Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/buffer.c
26135 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* linux/fs/buffer.c
4
*
5
* Copyright (C) 1991, 1992, 2002 Linus Torvalds
6
*/
7
8
/*
9
* Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10
*
11
* Removed a lot of unnecessary code and simplified things now that
12
* the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13
*
14
* Speed up hash, lru, and free list operations. Use gfp() for allocating
15
* hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16
*
17
* Added 32k buffer block sizes - these are required older ARM systems. - RMK
18
*
19
* async buffer flushing, 1999 Andrea Arcangeli <[email protected]>
20
*/
21
22
#include <linux/kernel.h>
23
#include <linux/sched/signal.h>
24
#include <linux/syscalls.h>
25
#include <linux/fs.h>
26
#include <linux/iomap.h>
27
#include <linux/mm.h>
28
#include <linux/percpu.h>
29
#include <linux/slab.h>
30
#include <linux/capability.h>
31
#include <linux/blkdev.h>
32
#include <linux/file.h>
33
#include <linux/quotaops.h>
34
#include <linux/highmem.h>
35
#include <linux/export.h>
36
#include <linux/backing-dev.h>
37
#include <linux/writeback.h>
38
#include <linux/hash.h>
39
#include <linux/suspend.h>
40
#include <linux/buffer_head.h>
41
#include <linux/task_io_accounting_ops.h>
42
#include <linux/bio.h>
43
#include <linux/cpu.h>
44
#include <linux/bitops.h>
45
#include <linux/mpage.h>
46
#include <linux/bit_spinlock.h>
47
#include <linux/pagevec.h>
48
#include <linux/sched/mm.h>
49
#include <trace/events/block.h>
50
#include <linux/fscrypt.h>
51
#include <linux/fsverity.h>
52
#include <linux/sched/isolation.h>
53
54
#include "internal.h"
55
56
static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57
static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58
enum rw_hint hint, struct writeback_control *wbc);
59
60
#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61
62
inline void touch_buffer(struct buffer_head *bh)
63
{
64
trace_block_touch_buffer(bh);
65
folio_mark_accessed(bh->b_folio);
66
}
67
EXPORT_SYMBOL(touch_buffer);
68
69
void __lock_buffer(struct buffer_head *bh)
70
{
71
wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72
}
73
EXPORT_SYMBOL(__lock_buffer);
74
75
void unlock_buffer(struct buffer_head *bh)
76
{
77
clear_bit_unlock(BH_Lock, &bh->b_state);
78
smp_mb__after_atomic();
79
wake_up_bit(&bh->b_state, BH_Lock);
80
}
81
EXPORT_SYMBOL(unlock_buffer);
82
83
/*
84
* Returns if the folio has dirty or writeback buffers. If all the buffers
85
* are unlocked and clean then the folio_test_dirty information is stale. If
86
* any of the buffers are locked, it is assumed they are locked for IO.
87
*/
88
void buffer_check_dirty_writeback(struct folio *folio,
89
bool *dirty, bool *writeback)
90
{
91
struct buffer_head *head, *bh;
92
*dirty = false;
93
*writeback = false;
94
95
BUG_ON(!folio_test_locked(folio));
96
97
head = folio_buffers(folio);
98
if (!head)
99
return;
100
101
if (folio_test_writeback(folio))
102
*writeback = true;
103
104
bh = head;
105
do {
106
if (buffer_locked(bh))
107
*writeback = true;
108
109
if (buffer_dirty(bh))
110
*dirty = true;
111
112
bh = bh->b_this_page;
113
} while (bh != head);
114
}
115
116
/*
117
* Block until a buffer comes unlocked. This doesn't stop it
118
* from becoming locked again - you have to lock it yourself
119
* if you want to preserve its state.
120
*/
121
void __wait_on_buffer(struct buffer_head * bh)
122
{
123
wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124
}
125
EXPORT_SYMBOL(__wait_on_buffer);
126
127
static void buffer_io_error(struct buffer_head *bh, char *msg)
128
{
129
if (!test_bit(BH_Quiet, &bh->b_state))
130
printk_ratelimited(KERN_ERR
131
"Buffer I/O error on dev %pg, logical block %llu%s\n",
132
bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133
}
134
135
/*
136
* End-of-IO handler helper function which does not touch the bh after
137
* unlocking it.
138
* Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139
* a race there is benign: unlock_buffer() only use the bh's address for
140
* hashing after unlocking the buffer, so it doesn't actually touch the bh
141
* itself.
142
*/
143
static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144
{
145
if (uptodate) {
146
set_buffer_uptodate(bh);
147
} else {
148
/* This happens, due to failed read-ahead attempts. */
149
clear_buffer_uptodate(bh);
150
}
151
unlock_buffer(bh);
152
}
153
154
/*
155
* Default synchronous end-of-IO handler.. Just mark it up-to-date and
156
* unlock the buffer.
157
*/
158
void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159
{
160
put_bh(bh);
161
__end_buffer_read_notouch(bh, uptodate);
162
}
163
EXPORT_SYMBOL(end_buffer_read_sync);
164
165
void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166
{
167
if (uptodate) {
168
set_buffer_uptodate(bh);
169
} else {
170
buffer_io_error(bh, ", lost sync page write");
171
mark_buffer_write_io_error(bh);
172
clear_buffer_uptodate(bh);
173
}
174
unlock_buffer(bh);
175
put_bh(bh);
176
}
177
EXPORT_SYMBOL(end_buffer_write_sync);
178
179
static struct buffer_head *
180
__find_get_block_slow(struct block_device *bdev, sector_t block, bool atomic)
181
{
182
struct address_space *bd_mapping = bdev->bd_mapping;
183
const int blkbits = bd_mapping->host->i_blkbits;
184
struct buffer_head *ret = NULL;
185
pgoff_t index;
186
struct buffer_head *bh;
187
struct buffer_head *head;
188
struct folio *folio;
189
int all_mapped = 1;
190
static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
191
192
index = ((loff_t)block << blkbits) / PAGE_SIZE;
193
folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
194
if (IS_ERR(folio))
195
goto out;
196
197
/*
198
* Folio lock protects the buffers. Callers that cannot block
199
* will fallback to serializing vs try_to_free_buffers() via
200
* the i_private_lock.
201
*/
202
if (atomic)
203
spin_lock(&bd_mapping->i_private_lock);
204
else
205
folio_lock(folio);
206
207
head = folio_buffers(folio);
208
if (!head)
209
goto out_unlock;
210
/*
211
* Upon a noref migration, the folio lock serializes here;
212
* otherwise bail.
213
*/
214
if (test_bit_acquire(BH_Migrate, &head->b_state)) {
215
WARN_ON(!atomic);
216
goto out_unlock;
217
}
218
219
bh = head;
220
do {
221
if (!buffer_mapped(bh))
222
all_mapped = 0;
223
else if (bh->b_blocknr == block) {
224
ret = bh;
225
get_bh(bh);
226
goto out_unlock;
227
}
228
bh = bh->b_this_page;
229
} while (bh != head);
230
231
/* we might be here because some of the buffers on this page are
232
* not mapped. This is due to various races between
233
* file io on the block device and getblk. It gets dealt with
234
* elsewhere, don't buffer_error if we had some unmapped buffers
235
*/
236
ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
237
if (all_mapped && __ratelimit(&last_warned)) {
238
printk("__find_get_block_slow() failed. block=%llu, "
239
"b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
240
"device %pg blocksize: %d\n",
241
(unsigned long long)block,
242
(unsigned long long)bh->b_blocknr,
243
bh->b_state, bh->b_size, bdev,
244
1 << blkbits);
245
}
246
out_unlock:
247
if (atomic)
248
spin_unlock(&bd_mapping->i_private_lock);
249
else
250
folio_unlock(folio);
251
folio_put(folio);
252
out:
253
return ret;
254
}
255
256
static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
257
{
258
unsigned long flags;
259
struct buffer_head *first;
260
struct buffer_head *tmp;
261
struct folio *folio;
262
int folio_uptodate = 1;
263
264
BUG_ON(!buffer_async_read(bh));
265
266
folio = bh->b_folio;
267
if (uptodate) {
268
set_buffer_uptodate(bh);
269
} else {
270
clear_buffer_uptodate(bh);
271
buffer_io_error(bh, ", async page read");
272
}
273
274
/*
275
* Be _very_ careful from here on. Bad things can happen if
276
* two buffer heads end IO at almost the same time and both
277
* decide that the page is now completely done.
278
*/
279
first = folio_buffers(folio);
280
spin_lock_irqsave(&first->b_uptodate_lock, flags);
281
clear_buffer_async_read(bh);
282
unlock_buffer(bh);
283
tmp = bh;
284
do {
285
if (!buffer_uptodate(tmp))
286
folio_uptodate = 0;
287
if (buffer_async_read(tmp)) {
288
BUG_ON(!buffer_locked(tmp));
289
goto still_busy;
290
}
291
tmp = tmp->b_this_page;
292
} while (tmp != bh);
293
spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
294
295
folio_end_read(folio, folio_uptodate);
296
return;
297
298
still_busy:
299
spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
300
}
301
302
struct postprocess_bh_ctx {
303
struct work_struct work;
304
struct buffer_head *bh;
305
};
306
307
static void verify_bh(struct work_struct *work)
308
{
309
struct postprocess_bh_ctx *ctx =
310
container_of(work, struct postprocess_bh_ctx, work);
311
struct buffer_head *bh = ctx->bh;
312
bool valid;
313
314
valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
315
end_buffer_async_read(bh, valid);
316
kfree(ctx);
317
}
318
319
static bool need_fsverity(struct buffer_head *bh)
320
{
321
struct folio *folio = bh->b_folio;
322
struct inode *inode = folio->mapping->host;
323
324
return fsverity_active(inode) &&
325
/* needed by ext4 */
326
folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
327
}
328
329
static void decrypt_bh(struct work_struct *work)
330
{
331
struct postprocess_bh_ctx *ctx =
332
container_of(work, struct postprocess_bh_ctx, work);
333
struct buffer_head *bh = ctx->bh;
334
int err;
335
336
err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
337
bh_offset(bh));
338
if (err == 0 && need_fsverity(bh)) {
339
/*
340
* We use different work queues for decryption and for verity
341
* because verity may require reading metadata pages that need
342
* decryption, and we shouldn't recurse to the same workqueue.
343
*/
344
INIT_WORK(&ctx->work, verify_bh);
345
fsverity_enqueue_verify_work(&ctx->work);
346
return;
347
}
348
end_buffer_async_read(bh, err == 0);
349
kfree(ctx);
350
}
351
352
/*
353
* I/O completion handler for block_read_full_folio() - pages
354
* which come unlocked at the end of I/O.
355
*/
356
static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
357
{
358
struct inode *inode = bh->b_folio->mapping->host;
359
bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
360
bool verify = need_fsverity(bh);
361
362
/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
363
if (uptodate && (decrypt || verify)) {
364
struct postprocess_bh_ctx *ctx =
365
kmalloc(sizeof(*ctx), GFP_ATOMIC);
366
367
if (ctx) {
368
ctx->bh = bh;
369
if (decrypt) {
370
INIT_WORK(&ctx->work, decrypt_bh);
371
fscrypt_enqueue_decrypt_work(&ctx->work);
372
} else {
373
INIT_WORK(&ctx->work, verify_bh);
374
fsverity_enqueue_verify_work(&ctx->work);
375
}
376
return;
377
}
378
uptodate = 0;
379
}
380
end_buffer_async_read(bh, uptodate);
381
}
382
383
/*
384
* Completion handler for block_write_full_folio() - folios which are unlocked
385
* during I/O, and which have the writeback flag cleared upon I/O completion.
386
*/
387
static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
388
{
389
unsigned long flags;
390
struct buffer_head *first;
391
struct buffer_head *tmp;
392
struct folio *folio;
393
394
BUG_ON(!buffer_async_write(bh));
395
396
folio = bh->b_folio;
397
if (uptodate) {
398
set_buffer_uptodate(bh);
399
} else {
400
buffer_io_error(bh, ", lost async page write");
401
mark_buffer_write_io_error(bh);
402
clear_buffer_uptodate(bh);
403
}
404
405
first = folio_buffers(folio);
406
spin_lock_irqsave(&first->b_uptodate_lock, flags);
407
408
clear_buffer_async_write(bh);
409
unlock_buffer(bh);
410
tmp = bh->b_this_page;
411
while (tmp != bh) {
412
if (buffer_async_write(tmp)) {
413
BUG_ON(!buffer_locked(tmp));
414
goto still_busy;
415
}
416
tmp = tmp->b_this_page;
417
}
418
spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
419
folio_end_writeback(folio);
420
return;
421
422
still_busy:
423
spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
424
}
425
426
/*
427
* If a page's buffers are under async readin (end_buffer_async_read
428
* completion) then there is a possibility that another thread of
429
* control could lock one of the buffers after it has completed
430
* but while some of the other buffers have not completed. This
431
* locked buffer would confuse end_buffer_async_read() into not unlocking
432
* the page. So the absence of BH_Async_Read tells end_buffer_async_read()
433
* that this buffer is not under async I/O.
