Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/btrfs/extent_io.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0
2
3
#include <linux/bitops.h>
4
#include <linux/slab.h>
5
#include <linux/bio.h>
6
#include <linux/mm.h>
7
#include <linux/pagemap.h>
8
#include <linux/page-flags.h>
9
#include <linux/sched/mm.h>
10
#include <linux/spinlock.h>
11
#include <linux/blkdev.h>
12
#include <linux/swap.h>
13
#include <linux/writeback.h>
14
#include <linux/pagevec.h>
15
#include <linux/prefetch.h>
16
#include <linux/fsverity.h>
17
#include "extent_io.h"
18
#include "extent-io-tree.h"
19
#include "extent_map.h"
20
#include "ctree.h"
21
#include "btrfs_inode.h"
22
#include "bio.h"
23
#include "locking.h"
24
#include "backref.h"
25
#include "disk-io.h"
26
#include "subpage.h"
27
#include "zoned.h"
28
#include "block-group.h"
29
#include "compression.h"
30
#include "fs.h"
31
#include "accessors.h"
32
#include "file-item.h"
33
#include "file.h"
34
#include "dev-replace.h"
35
#include "super.h"
36
#include "transaction.h"
37
38
static struct kmem_cache *extent_buffer_cache;
39
40
#ifdef CONFIG_BTRFS_DEBUG
41
static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42
{
43
struct btrfs_fs_info *fs_info = eb->fs_info;
44
unsigned long flags;
45
46
spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47
list_add(&eb->leak_list, &fs_info->allocated_ebs);
48
spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49
}
50
51
static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52
{
53
struct btrfs_fs_info *fs_info = eb->fs_info;
54
unsigned long flags;
55
56
spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57
list_del(&eb->leak_list);
58
spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59
}
60
61
void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62
{
63
struct extent_buffer *eb;
64
unsigned long flags;
65
66
/*
67
* If we didn't get into open_ctree our allocated_ebs will not be
68
* initialized, so just skip this.
69
*/
70
if (!fs_info->allocated_ebs.next)
71
return;
72
73
WARN_ON(!list_empty(&fs_info->allocated_ebs));
74
spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75
while (!list_empty(&fs_info->allocated_ebs)) {
76
eb = list_first_entry(&fs_info->allocated_ebs,
77
struct extent_buffer, leak_list);
78
btrfs_err(fs_info,
79
"buffer leak start %llu len %u refs %d bflags %lu owner %llu",
80
eb->start, eb->len, refcount_read(&eb->refs), eb->bflags,
81
btrfs_header_owner(eb));
82
list_del(&eb->leak_list);
83
WARN_ON_ONCE(1);
84
kmem_cache_free(extent_buffer_cache, eb);
85
}
86
spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87
}
88
#else
89
#define btrfs_leak_debug_add_eb(eb) do {} while (0)
90
#define btrfs_leak_debug_del_eb(eb) do {} while (0)
91
#endif
92
93
/*
94
* Structure to record info about the bio being assembled, and other info like
95
* how many bytes are there before stripe/ordered extent boundary.
96
*/
97
struct btrfs_bio_ctrl {
98
struct btrfs_bio *bbio;
99
/* Last byte contained in bbio + 1 . */
100
loff_t next_file_offset;
101
enum btrfs_compression_type compress_type;
102
u32 len_to_oe_boundary;
103
blk_opf_t opf;
104
btrfs_bio_end_io_t end_io_func;
105
struct writeback_control *wbc;
106
107
/*
108
* The sectors of the page which are going to be submitted by
109
* extent_writepage_io().
110
* This is to avoid touching ranges covered by compression/inline.
111
*/
112
unsigned long submit_bitmap;
113
struct readahead_control *ractl;
114
};
115
116
static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
117
{
118
struct btrfs_bio *bbio = bio_ctrl->bbio;
119
120
if (!bbio)
121
return;
122
123
/* Caller should ensure the bio has at least some range added */
124
ASSERT(bbio->bio.bi_iter.bi_size);
125
126
if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
127
bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
128
btrfs_submit_compressed_read(bbio);
129
else
130
btrfs_submit_bbio(bbio, 0);
131
132
/* The bbio is owned by the end_io handler now */
133
bio_ctrl->bbio = NULL;
134
}
135
136
/*
137
* Submit or fail the current bio in the bio_ctrl structure.
138
*/
139
static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
140
{
141
struct btrfs_bio *bbio = bio_ctrl->bbio;
142
143
if (!bbio)
144
return;
145
146
if (ret) {
147
ASSERT(ret < 0);
148
btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
149
/* The bio is owned by the end_io handler now */
150
bio_ctrl->bbio = NULL;
151
} else {
152
submit_one_bio(bio_ctrl);
153
}
154
}
155
156
int __init extent_buffer_init_cachep(void)
157
{
158
extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
159
sizeof(struct extent_buffer), 0, 0,
160
NULL);
161
if (!extent_buffer_cache)
162
return -ENOMEM;
163
164
return 0;
165
}
166
167
void __cold extent_buffer_free_cachep(void)
168
{
169
/*
170
* Make sure all delayed rcu free are flushed before we
171
* destroy caches.
172
*/
173
rcu_barrier();
174
kmem_cache_destroy(extent_buffer_cache);
175
}
176
177
static void process_one_folio(struct btrfs_fs_info *fs_info,
178
struct folio *folio, const struct folio *locked_folio,
179
unsigned long page_ops, u64 start, u64 end)
180
{
181
u32 len;
182
183
ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
184
len = end + 1 - start;
185
186
if (page_ops & PAGE_SET_ORDERED)
187
btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
188
if (page_ops & PAGE_START_WRITEBACK) {
189
btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
190
btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
191
}
192
if (page_ops & PAGE_END_WRITEBACK)
193
btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
194
195
if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
196
btrfs_folio_end_lock(fs_info, folio, start, len);
197
}
198
199
static void __process_folios_contig(struct address_space *mapping,
200
const struct folio *locked_folio, u64 start,
201
u64 end, unsigned long page_ops)
202
{
203
struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
204
pgoff_t index = start >> PAGE_SHIFT;
205
pgoff_t end_index = end >> PAGE_SHIFT;
206
struct folio_batch fbatch;
207
int i;
208
209
folio_batch_init(&fbatch);
210
while (index <= end_index) {
211
int found_folios;
212
213
found_folios = filemap_get_folios_contig(mapping, &index,
214
end_index, &fbatch);
215
for (i = 0; i < found_folios; i++) {
216
struct folio *folio = fbatch.folios[i];
217
218
process_one_folio(fs_info, folio, locked_folio,
219
page_ops, start, end);
220
}
221
folio_batch_release(&fbatch);
222
cond_resched();
223
}
224
}
225
226
static noinline void unlock_delalloc_folio(const struct inode *inode,
227
struct folio *locked_folio,
228
u64 start, u64 end)
229
{
230
ASSERT(locked_folio);
231
232
__process_folios_contig(inode->i_mapping, locked_folio, start, end,
233
PAGE_UNLOCK);
234
}
235
236
static noinline int lock_delalloc_folios(struct inode *inode,
237
struct folio *locked_folio,
238
u64 start, u64 end)
239
{
240
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
241
struct address_space *mapping = inode->i_mapping;
242
pgoff_t index = start >> PAGE_SHIFT;
243
pgoff_t end_index = end >> PAGE_SHIFT;
244
u64 processed_end = start;
245
struct folio_batch fbatch;
246
247
folio_batch_init(&fbatch);
248
while (index <= end_index) {
249
unsigned int found_folios, i;
250
251
found_folios = filemap_get_folios_contig(mapping, &index,
252
end_index, &fbatch);
253
if (found_folios == 0)
254
goto out;
255
256
for (i = 0; i < found_folios; i++) {
257
struct folio *folio = fbatch.folios[i];
258
u64 range_start;
259
u32 range_len;
260
261
if (folio == locked_folio)
262
continue;
263
264
folio_lock(folio);
265
if (!folio_test_dirty(folio) || folio->mapping != mapping) {
266
folio_unlock(folio);
267
goto out;
268
}
269
range_start = max_t(u64, folio_pos(folio), start);
270
range_len = min_t(u64, folio_end(folio), end + 1) - range_start;
271
btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
272
273
processed_end = range_start + range_len - 1;
274
}
275
folio_batch_release(&fbatch);
276
cond_resched();
277
}
278
279
return 0;
280
out:
281
folio_batch_release(&fbatch);
282
if (processed_end > start)
283
unlock_delalloc_folio(inode, locked_folio, start, processed_end);
284
return -EAGAIN;
285
}
286
287
/*
288
* Find and lock a contiguous range of bytes in the file marked as delalloc, no
289
* more than @max_bytes.
290
*
291
* @start: The original start bytenr to search.
292
* Will store the extent range start bytenr.
293
* @end: The original end bytenr of the search range
294
* Will store the extent range end bytenr.
295
*
296
* Return true if we find a delalloc range which starts inside the original
297
* range, and @start/@end will store the delalloc range start/end.
298
*
299
* Return false if we can't find any delalloc range which starts inside the
300
* original range, and @start/@end will be the non-delalloc range start/end.
301
*/
302
EXPORT_FOR_TESTS
303
noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
304
struct folio *locked_folio,
305
u64 *start, u64 *end)
306
{
307
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
308
struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
309
const u64 orig_start = *start;
310
const u64 orig_end = *end;
311
/* The sanity tests may not set a valid fs_info. */
312
u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
313
u64 delalloc_start;
314
u64 delalloc_end;
315
bool found;
316
struct extent_state *cached_state = NULL;
317
int ret;
318
int loops = 0;
319
320
/* Caller should pass a valid @end to indicate the search range end */
321
ASSERT(orig_end > orig_start);
322
323
/* The range should at least cover part of the folio */
324
ASSERT(!(orig_start >= folio_end(locked_folio) ||
325
orig_end <= folio_pos(locked_folio)));
326
again:
327
/* step one, find a bunch of delalloc bytes starting at start */
328
delalloc_start = *start;
329
delalloc_end = 0;
330
found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
331
max_bytes, &cached_state);
332
if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
333
*start = delalloc_start;
334
335
/* @delalloc_end can be -1, never go beyond @orig_end */
336
*end = min(delalloc_end, orig_end);
337
btrfs_free_extent_state(cached_state);
338
return false;
339
}
340
341
/*
342
* start comes from the offset of locked_folio. We have to lock
343
* folios in order, so we can't process delalloc bytes before
344
* locked_folio
345
*/
346
if (delalloc_start < *start)
347
delalloc_start = *start;
348
349
/*
350
* make sure to limit the number of folios we try to lock down
351
*/
352
if (delalloc_end + 1 - delalloc_start > max_bytes)
353
delalloc_end = delalloc_start + max_bytes - 1;
354
355
/* step two, lock all the folioss after the folios that has start */
356
ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
357
delalloc_end);
358
ASSERT(!ret || ret == -EAGAIN);
359
if (ret == -EAGAIN) {
360
/* some of the folios are gone, lets avoid looping by
361
* shortening the size of the delalloc range we're searching
362
*/
363
btrfs_free_extent_state(cached_state);
364
cached_state = NULL;
365
if (!loops) {
366
max_bytes = PAGE_SIZE;
367
loops = 1;
368
goto again;
369
} else {
370
found = false;
371
goto out_failed;
372
}
373
}
374
375
/* step three, lock the state bits for the whole range */
376
btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
377
378
/* then test to make sure it is all still delalloc */
379
ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end,
380
EXTENT_DELALLOC, cached_state);
381
382
btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
383
if (!ret) {
384
unlock_delalloc_folio(inode, locked_folio, delalloc_start,
385
delalloc_end);
386
cond_resched();
387
goto again;
388
}
389
*start = delalloc_start;
390
*end = delalloc_end;
391
out_failed:
392
return found;
393
}
394
395
void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
396
const struct folio *locked_folio,
397
struct extent_state **cached,
398
u32 clear_bits, unsigned long page_ops)
399
{
400
btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
401
402
__process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
403
end, page_ops);
404
}
405
406
static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
407
{
408
struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
409
410
if (!fsverity_active(folio->mapping->host) ||
411
btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
412
start >= i_size_read(folio->mapping->host))
413
return true;
414
return fsverity_verify_folio(folio);
415
}
416
417
static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
418
{
419
struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
420
421
ASSERT(folio_pos(folio) <= start &&
422
start + len <= folio_end(folio));
423
424
if (uptodate && btrfs_verify_folio(folio, start, len))
425
btrfs_folio_set_uptodate(fs_info, folio, start, len);
426
else
427
btrfs_folio_clear_uptodate(fs_info, folio, start, len);
428
429
if (!btrfs_is_subpage(fs_info, folio))
430
folio_unlock(folio);
431
else
432
btrfs_folio_end_lock(fs_info, folio, start, len);
433
}
434
435
/*
436
* After a write IO is done, we need to:
437
*
438
* - clear the uptodate bits on error
439
* - clear the writeback bits in the extent tree for the range
440
* - filio_end_writeback() if there is no more pending io for the folio
441
*
442
* Scheduling is not allowed, so the extent state tree is expected
443
* to have one and only one object corresponding to this IO.
444
*/
445
static void end_bbio_data_write(struct btrfs_bio *bbio)
446
{
447
struct btrfs_fs_info *fs_info = bbio->fs_info;
448
struct bio *bio = &bbio->bio;
449
int error = blk_status_to_errno(bio->bi_status);
450
struct folio_iter fi;
451
const u32 sectorsize = fs_info->sectorsize;
452
453
ASSERT(!bio_flagged(bio, BIO_CLONED));
454
bio_for_each_folio_all(fi, bio) {
455
struct folio *folio = fi.folio;
456
u64 start = folio_pos(folio) + fi.offset;
457
u32 len = fi.length;
458
459
/* Our read/write should always be sector aligned. */
460
if (!IS_ALIGNED(fi.offset, sectorsize))
461
btrfs_err(fs_info,
462
"partial page write in btrfs with offset %zu and length %zu",
463
fi.offset, fi.length);
464
else if (!IS_ALIGNED(fi.length, sectorsize))
465
btrfs_info(fs_info,
466
"incomplete page write with offset %zu and length %zu",
467
fi.offset, fi.length);
468
469
btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
470
!error);
471
if (error)
472
mapping_set_error(folio->mapping, error);
473
btrfs_folio_clear_writeback(fs_info, folio, start, len);
474
}
475
476
bio_put(bio);
477
}
478
479
static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
480
{
481
ASSERT(folio_test_locked(folio));
482
if (!btrfs_is_subpage(fs_info, folio))
483
return;
484
485
ASSERT(folio_test_private(folio));
486
btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio));
487
}
488
489
/*
490
* After a data read IO is done, we need to:
491
*
492
* - clear the uptodate bits on error
493
* - set the uptodate bits if things worked
494
* - set the folio up to date if all extents in the tree are uptodate
495
* - clear the lock bit in the extent tree
496
* - unlock the folio if there are no other extents locked for it
497
*
498
* Scheduling is not allowed, so the extent state tree is expected
499
* to have one and only one object corresponding to this IO.
500
*/
501
static void end_bbio_data_read(struct btrfs_bio *bbio)
502
{
503
struct btrfs_fs_info *fs_info = bbio->fs_info;
504
struct bio *bio = &bbio->bio;
505
struct folio_iter fi;
506
507
ASSERT(!bio_flagged(bio, BIO_CLONED));
508
bio_for_each_folio_all(fi, &bbio->bio) {
509
bool uptodate = !bio->bi_status;
510
struct folio *folio = fi.folio;
511
struct inode *inode = folio->mapping->host;
512
u64 start = folio_pos(folio) + fi.offset;
513
514
btrfs_debug(fs_info,
515
"%s: bi_sector=%llu, err=%d, mirror=%u",
516
__func__, bio->bi_iter.bi_sector, bio->bi_status,
517
bbio->mirror_num);
518
519
520
if (likely(uptodate)) {
521
u64 end = start + fi.length - 1;
522
loff_t i_size = i_size_read(inode);
523
524
/*
525
* Zero out the remaining part if this range straddles
526
* i_size.
527
*
528
* Here we should only zero the range inside the folio,
529
* not touch anything else.
530
*
531
* NOTE: i_size is exclusive while end is inclusive and
532
* folio_contains() takes PAGE_SIZE units.
533
*/
534
if (folio_contains(folio, i_size >> PAGE_SHIFT) &&
535
i_size <= end) {
536
u32 zero_start = max(offset_in_folio(folio, i_size),
537
offset_in_folio(folio, start));
538
u32 zero_len = offset_in_folio(folio, end) + 1 -
539
zero_start;
540
541
folio_zero_range(folio, zero_start, zero_len);
542
}
543
}
544
545
/* Update page status and unlock. */
546
end_folio_read(folio, uptodate, start, fi.length);
547
}
548
bio_put(bio);
549
}
550
551
/*
552
* Populate every free slot in a provided array with folios using GFP_NOFS.
553
*
554
* @nr_folios: number of folios to allocate
555
* @folio_array: the array to fill with folios; any existing non-NULL entries in
556
* the array will be skipped
557
*
558
* Return: 0 if all folios were able to be allocated;
559
* -ENOMEM otherwise, the partially allocated folios would be freed and
560
* the array slots zeroed
561
*/
562
int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
563
{
564
for (int i = 0; i < nr_folios; i++) {
565
if (folio_array[i])
566
continue;
567
folio_array[i] = folio_alloc(GFP_NOFS, 0);
568
if (!folio_array[i])
569
goto error;
570
}
571
return 0;
572
error:
573
for (int i = 0; i < nr_folios; i++) {
574
if (folio_array[i])
575
folio_put(folio_array[i]);
576
}
577
return -ENOMEM;
578
}
579
580
/*
581
* Populate every free slot in a provided array with pages, using GFP_NOFS.
