Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/extent-tree.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Copyright (C) 2007 Oracle. All rights reserved.
4
*/
5
6
#include <linux/sched.h>
7
#include <linux/sched/signal.h>
8
#include <linux/pagemap.h>
9
#include <linux/writeback.h>
10
#include <linux/blkdev.h>
11
#include <linux/sort.h>
12
#include <linux/rcupdate.h>
13
#include <linux/kthread.h>
14
#include <linux/slab.h>
15
#include <linux/ratelimit.h>
16
#include <linux/percpu_counter.h>
17
#include <linux/lockdep.h>
18
#include <linux/crc32c.h>
19
#include "ctree.h"
20
#include "extent-tree.h"
21
#include "transaction.h"
22
#include "disk-io.h"
23
#include "print-tree.h"
24
#include "volumes.h"
25
#include "raid56.h"
26
#include "locking.h"
27
#include "free-space-cache.h"
28
#include "free-space-tree.h"
29
#include "qgroup.h"
30
#include "ref-verify.h"
31
#include "space-info.h"
32
#include "block-rsv.h"
33
#include "discard.h"
34
#include "zoned.h"
35
#include "dev-replace.h"
36
#include "fs.h"
37
#include "accessors.h"
38
#include "root-tree.h"
39
#include "file-item.h"
40
#include "orphan.h"
41
#include "tree-checker.h"
42
#include "raid-stripe-tree.h"
43
44
#undef SCRAMBLE_DELAYED_REFS
45
46
47
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
48
struct btrfs_delayed_ref_head *href,
49
const struct btrfs_delayed_ref_node *node,
50
struct btrfs_delayed_extent_op *extra_op);
51
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
52
struct extent_buffer *leaf,
53
struct btrfs_extent_item *ei);
54
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
55
u64 parent, u64 root_objectid,
56
u64 flags, u64 owner, u64 offset,
57
struct btrfs_key *ins, int ref_mod, u64 oref_root);
58
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
59
const struct btrfs_delayed_ref_node *node,
60
struct btrfs_delayed_extent_op *extent_op);
61
static int find_next_key(const struct btrfs_path *path, int level,
62
struct btrfs_key *key);
63
64
static int block_group_bits(const struct btrfs_block_group *cache, u64 bits)
65
{
66
return (cache->flags & bits) == bits;
67
}
68
69
/* simple helper to search for an existing data extent at a given offset */
70
int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
71
{
72
struct btrfs_root *root = btrfs_extent_root(fs_info, start);
73
struct btrfs_key key;
74
BTRFS_PATH_AUTO_FREE(path);
75
76
path = btrfs_alloc_path();
77
if (!path)
78
return -ENOMEM;
79
80
key.objectid = start;
81
key.type = BTRFS_EXTENT_ITEM_KEY;
82
key.offset = len;
83
return btrfs_search_slot(NULL, root, &key, path, 0, 0);
84
}
85
86
/*
87
* helper function to lookup reference count and flags of a tree block.
88
*
89
* the head node for delayed ref is used to store the sum of all the
90
* reference count modifications queued up in the rbtree. the head
91
* node may also store the extent flags to set. This way you can check
92
* to see what the reference count and extent flags would be if all of
93
* the delayed refs are not processed.
94
*/
95
int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
96
struct btrfs_fs_info *fs_info, u64 bytenr,
97
u64 offset, int metadata, u64 *refs, u64 *flags,
98
u64 *owning_root)
99
{
100
struct btrfs_root *extent_root;
101
struct btrfs_delayed_ref_head *head;
102
struct btrfs_delayed_ref_root *delayed_refs;
103
BTRFS_PATH_AUTO_FREE(path);
104
struct btrfs_key key;
105
u64 num_refs;
106
u64 extent_flags;
107
u64 owner = 0;
108
int ret;
109
110
/*
111
* If we don't have skinny metadata, don't bother doing anything
112
* different
113
*/
114
if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
115
offset = fs_info->nodesize;
116
metadata = 0;
117
}
118
119
path = btrfs_alloc_path();
120
if (!path)
121
return -ENOMEM;
122
123
search_again:
124
key.objectid = bytenr;
125
if (metadata)
126
key.type = BTRFS_METADATA_ITEM_KEY;
127
else
128
key.type = BTRFS_EXTENT_ITEM_KEY;
129
key.offset = offset;
130
131
extent_root = btrfs_extent_root(fs_info, bytenr);
132
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
133
if (ret < 0)
134
return ret;
135
136
if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) {
137
if (path->slots[0]) {
138
path->slots[0]--;
139
btrfs_item_key_to_cpu(path->nodes[0], &key,
140
path->slots[0]);
141
if (key.objectid == bytenr &&
142
key.type == BTRFS_EXTENT_ITEM_KEY &&
143
key.offset == fs_info->nodesize)
144
ret = 0;
145
}
146
}
147
148
if (ret == 0) {
149
struct extent_buffer *leaf = path->nodes[0];
150
struct btrfs_extent_item *ei;
151
const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
152
153
if (unlikely(item_size < sizeof(*ei))) {
154
ret = -EUCLEAN;
155
btrfs_err(fs_info,
156
"unexpected extent item size, has %u expect >= %zu",
157
item_size, sizeof(*ei));
158
btrfs_abort_transaction(trans, ret);
159
return ret;
160
}
161
162
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
163
num_refs = btrfs_extent_refs(leaf, ei);
164
if (unlikely(num_refs == 0)) {
165
ret = -EUCLEAN;
166
btrfs_err(fs_info,
167
"unexpected zero reference count for extent item (%llu %u %llu)",
168
key.objectid, key.type, key.offset);
169
btrfs_abort_transaction(trans, ret);
170
return ret;
171
}
172
extent_flags = btrfs_extent_flags(leaf, ei);
173
owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]);
174
} else {
175
num_refs = 0;
176
extent_flags = 0;
177
ret = 0;
178
}
179
180
delayed_refs = &trans->transaction->delayed_refs;
181
spin_lock(&delayed_refs->lock);
182
head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
183
if (head) {
184
if (!mutex_trylock(&head->mutex)) {
185
refcount_inc(&head->refs);
186
spin_unlock(&delayed_refs->lock);
187
188
btrfs_release_path(path);
189
190
/*
191
* Mutex was contended, block until it's released and try
192
* again
193
*/
194
mutex_lock(&head->mutex);
195
mutex_unlock(&head->mutex);
196
btrfs_put_delayed_ref_head(head);
197
goto search_again;
198
}
199
spin_lock(&head->lock);
200
if (head->extent_op && head->extent_op->update_flags)
201
extent_flags |= head->extent_op->flags_to_set;
202
203
num_refs += head->ref_mod;
204
spin_unlock(&head->lock);
205
mutex_unlock(&head->mutex);
206
}
207
spin_unlock(&delayed_refs->lock);
208
209
WARN_ON(num_refs == 0);
210
if (refs)
211
*refs = num_refs;
212
if (flags)
213
*flags = extent_flags;
214
if (owning_root)
215
*owning_root = owner;
216
217
return ret;
218
}
219
220
/*
221
* Back reference rules. Back refs have three main goals:
222
*
223
* 1) differentiate between all holders of references to an extent so that
224
* when a reference is dropped we can make sure it was a valid reference
225
* before freeing the extent.
226
*
227
* 2) Provide enough information to quickly find the holders of an extent
228
* if we notice a given block is corrupted or bad.
229
*
230
* 3) Make it easy to migrate blocks for FS shrinking or storage pool
231
* maintenance. This is actually the same as #2, but with a slightly
232
* different use case.
233
*
234
* There are two kinds of back refs. The implicit back refs is optimized
235
* for pointers in non-shared tree blocks. For a given pointer in a block,
236
* back refs of this kind provide information about the block's owner tree
237
* and the pointer's key. These information allow us to find the block by
238
* b-tree searching. The full back refs is for pointers in tree blocks not
239
* referenced by their owner trees. The location of tree block is recorded
240
* in the back refs. Actually the full back refs is generic, and can be
241
* used in all cases the implicit back refs is used. The major shortcoming
242
* of the full back refs is its overhead. Every time a tree block gets
243
* COWed, we have to update back refs entry for all pointers in it.
244
*
245
* For a newly allocated tree block, we use implicit back refs for
246
* pointers in it. This means most tree related operations only involve
247
* implicit back refs. For a tree block created in old transaction, the
248
* only way to drop a reference to it is COW it. So we can detect the
249
* event that tree block loses its owner tree's reference and do the
250
* back refs conversion.
251
*
252
* When a tree block is COWed through a tree, there are four cases:
253
*
254
* The reference count of the block is one and the tree is the block's
255
* owner tree. Nothing to do in this case.
256
*
257
* The reference count of the block is one and the tree is not the
258
* block's owner tree. In this case, full back refs is used for pointers
259
* in the block. Remove these full back refs, add implicit back refs for
260
* every pointers in the new block.
261
*
262
* The reference count of the block is greater than one and the tree is
263
* the block's owner tree. In this case, implicit back refs is used for
264
* pointers in the block. Add full back refs for every pointers in the
265
* block, increase lower level extents' reference counts. The original
266
* implicit back refs are entailed to the new block.
267
*
268
* The reference count of the block is greater than one and the tree is
269
* not the block's owner tree. Add implicit back refs for every pointer in
270
* the new block, increase lower level extents' reference count.
271
*
272
* Back Reference Key composing:
273
*
274
* The key objectid corresponds to the first byte in the extent,
275
* The key type is used to differentiate between types of back refs.
276
* There are different meanings of the key offset for different types
277
* of back refs.
278
*
279
* File extents can be referenced by:
280
*
281
* - multiple snapshots, subvolumes, or different generations in one subvol
282
* - different files inside a single subvolume
283
* - different offsets inside a file (bookend extents in file.c)
284
*
285
* The extent ref structure for the implicit back refs has fields for:
286
*
287
* - Objectid of the subvolume root
288
* - objectid of the file holding the reference
289
* - original offset in the file
290
* - how many bookend extents
291
*
292
* The key offset for the implicit back refs is hash of the first
293
* three fields.
294
*
295
* The extent ref structure for the full back refs has field for:
296
*
297
* - number of pointers in the tree leaf
298
*
299
* The key offset for the implicit back refs is the first byte of
300
* the tree leaf
301
*
302
* When a file extent is allocated, The implicit back refs is used.
303
* the fields are filled in:
304
*
305
* (root_key.objectid, inode objectid, offset in file, 1)
306
*
307
* When a file extent is removed file truncation, we find the
308
* corresponding implicit back refs and check the following fields:
309
*
310
* (btrfs_header_owner(leaf), inode objectid, offset in file)
311
*
312
* Btree extents can be referenced by:
313
*
314
* - Different subvolumes
315
*
316
* Both the implicit back refs and the full back refs for tree blocks
317
* only consist of key. The key offset for the implicit back refs is
318
* objectid of block's owner tree. The key offset for the full back refs
319
* is the first byte of parent block.
320
*
321
* When implicit back refs is used, information about the lowest key and
322
* level of the tree block are required. These information are stored in
323
* tree block info structure.
324
*/
325
326
/*
327
* is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
328
* is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
329
* is_data == BTRFS_REF_TYPE_ANY, either type is OK.
330
*/
331
int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
332
const struct btrfs_extent_inline_ref *iref,
333
enum btrfs_inline_ref_type is_data)
334
{
335
struct btrfs_fs_info *fs_info = eb->fs_info;
336
int type = btrfs_extent_inline_ref_type(eb, iref);
337
u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
338
339
if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
340
ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
341
return type;
342
}
343
344
if (type == BTRFS_TREE_BLOCK_REF_KEY ||
345
type == BTRFS_SHARED_BLOCK_REF_KEY ||
346
type == BTRFS_SHARED_DATA_REF_KEY ||
347
type == BTRFS_EXTENT_DATA_REF_KEY) {
348
if (is_data == BTRFS_REF_TYPE_BLOCK) {
349
if (type == BTRFS_TREE_BLOCK_REF_KEY)
350
return type;
351
if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
352
ASSERT(fs_info);
353
/*
354
* Every shared one has parent tree block,
355
* which must be aligned to sector size.
356
*/
357
if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
358
return type;
359
}
360
} else if (is_data == BTRFS_REF_TYPE_DATA) {
361
if (type == BTRFS_EXTENT_DATA_REF_KEY)
362
return type;
363
if (type == BTRFS_SHARED_DATA_REF_KEY) {
364
ASSERT(fs_info);
365
/*
366
* Every shared one has parent tree block,
367
* which must be aligned to sector size.
368
*/
369
if (offset &&
370
IS_ALIGNED(offset, fs_info->sectorsize))
371
return type;
372
}
373
} else {
374
ASSERT(is_data == BTRFS_REF_TYPE_ANY);
375
return type;
376
}
377
}
378
379
WARN_ON(1);
380
btrfs_print_leaf(eb);
381
btrfs_err(fs_info,
382
"eb %llu iref 0x%lx invalid extent inline ref type %d",
383
eb->start, (unsigned long)iref, type);
384
385
return BTRFS_REF_TYPE_INVALID;
386
}
387
388
u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
389
{
390
u32 high_crc = ~(u32)0;
391
u32 low_crc = ~(u32)0;
392
__le64 lenum;
393
394
lenum = cpu_to_le64(root_objectid);
395
high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
396
lenum = cpu_to_le64(owner);
397
low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
398
lenum = cpu_to_le64(offset);
399
low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
400
401
return ((u64)high_crc << 31) ^ (u64)low_crc;
402
}
403
404
static u64 hash_extent_data_ref_item(const struct extent_buffer *leaf,
405
const struct btrfs_extent_data_ref *ref)
406
{
407
return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
408
btrfs_extent_data_ref_objectid(leaf, ref),
409
btrfs_extent_data_ref_offset(leaf, ref));
410
}
411
412
static bool match_extent_data_ref(const struct extent_buffer *leaf,
413
const struct btrfs_extent_data_ref *ref,
414
u64 root_objectid, u64 owner, u64 offset)
415
{
416
if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
417
btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
418
btrfs_extent_data_ref_offset(leaf, ref) != offset)
419
return false;
420
return true;
421
}
422
423
static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
424
struct btrfs_path *path,
425
u64 bytenr, u64 parent,
426
u64 root_objectid,
427
u64 owner, u64 offset)
428
{
429
struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
430
struct btrfs_key key;
431
struct btrfs_extent_data_ref *ref;
432
struct extent_buffer *leaf;
433
u32 nritems;
434
int recow;
435
int ret;
436
437
key.objectid = bytenr;
438
if (parent) {
439
key.type = BTRFS_SHARED_DATA_REF_KEY;
440
key.offset = parent;
441
} else {
442
key.type = BTRFS_EXTENT_DATA_REF_KEY;
443
key.offset = hash_extent_data_ref(root_objectid,
444
owner, offset);
445
}
446
again:
447
recow = 0;
448
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
449
if (ret < 0)
450
return ret;
451
452
if (parent) {
453
if (ret)
454
return -ENOENT;
455
return 0;
456
}
457
458
ret = -ENOENT;
459
leaf = path->nodes[0];
460
nritems = btrfs_header_nritems(leaf);
461
while (1) {
462
if (path->slots[0] >= nritems) {
463
ret = btrfs_next_leaf(root, path);
464
if (ret) {
465
if (ret > 0)
466
return -ENOENT;
467
return ret;
468
}
469
470
leaf = path->nodes[0];
471
nritems = btrfs_header_nritems(leaf);
472
recow = 1;
473
}
474
475
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
476
if (key.objectid != bytenr ||
477
key.type != BTRFS_EXTENT_DATA_REF_KEY)
478
goto fail;
479
480
ref = btrfs_item_ptr(leaf, path->slots[0],
481
struct btrfs_extent_data_ref);
482
483
if (match_extent_data_ref(leaf, ref, root_objectid,
484
owner, offset)) {
485
if (recow) {
486
btrfs_release_path(path);
487
goto again;
488
}
489
ret = 0;
490
break;
491
}
492
path->slots[0]++;
493
}
494
fail:
495
return ret;
496
}
497
498
static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
499
struct btrfs_path *path,
500
const struct btrfs_delayed_ref_node *node,
501
u64 bytenr)
502
{
503
struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
504
struct btrfs_key key;
505
struct extent_buffer *leaf;
506
u64 owner = btrfs_delayed_ref_owner(node);
507
u64 offset = btrfs_delayed_ref_offset(node);
508
u32 size;
509
u32 num_refs;
510
int ret;
511
512
key.objectid = bytenr;
513
if (node->parent) {
514
key.type = BTRFS_SHARED_DATA_REF_KEY;
515
key.offset = node->parent;
516
size = sizeof(struct btrfs_shared_data_ref);
517
} else {
518
key.type = BTRFS_EXTENT_DATA_REF_KEY;
519
key.offset = hash_extent_data_ref(node->ref_root, owner, offset);
520
size = sizeof(struct btrfs_extent_data_ref);
521
}
522
523
ret = btrfs_insert_empty_item(trans, root, path, &key, size);
524
if (ret && ret != -EEXIST)
525
goto fail;
526
527
leaf = path->nodes[0];
528
if (node->parent) {
529
struct btrfs_shared_data_ref *ref;
530
ref = btrfs_item_ptr(leaf, path->slots[0],
531
struct btrfs_shared_data_ref);
532
if (ret == 0) {
533
btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod);
534
} else {
535
num_refs = btrfs_shared_data_ref_count(leaf, ref);
536
num_refs += node->ref_mod;
537
btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
538
}
539
} else {
540
struct btrfs_extent_data_ref *ref;
541
while (ret == -EEXIST) {
542
ref = btrfs_item_ptr(leaf, path->slots[0],
543
struct btrfs_extent_data_ref);
544
if (match_extent_data_ref(leaf, ref, node->ref_root,
545
owner, offset))
546
break;
547
btrfs_release_path(path);
548
key.offset++;
549
ret = btrfs_insert_empty_item(trans, root, path, &key,
550
size);
551
if (ret && ret != -EEXIST)
552
goto fail;
553
554
leaf = path->nodes[0];
555
}
556
ref = btrfs_item_ptr(leaf, path->slots[0],
557
struct btrfs_extent_data_ref);
558
if (ret == 0) {
559
btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root);
560
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
561
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
562
btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod);
563
} else {
564
num_refs = btrfs_extent_data_ref_count(leaf, ref);
565
num_refs += node->ref_mod;
566
btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
567
}
568
}
569
ret = 0;
570
fail:
571
btrfs_release_path(path);
572
return ret;
573
}
574
575
static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
576
struct btrfs_root *root,
577
struct btrfs_path *path,
578
int refs_to_drop)
579
{
580
struct btrfs_key key;
581
struct btrfs_extent_data_ref *ref1 = NULL;
582
struct btrfs_shared_data_ref *ref2 = NULL;
583
struct extent_buffer *leaf;
584
u32 num_refs = 0;
585
int ret = 0;
586
587
leaf = path->nodes[0];
588
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
589
590
if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
591
ref1 = btrfs_item_ptr(leaf, path->slots[0],
592
struct btrfs_extent_data_ref);
593
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
594
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
595
ref2 = btrfs_item_ptr(leaf, path->slots[0],
596
struct btrfs_shared_data_ref);
597
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
598
} else {
599
btrfs_err(trans->fs_info,
600
"unrecognized backref key (%llu %u %llu)",
601
key.objectid, key.type, key.offset);
602
btrfs_abort_transaction(trans, -EUCLEAN);
603
return -EUCLEAN;
604
}
605
606
BUG_ON(num_refs < refs_to_drop);
607
num_refs -= refs_to_drop;
608
609
if (num_refs == 0) {
610
ret = btrfs_del_item(trans, root, path);
611
} else {
612
if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
613
btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
614
else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
615
btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
616
}
617
return ret;
618
}
619
620
static noinline u32 extent_data_ref_count(const struct btrfs_path *path,
621
const struct btrfs_extent_inline_ref *iref)
622
{
623
struct btrfs_key key;
624
struct extent_buffer *leaf;
625
const struct btrfs_extent_data_ref *ref1;
626
const struct btrfs_shared_data_ref *ref2;
627
u32 num_refs = 0;
628
int type;
629
630
leaf = path->nodes[0];
631
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
632
633
if (iref) {
634
/*
635
* If type is invalid, we should have bailed out earlier than
636
* this call.
637
*/
638
type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
639
ASSERT(type != BTRFS_REF_TYPE_INVALID);
640
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
641
ref1 = (const struct btrfs_extent_data_ref *)(&iref->offset);
642
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
643
} else {
644
ref2 = (const struct btrfs_shared_data_ref *)(iref + 1);
645
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
646
}
647
} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
648
ref1 = btrfs_item_ptr(leaf, path->slots[0],
649
struct btrfs_extent_data_ref);
650
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
651
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
652
ref2 = btrfs_item_ptr(leaf, path->slots[0],
653
struct btrfs_shared_data_ref);
654
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
655
} else {
656
WARN_ON(1);
657
}
658
return num_refs;
659
}
660
661
static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
662
struct btrfs_path *path,
663
u64 bytenr, u64 parent,
664
u64 root_objectid)
665
{
666
struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
667
struct btrfs_key key;
668
int ret;
669
670
key.objectid = bytenr;
671
if (parent) {
672
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
673
key.offset = parent;
674
} else {
675
key.type = BTRFS_TREE_BLOCK_REF_KEY;
676
key.offset = root_objectid;
677
}
678
679
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
680
if (ret > 0)
681
ret = -ENOENT;
682
return ret;
683
}
684
685
static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
686
struct btrfs_path *path,
687
const struct btrfs_delayed_ref_node *node,
688
u64 bytenr)
689
{
690
struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
691
struct btrfs_key key;
692
int ret;
693
694
key.objectid = bytenr;
695
if (node->parent) {
696
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
697
key.offset = node->parent;
698
} else {
699
key.type = BTRFS_TREE_BLOCK_REF_KEY;
700
key.offset = node->ref_root;
701
}
702
703
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
704
btrfs_release_path(path);
705
return ret;
706
}
707
708
static inline int extent_ref_type(u64 parent, u64 owner)
709
{
710
int type;
711
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
712
if (parent > 0)
713
type = BTRFS_SHARED_BLOCK_REF_KEY;
714
else
715
type = BTRFS_TREE_BLOCK_REF_KEY;
716
} else {
717
if (parent > 0)
718
type = BTRFS_SHARED_DATA_REF_KEY;
719
else
720
type = BTRFS_EXTENT_DATA_REF_KEY;
721
}
722
return type;
723
}
724
725
static int find_next_key(const struct btrfs_path *path, int level,
726
struct btrfs_key *key)
727
728
{
729
for (; level < BTRFS_MAX_LEVEL; level++) {
730
if (!path->nodes[level])
731
break;
732
if (path->slots[level] + 1 >=
733
btrfs_header_nritems(path->nodes[level]))
734
continue;
735
if (level == 0)
736
btrfs_item_key_to_cpu(path->nodes[level], key,
737
path->slots[level] + 1);
738
else
739
btrfs_node_key_to_cpu(path->nodes[level], key,
740
path->slots[level] + 1);
741
return 0;
742
}
743
return 1;
744
}
745
746
/*
747
* look for inline back ref. if back ref is found, *ref_ret is set
748
* to the address of inline back ref, and 0 is returned.
749
*
750
* if back ref isn't found, *ref_ret is set to the address where it
751
* should be inserted, and -ENOENT is returned.
752
*
753
* if insert is true and there are too many inline back refs, the path
754
* points to the extent item, and -EAGAIN is returned.
755
*
756
* NOTE: inline back refs are ordered in the same way that back ref
757
* items in the tree are ordered.
758
*/
759
static noinline_for_stack
760
int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
761
struct btrfs_path *path,
762
struct btrfs_extent_inline_ref **ref_ret,
763
u64 bytenr, u64 num_bytes,
764
u64 parent, u64 root_objectid,
765
u64 owner, u64 offset, int insert)
766
{
767
struct btrfs_fs_info *fs_info = trans->fs_info;
768
struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
769
struct btrfs_key key;
770
struct extent_buffer *leaf;
771
struct btrfs_extent_item *ei;
772
struct btrfs_extent_inline_ref *iref;
773
u64 flags;
774
u64 item_size;
775
unsigned long ptr;
776
unsigned long end;
777
int extra_size;
778
int type;
779
int want;
780
int ret;
781
bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
782
int needed;
783
784
key.objectid = bytenr;
785
key.type = BTRFS_EXTENT_ITEM_KEY;
786
key.offset = num_bytes;
787
788
want = extent_ref_type(parent, owner);
789
if (insert) {
790
extra_size = btrfs_extent_inline_ref_size(want);
791
path->search_for_extension = 1;
792
} else
793
extra_size = -1;
794
795
/*
796
* Owner is our level, so we can just add one to get the level for the
797
* block we are interested in.
798
*/
799
if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
800
key.type = BTRFS_METADATA_ITEM_KEY;
801
key.offset = owner;
802
}
803
804
again:
805
ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
806
if (ret < 0)
807
goto out;
808
809
/*
810
* We may be a newly converted file system which still has the old fat
811
* extent entries for metadata, so try and see if we have one of those.