434
*
435
* The page comes unlocked when it has no locked buffer_async buffers
436
* left.
437
*
438
* PageLocked prevents anyone starting new async I/O reads any of
439
* the buffers.
440
*
441
* PageWriteback is used to prevent simultaneous writeout of the same
442
* page.
443
*
444
* PageLocked prevents anyone from starting writeback of a page which is
445
* under read I/O (PageWriteback is only ever set against a locked page).
446
*/
447
static void mark_buffer_async_read(struct buffer_head *bh)
448
{
449
bh->b_end_io = end_buffer_async_read_io;
450
set_buffer_async_read(bh);
451
}
452
453
static void mark_buffer_async_write_endio(struct buffer_head *bh,
454
bh_end_io_t *handler)
455
{
456
bh->b_end_io = handler;
457
set_buffer_async_write(bh);
458
}
459
460
void mark_buffer_async_write(struct buffer_head *bh)
461
{
462
mark_buffer_async_write_endio(bh, end_buffer_async_write);
463
}
464
EXPORT_SYMBOL(mark_buffer_async_write);
465
466
467
/*
468
* fs/buffer.c contains helper functions for buffer-backed address space's
469
* fsync functions. A common requirement for buffer-based filesystems is
470
* that certain data from the backing blockdev needs to be written out for
471
* a successful fsync(). For example, ext2 indirect blocks need to be
472
* written back and waited upon before fsync() returns.
473
*
474
* The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
475
* inode_has_buffers() and invalidate_inode_buffers() are provided for the
476
* management of a list of dependent buffers at ->i_mapping->i_private_list.
477
*
478
* Locking is a little subtle: try_to_free_buffers() will remove buffers
479
* from their controlling inode's queue when they are being freed. But
480
* try_to_free_buffers() will be operating against the *blockdev* mapping
481
* at the time, not against the S_ISREG file which depends on those buffers.
482
* So the locking for i_private_list is via the i_private_lock in the address_space
483
* which backs the buffers. Which is different from the address_space
484
* against which the buffers are listed. So for a particular address_space,
485
* mapping->i_private_lock does *not* protect mapping->i_private_list! In fact,
486
* mapping->i_private_list will always be protected by the backing blockdev's
487
* ->i_private_lock.
488
*
489
* Which introduces a requirement: all buffers on an address_space's
490
* ->i_private_list must be from the same address_space: the blockdev's.
491
*
492
* address_spaces which do not place buffers at ->i_private_list via these
493
* utility functions are free to use i_private_lock and i_private_list for
494
* whatever they want. The only requirement is that list_empty(i_private_list)
495
* be true at clear_inode() time.
496
*
497
* FIXME: clear_inode should not call invalidate_inode_buffers(). The
498
* filesystems should do that. invalidate_inode_buffers() should just go
499
* BUG_ON(!list_empty).
500
*
501
* FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
502
* take an address_space, not an inode. And it should be called
503
* mark_buffer_dirty_fsync() to clearly define why those buffers are being
504
* queued up.
505
*
506
* FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
507
* list if it is already on a list. Because if the buffer is on a list,
508
* it *must* already be on the right one. If not, the filesystem is being
509
* silly. This will save a ton of locking. But first we have to ensure
510
* that buffers are taken *off* the old inode's list when they are freed
511
* (presumably in truncate). That requires careful auditing of all
512
* filesystems (do it inside bforget()). It could also be done by bringing
513
* b_inode back.
514
*/
515
516
/*
517
* The buffer's backing address_space's i_private_lock must be held
518
*/
519
static void __remove_assoc_queue(struct buffer_head *bh)
520
{
521
list_del_init(&bh->b_assoc_buffers);
522
WARN_ON(!bh->b_assoc_map);
523
bh->b_assoc_map = NULL;
524
}
525
526
int inode_has_buffers(struct inode *inode)
527
{
528
return !list_empty(&inode->i_data.i_private_list);
529
}
530
531
/*
532
* osync is designed to support O_SYNC io. It waits synchronously for
533
* all already-submitted IO to complete, but does not queue any new
534
* writes to the disk.
535
*
536
* To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
537
* as you dirty the buffers, and then use osync_inode_buffers to wait for
538
* completion. Any other dirty buffers which are not yet queued for
539
* write will not be flushed to disk by the osync.
540
*/
541
static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
542
{
543
struct buffer_head *bh;
544
struct list_head *p;
545
int err = 0;
546
547
spin_lock(lock);
548
repeat:
549
list_for_each_prev(p, list) {
550
bh = BH_ENTRY(p);
551
if (buffer_locked(bh)) {
552
get_bh(bh);
553
spin_unlock(lock);
554
wait_on_buffer(bh);
555
if (!buffer_uptodate(bh))
556
err = -EIO;
557
brelse(bh);
558
spin_lock(lock);
559
goto repeat;
560
}
561
}
562
spin_unlock(lock);
563
return err;
564
}
565
566
/**
567
* sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
568
* @mapping: the mapping which wants those buffers written
569
*
570
* Starts I/O against the buffers at mapping->i_private_list, and waits upon
571
* that I/O.
572
*
573
* Basically, this is a convenience function for fsync().
574
* @mapping is a file or directory which needs those buffers to be written for
575
* a successful fsync().
576
*/
577
int sync_mapping_buffers(struct address_space *mapping)
578
{
579
struct address_space *buffer_mapping = mapping->i_private_data;
580
581
if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
582
return 0;
583
584
return fsync_buffers_list(&buffer_mapping->i_private_lock,
585
&mapping->i_private_list);
586
}
587
EXPORT_SYMBOL(sync_mapping_buffers);
588
589
/**
590
* generic_buffers_fsync_noflush - generic buffer fsync implementation
591
* for simple filesystems with no inode lock
592
*
593
* @file: file to synchronize
594
* @start: start offset in bytes
595
* @end: end offset in bytes (inclusive)
596
* @datasync: only synchronize essential metadata if true
597
*
598
* This is a generic implementation of the fsync method for simple
599
* filesystems which track all non-inode metadata in the buffers list
600
* hanging off the address_space structure.
601
*/
602
int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
603
bool datasync)
604
{
605
struct inode *inode = file->f_mapping->host;
606
int err;
607
int ret;
608
609
err = file_write_and_wait_range(file, start, end);
610
if (err)
611
return err;
612
613
ret = sync_mapping_buffers(inode->i_mapping);
614
if (!(inode->i_state & I_DIRTY_ALL))
615
goto out;
616
if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
617
goto out;
618
619
err = sync_inode_metadata(inode, 1);
620
if (ret == 0)
621
ret = err;
622
623
out:
624
/* check and advance again to catch errors after syncing out buffers */
625
err = file_check_and_advance_wb_err(file);
626
if (ret == 0)
627
ret = err;
628
return ret;
629
}
630
EXPORT_SYMBOL(generic_buffers_fsync_noflush);
631
632
/**
633
* generic_buffers_fsync - generic buffer fsync implementation
634
* for simple filesystems with no inode lock
635
*
636
* @file: file to synchronize
637
* @start: start offset in bytes
638
* @end: end offset in bytes (inclusive)
639
* @datasync: only synchronize essential metadata if true
640
*
641
* This is a generic implementation of the fsync method for simple
642
* filesystems which track all non-inode metadata in the buffers list
643
* hanging off the address_space structure. This also makes sure that
644
* a device cache flush operation is called at the end.
645
*/
646
int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
647
bool datasync)
648
{
649
struct inode *inode = file->f_mapping->host;
650
int ret;
651
652
ret = generic_buffers_fsync_noflush(file, start, end, datasync);
653
if (!ret)
654
ret = blkdev_issue_flush(inode->i_sb->s_bdev);
655
return ret;
656
}
657
EXPORT_SYMBOL(generic_buffers_fsync);
658
659
/*
660
* Called when we've recently written block `bblock', and it is known that
661
* `bblock' was for a buffer_boundary() buffer. This means that the block at
662
* `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
663
* dirty, schedule it for IO. So that indirects merge nicely with their data.
664
*/
665
void write_boundary_block(struct block_device *bdev,
666
sector_t bblock, unsigned blocksize)
667
{
668
struct buffer_head *bh;
669
670
bh = __find_get_block_nonatomic(bdev, bblock + 1, blocksize);
671
if (bh) {
672
if (buffer_dirty(bh))
673
write_dirty_buffer(bh, 0);
674
put_bh(bh);
675
}
676
}
677
678
void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
679
{
680
struct address_space *mapping = inode->i_mapping;
681
struct address_space *buffer_mapping = bh->b_folio->mapping;
682
683
mark_buffer_dirty(bh);
684
if (!mapping->i_private_data) {
685
mapping->i_private_data = buffer_mapping;
686
} else {
687
BUG_ON(mapping->i_private_data != buffer_mapping);
688
}
689
if (!bh->b_assoc_map) {
690
spin_lock(&buffer_mapping->i_private_lock);
691
list_move_tail(&bh->b_assoc_buffers,
692
&mapping->i_private_list);
693
bh->b_assoc_map = mapping;
694
spin_unlock(&buffer_mapping->i_private_lock);
695
}
696
}
697
EXPORT_SYMBOL(mark_buffer_dirty_inode);
698
699
/**
700
* block_dirty_folio - Mark a folio as dirty.
701
* @mapping: The address space containing this folio.
702
* @folio: The folio to mark dirty.
703
*
704
* Filesystems which use buffer_heads can use this function as their
705
* ->dirty_folio implementation. Some filesystems need to do a little
706
* work before calling this function. Filesystems which do not use
707
* buffer_heads should call filemap_dirty_folio() instead.
708
*
709
* If the folio has buffers, the uptodate buffers are set dirty, to
710
* preserve dirty-state coherency between the folio and the buffers.
711
* Buffers added to a dirty folio are created dirty.
712
*
713
* The buffers are dirtied before the folio is dirtied. There's a small
714
* race window in which writeback may see the folio cleanness but not the
715
* buffer dirtiness. That's fine. If this code were to set the folio
716
* dirty before the buffers, writeback could clear the folio dirty flag,
717
* see a bunch of clean buffers and we'd end up with dirty buffers/clean
718
* folio on the dirty folio list.
719
*
720
* We use i_private_lock to lock against try_to_free_buffers() while
721
* using the folio's buffer list. This also prevents clean buffers
722
* being added to the folio after it was set dirty.
723
*
724
* Context: May only be called from process context. Does not sleep.
725
* Caller must ensure that @folio cannot be truncated during this call,
726
* typically by holding the folio lock or having a page in the folio
727
* mapped and holding the page table lock.
728
*
729
* Return: True if the folio was dirtied; false if it was already dirtied.
730
*/
731
bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
732
{
733
struct buffer_head *head;
734
bool newly_dirty;
735
736
spin_lock(&mapping->i_private_lock);
737
head = folio_buffers(folio);
738
if (head) {
739
struct buffer_head *bh = head;
740
741
do {
742
set_buffer_dirty(bh);
743
bh = bh->b_this_page;
744
} while (bh != head);
745
}
746
/*
747
* Lock out page's memcg migration to keep PageDirty
748
* synchronized with per-memcg dirty page counters.
749
*/
750
newly_dirty = !folio_test_set_dirty(folio);
751
spin_unlock(&mapping->i_private_lock);
752
753
if (newly_dirty)
754
__folio_mark_dirty(folio, mapping, 1);
755
756
if (newly_dirty)
757
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
758
759
return newly_dirty;
760
}
761
EXPORT_SYMBOL(block_dirty_folio);
762
763
/*
764
* Write out and wait upon a list of buffers.
765
*
766
* We have conflicting pressures: we want to make sure that all
767
* initially dirty buffers get waited on, but that any subsequently
768
* dirtied buffers don't. After all, we don't want fsync to last
769
* forever if somebody is actively writing to the file.
770
*
771
* Do this in two main stages: first we copy dirty buffers to a
772
* temporary inode list, queueing the writes as we go. Then we clean
773
* up, waiting for those writes to complete.
774
*
775
* During this second stage, any subsequent updates to the file may end
776
* up refiling the buffer on the original inode's dirty list again, so
777
* there is a chance we will end up with a buffer queued for write but
778
* not yet completed on that list. So, as a final cleanup we go through
779
* the osync code to catch these locked, dirty buffers without requeuing
780
* any newly dirty buffers for write.