582
*
583
* @nr_pages: number of pages to allocate
584
* @page_array: the array to fill with pages; any existing non-null entries in
585
* the array will be skipped
586
* @nofail: whether using __GFP_NOFAIL flag
587
*
588
* Return: 0 if all pages were able to be allocated;
589
* -ENOMEM otherwise, the partially allocated pages would be freed and
590
* the array slots zeroed
591
*/
592
int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
593
bool nofail)
594
{
595
const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
596
unsigned int allocated;
597
598
for (allocated = 0; allocated < nr_pages;) {
599
unsigned int last = allocated;
600
601
allocated = alloc_pages_bulk(gfp, nr_pages, page_array);
602
if (unlikely(allocated == last)) {
603
/* No progress, fail and do cleanup. */
604
for (int i = 0; i < allocated; i++) {
605
__free_page(page_array[i]);
606
page_array[i] = NULL;
607
}
608
return -ENOMEM;
609
}
610
}
611
return 0;
612
}
613
614
/*
615
* Populate needed folios for the extent buffer.
616
*
617
* For now, the folios populated are always in order 0 (aka, single page).
618
*/
619
static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
620
{
621
struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
622
int num_pages = num_extent_pages(eb);
623
int ret;
624
625
ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
626
if (ret < 0)
627
return ret;
628
629
for (int i = 0; i < num_pages; i++)
630
eb->folios[i] = page_folio(page_array[i]);
631
eb->folio_size = PAGE_SIZE;
632
eb->folio_shift = PAGE_SHIFT;
633
return 0;
634
}
635
636
static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
637
u64 disk_bytenr, loff_t file_offset)
638
{
639
struct bio *bio = &bio_ctrl->bbio->bio;
640
const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
641
642
if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
643
/*
644
* For compression, all IO should have its logical bytenr set
645
* to the starting bytenr of the compressed extent.
646
*/
647
return bio->bi_iter.bi_sector == sector;
648
}
649
650
/*
651
* To merge into a bio both the disk sector and the logical offset in
652
* the file need to be contiguous.
653
*/
654
return bio_ctrl->next_file_offset == file_offset &&
655
bio_end_sector(bio) == sector;
656
}
657
658
static void alloc_new_bio(struct btrfs_inode *inode,
659
struct btrfs_bio_ctrl *bio_ctrl,
660
u64 disk_bytenr, u64 file_offset)
661
{
662
struct btrfs_fs_info *fs_info = inode->root->fs_info;
663
struct btrfs_bio *bbio;
664
665
bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
666
bio_ctrl->end_io_func, NULL);
667
bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
668
bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint;
669
bbio->inode = inode;
670
bbio->file_offset = file_offset;
671
bio_ctrl->bbio = bbio;
672
bio_ctrl->len_to_oe_boundary = U32_MAX;
673
bio_ctrl->next_file_offset = file_offset;
674
675
/* Limit data write bios to the ordered boundary. */
676
if (bio_ctrl->wbc) {
677
struct btrfs_ordered_extent *ordered;
678
679
ordered = btrfs_lookup_ordered_extent(inode, file_offset);
680
if (ordered) {
681
bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
682
ordered->file_offset +
683
ordered->disk_num_bytes - file_offset);
684
bbio->ordered = ordered;
685
}
686
687
/*
688
* Pick the last added device to support cgroup writeback. For
689
* multi-device file systems this means blk-cgroup policies have
690
* to always be set on the last added/replaced device.
691
* This is a bit odd but has been like that for a long time.
692
*/
693
bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
694
wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
695
}
696
}
697
698
/*
699
* @disk_bytenr: logical bytenr where the write will be
700
* @page: page to add to the bio
701
* @size: portion of page that we want to write to
702
* @pg_offset: offset of the new bio or to check whether we are adding
703
* a contiguous page to the previous one
704
*
705
* The will either add the page into the existing @bio_ctrl->bbio, or allocate a
706
* new one in @bio_ctrl->bbio.
707
* The mirror number for this IO should already be initizlied in
708
* @bio_ctrl->mirror_num.
709
*/
710
static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
711
u64 disk_bytenr, struct folio *folio,
712
size_t size, unsigned long pg_offset)
713
{
714
struct btrfs_inode *inode = folio_to_inode(folio);
715
loff_t file_offset = folio_pos(folio) + pg_offset;
716
717
ASSERT(pg_offset + size <= folio_size(folio));
718
ASSERT(bio_ctrl->end_io_func);
719
720
if (bio_ctrl->bbio &&
721
!btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset))
722
submit_one_bio(bio_ctrl);
723
724
do {
725
u32 len = size;
726
727
/* Allocate new bio if needed */
728
if (!bio_ctrl->bbio)
729
alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset);
730
731
/* Cap to the current ordered extent boundary if there is one. */
732
if (len > bio_ctrl->len_to_oe_boundary) {
733
ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
734
ASSERT(is_data_inode(inode));
735
len = bio_ctrl->len_to_oe_boundary;
736
}
737
738
if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
739
/* bio full: move on to a new one */
740
submit_one_bio(bio_ctrl);
741
continue;
742
}
743
bio_ctrl->next_file_offset += len;
744
745
if (bio_ctrl->wbc)
746
wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len);
747
748
size -= len;
749
pg_offset += len;
750
disk_bytenr += len;
751
file_offset += len;
752
753
/*
754
* len_to_oe_boundary defaults to U32_MAX, which isn't folio or
755
* sector aligned. alloc_new_bio() then sets it to the end of
756
* our ordered extent for writes into zoned devices.
757
*
758
* When len_to_oe_boundary is tracking an ordered extent, we
759
* trust the ordered extent code to align things properly, and
760
* the check above to cap our write to the ordered extent
761
* boundary is correct.
762
*
763
* When len_to_oe_boundary is U32_MAX, the cap above would
764
* result in a 4095 byte IO for the last folio right before
765
* we hit the bio limit of UINT_MAX. bio_add_folio() has all
766
* the checks required to make sure we don't overflow the bio,
767
* and we should just ignore len_to_oe_boundary completely
768
* unless we're using it to track an ordered extent.
769
*
770
* It's pretty hard to make a bio sized U32_MAX, but it can
771
* happen when the page cache is able to feed us contiguous
772
* folios for large extents.
773
*/
774
if (bio_ctrl->len_to_oe_boundary != U32_MAX)
775
bio_ctrl->len_to_oe_boundary -= len;
776
777
/* Ordered extent boundary: move on to a new bio. */
778
if (bio_ctrl->len_to_oe_boundary == 0)
779
submit_one_bio(bio_ctrl);
780
} while (size);
781
}
782
783
static int attach_extent_buffer_folio(struct extent_buffer *eb,
784
struct folio *folio,
785
struct btrfs_folio_state *prealloc)
786
{
787
struct btrfs_fs_info *fs_info = eb->fs_info;
788
int ret = 0;
789
790
/*
791
* If the page is mapped to btree inode, we should hold the private
792
* lock to prevent race.
793
* For cloned or dummy extent buffers, their pages are not mapped and
794
* will not race with any other ebs.
795
*/
796
if (folio->mapping)
797
lockdep_assert_held(&folio->mapping->i_private_lock);
798
799
if (!btrfs_meta_is_subpage(fs_info)) {
800
if (!folio_test_private(folio))
801
folio_attach_private(folio, eb);
802
else
803
WARN_ON(folio_get_private(folio) != eb);
804
return 0;
805
}
806
807
/* Already mapped, just free prealloc */
808
if (folio_test_private(folio)) {
809
btrfs_free_folio_state(prealloc);
810
return 0;
811
}
812
813
if (prealloc)
814
/* Has preallocated memory for subpage */
815
folio_attach_private(folio, prealloc);
816
else
817
/* Do new allocation to attach subpage */
818
ret = btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
819
return ret;
820
}
821
822
int set_folio_extent_mapped(struct folio *folio)
823
{
824
struct btrfs_fs_info *fs_info;
825
826
ASSERT(folio->mapping);
827
828
if (folio_test_private(folio))
829
return 0;
830
831
fs_info = folio_to_fs_info(folio);
832
833
if (btrfs_is_subpage(fs_info, folio))
834
return btrfs_attach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA);
835
836
folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
837
return 0;
838
}
839
840
void clear_folio_extent_mapped(struct folio *folio)
841
{
842
struct btrfs_fs_info *fs_info;
843
844
ASSERT(folio->mapping);
845
846
if (!folio_test_private(folio))
847
return;
848
849
fs_info = folio_to_fs_info(folio);
850
if (btrfs_is_subpage(fs_info, folio))
851
return btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_DATA);
852
853
folio_detach_private(folio);
854
}
855
856
static struct extent_map *get_extent_map(struct btrfs_inode *inode,
857
struct folio *folio, u64 start,
858
u64 len, struct extent_map **em_cached)
859
{
860
struct extent_map *em;
861
862
ASSERT(em_cached);
863
864
if (*em_cached) {
865
em = *em_cached;
866
if (btrfs_extent_map_in_tree(em) && start >= em->start &&
867
start < btrfs_extent_map_end(em)) {
868
refcount_inc(&em->refs);
869
return em;
870
}
871
872
btrfs_free_extent_map(em);
873
*em_cached = NULL;
874
}
875
876
em = btrfs_get_extent(inode, folio, start, len);
877
if (!IS_ERR(em)) {
878
BUG_ON(*em_cached);
879
refcount_inc(&em->refs);
880
*em_cached = em;
881
}
882
883
return em;
884
}
885
886
static void btrfs_readahead_expand(struct readahead_control *ractl,
887
const struct extent_map *em)
888
{
889
const u64 ra_pos = readahead_pos(ractl);
890
const u64 ra_end = ra_pos + readahead_length(ractl);
891
const u64 em_end = em->start + em->ram_bytes;
892
893
/* No expansion for holes and inline extents. */
894
if (em->disk_bytenr > EXTENT_MAP_LAST_BYTE)
895
return;
896
897
ASSERT(em_end >= ra_pos,
898
"extent_map %llu %llu ends before current readahead position %llu",
899
em->start, em->len, ra_pos);
900
if (em_end > ra_end)
901
readahead_expand(ractl, ra_pos, em_end - ra_pos);
902
}
903
904
/*
905
* basic readpage implementation. Locked extent state structs are inserted
906
* into the tree that are removed when the IO is done (by the end_io
907
* handlers)
908
* XXX JDM: This needs looking at to ensure proper page locking
909
* return 0 on success, otherwise return error
910
*/
911
static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
912
struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
913
{
914
struct inode *inode = folio->mapping->host;
915
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
916
u64 start = folio_pos(folio);
917
const u64 end = start + folio_size(folio) - 1;
918
u64 extent_offset;
919
u64 last_byte = i_size_read(inode);
920
struct extent_map *em;
921
int ret = 0;
922
const size_t blocksize = fs_info->sectorsize;
923
924
ret = set_folio_extent_mapped(folio);
925
if (ret < 0) {
926
folio_unlock(folio);
927
return ret;
928
}
929
930
if (folio_contains(folio, last_byte >> PAGE_SHIFT)) {
931
size_t zero_offset = offset_in_folio(folio, last_byte);
932
933
if (zero_offset)
934
folio_zero_range(folio, zero_offset,
935
folio_size(folio) - zero_offset);
936
}
937
bio_ctrl->end_io_func = end_bbio_data_read;
938
begin_folio_read(fs_info, folio);
939
for (u64 cur = start; cur <= end; cur += blocksize) {
940
enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
941
unsigned long pg_offset = offset_in_folio(folio, cur);
942
bool force_bio_submit = false;
943
u64 disk_bytenr;
944
u64 block_start;
945
946
ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
947
if (cur >= last_byte) {
948
folio_zero_range(folio, pg_offset, end - cur + 1);
949
end_folio_read(folio, true, cur, end - cur + 1);
950
break;
951
}
952
if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
953
end_folio_read(folio, true, cur, blocksize);
954
continue;
955
}
956
em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
957
if (IS_ERR(em)) {
958
end_folio_read(folio, false, cur, end + 1 - cur);
959
return PTR_ERR(em);
960
}
961
extent_offset = cur - em->start;
962
BUG_ON(btrfs_extent_map_end(em) <= cur);
963
BUG_ON(end < cur);
964
965
compress_type = btrfs_extent_map_compression(em);
966
967
/*
968
* Only expand readahead for extents which are already creating
969
* the pages anyway in add_ra_bio_pages, which is compressed
970
* extents in the non subpage case.
971
*/
972
if (bio_ctrl->ractl &&
973
!btrfs_is_subpage(fs_info, folio) &&
974
compress_type != BTRFS_COMPRESS_NONE)
975
btrfs_readahead_expand(bio_ctrl->ractl, em);
976
977
if (compress_type != BTRFS_COMPRESS_NONE)
978
disk_bytenr = em->disk_bytenr;
979
else
980
disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
981
982
if (em->flags & EXTENT_FLAG_PREALLOC)
983
block_start = EXTENT_MAP_HOLE;
984
else
985
block_start = btrfs_extent_map_block_start(em);
986
987
/*
988
* If we have a file range that points to a compressed extent
989
* and it's followed by a consecutive file range that points
990
* to the same compressed extent (possibly with a different
991
* offset and/or length, so it either points to the whole extent
992
* or only part of it), we must make sure we do not submit a
993
* single bio to populate the folios for the 2 ranges because
994
* this makes the compressed extent read zero out the folios
995
* belonging to the 2nd range. Imagine the following scenario:
996
*
997
* File layout
998
* [0 - 8K] [8K - 24K]
999
* | |
1000
* | |
1001
* points to extent X, points to extent X,
1002
* offset 4K, length of 8K offset 0, length 16K
1003
*
1004
* [extent X, compressed length = 4K uncompressed length = 16K]
1005
*
1006
* If the bio to read the compressed extent covers both ranges,
1007
* it will decompress extent X into the folios belonging to the
1008
* first range and then it will stop, zeroing out the remaining
1009
* folios that belong to the other range that points to extent X.
1010
* So here we make sure we submit 2 bios, one for the first
1011
* range and another one for the third range. Both will target
1012
* the same physical extent from disk, but we can't currently
1013
* make the compressed bio endio callback populate the folios
1014
* for both ranges because each compressed bio is tightly
1015
* coupled with a single extent map, and each range can have
1016
* an extent map with a different offset value relative to the
1017
* uncompressed data of our extent and different lengths. This
1018
* is a corner case so we prioritize correctness over
1019
* non-optimal behavior (submitting 2 bios for the same extent).
1020
*/
1021
if (compress_type != BTRFS_COMPRESS_NONE &&
1022
prev_em_start && *prev_em_start != (u64)-1 &&
1023
*prev_em_start != em->start)
1024
force_bio_submit = true;
1025
1026
if (prev_em_start)
1027
*prev_em_start = em->start;
1028
1029
btrfs_free_extent_map(em);
1030
em = NULL;
1031
1032
/* we've found a hole, just zero and go on */
1033
if (block_start == EXTENT_MAP_HOLE) {
1034
folio_zero_range(folio, pg_offset, blocksize);
1035
end_folio_read(folio, true, cur, blocksize);
1036
continue;
1037
}
1038
/* the get_extent function already copied into the folio */
1039
if (block_start == EXTENT_MAP_INLINE) {
1040
end_folio_read(folio, true, cur, blocksize);
1041
continue;
1042
}
1043
1044
if (bio_ctrl->compress_type != compress_type) {
1045
submit_one_bio(bio_ctrl);
1046
bio_ctrl->compress_type = compress_type;
1047
}
1048
1049
if (force_bio_submit)
1050
submit_one_bio(bio_ctrl);
1051
submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize,
1052
pg_offset);
1053
}
1054
return 0;
1055
}
1056
1057
/*
1058
* Check if we can skip waiting the @ordered extent covering the block at @fileoff.
1059
*
1060
* @fileoff: Both input and output.
1061
* Input as the file offset where the check should start at.
1062
* Output as where the next check should start at,
1063
* if the function returns true.
1064
*
1065
* Return true if we can skip to @fileoff. The caller needs to check the new
1066
* @fileoff value to make sure it covers the full range, before skipping the
1067
* full OE.
1068
*
1069
* Return false if we must wait for the ordered extent.
1070
*/
1071
static bool can_skip_one_ordered_range(struct btrfs_inode *inode,
1072
struct btrfs_ordered_extent *ordered,
1073
u64 *fileoff)
1074
{
1075
const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1076
struct folio *folio;
1077
const u32 blocksize = fs_info->sectorsize;
1078
u64 cur = *fileoff;
1079
bool ret;
1080
1081
folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT);
1082
1083
/*
1084
* We should have locked the folio(s) for range [start, end], thus
1085
* there must be a folio and it must be locked.
1086
*/
1087
ASSERT(!IS_ERR(folio));
1088
ASSERT(folio_test_locked(folio));
1089
1090
/*
1091
* There are several cases for the folio and OE combination:
1092
*
1093
* 1) Folio has no private flag
1094
* The OE has all its IO done but not yet finished, and folio got
1095
* invalidated.
1096
*
1097
* Have we have to wait for the OE to finish, as it may contain the
1098
* to-be-inserted data checksum.
1099
* Without the data checksum inserted into the csum tree, read will
1100
* just fail with missing csum.
1101
*/
1102
if (!folio_test_private(folio)) {
1103
ret = false;
1104
goto out;
1105
}
1106
1107
/*
1108
* 2) The first block is DIRTY.
1109
*
1110
* This means the OE is created by some other folios whose file pos is
1111
* before this one. And since we are holding the folio lock, the writeback
1112
* of this folio cannot start.
1113
*
1114
* We must skip the whole OE, because it will never start until we
1115
* finished our folio read and unlocked the folio.
1116
*/
1117
if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) {
1118
u64 range_len = min(folio_end(folio),
1119
ordered->file_offset + ordered->num_bytes) - cur;
1120
1121
ret = true;
1122
/*
1123
* At least inside the folio, all the remaining blocks should
1124
* also be dirty.
1125
*/
1126
ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len));
1127
*fileoff = ordered->file_offset + ordered->num_bytes;
1128
goto out;
1129
}
1130
1131
/*
1132
* 3) The first block is uptodate.
1133
*
1134
* At least the first block can be skipped, but we are still not fully
1135
* sure. E.g. if the OE has some other folios in the range that cannot
1136
* be skipped.
1137
* So we return true and update @next_ret to the OE/folio boundary.
1138
*/
1139
if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
1140
u64 range_len = min(folio_end(folio),
1141
ordered->file_offset + ordered->num_bytes) - cur;
1142
1143
/*
1144
* The whole range to the OE end or folio boundary should also
1145
* be uptodate.