812
*/
813
if (ret > 0 && skinny_metadata) {
814
skinny_metadata = false;
815
if (path->slots[0]) {
816
path->slots[0]--;
817
btrfs_item_key_to_cpu(path->nodes[0], &key,
818
path->slots[0]);
819
if (key.objectid == bytenr &&
820
key.type == BTRFS_EXTENT_ITEM_KEY &&
821
key.offset == num_bytes)
822
ret = 0;
823
}
824
if (ret) {
825
key.objectid = bytenr;
826
key.type = BTRFS_EXTENT_ITEM_KEY;
827
key.offset = num_bytes;
828
btrfs_release_path(path);
829
goto again;
830
}
831
}
832
833
if (ret && !insert) {
834
ret = -ENOENT;
835
goto out;
836
} else if (WARN_ON(ret)) {
837
btrfs_print_leaf(path->nodes[0]);
838
btrfs_err(fs_info,
839
"extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
840
bytenr, num_bytes, parent, root_objectid, owner,
841
offset);
842
ret = -EUCLEAN;
843
goto out;
844
}
845
846
leaf = path->nodes[0];
847
item_size = btrfs_item_size(leaf, path->slots[0]);
848
if (unlikely(item_size < sizeof(*ei))) {
849
ret = -EUCLEAN;
850
btrfs_err(fs_info,
851
"unexpected extent item size, has %llu expect >= %zu",
852
item_size, sizeof(*ei));
853
btrfs_abort_transaction(trans, ret);
854
goto out;
855
}
856
857
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
858
flags = btrfs_extent_flags(leaf, ei);
859
860
ptr = (unsigned long)(ei + 1);
861
end = (unsigned long)ei + item_size;
862
863
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
864
ptr += sizeof(struct btrfs_tree_block_info);
865
BUG_ON(ptr > end);
866
}
867
868
if (owner >= BTRFS_FIRST_FREE_OBJECTID)
869
needed = BTRFS_REF_TYPE_DATA;
870
else
871
needed = BTRFS_REF_TYPE_BLOCK;
872
873
ret = -ENOENT;
874
while (ptr < end) {
875
iref = (struct btrfs_extent_inline_ref *)ptr;
876
type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
877
if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
878
ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
879
ptr += btrfs_extent_inline_ref_size(type);
880
continue;
881
}
882
if (type == BTRFS_REF_TYPE_INVALID) {
883
ret = -EUCLEAN;
884
goto out;
885
}
886
887
if (want < type)
888
break;
889
if (want > type) {
890
ptr += btrfs_extent_inline_ref_size(type);
891
continue;
892
}
893
894
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
895
struct btrfs_extent_data_ref *dref;
896
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
897
if (match_extent_data_ref(leaf, dref, root_objectid,
898
owner, offset)) {
899
ret = 0;
900
break;
901
}
902
if (hash_extent_data_ref_item(leaf, dref) <
903
hash_extent_data_ref(root_objectid, owner, offset))
904
break;
905
} else {
906
u64 ref_offset;
907
ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
908
if (parent > 0) {
909
if (parent == ref_offset) {
910
ret = 0;
911
break;
912
}
913
if (ref_offset < parent)
914
break;
915
} else {
916
if (root_objectid == ref_offset) {
917
ret = 0;
918
break;
919
}
920
if (ref_offset < root_objectid)
921
break;
922
}
923
}
924
ptr += btrfs_extent_inline_ref_size(type);
925
}
926
927
if (unlikely(ptr > end)) {
928
ret = -EUCLEAN;
929
btrfs_print_leaf(path->nodes[0]);
930
btrfs_crit(fs_info,
931
"overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
932
path->slots[0], root_objectid, owner, offset, parent);
933
goto out;
934
}
935
936
if (ret == -ENOENT && insert) {
937
if (item_size + extra_size >=
938
BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
939
ret = -EAGAIN;
940
goto out;
941
}
942
943
if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) {
944
struct btrfs_key tmp_key;
945
946
btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1);
947
if (tmp_key.objectid == bytenr &&
948
tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
949
ret = -EAGAIN;
950
goto out;
951
}
952
goto out_no_entry;
953
}
954
955
if (!path->keep_locks) {
956
btrfs_release_path(path);
957
path->keep_locks = 1;
958
goto again;
959
}
960
961
/*
962
* To add new inline back ref, we have to make sure
963
* there is no corresponding back ref item.
964
* For simplicity, we just do not add new inline back
965
* ref if there is any kind of item for this block
966
*/
967
if (find_next_key(path, 0, &key) == 0 &&
968
key.objectid == bytenr &&
969
key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
970
ret = -EAGAIN;
971
goto out;
972
}
973
}
974
out_no_entry:
975
*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
976
out:
977
if (path->keep_locks) {
978
path->keep_locks = 0;
979
btrfs_unlock_up_safe(path, 1);
980
}
981
if (insert)
982
path->search_for_extension = 0;
983
return ret;
984
}
985
986
/*
987
* helper to add new inline back ref
988
*/
989
static noinline_for_stack
990
void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
991
struct btrfs_path *path,
992
struct btrfs_extent_inline_ref *iref,
993
u64 parent, u64 root_objectid,
994
u64 owner, u64 offset, int refs_to_add,
995
struct btrfs_delayed_extent_op *extent_op)
996
{
997
struct extent_buffer *leaf;
998
struct btrfs_extent_item *ei;
999
unsigned long ptr;
1000
unsigned long end;
1001
unsigned long item_offset;
1002
u64 refs;
1003
int size;
1004
int type;
1005
1006
leaf = path->nodes[0];
1007
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1008
item_offset = (unsigned long)iref - (unsigned long)ei;
1009
1010
type = extent_ref_type(parent, owner);
1011
size = btrfs_extent_inline_ref_size(type);
1012
1013
btrfs_extend_item(trans, path, size);
1014
1015
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1016
refs = btrfs_extent_refs(leaf, ei);
1017
refs += refs_to_add;
1018
btrfs_set_extent_refs(leaf, ei, refs);
1019
if (extent_op)
1020
__run_delayed_extent_op(extent_op, leaf, ei);
1021
1022
ptr = (unsigned long)ei + item_offset;
1023
end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1024
if (ptr < end - size)
1025
memmove_extent_buffer(leaf, ptr + size, ptr,
1026
end - size - ptr);
1027
1028
iref = (struct btrfs_extent_inline_ref *)ptr;
1029
btrfs_set_extent_inline_ref_type(leaf, iref, type);
1030
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1031
struct btrfs_extent_data_ref *dref;
1032
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1033
btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1034
btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1035
btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1036
btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1037
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1038
struct btrfs_shared_data_ref *sref;
1039
sref = (struct btrfs_shared_data_ref *)(iref + 1);
1040
btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1041
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1042
} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1043
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1044
} else {
1045
btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1046
}
1047
}
1048
1049
static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1050
struct btrfs_path *path,
1051
struct btrfs_extent_inline_ref **ref_ret,
1052
u64 bytenr, u64 num_bytes, u64 parent,
1053
u64 root_objectid, u64 owner, u64 offset)
1054
{
1055
int ret;
1056
1057
ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1058
num_bytes, parent, root_objectid,
1059
owner, offset, 0);
1060
if (ret != -ENOENT)
1061
return ret;
1062
1063
btrfs_release_path(path);
1064
*ref_ret = NULL;
1065
1066
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1067
ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1068
root_objectid);
1069
} else {
1070
ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1071
root_objectid, owner, offset);
1072
}
1073
return ret;
1074
}
1075
1076
/*
1077
* helper to update/remove inline back ref
1078
*/
1079
static noinline_for_stack int update_inline_extent_backref(
1080
struct btrfs_trans_handle *trans,
1081
struct btrfs_path *path,
1082
struct btrfs_extent_inline_ref *iref,
1083
int refs_to_mod,
1084
struct btrfs_delayed_extent_op *extent_op)
1085
{
1086
struct extent_buffer *leaf = path->nodes[0];
1087
struct btrfs_fs_info *fs_info = leaf->fs_info;
1088
struct btrfs_extent_item *ei;
1089
struct btrfs_extent_data_ref *dref = NULL;
1090
struct btrfs_shared_data_ref *sref = NULL;
1091
unsigned long ptr;
1092
unsigned long end;
1093
u32 item_size;
1094
int size;
1095
int type;
1096
u64 refs;
1097
1098
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1099
refs = btrfs_extent_refs(leaf, ei);
1100
if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1101
struct btrfs_key key;
1102
u32 extent_size;
1103
1104
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1105
if (key.type == BTRFS_METADATA_ITEM_KEY)
1106
extent_size = fs_info->nodesize;
1107
else
1108
extent_size = key.offset;
1109
btrfs_print_leaf(leaf);
1110
btrfs_err(fs_info,
1111
"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1112
key.objectid, extent_size, refs_to_mod, refs);
1113
return -EUCLEAN;
1114
}
1115
refs += refs_to_mod;
1116
btrfs_set_extent_refs(leaf, ei, refs);
1117
if (extent_op)
1118
__run_delayed_extent_op(extent_op, leaf, ei);
1119
1120
type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1121
/*
1122
* Function btrfs_get_extent_inline_ref_type() has already printed
1123
* error messages.
1124
*/
1125
if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1126
return -EUCLEAN;
1127
1128
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1129
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1130
refs = btrfs_extent_data_ref_count(leaf, dref);
1131
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1132
sref = (struct btrfs_shared_data_ref *)(iref + 1);
1133
refs = btrfs_shared_data_ref_count(leaf, sref);
1134
} else {
1135
refs = 1;
1136
/*
1137
* For tree blocks we can only drop one ref for it, and tree
1138
* blocks should not have refs > 1.
1139
*
1140
* Furthermore if we're inserting a new inline backref, we
1141
* won't reach this path either. That would be
1142
* setup_inline_extent_backref().
1143
*/
1144
if (unlikely(refs_to_mod != -1)) {
1145
struct btrfs_key key;
1146
1147
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1148
1149
btrfs_print_leaf(leaf);
1150
btrfs_err(fs_info,
1151
"invalid refs_to_mod for tree block %llu, has %d expect -1",
1152
key.objectid, refs_to_mod);
1153
return -EUCLEAN;
1154
}
1155
}
1156
1157
if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1158
struct btrfs_key key;
1159
u32 extent_size;
1160
1161
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1162
if (key.type == BTRFS_METADATA_ITEM_KEY)
1163
extent_size = fs_info->nodesize;
1164
else
1165
extent_size = key.offset;
1166
btrfs_print_leaf(leaf);
1167
btrfs_err(fs_info,
1168
"invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1169
(unsigned long)iref, key.objectid, extent_size,
1170
refs_to_mod, refs);
1171
return -EUCLEAN;
1172
}
1173
refs += refs_to_mod;
1174
1175
if (refs > 0) {
1176
if (type == BTRFS_EXTENT_DATA_REF_KEY)
1177
btrfs_set_extent_data_ref_count(leaf, dref, refs);
1178
else
1179
btrfs_set_shared_data_ref_count(leaf, sref, refs);
1180
} else {
1181
size = btrfs_extent_inline_ref_size(type);
1182
item_size = btrfs_item_size(leaf, path->slots[0]);
1183
ptr = (unsigned long)iref;
1184
end = (unsigned long)ei + item_size;
1185
if (ptr + size < end)
1186
memmove_extent_buffer(leaf, ptr, ptr + size,
1187
end - ptr - size);
1188
item_size -= size;
1189
btrfs_truncate_item(trans, path, item_size, 1);
1190
}
1191
return 0;
1192
}
1193
1194
static noinline_for_stack
1195
int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1196
struct btrfs_path *path,
1197
u64 bytenr, u64 num_bytes, u64 parent,
1198
u64 root_objectid, u64 owner,
1199
u64 offset, int refs_to_add,
1200
struct btrfs_delayed_extent_op *extent_op)
1201
{
1202
struct btrfs_extent_inline_ref *iref;
1203
int ret;
1204
1205
ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1206
num_bytes, parent, root_objectid,
1207
owner, offset, 1);
1208
if (ret == 0) {
1209
/*
1210
* We're adding refs to a tree block we already own, this
1211
* should not happen at all.
1212
*/
1213
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1214
btrfs_print_leaf(path->nodes[0]);
1215
btrfs_crit(trans->fs_info,
1216
"adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1217
bytenr, num_bytes, root_objectid, path->slots[0]);
1218
return -EUCLEAN;
1219
}
1220
ret = update_inline_extent_backref(trans, path, iref,
1221
refs_to_add, extent_op);
1222
} else if (ret == -ENOENT) {
1223
setup_inline_extent_backref(trans, path, iref, parent,
1224
root_objectid, owner, offset,
1225
refs_to_add, extent_op);
1226
ret = 0;
1227
}
1228
return ret;
1229
}
1230
1231
static int remove_extent_backref(struct btrfs_trans_handle *trans,
1232
struct btrfs_root *root,
1233
struct btrfs_path *path,
1234
struct btrfs_extent_inline_ref *iref,
1235
int refs_to_drop, int is_data)
1236
{
1237
int ret = 0;
1238
1239
BUG_ON(!is_data && refs_to_drop != 1);
1240
if (iref)
1241
ret = update_inline_extent_backref(trans, path, iref,
1242
-refs_to_drop, NULL);
1243
else if (is_data)
1244
ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1245
else
1246
ret = btrfs_del_item(trans, root, path);
1247
return ret;
1248
}
1249
1250
static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1251
u64 *discarded_bytes)
1252
{
1253
int j, ret = 0;
1254
u64 bytes_left, end;
1255
u64 aligned_start = ALIGN(start, SECTOR_SIZE);
1256
1257
/* Adjust the range to be aligned to 512B sectors if necessary. */
1258
if (start != aligned_start) {
1259
len -= aligned_start - start;
1260
len = round_down(len, SECTOR_SIZE);
1261
start = aligned_start;
1262
}
1263
1264
*discarded_bytes = 0;
1265
1266
if (!len)
1267
return 0;
1268
1269
end = start + len;
1270
bytes_left = len;
1271
1272
/* Skip any superblocks on this device. */
1273
for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1274
u64 sb_start = btrfs_sb_offset(j);
1275
u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1276
u64 size = sb_start - start;
1277
1278
if (!in_range(sb_start, start, bytes_left) &&
1279
!in_range(sb_end, start, bytes_left) &&
1280
!in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1281
continue;
1282
1283
/*
1284
* Superblock spans beginning of range. Adjust start and
1285
* try again.
1286
*/
1287
if (sb_start <= start) {
1288
start += sb_end - start;
1289
if (start > end) {
1290
bytes_left = 0;
1291
break;
1292
}
1293
bytes_left = end - start;
1294
continue;
1295
}
1296
1297
if (size) {
1298
ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1299
size >> SECTOR_SHIFT,
1300
GFP_NOFS);
1301
if (!ret)
1302
*discarded_bytes += size;
1303
else if (ret != -EOPNOTSUPP)
1304
return ret;
1305
}
1306
1307
start = sb_end;
1308
if (start > end) {
1309
bytes_left = 0;
1310
break;
1311
}
1312
bytes_left = end - start;
1313
}
1314
1315
while (bytes_left) {
1316
u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1317
1318
ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1319
bytes_to_discard >> SECTOR_SHIFT,
1320
GFP_NOFS);
1321
1322
if (ret) {
1323
if (ret != -EOPNOTSUPP)
1324
break;
1325
continue;
1326
}
1327
1328
start += bytes_to_discard;
1329
bytes_left -= bytes_to_discard;
1330
*discarded_bytes += bytes_to_discard;
1331
1332
if (btrfs_trim_interrupted()) {
1333
ret = -ERESTARTSYS;
1334
break;
1335
}
1336
}
1337
1338
return ret;
1339
}
1340
1341
static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1342
{
1343
struct btrfs_device *dev = stripe->dev;
1344
struct btrfs_fs_info *fs_info = dev->fs_info;
1345
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1346
u64 phys = stripe->physical;
1347
u64 len = stripe->length;
1348
u64 discarded = 0;
1349
int ret = 0;
1350
1351
/* Zone reset on a zoned filesystem */
1352
if (btrfs_can_zone_reset(dev, phys, len)) {
1353
u64 src_disc;
1354
1355
ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1356
if (ret)
1357
goto out;
1358
1359
if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1360
dev != dev_replace->srcdev)
1361
goto out;
1362
1363
src_disc = discarded;
1364
1365
/* Send to replace target as well */
1366
ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1367
&discarded);
1368
discarded += src_disc;
1369
} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1370
ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1371
} else {
1372
ret = 0;
1373
*bytes = 0;
1374
}
1375
1376
out:
1377
*bytes = discarded;
1378
return ret;
1379
}
1380
1381
int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1382
u64 num_bytes, u64 *actual_bytes)
1383
{
1384
int ret = 0;
1385
u64 discarded_bytes = 0;
1386
u64 end = bytenr + num_bytes;
1387
u64 cur = bytenr;
1388
1389
/*
1390
* Avoid races with device replace and make sure the devices in the
1391
* stripes don't go away while we are discarding.
1392
*/
1393
btrfs_bio_counter_inc_blocked(fs_info);
1394
while (cur < end) {
1395
struct btrfs_discard_stripe *stripes;
1396
unsigned int num_stripes;
1397
int i;
1398
1399
num_bytes = end - cur;
1400
stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1401
if (IS_ERR(stripes)) {
1402
ret = PTR_ERR(stripes);
1403
if (ret == -EOPNOTSUPP)
1404
ret = 0;
1405
break;
1406
}
1407
1408
for (i = 0; i < num_stripes; i++) {
1409
struct btrfs_discard_stripe *stripe = stripes + i;
1410
u64 bytes;
1411
1412
if (!stripe->dev->bdev) {
1413
ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1414
continue;
1415
}
1416
1417
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1418
&stripe->dev->dev_state))
1419
continue;
1420
1421
ret = do_discard_extent(stripe, &bytes);
1422
if (ret) {
1423
/*
1424
* Keep going if discard is not supported by the
1425
* device.
1426
*/
1427
if (ret != -EOPNOTSUPP)
1428
break;
1429
ret = 0;
1430
} else {
1431
discarded_bytes += bytes;
1432
}
1433
}
1434
kfree(stripes);
1435
if (ret)
1436
break;
1437
cur += num_bytes;
1438
}
1439
btrfs_bio_counter_dec(fs_info);
1440
if (actual_bytes)
1441
*actual_bytes = discarded_bytes;
1442
return ret;
1443
}
1444
1445
/* Can return -ENOMEM */
1446
int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1447
struct btrfs_ref *generic_ref)
1448
{
1449
struct btrfs_fs_info *fs_info = trans->fs_info;
1450
int ret;
1451
1452
ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1453
generic_ref->action);
1454
BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1455
generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID);
1456
1457
if (generic_ref->type == BTRFS_REF_METADATA)
1458
ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1459
else
1460
ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1461
1462
btrfs_ref_tree_mod(fs_info, generic_ref);
1463
1464
return ret;
1465
}
1466
1467
/*
1468
* Insert backreference for a given extent.
1469
*
1470
* The counterpart is in __btrfs_free_extent(), with examples and more details
1471
* how it works.
1472
*
1473
* @trans: Handle of transaction
1474
*
1475
* @node: The delayed ref node used to get the bytenr/length for
1476
* extent whose references are incremented.
1477
*
1478
* @extent_op Pointer to a structure, holding information necessary when
1479
* updating a tree block's flags
1480
*
1481
*/
1482
static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1483
const struct btrfs_delayed_ref_node *node,
1484
struct btrfs_delayed_extent_op *extent_op)
1485
{
1486
BTRFS_PATH_AUTO_FREE(path);
1487
struct extent_buffer *leaf;
1488
struct btrfs_extent_item *item;
1489
struct btrfs_key key;
1490
u64 bytenr = node->bytenr;
1491
u64 num_bytes = node->num_bytes;
1492
u64 owner = btrfs_delayed_ref_owner(node);
1493
u64 offset = btrfs_delayed_ref_offset(node);
1494
u64 refs;
1495
int refs_to_add = node->ref_mod;
1496
int ret;
1497
1498
path = btrfs_alloc_path();
1499
if (!path)
1500
return -ENOMEM;
1501
1502
/* this will setup the path even if it fails to insert the back ref */
1503
ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1504
node->parent, node->ref_root, owner,
1505
offset, refs_to_add, extent_op);
1506
if ((ret < 0 && ret != -EAGAIN) || !ret)
1507
return ret;
1508
1509
/*
1510
* Ok we had -EAGAIN which means we didn't have space to insert and
1511
* inline extent ref, so just update the reference count and add a
1512
* normal backref.
1513
*/
1514
leaf = path->nodes[0];
1515
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1516
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1517
refs = btrfs_extent_refs(leaf, item);
1518
btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1519
if (extent_op)
1520
__run_delayed_extent_op(extent_op, leaf, item);
1521
1522
btrfs_release_path(path);
1523
1524
/* now insert the actual backref */
1525
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1526
ret = insert_tree_block_ref(trans, path, node, bytenr);
1527
if (ret)
1528
btrfs_abort_transaction(trans, ret);
1529
} else {
1530
ret = insert_extent_data_ref(trans, path, node, bytenr);
1531
if (ret)
1532
btrfs_abort_transaction(trans, ret);
1533
}
1534
1535
return ret;
1536
}
1537
1538
static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1539
const struct btrfs_delayed_ref_head *href)
1540
{
1541
u64 root = href->owning_root;
1542
1543
/*
1544
* Don't check must_insert_reserved, as this is called from contexts
1545
* where it has already been unset.
1546
*/
1547
if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1548
!href->is_data || !btrfs_is_fstree(root))
1549
return;
1550
1551
btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1552
BTRFS_QGROUP_RSV_DATA);
1553
}
1554
1555
static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1556
struct btrfs_delayed_ref_head *href,
1557
const struct btrfs_delayed_ref_node *node,
1558
struct btrfs_delayed_extent_op *extent_op,
1559
bool insert_reserved)
1560
{
1561
int ret = 0;
1562
u64 parent = 0;
1563
u64 flags = 0;
1564
1565
trace_run_delayed_data_ref(trans->fs_info, node);
1566
1567
if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1568
parent = node->parent;
1569
1570
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1571
struct btrfs_key key;
1572
struct btrfs_squota_delta delta = {
1573
.root = href->owning_root,
1574
.num_bytes = node->num_bytes,
1575
.is_data = true,
1576
.is_inc = true,
1577
.generation = trans->transid,
1578
};
1579
u64 owner = btrfs_delayed_ref_owner(node);
1580
u64 offset = btrfs_delayed_ref_offset(node);
1581
1582
if (extent_op)
1583
flags |= extent_op->flags_to_set;
1584
1585
key.objectid = node->bytenr;
1586
key.type = BTRFS_EXTENT_ITEM_KEY;
1587
key.offset = node->num_bytes;
1588
1589
ret = alloc_reserved_file_extent(trans, parent, node->ref_root,
1590
flags, owner, offset, &key,
1591
node->ref_mod,
1592
href->owning_root);
1593
free_head_ref_squota_rsv(trans->fs_info, href);
1594
if (!ret)
1595
ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1596
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1597
ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1598
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1599
ret = __btrfs_free_extent(trans, href, node, extent_op);
1600
} else {
1601
BUG();
1602
}
1603
return ret;
1604
}
1605
1606
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1607
struct extent_buffer *leaf,
1608
struct btrfs_extent_item *ei)
1609
{
1610
u64 flags = btrfs_extent_flags(leaf, ei);
1611
if (extent_op->update_flags) {
1612
flags |= extent_op->flags_to_set;
1613
btrfs_set_extent_flags(leaf, ei, flags);
1614
}
1615
1616
if (extent_op->update_key) {
1617
struct btrfs_tree_block_info *bi;
1618
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1619
bi = (struct btrfs_tree_block_info *)(ei + 1);
1620
btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1621
}
1622
}
1623
1624
static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1625
const struct btrfs_delayed_ref_head *head,
1626
struct btrfs_delayed_extent_op *extent_op)
1627
{
1628
struct btrfs_fs_info *fs_info = trans->fs_info;
1629
struct btrfs_root *root;
1630
struct btrfs_key key;
1631
BTRFS_PATH_AUTO_FREE(path);
1632
struct btrfs_extent_item *ei;
1633
struct extent_buffer *leaf;
1634
u32 item_size;
1635
int ret;
1636
int metadata = 1;
1637
1638
if (TRANS_ABORTED(trans))
1639
return 0;
1640
1641
if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1642
metadata = 0;
1643
1644
path = btrfs_alloc_path();
1645
if (!path)
1646
return -ENOMEM;
1647
1648
key.objectid = head->bytenr;
1649
1650
if (metadata) {
1651
key.type = BTRFS_METADATA_ITEM_KEY;
1652
key.offset = head->level;
1653
} else {
1654
key.type = BTRFS_EXTENT_ITEM_KEY;
1655
key.offset = head->num_bytes;
1656
}
1657
1658
root = btrfs_extent_root(fs_info, key.objectid);
1659
again:
1660
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1661
if (ret < 0) {
1662
return ret;
1663
} else if (ret > 0) {
1664
if (metadata) {
1665
if (path->slots[0] > 0) {
1666
path->slots[0]--;
1667
btrfs_item_key_to_cpu(path->nodes[0], &key,
1668
path->slots[0]);
1669
if (key.objectid == head->bytenr &&
1670
key.type == BTRFS_EXTENT_ITEM_KEY &&
1671
key.offset == head->num_bytes)
1672
ret = 0;
1673
}
1674
if (ret > 0) {
1675
btrfs_release_path(path);
1676
metadata = 0;
1677
1678
key.objectid = head->bytenr;
1679
key.type = BTRFS_EXTENT_ITEM_KEY;
1680
key.offset = head->num_bytes;
1681
goto again;
1682
}
1683
} else {
1684
ret = -EUCLEAN;
1685
btrfs_err(fs_info,
1686
"missing extent item for extent %llu num_bytes %llu level %d",
1687
head->bytenr, head->num_bytes, head->level);
1688
return ret;
1689
}
1690
}
1691
1692
leaf = path->nodes[0];
1693
item_size = btrfs_item_size(leaf, path->slots[0]);
1694
1695
if (unlikely(item_size < sizeof(*ei))) {
1696
ret = -EUCLEAN;
1697
btrfs_err(fs_info,
1698
"unexpected extent item size, has %u expect >= %zu",
1699
item_size, sizeof(*ei));
1700
btrfs_abort_transaction(trans, ret);
1701
return ret;
1702
}
1703
1704
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1705
__run_delayed_extent_op(extent_op, leaf, ei);
1706
1707
return ret;
1708
}
1709
1710
static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1711
struct btrfs_delayed_ref_head *href,
1712
const struct btrfs_delayed_ref_node *node,
1713
struct btrfs_delayed_extent_op *extent_op,
1714
bool insert_reserved)
1715
{
1716
int ret = 0;
1717
struct btrfs_fs_info *fs_info = trans->fs_info;
1718
u64 parent = 0;
1719
u64 ref_root = 0;
1720
1721
trace_run_delayed_tree_ref(trans->fs_info, node);
1722
1723
if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1724
parent = node->parent;
1725
ref_root = node->ref_root;
1726
1727
if (unlikely(node->ref_mod != 1)) {
1728
btrfs_err(trans->fs_info,
1729
"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1730
node->bytenr, node->ref_mod, node->action, ref_root,
1731
parent);
1732
return -EUCLEAN;
1733
}
1734
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1735
struct btrfs_squota_delta delta = {
1736
.root = href->owning_root,
1737
.num_bytes = fs_info->nodesize,
1738
.is_data = false,
1739
.is_inc = true,
1740
.generation = trans->transid,
1741
};
1742
1743
ret = alloc_reserved_tree_block(trans, node, extent_op);
1744
if (!ret)
1745
btrfs_record_squota_delta(fs_info, &delta);
1746
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1747
ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1748
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1749
ret = __btrfs_free_extent(trans, href, node, extent_op);
1750
} else {
1751
BUG();
1752
}
1753
return ret;
1754
}
1755
1756
/* helper function to actually process a single delayed ref entry */
1757
static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1758
struct btrfs_delayed_ref_head *href,
1759
const struct btrfs_delayed_ref_node *node,
1760
struct btrfs_delayed_extent_op *extent_op,
1761
bool insert_reserved)
1762
{
1763
int ret = 0;
1764
1765
if (TRANS_ABORTED(trans)) {
1766
if (insert_reserved) {
1767
btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1768
free_head_ref_squota_rsv(trans->fs_info, href);
1769
}
1770
return 0;
1771
}
1772
1773
if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1774
node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1775
ret = run_delayed_tree_ref(trans, href, node, extent_op,
1776
insert_reserved);
1777
else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1778
node->type == BTRFS_SHARED_DATA_REF_KEY)
1779
ret = run_delayed_data_ref(trans, href, node, extent_op,
1780
insert_reserved);
1781
else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1782
ret = 0;
1783
else
1784
BUG();
1785
if (ret && insert_reserved)
1786
btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1787
if (ret < 0)
1788
btrfs_err(trans->fs_info,
1789
"failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1790
node->bytenr, node->num_bytes, node->type,
1791
node->action, node->ref_mod, ret);
1792
return ret;
1793
}
1794
1795
static struct btrfs_delayed_extent_op *cleanup_extent_op(
1796
struct btrfs_delayed_ref_head *head)
1797
{
1798
struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1799
1800
if (!extent_op)
1801
return NULL;
1802
1803
if (head->must_insert_reserved) {
1804
head->extent_op = NULL;
1805
btrfs_free_delayed_extent_op(extent_op);
1806
return NULL;
1807
}
1808
return extent_op;
1809
}
1810
1811
static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1812
struct btrfs_delayed_ref_head *head)
1813
{
1814
struct btrfs_delayed_extent_op *extent_op;
1815
int ret;
1816
1817
extent_op = cleanup_extent_op(head);
1818
if (!extent_op)
1819
return 0;
1820
head->extent_op = NULL;
1821
spin_unlock(&head->lock);
1822
ret = run_delayed_extent_op(trans, head, extent_op);
1823
btrfs_free_delayed_extent_op(extent_op);
1824
return ret ? ret : 1;
1825
}
1826
1827
u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1828
struct btrfs_delayed_ref_root *delayed_refs,
1829
struct btrfs_delayed_ref_head *head)
1830
{
1831
u64 ret = 0;
1832
1833
/*
1834
* We had csum deletions accounted for in our delayed refs rsv, we need
1835
* to drop the csum leaves for this update from our delayed_refs_rsv.