781
*/
782
static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
783
{
784
struct buffer_head *bh;
785
struct address_space *mapping;
786
int err = 0, err2;
787
struct blk_plug plug;
788
LIST_HEAD(tmp);
789
790
blk_start_plug(&plug);
791
792
spin_lock(lock);
793
while (!list_empty(list)) {
794
bh = BH_ENTRY(list->next);
795
mapping = bh->b_assoc_map;
796
__remove_assoc_queue(bh);
797
/* Avoid race with mark_buffer_dirty_inode() which does
798
* a lockless check and we rely on seeing the dirty bit */
799
smp_mb();
800
if (buffer_dirty(bh) || buffer_locked(bh)) {
801
list_add(&bh->b_assoc_buffers, &tmp);
802
bh->b_assoc_map = mapping;
803
if (buffer_dirty(bh)) {
804
get_bh(bh);
805
spin_unlock(lock);
806
/*
807
* Ensure any pending I/O completes so that
808
* write_dirty_buffer() actually writes the
809
* current contents - it is a noop if I/O is
810
* still in flight on potentially older
811
* contents.
812
*/
813
write_dirty_buffer(bh, REQ_SYNC);
814
815
/*
816
* Kick off IO for the previous mapping. Note
817
* that we will not run the very last mapping,
818
* wait_on_buffer() will do that for us
819
* through sync_buffer().
820
*/
821
brelse(bh);
822
spin_lock(lock);
823
}
824
}
825
}
826
827
spin_unlock(lock);
828
blk_finish_plug(&plug);
829
spin_lock(lock);
830
831
while (!list_empty(&tmp)) {
832
bh = BH_ENTRY(tmp.prev);
833
get_bh(bh);
834
mapping = bh->b_assoc_map;
835
__remove_assoc_queue(bh);
836
/* Avoid race with mark_buffer_dirty_inode() which does
837
* a lockless check and we rely on seeing the dirty bit */
838
smp_mb();
839
if (buffer_dirty(bh)) {
840
list_add(&bh->b_assoc_buffers,
841
&mapping->i_private_list);
842
bh->b_assoc_map = mapping;
843
}
844
spin_unlock(lock);
845
wait_on_buffer(bh);
846
if (!buffer_uptodate(bh))
847
err = -EIO;
848
brelse(bh);
849
spin_lock(lock);
850
}
851
852
spin_unlock(lock);
853
err2 = osync_buffers_list(lock, list);
854
if (err)
855
return err;
856
else
857
return err2;
858
}
859
860
/*
861
* Invalidate any and all dirty buffers on a given inode. We are
862
* probably unmounting the fs, but that doesn't mean we have already
863
* done a sync(). Just drop the buffers from the inode list.
864
*
865
* NOTE: we take the inode's blockdev's mapping's i_private_lock. Which
866
* assumes that all the buffers are against the blockdev.
867
*/
868
void invalidate_inode_buffers(struct inode *inode)
869
{
870
if (inode_has_buffers(inode)) {
871
struct address_space *mapping = &inode->i_data;
872
struct list_head *list = &mapping->i_private_list;
873
struct address_space *buffer_mapping = mapping->i_private_data;
874
875
spin_lock(&buffer_mapping->i_private_lock);
876
while (!list_empty(list))
877
__remove_assoc_queue(BH_ENTRY(list->next));
878
spin_unlock(&buffer_mapping->i_private_lock);
879
}
880
}
881
EXPORT_SYMBOL(invalidate_inode_buffers);
882
883
/*
884
* Remove any clean buffers from the inode's buffer list. This is called
885
* when we're trying to free the inode itself. Those buffers can pin it.
886
*
887
* Returns true if all buffers were removed.
888
*/
889
int remove_inode_buffers(struct inode *inode)
890
{
891
int ret = 1;
892
893
if (inode_has_buffers(inode)) {
894
struct address_space *mapping = &inode->i_data;
895
struct list_head *list = &mapping->i_private_list;
896
struct address_space *buffer_mapping = mapping->i_private_data;
897
898
spin_lock(&buffer_mapping->i_private_lock);
899
while (!list_empty(list)) {
900
struct buffer_head *bh = BH_ENTRY(list->next);
901
if (buffer_dirty(bh)) {
902
ret = 0;
903
break;
904
}
905
__remove_assoc_queue(bh);
906
}
907
spin_unlock(&buffer_mapping->i_private_lock);
908
}
909
return ret;
910
}
911
912
/*
913
* Create the appropriate buffers when given a folio for data area and
914
* the size of each buffer.. Use the bh->b_this_page linked list to
915
* follow the buffers created. Return NULL if unable to create more
916
* buffers.
917
*
918
* The retry flag is used to differentiate async IO (paging, swapping)
919
* which may not fail from ordinary buffer allocations.
920
*/
921
struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
922
gfp_t gfp)
923
{
924
struct buffer_head *bh, *head;
925
long offset;
926
struct mem_cgroup *memcg, *old_memcg;
927
928
/* The folio lock pins the memcg */
929
memcg = folio_memcg(folio);
930
old_memcg = set_active_memcg(memcg);
931
932
head = NULL;
933
offset = folio_size(folio);
934
while ((offset -= size) >= 0) {
935
bh = alloc_buffer_head(gfp);
936
if (!bh)
937
goto no_grow;
938
939
bh->b_this_page = head;
940
bh->b_blocknr = -1;
941
head = bh;
942
943
bh->b_size = size;
944
945
/* Link the buffer to its folio */
946
folio_set_bh(bh, folio, offset);
947
}
948
out:
949
set_active_memcg(old_memcg);
950
return head;
951
/*
952
* In case anything failed, we just free everything we got.
953
*/
954
no_grow:
955
if (head) {
956
do {
957
bh = head;
958
head = head->b_this_page;
959
free_buffer_head(bh);
960
} while (head);
961
}
962
963
goto out;
964
}
965
EXPORT_SYMBOL_GPL(folio_alloc_buffers);
966
967
struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size)
968
{
969
gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
970
971
return folio_alloc_buffers(page_folio(page), size, gfp);
972
}
973
EXPORT_SYMBOL_GPL(alloc_page_buffers);
974
975
static inline void link_dev_buffers(struct folio *folio,
976
struct buffer_head *head)
977
{
978
struct buffer_head *bh, *tail;
979
980
bh = head;
981
do {
982
tail = bh;
983
bh = bh->b_this_page;
984
} while (bh);
985
tail->b_this_page = head;
986
folio_attach_private(folio, head);
987
}
988
989
static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
990
{
991
sector_t retval = ~((sector_t)0);
992
loff_t sz = bdev_nr_bytes(bdev);
993
994
if (sz) {
995
unsigned int sizebits = blksize_bits(size);
996
retval = (sz >> sizebits);
997
}
998
return retval;
999
}
1000
1001
/*
1002
* Initialise the state of a blockdev folio's buffers.
1003
*/
1004
static sector_t folio_init_buffers(struct folio *folio,
1005
struct block_device *bdev, unsigned size)
1006
{
1007
struct buffer_head *head = folio_buffers(folio);
1008
struct buffer_head *bh = head;
1009
bool uptodate = folio_test_uptodate(folio);
1010
sector_t block = div_u64(folio_pos(folio), size);
1011
sector_t end_block = blkdev_max_block(bdev, size);
1012
1013
do {
1014
if (!buffer_mapped(bh)) {
1015
bh->b_end_io = NULL;
1016
bh->b_private = NULL;
1017
bh->b_bdev = bdev;
1018
bh->b_blocknr = block;
1019
if (uptodate)
1020
set_buffer_uptodate(bh);
1021
if (block < end_block)
1022
set_buffer_mapped(bh);
1023
}
1024
block++;
1025
bh = bh->b_this_page;
1026
} while (bh != head);
1027
1028
/*
1029
* Caller needs to validate requested block against end of device.
1030
*/
1031
return end_block;
1032
}
1033
1034
/*
1035
* Create the page-cache folio that contains the requested block.
1036
*
1037
* This is used purely for blockdev mappings.
1038
*
1039
* Returns false if we have a failure which cannot be cured by retrying
1040
* without sleeping. Returns true if we succeeded, or the caller should retry.
1041
*/
1042
static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1043
pgoff_t index, unsigned size, gfp_t gfp)
1044
{
1045
struct address_space *mapping = bdev->bd_mapping;
1046
struct folio *folio;
1047
struct buffer_head *bh;
1048
sector_t end_block = 0;
1049
1050
folio = __filemap_get_folio(mapping, index,
1051
FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1052
if (IS_ERR(folio))
1053
return false;
1054
1055
bh = folio_buffers(folio);
1056
if (bh) {
1057
if (bh->b_size == size) {
1058
end_block = folio_init_buffers(folio, bdev, size);
1059
goto unlock;
1060
}
1061
1062
/*
1063
* Retrying may succeed; for example the folio may finish
1064
* writeback, or buffers may be cleaned. This should not
1065
* happen very often; maybe we have old buffers attached to
1066
* this blockdev's page cache and we're trying to change
1067
* the block size?
1068
*/
1069
if (!try_to_free_buffers(folio)) {
1070
end_block = ~0ULL;
1071
goto unlock;
1072
}
1073
}
1074
1075
bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1076
if (!bh)
1077
goto unlock;
1078
1079
/*
1080
* Link the folio to the buffers and initialise them. Take the
1081
* lock to be atomic wrt __find_get_block(), which does not
1082
* run under the folio lock.
1083
*/
1084
spin_lock(&mapping->i_private_lock);
1085
link_dev_buffers(folio, bh);
1086
end_block = folio_init_buffers(folio, bdev, size);
1087
spin_unlock(&mapping->i_private_lock);
1088
unlock:
1089
folio_unlock(folio);
1090
folio_put(folio);
1091
return block < end_block;
1092
}
1093
1094
/*
1095
* Create buffers for the specified block device block's folio. If
1096
* that folio was dirty, the buffers are set dirty also. Returns false
1097
* if we've hit a permanent error.
1098
*/
1099
static bool grow_buffers(struct block_device *bdev, sector_t block,
1100
unsigned size, gfp_t gfp)
1101
{
1102
loff_t pos;
1103
1104
/*
1105
* Check for a block which lies outside our maximum possible
1106
* pagecache index.
1107
*/
1108
if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1109
printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1110
__func__, (unsigned long long)block,
1111
bdev);
1112
return false;
1113
}
1114
1115
/* Create a folio with the proper size buffers */
1116
return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1117
}
1118
1119
static struct buffer_head *
1120
__getblk_slow(struct block_device *bdev, sector_t block,
1121
unsigned size, gfp_t gfp)
1122
{
1123
bool blocking = gfpflags_allow_blocking(gfp);
1124
1125
if (WARN_ON_ONCE(!IS_ALIGNED(size, bdev_logical_block_size(bdev)))) {
1126
printk(KERN_ERR "getblk(): block size %d not aligned to logical block size %d\n",
1127
size, bdev_logical_block_size(bdev));
1128
return NULL;
1129
}
1130
1131
for (;;) {
1132
struct buffer_head *bh;
1133
1134
if (!grow_buffers(bdev, block, size, gfp))
1135
return NULL;
1136
1137
if (blocking)
1138
bh = __find_get_block_nonatomic(bdev, block, size);
1139
else
1140
bh = __find_get_block(bdev, block, size);
1141
if (bh)
1142
return bh;
1143
}
1144
}
1145
1146
/*
1147
* The relationship between dirty buffers and dirty pages:
1148
*
1149
* Whenever a page has any dirty buffers, the page's dirty bit is set, and
1150
* the page is tagged dirty in the page cache.
1151
*
1152
* At all times, the dirtiness of the buffers represents the dirtiness of
1153
* subsections of the page. If the page has buffers, the page dirty bit is
1154
* merely a hint about the true dirty state.
1155
*
1156
* When a page is set dirty in its entirety, all its buffers are marked dirty
1157
* (if the page has buffers).
1158
*
1159
* When a buffer is marked dirty, its page is dirtied, but the page's other
1160
* buffers are not.
1161
*
1162
* Also. When blockdev buffers are explicitly read with bread(), they
1163
* individually become uptodate. But their backing page remains not
1164
* uptodate - even if all of its buffers are uptodate. A subsequent
1165
* block_read_full_folio() against that folio will discover all the uptodate
1166
* buffers, will set the folio uptodate and will perform no I/O.
1167
*/
1168
1169
/**
1170
* mark_buffer_dirty - mark a buffer_head as needing writeout
1171
* @bh: the buffer_head to mark dirty
1172
*
1173
* mark_buffer_dirty() will set the dirty bit against the buffer, then set
1174
* its backing page dirty, then tag the page as dirty in the page cache
1175
* and then attach the address_space's inode to its superblock's dirty
1176
* inode list.
1177
*
1178
* mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock,
1179
* i_pages lock and mapping->host->i_lock.