1146
*/
1147
ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len));
1148
ret = true;
1149
*fileoff = cur + range_len;
1150
goto out;
1151
}
1152
1153
/*
1154
* 4) The first block is not uptodate.
1155
*
1156
* This means the folio is invalidated after the writeback was finished,
1157
* but by some other operations (e.g. block aligned buffered write) the
1158
* folio is inserted into filemap.
1159
* Very much the same as case 1).
1160
*/
1161
ret = false;
1162
out:
1163
folio_put(folio);
1164
return ret;
1165
}
1166
1167
static bool can_skip_ordered_extent(struct btrfs_inode *inode,
1168
struct btrfs_ordered_extent *ordered,
1169
u64 start, u64 end)
1170
{
1171
const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1);
1172
u64 cur = max(start, ordered->file_offset);
1173
1174
while (cur < range_end) {
1175
bool can_skip;
1176
1177
can_skip = can_skip_one_ordered_range(inode, ordered, &cur);
1178
if (!can_skip)
1179
return false;
1180
}
1181
return true;
1182
}
1183
1184
/*
1185
* Locking helper to make sure we get a stable view of extent maps for the
1186
* involved range.
1187
*
1188
* This is for folio read paths (read and readahead), thus the involved range
1189
* should have all the folios locked.
1190
*/
1191
static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end,
1192
struct extent_state **cached_state)
1193
{
1194
u64 cur_pos;
1195
1196
/* Caller must provide a valid @cached_state. */
1197
ASSERT(cached_state);
1198
1199
/* The range must at least be page aligned, as all read paths are folio based. */
1200
ASSERT(IS_ALIGNED(start, PAGE_SIZE));
1201
ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE));
1202
1203
again:
1204
btrfs_lock_extent(&inode->io_tree, start, end, cached_state);
1205
cur_pos = start;
1206
while (cur_pos < end) {
1207
struct btrfs_ordered_extent *ordered;
1208
1209
ordered = btrfs_lookup_ordered_range(inode, cur_pos,
1210
end - cur_pos + 1);
1211
/*
1212
* No ordered extents in the range, and we hold the extent lock,
1213
* no one can modify the extent maps in the range, we're safe to return.
1214
*/
1215
if (!ordered)
1216
break;
1217
1218
/* Check if we can skip waiting for the whole OE. */
1219
if (can_skip_ordered_extent(inode, ordered, start, end)) {
1220
cur_pos = min(ordered->file_offset + ordered->num_bytes,
1221
end + 1);
1222
btrfs_put_ordered_extent(ordered);
1223
continue;
1224
}
1225
1226
/* Now wait for the OE to finish. */
1227
btrfs_unlock_extent(&inode->io_tree, start, end, cached_state);
1228
btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start);
1229
btrfs_put_ordered_extent(ordered);
1230
/* We have unlocked the whole range, restart from the beginning. */
1231
goto again;
1232
}
1233
}
1234
1235
int btrfs_read_folio(struct file *file, struct folio *folio)
1236
{
1237
struct btrfs_inode *inode = folio_to_inode(folio);
1238
const u64 start = folio_pos(folio);
1239
const u64 end = start + folio_size(folio) - 1;
1240
struct extent_state *cached_state = NULL;
1241
struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1242
struct extent_map *em_cached = NULL;
1243
int ret;
1244
1245
lock_extents_for_read(inode, start, end, &cached_state);
1246
ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL);
1247
btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
1248
1249
btrfs_free_extent_map(em_cached);
1250
1251
/*
1252
* If btrfs_do_readpage() failed we will want to submit the assembled
1253
* bio to do the cleanup.
1254
*/
1255
submit_one_bio(&bio_ctrl);
1256
return ret;
1257
}
1258
1259
static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1260
u64 start, u32 len)
1261
{
1262
struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1263
const u64 folio_start = folio_pos(folio);
1264
unsigned int start_bit;
1265
unsigned int nbits;
1266
1267
ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio));
1268
start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1269
nbits = len >> fs_info->sectorsize_bits;
1270
ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1271
bitmap_set(delalloc_bitmap, start_bit, nbits);
1272
}
1273
1274
static bool find_next_delalloc_bitmap(struct folio *folio,
1275
unsigned long *delalloc_bitmap, u64 start,
1276
u64 *found_start, u32 *found_len)
1277
{
1278
struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1279
const u64 folio_start = folio_pos(folio);
1280
const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio);
1281
unsigned int start_bit;
1282
unsigned int first_zero;
1283
unsigned int first_set;
1284
1285
ASSERT(start >= folio_start && start < folio_start + folio_size(folio));
1286
1287
start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1288
first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1289
if (first_set >= bitmap_size)
1290
return false;
1291
1292
*found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1293
first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1294
*found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1295
return true;
1296
}
1297
1298
/*
1299
* Do all of the delayed allocation setup.
1300
*
1301
* Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1302
* The @folio should no longer be touched (treat it as already unlocked).
1303
*
1304
* Return 0 if there is still dirty block that needs to be submitted through
1305
* extent_writepage_io().
1306
* bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1307
* submitted, and @folio is still kept locked.
1308
*
1309
* Return <0 if there is any error hit.
1310
* Any allocated ordered extent range covering this folio will be marked
1311
* finished (IOERR), and @folio is still kept locked.
1312
*/
1313
static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1314
struct folio *folio,
1315
struct btrfs_bio_ctrl *bio_ctrl)
1316
{
1317
struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1318
struct writeback_control *wbc = bio_ctrl->wbc;
1319
const bool is_subpage = btrfs_is_subpage(fs_info, folio);
1320
const u64 page_start = folio_pos(folio);
1321
const u64 page_end = page_start + folio_size(folio) - 1;
1322
const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1323
unsigned long delalloc_bitmap = 0;
1324
/*
1325
* Save the last found delalloc end. As the delalloc end can go beyond
1326
* page boundary, thus we cannot rely on subpage bitmap to locate the
1327
* last delalloc end.
1328
*/
1329
u64 last_delalloc_end = 0;
1330
/*
1331
* The range end (exclusive) of the last successfully finished delalloc
1332
* range.
1333
* Any range covered by ordered extent must either be manually marked
1334
* finished (error handling), or has IO submitted (and finish the
1335
* ordered extent normally).
1336
*
1337
* This records the end of ordered extent cleanup if we hit an error.
1338
*/
1339
u64 last_finished_delalloc_end = page_start;
1340
u64 delalloc_start = page_start;
1341
u64 delalloc_end = page_end;
1342
u64 delalloc_to_write = 0;
1343
int ret = 0;
1344
int bit;
1345
1346
/* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1347
if (btrfs_is_subpage(fs_info, folio)) {
1348
ASSERT(blocks_per_folio > 1);
1349
btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1350
} else {
1351
bio_ctrl->submit_bitmap = 1;
1352
}
1353
1354
for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1355
u64 start = page_start + (bit << fs_info->sectorsize_bits);
1356
1357
btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1358
}
1359
1360
/* Lock all (subpage) delalloc ranges inside the folio first. */
1361
while (delalloc_start < page_end) {
1362
delalloc_end = page_end;
1363
if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1364
&delalloc_start, &delalloc_end)) {
1365
delalloc_start = delalloc_end + 1;
1366
continue;
1367
}
1368
set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1369
min(delalloc_end, page_end) + 1 - delalloc_start);
1370
last_delalloc_end = delalloc_end;
1371
delalloc_start = delalloc_end + 1;
1372
}
1373
delalloc_start = page_start;
1374
1375
if (!last_delalloc_end)
1376
goto out;
1377
1378
/* Run the delalloc ranges for the above locked ranges. */
1379
while (delalloc_start < page_end) {
1380
u64 found_start;
1381
u32 found_len;
1382
bool found;
1383
1384
if (!is_subpage) {
1385
/*
1386
* For non-subpage case, the found delalloc range must
1387
* cover this folio and there must be only one locked
1388
* delalloc range.
1389
*/
1390
found_start = page_start;
1391
found_len = last_delalloc_end + 1 - found_start;
1392
found = true;
1393
} else {
1394
found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1395
delalloc_start, &found_start, &found_len);
1396
}
1397
if (!found)
1398
break;
1399
/*
1400
* The subpage range covers the last sector, the delalloc range may
1401
* end beyond the folio boundary, use the saved delalloc_end
1402
* instead.
1403
*/
1404
if (found_start + found_len >= page_end)
1405
found_len = last_delalloc_end + 1 - found_start;
1406
1407
if (ret >= 0) {
1408
/*
1409
* Some delalloc range may be created by previous folios.
1410
* Thus we still need to clean up this range during error
1411
* handling.
1412
*/
1413
last_finished_delalloc_end = found_start;
1414
/* No errors hit so far, run the current delalloc range. */
1415
ret = btrfs_run_delalloc_range(inode, folio,
1416
found_start,
1417
found_start + found_len - 1,
1418
wbc);
1419
if (ret >= 0)
1420
last_finished_delalloc_end = found_start + found_len;
1421
if (unlikely(ret < 0))
1422
btrfs_err_rl(fs_info,
1423
"failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d",
1424
btrfs_root_id(inode->root),
1425
btrfs_ino(inode),
1426
folio_pos(folio),
1427
blocks_per_folio,
1428
&bio_ctrl->submit_bitmap,
1429
found_start, found_len, ret);
1430
} else {
1431
/*
1432
* We've hit an error during previous delalloc range,
1433
* have to cleanup the remaining locked ranges.
1434
*/
1435
btrfs_unlock_extent(&inode->io_tree, found_start,
1436
found_start + found_len - 1, NULL);
1437
unlock_delalloc_folio(&inode->vfs_inode, folio,
1438
found_start,
1439
found_start + found_len - 1);
1440
}
1441
1442
/*
1443
* We have some ranges that's going to be submitted asynchronously
1444
* (compression or inline). These range have their own control
1445
* on when to unlock the pages. We should not touch them
1446
* anymore, so clear the range from the submission bitmap.
1447
*/
1448
if (ret > 0) {
1449
unsigned int start_bit = (found_start - page_start) >>
1450
fs_info->sectorsize_bits;
1451
unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1452
page_start) >> fs_info->sectorsize_bits;
1453
bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1454
}
1455
/*
1456
* Above btrfs_run_delalloc_range() may have unlocked the folio,
1457
* thus for the last range, we cannot touch the folio anymore.
1458
*/
1459
if (found_start + found_len >= last_delalloc_end + 1)
1460
break;
1461
1462
delalloc_start = found_start + found_len;
1463
}
1464
/*
1465
* It's possible we had some ordered extents created before we hit
1466
* an error, cleanup non-async successfully created delalloc ranges.
1467
*/
1468
if (unlikely(ret < 0)) {
1469
unsigned int bitmap_size = min(
1470
(last_finished_delalloc_end - page_start) >>
1471
fs_info->sectorsize_bits,
1472
blocks_per_folio);
1473
1474
for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1475
btrfs_mark_ordered_io_finished(inode, folio,
1476
page_start + (bit << fs_info->sectorsize_bits),
1477
fs_info->sectorsize, false);
1478
return ret;
1479
}
1480
out:
1481
if (last_delalloc_end)
1482
delalloc_end = last_delalloc_end;
1483
else
1484
delalloc_end = page_end;
1485
/*
1486
* delalloc_end is already one less than the total length, so
1487
* we don't subtract one from PAGE_SIZE.
1488
*/
1489
delalloc_to_write +=
1490
DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1491
1492
/*
1493
* If all ranges are submitted asynchronously, we just need to account
1494
* for them here.
1495
*/
1496
if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) {
1497
wbc->nr_to_write -= delalloc_to_write;
1498
return 1;
1499
}
1500
1501
if (wbc->nr_to_write < delalloc_to_write) {
1502
int thresh = 8192;
1503
1504
if (delalloc_to_write < thresh * 2)
1505
thresh = delalloc_to_write;
1506
wbc->nr_to_write = min_t(u64, delalloc_to_write,
1507
thresh);
1508
}
1509
1510
return 0;
1511
}
1512
1513
/*
1514
* Return 0 if we have submitted or queued the sector for submission.
1515
* Return <0 for critical errors, and the sector will have its dirty flag cleared.
1516
*
1517
* Caller should make sure filepos < i_size and handle filepos >= i_size case.
1518
*/
1519
static int submit_one_sector(struct btrfs_inode *inode,
1520
struct folio *folio,
1521
u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1522
loff_t i_size)
1523
{
1524
struct btrfs_fs_info *fs_info = inode->root->fs_info;
1525
struct extent_map *em;
1526
u64 block_start;
1527
u64 disk_bytenr;
1528
u64 extent_offset;
1529
u64 em_end;
1530
const u32 sectorsize = fs_info->sectorsize;
1531
1532
ASSERT(IS_ALIGNED(filepos, sectorsize));
1533
1534
/* @filepos >= i_size case should be handled by the caller. */
1535
ASSERT(filepos < i_size);
1536
1537
em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1538
if (IS_ERR(em)) {
1539
/*
1540
* When submission failed, we should still clear the folio dirty.
1541
* Or the folio will be written back again but without any
1542
* ordered extent.
1543
*/
1544
btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1545
btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1546
btrfs_folio_clear_writeback(fs_info, folio, filepos, sectorsize);
1547
return PTR_ERR(em);
1548
}
1549
1550
extent_offset = filepos - em->start;
1551
em_end = btrfs_extent_map_end(em);
1552
ASSERT(filepos <= em_end);
1553
ASSERT(IS_ALIGNED(em->start, sectorsize));
1554
ASSERT(IS_ALIGNED(em->len, sectorsize));
1555
1556
block_start = btrfs_extent_map_block_start(em);
1557
disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
1558
1559
ASSERT(!btrfs_extent_map_is_compressed(em));
1560
ASSERT(block_start != EXTENT_MAP_HOLE);
1561
ASSERT(block_start != EXTENT_MAP_INLINE);
1562
1563
btrfs_free_extent_map(em);
1564
em = NULL;
1565
1566
/*
1567
* Although the PageDirty bit is cleared before entering this
1568
* function, subpage dirty bit is not cleared.
1569
* So clear subpage dirty bit here so next time we won't submit
1570
* a folio for a range already written to disk.
1571
*/
1572
btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1573
btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1574
/*
1575
* Above call should set the whole folio with writeback flag, even
1576
* just for a single subpage sector.
1577
* As long as the folio is properly locked and the range is correct,
1578
* we should always get the folio with writeback flag.
1579
*/
1580
ASSERT(folio_test_writeback(folio));
1581
1582
submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1583
sectorsize, filepos - folio_pos(folio));
1584
return 0;
1585
}
1586
1587
/*
1588
* Helper for extent_writepage(). This calls the writepage start hooks,
1589
* and does the loop to map the page into extents and bios.
1590
*
1591
* We return 1 if the IO is started and the page is unlocked,
1592
* 0 if all went well (page still locked)
1593
* < 0 if there were errors (page still locked)
1594
*/
1595
static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1596
struct folio *folio,
1597
u64 start, u32 len,
1598
struct btrfs_bio_ctrl *bio_ctrl,
1599
loff_t i_size)
1600
{
1601
struct btrfs_fs_info *fs_info = inode->root->fs_info;
1602
unsigned long range_bitmap = 0;
1603
bool submitted_io = false;
1604
bool error = false;
1605
const u64 folio_start = folio_pos(folio);
1606
const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1607
u64 cur;
1608
int bit;
1609
int ret = 0;
1610
1611
ASSERT(start >= folio_start &&
1612
start + len <= folio_start + folio_size(folio));
1613
1614
ret = btrfs_writepage_cow_fixup(folio);
1615
if (ret == -EAGAIN) {
1616
/* Fixup worker will requeue */
1617
folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1618
folio_unlock(folio);
1619
return 1;
1620
}
1621
if (ret < 0) {
1622
btrfs_folio_clear_dirty(fs_info, folio, start, len);
1623
btrfs_folio_set_writeback(fs_info, folio, start, len);
1624
btrfs_folio_clear_writeback(fs_info, folio, start, len);
1625
return ret;
1626
}
1627
1628
for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1629
set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1630
bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1631
blocks_per_folio);
1632
1633
bio_ctrl->end_io_func = end_bbio_data_write;
1634
1635
for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1636
cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1637
1638
if (cur >= i_size) {
1639
btrfs_mark_ordered_io_finished(inode, folio, cur,
1640
start + len - cur, true);
1641
/*
1642
* This range is beyond i_size, thus we don't need to
1643
* bother writing back.
1644
* But we still need to clear the dirty subpage bit, or
1645
* the next time the folio gets dirtied, we will try to
1646
* writeback the sectors with subpage dirty bits,
1647
* causing writeback without ordered extent.
1648
*/
1649
btrfs_folio_clear_dirty(fs_info, folio, cur,
1650
start + len - cur);
1651
break;
1652
}
1653
ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1654
if (unlikely(ret < 0)) {
1655
/*
1656
* bio_ctrl may contain a bio crossing several folios.
1657
* Submit it immediately so that the bio has a chance
1658
* to finish normally, other than marked as error.
1659
*/
1660
submit_one_bio(bio_ctrl);
1661
/*
1662
* Failed to grab the extent map which should be very rare.
1663
* Since there is no bio submitted to finish the ordered
1664
* extent, we have to manually finish this sector.
1665
*/
1666
btrfs_mark_ordered_io_finished(inode, folio, cur,
1667
fs_info->sectorsize, false);
1668
error = true;
1669
continue;
1670
}
1671
submitted_io = true;
1672
}
1673
1674
/*
1675
* If we didn't submitted any sector (>= i_size), folio dirty get
1676
* cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1677
* by folio_start_writeback() if the folio is not dirty).
1678
*
1679
* Here we set writeback and clear for the range. If the full folio
1680
* is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1681
*
1682
* If we hit any error, the corresponding sector will have its dirty
1683
* flag cleared and writeback finished, thus no need to handle the error case.