1836
*/
1837
if (head->total_ref_mod < 0 && head->is_data) {
1838
int nr_csums;
1839
1840
spin_lock(&delayed_refs->lock);
1841
delayed_refs->pending_csums -= head->num_bytes;
1842
spin_unlock(&delayed_refs->lock);
1843
nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1844
1845
btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1846
1847
ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1848
}
1849
/* must_insert_reserved can be set only if we didn't run the head ref. */
1850
if (head->must_insert_reserved)
1851
free_head_ref_squota_rsv(fs_info, head);
1852
1853
return ret;
1854
}
1855
1856
static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1857
struct btrfs_delayed_ref_head *head,
1858
u64 *bytes_released)
1859
{
1860
1861
struct btrfs_fs_info *fs_info = trans->fs_info;
1862
struct btrfs_delayed_ref_root *delayed_refs;
1863
int ret;
1864
1865
delayed_refs = &trans->transaction->delayed_refs;
1866
1867
ret = run_and_cleanup_extent_op(trans, head);
1868
if (ret < 0) {
1869
btrfs_unselect_ref_head(delayed_refs, head);
1870
btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1871
return ret;
1872
} else if (ret) {
1873
return ret;
1874
}
1875
1876
/*
1877
* Need to drop our head ref lock and re-acquire the delayed ref lock
1878
* and then re-check to make sure nobody got added.
1879
*/
1880
spin_unlock(&head->lock);
1881
spin_lock(&delayed_refs->lock);
1882
spin_lock(&head->lock);
1883
if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1884
spin_unlock(&head->lock);
1885
spin_unlock(&delayed_refs->lock);
1886
return 1;
1887
}
1888
btrfs_delete_ref_head(fs_info, delayed_refs, head);
1889
spin_unlock(&head->lock);
1890
spin_unlock(&delayed_refs->lock);
1891
1892
if (head->must_insert_reserved) {
1893
btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1894
if (head->is_data) {
1895
struct btrfs_root *csum_root;
1896
1897
csum_root = btrfs_csum_root(fs_info, head->bytenr);
1898
ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1899
head->num_bytes);
1900
}
1901
}
1902
1903
*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1904
1905
trace_run_delayed_ref_head(fs_info, head, 0);
1906
btrfs_delayed_ref_unlock(head);
1907
btrfs_put_delayed_ref_head(head);
1908
return ret;
1909
}
1910
1911
static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1912
struct btrfs_delayed_ref_head *locked_ref,
1913
u64 *bytes_released)
1914
{
1915
struct btrfs_fs_info *fs_info = trans->fs_info;
1916
struct btrfs_delayed_ref_root *delayed_refs;
1917
struct btrfs_delayed_extent_op *extent_op;
1918
struct btrfs_delayed_ref_node *ref;
1919
bool must_insert_reserved;
1920
int ret;
1921
1922
delayed_refs = &trans->transaction->delayed_refs;
1923
1924
lockdep_assert_held(&locked_ref->mutex);
1925
lockdep_assert_held(&locked_ref->lock);
1926
1927
while ((ref = btrfs_select_delayed_ref(locked_ref))) {
1928
if (ref->seq &&
1929
btrfs_check_delayed_seq(fs_info, ref->seq)) {
1930
spin_unlock(&locked_ref->lock);
1931
btrfs_unselect_ref_head(delayed_refs, locked_ref);
1932
return -EAGAIN;
1933
}
1934
1935
rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1936
RB_CLEAR_NODE(&ref->ref_node);
1937
if (!list_empty(&ref->add_list))
1938
list_del(&ref->add_list);
1939
/*
1940
* When we play the delayed ref, also correct the ref_mod on
1941
* head
1942
*/
1943
switch (ref->action) {
1944
case BTRFS_ADD_DELAYED_REF:
1945
case BTRFS_ADD_DELAYED_EXTENT:
1946
locked_ref->ref_mod -= ref->ref_mod;
1947
break;
1948
case BTRFS_DROP_DELAYED_REF:
1949
locked_ref->ref_mod += ref->ref_mod;
1950
break;
1951
default:
1952
WARN_ON(1);
1953
}
1954
1955
/*
1956
* Record the must_insert_reserved flag before we drop the
1957
* spin lock.
1958
*/
1959
must_insert_reserved = locked_ref->must_insert_reserved;
1960
/*
1961
* Unsetting this on the head ref relinquishes ownership of
1962
* the rsv_bytes, so it is critical that every possible code
1963
* path from here forward frees all reserves including qgroup
1964
* reserve.
1965
*/
1966
locked_ref->must_insert_reserved = false;
1967
1968
extent_op = locked_ref->extent_op;
1969
locked_ref->extent_op = NULL;
1970
spin_unlock(&locked_ref->lock);
1971
1972
ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
1973
must_insert_reserved);
1974
btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
1975
*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
1976
1977
btrfs_free_delayed_extent_op(extent_op);
1978
if (ret) {
1979
btrfs_unselect_ref_head(delayed_refs, locked_ref);
1980
btrfs_put_delayed_ref(ref);
1981
return ret;
1982
}
1983
1984
btrfs_put_delayed_ref(ref);
1985
cond_resched();
1986
1987
spin_lock(&locked_ref->lock);
1988
btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
1989
}
1990
1991
return 0;
1992
}
1993
1994
/*
1995
* Returns 0 on success or if called with an already aborted transaction.
1996
* Returns -ENOMEM or -EIO on failure and will abort the transaction.
1997
*/
1998
static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1999
u64 min_bytes)
2000
{
2001
struct btrfs_fs_info *fs_info = trans->fs_info;
2002
struct btrfs_delayed_ref_root *delayed_refs;
2003
struct btrfs_delayed_ref_head *locked_ref = NULL;
2004
int ret;
2005
unsigned long count = 0;
2006
unsigned long max_count = 0;
2007
u64 bytes_processed = 0;
2008
2009
delayed_refs = &trans->transaction->delayed_refs;
2010
if (min_bytes == 0) {
2011
/*
2012
* We may be subject to a harmless race if some task is
2013
* concurrently adding or removing a delayed ref, so silence
2014
* KCSAN and similar tools.
2015
*/
2016
max_count = data_race(delayed_refs->num_heads_ready);
2017
min_bytes = U64_MAX;
2018
}
2019
2020
do {
2021
if (!locked_ref) {
2022
locked_ref = btrfs_select_ref_head(fs_info, delayed_refs);
2023
if (IS_ERR_OR_NULL(locked_ref)) {
2024
if (PTR_ERR(locked_ref) == -EAGAIN) {
2025
continue;
2026
} else {
2027
break;
2028
}
2029
}
2030
count++;
2031
}
2032
/*
2033
* We need to try and merge add/drops of the same ref since we
2034
* can run into issues with relocate dropping the implicit ref
2035
* and then it being added back again before the drop can
2036
* finish. If we merged anything we need to re-loop so we can
2037
* get a good ref.
2038
* Or we can get node references of the same type that weren't
2039
* merged when created due to bumps in the tree mod seq, and
2040
* we need to merge them to prevent adding an inline extent
2041
* backref before dropping it (triggering a BUG_ON at
2042
* insert_inline_extent_backref()).
2043
*/
2044
spin_lock(&locked_ref->lock);
2045
btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2046
2047
ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2048
if (ret < 0 && ret != -EAGAIN) {
2049
/*
2050
* Error, btrfs_run_delayed_refs_for_head already
2051
* unlocked everything so just bail out
2052
*/
2053
return ret;
2054
} else if (!ret) {
2055
/*
2056
* Success, perform the usual cleanup of a processed
2057
* head
2058
*/
2059
ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2060
if (ret > 0 ) {
2061
/* We dropped our lock, we need to loop. */
2062
ret = 0;
2063
continue;
2064
} else if (ret) {
2065
return ret;
2066
}
2067
}
2068
2069
/*
2070
* Either success case or btrfs_run_delayed_refs_for_head
2071
* returned -EAGAIN, meaning we need to select another head
2072
*/
2073
2074
locked_ref = NULL;
2075
cond_resched();
2076
} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2077
(max_count > 0 && count < max_count) ||
2078
locked_ref);
2079
2080
return 0;
2081
}
2082
2083
#ifdef SCRAMBLE_DELAYED_REFS
2084
/*
2085
* Normally delayed refs get processed in ascending bytenr order. This
2086
* correlates in most cases to the order added. To expose dependencies on this
2087
* order, we start to process the tree in the middle instead of the beginning
2088
*/
2089
static u64 find_middle(struct rb_root *root)
2090
{
2091
struct rb_node *n = root->rb_node;
2092
struct btrfs_delayed_ref_node *entry;
2093
int alt = 1;
2094
u64 middle;
2095
u64 first = 0, last = 0;
2096
2097
n = rb_first(root);
2098
if (n) {
2099
entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2100
first = entry->bytenr;
2101
}
2102
n = rb_last(root);
2103
if (n) {
2104
entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2105
last = entry->bytenr;
2106
}
2107
n = root->rb_node;
2108
2109
while (n) {
2110
entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2111
WARN_ON(!entry->in_tree);
2112
2113
middle = entry->bytenr;
2114
2115
if (alt)
2116
n = n->rb_left;
2117
else
2118
n = n->rb_right;
2119
2120
alt = 1 - alt;
2121
}
2122
return middle;
2123
}
2124
#endif
2125
2126
/*
2127
* Start processing the delayed reference count updates and extent insertions
2128
* we have queued up so far.
2129
*
2130
* @trans: Transaction handle.
2131
* @min_bytes: How many bytes of delayed references to process. After this
2132
* many bytes we stop processing delayed references if there are
2133
* any more. If 0 it means to run all existing delayed references,
2134
* but not new ones added after running all existing ones.
2135
* Use (u64)-1 (U64_MAX) to run all existing delayed references
2136
* plus any new ones that are added.
2137
*
2138
* Returns 0 on success or if called with an aborted transaction
2139
* Returns <0 on error and aborts the transaction
2140
*/
2141
int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2142
{
2143
struct btrfs_fs_info *fs_info = trans->fs_info;
2144
struct btrfs_delayed_ref_root *delayed_refs;
2145
int ret;
2146
2147
/* We'll clean this up in btrfs_cleanup_transaction */
2148
if (TRANS_ABORTED(trans))
2149
return 0;
2150
2151
if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2152
return 0;
2153
2154
delayed_refs = &trans->transaction->delayed_refs;
2155
again:
2156
#ifdef SCRAMBLE_DELAYED_REFS
2157
delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2158
#endif
2159
ret = __btrfs_run_delayed_refs(trans, min_bytes);
2160
if (ret < 0) {
2161
btrfs_abort_transaction(trans, ret);
2162
return ret;
2163
}
2164
2165
if (min_bytes == U64_MAX) {
2166
btrfs_create_pending_block_groups(trans);
2167
2168
spin_lock(&delayed_refs->lock);
2169
if (xa_empty(&delayed_refs->head_refs)) {
2170
spin_unlock(&delayed_refs->lock);
2171
return 0;
2172
}
2173
spin_unlock(&delayed_refs->lock);
2174
2175
cond_resched();
2176
goto again;
2177
}
2178
2179
return 0;
2180
}
2181
2182
int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2183
struct extent_buffer *eb, u64 flags)
2184
{
2185
struct btrfs_delayed_extent_op *extent_op;
2186
int ret;
2187
2188
extent_op = btrfs_alloc_delayed_extent_op();
2189
if (!extent_op)
2190
return -ENOMEM;
2191
2192
extent_op->flags_to_set = flags;
2193
extent_op->update_flags = true;
2194
extent_op->update_key = false;
2195
2196
ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len,
2197
btrfs_header_level(eb), extent_op);
2198
if (ret)
2199
btrfs_free_delayed_extent_op(extent_op);
2200
return ret;
2201
}
2202
2203
static noinline int check_delayed_ref(struct btrfs_inode *inode,
2204
struct btrfs_path *path,
2205
u64 offset, u64 bytenr)
2206
{
2207
struct btrfs_root *root = inode->root;
2208
struct btrfs_delayed_ref_head *head;
2209
struct btrfs_delayed_ref_node *ref;
2210
struct btrfs_delayed_ref_root *delayed_refs;
2211
struct btrfs_transaction *cur_trans;
2212
struct rb_node *node;
2213
int ret = 0;
2214
2215
spin_lock(&root->fs_info->trans_lock);
2216
cur_trans = root->fs_info->running_transaction;
2217
if (cur_trans)
2218
refcount_inc(&cur_trans->use_count);
2219
spin_unlock(&root->fs_info->trans_lock);
2220
if (!cur_trans)
2221
return 0;
2222
2223
delayed_refs = &cur_trans->delayed_refs;
2224
spin_lock(&delayed_refs->lock);
2225
head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
2226
if (!head) {
2227
spin_unlock(&delayed_refs->lock);
2228
btrfs_put_transaction(cur_trans);
2229
return 0;
2230
}
2231
2232
if (!mutex_trylock(&head->mutex)) {
2233
if (path->nowait) {
2234
spin_unlock(&delayed_refs->lock);
2235
btrfs_put_transaction(cur_trans);
2236
return -EAGAIN;
2237
}
2238
2239
refcount_inc(&head->refs);
2240
spin_unlock(&delayed_refs->lock);
2241
2242
btrfs_release_path(path);
2243
2244
/*
2245
* Mutex was contended, block until it's released and let
2246
* caller try again
2247
*/
2248
mutex_lock(&head->mutex);
2249
mutex_unlock(&head->mutex);
2250
btrfs_put_delayed_ref_head(head);
2251
btrfs_put_transaction(cur_trans);
2252
return -EAGAIN;
2253
}
2254
spin_unlock(&delayed_refs->lock);
2255
2256
spin_lock(&head->lock);
2257
/*
2258
* XXX: We should replace this with a proper search function in the
2259
* future.
2260
*/
2261
for (node = rb_first_cached(&head->ref_tree); node;
2262
node = rb_next(node)) {
2263
u64 ref_owner;
2264
u64 ref_offset;
2265
2266
ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2267
/* If it's a shared ref we know a cross reference exists */
2268
if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2269
ret = 1;
2270
break;
2271
}
2272
2273
ref_owner = btrfs_delayed_ref_owner(ref);
2274
ref_offset = btrfs_delayed_ref_offset(ref);
2275
2276
/*
2277
* If our ref doesn't match the one we're currently looking at
2278
* then we have a cross reference.
2279
*/
2280
if (ref->ref_root != btrfs_root_id(root) ||
2281
ref_owner != btrfs_ino(inode) || ref_offset != offset) {
2282
ret = 1;
2283
break;
2284
}
2285
}
2286
spin_unlock(&head->lock);
2287
mutex_unlock(&head->mutex);
2288
btrfs_put_transaction(cur_trans);
2289
return ret;
2290
}
2291
2292
/*
2293
* Check if there are references for a data extent other than the one belonging
2294
* to the given inode and offset.
2295
*
2296
* @inode: The only inode we expect to find associated with the data extent.
2297
* @path: A path to use for searching the extent tree.
2298
* @offset: The only offset we expect to find associated with the data extent.
2299
* @bytenr: The logical address of the data extent.
2300
*
2301
* When the extent does not have any other references other than the one we
2302
* expect to find, we always return a value of 0 with the path having a locked
2303
* leaf that contains the extent's extent item - this is necessary to ensure
2304
* we don't race with a task running delayed references, and our caller must
2305
* have such a path when calling check_delayed_ref() - it must lock a delayed
2306
* ref head while holding the leaf locked. In case the extent item is not found
2307
* in the extent tree, we return -ENOENT with the path having the leaf (locked)
2308
* where the extent item should be, in order to prevent races with another task
2309
* running delayed references, so that we don't miss any reference when calling
2310
* check_delayed_ref().
2311
*
2312
* Note: this may return false positives, and this is because we want to be
2313
* quick here as we're called in write paths (when flushing delalloc and
2314
* in the direct IO write path). For example we can have an extent with
2315
* a single reference but that reference is not inlined, or we may have
2316
* many references in the extent tree but we also have delayed references
2317
* that cancel all the reference except the one for our inode and offset,
2318
* but it would be expensive to do such checks and complex due to all
2319
* locking to avoid races between the checks and flushing delayed refs,
2320
* plus non-inline references may be located on leaves other than the one
2321
* that contains the extent item in the extent tree. The important thing
2322
* here is to not return false negatives and that the false positives are
2323
* not very common.
2324
*
2325
* Returns: 0 if there are no cross references and with the path having a locked
2326
* leaf from the extent tree that contains the extent's extent item.
2327
*
2328
* 1 if there are cross references (false positives can happen).
2329
*
2330
* < 0 in case of an error. In case of -ENOENT the leaf in the extent
2331
* tree where the extent item should be located at is read locked and
2332
* accessible in the given path.
2333
*/
2334
static noinline int check_committed_ref(struct btrfs_inode *inode,
2335
struct btrfs_path *path,
2336
u64 offset, u64 bytenr)
2337
{
2338
struct btrfs_root *root = inode->root;
2339
struct btrfs_fs_info *fs_info = root->fs_info;
2340
struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2341
struct extent_buffer *leaf;
2342
struct btrfs_extent_data_ref *ref;
2343
struct btrfs_extent_inline_ref *iref;
2344
struct btrfs_extent_item *ei;
2345
struct btrfs_key key;
2346
u32 item_size;
2347
u32 expected_size;
2348
int type;
2349
int ret;
2350
2351
key.objectid = bytenr;
2352
key.type = BTRFS_EXTENT_ITEM_KEY;
2353
key.offset = (u64)-1;
2354
2355
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2356
if (ret < 0)
2357
return ret;
2358
if (ret == 0) {
2359
/*
2360
* Key with offset -1 found, there would have to exist an extent
2361
* item with such offset, but this is out of the valid range.
2362
*/
2363
return -EUCLEAN;
2364
}
2365
2366
if (path->slots[0] == 0)
2367
return -ENOENT;
2368
2369
path->slots[0]--;
2370
leaf = path->nodes[0];
2371
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2372
2373
if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2374
return -ENOENT;
2375
2376
item_size = btrfs_item_size(leaf, path->slots[0]);
2377
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2378
expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2379
2380
/* No inline refs; we need to bail before checking for owner ref. */
2381
if (item_size == sizeof(*ei))
2382
return 1;
2383
2384
/* Check for an owner ref; skip over it to the real inline refs. */
2385
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2386
type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2387
if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2388
expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2389
iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2390
type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2391
}
2392
2393
/* If extent item has more than 1 inline ref then it's shared */
2394
if (item_size != expected_size)
2395
return 1;
2396
2397
/* If this extent has SHARED_DATA_REF then it's shared */
2398
if (type != BTRFS_EXTENT_DATA_REF_KEY)
2399
return 1;
2400
2401
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2402
if (btrfs_extent_refs(leaf, ei) !=
2403
btrfs_extent_data_ref_count(leaf, ref) ||
2404
btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) ||
2405
btrfs_extent_data_ref_objectid(leaf, ref) != btrfs_ino(inode) ||
2406
btrfs_extent_data_ref_offset(leaf, ref) != offset)
2407
return 1;
2408
2409
return 0;
2410
}
2411
2412
int btrfs_cross_ref_exist(struct btrfs_inode *inode, u64 offset,
2413
u64 bytenr, struct btrfs_path *path)
2414
{
2415
int ret;
2416
2417
do {
2418
ret = check_committed_ref(inode, path, offset, bytenr);
2419
if (ret && ret != -ENOENT)
2420
goto out;
2421
2422
/*
2423
* The path must have a locked leaf from the extent tree where
2424
* the extent item for our extent is located, in case it exists,
2425
* or where it should be located in case it doesn't exist yet
2426
* because it's new and its delayed ref was not yet flushed.
2427
* We need to lock the delayed ref head at check_delayed_ref(),
2428
* if one exists, while holding the leaf locked in order to not
2429
* race with delayed ref flushing, missing references and
2430
* incorrectly reporting that the extent is not shared.
2431
*/
2432
if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) {
2433
struct extent_buffer *leaf = path->nodes[0];
2434
2435
ASSERT(leaf != NULL);
2436
btrfs_assert_tree_read_locked(leaf);
2437
2438
if (ret != -ENOENT) {
2439
struct btrfs_key key;
2440
2441
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2442
ASSERT(key.objectid == bytenr);
2443
ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY);
2444
}
2445
}
2446
2447
ret = check_delayed_ref(inode, path, offset, bytenr);
2448
} while (ret == -EAGAIN && !path->nowait);
2449
2450
out:
2451
btrfs_release_path(path);
2452
if (btrfs_is_data_reloc_root(inode->root))
2453
WARN_ON(ret > 0);
2454
return ret;
2455
}
2456
2457
static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2458
struct btrfs_root *root,
2459
struct extent_buffer *buf,
2460
int full_backref, int inc)
2461
{
2462
struct btrfs_fs_info *fs_info = root->fs_info;
2463
u64 parent;
2464
u64 ref_root;
2465
u32 nritems;
2466
struct btrfs_key key;
2467
struct btrfs_file_extent_item *fi;
2468
bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2469
int i;
2470
int action;
2471
int level;
2472
int ret = 0;
2473
2474
if (btrfs_is_testing(fs_info))
2475
return 0;
2476
2477
ref_root = btrfs_header_owner(buf);
2478
nritems = btrfs_header_nritems(buf);
2479
level = btrfs_header_level(buf);
2480
2481
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2482
return 0;
2483
2484
if (full_backref)
2485
parent = buf->start;
2486
else
2487
parent = 0;
2488
if (inc)
2489
action = BTRFS_ADD_DELAYED_REF;
2490
else
2491
action = BTRFS_DROP_DELAYED_REF;
2492
2493
for (i = 0; i < nritems; i++) {
2494
struct btrfs_ref ref = {
2495
.action = action,
2496
.parent = parent,
2497
.ref_root = ref_root,
2498
};
2499
2500
if (level == 0) {
2501
btrfs_item_key_to_cpu(buf, &key, i);
2502
if (key.type != BTRFS_EXTENT_DATA_KEY)
2503
continue;
2504
fi = btrfs_item_ptr(buf, i,
2505
struct btrfs_file_extent_item);
2506
if (btrfs_file_extent_type(buf, fi) ==
2507
BTRFS_FILE_EXTENT_INLINE)
2508
continue;
2509
ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2510
if (ref.bytenr == 0)
2511
continue;
2512
2513
ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2514
ref.owning_root = ref_root;
2515
2516
key.offset -= btrfs_file_extent_offset(buf, fi);
2517
btrfs_init_data_ref(&ref, key.objectid, key.offset,
2518
btrfs_root_id(root), for_reloc);
2519
if (inc)
2520
ret = btrfs_inc_extent_ref(trans, &ref);
2521
else
2522
ret = btrfs_free_extent(trans, &ref);
2523
if (ret)
2524
goto fail;
2525
} else {
2526
/* We don't know the owning_root, leave as 0. */
2527
ref.bytenr = btrfs_node_blockptr(buf, i);
2528
ref.num_bytes = fs_info->nodesize;
2529
2530
btrfs_init_tree_ref(&ref, level - 1,
2531
btrfs_root_id(root), for_reloc);
2532
if (inc)
2533
ret = btrfs_inc_extent_ref(trans, &ref);
2534
else
2535
ret = btrfs_free_extent(trans, &ref);
2536
if (ret)
2537
goto fail;
2538
}
2539
}
2540
return 0;
2541
fail:
2542
return ret;
2543
}
2544
2545
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2546
struct extent_buffer *buf, int full_backref)
2547
{
2548
return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2549
}
2550
2551
int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2552
struct extent_buffer *buf, int full_backref)
2553
{
2554
return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2555
}
2556
2557
static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2558
{
2559
struct btrfs_fs_info *fs_info = root->fs_info;
2560
u64 flags;
2561
u64 ret;
2562
2563
if (data)
2564
flags = BTRFS_BLOCK_GROUP_DATA;
2565
else if (root == fs_info->chunk_root)
2566
flags = BTRFS_BLOCK_GROUP_SYSTEM;
2567
else
2568
flags = BTRFS_BLOCK_GROUP_METADATA;
2569
2570
ret = btrfs_get_alloc_profile(fs_info, flags);
2571
return ret;
2572
}
2573
2574
static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2575
{
2576
struct rb_node *leftmost;
2577
u64 bytenr = 0;
2578
2579
read_lock(&fs_info->block_group_cache_lock);
2580
/* Get the block group with the lowest logical start address. */
2581
leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2582
if (leftmost) {
2583
struct btrfs_block_group *bg;
2584
2585
bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2586
bytenr = bg->start;
2587
}
2588
read_unlock(&fs_info->block_group_cache_lock);
2589
2590
return bytenr;
2591
}
2592
2593
static int pin_down_extent(struct btrfs_trans_handle *trans,
2594
struct btrfs_block_group *cache,
2595
u64 bytenr, u64 num_bytes, int reserved)
2596
{
2597
spin_lock(&cache->space_info->lock);
2598
spin_lock(&cache->lock);
2599
cache->pinned += num_bytes;
2600
btrfs_space_info_update_bytes_pinned(cache->space_info, num_bytes);
2601
if (reserved) {
2602
cache->reserved -= num_bytes;
2603
cache->space_info->bytes_reserved -= num_bytes;
2604
}
2605
spin_unlock(&cache->lock);
2606
spin_unlock(&cache->space_info->lock);
2607
2608
btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2609
bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2610
return 0;
2611
}
2612
2613
int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2614
u64 bytenr, u64 num_bytes, int reserved)
2615
{
2616
struct btrfs_block_group *cache;
2617
2618
cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2619
BUG_ON(!cache); /* Logic error */
2620
2621
pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2622
2623
btrfs_put_block_group(cache);
2624
return 0;
2625
}
2626
2627
int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2628
const struct extent_buffer *eb)
2629
{
2630
struct btrfs_block_group *cache;
2631
int ret;
2632
2633
cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2634
if (!cache)
2635
return -EINVAL;
2636
2637
/*
2638
* Fully cache the free space first so that our pin removes the free space
2639
* from the cache.