1180
*/
1181
void mark_buffer_dirty(struct buffer_head *bh)
1182
{
1183
WARN_ON_ONCE(!buffer_uptodate(bh));
1184
1185
trace_block_dirty_buffer(bh);
1186
1187
/*
1188
* Very *carefully* optimize the it-is-already-dirty case.
1189
*
1190
* Don't let the final "is it dirty" escape to before we
1191
* perhaps modified the buffer.
1192
*/
1193
if (buffer_dirty(bh)) {
1194
smp_mb();
1195
if (buffer_dirty(bh))
1196
return;
1197
}
1198
1199
if (!test_set_buffer_dirty(bh)) {
1200
struct folio *folio = bh->b_folio;
1201
struct address_space *mapping = NULL;
1202
1203
if (!folio_test_set_dirty(folio)) {
1204
mapping = folio->mapping;
1205
if (mapping)
1206
__folio_mark_dirty(folio, mapping, 0);
1207
}
1208
if (mapping)
1209
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1210
}
1211
}
1212
EXPORT_SYMBOL(mark_buffer_dirty);
1213
1214
void mark_buffer_write_io_error(struct buffer_head *bh)
1215
{
1216
set_buffer_write_io_error(bh);
1217
/* FIXME: do we need to set this in both places? */
1218
if (bh->b_folio && bh->b_folio->mapping)
1219
mapping_set_error(bh->b_folio->mapping, -EIO);
1220
if (bh->b_assoc_map)
1221
mapping_set_error(bh->b_assoc_map, -EIO);
1222
}
1223
EXPORT_SYMBOL(mark_buffer_write_io_error);
1224
1225
/**
1226
* __brelse - Release a buffer.
1227
* @bh: The buffer to release.
1228
*
1229
* This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1230
*/
1231
void __brelse(struct buffer_head *bh)
1232
{
1233
if (atomic_read(&bh->b_count)) {
1234
put_bh(bh);
1235
return;
1236
}
1237
WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1238
}
1239
EXPORT_SYMBOL(__brelse);
1240
1241
/**
1242
* __bforget - Discard any dirty data in a buffer.
1243
* @bh: The buffer to forget.
1244
*
1245
* This variant of bforget() can be called if @bh is guaranteed to not
1246
* be NULL.
1247
*/
1248
void __bforget(struct buffer_head *bh)
1249
{
1250
clear_buffer_dirty(bh);
1251
if (bh->b_assoc_map) {
1252
struct address_space *buffer_mapping = bh->b_folio->mapping;
1253
1254
spin_lock(&buffer_mapping->i_private_lock);
1255
list_del_init(&bh->b_assoc_buffers);
1256
bh->b_assoc_map = NULL;
1257
spin_unlock(&buffer_mapping->i_private_lock);
1258
}
1259
__brelse(bh);
1260
}
1261
EXPORT_SYMBOL(__bforget);
1262
1263
static struct buffer_head *__bread_slow(struct buffer_head *bh)
1264
{
1265
lock_buffer(bh);
1266
if (buffer_uptodate(bh)) {
1267
unlock_buffer(bh);
1268
return bh;
1269
} else {
1270
get_bh(bh);
1271
bh->b_end_io = end_buffer_read_sync;
1272
submit_bh(REQ_OP_READ, bh);
1273
wait_on_buffer(bh);
1274
if (buffer_uptodate(bh))
1275
return bh;
1276
}
1277
brelse(bh);
1278
return NULL;
1279
}
1280
1281
/*
1282
* Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1283
* The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1284
* refcount elevated by one when they're in an LRU. A buffer can only appear
1285
* once in a particular CPU's LRU. A single buffer can be present in multiple
1286
* CPU's LRUs at the same time.
1287
*
1288
* This is a transparent caching front-end to sb_bread(), sb_getblk() and
1289
* sb_find_get_block().
1290
*
1291
* The LRUs themselves only need locking against invalidate_bh_lrus. We use
1292
* a local interrupt disable for that.
1293
*/
1294
1295
#define BH_LRU_SIZE 16
1296
1297
struct bh_lru {
1298
struct buffer_head *bhs[BH_LRU_SIZE];
1299
};
1300
1301
static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1302
1303
#ifdef CONFIG_SMP
1304
#define bh_lru_lock() local_irq_disable()
1305
#define bh_lru_unlock() local_irq_enable()
1306
#else
1307
#define bh_lru_lock() preempt_disable()
1308
#define bh_lru_unlock() preempt_enable()
1309
#endif
1310
1311
static inline void check_irqs_on(void)
1312
{
1313
#ifdef irqs_disabled
1314
BUG_ON(irqs_disabled());
1315
#endif
1316
}
1317
1318
/*
1319
* Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1320
* inserted at the front, and the buffer_head at the back if any is evicted.
1321
* Or, if already in the LRU it is moved to the front.
1322
*/
1323
static void bh_lru_install(struct buffer_head *bh)
1324
{
1325
struct buffer_head *evictee = bh;
1326
struct bh_lru *b;
1327
int i;
1328
1329
check_irqs_on();
1330
bh_lru_lock();
1331
1332
/*
1333
* the refcount of buffer_head in bh_lru prevents dropping the
1334
* attached page(i.e., try_to_free_buffers) so it could cause
1335
* failing page migration.
1336
* Skip putting upcoming bh into bh_lru until migration is done.
1337
*/
1338
if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1339
bh_lru_unlock();
1340
return;
1341
}
1342
1343
b = this_cpu_ptr(&bh_lrus);
1344
for (i = 0; i < BH_LRU_SIZE; i++) {
1345
swap(evictee, b->bhs[i]);
1346
if (evictee == bh) {
1347
bh_lru_unlock();
1348
return;
1349
}
1350
}
1351
1352
get_bh(bh);
1353
bh_lru_unlock();
1354
brelse(evictee);
1355
}
1356
1357
/*
1358
* Look up the bh in this cpu's LRU. If it's there, move it to the head.
1359
*/
1360
static struct buffer_head *
1361
lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1362
{
1363
struct buffer_head *ret = NULL;
1364
unsigned int i;
1365
1366
check_irqs_on();
1367
bh_lru_lock();
1368
if (cpu_is_isolated(smp_processor_id())) {
1369
bh_lru_unlock();
1370
return NULL;
1371
}
1372
for (i = 0; i < BH_LRU_SIZE; i++) {
1373
struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1374
1375
if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1376
bh->b_size == size) {
1377
if (i) {
1378
while (i) {
1379
__this_cpu_write(bh_lrus.bhs[i],
1380
__this_cpu_read(bh_lrus.bhs[i - 1]));
1381
i--;
1382
}
1383
__this_cpu_write(bh_lrus.bhs[0], bh);
1384
}
1385
get_bh(bh);
1386
ret = bh;
1387
break;
1388
}
1389
}
1390
bh_lru_unlock();
1391
return ret;
1392
}
1393
1394
/*
1395
* Perform a pagecache lookup for the matching buffer. If it's there, refresh
1396
* it in the LRU and mark it as accessed. If it is not present then return
1397
* NULL. Atomic context callers may also return NULL if the buffer is being
1398
* migrated; similarly the page is not marked accessed either.
1399
*/
1400
static struct buffer_head *
1401
find_get_block_common(struct block_device *bdev, sector_t block,
1402
unsigned size, bool atomic)
1403
{
1404
struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1405
1406
if (bh == NULL) {
1407
/* __find_get_block_slow will mark the page accessed */
1408
bh = __find_get_block_slow(bdev, block, atomic);
1409
if (bh)
1410
bh_lru_install(bh);
1411
} else
1412
touch_buffer(bh);
1413
1414
return bh;
1415
}
1416
1417
struct buffer_head *
1418
__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1419
{
1420
return find_get_block_common(bdev, block, size, true);
1421
}
1422
EXPORT_SYMBOL(__find_get_block);
1423
1424
/* same as __find_get_block() but allows sleeping contexts */
1425
struct buffer_head *
1426
__find_get_block_nonatomic(struct block_device *bdev, sector_t block,
1427
unsigned size)
1428
{
1429
return find_get_block_common(bdev, block, size, false);
1430
}
1431
EXPORT_SYMBOL(__find_get_block_nonatomic);
1432
1433
/**
1434
* bdev_getblk - Get a buffer_head in a block device's buffer cache.
1435
* @bdev: The block device.
1436
* @block: The block number.
1437
* @size: The size of buffer_heads for this @bdev.
1438
* @gfp: The memory allocation flags to use.
1439
*
1440
* The returned buffer head has its reference count incremented, but is
1441
* not locked. The caller should call brelse() when it has finished
1442
* with the buffer. The buffer may not be uptodate. If needed, the
1443
* caller can bring it uptodate either by reading it or overwriting it.
1444
*
1445
* Return: The buffer head, or NULL if memory could not be allocated.
1446
*/
1447
struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1448
unsigned size, gfp_t gfp)
1449
{
1450
struct buffer_head *bh;
1451
1452
if (gfpflags_allow_blocking(gfp))
1453
bh = __find_get_block_nonatomic(bdev, block, size);
1454
else
1455
bh = __find_get_block(bdev, block, size);
1456
1457
might_alloc(gfp);
1458
if (bh)
1459
return bh;
1460
1461
return __getblk_slow(bdev, block, size, gfp);
1462
}
1463
EXPORT_SYMBOL(bdev_getblk);
1464
1465
/*
1466
* Do async read-ahead on a buffer..
1467
*/
1468
void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1469
{
1470
struct buffer_head *bh = bdev_getblk(bdev, block, size,
1471
GFP_NOWAIT | __GFP_MOVABLE);
1472
1473
if (likely(bh)) {
1474
bh_readahead(bh, REQ_RAHEAD);
1475
brelse(bh);
1476
}
1477
}
1478
EXPORT_SYMBOL(__breadahead);
1479
1480
/**
1481
* __bread_gfp() - Read a block.
1482
* @bdev: The block device to read from.
1483
* @block: Block number in units of block size.
1484
* @size: The block size of this device in bytes.
1485
* @gfp: Not page allocation flags; see below.
1486
*
1487
* You are not expected to call this function. You should use one of
1488
* sb_bread(), sb_bread_unmovable() or __bread().
1489
*
1490
* Read a specified block, and return the buffer head that refers to it.
1491
* If @gfp is 0, the memory will be allocated using the block device's
1492
* default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be
1493
* allocated from a movable area. Do not pass in a complete set of
1494
* GFP flags.
1495
*
1496
* The returned buffer head has its refcount increased. The caller should
1497
* call brelse() when it has finished with the buffer.
1498
*
1499
* Context: May sleep waiting for I/O.
1500
* Return: NULL if the block was unreadable.
1501
*/
1502
struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1503
unsigned size, gfp_t gfp)
1504
{
1505
struct buffer_head *bh;
1506
1507
gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1508
1509
/*
1510
* Prefer looping in the allocator rather than here, at least that
1511
* code knows what it's doing.
1512
*/
1513
gfp |= __GFP_NOFAIL;
1514
1515
bh = bdev_getblk(bdev, block, size, gfp);
1516
1517
if (likely(bh) && !buffer_uptodate(bh))
1518
bh = __bread_slow(bh);
1519
return bh;
1520
}
1521
EXPORT_SYMBOL(__bread_gfp);
1522
1523
static void __invalidate_bh_lrus(struct bh_lru *b)
1524
{
1525
int i;
1526
1527
for (i = 0; i < BH_LRU_SIZE; i++) {
1528
brelse(b->bhs[i]);
1529
b->bhs[i] = NULL;
1530
}
1531
}
1532
/*
1533
* invalidate_bh_lrus() is called rarely - but not only at unmount.
1534
* This doesn't race because it runs in each cpu either in irq
1535
* or with preempt disabled.
1536
*/
1537
static void invalidate_bh_lru(void *arg)
1538
{
1539
struct bh_lru *b = &get_cpu_var(bh_lrus);
1540
1541
__invalidate_bh_lrus(b);
1542
put_cpu_var(bh_lrus);
1543
}
1544
1545
bool has_bh_in_lru(int cpu, void *dummy)
1546
{
1547
struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1548
int i;
1549
1550
for (i = 0; i < BH_LRU_SIZE; i++) {
1551
if (b->bhs[i])
1552
return true;
1553
}
1554
1555
return false;
1556
}
1557
1558
void invalidate_bh_lrus(void)
1559
{
1560
on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1561
}
1562
EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1563
1564
/*
1565
* It's called from workqueue context so we need a bh_lru_lock to close
1566
* the race with preemption/irq.