1684
*/
1685
if (!submitted_io && !error) {
1686
btrfs_folio_set_writeback(fs_info, folio, start, len);
1687
btrfs_folio_clear_writeback(fs_info, folio, start, len);
1688
}
1689
return ret;
1690
}
1691
1692
/*
1693
* the writepage semantics are similar to regular writepage. extent
1694
* records are inserted to lock ranges in the tree, and as dirty areas
1695
* are found, they are marked writeback. Then the lock bits are removed
1696
* and the end_io handler clears the writeback ranges
1697
*
1698
* Return 0 if everything goes well.
1699
* Return <0 for error.
1700
*/
1701
static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1702
{
1703
struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1704
struct btrfs_fs_info *fs_info = inode->root->fs_info;
1705
int ret;
1706
size_t pg_offset;
1707
loff_t i_size = i_size_read(&inode->vfs_inode);
1708
const pgoff_t end_index = i_size >> PAGE_SHIFT;
1709
const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1710
1711
trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1712
1713
WARN_ON(!folio_test_locked(folio));
1714
1715
pg_offset = offset_in_folio(folio, i_size);
1716
if (folio->index > end_index ||
1717
(folio->index == end_index && !pg_offset)) {
1718
folio_invalidate(folio, 0, folio_size(folio));
1719
folio_unlock(folio);
1720
return 0;
1721
}
1722
1723
if (folio_contains(folio, end_index))
1724
folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1725
1726
/*
1727
* Default to unlock the whole folio.
1728
* The proper bitmap can only be initialized until writepage_delalloc().
1729
*/
1730
bio_ctrl->submit_bitmap = (unsigned long)-1;
1731
1732
/*
1733
* If the page is dirty but without private set, it's marked dirty
1734
* without informing the fs.
1735
* Nowadays that is a bug, since the introduction of
1736
* pin_user_pages*().
1737
*
1738
* So here we check if the page has private set to rule out such
1739
* case.
1740
* But we also have a long history of relying on the COW fixup,
1741
* so here we only enable this check for experimental builds until
1742
* we're sure it's safe.
1743
*/
1744
if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) &&
1745
unlikely(!folio_test_private(folio))) {
1746
WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
1747
btrfs_err_rl(fs_info,
1748
"root %lld ino %llu folio %llu is marked dirty without notifying the fs",
1749
btrfs_root_id(inode->root),
1750
btrfs_ino(inode), folio_pos(folio));
1751
ret = -EUCLEAN;
1752
goto done;
1753
}
1754
1755
ret = set_folio_extent_mapped(folio);
1756
if (ret < 0)
1757
goto done;
1758
1759
ret = writepage_delalloc(inode, folio, bio_ctrl);
1760
if (ret == 1)
1761
return 0;
1762
if (ret)
1763
goto done;
1764
1765
ret = extent_writepage_io(inode, folio, folio_pos(folio),
1766
folio_size(folio), bio_ctrl, i_size);
1767
if (ret == 1)
1768
return 0;
1769
if (ret < 0)
1770
btrfs_err_rl(fs_info,
1771
"failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d",
1772
btrfs_root_id(inode->root), btrfs_ino(inode),
1773
folio_pos(folio), blocks_per_folio,
1774
&bio_ctrl->submit_bitmap, ret);
1775
1776
bio_ctrl->wbc->nr_to_write--;
1777
1778
done:
1779
if (ret < 0)
1780
mapping_set_error(folio->mapping, ret);
1781
/*
1782
* Only unlock ranges that are submitted. As there can be some async
1783
* submitted ranges inside the folio.
1784
*/
1785
btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1786
ASSERT(ret <= 0);
1787
return ret;
1788
}
1789
1790
/*
1791
* Lock extent buffer status and pages for writeback.
1792
*
1793
* Return %false if the extent buffer doesn't need to be submitted (e.g. the
1794
* extent buffer is not dirty)
1795
* Return %true is the extent buffer is submitted to bio.
1796
*/
1797
static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1798
struct writeback_control *wbc)
1799
{
1800
struct btrfs_fs_info *fs_info = eb->fs_info;
1801
bool ret = false;
1802
1803
btrfs_tree_lock(eb);
1804
while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1805
btrfs_tree_unlock(eb);
1806
if (wbc->sync_mode != WB_SYNC_ALL)
1807
return false;
1808
wait_on_extent_buffer_writeback(eb);
1809
btrfs_tree_lock(eb);
1810
}
1811
1812
/*
1813
* We need to do this to prevent races in people who check if the eb is
1814
* under IO since we can end up having no IO bits set for a short period
1815
* of time.
1816
*/
1817
spin_lock(&eb->refs_lock);
1818
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1819
XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
1820
unsigned long flags;
1821
1822
set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1823
spin_unlock(&eb->refs_lock);
1824
1825
xas_lock_irqsave(&xas, flags);
1826
xas_load(&xas);
1827
xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
1828
xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1829
xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
1830
xas_unlock_irqrestore(&xas, flags);
1831
1832
btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1833
percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1834
-eb->len,
1835
fs_info->dirty_metadata_batch);
1836
ret = true;
1837
} else {
1838
spin_unlock(&eb->refs_lock);
1839
}
1840
btrfs_tree_unlock(eb);
1841
return ret;
1842
}
1843
1844
static void set_btree_ioerr(struct extent_buffer *eb)
1845
{
1846
struct btrfs_fs_info *fs_info = eb->fs_info;
1847
1848
set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1849
1850
/*
1851
* A read may stumble upon this buffer later, make sure that it gets an
1852
* error and knows there was an error.
1853
*/
1854
clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1855
1856
/*
1857
* We need to set the mapping with the io error as well because a write
1858
* error will flip the file system readonly, and then syncfs() will
1859
* return a 0 because we are readonly if we don't modify the err seq for
1860
* the superblock.
1861
*/
1862
mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1863
1864
/*
1865
* If writeback for a btree extent that doesn't belong to a log tree
1866
* failed, increment the counter transaction->eb_write_errors.
1867
* We do this because while the transaction is running and before it's
1868
* committing (when we call filemap_fdata[write|wait]_range against
1869
* the btree inode), we might have
1870
* btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1871
* returns an error or an error happens during writeback, when we're
1872
* committing the transaction we wouldn't know about it, since the pages
1873
* can be no longer dirty nor marked anymore for writeback (if a
1874
* subsequent modification to the extent buffer didn't happen before the
1875
* transaction commit), which makes filemap_fdata[write|wait]_range not
1876
* able to find the pages which contain errors at transaction
1877
* commit time. So if this happens we must abort the transaction,
1878
* otherwise we commit a super block with btree roots that point to
1879
* btree nodes/leafs whose content on disk is invalid - either garbage
1880
* or the content of some node/leaf from a past generation that got
1881
* cowed or deleted and is no longer valid.
1882
*
1883
* Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1884
* not be enough - we need to distinguish between log tree extents vs
1885
* non-log tree extents, and the next filemap_fdatawait_range() call
1886
* will catch and clear such errors in the mapping - and that call might
1887
* be from a log sync and not from a transaction commit. Also, checking
1888
* for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1889
* not done and would not be reliable - the eb might have been released
1890
* from memory and reading it back again means that flag would not be
1891
* set (since it's a runtime flag, not persisted on disk).
1892
*
1893
* Using the flags below in the btree inode also makes us achieve the
1894
* goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1895
* writeback for all dirty pages and before filemap_fdatawait_range()
1896
* is called, the writeback for all dirty pages had already finished
1897
* with errors - because we were not using AS_EIO/AS_ENOSPC,
1898
* filemap_fdatawait_range() would return success, as it could not know
1899
* that writeback errors happened (the pages were no longer tagged for
1900
* writeback).
1901
*/
1902
switch (eb->log_index) {
1903
case -1:
1904
set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1905
break;
1906
case 0:
1907
set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1908
break;
1909
case 1:
1910
set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1911
break;
1912
default:
1913
BUG(); /* unexpected, logic error */
1914
}
1915
}
1916
1917
static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark)
1918
{
1919
struct btrfs_fs_info *fs_info = eb->fs_info;
1920
XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
1921
unsigned long flags;
1922
1923
xas_lock_irqsave(&xas, flags);
1924
xas_load(&xas);
1925
xas_set_mark(&xas, mark);
1926
xas_unlock_irqrestore(&xas, flags);
1927
}
1928
1929
static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark)
1930
{
1931
struct btrfs_fs_info *fs_info = eb->fs_info;
1932
XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->nodesize_bits);
1933
unsigned long flags;
1934
1935
xas_lock_irqsave(&xas, flags);
1936
xas_load(&xas);
1937
xas_clear_mark(&xas, mark);
1938
xas_unlock_irqrestore(&xas, flags);
1939
}
1940
1941
static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info,
1942
unsigned long start, unsigned long end)
1943
{
1944
XA_STATE(xas, &fs_info->buffer_tree, start);
1945
unsigned int tagged = 0;
1946
void *eb;
1947
1948
xas_lock_irq(&xas);
1949
xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) {
1950
xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
1951
if (++tagged % XA_CHECK_SCHED)
1952
continue;
1953
xas_pause(&xas);
1954
xas_unlock_irq(&xas);
1955
cond_resched();
1956
xas_lock_irq(&xas);
1957
}
1958
xas_unlock_irq(&xas);
1959
}
1960
1961
struct eb_batch {
1962
unsigned int nr;
1963
unsigned int cur;
1964
struct extent_buffer *ebs[PAGEVEC_SIZE];
1965
};
1966
1967
static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb)
1968
{
1969
batch->ebs[batch->nr++] = eb;
1970
return (batch->nr < PAGEVEC_SIZE);
1971
}
1972
1973
static inline void eb_batch_init(struct eb_batch *batch)
1974
{
1975
batch->nr = 0;
1976
batch->cur = 0;
1977
}
1978
1979
static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch)
1980
{
1981
if (batch->cur >= batch->nr)
1982
return NULL;
1983
return batch->ebs[batch->cur++];
1984
}
1985
1986
static inline void eb_batch_release(struct eb_batch *batch)
1987
{
1988
for (unsigned int i = 0; i < batch->nr; i++)
1989
free_extent_buffer(batch->ebs[i]);
1990
eb_batch_init(batch);
1991
}
1992
1993
static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max,
1994
xa_mark_t mark)
1995
{
1996
struct extent_buffer *eb;
1997
1998
retry:
1999
eb = xas_find_marked(xas, max, mark);
2000
2001
if (xas_retry(xas, eb))
2002
goto retry;
2003
2004
if (!eb)
2005
return NULL;
2006
2007
if (!refcount_inc_not_zero(&eb->refs)) {
2008
xas_reset(xas);
2009
goto retry;
2010
}
2011
2012
if (unlikely(eb != xas_reload(xas))) {
2013
free_extent_buffer(eb);
2014
xas_reset(xas);
2015
goto retry;
2016
}
2017
2018
return eb;
2019
}
2020
2021
static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info,
2022
unsigned long *start,
2023
unsigned long end, xa_mark_t tag,
2024
struct eb_batch *batch)
2025
{
2026
XA_STATE(xas, &fs_info->buffer_tree, *start);
2027
struct extent_buffer *eb;
2028
2029
rcu_read_lock();
2030
while ((eb = find_get_eb(&xas, end, tag)) != NULL) {
2031
if (!eb_batch_add(batch, eb)) {
2032
*start = ((eb->start + eb->len) >> fs_info->nodesize_bits);
2033
goto out;
2034
}
2035
}
2036
if (end == ULONG_MAX)
2037
*start = ULONG_MAX;
2038
else
2039
*start = end + 1;
2040
out:
2041
rcu_read_unlock();
2042
2043
return batch->nr;
2044
}
2045
2046
/*
2047
* The endio specific version which won't touch any unsafe spinlock in endio
2048
* context.
2049
*/
2050
static struct extent_buffer *find_extent_buffer_nolock(
2051
struct btrfs_fs_info *fs_info, u64 start)
2052
{
2053
struct extent_buffer *eb;
2054
unsigned long index = (start >> fs_info->nodesize_bits);
2055
2056
rcu_read_lock();
2057
eb = xa_load(&fs_info->buffer_tree, index);
2058
if (eb && !refcount_inc_not_zero(&eb->refs))
2059
eb = NULL;
2060
rcu_read_unlock();
2061
return eb;
2062
}
2063
2064
static void end_bbio_meta_write(struct btrfs_bio *bbio)
2065
{
2066
struct extent_buffer *eb = bbio->private;
2067
struct folio_iter fi;
2068
2069
if (bbio->bio.bi_status != BLK_STS_OK)
2070
set_btree_ioerr(eb);
2071
2072
bio_for_each_folio_all(fi, &bbio->bio) {
2073
btrfs_meta_folio_clear_writeback(fi.folio, eb);
2074
}
2075
2076
buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK);
2077
clear_and_wake_up_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2078
bio_put(&bbio->bio);
2079
}
2080
2081
static void prepare_eb_write(struct extent_buffer *eb)
2082
{
2083
u32 nritems;
2084
unsigned long start;
2085
unsigned long end;
2086
2087
clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2088
2089
/* Set btree blocks beyond nritems with 0 to avoid stale content */
2090
nritems = btrfs_header_nritems(eb);
2091
if (btrfs_header_level(eb) > 0) {
2092
end = btrfs_node_key_ptr_offset(eb, nritems);
2093
memzero_extent_buffer(eb, end, eb->len - end);
2094
} else {
2095
/*
2096
* Leaf:
2097
* header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2098
*/
2099
start = btrfs_item_nr_offset(eb, nritems);
2100
end = btrfs_item_nr_offset(eb, 0);
2101
if (nritems == 0)
2102
end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
2103
else
2104
end += btrfs_item_offset(eb, nritems - 1);
2105
memzero_extent_buffer(eb, start, end - start);
2106
}
2107
}
2108
2109
static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
2110
struct writeback_control *wbc)
2111
{
2112
struct btrfs_fs_info *fs_info = eb->fs_info;
2113
struct btrfs_bio *bbio;
2114
2115
prepare_eb_write(eb);
2116
2117
bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
2118
REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
2119
eb->fs_info, end_bbio_meta_write, eb);
2120
bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
2121
bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
2122
wbc_init_bio(wbc, &bbio->bio);
2123
bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
2124
bbio->file_offset = eb->start;
2125
for (int i = 0; i < num_extent_folios(eb); i++) {
2126
struct folio *folio = eb->folios[i];
2127
u64 range_start = max_t(u64, eb->start, folio_pos(folio));
2128
u32 range_len = min_t(u64, folio_end(folio),
2129
eb->start + eb->len) - range_start;
2130
2131
folio_lock(folio);
2132
btrfs_meta_folio_clear_dirty(folio, eb);
2133
btrfs_meta_folio_set_writeback(folio, eb);
2134
if (!folio_test_dirty(folio))
2135
wbc->nr_to_write -= folio_nr_pages(folio);
2136
bio_add_folio_nofail(&bbio->bio, folio, range_len,
2137
offset_in_folio(folio, range_start));
2138
wbc_account_cgroup_owner(wbc, folio, range_len);
2139
folio_unlock(folio);
2140
}
2141
btrfs_submit_bbio(bbio, 0);
2142
}
2143
2144
/*
2145
* Wait for all eb writeback in the given range to finish.
2146
*
2147
* @fs_info: The fs_info for this file system.
2148
* @start: The offset of the range to start waiting on writeback.
2149
* @end: The end of the range, inclusive. This is meant to be used in
2150
* conjuction with wait_marked_extents, so this will usually be
2151
* the_next_eb->start - 1.
2152
*/
2153
void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start,
2154
u64 end)
2155
{
2156
struct eb_batch batch;
2157
unsigned long start_index = (start >> fs_info->nodesize_bits);
2158
unsigned long end_index = (end >> fs_info->nodesize_bits);
2159
2160
eb_batch_init(&batch);
2161
while (start_index <= end_index) {
2162
struct extent_buffer *eb;
2163
unsigned int nr_ebs;
2164
2165
nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index,
2166
PAGECACHE_TAG_WRITEBACK, &batch);
2167
if (!nr_ebs)
2168
break;
2169
2170
while ((eb = eb_batch_next(&batch)) != NULL)
2171
wait_on_extent_buffer_writeback(eb);
2172
eb_batch_release(&batch);
2173
cond_resched();
2174
}
2175
}
2176
2177
int btree_write_cache_pages(struct address_space *mapping,
2178
struct writeback_control *wbc)
2179
{
2180
struct btrfs_eb_write_context ctx = { .wbc = wbc };
2181
struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
2182
int ret = 0;
2183
int done = 0;
2184
int nr_to_write_done = 0;
2185
struct eb_batch batch;
2186
unsigned int nr_ebs;
2187
unsigned long index;
2188
unsigned long end;
2189
int scanned = 0;
2190
xa_mark_t tag;
2191
2192
eb_batch_init(&batch);
2193
if (wbc->range_cyclic) {
2194
index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->nodesize_bits);
2195
end = -1;
2196
2197
/*
2198
* Start from the beginning does not need to cycle over the
2199
* range, mark it as scanned.
2200
*/
2201
scanned = (index == 0);
2202
} else {
2203
index = (wbc->range_start >> fs_info->nodesize_bits);
2204
end = (wbc->range_end >> fs_info->nodesize_bits);
2205
2206
scanned = 1;
2207
}
2208
if (wbc->sync_mode == WB_SYNC_ALL)
2209
tag = PAGECACHE_TAG_TOWRITE;
2210
else
2211
tag = PAGECACHE_TAG_DIRTY;
2212
btrfs_zoned_meta_io_lock(fs_info);
2213
retry:
2214
if (wbc->sync_mode == WB_SYNC_ALL)
2215
buffer_tree_tag_for_writeback(fs_info, index, end);
2216
while (!done && !nr_to_write_done && (index <= end) &&
2217
(nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) {
2218
struct extent_buffer *eb;
2219
2220
while ((eb = eb_batch_next(&batch)) != NULL) {
2221
ctx.eb = eb;
2222
2223
ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx);
2224
if (ret) {
2225
if (ret == -EBUSY)
2226
ret = 0;
2227
2228
if (ret) {
2229
done = 1;
2230
break;
2231
}
2232
continue;
2233
}
2234
2235
if (!lock_extent_buffer_for_io(eb, wbc))
2236
continue;
2237
2238
/* Implies write in zoned mode. */
2239
if (ctx.zoned_bg) {
2240
/* Mark the last eb in the block group. */
2241
btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb);
2242
ctx.zoned_bg->meta_write_pointer += eb->len;
2243
}
2244
write_one_eb(eb, wbc);
2245
}
2246
nr_to_write_done = (wbc->nr_to_write <= 0);
2247
eb_batch_release(&batch);
2248
cond_resched();
2249
}
2250
if (!scanned && !done) {
2251
/*
2252
* We hit the last page and there is more work to be done: wrap
2253
* back to the start of the file
2254
*/
2255
scanned = 1;
2256
index = 0;
2257
goto retry;
2258
}
2259
/*
2260
* If something went wrong, don't allow any metadata write bio to be
2261
* submitted.