2640
*/
2641
ret = btrfs_cache_block_group(cache, true);
2642
if (ret)
2643
goto out;
2644
2645
pin_down_extent(trans, cache, eb->start, eb->len, 0);
2646
2647
/* remove us from the free space cache (if we're there at all) */
2648
ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2649
out:
2650
btrfs_put_block_group(cache);
2651
return ret;
2652
}
2653
2654
static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2655
u64 start, u64 num_bytes)
2656
{
2657
int ret;
2658
struct btrfs_block_group *block_group;
2659
2660
block_group = btrfs_lookup_block_group(fs_info, start);
2661
if (!block_group)
2662
return -EINVAL;
2663
2664
ret = btrfs_cache_block_group(block_group, true);
2665
if (ret)
2666
goto out;
2667
2668
ret = btrfs_remove_free_space(block_group, start, num_bytes);
2669
out:
2670
btrfs_put_block_group(block_group);
2671
return ret;
2672
}
2673
2674
int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2675
{
2676
struct btrfs_fs_info *fs_info = eb->fs_info;
2677
struct btrfs_file_extent_item *item;
2678
struct btrfs_key key;
2679
int found_type;
2680
int i;
2681
int ret = 0;
2682
2683
if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2684
return 0;
2685
2686
for (i = 0; i < btrfs_header_nritems(eb); i++) {
2687
btrfs_item_key_to_cpu(eb, &key, i);
2688
if (key.type != BTRFS_EXTENT_DATA_KEY)
2689
continue;
2690
item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2691
found_type = btrfs_file_extent_type(eb, item);
2692
if (found_type == BTRFS_FILE_EXTENT_INLINE)
2693
continue;
2694
if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2695
continue;
2696
key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2697
key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2698
ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2699
if (ret)
2700
break;
2701
}
2702
2703
return ret;
2704
}
2705
2706
static void
2707
btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2708
{
2709
atomic_inc(&bg->reservations);
2710
}
2711
2712
/*
2713
* Returns the free cluster for the given space info and sets empty_cluster to
2714
* what it should be based on the mount options.
2715
*/
2716
static struct btrfs_free_cluster *
2717
fetch_cluster_info(struct btrfs_fs_info *fs_info,
2718
struct btrfs_space_info *space_info, u64 *empty_cluster)
2719
{
2720
struct btrfs_free_cluster *ret = NULL;
2721
2722
*empty_cluster = 0;
2723
if (btrfs_mixed_space_info(space_info))
2724
return ret;
2725
2726
if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2727
ret = &fs_info->meta_alloc_cluster;
2728
if (btrfs_test_opt(fs_info, SSD))
2729
*empty_cluster = SZ_2M;
2730
else
2731
*empty_cluster = SZ_64K;
2732
} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2733
btrfs_test_opt(fs_info, SSD_SPREAD)) {
2734
*empty_cluster = SZ_2M;
2735
ret = &fs_info->data_alloc_cluster;
2736
}
2737
2738
return ret;
2739
}
2740
2741
static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2742
u64 start, u64 end,
2743
const bool return_free_space)
2744
{
2745
struct btrfs_block_group *cache = NULL;
2746
struct btrfs_space_info *space_info;
2747
struct btrfs_free_cluster *cluster = NULL;
2748
u64 total_unpinned = 0;
2749
u64 empty_cluster = 0;
2750
bool readonly;
2751
int ret = 0;
2752
2753
while (start <= end) {
2754
u64 len;
2755
2756
readonly = false;
2757
if (!cache ||
2758
start >= cache->start + cache->length) {
2759
if (cache)
2760
btrfs_put_block_group(cache);
2761
total_unpinned = 0;
2762
cache = btrfs_lookup_block_group(fs_info, start);
2763
if (cache == NULL) {
2764
/* Logic error, something removed the block group. */
2765
ret = -EUCLEAN;
2766
goto out;
2767
}
2768
2769
cluster = fetch_cluster_info(fs_info,
2770
cache->space_info,
2771
&empty_cluster);
2772
empty_cluster <<= 1;
2773
}
2774
2775
len = cache->start + cache->length - start;
2776
len = min(len, end + 1 - start);
2777
2778
if (return_free_space)
2779
btrfs_add_free_space(cache, start, len);
2780
2781
start += len;
2782
total_unpinned += len;
2783
space_info = cache->space_info;
2784
2785
/*
2786
* If this space cluster has been marked as fragmented and we've
2787
* unpinned enough in this block group to potentially allow a
2788
* cluster to be created inside of it go ahead and clear the
2789
* fragmented check.
2790
*/
2791
if (cluster && cluster->fragmented &&
2792
total_unpinned > empty_cluster) {
2793
spin_lock(&cluster->lock);
2794
cluster->fragmented = 0;
2795
spin_unlock(&cluster->lock);
2796
}
2797
2798
spin_lock(&space_info->lock);
2799
spin_lock(&cache->lock);
2800
cache->pinned -= len;
2801
btrfs_space_info_update_bytes_pinned(space_info, -len);
2802
space_info->max_extent_size = 0;
2803
if (cache->ro) {
2804
space_info->bytes_readonly += len;
2805
readonly = true;
2806
} else if (btrfs_is_zoned(fs_info)) {
2807
/* Need reset before reusing in a zoned block group */
2808
btrfs_space_info_update_bytes_zone_unusable(space_info, len);
2809
readonly = true;
2810
}
2811
spin_unlock(&cache->lock);
2812
if (!readonly && return_free_space)
2813
btrfs_return_free_space(space_info, len);
2814
spin_unlock(&space_info->lock);
2815
}
2816
2817
if (cache)
2818
btrfs_put_block_group(cache);
2819
out:
2820
return ret;
2821
}
2822
2823
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2824
{
2825
struct btrfs_fs_info *fs_info = trans->fs_info;
2826
struct btrfs_block_group *block_group, *tmp;
2827
struct list_head *deleted_bgs;
2828
struct extent_io_tree *unpin = &trans->transaction->pinned_extents;
2829
struct extent_state *cached_state = NULL;
2830
u64 start;
2831
u64 end;
2832
int unpin_error = 0;
2833
int ret;
2834
2835
mutex_lock(&fs_info->unused_bg_unpin_mutex);
2836
btrfs_find_first_extent_bit(unpin, 0, &start, &end, EXTENT_DIRTY, &cached_state);
2837
2838
while (!TRANS_ABORTED(trans) && cached_state) {
2839
struct extent_state *next_state;
2840
2841
if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2842
ret = btrfs_discard_extent(fs_info, start,
2843
end + 1 - start, NULL);
2844
2845
next_state = btrfs_next_extent_state(unpin, cached_state);
2846
btrfs_clear_extent_dirty(unpin, start, end, &cached_state);
2847
ret = unpin_extent_range(fs_info, start, end, true);
2848
/*
2849
* If we get an error unpinning an extent range, store the first
2850
* error to return later after trying to unpin all ranges and do
2851
* the sync discards. Our caller will abort the transaction
2852
* (which already wrote new superblocks) and on the next mount
2853
* the space will be available as it was pinned by in-memory
2854
* only structures in this phase.
2855
*/
2856
if (ret) {
2857
btrfs_err_rl(fs_info,
2858
"failed to unpin extent range [%llu, %llu] when committing transaction %llu: %s (%d)",
2859
start, end, trans->transid,
2860
btrfs_decode_error(ret), ret);
2861
if (!unpin_error)
2862
unpin_error = ret;
2863
}
2864
2865
btrfs_free_extent_state(cached_state);
2866
2867
if (need_resched()) {
2868
btrfs_free_extent_state(next_state);
2869
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2870
cond_resched();
2871
cached_state = NULL;
2872
mutex_lock(&fs_info->unused_bg_unpin_mutex);
2873
btrfs_find_first_extent_bit(unpin, 0, &start, &end,
2874
EXTENT_DIRTY, &cached_state);
2875
} else {
2876
cached_state = next_state;
2877
if (cached_state) {
2878
start = cached_state->start;
2879
end = cached_state->end;
2880
}
2881
}
2882
}
2883
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2884
btrfs_free_extent_state(cached_state);
2885
2886
if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2887
btrfs_discard_calc_delay(&fs_info->discard_ctl);
2888
btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2889
}
2890
2891
/*
2892
* Transaction is finished. We don't need the lock anymore. We
2893
* do need to clean up the block groups in case of a transaction
2894
* abort.
2895
*/
2896
deleted_bgs = &trans->transaction->deleted_bgs;
2897
list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2898
ret = -EROFS;
2899
if (!TRANS_ABORTED(trans))
2900
ret = btrfs_discard_extent(fs_info, block_group->start,
2901
block_group->length, NULL);
2902
2903
/*
2904
* Not strictly necessary to lock, as the block_group should be
2905
* read-only from btrfs_delete_unused_bgs().
2906
*/
2907
ASSERT(block_group->ro);
2908
spin_lock(&fs_info->unused_bgs_lock);
2909
list_del_init(&block_group->bg_list);
2910
spin_unlock(&fs_info->unused_bgs_lock);
2911
2912
btrfs_unfreeze_block_group(block_group);
2913
btrfs_put_block_group(block_group);
2914
2915
if (ret) {
2916
const char *errstr = btrfs_decode_error(ret);
2917
btrfs_warn(fs_info,
2918
"discard failed while removing blockgroup: errno=%d %s",
2919
ret, errstr);
2920
}
2921
}
2922
2923
return unpin_error;
2924
}
2925
2926
/*
2927
* Parse an extent item's inline extents looking for a simple quotas owner ref.
2928
*
2929
* @fs_info: the btrfs_fs_info for this mount
2930
* @leaf: a leaf in the extent tree containing the extent item
2931
* @slot: the slot in the leaf where the extent item is found
2932
*
2933
* Returns the objectid of the root that originally allocated the extent item
2934
* if the inline owner ref is expected and present, otherwise 0.
2935
*
2936
* If an extent item has an owner ref item, it will be the first inline ref
2937
* item. Therefore the logic is to check whether there are any inline ref
2938
* items, then check the type of the first one.
2939
*/
2940
u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2941
struct extent_buffer *leaf, int slot)
2942
{
2943
struct btrfs_extent_item *ei;
2944
struct btrfs_extent_inline_ref *iref;
2945
struct btrfs_extent_owner_ref *oref;
2946
unsigned long ptr;
2947
unsigned long end;
2948
int type;
2949
2950
if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2951
return 0;
2952
2953
ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2954
ptr = (unsigned long)(ei + 1);
2955
end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2956
2957
/* No inline ref items of any kind, can't check type. */
2958
if (ptr == end)
2959
return 0;
2960
2961
iref = (struct btrfs_extent_inline_ref *)ptr;
2962
type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2963
2964
/* We found an owner ref, get the root out of it. */
2965
if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2966
oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2967
return btrfs_extent_owner_ref_root_id(leaf, oref);
2968
}
2969
2970
/* We have inline refs, but not an owner ref. */
2971
return 0;
2972
}
2973
2974
static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2975
u64 bytenr, struct btrfs_squota_delta *delta)
2976
{
2977
int ret;
2978
u64 num_bytes = delta->num_bytes;
2979
2980
if (delta->is_data) {
2981
struct btrfs_root *csum_root;
2982
2983
csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2984
ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2985
if (ret) {
2986
btrfs_abort_transaction(trans, ret);
2987
return ret;
2988
}
2989
2990
ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2991
if (ret) {
2992
btrfs_abort_transaction(trans, ret);
2993
return ret;
2994
}
2995
}
2996
2997
ret = btrfs_record_squota_delta(trans->fs_info, delta);
2998
if (ret) {
2999
btrfs_abort_transaction(trans, ret);
3000
return ret;
3001
}
3002
3003
ret = btrfs_add_to_free_space_tree(trans, bytenr, num_bytes);
3004
if (ret) {
3005
btrfs_abort_transaction(trans, ret);
3006
return ret;
3007
}
3008
3009
ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
3010
if (ret)
3011
btrfs_abort_transaction(trans, ret);
3012
3013
return ret;
3014
}
3015
3016
#define abort_and_dump(trans, path, fmt, args...) \
3017
({ \
3018
btrfs_abort_transaction(trans, -EUCLEAN); \
3019
btrfs_print_leaf(path->nodes[0]); \
3020
btrfs_crit(trans->fs_info, fmt, ##args); \
3021
})
3022
3023
/*
3024
* Drop one or more refs of @node.
3025
*
3026
* 1. Locate the extent refs.
3027
* It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
3028
* Locate it, then reduce the refs number or remove the ref line completely.
3029
*
3030
* 2. Update the refs count in EXTENT/METADATA_ITEM
3031
*
3032
* Inline backref case:
3033
*
3034
* in extent tree we have:
3035
*
3036
* item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3037
* refs 2 gen 6 flags DATA
3038
* extent data backref root FS_TREE objectid 258 offset 0 count 1
3039
* extent data backref root FS_TREE objectid 257 offset 0 count 1
3040
*
3041
* This function gets called with:
3042
*
3043
* node->bytenr = 13631488
3044
* node->num_bytes = 1048576
3045
* root_objectid = FS_TREE
3046
* owner_objectid = 257
3047
* owner_offset = 0
3048
* refs_to_drop = 1
3049
*
3050
* Then we should get some like:
3051
*
3052
* item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3053
* refs 1 gen 6 flags DATA
3054
* extent data backref root FS_TREE objectid 258 offset 0 count 1
3055
*
3056
* Keyed backref case:
3057
*
3058
* in extent tree we have:
3059
*
3060
* item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3061
* refs 754 gen 6 flags DATA
3062
* [...]
3063
* item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3064
* extent data backref root FS_TREE objectid 866 offset 0 count 1
3065
*
3066
* This function get called with:
3067
*
3068
* node->bytenr = 13631488
3069
* node->num_bytes = 1048576
3070
* root_objectid = FS_TREE
3071
* owner_objectid = 866
3072
* owner_offset = 0
3073
* refs_to_drop = 1
3074
*
3075
* Then we should get some like:
3076
*
3077
* item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3078
* refs 753 gen 6 flags DATA
3079
*
3080
* And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3081
*/
3082
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3083
struct btrfs_delayed_ref_head *href,
3084
const struct btrfs_delayed_ref_node *node,
3085
struct btrfs_delayed_extent_op *extent_op)
3086
{
3087
struct btrfs_fs_info *info = trans->fs_info;
3088
struct btrfs_key key;
3089
struct btrfs_path *path;
3090
struct btrfs_root *extent_root;
3091
struct extent_buffer *leaf;
3092
struct btrfs_extent_item *ei;
3093
struct btrfs_extent_inline_ref *iref;
3094
int ret;
3095
int is_data;
3096
int extent_slot = 0;
3097
int found_extent = 0;
3098
int num_to_del = 1;
3099
int refs_to_drop = node->ref_mod;
3100
u32 item_size;
3101
u64 refs;
3102
u64 bytenr = node->bytenr;
3103
u64 num_bytes = node->num_bytes;
3104
u64 owner_objectid = btrfs_delayed_ref_owner(node);
3105
u64 owner_offset = btrfs_delayed_ref_offset(node);
3106
bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3107
u64 delayed_ref_root = href->owning_root;
3108
3109
extent_root = btrfs_extent_root(info, bytenr);
3110
ASSERT(extent_root);
3111
3112
path = btrfs_alloc_path();
3113
if (!path)
3114
return -ENOMEM;
3115
3116
is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3117
3118
if (!is_data && refs_to_drop != 1) {
3119
btrfs_crit(info,
3120
"invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3121
node->bytenr, refs_to_drop);
3122
ret = -EINVAL;
3123
btrfs_abort_transaction(trans, ret);
3124
goto out;
3125
}
3126
3127
if (is_data)
3128
skinny_metadata = false;
3129
3130
ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3131
node->parent, node->ref_root, owner_objectid,
3132
owner_offset);
3133
if (ret == 0) {
3134
/*
3135
* Either the inline backref or the SHARED_DATA_REF/
3136
* SHARED_BLOCK_REF is found
3137
*
3138
* Here is a quick path to locate EXTENT/METADATA_ITEM.
3139
* It's possible the EXTENT/METADATA_ITEM is near current slot.
3140
*/
3141
extent_slot = path->slots[0];
3142
while (extent_slot >= 0) {
3143
btrfs_item_key_to_cpu(path->nodes[0], &key,
3144
extent_slot);
3145
if (key.objectid != bytenr)
3146
break;
3147
if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3148
key.offset == num_bytes) {
3149
found_extent = 1;
3150
break;
3151
}
3152
if (key.type == BTRFS_METADATA_ITEM_KEY &&
3153
key.offset == owner_objectid) {
3154
found_extent = 1;
3155
break;
3156
}
3157
3158
/* Quick path didn't find the EXTENT/METADATA_ITEM */
3159
if (path->slots[0] - extent_slot > 5)
3160
break;
3161
extent_slot--;
3162
}
3163
3164
if (!found_extent) {
3165
if (iref) {
3166
abort_and_dump(trans, path,
3167
"invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3168
path->slots[0]);
3169
ret = -EUCLEAN;
3170
goto out;
3171
}
3172
/* Must be SHARED_* item, remove the backref first */
3173
ret = remove_extent_backref(trans, extent_root, path,
3174
NULL, refs_to_drop, is_data);
3175
if (ret) {
3176
btrfs_abort_transaction(trans, ret);
3177
goto out;
3178
}
3179
btrfs_release_path(path);
3180
3181
/* Slow path to locate EXTENT/METADATA_ITEM */
3182
key.objectid = bytenr;
3183
key.type = BTRFS_EXTENT_ITEM_KEY;
3184
key.offset = num_bytes;
3185
3186
if (!is_data && skinny_metadata) {
3187
key.type = BTRFS_METADATA_ITEM_KEY;
3188
key.offset = owner_objectid;
3189
}
3190
3191
ret = btrfs_search_slot(trans, extent_root,
3192
&key, path, -1, 1);
3193
if (ret > 0 && skinny_metadata && path->slots[0]) {
3194
/*
3195
* Couldn't find our skinny metadata item,
3196
* see if we have ye olde extent item.
3197
*/
3198
path->slots[0]--;
3199
btrfs_item_key_to_cpu(path->nodes[0], &key,
3200
path->slots[0]);
3201
if (key.objectid == bytenr &&
3202
key.type == BTRFS_EXTENT_ITEM_KEY &&
3203
key.offset == num_bytes)
3204
ret = 0;
3205
}
3206
3207
if (ret > 0 && skinny_metadata) {
3208
skinny_metadata = false;
3209
key.objectid = bytenr;
3210
key.type = BTRFS_EXTENT_ITEM_KEY;
3211
key.offset = num_bytes;
3212
btrfs_release_path(path);
3213
ret = btrfs_search_slot(trans, extent_root,
3214
&key, path, -1, 1);
3215
}
3216
3217
if (ret) {
3218
if (ret > 0)
3219
btrfs_print_leaf(path->nodes[0]);
3220
btrfs_err(info,
3221
"umm, got %d back from search, was looking for %llu, slot %d",
3222
ret, bytenr, path->slots[0]);
3223
}
3224
if (ret < 0) {
3225
btrfs_abort_transaction(trans, ret);
3226
goto out;
3227
}
3228
extent_slot = path->slots[0];
3229
}
3230
} else if (WARN_ON(ret == -ENOENT)) {
3231
abort_and_dump(trans, path,
3232
"unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3233
bytenr, node->parent, node->ref_root, owner_objectid,
3234
owner_offset, path->slots[0]);
3235
goto out;
3236
} else {
3237
btrfs_abort_transaction(trans, ret);
3238
goto out;
3239
}
3240
3241
leaf = path->nodes[0];
3242
item_size = btrfs_item_size(leaf, extent_slot);
3243
if (unlikely(item_size < sizeof(*ei))) {
3244
ret = -EUCLEAN;
3245
btrfs_err(trans->fs_info,
3246
"unexpected extent item size, has %u expect >= %zu",
3247
item_size, sizeof(*ei));
3248
btrfs_abort_transaction(trans, ret);
3249
goto out;
3250
}
3251
ei = btrfs_item_ptr(leaf, extent_slot,
3252
struct btrfs_extent_item);
3253
if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3254
key.type == BTRFS_EXTENT_ITEM_KEY) {
3255
struct btrfs_tree_block_info *bi;
3256
3257
if (item_size < sizeof(*ei) + sizeof(*bi)) {
3258
abort_and_dump(trans, path,
3259
"invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3260
key.objectid, key.type, key.offset,
3261
path->slots[0], owner_objectid, item_size,
3262
sizeof(*ei) + sizeof(*bi));
3263
ret = -EUCLEAN;
3264
goto out;
3265
}
3266
bi = (struct btrfs_tree_block_info *)(ei + 1);
3267
WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3268
}
3269
3270
refs = btrfs_extent_refs(leaf, ei);
3271
if (refs < refs_to_drop) {
3272
abort_and_dump(trans, path,
3273
"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3274
refs_to_drop, refs, bytenr, path->slots[0]);
3275
ret = -EUCLEAN;
3276
goto out;
3277
}
3278
refs -= refs_to_drop;
3279
3280
if (refs > 0) {
3281
if (extent_op)
3282
__run_delayed_extent_op(extent_op, leaf, ei);
3283
/*
3284
* In the case of inline back ref, reference count will
3285
* be updated by remove_extent_backref
3286
*/
3287
if (iref) {
3288
if (!found_extent) {
3289
abort_and_dump(trans, path,
3290
"invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3291
path->slots[0]);
3292
ret = -EUCLEAN;
3293
goto out;
3294
}
3295
} else {
3296
btrfs_set_extent_refs(leaf, ei, refs);
3297
}
3298
if (found_extent) {
3299
ret = remove_extent_backref(trans, extent_root, path,
3300
iref, refs_to_drop, is_data);
3301
if (ret) {
3302
btrfs_abort_transaction(trans, ret);
3303
goto out;
3304
}
3305
}
3306
} else {
3307
struct btrfs_squota_delta delta = {
3308
.root = delayed_ref_root,
3309
.num_bytes = num_bytes,
3310
.is_data = is_data,
3311
.is_inc = false,
3312
.generation = btrfs_extent_generation(leaf, ei),
3313
};
3314
3315
/* In this branch refs == 1 */
3316
if (found_extent) {
3317
if (is_data && refs_to_drop !=
3318
extent_data_ref_count(path, iref)) {
3319
abort_and_dump(trans, path,
3320
"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3321
extent_data_ref_count(path, iref),
3322
refs_to_drop, path->slots[0]);
3323
ret = -EUCLEAN;
3324
goto out;
3325
}
3326
if (iref) {
3327
if (path->slots[0] != extent_slot) {
3328
abort_and_dump(trans, path,
3329
"invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3330
key.objectid, key.type,
3331
key.offset, path->slots[0]);
3332
ret = -EUCLEAN;
3333
goto out;
3334
}
3335
} else {
3336
/*
3337
* No inline ref, we must be at SHARED_* item,
3338
* And it's single ref, it must be:
3339
* | extent_slot ||extent_slot + 1|
3340
* [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3341
*/
3342
if (path->slots[0] != extent_slot + 1) {
3343
abort_and_dump(trans, path,
3344
"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3345
path->slots[0]);
3346
ret = -EUCLEAN;
3347
goto out;
3348
}
3349
path->slots[0] = extent_slot;
3350
num_to_del = 2;
3351
}
3352
}
3353
/*
3354
* We can't infer the data owner from the delayed ref, so we need
3355
* to try to get it from the owning ref item.
3356
*
3357
* If it is not present, then that extent was not written under
3358
* simple quotas mode, so we don't need to account for its deletion.