1567
*/
1568
void invalidate_bh_lrus_cpu(void)
1569
{
1570
struct bh_lru *b;
1571
1572
bh_lru_lock();
1573
b = this_cpu_ptr(&bh_lrus);
1574
__invalidate_bh_lrus(b);
1575
bh_lru_unlock();
1576
}
1577
1578
void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1579
unsigned long offset)
1580
{
1581
bh->b_folio = folio;
1582
BUG_ON(offset >= folio_size(folio));
1583
if (folio_test_highmem(folio))
1584
/*
1585
* This catches illegal uses and preserves the offset:
1586
*/
1587
bh->b_data = (char *)(0 + offset);
1588
else
1589
bh->b_data = folio_address(folio) + offset;
1590
}
1591
EXPORT_SYMBOL(folio_set_bh);
1592
1593
/*
1594
* Called when truncating a buffer on a page completely.
1595
*/
1596
1597
/* Bits that are cleared during an invalidate */
1598
#define BUFFER_FLAGS_DISCARD \
1599
(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1600
1 << BH_Delay | 1 << BH_Unwritten)
1601
1602
static void discard_buffer(struct buffer_head * bh)
1603
{
1604
unsigned long b_state;
1605
1606
lock_buffer(bh);
1607
clear_buffer_dirty(bh);
1608
bh->b_bdev = NULL;
1609
b_state = READ_ONCE(bh->b_state);
1610
do {
1611
} while (!try_cmpxchg_relaxed(&bh->b_state, &b_state,
1612
b_state & ~BUFFER_FLAGS_DISCARD));
1613
unlock_buffer(bh);
1614
}
1615
1616
/**
1617
* block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1618
* @folio: The folio which is affected.
1619
* @offset: start of the range to invalidate
1620
* @length: length of the range to invalidate
1621
*
1622
* block_invalidate_folio() is called when all or part of the folio has been
1623
* invalidated by a truncate operation.
1624
*
1625
* block_invalidate_folio() does not have to release all buffers, but it must
1626
* ensure that no dirty buffer is left outside @offset and that no I/O
1627
* is underway against any of the blocks which are outside the truncation
1628
* point. Because the caller is about to free (and possibly reuse) those
1629
* blocks on-disk.
1630
*/
1631
void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1632
{
1633
struct buffer_head *head, *bh, *next;
1634
size_t curr_off = 0;
1635
size_t stop = length + offset;
1636
1637
BUG_ON(!folio_test_locked(folio));
1638
1639
/*
1640
* Check for overflow
1641
*/
1642
BUG_ON(stop > folio_size(folio) || stop < length);
1643
1644
head = folio_buffers(folio);
1645
if (!head)
1646
return;
1647
1648
bh = head;
1649
do {
1650
size_t next_off = curr_off + bh->b_size;
1651
next = bh->b_this_page;
1652
1653
/*
1654
* Are we still fully in range ?
1655
*/
1656
if (next_off > stop)
1657
goto out;
1658
1659
/*
1660
* is this block fully invalidated?
1661
*/
1662
if (offset <= curr_off)
1663
discard_buffer(bh);
1664
curr_off = next_off;
1665
bh = next;
1666
} while (bh != head);
1667
1668
/*
1669
* We release buffers only if the entire folio is being invalidated.
1670
* The get_block cached value has been unconditionally invalidated,
1671
* so real IO is not possible anymore.
1672
*/
1673
if (length == folio_size(folio))
1674
filemap_release_folio(folio, 0);
1675
out:
1676
folio_clear_mappedtodisk(folio);
1677
}
1678
EXPORT_SYMBOL(block_invalidate_folio);
1679
1680
/*
1681
* We attach and possibly dirty the buffers atomically wrt
1682
* block_dirty_folio() via i_private_lock. try_to_free_buffers
1683
* is already excluded via the folio lock.
1684
*/
1685
struct buffer_head *create_empty_buffers(struct folio *folio,
1686
unsigned long blocksize, unsigned long b_state)
1687
{
1688
struct buffer_head *bh, *head, *tail;
1689
gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1690
1691
head = folio_alloc_buffers(folio, blocksize, gfp);
1692
bh = head;
1693
do {
1694
bh->b_state |= b_state;
1695
tail = bh;
1696
bh = bh->b_this_page;
1697
} while (bh);
1698
tail->b_this_page = head;
1699
1700
spin_lock(&folio->mapping->i_private_lock);
1701
if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1702
bh = head;
1703
do {
1704
if (folio_test_dirty(folio))
1705
set_buffer_dirty(bh);
1706
if (folio_test_uptodate(folio))
1707
set_buffer_uptodate(bh);
1708
bh = bh->b_this_page;
1709
} while (bh != head);
1710
}
1711
folio_attach_private(folio, head);
1712
spin_unlock(&folio->mapping->i_private_lock);
1713
1714
return head;
1715
}
1716
EXPORT_SYMBOL(create_empty_buffers);
1717
1718
/**
1719
* clean_bdev_aliases: clean a range of buffers in block device
1720
* @bdev: Block device to clean buffers in
1721
* @block: Start of a range of blocks to clean
1722
* @len: Number of blocks to clean
1723
*
1724
* We are taking a range of blocks for data and we don't want writeback of any
1725
* buffer-cache aliases starting from return from this function and until the
1726
* moment when something will explicitly mark the buffer dirty (hopefully that
1727
* will not happen until we will free that block ;-) We don't even need to mark
1728
* it not-uptodate - nobody can expect anything from a newly allocated buffer
1729
* anyway. We used to use unmap_buffer() for such invalidation, but that was
1730
* wrong. We definitely don't want to mark the alias unmapped, for example - it
1731
* would confuse anyone who might pick it with bread() afterwards...
1732
*
1733
* Also.. Note that bforget() doesn't lock the buffer. So there can be
1734
* writeout I/O going on against recently-freed buffers. We don't wait on that
1735
* I/O in bforget() - it's more efficient to wait on the I/O only if we really
1736
* need to. That happens here.
1737
*/
1738
void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1739
{
1740
struct address_space *bd_mapping = bdev->bd_mapping;
1741
const int blkbits = bd_mapping->host->i_blkbits;
1742
struct folio_batch fbatch;
1743
pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1744
pgoff_t end;
1745
int i, count;
1746
struct buffer_head *bh;
1747
struct buffer_head *head;
1748
1749
end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1750
folio_batch_init(&fbatch);
1751
while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1752
count = folio_batch_count(&fbatch);
1753
for (i = 0; i < count; i++) {
1754
struct folio *folio = fbatch.folios[i];
1755
1756
if (!folio_buffers(folio))
1757
continue;
1758
/*
1759
* We use folio lock instead of bd_mapping->i_private_lock
1760
* to pin buffers here since we can afford to sleep and
1761
* it scales better than a global spinlock lock.
1762
*/
1763
folio_lock(folio);
1764
/* Recheck when the folio is locked which pins bhs */
1765
head = folio_buffers(folio);
1766
if (!head)
1767
goto unlock_page;
1768
bh = head;
1769
do {
1770
if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1771
goto next;
1772
if (bh->b_blocknr >= block + len)
1773
break;
1774
clear_buffer_dirty(bh);
1775
wait_on_buffer(bh);
1776
clear_buffer_req(bh);
1777
next:
1778
bh = bh->b_this_page;
1779
} while (bh != head);
1780
unlock_page:
1781
folio_unlock(folio);
1782
}
1783
folio_batch_release(&fbatch);
1784
cond_resched();
1785
/* End of range already reached? */
1786
if (index > end || !index)
1787
break;
1788
}
1789
}
1790
EXPORT_SYMBOL(clean_bdev_aliases);
1791
1792
static struct buffer_head *folio_create_buffers(struct folio *folio,
1793
struct inode *inode,
1794
unsigned int b_state)
1795
{
1796
struct buffer_head *bh;
1797
1798
BUG_ON(!folio_test_locked(folio));
1799
1800
bh = folio_buffers(folio);
1801
if (!bh)
1802
bh = create_empty_buffers(folio,
1803
1 << READ_ONCE(inode->i_blkbits), b_state);
1804
return bh;
1805
}
1806
1807
/*
1808
* NOTE! All mapped/uptodate combinations are valid:
1809
*
1810
* Mapped Uptodate Meaning
1811
*
1812
* No No "unknown" - must do get_block()
1813
* No Yes "hole" - zero-filled
1814
* Yes No "allocated" - allocated on disk, not read in
1815
* Yes Yes "valid" - allocated and up-to-date in memory.
1816
*
1817
* "Dirty" is valid only with the last case (mapped+uptodate).
1818
*/
1819
1820
/*
1821
* While block_write_full_folio is writing back the dirty buffers under
1822
* the page lock, whoever dirtied the buffers may decide to clean them
1823
* again at any time. We handle that by only looking at the buffer
1824
* state inside lock_buffer().
1825
*
1826
* If block_write_full_folio() is called for regular writeback
1827
* (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1828
* locked buffer. This only can happen if someone has written the buffer
1829
* directly, with submit_bh(). At the address_space level PageWriteback
1830
* prevents this contention from occurring.
1831
*
1832
* If block_write_full_folio() is called with wbc->sync_mode ==
1833
* WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1834
* causes the writes to be flagged as synchronous writes.
1835
*/
1836
int __block_write_full_folio(struct inode *inode, struct folio *folio,
1837
get_block_t *get_block, struct writeback_control *wbc)
1838
{
1839
int err;
1840
sector_t block;
1841
sector_t last_block;
1842
struct buffer_head *bh, *head;
1843
size_t blocksize;
1844
int nr_underway = 0;
1845
blk_opf_t write_flags = wbc_to_write_flags(wbc);
1846
1847
head = folio_create_buffers(folio, inode,
1848
(1 << BH_Dirty) | (1 << BH_Uptodate));
1849
1850
/*
1851
* Be very careful. We have no exclusion from block_dirty_folio
1852
* here, and the (potentially unmapped) buffers may become dirty at
1853
* any time. If a buffer becomes dirty here after we've inspected it
1854
* then we just miss that fact, and the folio stays dirty.
1855
*
1856
* Buffers outside i_size may be dirtied by block_dirty_folio;
1857
* handle that here by just cleaning them.
1858
*/
1859
1860
bh = head;
1861
blocksize = bh->b_size;
1862
1863
block = div_u64(folio_pos(folio), blocksize);
1864
last_block = div_u64(i_size_read(inode) - 1, blocksize);
1865
1866
/*
1867
* Get all the dirty buffers mapped to disk addresses and
1868
* handle any aliases from the underlying blockdev's mapping.
1869
*/
1870
do {
1871
if (block > last_block) {
1872
/*
1873
* mapped buffers outside i_size will occur, because
1874
* this folio can be outside i_size when there is a
1875
* truncate in progress.
1876
*/
1877
/*
1878
* The buffer was zeroed by block_write_full_folio()
1879
*/
1880
clear_buffer_dirty(bh);
1881
set_buffer_uptodate(bh);
1882
} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1883
buffer_dirty(bh)) {
1884
WARN_ON(bh->b_size != blocksize);
1885
err = get_block(inode, block, bh, 1);
1886
if (err)
1887
goto recover;
1888
clear_buffer_delay(bh);
1889
if (buffer_new(bh)) {
1890
/* blockdev mappings never come here */
1891
clear_buffer_new(bh);
1892
clean_bdev_bh_alias(bh);
1893
}
1894
}
1895
bh = bh->b_this_page;
1896
block++;
1897
} while (bh != head);
1898
1899
do {
1900
if (!buffer_mapped(bh))
1901
continue;
1902
/*
1903
* If it's a fully non-blocking write attempt and we cannot
1904
* lock the buffer then redirty the folio. Note that this can
1905
* potentially cause a busy-wait loop from writeback threads
1906
* and kswapd activity, but those code paths have their own
1907
* higher-level throttling.
1908
*/
1909
if (wbc->sync_mode != WB_SYNC_NONE) {
1910
lock_buffer(bh);
1911
} else if (!trylock_buffer(bh)) {
1912
folio_redirty_for_writepage(wbc, folio);
1913
continue;
1914
}
1915
if (test_clear_buffer_dirty(bh)) {
1916
mark_buffer_async_write_endio(bh,
1917
end_buffer_async_write);
1918
} else {
1919
unlock_buffer(bh);
1920
}
1921
} while ((bh = bh->b_this_page) != head);
1922
1923
/*
1924
* The folio and its buffers are protected by the writeback flag,
1925
* so we can drop the bh refcounts early.
1926
*/
1927
BUG_ON(folio_test_writeback(folio));
1928
folio_start_writeback(folio);
1929
1930
do {
1931
struct buffer_head *next = bh->b_this_page;
1932
if (buffer_async_write(bh)) {
1933
submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1934
inode->i_write_hint, wbc);
1935
nr_underway++;
1936
}
1937
bh = next;
1938
} while (bh != head);
1939
folio_unlock(folio);
1940
1941
err = 0;
1942
done:
1943
if (nr_underway == 0) {
1944
/*
1945
* The folio was marked dirty, but the buffers were
1946
* clean. Someone wrote them back by hand with
1947
* write_dirty_buffer/submit_bh. A rare case.