2262
*
2263
* This would prevent use-after-free if we had dirty pages not
2264
* cleaned up, which can still happen by fuzzed images.
2265
*
2266
* - Bad extent tree
2267
* Allowing existing tree block to be allocated for other trees.
2268
*
2269
* - Log tree operations
2270
* Exiting tree blocks get allocated to log tree, bumps its
2271
* generation, then get cleaned in tree re-balance.
2272
* Such tree block will not be written back, since it's clean,
2273
* thus no WRITTEN flag set.
2274
* And after log writes back, this tree block is not traced by
2275
* any dirty extent_io_tree.
2276
*
2277
* - Offending tree block gets re-dirtied from its original owner
2278
* Since it has bumped generation, no WRITTEN flag, it can be
2279
* reused without COWing. This tree block will not be traced
2280
* by btrfs_transaction::dirty_pages.
2281
*
2282
* Now such dirty tree block will not be cleaned by any dirty
2283
* extent io tree. Thus we don't want to submit such wild eb
2284
* if the fs already has error.
2285
*
2286
* We can get ret > 0 from submit_extent_folio() indicating how many ebs
2287
* were submitted. Reset it to 0 to avoid false alerts for the caller.
2288
*/
2289
if (ret > 0)
2290
ret = 0;
2291
if (!ret && BTRFS_FS_ERROR(fs_info))
2292
ret = -EROFS;
2293
2294
if (ctx.zoned_bg)
2295
btrfs_put_block_group(ctx.zoned_bg);
2296
btrfs_zoned_meta_io_unlock(fs_info);
2297
return ret;
2298
}
2299
2300
/*
2301
* Walk the list of dirty pages of the given address space and write all of them.
2302
*
2303
* @mapping: address space structure to write
2304
* @wbc: subtract the number of written pages from *@wbc->nr_to_write
2305
* @bio_ctrl: holds context for the write, namely the bio
2306
*
2307
* If a page is already under I/O, write_cache_pages() skips it, even
2308
* if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2309
* but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2310
* and msync() need to guarantee that all the data which was dirty at the time
2311
* the call was made get new I/O started against them. If wbc->sync_mode is
2312
* WB_SYNC_ALL then we were called for data integrity and we must wait for
2313
* existing IO to complete.
2314
*/
2315
static int extent_write_cache_pages(struct address_space *mapping,
2316
struct btrfs_bio_ctrl *bio_ctrl)
2317
{
2318
struct writeback_control *wbc = bio_ctrl->wbc;
2319
struct inode *inode = mapping->host;
2320
int ret = 0;
2321
int done = 0;
2322
int nr_to_write_done = 0;
2323
struct folio_batch fbatch;
2324
unsigned int nr_folios;
2325
pgoff_t index;
2326
pgoff_t end; /* Inclusive */
2327
pgoff_t done_index;
2328
int range_whole = 0;
2329
int scanned = 0;
2330
xa_mark_t tag;
2331
2332
/*
2333
* We have to hold onto the inode so that ordered extents can do their
2334
* work when the IO finishes. The alternative to this is failing to add
2335
* an ordered extent if the igrab() fails there and that is a huge pain
2336
* to deal with, so instead just hold onto the inode throughout the
2337
* writepages operation. If it fails here we are freeing up the inode
2338
* anyway and we'd rather not waste our time writing out stuff that is
2339
* going to be truncated anyway.
2340
*/
2341
if (!igrab(inode))
2342
return 0;
2343
2344
folio_batch_init(&fbatch);
2345
if (wbc->range_cyclic) {
2346
index = mapping->writeback_index; /* Start from prev offset */
2347
end = -1;
2348
/*
2349
* Start from the beginning does not need to cycle over the
2350
* range, mark it as scanned.
2351
*/
2352
scanned = (index == 0);
2353
} else {
2354
index = wbc->range_start >> PAGE_SHIFT;
2355
end = wbc->range_end >> PAGE_SHIFT;
2356
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2357
range_whole = 1;
2358
scanned = 1;
2359
}
2360
2361
/*
2362
* We do the tagged writepage as long as the snapshot flush bit is set
2363
* and we are the first one who do the filemap_flush() on this inode.
2364
*
2365
* The nr_to_write == LONG_MAX is needed to make sure other flushers do
2366
* not race in and drop the bit.
2367
*/
2368
if (range_whole && wbc->nr_to_write == LONG_MAX &&
2369
test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2370
&BTRFS_I(inode)->runtime_flags))
2371
wbc->tagged_writepages = 1;
2372
2373
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2374
tag = PAGECACHE_TAG_TOWRITE;
2375
else
2376
tag = PAGECACHE_TAG_DIRTY;
2377
retry:
2378
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2379
tag_pages_for_writeback(mapping, index, end);
2380
done_index = index;
2381
while (!done && !nr_to_write_done && (index <= end) &&
2382
(nr_folios = filemap_get_folios_tag(mapping, &index,
2383
end, tag, &fbatch))) {
2384
unsigned i;
2385
2386
for (i = 0; i < nr_folios; i++) {
2387
struct folio *folio = fbatch.folios[i];
2388
2389
done_index = folio_next_index(folio);
2390
/*
2391
* At this point we hold neither the i_pages lock nor
2392
* the folio lock: the folio may be truncated or
2393
* invalidated (changing folio->mapping to NULL).
2394
*/
2395
if (!folio_trylock(folio)) {
2396
submit_write_bio(bio_ctrl, 0);
2397
folio_lock(folio);
2398
}
2399
2400
if (unlikely(folio->mapping != mapping)) {
2401
folio_unlock(folio);
2402
continue;
2403
}
2404
2405
if (!folio_test_dirty(folio)) {
2406
/* Someone wrote it for us. */
2407
folio_unlock(folio);
2408
continue;
2409
}
2410
2411
/*
2412
* For subpage case, compression can lead to mixed
2413
* writeback and dirty flags, e.g:
2414
* 0 32K 64K 96K 128K
2415
* | |//////||/////| |//|
2416
*
2417
* In above case, [32K, 96K) is asynchronously submitted
2418
* for compression, and [124K, 128K) needs to be written back.
2419
*
2420
* If we didn't wait wrtiteback for page 64K, [128K, 128K)
2421
* won't be submitted as the page still has writeback flag
2422
* and will be skipped in the next check.
2423
*
2424
* This mixed writeback and dirty case is only possible for
2425
* subpage case.
2426
*
2427
* TODO: Remove this check after migrating compression to
2428
* regular submission.
2429
*/
2430
if (wbc->sync_mode != WB_SYNC_NONE ||
2431
btrfs_is_subpage(inode_to_fs_info(inode), folio)) {
2432
if (folio_test_writeback(folio))
2433
submit_write_bio(bio_ctrl, 0);
2434
folio_wait_writeback(folio);
2435
}
2436
2437
if (folio_test_writeback(folio) ||
2438
!folio_clear_dirty_for_io(folio)) {
2439
folio_unlock(folio);
2440
continue;
2441
}
2442
2443
ret = extent_writepage(folio, bio_ctrl);
2444
if (ret < 0) {
2445
done = 1;
2446
break;
2447
}
2448
2449
/*
2450
* The filesystem may choose to bump up nr_to_write.
2451
* We have to make sure to honor the new nr_to_write
2452
* at any time.
2453
*/
2454
nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2455
wbc->nr_to_write <= 0);
2456
}
2457
folio_batch_release(&fbatch);
2458
cond_resched();
2459
}
2460
if (!scanned && !done) {
2461
/*
2462
* We hit the last page and there is more work to be done: wrap
2463
* back to the start of the file
2464
*/
2465
scanned = 1;
2466
index = 0;
2467
2468
/*
2469
* If we're looping we could run into a page that is locked by a
2470
* writer and that writer could be waiting on writeback for a
2471
* page in our current bio, and thus deadlock, so flush the
2472
* write bio here.
2473
*/
2474
submit_write_bio(bio_ctrl, 0);
2475
goto retry;
2476
}
2477
2478
if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2479
mapping->writeback_index = done_index;
2480
2481
btrfs_add_delayed_iput(BTRFS_I(inode));
2482
return ret;
2483
}
2484
2485
/*
2486
* Submit the pages in the range to bio for call sites which delalloc range has
2487
* already been ran (aka, ordered extent inserted) and all pages are still
2488
* locked.
2489
*/
2490
void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2491
u64 start, u64 end, struct writeback_control *wbc,
2492
bool pages_dirty)
2493
{
2494
bool found_error = false;
2495
int ret = 0;
2496
struct address_space *mapping = inode->i_mapping;
2497
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2498
const u32 sectorsize = fs_info->sectorsize;
2499
loff_t i_size = i_size_read(inode);
2500
u64 cur = start;
2501
struct btrfs_bio_ctrl bio_ctrl = {
2502
.wbc = wbc,
2503
.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2504
};
2505
2506
if (wbc->no_cgroup_owner)
2507
bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2508
2509
ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2510
2511
while (cur <= end) {
2512
u64 cur_end;
2513
u32 cur_len;
2514
struct folio *folio;
2515
2516
folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
2517
2518
/*
2519
* This shouldn't happen, the pages are pinned and locked, this
2520
* code is just in case, but shouldn't actually be run.
2521
*/
2522
if (IS_ERR(folio)) {
2523
cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2524
cur_len = cur_end + 1 - cur;
2525
btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2526
cur, cur_len, false);
2527
mapping_set_error(mapping, PTR_ERR(folio));
2528
cur = cur_end;
2529
continue;
2530
}
2531
2532
cur_end = min_t(u64, folio_end(folio) - 1, end);
2533
cur_len = cur_end + 1 - cur;
2534
2535
ASSERT(folio_test_locked(folio));
2536
if (pages_dirty && folio != locked_folio)
2537
ASSERT(folio_test_dirty(folio));
2538
2539
/*
2540
* Set the submission bitmap to submit all sectors.
2541
* extent_writepage_io() will do the truncation correctly.
2542
*/
2543
bio_ctrl.submit_bitmap = (unsigned long)-1;
2544
ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2545
&bio_ctrl, i_size);
2546
if (ret == 1)
2547
goto next_page;
2548
2549
if (ret)
2550
mapping_set_error(mapping, ret);
2551
btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2552
if (ret < 0)
2553
found_error = true;
2554
next_page:
2555
folio_put(folio);
2556
cur = cur_end + 1;
2557
}
2558
2559
submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2560
}
2561
2562
int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2563
{
2564
struct inode *inode = mapping->host;
2565
int ret = 0;
2566
struct btrfs_bio_ctrl bio_ctrl = {
2567
.wbc = wbc,
2568
.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2569
};
2570
2571
/*
2572
* Allow only a single thread to do the reloc work in zoned mode to
2573
* protect the write pointer updates.
2574
*/
2575
btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2576
ret = extent_write_cache_pages(mapping, &bio_ctrl);
2577
submit_write_bio(&bio_ctrl, ret);
2578
btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2579
return ret;
2580
}
2581
2582
void btrfs_readahead(struct readahead_control *rac)
2583
{
2584
struct btrfs_bio_ctrl bio_ctrl = {
2585
.opf = REQ_OP_READ | REQ_RAHEAD,
2586
.ractl = rac
2587
};
2588
struct folio *folio;
2589
struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2590
const u64 start = readahead_pos(rac);
2591
const u64 end = start + readahead_length(rac) - 1;
2592
struct extent_state *cached_state = NULL;
2593
struct extent_map *em_cached = NULL;
2594
u64 prev_em_start = (u64)-1;
2595
2596
lock_extents_for_read(inode, start, end, &cached_state);
2597
2598
while ((folio = readahead_folio(rac)) != NULL)
2599
btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start);
2600
2601
btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2602
2603
if (em_cached)
2604
btrfs_free_extent_map(em_cached);
2605
submit_one_bio(&bio_ctrl);
2606
}
2607
2608
/*
2609
* basic invalidate_folio code, this waits on any locked or writeback
2610
* ranges corresponding to the folio, and then deletes any extent state
2611
* records from the tree
2612
*/
2613
int extent_invalidate_folio(struct extent_io_tree *tree,
2614
struct folio *folio, size_t offset)
2615
{
2616
struct extent_state *cached_state = NULL;
2617
u64 start = folio_pos(folio);
2618
u64 end = start + folio_size(folio) - 1;
2619
size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2620
2621
/* This function is only called for the btree inode */
2622
ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2623
2624
start += ALIGN(offset, blocksize);
2625
if (start > end)
2626
return 0;
2627
2628
btrfs_lock_extent(tree, start, end, &cached_state);
2629
folio_wait_writeback(folio);
2630
2631
/*
2632
* Currently for btree io tree, only EXTENT_LOCKED is utilized,
2633
* so here we only need to unlock the extent range to free any
2634
* existing extent state.
2635
*/
2636
btrfs_unlock_extent(tree, start, end, &cached_state);
2637
return 0;
2638
}
2639
2640
/*
2641
* A helper for struct address_space_operations::release_folio, this tests for
2642
* areas of the folio that are locked or under IO and drops the related state
2643
* bits if it is safe to drop the folio.
2644
*/
2645
static bool try_release_extent_state(struct extent_io_tree *tree,
2646
struct folio *folio)
2647
{
2648
struct extent_state *cached_state = NULL;
2649
u64 start = folio_pos(folio);
2650
u64 end = start + folio_size(folio) - 1;
2651
u32 range_bits;
2652
u32 clear_bits;
2653
bool ret = false;
2654
int ret2;
2655
2656
btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state);
2657
2658
/*
2659
* We can release the folio if it's locked only for ordered extent
2660
* completion, since that doesn't require using the folio.
2661
*/
2662
if ((range_bits & EXTENT_LOCKED) &&
2663
!(range_bits & EXTENT_FINISHING_ORDERED))
2664
goto out;
2665
2666
clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW |
2667
EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED |
2668
EXTENT_FINISHING_ORDERED);
2669
/*
2670
* At this point we can safely clear everything except the locked,
2671
* nodatasum, delalloc new and finishing ordered bits. The delalloc new
2672
* bit will be cleared by ordered extent completion.
2673
*/
2674
ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state);
2675
/*
2676
* If clear_extent_bit failed for enomem reasons, we can't allow the
2677
* release to continue.
2678
*/
2679
if (ret2 == 0)
2680
ret = true;
2681
out:
2682
btrfs_free_extent_state(cached_state);
2683
2684
return ret;
2685
}
2686
2687
/*
2688
* a helper for release_folio. As long as there are no locked extents
2689
* in the range corresponding to the page, both state records and extent
2690
* map records are removed
2691
*/
2692
bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2693
{
2694
u64 start = folio_pos(folio);
2695
u64 end = start + folio_size(folio) - 1;
2696
struct btrfs_inode *inode = folio_to_inode(folio);
2697
struct extent_io_tree *io_tree = &inode->io_tree;
2698
2699
while (start <= end) {
2700
const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2701
const u64 len = end - start + 1;
2702
struct extent_map_tree *extent_tree = &inode->extent_tree;
2703
struct extent_map *em;
2704
2705
write_lock(&extent_tree->lock);
2706
em = btrfs_lookup_extent_mapping(extent_tree, start, len);
2707
if (!em) {
2708
write_unlock(&extent_tree->lock);
2709
break;
2710
}
2711
if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2712
write_unlock(&extent_tree->lock);
2713
btrfs_free_extent_map(em);
2714
break;
2715
}
2716
if (btrfs_test_range_bit_exists(io_tree, em->start,
2717
btrfs_extent_map_end(em) - 1,
2718
EXTENT_LOCKED))
2719
goto next;
2720
/*
2721
* If it's not in the list of modified extents, used by a fast
2722
* fsync, we can remove it. If it's being logged we can safely
2723
* remove it since fsync took an extra reference on the em.
2724
*/
2725
if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2726
goto remove_em;
2727
/*
2728
* If it's in the list of modified extents, remove it only if
2729
* its generation is older then the current one, in which case
2730
* we don't need it for a fast fsync. Otherwise don't remove it,
2731
* we could be racing with an ongoing fast fsync that could miss
2732
* the new extent.
2733
*/
2734
if (em->generation >= cur_gen)
2735
goto next;
2736
remove_em:
2737
/*
2738
* We only remove extent maps that are not in the list of
2739
* modified extents or that are in the list but with a
2740
* generation lower then the current generation, so there is no
2741
* need to set the full fsync flag on the inode (it hurts the
2742
* fsync performance for workloads with a data size that exceeds
2743
* or is close to the system's memory).
2744
*/
2745
btrfs_remove_extent_mapping(inode, em);
2746
/* Once for the inode's extent map tree. */
2747
btrfs_free_extent_map(em);
2748
next:
2749
start = btrfs_extent_map_end(em);
2750
write_unlock(&extent_tree->lock);
2751
2752
/* Once for us, for the lookup_extent_mapping() reference. */
2753
btrfs_free_extent_map(em);
2754
2755
if (need_resched()) {
2756
/*
2757
* If we need to resched but we can't block just exit
2758
* and leave any remaining extent maps.