3359
*/
3360
if (is_data)
3361
delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3362
leaf, extent_slot);
3363
3364
ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3365
num_to_del);
3366
if (ret) {
3367
btrfs_abort_transaction(trans, ret);
3368
goto out;
3369
}
3370
btrfs_release_path(path);
3371
3372
ret = do_free_extent_accounting(trans, bytenr, &delta);
3373
}
3374
btrfs_release_path(path);
3375
3376
out:
3377
btrfs_free_path(path);
3378
return ret;
3379
}
3380
3381
/*
3382
* when we free an block, it is possible (and likely) that we free the last
3383
* delayed ref for that extent as well. This searches the delayed ref tree for
3384
* a given extent, and if there are no other delayed refs to be processed, it
3385
* removes it from the tree.
3386
*/
3387
static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3388
u64 bytenr)
3389
{
3390
struct btrfs_fs_info *fs_info = trans->fs_info;
3391
struct btrfs_delayed_ref_head *head;
3392
struct btrfs_delayed_ref_root *delayed_refs;
3393
int ret = 0;
3394
3395
delayed_refs = &trans->transaction->delayed_refs;
3396
spin_lock(&delayed_refs->lock);
3397
head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
3398
if (!head)
3399
goto out_delayed_unlock;
3400
3401
spin_lock(&head->lock);
3402
if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3403
goto out;
3404
3405
if (cleanup_extent_op(head) != NULL)
3406
goto out;
3407
3408
/*
3409
* waiting for the lock here would deadlock. If someone else has it
3410
* locked they are already in the process of dropping it anyway
3411
*/
3412
if (!mutex_trylock(&head->mutex))
3413
goto out;
3414
3415
btrfs_delete_ref_head(fs_info, delayed_refs, head);
3416
head->processing = false;
3417
3418
spin_unlock(&head->lock);
3419
spin_unlock(&delayed_refs->lock);
3420
3421
BUG_ON(head->extent_op);
3422
if (head->must_insert_reserved)
3423
ret = 1;
3424
3425
btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
3426
mutex_unlock(&head->mutex);
3427
btrfs_put_delayed_ref_head(head);
3428
return ret;
3429
out:
3430
spin_unlock(&head->lock);
3431
3432
out_delayed_unlock:
3433
spin_unlock(&delayed_refs->lock);
3434
return 0;
3435
}
3436
3437
int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3438
u64 root_id,
3439
struct extent_buffer *buf,
3440
u64 parent, int last_ref)
3441
{
3442
struct btrfs_fs_info *fs_info = trans->fs_info;
3443
struct btrfs_block_group *bg;
3444
int ret;
3445
3446
if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3447
struct btrfs_ref generic_ref = {
3448
.action = BTRFS_DROP_DELAYED_REF,
3449
.bytenr = buf->start,
3450
.num_bytes = buf->len,
3451
.parent = parent,
3452
.owning_root = btrfs_header_owner(buf),
3453
.ref_root = root_id,
3454
};
3455
3456
/*
3457
* Assert that the extent buffer is not cleared due to
3458
* EXTENT_BUFFER_ZONED_ZEROOUT. Please refer
3459
* btrfs_clear_buffer_dirty() and btree_csum_one_bio() for
3460
* detail.
3461
*/
3462
ASSERT(btrfs_header_bytenr(buf) != 0);
3463
3464
btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false);
3465
btrfs_ref_tree_mod(fs_info, &generic_ref);
3466
ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3467
if (ret < 0)
3468
return ret;
3469
}
3470
3471
if (!last_ref)
3472
return 0;
3473
3474
if (btrfs_header_generation(buf) != trans->transid)
3475
goto out;
3476
3477
if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3478
ret = check_ref_cleanup(trans, buf->start);
3479
if (!ret)
3480
goto out;
3481
}
3482
3483
bg = btrfs_lookup_block_group(fs_info, buf->start);
3484
3485
if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3486
pin_down_extent(trans, bg, buf->start, buf->len, 1);
3487
btrfs_put_block_group(bg);
3488
goto out;
3489
}
3490
3491
/*
3492
* If there are tree mod log users we may have recorded mod log
3493
* operations for this node. If we re-allocate this node we
3494
* could replay operations on this node that happened when it
3495
* existed in a completely different root. For example if it
3496
* was part of root A, then was reallocated to root B, and we
3497
* are doing a btrfs_old_search_slot(root b), we could replay
3498
* operations that happened when the block was part of root A,
3499
* giving us an inconsistent view of the btree.
3500
*
3501
* We are safe from races here because at this point no other
3502
* node or root points to this extent buffer, so if after this
3503
* check a new tree mod log user joins we will not have an
3504
* existing log of operations on this node that we have to
3505
* contend with.
3506
*/
3507
3508
if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3509
|| btrfs_is_zoned(fs_info)) {
3510
pin_down_extent(trans, bg, buf->start, buf->len, 1);
3511
btrfs_put_block_group(bg);
3512
goto out;
3513
}
3514
3515
WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3516
3517
btrfs_add_free_space(bg, buf->start, buf->len);
3518
btrfs_free_reserved_bytes(bg, buf->len, false);
3519
btrfs_put_block_group(bg);
3520
trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3521
3522
out:
3523
return 0;
3524
}
3525
3526
/* Can return -ENOMEM */
3527
int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3528
{
3529
struct btrfs_fs_info *fs_info = trans->fs_info;
3530
int ret;
3531
3532
if (btrfs_is_testing(fs_info))
3533
return 0;
3534
3535
/*
3536
* tree log blocks never actually go into the extent allocation
3537
* tree, just update pinning info and exit early.
3538
*/
3539
if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) {
3540
btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1);
3541
ret = 0;
3542
} else if (ref->type == BTRFS_REF_METADATA) {
3543
ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3544
} else {
3545
ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3546
}
3547
3548
if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID)
3549
btrfs_ref_tree_mod(fs_info, ref);
3550
3551
return ret;
3552
}
3553
3554
enum btrfs_loop_type {
3555
/*
3556
* Start caching block groups but do not wait for progress or for them
3557
* to be done.
3558
*/
3559
LOOP_CACHING_NOWAIT,
3560
3561
/*
3562
* Wait for the block group free_space >= the space we're waiting for if
3563
* the block group isn't cached.
3564
*/
3565
LOOP_CACHING_WAIT,
3566
3567
/*
3568
* Allow allocations to happen from block groups that do not yet have a
3569
* size classification.
3570
*/
3571
LOOP_UNSET_SIZE_CLASS,
3572
3573
/*
3574
* Allocate a chunk and then retry the allocation.
3575
*/
3576
LOOP_ALLOC_CHUNK,
3577
3578
/*
3579
* Ignore the size class restrictions for this allocation.
3580
*/
3581
LOOP_WRONG_SIZE_CLASS,
3582
3583
/*
3584
* Ignore the empty size, only try to allocate the number of bytes
3585
* needed for this allocation.
3586
*/
3587
LOOP_NO_EMPTY_SIZE,
3588
};
3589
3590
static inline void
3591
btrfs_lock_block_group(struct btrfs_block_group *cache,
3592
int delalloc)
3593
{
3594
if (delalloc)
3595
down_read(&cache->data_rwsem);
3596
}
3597
3598
static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3599
int delalloc)
3600
{
3601
btrfs_get_block_group(cache);
3602
if (delalloc)
3603
down_read(&cache->data_rwsem);
3604
}
3605
3606
static struct btrfs_block_group *btrfs_lock_cluster(
3607
struct btrfs_block_group *block_group,
3608
struct btrfs_free_cluster *cluster,
3609
int delalloc)
3610
__acquires(&cluster->refill_lock)
3611
{
3612
struct btrfs_block_group *used_bg = NULL;
3613
3614
spin_lock(&cluster->refill_lock);
3615
while (1) {
3616
used_bg = cluster->block_group;
3617
if (!used_bg)
3618
return NULL;
3619
3620
if (used_bg == block_group)
3621
return used_bg;
3622
3623
btrfs_get_block_group(used_bg);
3624
3625
if (!delalloc)
3626
return used_bg;
3627
3628
if (down_read_trylock(&used_bg->data_rwsem))
3629
return used_bg;
3630
3631
spin_unlock(&cluster->refill_lock);
3632
3633
/* We should only have one-level nested. */
3634
down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3635
3636
spin_lock(&cluster->refill_lock);
3637
if (used_bg == cluster->block_group)
3638
return used_bg;
3639
3640
up_read(&used_bg->data_rwsem);
3641
btrfs_put_block_group(used_bg);
3642
}
3643
}
3644
3645
static inline void
3646
btrfs_release_block_group(struct btrfs_block_group *cache,
3647
int delalloc)
3648
{
3649
if (delalloc)
3650
up_read(&cache->data_rwsem);
3651
btrfs_put_block_group(cache);
3652
}
3653
3654
static bool find_free_extent_check_size_class(const struct find_free_extent_ctl *ffe_ctl,
3655
const struct btrfs_block_group *bg)
3656
{
3657
if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
3658
return true;
3659
if (!btrfs_block_group_should_use_size_class(bg))
3660
return true;
3661
if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
3662
return true;
3663
if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
3664
bg->size_class == BTRFS_BG_SZ_NONE)
3665
return true;
3666
return ffe_ctl->size_class == bg->size_class;
3667
}
3668
3669
/*
3670
* Helper function for find_free_extent().
3671
*
3672
* Return -ENOENT to inform caller that we need fallback to unclustered mode.
3673
* Return >0 to inform caller that we find nothing
3674
* Return 0 means we have found a location and set ffe_ctl->found_offset.
3675
*/
3676
static int find_free_extent_clustered(struct btrfs_block_group *bg,
3677
struct find_free_extent_ctl *ffe_ctl,
3678
struct btrfs_block_group **cluster_bg_ret)
3679
{
3680
struct btrfs_block_group *cluster_bg;
3681
struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3682
u64 aligned_cluster;
3683
u64 offset;
3684
int ret;
3685
3686
cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3687
if (!cluster_bg)
3688
goto refill_cluster;
3689
if (cluster_bg != bg && (cluster_bg->ro ||
3690
!block_group_bits(cluster_bg, ffe_ctl->flags) ||
3691
!find_free_extent_check_size_class(ffe_ctl, cluster_bg)))
3692
goto release_cluster;
3693
3694
offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3695
ffe_ctl->num_bytes, cluster_bg->start,
3696
&ffe_ctl->max_extent_size);
3697
if (offset) {
3698
/* We have a block, we're done */
3699
spin_unlock(&last_ptr->refill_lock);
3700
trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3701
*cluster_bg_ret = cluster_bg;
3702
ffe_ctl->found_offset = offset;
3703
return 0;
3704
}
3705
WARN_ON(last_ptr->block_group != cluster_bg);
3706
3707
release_cluster:
3708
/*
3709
* If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3710
* lets just skip it and let the allocator find whatever block it can
3711
* find. If we reach this point, we will have tried the cluster
3712
* allocator plenty of times and not have found anything, so we are
3713
* likely way too fragmented for the clustering stuff to find anything.
3714
*
3715
* However, if the cluster is taken from the current block group,
3716
* release the cluster first, so that we stand a better chance of
3717
* succeeding in the unclustered allocation.
3718
*/
3719
if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3720
spin_unlock(&last_ptr->refill_lock);
3721
btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3722
return -ENOENT;
3723
}
3724
3725
/* This cluster didn't work out, free it and start over */
3726
btrfs_return_cluster_to_free_space(NULL, last_ptr);
3727
3728
if (cluster_bg != bg)
3729
btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3730
3731
refill_cluster:
3732
if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3733
spin_unlock(&last_ptr->refill_lock);
3734
return -ENOENT;
3735
}
3736
3737
aligned_cluster = max_t(u64,
3738
ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3739
bg->full_stripe_len);
3740
ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3741
ffe_ctl->num_bytes, aligned_cluster);
3742
if (ret == 0) {
3743
/* Now pull our allocation out of this cluster */
3744
offset = btrfs_alloc_from_cluster(bg, last_ptr,
3745
ffe_ctl->num_bytes, ffe_ctl->search_start,
3746
&ffe_ctl->max_extent_size);
3747
if (offset) {
3748
/* We found one, proceed */
3749
spin_unlock(&last_ptr->refill_lock);
3750
ffe_ctl->found_offset = offset;
3751
trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3752
return 0;
3753
}
3754
}
3755
/*
3756
* At this point we either didn't find a cluster or we weren't able to
3757
* allocate a block from our cluster. Free the cluster we've been
3758
* trying to use, and go to the next block group.
3759
*/
3760
btrfs_return_cluster_to_free_space(NULL, last_ptr);
3761
spin_unlock(&last_ptr->refill_lock);
3762
return 1;
3763
}
3764
3765
/*
3766
* Return >0 to inform caller that we find nothing
3767
* Return 0 when we found an free extent and set ffe_ctrl->found_offset
3768
*/
3769
static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3770
struct find_free_extent_ctl *ffe_ctl)
3771
{
3772
struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3773
u64 offset;
3774
3775
/*
3776
* We are doing an unclustered allocation, set the fragmented flag so
3777
* we don't bother trying to setup a cluster again until we get more
3778
* space.
3779
*/
3780
if (unlikely(last_ptr)) {
3781
spin_lock(&last_ptr->lock);
3782
last_ptr->fragmented = 1;
3783
spin_unlock(&last_ptr->lock);
3784
}
3785
if (ffe_ctl->cached) {
3786
struct btrfs_free_space_ctl *free_space_ctl;
3787
3788
free_space_ctl = bg->free_space_ctl;
3789
spin_lock(&free_space_ctl->tree_lock);
3790
if (free_space_ctl->free_space <
3791
ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3792
ffe_ctl->empty_size) {
3793
ffe_ctl->total_free_space = max_t(u64,
3794
ffe_ctl->total_free_space,
3795
free_space_ctl->free_space);
3796
spin_unlock(&free_space_ctl->tree_lock);
3797
return 1;
3798
}
3799
spin_unlock(&free_space_ctl->tree_lock);
3800
}
3801
3802
offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3803
ffe_ctl->num_bytes, ffe_ctl->empty_size,
3804
&ffe_ctl->max_extent_size);
3805
if (!offset)
3806
return 1;
3807
ffe_ctl->found_offset = offset;
3808
return 0;
3809
}
3810
3811
static int do_allocation_clustered(struct btrfs_block_group *block_group,
3812
struct find_free_extent_ctl *ffe_ctl,
3813
struct btrfs_block_group **bg_ret)
3814
{
3815
int ret;
3816
3817
/* We want to try and use the cluster allocator, so lets look there */
3818
if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3819
ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3820
if (ret >= 0)
3821
return ret;
3822
/* ret == -ENOENT case falls through */
3823
}
3824
3825
return find_free_extent_unclustered(block_group, ffe_ctl);
3826
}
3827
3828
/*
3829
* Tree-log block group locking
3830
* ============================
3831
*
3832
* fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3833
* indicates the starting address of a block group, which is reserved only
3834
* for tree-log metadata.
3835
*
3836
* Lock nesting
3837
* ============
3838
*
3839
* space_info::lock
3840
* block_group::lock
3841
* fs_info::treelog_bg_lock
3842
*/
3843
3844
/*
3845
* Simple allocator for sequential-only block group. It only allows sequential
3846
* allocation. No need to play with trees. This function also reserves the
3847
* bytes as in btrfs_add_reserved_bytes.
3848
*/
3849
static int do_allocation_zoned(struct btrfs_block_group *block_group,
3850
struct find_free_extent_ctl *ffe_ctl,
3851
struct btrfs_block_group **bg_ret)
3852
{
3853
struct btrfs_fs_info *fs_info = block_group->fs_info;
3854
struct btrfs_space_info *space_info = block_group->space_info;
3855
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3856
u64 start = block_group->start;
3857
u64 num_bytes = ffe_ctl->num_bytes;
3858
u64 avail;
3859
u64 bytenr = block_group->start;
3860
u64 log_bytenr;
3861
u64 data_reloc_bytenr;
3862
int ret = 0;
3863
bool skip = false;
3864
3865
ASSERT(btrfs_is_zoned(block_group->fs_info));
3866
3867
/*
3868
* Do not allow non-tree-log blocks in the dedicated tree-log block
3869
* group, and vice versa.
3870
*/
3871
spin_lock(&fs_info->treelog_bg_lock);
3872
log_bytenr = fs_info->treelog_bg;
3873
if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3874
(!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3875
skip = true;
3876
spin_unlock(&fs_info->treelog_bg_lock);
3877
if (skip)
3878
return 1;
3879
3880
/*
3881
* Do not allow non-relocation blocks in the dedicated relocation block
3882
* group, and vice versa.
3883
*/
3884
spin_lock(&fs_info->relocation_bg_lock);
3885
data_reloc_bytenr = fs_info->data_reloc_bg;
3886
if (data_reloc_bytenr &&
3887
((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3888
(!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3889
skip = true;
3890
spin_unlock(&fs_info->relocation_bg_lock);
3891
if (skip)
3892
return 1;
3893
3894
/* Check RO and no space case before trying to activate it */
3895
spin_lock(&block_group->lock);
3896
if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3897
ret = 1;
3898
/*
3899
* May need to clear fs_info->{treelog,data_reloc}_bg.
3900
* Return the error after taking the locks.
3901
*/
3902
}
3903
spin_unlock(&block_group->lock);
3904
3905
/* Metadata block group is activated at write time. */
3906
if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3907
!btrfs_zone_activate(block_group)) {
3908
ret = 1;
3909
/*
3910
* May need to clear fs_info->{treelog,data_reloc}_bg.
3911
* Return the error after taking the locks.
3912
*/
3913
}
3914
3915
spin_lock(&space_info->lock);
3916
spin_lock(&block_group->lock);
3917
spin_lock(&fs_info->treelog_bg_lock);
3918
spin_lock(&fs_info->relocation_bg_lock);
3919
3920
if (ret)
3921
goto out;
3922
3923
ASSERT(!ffe_ctl->for_treelog ||
3924
block_group->start == fs_info->treelog_bg ||
3925
fs_info->treelog_bg == 0);
3926
ASSERT(!ffe_ctl->for_data_reloc ||
3927
block_group->start == fs_info->data_reloc_bg ||
3928
fs_info->data_reloc_bg == 0);
3929
3930
if (block_group->ro ||
3931
(!ffe_ctl->for_data_reloc &&
3932
test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3933
ret = 1;
3934
goto out;
3935
}
3936
3937
/*
3938
* Do not allow currently using block group to be tree-log dedicated
3939
* block group.
3940
*/
3941
if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3942
(block_group->used || block_group->reserved)) {
3943
ret = 1;
3944
goto out;
3945
}
3946
3947
/*
3948
* Do not allow currently used block group to be the data relocation
3949
* dedicated block group.
3950
*/
3951
if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3952
(block_group->used || block_group->reserved)) {
3953
ret = 1;
3954
goto out;
3955
}
3956
3957
WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3958
avail = block_group->zone_capacity - block_group->alloc_offset;
3959
if (avail < num_bytes) {
3960
if (ffe_ctl->max_extent_size < avail) {
3961
/*
3962
* With sequential allocator, free space is always
3963
* contiguous
3964
*/
3965
ffe_ctl->max_extent_size = avail;
3966
ffe_ctl->total_free_space = avail;
3967
}
3968
ret = 1;
3969
goto out;
3970
}
3971
3972
if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3973
fs_info->treelog_bg = block_group->start;
3974
3975
if (ffe_ctl->for_data_reloc) {
3976
if (!fs_info->data_reloc_bg)
3977
fs_info->data_reloc_bg = block_group->start;
3978
/*
3979
* Do not allow allocations from this block group, unless it is
3980
* for data relocation. Compared to increasing the ->ro, setting
3981
* the ->zoned_data_reloc_ongoing flag still allows nocow
3982
* writers to come in. See btrfs_inc_nocow_writers().
3983
*
3984
* We need to disable an allocation to avoid an allocation of
3985
* regular (non-relocation data) extent. With mix of relocation
3986
* extents and regular extents, we can dispatch WRITE commands
3987
* (for relocation extents) and ZONE APPEND commands (for
3988
* regular extents) at the same time to the same zone, which
3989
* easily break the write pointer.
3990
*
3991
* Also, this flag avoids this block group to be zone finished.
3992
*/
3993
set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3994
}
3995
3996
ffe_ctl->found_offset = start + block_group->alloc_offset;
3997
block_group->alloc_offset += num_bytes;
3998
spin_lock(&ctl->tree_lock);
3999
ctl->free_space -= num_bytes;
4000
spin_unlock(&ctl->tree_lock);
4001
4002
/*
4003
* We do not check if found_offset is aligned to stripesize. The
4004
* address is anyway rewritten when using zone append writing.
4005
*/
4006
4007
ffe_ctl->search_start = ffe_ctl->found_offset;
4008
4009
out:
4010
if (ret && ffe_ctl->for_treelog)
4011
fs_info->treelog_bg = 0;
4012
if (ret && ffe_ctl->for_data_reloc)
4013
fs_info->data_reloc_bg = 0;
4014
spin_unlock(&fs_info->relocation_bg_lock);
4015
spin_unlock(&fs_info->treelog_bg_lock);
4016
spin_unlock(&block_group->lock);
4017
spin_unlock(&space_info->lock);
4018
return ret;
4019
}
4020
4021
static int do_allocation(struct btrfs_block_group *block_group,
4022
struct find_free_extent_ctl *ffe_ctl,
4023
struct btrfs_block_group **bg_ret)
4024
{
4025
switch (ffe_ctl->policy) {
4026
case BTRFS_EXTENT_ALLOC_CLUSTERED:
4027
return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
4028
case BTRFS_EXTENT_ALLOC_ZONED:
4029
return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
4030
default:
4031
BUG();
4032
}
4033
}
4034
4035
static void release_block_group(struct btrfs_block_group *block_group,
4036
struct find_free_extent_ctl *ffe_ctl,
4037
int delalloc)
4038
{
4039
switch (ffe_ctl->policy) {
4040
case BTRFS_EXTENT_ALLOC_CLUSTERED:
4041
ffe_ctl->retry_uncached = false;
4042
break;
4043
case BTRFS_EXTENT_ALLOC_ZONED:
4044
/* Nothing to do */
4045
break;
4046
default:
4047
BUG();
4048
}
4049
4050
BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4051
ffe_ctl->index);
4052
btrfs_release_block_group(block_group, delalloc);
4053
}
4054
4055
static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4056
struct btrfs_key *ins)
4057
{
4058
struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4059
4060
if (!ffe_ctl->use_cluster && last_ptr) {
4061
spin_lock(&last_ptr->lock);
4062
last_ptr->window_start = ins->objectid;
4063
spin_unlock(&last_ptr->lock);
4064
}
4065
}
4066
4067
static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4068
struct btrfs_key *ins)
4069
{
4070
switch (ffe_ctl->policy) {
4071
case BTRFS_EXTENT_ALLOC_CLUSTERED:
4072
found_extent_clustered(ffe_ctl, ins);
4073
break;
4074
case BTRFS_EXTENT_ALLOC_ZONED:
4075
/* Nothing to do */
4076
break;
4077
default:
4078
BUG();
4079
}
4080
}
4081
4082
static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4083
struct find_free_extent_ctl *ffe_ctl)
4084
{
4085
/* Block group's activeness is not a requirement for METADATA block groups. */
4086
if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4087
return 0;
4088
4089
/* If we can activate new zone, just allocate a chunk and use it */
4090
if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4091
return 0;
4092
4093
/*
4094
* We already reached the max active zones. Try to finish one block
4095
* group to make a room for a new block group. This is only possible
4096
* for a data block group because btrfs_zone_finish() may need to wait
4097
* for a running transaction which can cause a deadlock for metadata
4098
* allocation.
4099
*/
4100
if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4101
int ret = btrfs_zone_finish_one_bg(fs_info);
4102
4103
if (ret == 1)
4104
return 0;
4105
else if (ret < 0)
4106
return ret;
4107
}
4108
4109
/*
4110
* If we have enough free space left in an already active block group
4111
* and we can't activate any other zone now, do not allow allocating a
4112
* new chunk and let find_free_extent() retry with a smaller size.
4113
*/
4114
if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4115
return -ENOSPC;
4116
4117
/*
4118
* Even min_alloc_size is not left in any block groups. Since we cannot
4119
* activate a new block group, allocating it may not help. Let's tell a
4120
* caller to try again and hope it progress something by writing some
4121
* parts of the region. That is only possible for data block groups,
4122
* where a part of the region can be written.
4123
*/
4124
if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4125
return -EAGAIN;
4126
4127
/*
4128
* We cannot activate a new block group and no enough space left in any
4129
* block groups. So, allocating a new block group may not help. But,
4130
* there is nothing to do anyway, so let's go with it.
4131
*/
4132
return 0;
4133
}
4134
4135
static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4136
struct find_free_extent_ctl *ffe_ctl)
4137
{
4138
switch (ffe_ctl->policy) {
4139
case BTRFS_EXTENT_ALLOC_CLUSTERED:
4140
return 0;
4141
case BTRFS_EXTENT_ALLOC_ZONED:
4142
return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4143
default:
4144
BUG();
4145
}
4146
}
4147
4148
/*
4149
* Return >0 means caller needs to re-search for free extent
4150
* Return 0 means we have the needed free extent.
4151
* Return <0 means we failed to locate any free extent.
4152
*/
4153
static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4154
struct btrfs_key *ins,
4155
struct find_free_extent_ctl *ffe_ctl,
4156
struct btrfs_space_info *space_info,
4157
bool full_search)
4158
{
4159
struct btrfs_root *root = fs_info->chunk_root;
4160
int ret;
4161
4162
if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4163
ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4164
ffe_ctl->orig_have_caching_bg = true;
4165
4166
if (ins->objectid) {
4167
found_extent(ffe_ctl, ins);
4168
return 0;
4169
}
4170
4171
if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4172
return 1;
4173
4174
ffe_ctl->index++;
4175
if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4176
return 1;
4177
4178
/* See the comments for btrfs_loop_type for an explanation of the phases. */
4179
if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4180
ffe_ctl->index = 0;
4181
/*
4182
* We want to skip the LOOP_CACHING_WAIT step if we don't have
4183
* any uncached bgs and we've already done a full search
4184
* through.