1948
*/
1949
folio_end_writeback(folio);
1950
1951
/*
1952
* The folio and buffer_heads can be released at any time from
1953
* here on.
1954
*/
1955
}
1956
return err;
1957
1958
recover:
1959
/*
1960
* ENOSPC, or some other error. We may already have added some
1961
* blocks to the file, so we need to write these out to avoid
1962
* exposing stale data.
1963
* The folio is currently locked and not marked for writeback
1964
*/
1965
bh = head;
1966
/* Recovery: lock and submit the mapped buffers */
1967
do {
1968
if (buffer_mapped(bh) && buffer_dirty(bh) &&
1969
!buffer_delay(bh)) {
1970
lock_buffer(bh);
1971
mark_buffer_async_write_endio(bh,
1972
end_buffer_async_write);
1973
} else {
1974
/*
1975
* The buffer may have been set dirty during
1976
* attachment to a dirty folio.
1977
*/
1978
clear_buffer_dirty(bh);
1979
}
1980
} while ((bh = bh->b_this_page) != head);
1981
BUG_ON(folio_test_writeback(folio));
1982
mapping_set_error(folio->mapping, err);
1983
folio_start_writeback(folio);
1984
do {
1985
struct buffer_head *next = bh->b_this_page;
1986
if (buffer_async_write(bh)) {
1987
clear_buffer_dirty(bh);
1988
submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1989
inode->i_write_hint, wbc);
1990
nr_underway++;
1991
}
1992
bh = next;
1993
} while (bh != head);
1994
folio_unlock(folio);
1995
goto done;
1996
}
1997
EXPORT_SYMBOL(__block_write_full_folio);
1998
1999
/*
2000
* If a folio has any new buffers, zero them out here, and mark them uptodate
2001
* and dirty so they'll be written out (in order to prevent uninitialised
2002
* block data from leaking). And clear the new bit.
2003
*/
2004
void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
2005
{
2006
size_t block_start, block_end;
2007
struct buffer_head *head, *bh;
2008
2009
BUG_ON(!folio_test_locked(folio));
2010
head = folio_buffers(folio);
2011
if (!head)
2012
return;
2013
2014
bh = head;
2015
block_start = 0;
2016
do {
2017
block_end = block_start + bh->b_size;
2018
2019
if (buffer_new(bh)) {
2020
if (block_end > from && block_start < to) {
2021
if (!folio_test_uptodate(folio)) {
2022
size_t start, xend;
2023
2024
start = max(from, block_start);
2025
xend = min(to, block_end);
2026
2027
folio_zero_segment(folio, start, xend);
2028
set_buffer_uptodate(bh);
2029
}
2030
2031
clear_buffer_new(bh);
2032
mark_buffer_dirty(bh);
2033
}
2034
}
2035
2036
block_start = block_end;
2037
bh = bh->b_this_page;
2038
} while (bh != head);
2039
}
2040
EXPORT_SYMBOL(folio_zero_new_buffers);
2041
2042
static int
2043
iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2044
const struct iomap *iomap)
2045
{
2046
loff_t offset = (loff_t)block << inode->i_blkbits;
2047
2048
bh->b_bdev = iomap->bdev;
2049
2050
/*
2051
* Block points to offset in file we need to map, iomap contains
2052
* the offset at which the map starts. If the map ends before the
2053
* current block, then do not map the buffer and let the caller
2054
* handle it.
2055
*/
2056
if (offset >= iomap->offset + iomap->length)
2057
return -EIO;
2058
2059
switch (iomap->type) {
2060
case IOMAP_HOLE:
2061
/*
2062
* If the buffer is not up to date or beyond the current EOF,
2063
* we need to mark it as new to ensure sub-block zeroing is
2064
* executed if necessary.
2065
*/
2066
if (!buffer_uptodate(bh) ||
2067
(offset >= i_size_read(inode)))
2068
set_buffer_new(bh);
2069
return 0;
2070
case IOMAP_DELALLOC:
2071
if (!buffer_uptodate(bh) ||
2072
(offset >= i_size_read(inode)))
2073
set_buffer_new(bh);
2074
set_buffer_uptodate(bh);
2075
set_buffer_mapped(bh);
2076
set_buffer_delay(bh);
2077
return 0;
2078
case IOMAP_UNWRITTEN:
2079
/*
2080
* For unwritten regions, we always need to ensure that regions
2081
* in the block we are not writing to are zeroed. Mark the
2082
* buffer as new to ensure this.
2083
*/
2084
set_buffer_new(bh);
2085
set_buffer_unwritten(bh);
2086
fallthrough;
2087
case IOMAP_MAPPED:
2088
if ((iomap->flags & IOMAP_F_NEW) ||
2089
offset >= i_size_read(inode)) {
2090
/*
2091
* This can happen if truncating the block device races
2092
* with the check in the caller as i_size updates on
2093
* block devices aren't synchronized by i_rwsem for
2094
* block devices.
2095
*/
2096
if (S_ISBLK(inode->i_mode))
2097
return -EIO;
2098
set_buffer_new(bh);
2099
}
2100
bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2101
inode->i_blkbits;
2102
set_buffer_mapped(bh);
2103
return 0;
2104
default:
2105
WARN_ON_ONCE(1);
2106
return -EIO;
2107
}
2108
}
2109
2110
int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2111
get_block_t *get_block, const struct iomap *iomap)
2112
{
2113
size_t from = offset_in_folio(folio, pos);
2114
size_t to = from + len;
2115
struct inode *inode = folio->mapping->host;
2116
size_t block_start, block_end;
2117
sector_t block;
2118
int err = 0;
2119
size_t blocksize;
2120
struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2121
2122
BUG_ON(!folio_test_locked(folio));
2123
BUG_ON(to > folio_size(folio));
2124
BUG_ON(from > to);
2125
2126
head = folio_create_buffers(folio, inode, 0);
2127
blocksize = head->b_size;
2128
block = div_u64(folio_pos(folio), blocksize);
2129
2130
for (bh = head, block_start = 0; bh != head || !block_start;
2131
block++, block_start=block_end, bh = bh->b_this_page) {
2132
block_end = block_start + blocksize;
2133
if (block_end <= from || block_start >= to) {
2134
if (folio_test_uptodate(folio)) {
2135
if (!buffer_uptodate(bh))
2136
set_buffer_uptodate(bh);
2137
}
2138
continue;
2139
}
2140
if (buffer_new(bh))
2141
clear_buffer_new(bh);
2142
if (!buffer_mapped(bh)) {
2143
WARN_ON(bh->b_size != blocksize);
2144
if (get_block)
2145
err = get_block(inode, block, bh, 1);
2146
else
2147
err = iomap_to_bh(inode, block, bh, iomap);
2148
if (err)
2149
break;
2150
2151
if (buffer_new(bh)) {
2152
clean_bdev_bh_alias(bh);
2153
if (folio_test_uptodate(folio)) {
2154
clear_buffer_new(bh);
2155
set_buffer_uptodate(bh);
2156
mark_buffer_dirty(bh);
2157
continue;
2158
}
2159
if (block_end > to || block_start < from)
2160
folio_zero_segments(folio,
2161
to, block_end,
2162
block_start, from);
2163
continue;
2164
}
2165
}
2166
if (folio_test_uptodate(folio)) {
2167
if (!buffer_uptodate(bh))
2168
set_buffer_uptodate(bh);
2169
continue;
2170
}
2171
if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2172
!buffer_unwritten(bh) &&
2173
(block_start < from || block_end > to)) {
2174
bh_read_nowait(bh, 0);
2175
*wait_bh++=bh;
2176
}
2177
}
2178
/*
2179
* If we issued read requests - let them complete.
2180
*/
2181
while(wait_bh > wait) {
2182
wait_on_buffer(*--wait_bh);
2183
if (!buffer_uptodate(*wait_bh))
2184
err = -EIO;
2185
}
2186
if (unlikely(err))
2187
folio_zero_new_buffers(folio, from, to);
2188
return err;
2189
}
2190
2191
int __block_write_begin(struct folio *folio, loff_t pos, unsigned len,
2192
get_block_t *get_block)
2193
{
2194
return __block_write_begin_int(folio, pos, len, get_block, NULL);
2195
}
2196
EXPORT_SYMBOL(__block_write_begin);
2197
2198
void block_commit_write(struct folio *folio, size_t from, size_t to)
2199
{
2200
size_t block_start, block_end;
2201
bool partial = false;
2202
unsigned blocksize;
2203
struct buffer_head *bh, *head;
2204
2205
bh = head = folio_buffers(folio);
2206
if (!bh)
2207
return;
2208
blocksize = bh->b_size;
2209
2210
block_start = 0;
2211
do {
2212
block_end = block_start + blocksize;
2213
if (block_end <= from || block_start >= to) {
2214
if (!buffer_uptodate(bh))
2215
partial = true;
2216
} else {
2217
set_buffer_uptodate(bh);
2218
mark_buffer_dirty(bh);
2219
}
2220
if (buffer_new(bh))
2221
clear_buffer_new(bh);
2222
2223
block_start = block_end;
2224
bh = bh->b_this_page;
2225
} while (bh != head);
2226
2227
/*
2228
* If this is a partial write which happened to make all buffers
2229
* uptodate then we can optimize away a bogus read_folio() for
2230
* the next read(). Here we 'discover' whether the folio went
2231
* uptodate as a result of this (potentially partial) write.
2232
*/
2233
if (!partial)
2234
folio_mark_uptodate(folio);
2235
}
2236
EXPORT_SYMBOL(block_commit_write);
2237
2238
/*
2239
* block_write_begin takes care of the basic task of block allocation and
2240
* bringing partial write blocks uptodate first.
2241
*
2242
* The filesystem needs to handle block truncation upon failure.
2243
*/
2244
int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2245
struct folio **foliop, get_block_t *get_block)
2246
{
2247
pgoff_t index = pos >> PAGE_SHIFT;
2248
struct folio *folio;
2249
int status;
2250
2251
folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2252
mapping_gfp_mask(mapping));
2253
if (IS_ERR(folio))
2254
return PTR_ERR(folio);
2255
2256
status = __block_write_begin_int(folio, pos, len, get_block, NULL);
2257
if (unlikely(status)) {
2258
folio_unlock(folio);
2259
folio_put(folio);
2260
folio = NULL;
2261
}
2262
2263
*foliop = folio;
2264
return status;
2265
}
2266
EXPORT_SYMBOL(block_write_begin);
2267
2268
int block_write_end(loff_t pos, unsigned len, unsigned copied,
2269
struct folio *folio)
2270
{
2271
size_t start = pos - folio_pos(folio);
2272
2273
if (unlikely(copied < len)) {
2274
/*
2275
* The buffers that were written will now be uptodate, so
2276
* we don't have to worry about a read_folio reading them
2277
* and overwriting a partial write. However if we have
2278
* encountered a short write and only partially written
2279
* into a buffer, it will not be marked uptodate, so a
2280
* read_folio might come in and destroy our partial write.
2281
*
2282
* Do the simplest thing, and just treat any short write to a
2283
* non uptodate folio as a zero-length write, and force the
2284
* caller to redo the whole thing.
2285
*/
2286
if (!folio_test_uptodate(folio))
2287
copied = 0;
2288
2289
folio_zero_new_buffers(folio, start+copied, start+len);
2290
}
2291
flush_dcache_folio(folio);
2292
2293
/* This could be a short (even 0-length) commit */
2294
block_commit_write(folio, start, start + copied);
2295
2296
return copied;
2297
}
2298
EXPORT_SYMBOL(block_write_end);
2299
2300
int generic_write_end(const struct kiocb *iocb, struct address_space *mapping,
2301
loff_t pos, unsigned len, unsigned copied,
2302
struct folio *folio, void *fsdata)
2303
{
2304
struct inode *inode = mapping->host;
2305
loff_t old_size = inode->i_size;
2306
bool i_size_changed = false;
2307
2308
copied = block_write_end(pos, len, copied, folio);
2309
2310
/*
2311
* No need to use i_size_read() here, the i_size cannot change under us
2312
* because we hold i_rwsem.
2313
*
2314
* But it's important to update i_size while still holding folio lock:
2315
* page writeout could otherwise come in and zero beyond i_size.
2316
*/
2317
if (pos + copied > inode->i_size) {
2318
i_size_write(inode, pos + copied);
2319
i_size_changed = true;
2320
}
2321
2322
folio_unlock(folio);
2323
folio_put(folio);
2324
2325
if (old_size < pos)
2326
pagecache_isize_extended(inode, old_size, pos);
2327
/*
2328
* Don't mark the inode dirty under page lock. First, it unnecessarily
2329
* makes the holding time of page lock longer. Second, it forces lock
2330
* ordering of page lock and transaction start for journaling
2331
* filesystems.