2759
*/
2760
if (!gfpflags_allow_blocking(mask))
2761
break;
2762
2763
cond_resched();
2764
}
2765
}
2766
return try_release_extent_state(io_tree, folio);
2767
}
2768
2769
static int extent_buffer_under_io(const struct extent_buffer *eb)
2770
{
2771
return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2772
test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2773
}
2774
2775
static bool folio_range_has_eb(struct folio *folio)
2776
{
2777
struct btrfs_folio_state *bfs;
2778
2779
lockdep_assert_held(&folio->mapping->i_private_lock);
2780
2781
if (folio_test_private(folio)) {
2782
bfs = folio_get_private(folio);
2783
if (atomic_read(&bfs->eb_refs))
2784
return true;
2785
}
2786
return false;
2787
}
2788
2789
static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2790
{
2791
struct btrfs_fs_info *fs_info = eb->fs_info;
2792
struct address_space *mapping = folio->mapping;
2793
const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2794
2795
/*
2796
* For mapped eb, we're going to change the folio private, which should
2797
* be done under the i_private_lock.
2798
*/
2799
if (mapped)
2800
spin_lock(&mapping->i_private_lock);
2801
2802
if (!folio_test_private(folio)) {
2803
if (mapped)
2804
spin_unlock(&mapping->i_private_lock);
2805
return;
2806
}
2807
2808
if (!btrfs_meta_is_subpage(fs_info)) {
2809
/*
2810
* We do this since we'll remove the pages after we've removed
2811
* the eb from the xarray, so we could race and have this page
2812
* now attached to the new eb. So only clear folio if it's
2813
* still connected to this eb.
2814
*/
2815
if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2816
BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2817
BUG_ON(folio_test_dirty(folio));
2818
BUG_ON(folio_test_writeback(folio));
2819
/* We need to make sure we haven't be attached to a new eb. */
2820
folio_detach_private(folio);
2821
}
2822
if (mapped)
2823
spin_unlock(&mapping->i_private_lock);
2824
return;
2825
}
2826
2827
/*
2828
* For subpage, we can have dummy eb with folio private attached. In
2829
* this case, we can directly detach the private as such folio is only
2830
* attached to one dummy eb, no sharing.
2831
*/
2832
if (!mapped) {
2833
btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2834
return;
2835
}
2836
2837
btrfs_folio_dec_eb_refs(fs_info, folio);
2838
2839
/*
2840
* We can only detach the folio private if there are no other ebs in the
2841
* page range and no unfinished IO.
2842
*/
2843
if (!folio_range_has_eb(folio))
2844
btrfs_detach_folio_state(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2845
2846
spin_unlock(&mapping->i_private_lock);
2847
}
2848
2849
/* Release all folios attached to the extent buffer */
2850
static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb)
2851
{
2852
ASSERT(!extent_buffer_under_io(eb));
2853
2854
for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2855
struct folio *folio = eb->folios[i];
2856
2857
if (!folio)
2858
continue;
2859
2860
detach_extent_buffer_folio(eb, folio);
2861
}
2862
}
2863
2864
/*
2865
* Helper for releasing the extent buffer.
2866
*/
2867
static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2868
{
2869
btrfs_release_extent_buffer_folios(eb);
2870
btrfs_leak_debug_del_eb(eb);
2871
kmem_cache_free(extent_buffer_cache, eb);
2872
}
2873
2874
static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info,
2875
u64 start)
2876
{
2877
struct extent_buffer *eb = NULL;
2878
2879
eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2880
eb->start = start;
2881
eb->len = fs_info->nodesize;
2882
eb->fs_info = fs_info;
2883
init_rwsem(&eb->lock);
2884
2885
btrfs_leak_debug_add_eb(eb);
2886
2887
spin_lock_init(&eb->refs_lock);
2888
refcount_set(&eb->refs, 1);
2889
2890
ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2891
2892
return eb;
2893
}
2894
2895
/*
2896
* For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer()
2897
* does not call folio_put(), and we need to set the folios to NULL so that
2898
* btrfs_release_extent_buffer() will not detach them a second time.
2899
*/
2900
static void cleanup_extent_buffer_folios(struct extent_buffer *eb)
2901
{
2902
const int num_folios = num_extent_folios(eb);
2903
2904
/* We canont use num_extent_folios() as loop bound as eb->folios changes. */
2905
for (int i = 0; i < num_folios; i++) {
2906
ASSERT(eb->folios[i]);
2907
detach_extent_buffer_folio(eb, eb->folios[i]);
2908
folio_put(eb->folios[i]);
2909
eb->folios[i] = NULL;
2910
}
2911
}
2912
2913
struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
2914
{
2915
struct extent_buffer *new;
2916
int num_folios;
2917
int ret;
2918
2919
new = __alloc_extent_buffer(src->fs_info, src->start);
2920
if (new == NULL)
2921
return NULL;
2922
2923
/*
2924
* Set UNMAPPED before calling btrfs_release_extent_buffer(), as
2925
* btrfs_release_extent_buffer() have different behavior for
2926
* UNMAPPED subpage extent buffer.
2927
*/
2928
set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
2929
2930
ret = alloc_eb_folio_array(new, false);
2931
if (ret)
2932
goto release_eb;
2933
2934
ASSERT(num_extent_folios(src) == num_extent_folios(new),
2935
"%d != %d", num_extent_folios(src), num_extent_folios(new));
2936
/* Explicitly use the cached num_extent value from now on. */
2937
num_folios = num_extent_folios(src);
2938
for (int i = 0; i < num_folios; i++) {
2939
struct folio *folio = new->folios[i];
2940
2941
ret = attach_extent_buffer_folio(new, folio, NULL);
2942
if (ret < 0)
2943
goto cleanup_folios;
2944
WARN_ON(folio_test_dirty(folio));
2945
}
2946
for (int i = 0; i < num_folios; i++)
2947
folio_put(new->folios[i]);
2948
2949
copy_extent_buffer_full(new, src);
2950
set_extent_buffer_uptodate(new);
2951
2952
return new;
2953
2954
cleanup_folios:
2955
cleanup_extent_buffer_folios(new);
2956
release_eb:
2957
btrfs_release_extent_buffer(new);
2958
return NULL;
2959
}
2960
2961
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2962
u64 start)
2963
{
2964
struct extent_buffer *eb;
2965
int ret;
2966
2967
eb = __alloc_extent_buffer(fs_info, start);
2968
if (!eb)
2969
return NULL;
2970
2971
ret = alloc_eb_folio_array(eb, false);
2972
if (ret)
2973
goto release_eb;
2974
2975
for (int i = 0; i < num_extent_folios(eb); i++) {
2976
ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
2977
if (ret < 0)
2978
goto cleanup_folios;
2979
}
2980
for (int i = 0; i < num_extent_folios(eb); i++)
2981
folio_put(eb->folios[i]);
2982
2983
set_extent_buffer_uptodate(eb);
2984
btrfs_set_header_nritems(eb, 0);
2985
set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2986
2987
return eb;
2988
2989
cleanup_folios:
2990
cleanup_extent_buffer_folios(eb);
2991
release_eb:
2992
btrfs_release_extent_buffer(eb);
2993
return NULL;
2994
}
2995
2996
static void check_buffer_tree_ref(struct extent_buffer *eb)
2997
{
2998
int refs;
2999
/*
3000
* The TREE_REF bit is first set when the extent_buffer is added to the
3001
* xarray. It is also reset, if unset, when a new reference is created
3002
* by find_extent_buffer.
3003
*
3004
* It is only cleared in two cases: freeing the last non-tree
3005
* reference to the extent_buffer when its STALE bit is set or
3006
* calling release_folio when the tree reference is the only reference.
3007
*
3008
* In both cases, care is taken to ensure that the extent_buffer's
3009
* pages are not under io. However, release_folio can be concurrently
3010
* called with creating new references, which is prone to race
3011
* conditions between the calls to check_buffer_tree_ref in those
3012
* codepaths and clearing TREE_REF in try_release_extent_buffer.
3013
*
3014
* The actual lifetime of the extent_buffer in the xarray is adequately
3015
* protected by the refcount, but the TREE_REF bit and its corresponding
3016
* reference are not. To protect against this class of races, we call
3017
* check_buffer_tree_ref() from the code paths which trigger io. Note that
3018
* once io is initiated, TREE_REF can no longer be cleared, so that is
3019
* the moment at which any such race is best fixed.
3020
*/
3021
refs = refcount_read(&eb->refs);
3022
if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3023
return;
3024
3025
spin_lock(&eb->refs_lock);
3026
if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3027
refcount_inc(&eb->refs);
3028
spin_unlock(&eb->refs_lock);
3029
}
3030
3031
static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3032
{
3033
check_buffer_tree_ref(eb);
3034
3035
for (int i = 0; i < num_extent_folios(eb); i++)
3036
folio_mark_accessed(eb->folios[i]);
3037
}
3038
3039
struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3040
u64 start)
3041
{
3042
struct extent_buffer *eb;
3043
3044
eb = find_extent_buffer_nolock(fs_info, start);
3045
if (!eb)
3046
return NULL;
3047
/*
3048
* Lock our eb's refs_lock to avoid races with free_extent_buffer().
3049
* When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3050
* another task running free_extent_buffer() might have seen that flag
3051
* set, eb->refs == 2, that the buffer isn't under IO (dirty and
3052
* writeback flags not set) and it's still in the tree (flag
3053
* EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3054
* decrementing the extent buffer's reference count twice. So here we
3055
* could race and increment the eb's reference count, clear its stale
3056
* flag, mark it as dirty and drop our reference before the other task
3057
* finishes executing free_extent_buffer, which would later result in
3058
* an attempt to free an extent buffer that is dirty.
3059
*/
3060
if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3061
spin_lock(&eb->refs_lock);
3062
spin_unlock(&eb->refs_lock);
3063
}
3064
mark_extent_buffer_accessed(eb);
3065
return eb;
3066
}
3067
3068
struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3069
u64 start)
3070
{
3071
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3072
struct extent_buffer *eb, *exists = NULL;
3073
int ret;
3074
3075
eb = find_extent_buffer(fs_info, start);
3076
if (eb)
3077
return eb;
3078
eb = alloc_dummy_extent_buffer(fs_info, start);
3079
if (!eb)
3080
return ERR_PTR(-ENOMEM);
3081
eb->fs_info = fs_info;
3082
again:
3083
xa_lock_irq(&fs_info->buffer_tree);
3084
exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->nodesize_bits,
3085
NULL, eb, GFP_NOFS);
3086
if (xa_is_err(exists)) {
3087
ret = xa_err(exists);
3088
xa_unlock_irq(&fs_info->buffer_tree);
3089
btrfs_release_extent_buffer(eb);
3090
return ERR_PTR(ret);
3091
}
3092
if (exists) {
3093
if (!refcount_inc_not_zero(&exists->refs)) {
3094
/* The extent buffer is being freed, retry. */
3095
xa_unlock_irq(&fs_info->buffer_tree);
3096
goto again;
3097
}
3098
xa_unlock_irq(&fs_info->buffer_tree);
3099
btrfs_release_extent_buffer(eb);
3100
return exists;
3101
}
3102
xa_unlock_irq(&fs_info->buffer_tree);
3103
check_buffer_tree_ref(eb);
3104
3105
return eb;
3106
#else
3107
/* Stub to avoid linker error when compiled with optimizations turned off. */
3108
return NULL;
3109
#endif
3110
}
3111
3112
static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info,
3113
struct folio *folio)
3114
{
3115
struct extent_buffer *exists;
3116
3117
lockdep_assert_held(&folio->mapping->i_private_lock);
3118
3119
/*
3120
* For subpage case, we completely rely on xarray to ensure we don't try
3121
* to insert two ebs for the same bytenr. So here we always return NULL
3122
* and just continue.
3123
*/
3124
if (btrfs_meta_is_subpage(fs_info))
3125
return NULL;
3126
3127
/* Page not yet attached to an extent buffer */
3128
if (!folio_test_private(folio))
3129
return NULL;
3130
3131
/*
3132
* We could have already allocated an eb for this folio and attached one
3133
* so lets see if we can get a ref on the existing eb, and if we can we
3134
* know it's good and we can just return that one, else we know we can
3135
* just overwrite folio private.
3136
*/
3137
exists = folio_get_private(folio);
3138
if (refcount_inc_not_zero(&exists->refs))
3139
return exists;
3140
3141
WARN_ON(folio_test_dirty(folio));
3142
folio_detach_private(folio);
3143
return NULL;
3144
}
3145
3146
/*
3147
* Validate alignment constraints of eb at logical address @start.
3148
*/
3149
static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3150
{
3151
if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3152
btrfs_err(fs_info, "bad tree block start %llu", start);
3153
return true;
3154
}
3155
3156
if (fs_info->nodesize < PAGE_SIZE && !IS_ALIGNED(start, fs_info->nodesize)) {
3157
btrfs_err(fs_info,
3158
"tree block is not nodesize aligned, start %llu nodesize %u",
3159
start, fs_info->nodesize);
3160
return true;
3161
}
3162
if (fs_info->nodesize >= PAGE_SIZE &&
3163
!PAGE_ALIGNED(start)) {
3164
btrfs_err(fs_info,
3165
"tree block is not page aligned, start %llu nodesize %u",
3166
start, fs_info->nodesize);
3167
return true;
3168
}
3169
if (!IS_ALIGNED(start, fs_info->nodesize) &&
3170
!test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3171
btrfs_warn(fs_info,
3172
"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3173
start, fs_info->nodesize);
3174
}
3175
return false;
3176
}
3177
3178
/*
3179
* Return 0 if eb->folios[i] is attached to btree inode successfully.
3180
* Return >0 if there is already another extent buffer for the range,
3181
* and @found_eb_ret would be updated.
3182
* Return -EAGAIN if the filemap has an existing folio but with different size
3183
* than @eb.
3184
* The caller needs to free the existing folios and retry using the same order.
3185
*/
3186
static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3187
struct btrfs_folio_state *prealloc,
3188
struct extent_buffer **found_eb_ret)
3189
{
3190
3191
struct btrfs_fs_info *fs_info = eb->fs_info;
3192
struct address_space *mapping = fs_info->btree_inode->i_mapping;
3193
const pgoff_t index = eb->start >> PAGE_SHIFT;
3194
struct folio *existing_folio;
3195
int ret;
3196
3197
ASSERT(found_eb_ret);
3198
3199
/* Caller should ensure the folio exists. */
3200
ASSERT(eb->folios[i]);
3201
3202
retry:
3203
existing_folio = NULL;
3204
ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3205
GFP_NOFS | __GFP_NOFAIL);
3206
if (!ret)
3207
goto finish;
3208
3209
existing_folio = filemap_lock_folio(mapping, index + i);
3210
/* The page cache only exists for a very short time, just retry. */
3211
if (IS_ERR(existing_folio))
3212
goto retry;
3213
3214
/* For now, we should only have single-page folios for btree inode. */
3215
ASSERT(folio_nr_pages(existing_folio) == 1);
3216
3217
if (folio_size(existing_folio) != eb->folio_size) {
3218
folio_unlock(existing_folio);
3219
folio_put(existing_folio);
3220
return -EAGAIN;
3221
}
3222
3223
finish:
3224
spin_lock(&mapping->i_private_lock);
3225
if (existing_folio && btrfs_meta_is_subpage(fs_info)) {
3226
/* We're going to reuse the existing page, can drop our folio now. */
3227
__free_page(folio_page(eb->folios[i], 0));
3228
eb->folios[i] = existing_folio;
3229
} else if (existing_folio) {
3230
struct extent_buffer *existing_eb;
3231
3232
existing_eb = grab_extent_buffer(fs_info, existing_folio);
3233
if (existing_eb) {
3234
/* The extent buffer still exists, we can use it directly. */
3235
*found_eb_ret = existing_eb;
3236
spin_unlock(&mapping->i_private_lock);
3237
folio_unlock(existing_folio);
3238
folio_put(existing_folio);
3239
return 1;
3240
}
3241
/* The extent buffer no longer exists, we can reuse the folio. */
3242
__free_page(folio_page(eb->folios[i], 0));
3243
eb->folios[i] = existing_folio;
3244
}
3245
eb->folio_size = folio_size(eb->folios[i]);
3246
eb->folio_shift = folio_shift(eb->folios[i]);
3247
/* Should not fail, as we have preallocated the memory. */
3248
ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3249
ASSERT(!ret);
3250
/*
3251
* To inform we have an extra eb under allocation, so that
3252
* detach_extent_buffer_page() won't release the folio private when the
3253
* eb hasn't been inserted into the xarray yet.
3254
*
3255
* The ref will be decreased when the eb releases the page, in
3256
* detach_extent_buffer_page(). Thus needs no special handling in the
3257
* error path.
3258
*/
3259
btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3260
spin_unlock(&mapping->i_private_lock);
3261
return 0;
3262
}
3263
3264
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3265
u64 start, u64 owner_root, int level)
3266
{
3267
int attached = 0;
3268
struct extent_buffer *eb;
3269
struct extent_buffer *existing_eb = NULL;
3270
struct btrfs_folio_state *prealloc = NULL;
3271
u64 lockdep_owner = owner_root;
3272
bool page_contig = true;
3273
int uptodate = 1;
3274
int ret;
3275
3276
if (check_eb_alignment(fs_info, start))
3277
return ERR_PTR(-EINVAL);
3278
3279
#if BITS_PER_LONG == 32
3280
if (start >= MAX_LFS_FILESIZE) {
3281
btrfs_err_rl(fs_info,
3282
"extent buffer %llu is beyond 32bit page cache limit", start);
3283
btrfs_err_32bit_limit(fs_info);
3284
return ERR_PTR(-EOVERFLOW);
3285
}
3286
if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3287
btrfs_warn_32bit_limit(fs_info);
3288
#endif
3289
3290
eb = find_extent_buffer(fs_info, start);
3291
if (eb)
3292
return eb;
3293
3294
eb = __alloc_extent_buffer(fs_info, start);
3295
if (!eb)
3296
return ERR_PTR(-ENOMEM);
3297
3298
/*
3299
* The reloc trees are just snapshots, so we need them to appear to be
3300
* just like any other fs tree WRT lockdep.
3301
*/
3302
if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3303
lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3304
3305
btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3306
3307
/*
3308
* Preallocate folio private for subpage case, so that we won't
3309
* allocate memory with i_private_lock nor page lock hold.
3310
*
3311
* The memory will be freed by attach_extent_buffer_page() or freed
3312
* manually if we exit earlier.