4185
*/
4186
if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4187
(!ffe_ctl->orig_have_caching_bg && full_search))
4188
ffe_ctl->loop++;
4189
ffe_ctl->loop++;
4190
4191
if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4192
struct btrfs_trans_handle *trans;
4193
int exist = 0;
4194
4195
/* Check if allocation policy allows to create a new chunk */
4196
ret = can_allocate_chunk(fs_info, ffe_ctl);
4197
if (ret)
4198
return ret;
4199
4200
trans = current->journal_info;
4201
if (trans)
4202
exist = 1;
4203
else
4204
trans = btrfs_join_transaction(root);
4205
4206
if (IS_ERR(trans)) {
4207
ret = PTR_ERR(trans);
4208
return ret;
4209
}
4210
4211
ret = btrfs_chunk_alloc(trans, space_info, ffe_ctl->flags,
4212
CHUNK_ALLOC_FORCE_FOR_EXTENT);
4213
4214
/* Do not bail out on ENOSPC since we can do more. */
4215
if (ret == -ENOSPC) {
4216
ret = 0;
4217
ffe_ctl->loop++;
4218
}
4219
else if (ret < 0)
4220
btrfs_abort_transaction(trans, ret);
4221
else
4222
ret = 0;
4223
if (!exist)
4224
btrfs_end_transaction(trans);
4225
if (ret)
4226
return ret;
4227
}
4228
4229
if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4230
if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4231
return -ENOSPC;
4232
4233
/*
4234
* Don't loop again if we already have no empty_size and
4235
* no empty_cluster.
4236
*/
4237
if (ffe_ctl->empty_size == 0 &&
4238
ffe_ctl->empty_cluster == 0)
4239
return -ENOSPC;
4240
ffe_ctl->empty_size = 0;
4241
ffe_ctl->empty_cluster = 0;
4242
}
4243
return 1;
4244
}
4245
return -ENOSPC;
4246
}
4247
4248
static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4249
struct find_free_extent_ctl *ffe_ctl,
4250
struct btrfs_space_info *space_info,
4251
struct btrfs_key *ins)
4252
{
4253
/*
4254
* If our free space is heavily fragmented we may not be able to make
4255
* big contiguous allocations, so instead of doing the expensive search
4256
* for free space, simply return ENOSPC with our max_extent_size so we
4257
* can go ahead and search for a more manageable chunk.
4258
*
4259
* If our max_extent_size is large enough for our allocation simply
4260
* disable clustering since we will likely not be able to find enough
4261
* space to create a cluster and induce latency trying.
4262
*/
4263
if (space_info->max_extent_size) {
4264
spin_lock(&space_info->lock);
4265
if (space_info->max_extent_size &&
4266
ffe_ctl->num_bytes > space_info->max_extent_size) {
4267
ins->offset = space_info->max_extent_size;
4268
spin_unlock(&space_info->lock);
4269
return -ENOSPC;
4270
} else if (space_info->max_extent_size) {
4271
ffe_ctl->use_cluster = false;
4272
}
4273
spin_unlock(&space_info->lock);
4274
}
4275
4276
ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4277
&ffe_ctl->empty_cluster);
4278
if (ffe_ctl->last_ptr) {
4279
struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4280
4281
spin_lock(&last_ptr->lock);
4282
if (last_ptr->block_group)
4283
ffe_ctl->hint_byte = last_ptr->window_start;
4284
if (last_ptr->fragmented) {
4285
/*
4286
* We still set window_start so we can keep track of the
4287
* last place we found an allocation to try and save
4288
* some time.
4289
*/
4290
ffe_ctl->hint_byte = last_ptr->window_start;
4291
ffe_ctl->use_cluster = false;
4292
}
4293
spin_unlock(&last_ptr->lock);
4294
}
4295
4296
return 0;
4297
}
4298
4299
static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4300
struct find_free_extent_ctl *ffe_ctl)
4301
{
4302
if (ffe_ctl->for_treelog) {
4303
spin_lock(&fs_info->treelog_bg_lock);
4304
if (fs_info->treelog_bg)
4305
ffe_ctl->hint_byte = fs_info->treelog_bg;
4306
spin_unlock(&fs_info->treelog_bg_lock);
4307
} else if (ffe_ctl->for_data_reloc) {
4308
spin_lock(&fs_info->relocation_bg_lock);
4309
if (fs_info->data_reloc_bg)
4310
ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4311
spin_unlock(&fs_info->relocation_bg_lock);
4312
} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4313
struct btrfs_block_group *block_group;
4314
4315
spin_lock(&fs_info->zone_active_bgs_lock);
4316
list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4317
/*
4318
* No lock is OK here because avail is monotinically
4319
* decreasing, and this is just a hint.
4320
*/
4321
u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4322
4323
if (block_group_bits(block_group, ffe_ctl->flags) &&
4324
avail >= ffe_ctl->num_bytes) {
4325
ffe_ctl->hint_byte = block_group->start;
4326
break;
4327
}
4328
}
4329
spin_unlock(&fs_info->zone_active_bgs_lock);
4330
}
4331
4332
return 0;
4333
}
4334
4335
static int prepare_allocation(struct btrfs_fs_info *fs_info,
4336
struct find_free_extent_ctl *ffe_ctl,
4337
struct btrfs_space_info *space_info,
4338
struct btrfs_key *ins)
4339
{
4340
switch (ffe_ctl->policy) {
4341
case BTRFS_EXTENT_ALLOC_CLUSTERED:
4342
return prepare_allocation_clustered(fs_info, ffe_ctl,
4343
space_info, ins);
4344
case BTRFS_EXTENT_ALLOC_ZONED:
4345
return prepare_allocation_zoned(fs_info, ffe_ctl);
4346
default:
4347
BUG();
4348
}
4349
}
4350
4351
/*
4352
* walks the btree of allocated extents and find a hole of a given size.
4353
* The key ins is changed to record the hole:
4354
* ins->objectid == start position
4355
* ins->flags = BTRFS_EXTENT_ITEM_KEY
4356
* ins->offset == the size of the hole.
4357
* Any available blocks before search_start are skipped.
4358
*
4359
* If there is no suitable free space, we will record the max size of
4360
* the free space extent currently.
4361
*
4362
* The overall logic and call chain:
4363
*
4364
* find_free_extent()
4365
* |- Iterate through all block groups
4366
* | |- Get a valid block group
4367
* | |- Try to do clustered allocation in that block group
4368
* | |- Try to do unclustered allocation in that block group
4369
* | |- Check if the result is valid
4370
* | | |- If valid, then exit
4371
* | |- Jump to next block group
4372
* |
4373
* |- Push harder to find free extents
4374
* |- If not found, re-iterate all block groups
4375
*/
4376
static noinline int find_free_extent(struct btrfs_root *root,
4377
struct btrfs_key *ins,
4378
struct find_free_extent_ctl *ffe_ctl)
4379
{
4380
struct btrfs_fs_info *fs_info = root->fs_info;
4381
int ret = 0;
4382
int cache_block_group_error = 0;
4383
struct btrfs_block_group *block_group = NULL;
4384
struct btrfs_space_info *space_info;
4385
bool full_search = false;
4386
4387
WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4388
4389
ffe_ctl->search_start = 0;
4390
/* For clustered allocation */
4391
ffe_ctl->empty_cluster = 0;
4392
ffe_ctl->last_ptr = NULL;
4393
ffe_ctl->use_cluster = true;
4394
ffe_ctl->have_caching_bg = false;
4395
ffe_ctl->orig_have_caching_bg = false;
4396
ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4397
ffe_ctl->loop = 0;
4398
ffe_ctl->retry_uncached = false;
4399
ffe_ctl->cached = 0;
4400
ffe_ctl->max_extent_size = 0;
4401
ffe_ctl->total_free_space = 0;
4402
ffe_ctl->found_offset = 0;
4403
ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4404
ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4405
4406
if (btrfs_is_zoned(fs_info))
4407
ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4408
4409
ins->type = BTRFS_EXTENT_ITEM_KEY;
4410
ins->objectid = 0;
4411
ins->offset = 0;
4412
4413
trace_btrfs_find_free_extent(root, ffe_ctl);
4414
4415
space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4416
if (btrfs_is_zoned(fs_info) && space_info) {
4417
/* Use dedicated sub-space_info for dedicated block group users. */
4418
if (ffe_ctl->for_data_reloc) {
4419
space_info = space_info->sub_group[0];
4420
ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC);
4421
} else if (ffe_ctl->for_treelog) {
4422
space_info = space_info->sub_group[0];
4423
ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_TREELOG);
4424
}
4425
}
4426
if (!space_info) {
4427
btrfs_err(fs_info, "no space info for %llu, tree-log %d, relocation %d",
4428
ffe_ctl->flags, ffe_ctl->for_treelog, ffe_ctl->for_data_reloc);
4429
return -ENOSPC;
4430
}
4431
4432
ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4433
if (ret < 0)
4434
return ret;
4435
4436
ffe_ctl->search_start = max(ffe_ctl->search_start,
4437
first_logical_byte(fs_info));
4438
ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4439
if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4440
block_group = btrfs_lookup_block_group(fs_info,
4441
ffe_ctl->search_start);
4442
/*
4443
* we don't want to use the block group if it doesn't match our
4444
* allocation bits, or if its not cached.
4445
*
4446
* However if we are re-searching with an ideal block group
4447
* picked out then we don't care that the block group is cached.
4448
*/
4449
if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4450
block_group->space_info == space_info &&
4451
block_group->cached != BTRFS_CACHE_NO) {
4452
down_read(&space_info->groups_sem);
4453
if (list_empty(&block_group->list) ||
4454
block_group->ro) {
4455
/*
4456
* someone is removing this block group,
4457
* we can't jump into the have_block_group
4458
* target because our list pointers are not
4459
* valid
4460
*/
4461
btrfs_put_block_group(block_group);
4462
up_read(&space_info->groups_sem);
4463
} else {
4464
ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4465
block_group->flags);
4466
btrfs_lock_block_group(block_group,
4467
ffe_ctl->delalloc);
4468
ffe_ctl->hinted = true;
4469
goto have_block_group;
4470
}
4471
} else if (block_group) {
4472
btrfs_put_block_group(block_group);
4473
}
4474
}
4475
search:
4476
trace_btrfs_find_free_extent_search_loop(root, ffe_ctl);
4477
ffe_ctl->have_caching_bg = false;
4478
if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4479
ffe_ctl->index == 0)
4480
full_search = true;
4481
down_read(&space_info->groups_sem);
4482
list_for_each_entry(block_group,
4483
&space_info->block_groups[ffe_ctl->index], list) {
4484
struct btrfs_block_group *bg_ret;
4485
4486
ffe_ctl->hinted = false;
4487
/* If the block group is read-only, we can skip it entirely. */
4488
if (unlikely(block_group->ro)) {
4489
if (ffe_ctl->for_treelog)
4490
btrfs_clear_treelog_bg(block_group);
4491
if (ffe_ctl->for_data_reloc)
4492
btrfs_clear_data_reloc_bg(block_group);
4493
continue;
4494
}
4495
4496
btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4497
ffe_ctl->search_start = block_group->start;
4498
4499
/*
4500
* this can happen if we end up cycling through all the
4501
* raid types, but we want to make sure we only allocate
4502
* for the proper type.
4503
*/
4504
if (!block_group_bits(block_group, ffe_ctl->flags)) {
4505
u64 extra = BTRFS_BLOCK_GROUP_DUP |
4506
BTRFS_BLOCK_GROUP_RAID1_MASK |
4507
BTRFS_BLOCK_GROUP_RAID56_MASK |
4508
BTRFS_BLOCK_GROUP_RAID10;
4509
4510
/*
4511
* if they asked for extra copies and this block group
4512
* doesn't provide them, bail. This does allow us to
4513
* fill raid0 from raid1.
4514
*/
4515
if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4516
goto loop;
4517
4518
/*
4519
* This block group has different flags than we want.
4520
* It's possible that we have MIXED_GROUP flag but no
4521
* block group is mixed. Just skip such block group.
4522
*/
4523
btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4524
continue;
4525
}
4526
4527
have_block_group:
4528
trace_btrfs_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4529
ffe_ctl->cached = btrfs_block_group_done(block_group);
4530
if (unlikely(!ffe_ctl->cached)) {
4531
ffe_ctl->have_caching_bg = true;
4532
ret = btrfs_cache_block_group(block_group, false);
4533
4534
/*
4535
* If we get ENOMEM here or something else we want to
4536
* try other block groups, because it may not be fatal.
4537
* However if we can't find anything else we need to
4538
* save our return here so that we return the actual
4539
* error that caused problems, not ENOSPC.
4540
*/
4541
if (ret < 0) {
4542
if (!cache_block_group_error)
4543
cache_block_group_error = ret;
4544
ret = 0;
4545
goto loop;
4546
}
4547
ret = 0;
4548
}
4549
4550
if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4551
if (!cache_block_group_error)
4552
cache_block_group_error = -EIO;
4553
goto loop;
4554
}
4555
4556
if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4557
goto loop;
4558
4559
bg_ret = NULL;
4560
ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4561
if (ret > 0)
4562
goto loop;
4563
4564
if (bg_ret && bg_ret != block_group) {
4565
btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4566
block_group = bg_ret;
4567
}
4568
4569
/* Checks */
4570
ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4571
fs_info->stripesize);
4572
4573
/* move on to the next group */
4574
if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4575
block_group->start + block_group->length) {
4576
btrfs_add_free_space_unused(block_group,
4577
ffe_ctl->found_offset,
4578
ffe_ctl->num_bytes);
4579
goto loop;
4580
}
4581
4582
if (ffe_ctl->found_offset < ffe_ctl->search_start)
4583
btrfs_add_free_space_unused(block_group,
4584
ffe_ctl->found_offset,
4585
ffe_ctl->search_start - ffe_ctl->found_offset);
4586
4587
ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4588
ffe_ctl->num_bytes,
4589
ffe_ctl->delalloc,
4590
ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4591
if (ret == -EAGAIN) {
4592
btrfs_add_free_space_unused(block_group,
4593
ffe_ctl->found_offset,
4594
ffe_ctl->num_bytes);
4595
goto loop;
4596
}
4597
btrfs_inc_block_group_reservations(block_group);
4598
4599
/* we are all good, lets return */
4600
ins->objectid = ffe_ctl->search_start;
4601
ins->offset = ffe_ctl->num_bytes;
4602
4603
trace_btrfs_reserve_extent(block_group, ffe_ctl);
4604
btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4605
break;
4606
loop:
4607
if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4608
!ffe_ctl->retry_uncached) {
4609
ffe_ctl->retry_uncached = true;
4610
btrfs_wait_block_group_cache_progress(block_group,
4611
ffe_ctl->num_bytes +
4612
ffe_ctl->empty_cluster +
4613
ffe_ctl->empty_size);
4614
goto have_block_group;
4615
}
4616
release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4617
cond_resched();
4618
}
4619
up_read(&space_info->groups_sem);
4620
4621
ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, space_info,
4622
full_search);
4623
if (ret > 0)
4624
goto search;
4625
4626
if (ret == -ENOSPC && !cache_block_group_error) {
4627
/*
4628
* Use ffe_ctl->total_free_space as fallback if we can't find
4629
* any contiguous hole.
4630
*/
4631
if (!ffe_ctl->max_extent_size)
4632
ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4633
spin_lock(&space_info->lock);
4634
space_info->max_extent_size = ffe_ctl->max_extent_size;
4635
spin_unlock(&space_info->lock);
4636
ins->offset = ffe_ctl->max_extent_size;
4637
} else if (ret == -ENOSPC) {
4638
ret = cache_block_group_error;
4639
}
4640
return ret;
4641
}
4642
4643
/*
4644
* Entry point to the extent allocator. Tries to find a hole that is at least
4645
* as big as @num_bytes.
4646
*
4647
* @root - The root that will contain this extent
4648
*
4649
* @ram_bytes - The amount of space in ram that @num_bytes take. This
4650
* is used for accounting purposes. This value differs
4651
* from @num_bytes only in the case of compressed extents.
4652
*
4653
* @num_bytes - Number of bytes to allocate on-disk.
4654
*
4655
* @min_alloc_size - Indicates the minimum amount of space that the
4656
* allocator should try to satisfy. In some cases
4657
* @num_bytes may be larger than what is required and if
4658
* the filesystem is fragmented then allocation fails.
4659
* However, the presence of @min_alloc_size gives a
4660
* chance to try and satisfy the smaller allocation.
4661
*
4662
* @empty_size - A hint that you plan on doing more COW. This is the
4663
* size in bytes the allocator should try to find free
4664
* next to the block it returns. This is just a hint and
4665
* may be ignored by the allocator.
4666
*
4667
* @hint_byte - Hint to the allocator to start searching above the byte
4668
* address passed. It might be ignored.
4669
*
4670
* @ins - This key is modified to record the found hole. It will
4671
* have the following values:
4672
* ins->objectid == start position
4673
* ins->flags = BTRFS_EXTENT_ITEM_KEY
4674
* ins->offset == the size of the hole.
4675
*
4676
* @is_data - Boolean flag indicating whether an extent is
4677
* allocated for data (true) or metadata (false)
4678
*
4679
* @delalloc - Boolean flag indicating whether this allocation is for
4680
* delalloc or not. If 'true' data_rwsem of block groups
4681
* is going to be acquired.
4682
*
4683
*
4684
* Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4685
* case -ENOSPC is returned then @ins->offset will contain the size of the
4686
* largest available hole the allocator managed to find.
4687
*/
4688
int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4689
u64 num_bytes, u64 min_alloc_size,
4690
u64 empty_size, u64 hint_byte,
4691
struct btrfs_key *ins, int is_data, int delalloc)
4692
{
4693
struct btrfs_fs_info *fs_info = root->fs_info;
4694
struct find_free_extent_ctl ffe_ctl = {};
4695
bool final_tried = num_bytes == min_alloc_size;
4696
u64 flags;
4697
int ret;
4698
bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
4699
bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4700
4701
flags = get_alloc_profile_by_root(root, is_data);
4702
again:
4703
WARN_ON(num_bytes < fs_info->sectorsize);
4704
4705
ffe_ctl.ram_bytes = ram_bytes;
4706
ffe_ctl.num_bytes = num_bytes;
4707
ffe_ctl.min_alloc_size = min_alloc_size;
4708
ffe_ctl.empty_size = empty_size;
4709
ffe_ctl.flags = flags;
4710
ffe_ctl.delalloc = delalloc;
4711
ffe_ctl.hint_byte = hint_byte;
4712
ffe_ctl.for_treelog = for_treelog;
4713
ffe_ctl.for_data_reloc = for_data_reloc;
4714
4715
ret = find_free_extent(root, ins, &ffe_ctl);
4716
if (!ret && !is_data) {
4717
btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4718
} else if (ret == -ENOSPC) {
4719
if (!final_tried && ins->offset) {
4720
num_bytes = min(num_bytes >> 1, ins->offset);
4721
num_bytes = round_down(num_bytes,
4722
fs_info->sectorsize);
4723
num_bytes = max(num_bytes, min_alloc_size);
4724
ram_bytes = num_bytes;
4725
if (num_bytes == min_alloc_size)
4726
final_tried = true;
4727
goto again;
4728
} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4729
struct btrfs_space_info *sinfo;
4730
4731
sinfo = btrfs_find_space_info(fs_info, flags);
4732
btrfs_err(fs_info,
4733
"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4734
flags, num_bytes, for_treelog, for_data_reloc);
4735
if (sinfo)
4736
btrfs_dump_space_info(fs_info, sinfo,
4737
num_bytes, 1);
4738
}
4739
}
4740
4741
return ret;
4742
}
4743
4744
int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len,
4745
bool is_delalloc)
4746
{
4747
struct btrfs_block_group *cache;
4748
4749
cache = btrfs_lookup_block_group(fs_info, start);
4750
if (!cache) {
4751
btrfs_err(fs_info, "Unable to find block group for %llu",
4752
start);
4753
return -ENOSPC;
4754
}
4755
4756
btrfs_add_free_space(cache, start, len);
4757
btrfs_free_reserved_bytes(cache, len, is_delalloc);
4758
trace_btrfs_reserved_extent_free(fs_info, start, len);
4759
4760
btrfs_put_block_group(cache);
4761
return 0;
4762
}
4763
4764
int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4765
const struct extent_buffer *eb)
4766
{
4767
struct btrfs_block_group *cache;
4768
int ret = 0;
4769
4770
cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4771
if (!cache) {
4772
btrfs_err(trans->fs_info, "unable to find block group for %llu",
4773
eb->start);
4774
return -ENOSPC;
4775
}
4776
4777
ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4778
btrfs_put_block_group(cache);
4779
return ret;
4780
}
4781
4782
static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4783
u64 num_bytes)
4784
{
4785
struct btrfs_fs_info *fs_info = trans->fs_info;
4786
int ret;
4787
4788
ret = btrfs_remove_from_free_space_tree(trans, bytenr, num_bytes);
4789
if (ret)
4790
return ret;
4791
4792
ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4793
if (ret) {
4794
ASSERT(!ret);
4795
btrfs_err(fs_info, "update block group failed for %llu %llu",
4796
bytenr, num_bytes);
4797
return ret;
4798
}
4799
4800
trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4801
return 0;
4802
}
4803
4804
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4805
u64 parent, u64 root_objectid,
4806
u64 flags, u64 owner, u64 offset,
4807
struct btrfs_key *ins, int ref_mod, u64 oref_root)
4808
{
4809
struct btrfs_fs_info *fs_info = trans->fs_info;
4810
struct btrfs_root *extent_root;
4811
int ret;
4812
struct btrfs_extent_item *extent_item;
4813
struct btrfs_extent_owner_ref *oref;
4814
struct btrfs_extent_inline_ref *iref;
4815
struct btrfs_path *path;
4816
struct extent_buffer *leaf;
4817
int type;
4818
u32 size;
4819
const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4820
4821
if (parent > 0)
4822
type = BTRFS_SHARED_DATA_REF_KEY;
4823
else
4824
type = BTRFS_EXTENT_DATA_REF_KEY;
4825
4826
size = sizeof(*extent_item);
4827
if (simple_quota)
4828
size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4829
size += btrfs_extent_inline_ref_size(type);
4830
4831
path = btrfs_alloc_path();
4832
if (!path)
4833
return -ENOMEM;
4834
4835
extent_root = btrfs_extent_root(fs_info, ins->objectid);
4836
ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4837
if (ret) {
4838
btrfs_free_path(path);
4839
return ret;
4840
}
4841
4842
leaf = path->nodes[0];
4843
extent_item = btrfs_item_ptr(leaf, path->slots[0],
4844
struct btrfs_extent_item);
4845
btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4846
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4847
btrfs_set_extent_flags(leaf, extent_item,
4848
flags | BTRFS_EXTENT_FLAG_DATA);
4849
4850
iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4851
if (simple_quota) {
4852
btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4853
oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4854
btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4855
iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4856
}
4857
btrfs_set_extent_inline_ref_type(leaf, iref, type);
4858
4859
if (parent > 0) {
4860
struct btrfs_shared_data_ref *ref;
4861
ref = (struct btrfs_shared_data_ref *)(iref + 1);
4862
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4863
btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4864
} else {
4865
struct btrfs_extent_data_ref *ref;
4866
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4867
btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4868
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4869
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4870
btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4871
}
4872
4873
btrfs_free_path(path);
4874
4875
return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4876
}
4877
4878
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4879
const struct btrfs_delayed_ref_node *node,
4880
struct btrfs_delayed_extent_op *extent_op)
4881
{
4882
struct btrfs_fs_info *fs_info = trans->fs_info;
4883
struct btrfs_root *extent_root;
4884
int ret;
4885
struct btrfs_extent_item *extent_item;
4886
struct btrfs_key extent_key;
4887
struct btrfs_tree_block_info *block_info;
4888
struct btrfs_extent_inline_ref *iref;
4889
struct btrfs_path *path;
4890
struct extent_buffer *leaf;
4891
u32 size = sizeof(*extent_item) + sizeof(*iref);
4892
const u64 flags = (extent_op ? extent_op->flags_to_set : 0);
4893
/* The owner of a tree block is the level. */
4894
int level = btrfs_delayed_ref_owner(node);
4895
bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4896
4897
extent_key.objectid = node->bytenr;
4898
if (skinny_metadata) {
4899
/* The owner of a tree block is the level. */
4900
extent_key.offset = level;
4901
extent_key.type = BTRFS_METADATA_ITEM_KEY;
4902
} else {
4903
extent_key.offset = node->num_bytes;
4904
extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4905
size += sizeof(*block_info);
4906
}
4907
4908
path = btrfs_alloc_path();
4909
if (!path)
4910
return -ENOMEM;
4911
4912
extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4913
ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4914
size);
4915
if (ret) {
4916
btrfs_free_path(path);
4917
return ret;
4918
}
4919
4920
leaf = path->nodes[0];
4921
extent_item = btrfs_item_ptr(leaf, path->slots[0],
4922
struct btrfs_extent_item);
4923
btrfs_set_extent_refs(leaf, extent_item, 1);
4924
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4925
btrfs_set_extent_flags(leaf, extent_item,
4926
flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4927
4928
if (skinny_metadata) {
4929
iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4930
} else {
4931
block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4932
btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4933
btrfs_set_tree_block_level(leaf, block_info, level);
4934
iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4935
}
4936
4937
if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4938
btrfs_set_extent_inline_ref_type(leaf, iref,
4939
BTRFS_SHARED_BLOCK_REF_KEY);
4940
btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent);
4941
} else {
4942
btrfs_set_extent_inline_ref_type(leaf, iref,
4943
BTRFS_TREE_BLOCK_REF_KEY);
4944
btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root);
4945
}
4946
4947
btrfs_free_path(path);
4948
4949
return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4950
}
4951
4952
int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4953
struct btrfs_root *root, u64 owner,
4954
u64 offset, u64 ram_bytes,
4955
struct btrfs_key *ins)
4956
{
4957
struct btrfs_ref generic_ref = {
4958
.action = BTRFS_ADD_DELAYED_EXTENT,
4959
.bytenr = ins->objectid,
4960
.num_bytes = ins->offset,
4961
.owning_root = btrfs_root_id(root),
4962
.ref_root = btrfs_root_id(root),
4963
};
4964
4965
ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID);
4966
4967
if (btrfs_is_data_reloc_root(root) && btrfs_is_fstree(root->relocation_src_root))
4968
generic_ref.owning_root = root->relocation_src_root;
4969
4970
btrfs_init_data_ref(&generic_ref, owner, offset, 0, false);
4971
btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4972
4973
return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4974
}
4975
4976
/*
4977
* this is used by the tree logging recovery code. It records that
4978
* an extent has been allocated and makes sure to clear the free
4979
* space cache bits as well
4980
*/
4981
int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4982
u64 root_objectid, u64 owner, u64 offset,
4983
struct btrfs_key *ins)
4984
{
4985
struct btrfs_fs_info *fs_info = trans->fs_info;
4986
int ret;
4987
struct btrfs_block_group *block_group;
4988
struct btrfs_space_info *space_info;
4989
const struct btrfs_squota_delta delta = {
4990
.root = root_objectid,
4991
.num_bytes = ins->offset,
4992
.generation = trans->transid,
4993
.is_data = true,
4994
.is_inc = true,
4995
};
4996
4997
/*
4998
* Mixed block groups will exclude before processing the log so we only
4999
* need to do the exclude dance if this fs isn't mixed.