2332
*/
2333
if (i_size_changed)
2334
mark_inode_dirty(inode);
2335
return copied;
2336
}
2337
EXPORT_SYMBOL(generic_write_end);
2338
2339
/*
2340
* block_is_partially_uptodate checks whether buffers within a folio are
2341
* uptodate or not.
2342
*
2343
* Returns true if all buffers which correspond to the specified part
2344
* of the folio are uptodate.
2345
*/
2346
bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2347
{
2348
unsigned block_start, block_end, blocksize;
2349
unsigned to;
2350
struct buffer_head *bh, *head;
2351
bool ret = true;
2352
2353
head = folio_buffers(folio);
2354
if (!head)
2355
return false;
2356
blocksize = head->b_size;
2357
to = min_t(unsigned, folio_size(folio) - from, count);
2358
to = from + to;
2359
if (from < blocksize && to > folio_size(folio) - blocksize)
2360
return false;
2361
2362
bh = head;
2363
block_start = 0;
2364
do {
2365
block_end = block_start + blocksize;
2366
if (block_end > from && block_start < to) {
2367
if (!buffer_uptodate(bh)) {
2368
ret = false;
2369
break;
2370
}
2371
if (block_end >= to)
2372
break;
2373
}
2374
block_start = block_end;
2375
bh = bh->b_this_page;
2376
} while (bh != head);
2377
2378
return ret;
2379
}
2380
EXPORT_SYMBOL(block_is_partially_uptodate);
2381
2382
/*
2383
* Generic "read_folio" function for block devices that have the normal
2384
* get_block functionality. This is most of the block device filesystems.
2385
* Reads the folio asynchronously --- the unlock_buffer() and
2386
* set/clear_buffer_uptodate() functions propagate buffer state into the
2387
* folio once IO has completed.
2388
*/
2389
int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2390
{
2391
struct inode *inode = folio->mapping->host;
2392
sector_t iblock, lblock;
2393
struct buffer_head *bh, *head, *prev = NULL;
2394
size_t blocksize;
2395
int fully_mapped = 1;
2396
bool page_error = false;
2397
loff_t limit = i_size_read(inode);
2398
2399
/* This is needed for ext4. */
2400
if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2401
limit = inode->i_sb->s_maxbytes;
2402
2403
head = folio_create_buffers(folio, inode, 0);
2404
blocksize = head->b_size;
2405
2406
iblock = div_u64(folio_pos(folio), blocksize);
2407
lblock = div_u64(limit + blocksize - 1, blocksize);
2408
bh = head;
2409
2410
do {
2411
if (buffer_uptodate(bh))
2412
continue;
2413
2414
if (!buffer_mapped(bh)) {
2415
int err = 0;
2416
2417
fully_mapped = 0;
2418
if (iblock < lblock) {
2419
WARN_ON(bh->b_size != blocksize);
2420
err = get_block(inode, iblock, bh, 0);
2421
if (err)
2422
page_error = true;
2423
}
2424
if (!buffer_mapped(bh)) {
2425
folio_zero_range(folio, bh_offset(bh),
2426
blocksize);
2427
if (!err)
2428
set_buffer_uptodate(bh);
2429
continue;
2430
}
2431
/*
2432
* get_block() might have updated the buffer
2433
* synchronously
2434
*/
2435
if (buffer_uptodate(bh))
2436
continue;
2437
}
2438
2439
lock_buffer(bh);
2440
if (buffer_uptodate(bh)) {
2441
unlock_buffer(bh);
2442
continue;
2443
}
2444
2445
mark_buffer_async_read(bh);
2446
if (prev)
2447
submit_bh(REQ_OP_READ, prev);
2448
prev = bh;
2449
} while (iblock++, (bh = bh->b_this_page) != head);
2450
2451
if (fully_mapped)
2452
folio_set_mappedtodisk(folio);
2453
2454
/*
2455
* All buffers are uptodate or get_block() returned an error
2456
* when trying to map them - we must finish the read because
2457
* end_buffer_async_read() will never be called on any buffer
2458
* in this folio.
2459
*/
2460
if (prev)
2461
submit_bh(REQ_OP_READ, prev);
2462
else
2463
folio_end_read(folio, !page_error);
2464
2465
return 0;
2466
}
2467
EXPORT_SYMBOL(block_read_full_folio);
2468
2469
/* utility function for filesystems that need to do work on expanding
2470
* truncates. Uses filesystem pagecache writes to allow the filesystem to
2471
* deal with the hole.
2472
*/
2473
int generic_cont_expand_simple(struct inode *inode, loff_t size)
2474
{
2475
struct address_space *mapping = inode->i_mapping;
2476
const struct address_space_operations *aops = mapping->a_ops;
2477
struct folio *folio;
2478
void *fsdata = NULL;
2479
int err;
2480
2481
err = inode_newsize_ok(inode, size);
2482
if (err)
2483
goto out;
2484
2485
err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata);
2486
if (err)
2487
goto out;
2488
2489
err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata);
2490
BUG_ON(err > 0);
2491
2492
out:
2493
return err;
2494
}
2495
EXPORT_SYMBOL(generic_cont_expand_simple);
2496
2497
static int cont_expand_zero(const struct kiocb *iocb,
2498
struct address_space *mapping,
2499
loff_t pos, loff_t *bytes)
2500
{
2501
struct inode *inode = mapping->host;
2502
const struct address_space_operations *aops = mapping->a_ops;
2503
unsigned int blocksize = i_blocksize(inode);
2504
struct folio *folio;
2505
void *fsdata = NULL;
2506
pgoff_t index, curidx;
2507
loff_t curpos;
2508
unsigned zerofrom, offset, len;
2509
int err = 0;
2510
2511
index = pos >> PAGE_SHIFT;
2512
offset = pos & ~PAGE_MASK;
2513
2514
while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2515
zerofrom = curpos & ~PAGE_MASK;
2516
if (zerofrom & (blocksize-1)) {
2517
*bytes |= (blocksize-1);
2518
(*bytes)++;
2519
}
2520
len = PAGE_SIZE - zerofrom;
2521
2522
err = aops->write_begin(iocb, mapping, curpos, len,
2523
&folio, &fsdata);
2524
if (err)
2525
goto out;
2526
folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2527
err = aops->write_end(iocb, mapping, curpos, len, len,
2528
folio, fsdata);
2529
if (err < 0)
2530
goto out;
2531
BUG_ON(err != len);
2532
err = 0;
2533
2534
balance_dirty_pages_ratelimited(mapping);
2535
2536
if (fatal_signal_pending(current)) {
2537
err = -EINTR;
2538
goto out;
2539
}
2540
}
2541
2542
/* page covers the boundary, find the boundary offset */
2543
if (index == curidx) {
2544
zerofrom = curpos & ~PAGE_MASK;
2545
/* if we will expand the thing last block will be filled */
2546
if (offset <= zerofrom) {
2547
goto out;
2548
}
2549
if (zerofrom & (blocksize-1)) {
2550
*bytes |= (blocksize-1);
2551
(*bytes)++;
2552
}
2553
len = offset - zerofrom;
2554
2555
err = aops->write_begin(iocb, mapping, curpos, len,
2556
&folio, &fsdata);
2557
if (err)
2558
goto out;
2559
folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2560
err = aops->write_end(iocb, mapping, curpos, len, len,
2561
folio, fsdata);
2562
if (err < 0)
2563
goto out;
2564
BUG_ON(err != len);
2565
err = 0;
2566
}
2567
out:
2568
return err;
2569
}
2570
2571
/*
2572
* For moronic filesystems that do not allow holes in file.
2573
* We may have to extend the file.
2574
*/
2575
int cont_write_begin(const struct kiocb *iocb, struct address_space *mapping,
2576
loff_t pos, unsigned len, struct folio **foliop,
2577
void **fsdata, get_block_t *get_block, loff_t *bytes)
2578
{
2579
struct inode *inode = mapping->host;
2580
unsigned int blocksize = i_blocksize(inode);
2581
unsigned int zerofrom;
2582
int err;
2583
2584
err = cont_expand_zero(iocb, mapping, pos, bytes);
2585
if (err)
2586
return err;
2587
2588
zerofrom = *bytes & ~PAGE_MASK;
2589
if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2590
*bytes |= (blocksize-1);
2591
(*bytes)++;
2592
}
2593
2594
return block_write_begin(mapping, pos, len, foliop, get_block);
2595
}
2596
EXPORT_SYMBOL(cont_write_begin);
2597
2598
/*
2599
* block_page_mkwrite() is not allowed to change the file size as it gets
2600
* called from a page fault handler when a page is first dirtied. Hence we must
2601
* be careful to check for EOF conditions here. We set the page up correctly
2602
* for a written page which means we get ENOSPC checking when writing into
2603
* holes and correct delalloc and unwritten extent mapping on filesystems that
2604
* support these features.
2605
*
2606
* We are not allowed to take the i_rwsem here so we have to play games to
2607
* protect against truncate races as the page could now be beyond EOF. Because
2608
* truncate writes the inode size before removing pages, once we have the
2609
* page lock we can determine safely if the page is beyond EOF. If it is not
2610
* beyond EOF, then the page is guaranteed safe against truncation until we
2611
* unlock the page.
2612
*
2613
* Direct callers of this function should protect against filesystem freezing
2614
* using sb_start_pagefault() - sb_end_pagefault() functions.
2615
*/
2616
int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2617
get_block_t get_block)
2618
{
2619
struct folio *folio = page_folio(vmf->page);
2620
struct inode *inode = file_inode(vma->vm_file);
2621
unsigned long end;
2622
loff_t size;
2623
int ret;
2624
2625
folio_lock(folio);
2626
size = i_size_read(inode);
2627
if ((folio->mapping != inode->i_mapping) ||
2628
(folio_pos(folio) >= size)) {
2629
/* We overload EFAULT to mean page got truncated */
2630
ret = -EFAULT;
2631
goto out_unlock;
2632
}
2633
2634
end = folio_size(folio);
2635
/* folio is wholly or partially inside EOF */
2636
if (folio_pos(folio) + end > size)
2637
end = size - folio_pos(folio);
2638
2639
ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2640
if (unlikely(ret))
2641
goto out_unlock;
2642
2643
block_commit_write(folio, 0, end);
2644
2645
folio_mark_dirty(folio);
2646
folio_wait_stable(folio);
2647
return 0;
2648
out_unlock:
2649
folio_unlock(folio);
2650
return ret;
2651
}
2652
EXPORT_SYMBOL(block_page_mkwrite);
2653
2654
int block_truncate_page(struct address_space *mapping,
2655
loff_t from, get_block_t *get_block)
2656
{
2657
pgoff_t index = from >> PAGE_SHIFT;
2658
unsigned blocksize;
2659
sector_t iblock;
2660
size_t offset, length, pos;
2661
struct inode *inode = mapping->host;
2662
struct folio *folio;
2663
struct buffer_head *bh;
2664
int err = 0;
2665
2666
blocksize = i_blocksize(inode);
2667
length = from & (blocksize - 1);
2668
2669
/* Block boundary? Nothing to do */
2670
if (!length)
2671
return 0;
2672
2673
length = blocksize - length;
2674
iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2675
2676
folio = filemap_grab_folio(mapping, index);
2677
if (IS_ERR(folio))
2678
return PTR_ERR(folio);
2679
2680
bh = folio_buffers(folio);
2681
if (!bh)
2682
bh = create_empty_buffers(folio, blocksize, 0);
2683
2684
/* Find the buffer that contains "offset" */
2685
offset = offset_in_folio(folio, from);
2686
pos = blocksize;
2687
while (offset >= pos) {
2688
bh = bh->b_this_page;
2689
iblock++;
2690
pos += blocksize;
2691
}
2692
2693
if (!buffer_mapped(bh)) {
2694
WARN_ON(bh->b_size != blocksize);
2695
err = get_block(inode, iblock, bh, 0);
2696
if (err)
2697
goto unlock;
2698
/* unmapped? It's a hole - nothing to do */
2699
if (!buffer_mapped(bh))
2700
goto unlock;
2701
}
2702
2703
/* Ok, it's mapped. Make sure it's up-to-date */
2704
if (folio_test_uptodate(folio))
2705
set_buffer_uptodate(bh);
2706
2707
if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2708
err = bh_read(bh, 0);
2709
/* Uhhuh. Read error. Complain and punt. */
2710
if (err < 0)
2711
goto unlock;
2712
}
2713
2714
folio_zero_range(folio, offset, length);
2715
mark_buffer_dirty(bh);
2716
2717
unlock:
2718
folio_unlock(folio);
2719
folio_put(folio);
2720
2721
return err;
2722
}
2723
EXPORT_SYMBOL(block_truncate_page);
2724
2725
/*
2726
* The generic write folio function for buffer-backed address_spaces
2727
*/
2728
int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2729
void *get_block)
2730
{
2731
struct inode * const inode = folio->mapping->host;
2732
loff_t i_size = i_size_read(inode);
2733
2734
/* Is the folio fully inside i_size? */
2735
if (folio_pos(folio) + folio_size(folio) <= i_size)
2736
return __block_write_full_folio(inode, folio, get_block, wbc);
2737
2738
/* Is the folio fully outside i_size? (truncate in progress) */
2739
if (folio_pos(folio) >= i_size) {
2740
folio_unlock(folio);
2741
return 0; /* don't care */
2742
}
2743
2744
/*
2745
* The folio straddles i_size. It must be zeroed out on each and every
2746
* writeback invocation because it may be mmapped. "A file is mapped
2747
* in multiples of the page size. For a file that is not a multiple of
2748
* the page size, the remaining memory is zeroed when mapped, and
2749
* writes to that region are not written out to the file."