3313
*/
3314
if (btrfs_meta_is_subpage(fs_info)) {
3315
prealloc = btrfs_alloc_folio_state(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA);
3316
if (IS_ERR(prealloc)) {
3317
ret = PTR_ERR(prealloc);
3318
goto out;
3319
}
3320
}
3321
3322
reallocate:
3323
/* Allocate all pages first. */
3324
ret = alloc_eb_folio_array(eb, true);
3325
if (ret < 0) {
3326
btrfs_free_folio_state(prealloc);
3327
goto out;
3328
}
3329
3330
/* Attach all pages to the filemap. */
3331
for (int i = 0; i < num_extent_folios(eb); i++) {
3332
struct folio *folio;
3333
3334
ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3335
if (ret > 0) {
3336
ASSERT(existing_eb);
3337
goto out;
3338
}
3339
3340
/*
3341
* TODO: Special handling for a corner case where the order of
3342
* folios mismatch between the new eb and filemap.
3343
*
3344
* This happens when:
3345
*
3346
* - the new eb is using higher order folio
3347
*
3348
* - the filemap is still using 0-order folios for the range
3349
* This can happen at the previous eb allocation, and we don't
3350
* have higher order folio for the call.
3351
*
3352
* - the existing eb has already been freed
3353
*
3354
* In this case, we have to free the existing folios first, and
3355
* re-allocate using the same order.
3356
* Thankfully this is not going to happen yet, as we're still
3357
* using 0-order folios.
3358
*/
3359
if (unlikely(ret == -EAGAIN)) {
3360
DEBUG_WARN("folio order mismatch between new eb and filemap");
3361
goto reallocate;
3362
}
3363
attached++;
3364
3365
/*
3366
* Only after attach_eb_folio_to_filemap(), eb->folios[] is
3367
* reliable, as we may choose to reuse the existing page cache
3368
* and free the allocated page.
3369
*/
3370
folio = eb->folios[i];
3371
WARN_ON(btrfs_meta_folio_test_dirty(folio, eb));
3372
3373
/*
3374
* Check if the current page is physically contiguous with previous eb
3375
* page.
3376
* At this stage, either we allocated a large folio, thus @i
3377
* would only be 0, or we fall back to per-page allocation.
3378
*/
3379
if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3380
page_contig = false;
3381
3382
if (!btrfs_meta_folio_test_uptodate(folio, eb))
3383
uptodate = 0;
3384
3385
/*
3386
* We can't unlock the pages just yet since the extent buffer
3387
* hasn't been properly inserted into the xarray, this opens a
3388
* race with btree_release_folio() which can free a page while we
3389
* are still filling in all pages for the buffer and we could crash.
3390
*/
3391
}
3392
if (uptodate)
3393
set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3394
/* All pages are physically contiguous, can skip cross page handling. */
3395
if (page_contig)
3396
eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3397
again:
3398
xa_lock_irq(&fs_info->buffer_tree);
3399
existing_eb = __xa_cmpxchg(&fs_info->buffer_tree,
3400
start >> fs_info->nodesize_bits, NULL, eb,
3401
GFP_NOFS);
3402
if (xa_is_err(existing_eb)) {
3403
ret = xa_err(existing_eb);
3404
xa_unlock_irq(&fs_info->buffer_tree);
3405
goto out;
3406
}
3407
if (existing_eb) {
3408
if (!refcount_inc_not_zero(&existing_eb->refs)) {
3409
xa_unlock_irq(&fs_info->buffer_tree);
3410
goto again;
3411
}
3412
xa_unlock_irq(&fs_info->buffer_tree);
3413
goto out;
3414
}
3415
xa_unlock_irq(&fs_info->buffer_tree);
3416
3417
/* add one reference for the tree */
3418
check_buffer_tree_ref(eb);
3419
3420
/*
3421
* Now it's safe to unlock the pages because any calls to
3422
* btree_release_folio will correctly detect that a page belongs to a
3423
* live buffer and won't free them prematurely.
3424
*/
3425
for (int i = 0; i < num_extent_folios(eb); i++) {
3426
folio_unlock(eb->folios[i]);
3427
/*
3428
* A folio that has been added to an address_space mapping
3429
* should not continue holding the refcount from its original
3430
* allocation indefinitely.
3431
*/
3432
folio_put(eb->folios[i]);
3433
}
3434
return eb;
3435
3436
out:
3437
WARN_ON(!refcount_dec_and_test(&eb->refs));
3438
3439
/*
3440
* Any attached folios need to be detached before we unlock them. This
3441
* is because when we're inserting our new folios into the mapping, and
3442
* then attaching our eb to that folio. If we fail to insert our folio
3443
* we'll lookup the folio for that index, and grab that EB. We do not
3444
* want that to grab this eb, as we're getting ready to free it. So we
3445
* have to detach it first and then unlock it.
3446
*
3447
* Note: the bounds is num_extent_pages() as we need to go through all slots.
3448
*/
3449
for (int i = 0; i < num_extent_pages(eb); i++) {
3450
struct folio *folio = eb->folios[i];
3451
3452
if (i < attached) {
3453
ASSERT(folio);
3454
detach_extent_buffer_folio(eb, folio);
3455
folio_unlock(folio);
3456
} else if (!folio) {
3457
continue;
3458
}
3459
3460
folio_put(folio);
3461
eb->folios[i] = NULL;
3462
}
3463
btrfs_release_extent_buffer(eb);
3464
if (ret < 0)
3465
return ERR_PTR(ret);
3466
ASSERT(existing_eb);
3467
return existing_eb;
3468
}
3469
3470
static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3471
{
3472
struct extent_buffer *eb =
3473
container_of(head, struct extent_buffer, rcu_head);
3474
3475
kmem_cache_free(extent_buffer_cache, eb);
3476
}
3477
3478
static int release_extent_buffer(struct extent_buffer *eb)
3479
__releases(&eb->refs_lock)
3480
{
3481
lockdep_assert_held(&eb->refs_lock);
3482
3483
if (refcount_dec_and_test(&eb->refs)) {
3484
struct btrfs_fs_info *fs_info = eb->fs_info;
3485
3486
spin_unlock(&eb->refs_lock);
3487
3488
/*
3489
* We're erasing, theoretically there will be no allocations, so
3490
* just use GFP_ATOMIC.
3491
*
3492
* We use cmpxchg instead of erase because we do not know if
3493
* this eb is actually in the tree or not, we could be cleaning
3494
* up an eb that we allocated but never inserted into the tree.
3495
* Thus use cmpxchg to remove it from the tree if it is there,
3496
* or leave the other entry if this isn't in the tree.
3497
*
3498
* The documentation says that putting a NULL value is the same
3499
* as erase as long as XA_FLAGS_ALLOC is not set, which it isn't
3500
* in this case.
3501
*/
3502
xa_cmpxchg_irq(&fs_info->buffer_tree,
3503
eb->start >> fs_info->nodesize_bits, eb, NULL,
3504
GFP_ATOMIC);
3505
3506
btrfs_leak_debug_del_eb(eb);
3507
/* Should be safe to release folios at this point. */
3508
btrfs_release_extent_buffer_folios(eb);
3509
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3510
if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3511
kmem_cache_free(extent_buffer_cache, eb);
3512
return 1;
3513
}
3514
#endif
3515
call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3516
return 1;
3517
}
3518
spin_unlock(&eb->refs_lock);
3519
3520
return 0;
3521
}
3522
3523
void free_extent_buffer(struct extent_buffer *eb)
3524
{
3525
int refs;
3526
if (!eb)
3527
return;
3528
3529
refs = refcount_read(&eb->refs);
3530
while (1) {
3531
if (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags)) {
3532
if (refs == 1)
3533
break;
3534
} else if (refs <= 3) {
3535
break;
3536
}
3537
3538
/* Optimization to avoid locking eb->refs_lock. */
3539
if (atomic_try_cmpxchg(&eb->refs.refs, &refs, refs - 1))
3540
return;
3541
}
3542
3543
spin_lock(&eb->refs_lock);
3544
if (refcount_read(&eb->refs) == 2 &&
3545
test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3546
!extent_buffer_under_io(eb) &&
3547
test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3548
refcount_dec(&eb->refs);
3549
3550
/*
3551
* I know this is terrible, but it's temporary until we stop tracking
3552
* the uptodate bits and such for the extent buffers.
3553
*/
3554
release_extent_buffer(eb);
3555
}
3556
3557
void free_extent_buffer_stale(struct extent_buffer *eb)
3558
{
3559
if (!eb)
3560
return;
3561
3562
spin_lock(&eb->refs_lock);
3563
set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3564
3565
if (refcount_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3566
test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3567
refcount_dec(&eb->refs);
3568
release_extent_buffer(eb);
3569
}
3570
3571
static void btree_clear_folio_dirty_tag(struct folio *folio)
3572
{
3573
ASSERT(!folio_test_dirty(folio));
3574
ASSERT(folio_test_locked(folio));
3575
xa_lock_irq(&folio->mapping->i_pages);
3576
if (!folio_test_dirty(folio))
3577
__xa_clear_mark(&folio->mapping->i_pages, folio->index,
3578
PAGECACHE_TAG_DIRTY);
3579
xa_unlock_irq(&folio->mapping->i_pages);
3580
}
3581
3582
void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3583
struct extent_buffer *eb)
3584
{
3585
struct btrfs_fs_info *fs_info = eb->fs_info;
3586
3587
btrfs_assert_tree_write_locked(eb);
3588
3589
if (trans && btrfs_header_generation(eb) != trans->transid)
3590
return;
3591
3592
/*
3593
* Instead of clearing the dirty flag off of the buffer, mark it as
3594
* EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3595
* write-ordering in zoned mode, without the need to later re-dirty
3596
* the extent_buffer.
3597
*
3598
* The actual zeroout of the buffer will happen later in
3599
* btree_csum_one_bio.
3600
*/
3601
if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3602
set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3603
return;
3604
}
3605
3606
if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3607
return;
3608
3609
buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY);
3610
percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3611
fs_info->dirty_metadata_batch);
3612
3613
for (int i = 0; i < num_extent_folios(eb); i++) {
3614
struct folio *folio = eb->folios[i];
3615
bool last;
3616
3617
if (!folio_test_dirty(folio))
3618
continue;
3619
folio_lock(folio);
3620
last = btrfs_meta_folio_clear_and_test_dirty(folio, eb);
3621
if (last)
3622
btree_clear_folio_dirty_tag(folio);
3623
folio_unlock(folio);
3624
}
3625
WARN_ON(refcount_read(&eb->refs) == 0);
3626
}
3627
3628
void set_extent_buffer_dirty(struct extent_buffer *eb)
3629
{
3630
bool was_dirty;
3631
3632
check_buffer_tree_ref(eb);
3633
3634
was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3635
3636
WARN_ON(refcount_read(&eb->refs) == 0);
3637
WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3638
WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3639
3640
if (!was_dirty) {
3641
bool subpage = btrfs_meta_is_subpage(eb->fs_info);
3642
3643
/*
3644
* For subpage case, we can have other extent buffers in the
3645
* same page, and in clear_extent_buffer_dirty() we
3646
* have to clear page dirty without subpage lock held.
3647
* This can cause race where our page gets dirty cleared after
3648
* we just set it.
3649
*
3650
* Thankfully, clear_extent_buffer_dirty() has locked
3651
* its page for other reasons, we can use page lock to prevent
3652
* the above race.
3653
*/
3654
if (subpage)
3655
folio_lock(eb->folios[0]);
3656
for (int i = 0; i < num_extent_folios(eb); i++)
3657
btrfs_meta_folio_set_dirty(eb->folios[i], eb);
3658
buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY);
3659
if (subpage)
3660
folio_unlock(eb->folios[0]);
3661
percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3662
eb->len,
3663
eb->fs_info->dirty_metadata_batch);
3664
}
3665
#ifdef CONFIG_BTRFS_DEBUG
3666
for (int i = 0; i < num_extent_folios(eb); i++)
3667
ASSERT(folio_test_dirty(eb->folios[i]));
3668
#endif
3669
}
3670
3671
void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3672
{
3673
3674
clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3675
for (int i = 0; i < num_extent_folios(eb); i++) {
3676
struct folio *folio = eb->folios[i];
3677
3678
if (!folio)
3679
continue;
3680
3681
btrfs_meta_folio_clear_uptodate(folio, eb);
3682
}
3683
}
3684
3685
void set_extent_buffer_uptodate(struct extent_buffer *eb)
3686
{
3687
3688
set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3689
for (int i = 0; i < num_extent_folios(eb); i++)
3690
btrfs_meta_folio_set_uptodate(eb->folios[i], eb);
3691
}
3692
3693
static void clear_extent_buffer_reading(struct extent_buffer *eb)
3694
{
3695
clear_and_wake_up_bit(EXTENT_BUFFER_READING, &eb->bflags);
3696
}
3697
3698
static void end_bbio_meta_read(struct btrfs_bio *bbio)
3699
{
3700
struct extent_buffer *eb = bbio->private;
3701
bool uptodate = !bbio->bio.bi_status;
3702
3703
/*
3704
* If the extent buffer is marked UPTODATE before the read operation
3705
* completes, other calls to read_extent_buffer_pages() will return
3706
* early without waiting for the read to finish, causing data races.
3707
*/
3708
WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3709
3710
eb->read_mirror = bbio->mirror_num;
3711
3712
if (uptodate &&
3713
btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3714
uptodate = false;
3715
3716
if (uptodate)
3717
set_extent_buffer_uptodate(eb);
3718
else
3719
clear_extent_buffer_uptodate(eb);
3720
3721
clear_extent_buffer_reading(eb);
3722
free_extent_buffer(eb);
3723
3724
bio_put(&bbio->bio);
3725
}
3726
3727
int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num,
3728
const struct btrfs_tree_parent_check *check)
3729
{
3730
struct btrfs_bio *bbio;
3731
3732
if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3733
return 0;
3734
3735
/*
3736
* We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3737
* operation, which could potentially still be in flight. In this case
3738
* we simply want to return an error.
3739
*/
3740
if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3741
return -EIO;
3742
3743
/* Someone else is already reading the buffer, just wait for it. */
3744
if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3745
return 0;
3746
3747
/*
3748
* Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3749
* test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3750
* started and finished reading the same eb. In this case, UPTODATE
3751
* will now be set, and we shouldn't read it in again.
3752
*/
3753
if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3754
clear_extent_buffer_reading(eb);
3755
return 0;
3756
}
3757
3758
eb->read_mirror = 0;
3759
check_buffer_tree_ref(eb);
3760
refcount_inc(&eb->refs);
3761
3762
bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3763
REQ_OP_READ | REQ_META, eb->fs_info,
3764
end_bbio_meta_read, eb);
3765
bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3766
bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3767
bbio->file_offset = eb->start;
3768
memcpy(&bbio->parent_check, check, sizeof(*check));
3769
for (int i = 0; i < num_extent_folios(eb); i++) {
3770
struct folio *folio = eb->folios[i];
3771
u64 range_start = max_t(u64, eb->start, folio_pos(folio));
3772
u32 range_len = min_t(u64, folio_end(folio),
3773
eb->start + eb->len) - range_start;
3774
3775
bio_add_folio_nofail(&bbio->bio, folio, range_len,
3776
offset_in_folio(folio, range_start));
3777
}
3778
btrfs_submit_bbio(bbio, mirror_num);
3779
return 0;
3780
}
3781
3782
int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num,
3783
const struct btrfs_tree_parent_check *check)
3784
{
3785
int ret;
3786
3787
ret = read_extent_buffer_pages_nowait(eb, mirror_num, check);
3788
if (ret < 0)
3789
return ret;
3790
3791
wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3792
if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3793
return -EIO;
3794
return 0;
3795
}
3796
3797
static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3798
unsigned long len)
3799
{
3800
btrfs_warn(eb->fs_info,
3801
"access to eb bytenr %llu len %u out of range start %lu len %lu",
3802
eb->start, eb->len, start, len);
3803
DEBUG_WARN();
3804
3805
return true;
3806
}
3807
3808
/*
3809
* Check if the [start, start + len) range is valid before reading/writing
3810
* the eb.
3811
* NOTE: @start and @len are offset inside the eb, not logical address.
3812
*
3813
* Caller should not touch the dst/src memory if this function returns error.
3814
*/
3815
static inline int check_eb_range(const struct extent_buffer *eb,
3816
unsigned long start, unsigned long len)
3817
{
3818
unsigned long offset;
3819
3820
/* start, start + len should not go beyond eb->len nor overflow */
3821
if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3822
return report_eb_range(eb, start, len);
3823
3824
return false;
3825
}
3826
3827
void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3828
unsigned long start, unsigned long len)
3829
{
3830
const int unit_size = eb->folio_size;
3831
size_t cur;
3832
size_t offset;
3833
char *dst = (char *)dstv;
3834
unsigned long i = get_eb_folio_index(eb, start);
3835
3836
if (check_eb_range(eb, start, len)) {
3837
/*
3838
* Invalid range hit, reset the memory, so callers won't get
3839
* some random garbage for their uninitialized memory.