5000
*/
5001
if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
5002
ret = __exclude_logged_extent(fs_info, ins->objectid,
5003
ins->offset);
5004
if (ret)
5005
return ret;
5006
}
5007
5008
block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
5009
if (!block_group)
5010
return -EINVAL;
5011
5012
space_info = block_group->space_info;
5013
spin_lock(&space_info->lock);
5014
spin_lock(&block_group->lock);
5015
space_info->bytes_reserved += ins->offset;
5016
block_group->reserved += ins->offset;
5017
spin_unlock(&block_group->lock);
5018
spin_unlock(&space_info->lock);
5019
5020
ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
5021
offset, ins, 1, root_objectid);
5022
if (ret)
5023
btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
5024
ret = btrfs_record_squota_delta(fs_info, &delta);
5025
btrfs_put_block_group(block_group);
5026
return ret;
5027
}
5028
5029
#ifdef CONFIG_BTRFS_DEBUG
5030
/*
5031
* Extra safety check in case the extent tree is corrupted and extent allocator
5032
* chooses to use a tree block which is already used and locked.
5033
*/
5034
static bool check_eb_lock_owner(const struct extent_buffer *eb)
5035
{
5036
if (eb->lock_owner == current->pid) {
5037
btrfs_err_rl(eb->fs_info,
5038
"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
5039
eb->start, btrfs_header_owner(eb), current->pid);
5040
return true;
5041
}
5042
return false;
5043
}
5044
#else
5045
static bool check_eb_lock_owner(struct extent_buffer *eb)
5046
{
5047
return false;
5048
}
5049
#endif
5050
5051
static struct extent_buffer *
5052
btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5053
u64 bytenr, int level, u64 owner,
5054
enum btrfs_lock_nesting nest)
5055
{
5056
struct btrfs_fs_info *fs_info = root->fs_info;
5057
struct extent_buffer *buf;
5058
u64 lockdep_owner = owner;
5059
5060
buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5061
if (IS_ERR(buf))
5062
return buf;
5063
5064
if (check_eb_lock_owner(buf)) {
5065
free_extent_buffer(buf);
5066
return ERR_PTR(-EUCLEAN);
5067
}
5068
5069
/*
5070
* The reloc trees are just snapshots, so we need them to appear to be
5071
* just like any other fs tree WRT lockdep.
5072
*
5073
* The exception however is in replace_path() in relocation, where we
5074
* hold the lock on the original fs root and then search for the reloc
5075
* root. At that point we need to make sure any reloc root buffers are
5076
* set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5077
* lockdep happy.
5078
*/
5079
if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5080
!test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5081
lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5082
5083
/* btrfs_clear_buffer_dirty() accesses generation field. */
5084
btrfs_set_header_generation(buf, trans->transid);
5085
5086
/*
5087
* This needs to stay, because we could allocate a freed block from an
5088
* old tree into a new tree, so we need to make sure this new block is
5089
* set to the appropriate level and owner.
5090
*/
5091
btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5092
5093
btrfs_tree_lock_nested(buf, nest);
5094
btrfs_clear_buffer_dirty(trans, buf);
5095
clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5096
clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5097
5098
set_extent_buffer_uptodate(buf);
5099
5100
memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5101
btrfs_set_header_level(buf, level);
5102
btrfs_set_header_bytenr(buf, buf->start);
5103
btrfs_set_header_generation(buf, trans->transid);
5104
btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5105
btrfs_set_header_owner(buf, owner);
5106
write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5107
write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5108
if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
5109
buf->log_index = root->log_transid % 2;
5110
/*
5111
* we allow two log transactions at a time, use different
5112
* EXTENT bit to differentiate dirty pages.
5113
*/
5114
if (buf->log_index == 0)
5115
btrfs_set_extent_bit(&root->dirty_log_pages, buf->start,
5116
buf->start + buf->len - 1,
5117
EXTENT_DIRTY_LOG1, NULL);
5118
else
5119
btrfs_set_extent_bit(&root->dirty_log_pages, buf->start,
5120
buf->start + buf->len - 1,
5121
EXTENT_DIRTY_LOG2, NULL);
5122
} else {
5123
buf->log_index = -1;
5124
btrfs_set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5125
buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5126
}
5127
/* this returns a buffer locked for blocking */
5128
return buf;
5129
}
5130
5131
/*
5132
* finds a free extent and does all the dirty work required for allocation
5133
* returns the tree buffer or an ERR_PTR on error.
5134
*/
5135
struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5136
struct btrfs_root *root,
5137
u64 parent, u64 root_objectid,
5138
const struct btrfs_disk_key *key,
5139
int level, u64 hint,
5140
u64 empty_size,
5141
u64 reloc_src_root,
5142
enum btrfs_lock_nesting nest)
5143
{
5144
struct btrfs_fs_info *fs_info = root->fs_info;
5145
struct btrfs_key ins;
5146
struct btrfs_block_rsv *block_rsv;
5147
struct extent_buffer *buf;
5148
u64 flags = 0;
5149
int ret;
5150
u32 blocksize = fs_info->nodesize;
5151
bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5152
u64 owning_root;
5153
5154
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5155
if (btrfs_is_testing(fs_info)) {
5156
buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5157
level, root_objectid, nest);
5158
if (!IS_ERR(buf))
5159
root->alloc_bytenr += blocksize;
5160
return buf;
5161
}
5162
#endif
5163
5164
block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5165
if (IS_ERR(block_rsv))
5166
return ERR_CAST(block_rsv);
5167
5168
ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5169
empty_size, hint, &ins, 0, 0);
5170
if (ret)
5171
goto out_unuse;
5172
5173
buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5174
root_objectid, nest);
5175
if (IS_ERR(buf)) {
5176
ret = PTR_ERR(buf);
5177
goto out_free_reserved;
5178
}
5179
owning_root = btrfs_header_owner(buf);
5180
5181
if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5182
if (parent == 0)
5183
parent = ins.objectid;
5184
flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5185
owning_root = reloc_src_root;
5186
} else
5187
BUG_ON(parent > 0);
5188
5189
if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5190
struct btrfs_delayed_extent_op *extent_op;
5191
struct btrfs_ref generic_ref = {
5192
.action = BTRFS_ADD_DELAYED_EXTENT,
5193
.bytenr = ins.objectid,
5194
.num_bytes = ins.offset,
5195
.parent = parent,
5196
.owning_root = owning_root,
5197
.ref_root = root_objectid,
5198
};
5199
5200
if (!skinny_metadata || flags != 0) {
5201
extent_op = btrfs_alloc_delayed_extent_op();
5202
if (!extent_op) {
5203
ret = -ENOMEM;
5204
goto out_free_buf;
5205
}
5206
if (key)
5207
memcpy(&extent_op->key, key, sizeof(extent_op->key));
5208
else
5209
memset(&extent_op->key, 0, sizeof(extent_op->key));
5210
extent_op->flags_to_set = flags;
5211
extent_op->update_key = (skinny_metadata ? false : true);
5212
extent_op->update_flags = (flags != 0);
5213
} else {
5214
extent_op = NULL;
5215
}
5216
5217
btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false);
5218
btrfs_ref_tree_mod(fs_info, &generic_ref);
5219
ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5220
if (ret) {
5221
btrfs_free_delayed_extent_op(extent_op);
5222
goto out_free_buf;
5223
}
5224
}
5225
return buf;
5226
5227
out_free_buf:
5228
btrfs_tree_unlock(buf);
5229
free_extent_buffer(buf);
5230
out_free_reserved:
5231
btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, false);
5232
out_unuse:
5233
btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5234
return ERR_PTR(ret);
5235
}
5236
5237
struct walk_control {
5238
u64 refs[BTRFS_MAX_LEVEL];
5239
u64 flags[BTRFS_MAX_LEVEL];
5240
struct btrfs_key update_progress;
5241
struct btrfs_key drop_progress;
5242
int drop_level;
5243
int stage;
5244
int level;
5245
int shared_level;
5246
int update_ref;
5247
int keep_locks;
5248
int reada_slot;
5249
int reada_count;
5250
int restarted;
5251
/* Indicate that extent info needs to be looked up when walking the tree. */
5252
int lookup_info;
5253
};
5254
5255
/*
5256
* This is our normal stage. We are traversing blocks the current snapshot owns
5257
* and we are dropping any of our references to any children we are able to, and
5258
* then freeing the block once we've processed all of the children.
5259
*/
5260
#define DROP_REFERENCE 1
5261
5262
/*
5263
* We enter this stage when we have to walk into a child block (meaning we can't
5264
* simply drop our reference to it from our current parent node) and there are
5265
* more than one reference on it. If we are the owner of any of the children
5266
* blocks from the current parent node then we have to do the FULL_BACKREF dance
5267
* on them in order to drop our normal ref and add the shared ref.
5268
*/
5269
#define UPDATE_BACKREF 2
5270
5271
/*
5272
* Decide if we need to walk down into this node to adjust the references.
5273
*
5274
* @root: the root we are currently deleting
5275
* @wc: the walk control for this deletion
5276
* @eb: the parent eb that we're currently visiting
5277
* @refs: the number of refs for wc->level - 1
5278
* @flags: the flags for wc->level - 1
5279
* @slot: the slot in the eb that we're currently checking
5280
*
5281
* This is meant to be called when we're evaluating if a node we point to at
5282
* wc->level should be read and walked into, or if we can simply delete our
5283
* reference to it. We return true if we should walk into the node, false if we
5284
* can skip it.
5285
*
5286
* We have assertions in here to make sure this is called correctly. We assume
5287
* that sanity checking on the blocks read to this point has been done, so any
5288
* corrupted file systems must have been caught before calling this function.
5289
*/
5290
static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc,
5291
struct extent_buffer *eb, u64 flags, int slot)
5292
{
5293
struct btrfs_key key;
5294
u64 generation;
5295
int level = wc->level;
5296
5297
ASSERT(level > 0);
5298
ASSERT(wc->refs[level - 1] > 0);
5299
5300
/*
5301
* The update backref stage we only want to skip if we already have
5302
* FULL_BACKREF set, otherwise we need to read.
5303
*/
5304
if (wc->stage == UPDATE_BACKREF) {
5305
if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5306
return false;
5307
return true;
5308
}
5309
5310
/*
5311
* We're the last ref on this block, we must walk into it and process
5312
* any refs it's pointing at.
5313
*/
5314
if (wc->refs[level - 1] == 1)
5315
return true;
5316
5317
/*
5318
* If we're already FULL_BACKREF then we know we can just drop our
5319
* current reference.
5320
*/
5321
if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5322
return false;
5323
5324
/*
5325
* This block is older than our creation generation, we can drop our
5326
* reference to it.
5327
*/
5328
generation = btrfs_node_ptr_generation(eb, slot);
5329
if (!wc->update_ref || generation <= btrfs_root_origin_generation(root))
5330
return false;
5331
5332
/*
5333
* This block was processed from a previous snapshot deletion run, we
5334
* can skip it.
5335
*/
5336
btrfs_node_key_to_cpu(eb, &key, slot);
5337
if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0)
5338
return false;
5339
5340
/* All other cases we need to wander into the node. */
5341
return true;
5342
}
5343
5344
static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5345
struct btrfs_root *root,
5346
struct walk_control *wc,
5347
struct btrfs_path *path)
5348
{
5349
struct btrfs_fs_info *fs_info = root->fs_info;
5350
u64 bytenr;
5351
u64 generation;
5352
u64 refs;
5353
u64 flags;
5354
u32 nritems;
5355
struct extent_buffer *eb;
5356
int ret;
5357
int slot;
5358
int nread = 0;
5359
5360
if (path->slots[wc->level] < wc->reada_slot) {
5361
wc->reada_count = wc->reada_count * 2 / 3;
5362
wc->reada_count = max(wc->reada_count, 2);
5363
} else {
5364
wc->reada_count = wc->reada_count * 3 / 2;
5365
wc->reada_count = min_t(int, wc->reada_count,
5366
BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5367
}
5368
5369
eb = path->nodes[wc->level];
5370
nritems = btrfs_header_nritems(eb);
5371
5372
for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5373
if (nread >= wc->reada_count)
5374
break;
5375
5376
cond_resched();
5377
bytenr = btrfs_node_blockptr(eb, slot);
5378
generation = btrfs_node_ptr_generation(eb, slot);
5379
5380
if (slot == path->slots[wc->level])
5381
goto reada;
5382
5383
if (wc->stage == UPDATE_BACKREF &&
5384
generation <= btrfs_root_origin_generation(root))
5385
continue;
5386
5387
/* We don't lock the tree block, it's OK to be racy here */
5388
ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5389
wc->level - 1, 1, &refs,
5390
&flags, NULL);
5391
/* We don't care about errors in readahead. */
5392
if (ret < 0)
5393
continue;
5394
5395
/*
5396
* This could be racey, it's conceivable that we raced and end
5397
* up with a bogus refs count, if that's the case just skip, if
5398
* we are actually corrupt we will notice when we look up
5399
* everything again with our locks.
5400
*/
5401
if (refs == 0)
5402
continue;
5403
5404
/* If we don't need to visit this node don't reada. */
5405
if (!visit_node_for_delete(root, wc, eb, flags, slot))
5406
continue;
5407
reada:
5408
btrfs_readahead_node_child(eb, slot);
5409
nread++;
5410
}
5411
wc->reada_slot = slot;
5412
}
5413
5414
/*
5415
* helper to process tree block while walking down the tree.
5416
*
5417
* when wc->stage == UPDATE_BACKREF, this function updates
5418
* back refs for pointers in the block.
5419
*
5420
* NOTE: return value 1 means we should stop walking down.
5421
*/
5422
static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5423
struct btrfs_root *root,
5424
struct btrfs_path *path,
5425
struct walk_control *wc)
5426
{
5427
struct btrfs_fs_info *fs_info = root->fs_info;
5428
int level = wc->level;
5429
struct extent_buffer *eb = path->nodes[level];
5430
u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5431
int ret;
5432
5433
if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root))
5434
return 1;
5435
5436
/*
5437
* when reference count of tree block is 1, it won't increase
5438
* again. once full backref flag is set, we never clear it.
5439
*/
5440
if (wc->lookup_info &&
5441
((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5442
(wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5443
ASSERT(path->locks[level]);
5444
ret = btrfs_lookup_extent_info(trans, fs_info,
5445
eb->start, level, 1,
5446
&wc->refs[level],
5447
&wc->flags[level],
5448
NULL);
5449
if (ret)
5450
return ret;
5451
if (unlikely(wc->refs[level] == 0)) {
5452
btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5453
eb->start);
5454
return -EUCLEAN;
5455
}
5456
}
5457
5458
if (wc->stage == DROP_REFERENCE) {
5459
if (wc->refs[level] > 1)
5460
return 1;
5461
5462
if (path->locks[level] && !wc->keep_locks) {
5463
btrfs_tree_unlock_rw(eb, path->locks[level]);
5464
path->locks[level] = 0;
5465
}
5466
return 0;
5467
}
5468
5469
/* wc->stage == UPDATE_BACKREF */
5470
if (!(wc->flags[level] & flag)) {
5471
ASSERT(path->locks[level]);
5472
ret = btrfs_inc_ref(trans, root, eb, 1);
5473
if (ret) {
5474
btrfs_abort_transaction(trans, ret);
5475
return ret;
5476
}
5477
ret = btrfs_dec_ref(trans, root, eb, 0);
5478
if (ret) {
5479
btrfs_abort_transaction(trans, ret);
5480
return ret;
5481
}
5482
ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5483
if (ret) {
5484
btrfs_abort_transaction(trans, ret);
5485
return ret;
5486
}
5487
wc->flags[level] |= flag;
5488
}
5489
5490
/*
5491
* the block is shared by multiple trees, so it's not good to
5492
* keep the tree lock
5493
*/
5494
if (path->locks[level] && level > 0) {
5495
btrfs_tree_unlock_rw(eb, path->locks[level]);
5496
path->locks[level] = 0;
5497
}
5498
return 0;
5499
}
5500
5501
/*
5502
* This is used to verify a ref exists for this root to deal with a bug where we
5503
* would have a drop_progress key that hadn't been updated properly.
5504
*/
5505
static int check_ref_exists(struct btrfs_trans_handle *trans,
5506
struct btrfs_root *root, u64 bytenr, u64 parent,
5507
int level)
5508
{
5509
struct btrfs_delayed_ref_root *delayed_refs;
5510
struct btrfs_delayed_ref_head *head;
5511
BTRFS_PATH_AUTO_FREE(path);
5512
struct btrfs_extent_inline_ref *iref;
5513
int ret;
5514
bool exists = false;
5515
5516
path = btrfs_alloc_path();
5517
if (!path)
5518
return -ENOMEM;
5519
again:
5520
ret = lookup_extent_backref(trans, path, &iref, bytenr,
5521
root->fs_info->nodesize, parent,
5522
btrfs_root_id(root), level, 0);
5523
if (ret != -ENOENT) {
5524
/*
5525
* If we get 0 then we found our reference, return 1, else
5526
* return the error if it's not -ENOENT;
5527
*/
5528
return (ret < 0 ) ? ret : 1;
5529
}
5530
5531
/*
5532
* We could have a delayed ref with this reference, so look it up while
5533
* we're holding the path open to make sure we don't race with the
5534
* delayed ref running.
5535
*/
5536
delayed_refs = &trans->transaction->delayed_refs;
5537
spin_lock(&delayed_refs->lock);
5538
head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
5539
if (!head)
5540
goto out;
5541
if (!mutex_trylock(&head->mutex)) {
5542
/*
5543
* We're contended, means that the delayed ref is running, get a
5544
* reference and wait for the ref head to be complete and then
5545
* try again.
5546
*/
5547
refcount_inc(&head->refs);
5548
spin_unlock(&delayed_refs->lock);
5549
5550
btrfs_release_path(path);
5551
5552
mutex_lock(&head->mutex);
5553
mutex_unlock(&head->mutex);
5554
btrfs_put_delayed_ref_head(head);
5555
goto again;
5556
}
5557
5558
exists = btrfs_find_delayed_tree_ref(head, btrfs_root_id(root), parent);
5559
mutex_unlock(&head->mutex);
5560
out:
5561
spin_unlock(&delayed_refs->lock);
5562
return exists ? 1 : 0;
5563
}
5564
5565
/*
5566
* We may not have an uptodate block, so if we are going to walk down into this
5567
* block we need to drop the lock, read it off of the disk, re-lock it and
5568
* return to continue dropping the snapshot.
5569
*/
5570
static int check_next_block_uptodate(struct btrfs_trans_handle *trans,
5571
struct btrfs_root *root,
5572
struct btrfs_path *path,
5573
struct walk_control *wc,
5574
struct extent_buffer *next)
5575
{
5576
struct btrfs_tree_parent_check check = { 0 };
5577
u64 generation;
5578
int level = wc->level;
5579
int ret;
5580
5581
btrfs_assert_tree_write_locked(next);
5582
5583
generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]);
5584
5585
if (btrfs_buffer_uptodate(next, generation, 0))
5586
return 0;
5587
5588
check.level = level - 1;
5589
check.transid = generation;
5590
check.owner_root = btrfs_root_id(root);
5591
check.has_first_key = true;
5592
btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]);
5593
5594
btrfs_tree_unlock(next);
5595
if (level == 1)
5596
reada_walk_down(trans, root, wc, path);
5597
ret = btrfs_read_extent_buffer(next, &check);
5598
if (ret) {
5599
free_extent_buffer(next);
5600
return ret;
5601
}
5602
btrfs_tree_lock(next);
5603
wc->lookup_info = 1;
5604
return 0;
5605
}
5606
5607
/*
5608
* If we determine that we don't have to visit wc->level - 1 then we need to
5609
* determine if we can drop our reference.
5610
*
5611
* If we are UPDATE_BACKREF then we will not, we need to update our backrefs.
5612
*
5613
* If we are DROP_REFERENCE this will figure out if we need to drop our current
5614
* reference, skipping it if we dropped it from a previous incompleted drop, or
5615
* dropping it if we still have a reference to it.
5616
*/
5617
static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5618
struct btrfs_path *path, struct walk_control *wc,
5619
struct extent_buffer *next, u64 owner_root)
5620
{
5621
struct btrfs_ref ref = {
5622
.action = BTRFS_DROP_DELAYED_REF,
5623
.bytenr = next->start,
5624
.num_bytes = root->fs_info->nodesize,
5625
.owning_root = owner_root,
5626
.ref_root = btrfs_root_id(root),
5627
};
5628
int level = wc->level;
5629
int ret;
5630
5631
/* We are UPDATE_BACKREF, we're not dropping anything. */
5632
if (wc->stage == UPDATE_BACKREF)
5633
return 0;
5634
5635
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5636
ref.parent = path->nodes[level]->start;
5637
} else {
5638
ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level]));
5639
if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) {
5640
btrfs_err(root->fs_info, "mismatched block owner");
5641
return -EIO;
5642
}
5643
}
5644
5645
/*
5646
* If we had a drop_progress we need to verify the refs are set as
5647
* expected. If we find our ref then we know that from here on out
5648
* everything should be correct, and we can clear the
5649
* ->restarted flag.
5650
*/
5651
if (wc->restarted) {
5652
ret = check_ref_exists(trans, root, next->start, ref.parent,
5653
level - 1);
5654
if (ret <= 0)
5655
return ret;
5656
ret = 0;
5657
wc->restarted = 0;
5658
}
5659
5660
/*
5661
* Reloc tree doesn't contribute to qgroup numbers, and we have already
5662
* accounted them at merge time (replace_path), thus we could skip
5663
* expensive subtree trace here.
5664
*/
5665
if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
5666
wc->refs[level - 1] > 1) {
5667
u64 generation = btrfs_node_ptr_generation(path->nodes[level],
5668
path->slots[level]);
5669
5670
ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1);
5671
if (ret) {
5672
btrfs_err_rl(root->fs_info,
5673
"error %d accounting shared subtree, quota is out of sync, rescan required",
5674
ret);
5675
}
5676
}
5677
5678
/*
5679
* We need to update the next key in our walk control so we can update
5680
* the drop_progress key accordingly. We don't care if find_next_key
5681
* doesn't find a key because that means we're at the end and are going
5682
* to clean up now.
5683
*/
5684
wc->drop_level = level;
5685
find_next_key(path, level, &wc->drop_progress);
5686
5687
btrfs_init_tree_ref(&ref, level - 1, 0, false);
5688
return btrfs_free_extent(trans, &ref);
5689
}
5690
5691
/*
5692
* helper to process tree block pointer.
5693
*
5694
* when wc->stage == DROP_REFERENCE, this function checks
5695
* reference count of the block pointed to. if the block
5696
* is shared and we need update back refs for the subtree
5697
* rooted at the block, this function changes wc->stage to
5698
* UPDATE_BACKREF. if the block is shared and there is no
5699
* need to update back, this function drops the reference
5700
* to the block.
5701
*
5702
* NOTE: return value 1 means we should stop walking down.
5703
*/
5704
static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5705
struct btrfs_root *root,
5706
struct btrfs_path *path,
5707
struct walk_control *wc)
5708
{
5709
struct btrfs_fs_info *fs_info = root->fs_info;
5710
u64 bytenr;
5711
u64 generation;
5712
u64 owner_root = 0;
5713
struct extent_buffer *next;
5714
int level = wc->level;
5715
int ret = 0;
5716
5717
generation = btrfs_node_ptr_generation(path->nodes[level],
5718
path->slots[level]);
5719
/*
5720
* if the lower level block was created before the snapshot
5721
* was created, we know there is no need to update back refs
5722
* for the subtree
5723
*/
5724
if (wc->stage == UPDATE_BACKREF &&
5725
generation <= btrfs_root_origin_generation(root)) {
5726
wc->lookup_info = 1;
5727
return 1;
5728
}
5729
5730
bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5731
5732
next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root),
5733
level - 1);
5734
if (IS_ERR(next))
5735
return PTR_ERR(next);
5736
5737
btrfs_tree_lock(next);
5738
5739
ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5740
&wc->refs[level - 1],
5741
&wc->flags[level - 1],
5742
&owner_root);
5743
if (ret < 0)
5744
goto out_unlock;
5745
5746
if (unlikely(wc->refs[level - 1] == 0)) {
5747
btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5748
bytenr);
5749
ret = -EUCLEAN;
5750
goto out_unlock;
5751
}
5752
wc->lookup_info = 0;
5753
5754
/* If we don't have to walk into this node skip it. */
5755
if (!visit_node_for_delete(root, wc, path->nodes[level],
5756
wc->flags[level - 1], path->slots[level]))
5757
goto skip;
5758
5759
/*
5760
* We have to walk down into this node, and if we're currently at the
5761
* DROP_REFERNCE stage and this block is shared then we need to switch
5762
* to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF.
5763
*/
5764
if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) {
5765
wc->stage = UPDATE_BACKREF;
5766
wc->shared_level = level - 1;
5767
}
5768
5769
ret = check_next_block_uptodate(trans, root, path, wc, next);
5770
if (ret)
5771
return ret;
5772
5773
level--;
5774
ASSERT(level == btrfs_header_level(next));
5775
if (level != btrfs_header_level(next)) {
5776
btrfs_err(root->fs_info, "mismatched level");
5777
ret = -EIO;
5778
goto out_unlock;
5779
}
5780
path->nodes[level] = next;
5781
path->slots[level] = 0;
5782
path->locks[level] = BTRFS_WRITE_LOCK;
5783
wc->level = level;
5784
if (wc->level == 1)
5785
wc->reada_slot = 0;
5786
return 0;
5787
skip:
5788
ret = maybe_drop_reference(trans, root, path, wc, next, owner_root);
5789
if (ret)
5790
goto out_unlock;
5791
wc->refs[level - 1] = 0;
5792
wc->flags[level - 1] = 0;
5793
wc->lookup_info = 1;
5794
ret = 1;
5795
5796
out_unlock:
5797
btrfs_tree_unlock(next);
5798
free_extent_buffer(next);
5799
5800
return ret;
5801
}
5802
5803
/*
5804
* helper to process tree block while walking up the tree.
