463
mutex_unlock(&fs_info->chunk_mutex);
6464
ret = 0;
6465
break;
6466
}
6467
6468
ret = btrfs_issue_discard(device->bdev, start, len,
6469
&bytes);
6470
if (!ret)
6471
btrfs_set_extent_bit(&device->alloc_state, start,
6472
start + bytes - 1, CHUNK_TRIMMED, NULL);
6473
mutex_unlock(&fs_info->chunk_mutex);
6474
6475
if (ret)
6476
break;
6477
6478
start += len;
6479
*trimmed += bytes;
6480
6481
if (btrfs_trim_interrupted()) {
6482
ret = -ERESTARTSYS;
6483
break;
6484
}
6485
6486
cond_resched();
6487
}
6488
6489
return ret;
6490
}
6491
6492
/*
6493
* Trim the whole filesystem by:
6494
* 1) trimming the free space in each block group
6495
* 2) trimming the unallocated space on each device
6496
*
6497
* This will also continue trimming even if a block group or device encounters
6498
* an error. The return value will be the last error, or 0 if nothing bad
6499
* happens.
6500
*/
6501
int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6502
{
6503
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6504
struct btrfs_block_group *cache = NULL;
6505
struct btrfs_device *device;
6506
u64 group_trimmed;
6507
u64 range_end = U64_MAX;
6508
u64 start;
6509
u64 end;
6510
u64 trimmed = 0;
6511
u64 bg_failed = 0;
6512
u64 dev_failed = 0;
6513
int bg_ret = 0;
6514
int dev_ret = 0;
6515
int ret = 0;
6516
6517
if (range->start == U64_MAX)
6518
return -EINVAL;
6519
6520
/*
6521
* Check range overflow if range->len is set.
6522
* The default range->len is U64_MAX.
6523
*/
6524
if (range->len != U64_MAX &&
6525
check_add_overflow(range->start, range->len, &range_end))
6526
return -EINVAL;
6527
6528
cache = btrfs_lookup_first_block_group(fs_info, range->start);
6529
for (; cache; cache = btrfs_next_block_group(cache)) {
6530
if (cache->start >= range_end) {
6531
btrfs_put_block_group(cache);
6532
break;
6533
}
6534
6535
start = max(range->start, cache->start);
6536
end = min(range_end, cache->start + cache->length);
6537
6538
if (end - start >= range->minlen) {
6539
if (!btrfs_block_group_done(cache)) {
6540
ret = btrfs_cache_block_group(cache, true);
6541
if (ret) {
6542
bg_failed++;
6543
bg_ret = ret;
6544
continue;
6545
}
6546
}
6547
ret = btrfs_trim_block_group(cache,
6548
&group_trimmed,
6549
start,
6550
end,
6551
range->minlen);
6552
6553
trimmed += group_trimmed;
6554
if (ret) {
6555
bg_failed++;
6556
bg_ret = ret;
6557
continue;
6558
}
6559
}
6560
}
6561
6562
if (bg_failed)
6563
btrfs_warn(fs_info,
6564
"failed to trim %llu block group(s), last error %d",
6565
bg_failed, bg_ret);
6566
6567
mutex_lock(&fs_devices->device_list_mutex);
6568
list_for_each_entry(device, &fs_devices->devices, dev_list) {
6569
if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6570
continue;
6571
6572
ret = btrfs_trim_free_extents(device, &group_trimmed);
6573
6574
trimmed += group_trimmed;
6575
if (ret) {
6576
dev_failed++;
6577
dev_ret = ret;
6578
break;
6579
}
6580
}
6581
mutex_unlock(&fs_devices->device_list_mutex);
6582
6583
if (dev_failed)
6584
btrfs_warn(fs_info,
6585
"failed to trim %llu device(s), last error %d",
6586
dev_failed, dev_ret);
6587
range->len = trimmed;
6588
if (bg_ret)
6589
return bg_ret;
6590
return dev_ret;
6591
}
6592
6593