3840
*/
3841
memset(dstv, 0, len);
3842
return;
3843
}
3844
3845
if (eb->addr) {
3846
memcpy(dstv, eb->addr + start, len);
3847
return;
3848
}
3849
3850
offset = get_eb_offset_in_folio(eb, start);
3851
3852
while (len > 0) {
3853
char *kaddr;
3854
3855
cur = min(len, unit_size - offset);
3856
kaddr = folio_address(eb->folios[i]);
3857
memcpy(dst, kaddr + offset, cur);
3858
3859
dst += cur;
3860
len -= cur;
3861
offset = 0;
3862
i++;
3863
}
3864
}
3865
3866
int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3867
void __user *dstv,
3868
unsigned long start, unsigned long len)
3869
{
3870
const int unit_size = eb->folio_size;
3871
size_t cur;
3872
size_t offset;
3873
char __user *dst = (char __user *)dstv;
3874
unsigned long i = get_eb_folio_index(eb, start);
3875
int ret = 0;
3876
3877
WARN_ON(start > eb->len);
3878
WARN_ON(start + len > eb->start + eb->len);
3879
3880
if (eb->addr) {
3881
if (copy_to_user_nofault(dstv, eb->addr + start, len))
3882
ret = -EFAULT;
3883
return ret;
3884
}
3885
3886
offset = get_eb_offset_in_folio(eb, start);
3887
3888
while (len > 0) {
3889
char *kaddr;
3890
3891
cur = min(len, unit_size - offset);
3892
kaddr = folio_address(eb->folios[i]);
3893
if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3894
ret = -EFAULT;
3895
break;
3896
}
3897
3898
dst += cur;
3899
len -= cur;
3900
offset = 0;
3901
i++;
3902
}
3903
3904
return ret;
3905
}
3906
3907
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3908
unsigned long start, unsigned long len)
3909
{
3910
const int unit_size = eb->folio_size;
3911
size_t cur;
3912
size_t offset;
3913
char *kaddr;
3914
char *ptr = (char *)ptrv;
3915
unsigned long i = get_eb_folio_index(eb, start);
3916
int ret = 0;
3917
3918
if (check_eb_range(eb, start, len))
3919
return -EINVAL;
3920
3921
if (eb->addr)
3922
return memcmp(ptrv, eb->addr + start, len);
3923
3924
offset = get_eb_offset_in_folio(eb, start);
3925
3926
while (len > 0) {
3927
cur = min(len, unit_size - offset);
3928
kaddr = folio_address(eb->folios[i]);
3929
ret = memcmp(ptr, kaddr + offset, cur);
3930
if (ret)
3931
break;
3932
3933
ptr += cur;
3934
len -= cur;
3935
offset = 0;
3936
i++;
3937
}
3938
return ret;
3939
}
3940
3941
/*
3942
* Check that the extent buffer is uptodate.
3943
*
3944
* For regular sector size == PAGE_SIZE case, check if @page is uptodate.
3945
* For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
3946
*/
3947
static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
3948
{
3949
struct btrfs_fs_info *fs_info = eb->fs_info;
3950
struct folio *folio = eb->folios[i];
3951
3952
ASSERT(folio);
3953
3954
/*
3955
* If we are using the commit root we could potentially clear a page
3956
* Uptodate while we're using the extent buffer that we've previously
3957
* looked up. We don't want to complain in this case, as the page was
3958
* valid before, we just didn't write it out. Instead we want to catch
3959
* the case where we didn't actually read the block properly, which
3960
* would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
3961
*/
3962
if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3963
return;
3964
3965
if (btrfs_meta_is_subpage(fs_info)) {
3966
folio = eb->folios[0];
3967
ASSERT(i == 0);
3968
if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
3969
eb->start, eb->len)))
3970
btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
3971
} else {
3972
WARN_ON(!folio_test_uptodate(folio));
3973
}
3974
}
3975
3976
static void __write_extent_buffer(const struct extent_buffer *eb,
3977
const void *srcv, unsigned long start,
3978
unsigned long len, bool use_memmove)
3979
{
3980
const int unit_size = eb->folio_size;
3981
size_t cur;
3982
size_t offset;
3983
char *kaddr;
3984
const char *src = (const char *)srcv;
3985
unsigned long i = get_eb_folio_index(eb, start);
3986
/* For unmapped (dummy) ebs, no need to check their uptodate status. */
3987
const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3988
3989
if (check_eb_range(eb, start, len))
3990
return;
3991
3992
if (eb->addr) {
3993
if (use_memmove)
3994
memmove(eb->addr + start, srcv, len);
3995
else
3996
memcpy(eb->addr + start, srcv, len);
3997
return;
3998
}
3999
4000
offset = get_eb_offset_in_folio(eb, start);
4001
4002
while (len > 0) {
4003
if (check_uptodate)
4004
assert_eb_folio_uptodate(eb, i);
4005
4006
cur = min(len, unit_size - offset);
4007
kaddr = folio_address(eb->folios[i]);
4008
if (use_memmove)
4009
memmove(kaddr + offset, src, cur);
4010
else
4011
memcpy(kaddr + offset, src, cur);
4012
4013
src += cur;
4014
len -= cur;
4015
offset = 0;
4016
i++;
4017
}
4018
}
4019
4020
void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4021
unsigned long start, unsigned long len)
4022
{
4023
return __write_extent_buffer(eb, srcv, start, len, false);
4024
}
4025
4026
static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4027
unsigned long start, unsigned long len)
4028
{
4029
const int unit_size = eb->folio_size;
4030
unsigned long cur = start;
4031
4032
if (eb->addr) {
4033
memset(eb->addr + start, c, len);
4034
return;
4035
}
4036
4037
while (cur < start + len) {
4038
unsigned long index = get_eb_folio_index(eb, cur);
4039
unsigned int offset = get_eb_offset_in_folio(eb, cur);
4040
unsigned int cur_len = min(start + len - cur, unit_size - offset);
4041
4042
assert_eb_folio_uptodate(eb, index);
4043
memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4044
4045
cur += cur_len;
4046
}
4047
}
4048
4049
void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4050
unsigned long len)
4051
{
4052
if (check_eb_range(eb, start, len))
4053
return;
4054
return memset_extent_buffer(eb, 0, start, len);
4055
}
4056
4057
void copy_extent_buffer_full(const struct extent_buffer *dst,
4058
const struct extent_buffer *src)
4059
{
4060
const int unit_size = src->folio_size;
4061
unsigned long cur = 0;
4062
4063
ASSERT(dst->len == src->len);
4064
4065
while (cur < src->len) {
4066
unsigned long index = get_eb_folio_index(src, cur);
4067
unsigned long offset = get_eb_offset_in_folio(src, cur);
4068
unsigned long cur_len = min(src->len, unit_size - offset);
4069
void *addr = folio_address(src->folios[index]) + offset;
4070
4071
write_extent_buffer(dst, addr, cur, cur_len);
4072
4073
cur += cur_len;
4074
}
4075
}
4076
4077
void copy_extent_buffer(const struct extent_buffer *dst,
4078
const struct extent_buffer *src,
4079
unsigned long dst_offset, unsigned long src_offset,
4080
unsigned long len)
4081
{
4082
const int unit_size = dst->folio_size;
4083
u64 dst_len = dst->len;
4084
size_t cur;
4085
size_t offset;
4086
char *kaddr;
4087
unsigned long i = get_eb_folio_index(dst, dst_offset);
4088
4089
if (check_eb_range(dst, dst_offset, len) ||
4090
check_eb_range(src, src_offset, len))
4091
return;
4092
4093
WARN_ON(src->len != dst_len);
4094
4095
offset = get_eb_offset_in_folio(dst, dst_offset);
4096
4097
while (len > 0) {
4098
assert_eb_folio_uptodate(dst, i);
4099
4100
cur = min(len, (unsigned long)(unit_size - offset));
4101
4102
kaddr = folio_address(dst->folios[i]);
4103
read_extent_buffer(src, kaddr + offset, src_offset, cur);
4104
4105
src_offset += cur;
4106
len -= cur;
4107
offset = 0;
4108
i++;
4109
}
4110
}
4111
4112
/*
4113
* Calculate the folio and offset of the byte containing the given bit number.
4114
*
4115
* @eb: the extent buffer
4116
* @start: offset of the bitmap item in the extent buffer
4117
* @nr: bit number
4118
* @folio_index: return index of the folio in the extent buffer that contains
4119
* the given bit number
4120
* @folio_offset: return offset into the folio given by folio_index
4121
*
4122
* This helper hides the ugliness of finding the byte in an extent buffer which
4123
* contains a given bit.
4124
*/
4125
static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4126
unsigned long start, unsigned long nr,
4127
unsigned long *folio_index,
4128
size_t *folio_offset)
4129
{
4130
size_t byte_offset = BIT_BYTE(nr);
4131
size_t offset;
4132
4133
/*
4134
* The byte we want is the offset of the extent buffer + the offset of
4135
* the bitmap item in the extent buffer + the offset of the byte in the
4136
* bitmap item.
4137
*/
4138
offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4139
4140
*folio_index = offset >> eb->folio_shift;
4141
*folio_offset = offset_in_eb_folio(eb, offset);
4142
}
4143
4144
/*
4145
* Determine whether a bit in a bitmap item is set.
4146
*
4147
* @eb: the extent buffer
4148
* @start: offset of the bitmap item in the extent buffer
4149
* @nr: bit number to test
4150
*/
4151
bool extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4152
unsigned long nr)
4153
{
4154
unsigned long i;
4155
size_t offset;
4156
u8 *kaddr;
4157
4158
eb_bitmap_offset(eb, start, nr, &i, &offset);
4159
assert_eb_folio_uptodate(eb, i);
4160
kaddr = folio_address(eb->folios[i]);
4161
return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4162
}
4163
4164
static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4165
{
4166
unsigned long index = get_eb_folio_index(eb, bytenr);
4167
4168
if (check_eb_range(eb, bytenr, 1))
4169
return NULL;
4170
return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4171
}
4172
4173
/*
4174
* Set an area of a bitmap to 1.
4175
*
4176
* @eb: the extent buffer
4177
* @start: offset of the bitmap item in the extent buffer
4178
* @pos: bit number of the first bit
4179
* @len: number of bits to set
4180
*/
4181
void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4182
unsigned long pos, unsigned long len)
4183
{
4184
unsigned int first_byte = start + BIT_BYTE(pos);
4185
unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4186
const bool same_byte = (first_byte == last_byte);
4187
u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4188
u8 *kaddr;
4189
4190
if (same_byte)
4191
mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4192
4193
/* Handle the first byte. */
4194
kaddr = extent_buffer_get_byte(eb, first_byte);
4195
*kaddr |= mask;
4196
if (same_byte)
4197
return;
4198
4199
/* Handle the byte aligned part. */
4200
ASSERT(first_byte + 1 <= last_byte);
4201
memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4202
4203
/* Handle the last byte. */
4204
kaddr = extent_buffer_get_byte(eb, last_byte);
4205
*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4206
}
4207
4208
4209
/*
4210
* Clear an area of a bitmap.
4211
*
4212
* @eb: the extent buffer
4213
* @start: offset of the bitmap item in the extent buffer
4214
* @pos: bit number of the first bit
4215
* @len: number of bits to clear
4216
*/
4217
void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4218
unsigned long start, unsigned long pos,
4219
unsigned long len)
4220
{
4221
unsigned int first_byte = start + BIT_BYTE(pos);
4222
unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4223
const bool same_byte = (first_byte == last_byte);
4224
u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4225
u8 *kaddr;
4226
4227
if (same_byte)
4228
mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4229
4230
/* Handle the first byte. */
4231
kaddr = extent_buffer_get_byte(eb, first_byte);
4232
*kaddr &= ~mask;
4233
if (same_byte)
4234
return;
4235
4236
/* Handle the byte aligned part. */
4237
ASSERT(first_byte + 1 <= last_byte);
4238
memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4239
4240
/* Handle the last byte. */
4241
kaddr = extent_buffer_get_byte(eb, last_byte);
4242
*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4243
}
4244
4245
static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4246
{
4247
unsigned long distance = (src > dst) ? src - dst : dst - src;
4248
return distance < len;
4249
}
4250
4251
void memcpy_extent_buffer(const struct extent_buffer *dst,
4252
unsigned long dst_offset, unsigned long src_offset,
4253
unsigned long len)
4254
{
4255
const int unit_size = dst->folio_size;
4256
unsigned long cur_off = 0;
4257
4258
if (check_eb_range(dst, dst_offset, len) ||
4259
check_eb_range(dst, src_offset, len))
4260
return;
4261
4262
if (dst->addr) {
4263
const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4264
4265
if (use_memmove)
4266
memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4267
else
4268
memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4269
return;
4270
}
4271
4272
while (cur_off < len) {
4273
unsigned long cur_src = cur_off + src_offset;
4274
unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4275
unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4276
unsigned long cur_len = min(src_offset + len - cur_src,
4277
unit_size - folio_off);
4278
void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4279
const bool use_memmove = areas_overlap(src_offset + cur_off,
4280
dst_offset + cur_off, cur_len);
4281
4282
__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4283
use_memmove);
4284
cur_off += cur_len;
4285
}
4286
}
4287
4288
void memmove_extent_buffer(const struct extent_buffer *dst,
4289
unsigned long dst_offset, unsigned long src_offset,
4290
unsigned long len)
4291
{
4292
unsigned long dst_end = dst_offset + len - 1;
4293
unsigned long src_end = src_offset + len - 1;
4294
4295
if (check_eb_range(dst, dst_offset, len) ||
4296
check_eb_range(dst, src_offset, len))
4297
return;
4298
4299
if (dst_offset < src_offset) {
4300
memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4301
return;
4302
}
4303
4304
if (dst->addr) {
4305
memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4306
return;
4307
}
4308
4309
while (len > 0) {
4310
unsigned long src_i;
4311
size_t cur;
4312
size_t dst_off_in_folio;
4313
size_t src_off_in_folio;
4314
void *src_addr;
4315
bool use_memmove;
4316
4317
src_i = get_eb_folio_index(dst, src_end);
4318
4319
dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4320
src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4321
4322
cur = min_t(unsigned long, len, src_off_in_folio + 1);
4323
cur = min(cur, dst_off_in_folio + 1);
4324
4325
src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4326
cur + 1;
4327
use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4328
cur);
4329
4330
__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4331
use_memmove);
4332
4333
dst_end -= cur;
4334
src_end -= cur;
4335
len -= cur;
4336
}
4337
}
4338
4339
static int try_release_subpage_extent_buffer(struct folio *folio)
4340
{
4341
struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4342
struct extent_buffer *eb;
4343
unsigned long start = (folio_pos(folio) >> fs_info->nodesize_bits);
4344
unsigned long index = start;
4345
unsigned long end = index + (PAGE_SIZE >> fs_info->nodesize_bits) - 1;
4346
int ret;
4347
4348
rcu_read_lock();
4349
xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) {
4350
/*
4351
* The same as try_release_extent_buffer(), to ensure the eb
4352
* won't disappear out from under us.
4353
*/
4354
spin_lock(&eb->refs_lock);
4355
rcu_read_unlock();
4356
4357
if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4358
spin_unlock(&eb->refs_lock);
4359
rcu_read_lock();
4360
continue;
4361
}
4362
4363
/*
4364
* If tree ref isn't set then we know the ref on this eb is a
4365
* real ref, so just return, this eb will likely be freed soon
4366
* anyway.
4367
*/
4368
if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4369
spin_unlock(&eb->refs_lock);
4370
break;
4371
}
4372
4373
/*
4374
* Here we don't care about the return value, we will always
4375
* check the folio private at the end. And
4376
* release_extent_buffer() will release the refs_lock.
4377
*/
4378
release_extent_buffer(eb);
4379
rcu_read_lock();
4380
}
4381
rcu_read_unlock();
4382
4383
/*
4384
* Finally to check if we have cleared folio private, as if we have
4385
* released all ebs in the page, the folio private should be cleared now.
4386
*/
4387
spin_lock(&folio->mapping->i_private_lock);
4388
if (!folio_test_private(folio))
4389
ret = 1;
4390
else
4391
ret = 0;
4392
spin_unlock(&folio->mapping->i_private_lock);
4393
return ret;
4394
}
4395
4396
int try_release_extent_buffer(struct folio *folio)
4397
{
4398
struct extent_buffer *eb;
4399
4400
if (btrfs_meta_is_subpage(folio_to_fs_info(folio)))
4401
return try_release_subpage_extent_buffer(folio);
4402
4403
/*
4404
* We need to make sure nobody is changing folio private, as we rely on
4405
* folio private as the pointer to extent buffer.
4406
*/
4407
spin_lock(&folio->mapping->i_private_lock);
4408
if (!folio_test_private(folio)) {
4409
spin_unlock(&folio->mapping->i_private_lock);
4410
return 1;
4411
}
4412
4413
eb = folio_get_private(folio);
4414
BUG_ON(!eb);
4415
4416
/*
4417
* This is a little awful but should be ok, we need to make sure that
4418
* the eb doesn't disappear out from under us while we're looking at
4419
* this page.
4420
*/
4421
spin_lock(&eb->refs_lock);
4422
if (refcount_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4423
spin_unlock(&eb->refs_lock);
4424
spin_unlock(&folio->mapping->i_private_lock);
4425
return 0;
4426
}
4427
spin_unlock(&folio->mapping->i_private_lock);
4428
4429
/*
4430
* If tree ref isn't set then we know the ref on this eb is a real ref,
4431
* so just return, this page will likely be freed soon anyway.
4432
*/
4433
if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4434
spin_unlock(&eb->refs_lock);
4435
return 0;
4436
}
4437
4438
return release_extent_buffer(eb);
4439
}
4440
4441
/*
4442
* Attempt to readahead a child block.
4443
*
4444
* @fs_info: the fs_info
4445
* @bytenr: bytenr to read
4446
* @owner_root: objectid of the root that owns this eb
4447
* @gen: generation for the uptodate check, can be 0
4448
* @level: level for the eb
4449
*
4450
* Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4451
* normal uptodate check of the eb, without checking the generation. If we have
4452
* to read the block we will not block on anything.
4453
*/
4454
void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4455
u64 bytenr, u64 owner_root, u64 gen, int level)
4456
{
4457
struct btrfs_tree_parent_check check = {
4458
.level = level,
4459
.transid = gen
4460
};
4461
struct extent_buffer *eb;
4462
int ret;
4463
4464
eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4465
if (IS_ERR(eb))
4466
return;
4467
4468
if (btrfs_buffer_uptodate(eb, gen, 1)) {
4469
free_extent_buffer(eb);
4470
return;
4471
}
4472
4473
ret = read_extent_buffer_pages_nowait(eb, 0, &check);
4474
if (ret < 0)
4475
free_extent_buffer_stale(eb);
4476
else
4477
free_extent_buffer(eb);
4478
}
4479
4480
/*
4481
* Readahead a node's child block.
4482
*
4483
* @node: parent node we're reading from
4484
* @slot: slot in the parent node for the child we want to read
4485
*
4486
* A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4487
* the slot in the node provided.
4488
*/
4489
void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4490
{
4491
btrfs_readahead_tree_block(node->fs_info,
4492
btrfs_node_blockptr(node, slot),
4493
btrfs_header_owner(node),
4494
btrfs_node_ptr_generation(node, slot),
4495
btrfs_header_level(node) - 1);
4496
}
4497
4498