5805
*
5806
* when wc->stage == DROP_REFERENCE, this function drops
5807
* reference count on the block.
5808
*
5809
* when wc->stage == UPDATE_BACKREF, this function changes
5810
* wc->stage back to DROP_REFERENCE if we changed wc->stage
5811
* to UPDATE_BACKREF previously while processing the block.
5812
*
5813
* NOTE: return value 1 means we should stop walking up.
5814
*/
5815
static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5816
struct btrfs_root *root,
5817
struct btrfs_path *path,
5818
struct walk_control *wc)
5819
{
5820
struct btrfs_fs_info *fs_info = root->fs_info;
5821
int ret = 0;
5822
int level = wc->level;
5823
struct extent_buffer *eb = path->nodes[level];
5824
u64 parent = 0;
5825
5826
if (wc->stage == UPDATE_BACKREF) {
5827
ASSERT(wc->shared_level >= level);
5828
if (level < wc->shared_level)
5829
goto out;
5830
5831
ret = find_next_key(path, level + 1, &wc->update_progress);
5832
if (ret > 0)
5833
wc->update_ref = 0;
5834
5835
wc->stage = DROP_REFERENCE;
5836
wc->shared_level = -1;
5837
path->slots[level] = 0;
5838
5839
/*
5840
* check reference count again if the block isn't locked.
5841
* we should start walking down the tree again if reference
5842
* count is one.
5843
*/
5844
if (!path->locks[level]) {
5845
ASSERT(level > 0);
5846
btrfs_tree_lock(eb);
5847
path->locks[level] = BTRFS_WRITE_LOCK;
5848
5849
ret = btrfs_lookup_extent_info(trans, fs_info,
5850
eb->start, level, 1,
5851
&wc->refs[level],
5852
&wc->flags[level],
5853
NULL);
5854
if (ret < 0) {
5855
btrfs_tree_unlock_rw(eb, path->locks[level]);
5856
path->locks[level] = 0;
5857
return ret;
5858
}
5859
if (unlikely(wc->refs[level] == 0)) {
5860
btrfs_tree_unlock_rw(eb, path->locks[level]);
5861
btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5862
eb->start);
5863
return -EUCLEAN;
5864
}
5865
if (wc->refs[level] == 1) {
5866
btrfs_tree_unlock_rw(eb, path->locks[level]);
5867
path->locks[level] = 0;
5868
return 1;
5869
}
5870
}
5871
}
5872
5873
/* wc->stage == DROP_REFERENCE */
5874
ASSERT(path->locks[level] || wc->refs[level] == 1);
5875
5876
if (wc->refs[level] == 1) {
5877
if (level == 0) {
5878
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5879
ret = btrfs_dec_ref(trans, root, eb, 1);
5880
if (ret) {
5881
btrfs_abort_transaction(trans, ret);
5882
return ret;
5883
}
5884
} else {
5885
ret = btrfs_dec_ref(trans, root, eb, 0);
5886
if (ret) {
5887
btrfs_abort_transaction(trans, ret);
5888
return ret;
5889
}
5890
}
5891
if (btrfs_is_fstree(btrfs_root_id(root))) {
5892
ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5893
if (ret) {
5894
btrfs_err_rl(fs_info,
5895
"error %d accounting leaf items, quota is out of sync, rescan required",
5896
ret);
5897
}
5898
}
5899
}
5900
/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5901
if (!path->locks[level]) {
5902
btrfs_tree_lock(eb);
5903
path->locks[level] = BTRFS_WRITE_LOCK;
5904
}
5905
btrfs_clear_buffer_dirty(trans, eb);
5906
}
5907
5908
if (eb == root->node) {
5909
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5910
parent = eb->start;
5911
else if (btrfs_root_id(root) != btrfs_header_owner(eb))
5912
goto owner_mismatch;
5913
} else {
5914
if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5915
parent = path->nodes[level + 1]->start;
5916
else if (btrfs_root_id(root) !=
5917
btrfs_header_owner(path->nodes[level + 1]))
5918
goto owner_mismatch;
5919
}
5920
5921
ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5922
wc->refs[level] == 1);
5923
if (ret < 0)
5924
btrfs_abort_transaction(trans, ret);
5925
out:
5926
wc->refs[level] = 0;
5927
wc->flags[level] = 0;
5928
return ret;
5929
5930
owner_mismatch:
5931
btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5932
btrfs_header_owner(eb), btrfs_root_id(root));
5933
return -EUCLEAN;
5934
}
5935
5936
/*
5937
* walk_down_tree consists of two steps.
5938
*
5939
* walk_down_proc(). Look up the reference count and reference of our current
5940
* wc->level. At this point path->nodes[wc->level] should be populated and
5941
* uptodate, and in most cases should already be locked. If we are in
5942
* DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and
5943
* we can walk back up the tree. If we are UPDATE_BACKREF we have to set
5944
* FULL_BACKREF on this node if it's not already set, and then do the
5945
* FULL_BACKREF conversion dance, which is to drop the root reference and add
5946
* the shared reference to all of this nodes children.
5947
*
5948
* do_walk_down(). This is where we actually start iterating on the children of
5949
* our current path->nodes[wc->level]. For DROP_REFERENCE that means dropping
5950
* our reference to the children that return false from visit_node_for_delete(),
5951
* which has various conditions where we know we can just drop our reference
5952
* without visiting the node. For UPDATE_BACKREF we will skip any children that
5953
* visit_node_for_delete() returns false for, only walking down when necessary.
5954
* The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of
5955
* snapshot deletion.
5956
*/
5957
static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5958
struct btrfs_root *root,
5959
struct btrfs_path *path,
5960
struct walk_control *wc)
5961
{
5962
int level = wc->level;
5963
int ret = 0;
5964
5965
wc->lookup_info = 1;
5966
while (level >= 0) {
5967
ret = walk_down_proc(trans, root, path, wc);
5968
if (ret)
5969
break;
5970
5971
if (level == 0)
5972
break;
5973
5974
if (path->slots[level] >=
5975
btrfs_header_nritems(path->nodes[level]))
5976
break;
5977
5978
ret = do_walk_down(trans, root, path, wc);
5979
if (ret > 0) {
5980
path->slots[level]++;
5981
continue;
5982
} else if (ret < 0)
5983
break;
5984
level = wc->level;
5985
}
5986
return (ret == 1) ? 0 : ret;
5987
}
5988
5989
/*
5990
* walk_up_tree() is responsible for making sure we visit every slot on our
5991
* current node, and if we're at the end of that node then we call
5992
* walk_up_proc() on our current node which will do one of a few things based on
5993
* our stage.
5994
*
5995
* UPDATE_BACKREF. If we wc->level is currently less than our wc->shared_level
5996
* then we need to walk back up the tree, and then going back down into the
5997
* other slots via walk_down_tree to update any other children from our original
5998
* wc->shared_level. Once we're at or above our wc->shared_level we can switch
5999
* back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on.
6000
*
6001
* DROP_REFERENCE. If our refs == 1 then we're going to free this tree block.
6002
* If we're level 0 then we need to btrfs_dec_ref() on all of the data extents
6003
* in our current leaf. After that we call btrfs_free_tree_block() on the
6004
* current node and walk up to the next node to walk down the next slot.
6005
*/
6006
static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6007
struct btrfs_root *root,
6008
struct btrfs_path *path,
6009
struct walk_control *wc, int max_level)
6010
{
6011
int level = wc->level;
6012
int ret;
6013
6014
path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6015
while (level < max_level && path->nodes[level]) {
6016
wc->level = level;
6017
if (path->slots[level] + 1 <
6018
btrfs_header_nritems(path->nodes[level])) {
6019
path->slots[level]++;
6020
return 0;
6021
} else {
6022
ret = walk_up_proc(trans, root, path, wc);
6023
if (ret > 0)
6024
return 0;
6025
if (ret < 0)
6026
return ret;
6027
6028
if (path->locks[level]) {
6029
btrfs_tree_unlock_rw(path->nodes[level],
6030
path->locks[level]);
6031
path->locks[level] = 0;
6032
}
6033
free_extent_buffer(path->nodes[level]);
6034
path->nodes[level] = NULL;
6035
level++;
6036
}
6037
}
6038
return 1;
6039
}
6040
6041
/*
6042
* drop a subvolume tree.
6043
*
6044
* this function traverses the tree freeing any blocks that only
6045
* referenced by the tree.
6046
*
6047
* when a shared tree block is found. this function decreases its
6048
* reference count by one. if update_ref is true, this function
6049
* also make sure backrefs for the shared block and all lower level
6050
* blocks are properly updated.
6051
*
6052
* If called with for_reloc == 0, may exit early with -EAGAIN
6053
*/
6054
int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
6055
{
6056
const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID);
6057
struct btrfs_fs_info *fs_info = root->fs_info;
6058
struct btrfs_path *path;
6059
struct btrfs_trans_handle *trans;
6060
struct btrfs_root *tree_root = fs_info->tree_root;
6061
struct btrfs_root_item *root_item = &root->root_item;
6062
struct walk_control *wc;
6063
struct btrfs_key key;
6064
const u64 rootid = btrfs_root_id(root);
6065
int ret = 0;
6066
int level;
6067
bool root_dropped = false;
6068
bool unfinished_drop = false;
6069
6070
btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root));
6071
6072
path = btrfs_alloc_path();
6073
if (!path) {
6074
ret = -ENOMEM;
6075
goto out;
6076
}
6077
6078
wc = kzalloc(sizeof(*wc), GFP_NOFS);
6079
if (!wc) {
6080
btrfs_free_path(path);
6081
ret = -ENOMEM;
6082
goto out;
6083
}
6084
6085
/*
6086
* Use join to avoid potential EINTR from transaction start. See
6087
* wait_reserve_ticket and the whole reservation callchain.
6088
*/
6089
if (for_reloc)
6090
trans = btrfs_join_transaction(tree_root);
6091
else
6092
trans = btrfs_start_transaction(tree_root, 0);
6093
if (IS_ERR(trans)) {
6094
ret = PTR_ERR(trans);
6095
goto out_free;
6096
}
6097
6098
ret = btrfs_run_delayed_items(trans);
6099
if (ret)
6100
goto out_end_trans;
6101
6102
/*
6103
* This will help us catch people modifying the fs tree while we're
6104
* dropping it. It is unsafe to mess with the fs tree while it's being
6105
* dropped as we unlock the root node and parent nodes as we walk down
6106
* the tree, assuming nothing will change. If something does change
6107
* then we'll have stale information and drop references to blocks we've
6108
* already dropped.
6109
*/
6110
set_bit(BTRFS_ROOT_DELETING, &root->state);
6111
unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
6112
6113
if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6114
level = btrfs_header_level(root->node);
6115
path->nodes[level] = btrfs_lock_root_node(root);
6116
path->slots[level] = 0;
6117
path->locks[level] = BTRFS_WRITE_LOCK;
6118
memset(&wc->update_progress, 0,
6119
sizeof(wc->update_progress));
6120
} else {
6121
btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6122
memcpy(&wc->update_progress, &key,
6123
sizeof(wc->update_progress));
6124
6125
level = btrfs_root_drop_level(root_item);
6126
BUG_ON(level == 0);
6127
path->lowest_level = level;
6128
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6129
path->lowest_level = 0;
6130
if (ret < 0)
6131
goto out_end_trans;
6132
6133
WARN_ON(ret > 0);
6134
ret = 0;
6135
6136
/*
6137
* unlock our path, this is safe because only this
6138
* function is allowed to delete this snapshot
6139
*/
6140
btrfs_unlock_up_safe(path, 0);
6141
6142
level = btrfs_header_level(root->node);
6143
while (1) {
6144
btrfs_tree_lock(path->nodes[level]);
6145
path->locks[level] = BTRFS_WRITE_LOCK;
6146
6147
/*
6148
* btrfs_lookup_extent_info() returns 0 for success,
6149
* or < 0 for error.
6150
*/
6151
ret = btrfs_lookup_extent_info(trans, fs_info,
6152
path->nodes[level]->start,
6153
level, 1, &wc->refs[level],
6154
&wc->flags[level], NULL);
6155
if (ret < 0)
6156
goto out_end_trans;
6157
6158
BUG_ON(wc->refs[level] == 0);
6159
6160
if (level == btrfs_root_drop_level(root_item))
6161
break;
6162
6163
btrfs_tree_unlock(path->nodes[level]);
6164
path->locks[level] = 0;
6165
WARN_ON(wc->refs[level] != 1);
6166
level--;
6167
}
6168
}
6169
6170
wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
6171
wc->level = level;
6172
wc->shared_level = -1;
6173
wc->stage = DROP_REFERENCE;
6174
wc->update_ref = update_ref;
6175
wc->keep_locks = 0;
6176
wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6177
6178
while (1) {
6179
6180
ret = walk_down_tree(trans, root, path, wc);
6181
if (ret < 0) {
6182
btrfs_abort_transaction(trans, ret);
6183
break;
6184
}
6185
6186
ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6187
if (ret < 0) {
6188
btrfs_abort_transaction(trans, ret);
6189
break;
6190
}
6191
6192
if (ret > 0) {
6193
BUG_ON(wc->stage != DROP_REFERENCE);
6194
ret = 0;
6195
break;
6196
}
6197
6198
if (wc->stage == DROP_REFERENCE) {
6199
wc->drop_level = wc->level;
6200
btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
6201
&wc->drop_progress,
6202
path->slots[wc->drop_level]);
6203
}
6204
btrfs_cpu_key_to_disk(&root_item->drop_progress,
6205
&wc->drop_progress);
6206
btrfs_set_root_drop_level(root_item, wc->drop_level);
6207
6208
BUG_ON(wc->level == 0);
6209
if (btrfs_should_end_transaction(trans) ||
6210
(!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6211
ret = btrfs_update_root(trans, tree_root,
6212
&root->root_key,
6213
root_item);
6214
if (ret) {
6215
btrfs_abort_transaction(trans, ret);
6216
goto out_end_trans;
6217
}
6218
6219
if (!is_reloc_root)
6220
btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6221
6222
btrfs_end_transaction_throttle(trans);
6223
if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6224
btrfs_debug(fs_info,
6225
"drop snapshot early exit");
6226
ret = -EAGAIN;
6227
goto out_free;
6228
}
6229
6230
/*
6231
* Use join to avoid potential EINTR from transaction
6232
* start. See wait_reserve_ticket and the whole
6233
* reservation callchain.
6234
*/
6235
if (for_reloc)
6236
trans = btrfs_join_transaction(tree_root);
6237
else
6238
trans = btrfs_start_transaction(tree_root, 0);
6239
if (IS_ERR(trans)) {
6240
ret = PTR_ERR(trans);
6241
goto out_free;
6242
}
6243
}
6244
}
6245
btrfs_release_path(path);
6246
if (ret)
6247
goto out_end_trans;
6248
6249
ret = btrfs_del_root(trans, &root->root_key);
6250
if (ret) {
6251
btrfs_abort_transaction(trans, ret);
6252
goto out_end_trans;
6253
}
6254
6255
if (!is_reloc_root) {
6256
ret = btrfs_find_root(tree_root, &root->root_key, path,
6257
NULL, NULL);
6258
if (ret < 0) {
6259
btrfs_abort_transaction(trans, ret);
6260
goto out_end_trans;
6261
} else if (ret > 0) {
6262
ret = 0;
6263
/*
6264
* If we fail to delete the orphan item this time
6265
* around, it'll get picked up the next time.
6266
*
6267
* The most common failure here is just -ENOENT.
6268
*/
6269
btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root));
6270
}
6271
}
6272
6273
/*
6274
* This subvolume is going to be completely dropped, and won't be
6275
* recorded as dirty roots, thus pertrans meta rsv will not be freed at
6276
* commit transaction time. So free it here manually.
6277
*/
6278
btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6279
btrfs_qgroup_free_meta_all_pertrans(root);
6280
6281
if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6282
btrfs_add_dropped_root(trans, root);
6283
else
6284
btrfs_put_root(root);
6285
root_dropped = true;
6286
out_end_trans:
6287
if (!is_reloc_root)
6288
btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6289
6290
btrfs_end_transaction_throttle(trans);
6291
out_free:
6292
kfree(wc);
6293
btrfs_free_path(path);
6294
out:
6295
if (!ret && root_dropped) {
6296
ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid);
6297
if (ret < 0)
6298
btrfs_warn_rl(fs_info,
6299
"failed to cleanup qgroup 0/%llu: %d",
6300
rootid, ret);
6301
ret = 0;
6302
}
6303
/*
6304
* We were an unfinished drop root, check to see if there are any
6305
* pending, and if not clear and wake up any waiters.
6306
*/
6307
if (!ret && unfinished_drop)
6308
btrfs_maybe_wake_unfinished_drop(fs_info);
6309
6310
/*
6311
* So if we need to stop dropping the snapshot for whatever reason we
6312
* need to make sure to add it back to the dead root list so that we
6313
* keep trying to do the work later. This also cleans up roots if we
6314
* don't have it in the radix (like when we recover after a power fail
6315
* or unmount) so we don't leak memory.
6316
*/
6317
if (!for_reloc && !root_dropped)
6318
btrfs_add_dead_root(root);
6319
return ret;
6320
}
6321
6322
/*
6323
* drop subtree rooted at tree block 'node'.
6324
*
6325
* NOTE: this function will unlock and release tree block 'node'
6326
* only used by relocation code
6327
*/
6328
int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6329
struct btrfs_root *root,
6330
struct extent_buffer *node,
6331
struct extent_buffer *parent)
6332
{
6333
struct btrfs_fs_info *fs_info = root->fs_info;
6334
BTRFS_PATH_AUTO_FREE(path);
6335
struct walk_control *wc;
6336
int level;
6337
int parent_level;
6338
int ret = 0;
6339
6340
BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
6341
6342
path = btrfs_alloc_path();
6343
if (!path)
6344
return -ENOMEM;
6345
6346
wc = kzalloc(sizeof(*wc), GFP_NOFS);
6347
if (!wc)
6348
return -ENOMEM;
6349
6350
btrfs_assert_tree_write_locked(parent);
6351
parent_level = btrfs_header_level(parent);
6352
refcount_inc(&parent->refs);
6353
path->nodes[parent_level] = parent;
6354
path->slots[parent_level] = btrfs_header_nritems(parent);
6355
6356
btrfs_assert_tree_write_locked(node);
6357
level = btrfs_header_level(node);
6358
path->nodes[level] = node;
6359
path->slots[level] = 0;
6360
path->locks[level] = BTRFS_WRITE_LOCK;
6361
6362
wc->refs[parent_level] = 1;
6363
wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6364
wc->level = level;
6365
wc->shared_level = -1;
6366
wc->stage = DROP_REFERENCE;
6367
wc->update_ref = 0;
6368
wc->keep_locks = 1;
6369
wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6370
6371
while (1) {
6372
ret = walk_down_tree(trans, root, path, wc);
6373
if (ret < 0)
6374
break;
6375
6376
ret = walk_up_tree(trans, root, path, wc, parent_level);
6377
if (ret) {
6378
if (ret > 0)
6379
ret = 0;
6380
break;
6381
}
6382
}
6383
6384
kfree(wc);
6385
return ret;
6386
}
6387
6388
/*
6389
* Unpin the extent range in an error context and don't add the space back.
6390
* Errors are not propagated further.
6391
*/
6392
void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
6393
{
6394
unpin_extent_range(fs_info, start, end, false);
6395
}
6396
6397
/*
6398
* It used to be that old block groups would be left around forever.
6399
* Iterating over them would be enough to trim unused space. Since we
6400
* now automatically remove them, we also need to iterate over unallocated
6401
* space.
6402
*
6403
* We don't want a transaction for this since the discard may take a
6404
* substantial amount of time. We don't require that a transaction be
6405
* running, but we do need to take a running transaction into account
6406
* to ensure that we're not discarding chunks that were released or
6407
* allocated in the current transaction.
6408
*
6409
* Holding the chunks lock will prevent other threads from allocating
6410
* or releasing chunks, but it won't prevent a running transaction
6411
* from committing and releasing the memory that the pending chunks
6412
* list head uses. For that, we need to take a reference to the
6413
* transaction and hold the commit root sem. We only need to hold
6414
* it while performing the free space search since we have already
6415
* held back allocations.
6416
*/
6417
static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6418
{
6419
u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6420
int ret;
6421
6422
*trimmed = 0;
6423
6424
/* Discard not supported = nothing to do. */
6425
if (!bdev_max_discard_sectors(device->bdev))
6426
return 0;
6427
6428
/* Not writable = nothing to do. */
6429
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6430
return 0;
6431
6432
/* No free space = nothing to do. */
6433
if (device->total_bytes <= device->bytes_used)
6434
return 0;
6435
6436
ret = 0;
6437
6438
while (1) {
6439
struct btrfs_fs_info *fs_info = device->fs_info;
6440
u64 bytes;
6441
6442
ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6443
if (ret)
6444
break;
6445
6446
btrfs_find_first_clear_extent_bit(&device->alloc_state, start,
6447
&start, &end,
6448
CHUNK_TRIMMED | CHUNK_ALLOCATED);
6449
6450
/* Check if there are any CHUNK_* bits left */
6451
if (start > device->total_bytes) {
6452
DEBUG_WARN();
6453
btrfs_warn(fs_info,
6454
"ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6455
start, end - start + 1,
6456
btrfs_dev_name(device),
6457
device->total_bytes);
6458
mutex_unlock(&fs_info->chunk_mutex);
6459
ret = 0;
6460
break;
6461
}
6462
6463
/* Ensure we skip the reserved space on each device. */
6464
start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6465
6466
/*
6467
* If find_first_clear_extent_bit find a range that spans the
6468
* end of the device it will set end to -1, in this case it's up
6469
* to the caller to trim the value to the size of the device.
6470
*/
6471
end = min(end, device->total_bytes - 1);
6472
6473
len = end - start + 1;
6474
6475
/* We didn't find any extents */
6476
if (!len) {
6477
mutex_unlock(&fs_info->chunk_mutex);
6478
ret = 0;
6479
break;
6480
}
6481
6482
ret = btrfs_issue_discard(device->bdev, start, len,
6483
&bytes);
6484
if (!ret)
6485
btrfs_set_extent_bit(&device->alloc_state, start,
6486
start + bytes - 1, CHUNK_TRIMMED, NULL);
6487
mutex_unlock(&fs_info->chunk_mutex);
6488
6489
if (ret)
6490
break;
6491
6492
start += len;
6493
*trimmed += bytes;
6494
6495
if (btrfs_trim_interrupted()) {
6496
ret = -ERESTARTSYS;
6497
break;
6498
}
6499
6500
cond_resched();
6501
}
6502
6503
return ret;
6504
}
6505
6506
/*
6507
* Trim the whole filesystem by:
6508
* 1) trimming the free space in each block group
6509
* 2) trimming the unallocated space on each device
6510
*
6511
* This will also continue trimming even if a block group or device encounters
6512
* an error. The return value will be the last error, or 0 if nothing bad
6513
* happens.
6514
*/
6515
int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6516
{
6517
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6518
struct btrfs_block_group *cache = NULL;
6519
struct btrfs_device *device;
6520
u64 group_trimmed;
6521
u64 range_end = U64_MAX;
6522
u64 start;
6523
u64 end;
6524
u64 trimmed = 0;
6525
u64 bg_failed = 0;
6526
u64 dev_failed = 0;
6527
int bg_ret = 0;
6528
int dev_ret = 0;
6529
int ret = 0;
6530
6531
if (range->start == U64_MAX)
6532
return -EINVAL;
6533
6534
/*
6535
* Check range overflow if range->len is set.
6536
* The default range->len is U64_MAX.
6537
*/
6538
if (range->len != U64_MAX &&
6539
check_add_overflow(range->start, range->len, &range_end))
6540
return -EINVAL;
6541
6542
cache = btrfs_lookup_first_block_group(fs_info, range->start);
6543
for (; cache; cache = btrfs_next_block_group(cache)) {
6544
if (cache->start >= range_end) {
6545
btrfs_put_block_group(cache);
6546
break;
6547
}
6548
6549
start = max(range->start, cache->start);
6550
end = min(range_end, cache->start + cache->length);
6551
6552
if (end - start >= range->minlen) {
6553
if (!btrfs_block_group_done(cache)) {
6554
ret = btrfs_cache_block_group(cache, true);
6555
if (ret) {
6556
bg_failed++;
6557
bg_ret = ret;
6558
continue;
6559
}
6560
}
6561
ret = btrfs_trim_block_group(cache,
6562
&group_trimmed,
6563
start,
6564
end,
6565
range->minlen);
6566
6567
trimmed += group_trimmed;
6568
if (ret) {
6569
bg_failed++;
6570
bg_ret = ret;
6571
continue;
6572
}
6573
}
6574
}
6575
6576
if (bg_failed)
6577
btrfs_warn(fs_info,
6578
"failed to trim %llu block group(s), last error %d",
6579
bg_failed, bg_ret);
6580
6581
mutex_lock(&fs_devices->device_list_mutex);
6582
list_for_each_entry(device, &fs_devices->devices, dev_list) {
6583
if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6584
continue;
6585
6586
ret = btrfs_trim_free_extents(device, &group_trimmed);
6587
6588
trimmed += group_trimmed;
6589
if (ret) {
6590
dev_failed++;
6591
dev_ret = ret;
6592
break;
6593
}
6594
}
6595
mutex_unlock(&fs_devices->device_list_mutex);
6596
6597
if (dev_failed)
6598
btrfs_warn(fs_info,
6599
"failed to trim %llu device(s), last error %d",
6600
dev_failed, dev_ret);
6601
range->len = trimmed;
6602
if (bg_ret)
6603
return bg_ret;
6604
return dev_ret;
6605
}
6606
6607