2750
*/
2751
folio_zero_segment(folio, offset_in_folio(folio, i_size),
2752
folio_size(folio));
2753
return __block_write_full_folio(inode, folio, get_block, wbc);
2754
}
2755
2756
sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2757
get_block_t *get_block)
2758
{
2759
struct inode *inode = mapping->host;
2760
struct buffer_head tmp = {
2761
.b_size = i_blocksize(inode),
2762
};
2763
2764
get_block(inode, block, &tmp, 0);
2765
return tmp.b_blocknr;
2766
}
2767
EXPORT_SYMBOL(generic_block_bmap);
2768
2769
static void end_bio_bh_io_sync(struct bio *bio)
2770
{
2771
struct buffer_head *bh = bio->bi_private;
2772
2773
if (unlikely(bio_flagged(bio, BIO_QUIET)))
2774
set_bit(BH_Quiet, &bh->b_state);
2775
2776
bh->b_end_io(bh, !bio->bi_status);
2777
bio_put(bio);
2778
}
2779
2780
static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2781
enum rw_hint write_hint,
2782
struct writeback_control *wbc)
2783
{
2784
const enum req_op op = opf & REQ_OP_MASK;
2785
struct bio *bio;
2786
2787
BUG_ON(!buffer_locked(bh));
2788
BUG_ON(!buffer_mapped(bh));
2789
BUG_ON(!bh->b_end_io);
2790
BUG_ON(buffer_delay(bh));
2791
BUG_ON(buffer_unwritten(bh));
2792
2793
/*
2794
* Only clear out a write error when rewriting
2795
*/
2796
if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2797
clear_buffer_write_io_error(bh);
2798
2799
if (buffer_meta(bh))
2800
opf |= REQ_META;
2801
if (buffer_prio(bh))
2802
opf |= REQ_PRIO;
2803
2804
bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2805
2806
fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2807
2808
bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2809
bio->bi_write_hint = write_hint;
2810
2811
bio_add_folio_nofail(bio, bh->b_folio, bh->b_size, bh_offset(bh));
2812
2813
bio->bi_end_io = end_bio_bh_io_sync;
2814
bio->bi_private = bh;
2815
2816
/* Take care of bh's that straddle the end of the device */
2817
guard_bio_eod(bio);
2818
2819
if (wbc) {
2820
wbc_init_bio(wbc, bio);
2821
wbc_account_cgroup_owner(wbc, bh->b_folio, bh->b_size);
2822
}
2823
2824
submit_bio(bio);
2825
}
2826
2827
void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2828
{
2829
submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2830
}
2831
EXPORT_SYMBOL(submit_bh);
2832
2833
void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2834
{
2835
lock_buffer(bh);
2836
if (!test_clear_buffer_dirty(bh)) {
2837
unlock_buffer(bh);
2838
return;
2839
}
2840
bh->b_end_io = end_buffer_write_sync;
2841
get_bh(bh);
2842
submit_bh(REQ_OP_WRITE | op_flags, bh);
2843
}
2844
EXPORT_SYMBOL(write_dirty_buffer);
2845
2846
/*
2847
* For a data-integrity writeout, we need to wait upon any in-progress I/O
2848
* and then start new I/O and then wait upon it. The caller must have a ref on
2849
* the buffer_head.
2850
*/
2851
int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2852
{
2853
WARN_ON(atomic_read(&bh->b_count) < 1);
2854
lock_buffer(bh);
2855
if (test_clear_buffer_dirty(bh)) {
2856
/*
2857
* The bh should be mapped, but it might not be if the
2858
* device was hot-removed. Not much we can do but fail the I/O.
2859
*/
2860
if (!buffer_mapped(bh)) {
2861
unlock_buffer(bh);
2862
return -EIO;
2863
}
2864
2865
get_bh(bh);
2866
bh->b_end_io = end_buffer_write_sync;
2867
submit_bh(REQ_OP_WRITE | op_flags, bh);
2868
wait_on_buffer(bh);
2869
if (!buffer_uptodate(bh))
2870
return -EIO;
2871
} else {
2872
unlock_buffer(bh);
2873
}
2874
return 0;
2875
}
2876
EXPORT_SYMBOL(__sync_dirty_buffer);
2877
2878
int sync_dirty_buffer(struct buffer_head *bh)
2879
{
2880
return __sync_dirty_buffer(bh, REQ_SYNC);
2881
}
2882
EXPORT_SYMBOL(sync_dirty_buffer);
2883
2884
static inline int buffer_busy(struct buffer_head *bh)
2885
{
2886
return atomic_read(&bh->b_count) |
2887
(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2888
}
2889
2890
static bool
2891
drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2892
{
2893
struct buffer_head *head = folio_buffers(folio);
2894
struct buffer_head *bh;
2895
2896
bh = head;
2897
do {
2898
if (buffer_busy(bh))
2899
goto failed;
2900
bh = bh->b_this_page;
2901
} while (bh != head);
2902
2903
do {
2904
struct buffer_head *next = bh->b_this_page;
2905
2906
if (bh->b_assoc_map)
2907
__remove_assoc_queue(bh);
2908
bh = next;
2909
} while (bh != head);
2910
*buffers_to_free = head;
2911
folio_detach_private(folio);
2912
return true;
2913
failed:
2914
return false;
2915
}
2916
2917
/**
2918
* try_to_free_buffers - Release buffers attached to this folio.
2919
* @folio: The folio.
2920
*
2921
* If any buffers are in use (dirty, under writeback, elevated refcount),
2922
* no buffers will be freed.
2923
*
2924
* If the folio is dirty but all the buffers are clean then we need to
2925
* be sure to mark the folio clean as well. This is because the folio
2926
* may be against a block device, and a later reattachment of buffers
2927
* to a dirty folio will set *all* buffers dirty. Which would corrupt
2928
* filesystem data on the same device.
2929
*
2930
* The same applies to regular filesystem folios: if all the buffers are
2931
* clean then we set the folio clean and proceed. To do that, we require
2932
* total exclusion from block_dirty_folio(). That is obtained with
2933
* i_private_lock.
2934
*
2935
* Exclusion against try_to_free_buffers may be obtained by either
2936
* locking the folio or by holding its mapping's i_private_lock.
2937
*
2938
* Context: Process context. @folio must be locked. Will not sleep.
2939
* Return: true if all buffers attached to this folio were freed.
2940
*/
2941
bool try_to_free_buffers(struct folio *folio)
2942
{
2943
struct address_space * const mapping = folio->mapping;
2944
struct buffer_head *buffers_to_free = NULL;
2945
bool ret = 0;
2946
2947
BUG_ON(!folio_test_locked(folio));
2948
if (folio_test_writeback(folio))
2949
return false;
2950
2951
if (mapping == NULL) { /* can this still happen? */
2952
ret = drop_buffers(folio, &buffers_to_free);
2953
goto out;
2954
}
2955
2956
spin_lock(&mapping->i_private_lock);
2957
ret = drop_buffers(folio, &buffers_to_free);
2958
2959
/*
2960
* If the filesystem writes its buffers by hand (eg ext3)
2961
* then we can have clean buffers against a dirty folio. We
2962
* clean the folio here; otherwise the VM will never notice
2963
* that the filesystem did any IO at all.
2964
*
2965
* Also, during truncate, discard_buffer will have marked all
2966
* the folio's buffers clean. We discover that here and clean
2967
* the folio also.
2968
*
2969
* i_private_lock must be held over this entire operation in order
2970
* to synchronise against block_dirty_folio and prevent the
2971
* dirty bit from being lost.
2972
*/
2973
if (ret)
2974
folio_cancel_dirty(folio);
2975
spin_unlock(&mapping->i_private_lock);
2976
out:
2977
if (buffers_to_free) {
2978
struct buffer_head *bh = buffers_to_free;
2979
2980
do {
2981
struct buffer_head *next = bh->b_this_page;
2982
free_buffer_head(bh);
2983
bh = next;
2984
} while (bh != buffers_to_free);
2985
}
2986
return ret;
2987
}
2988
EXPORT_SYMBOL(try_to_free_buffers);
2989
2990
/*
2991
* Buffer-head allocation
2992
*/
2993
static struct kmem_cache *bh_cachep __ro_after_init;
2994
2995
/*
2996
* Once the number of bh's in the machine exceeds this level, we start
2997
* stripping them in writeback.
2998
*/
2999
static unsigned long max_buffer_heads __ro_after_init;
3000
3001
int buffer_heads_over_limit;
3002
3003
struct bh_accounting {
3004
int nr; /* Number of live bh's */
3005
int ratelimit; /* Limit cacheline bouncing */
3006
};
3007
3008
static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3009
3010
static void recalc_bh_state(void)
3011
{
3012
int i;
3013
int tot = 0;
3014
3015
if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3016
return;
3017
__this_cpu_write(bh_accounting.ratelimit, 0);
3018
for_each_online_cpu(i)
3019
tot += per_cpu(bh_accounting, i).nr;
3020
buffer_heads_over_limit = (tot > max_buffer_heads);
3021
}
3022
3023
struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3024
{
3025
struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3026
if (ret) {
3027
INIT_LIST_HEAD(&ret->b_assoc_buffers);
3028
spin_lock_init(&ret->b_uptodate_lock);
3029
preempt_disable();
3030
__this_cpu_inc(bh_accounting.nr);
3031
recalc_bh_state();
3032
preempt_enable();
3033
}
3034
return ret;
3035
}
3036
EXPORT_SYMBOL(alloc_buffer_head);
3037
3038
void free_buffer_head(struct buffer_head *bh)
3039
{
3040
BUG_ON(!list_empty(&bh->b_assoc_buffers));
3041
kmem_cache_free(bh_cachep, bh);
3042
preempt_disable();
3043
__this_cpu_dec(bh_accounting.nr);
3044
recalc_bh_state();
3045
preempt_enable();
3046
}
3047
EXPORT_SYMBOL(free_buffer_head);
3048
3049
static int buffer_exit_cpu_dead(unsigned int cpu)
3050
{
3051
int i;
3052
struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3053
3054
for (i = 0; i < BH_LRU_SIZE; i++) {
3055
brelse(b->bhs[i]);
3056
b->bhs[i] = NULL;
3057
}
3058
this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3059
per_cpu(bh_accounting, cpu).nr = 0;
3060
return 0;
3061
}
3062
3063
/**
3064
* bh_uptodate_or_lock - Test whether the buffer is uptodate
3065
* @bh: struct buffer_head
3066
*
3067
* Return true if the buffer is up-to-date and false,
3068
* with the buffer locked, if not.
3069
*/
3070
int bh_uptodate_or_lock(struct buffer_head *bh)
3071
{
3072
if (!buffer_uptodate(bh)) {
3073
lock_buffer(bh);
3074
if (!buffer_uptodate(bh))
3075
return 0;
3076
unlock_buffer(bh);
3077
}
3078
return 1;
3079
}
3080
EXPORT_SYMBOL(bh_uptodate_or_lock);
3081
3082
/**
3083
* __bh_read - Submit read for a locked buffer
3084
* @bh: struct buffer_head
3085
* @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3086
* @wait: wait until reading finish
3087
*
3088
* Returns zero on success or don't wait, and -EIO on error.
3089
*/
3090
int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3091
{
3092
int ret = 0;
3093
3094
BUG_ON(!buffer_locked(bh));
3095
3096
get_bh(bh);
3097
bh->b_end_io = end_buffer_read_sync;
3098
submit_bh(REQ_OP_READ | op_flags, bh);
3099
if (wait) {
3100
wait_on_buffer(bh);
3101
if (!buffer_uptodate(bh))
3102
ret = -EIO;
3103
}
3104
return ret;
3105
}
3106
EXPORT_SYMBOL(__bh_read);
3107
3108
/**
3109
* __bh_read_batch - Submit read for a batch of unlocked buffers
3110
* @nr: entry number of the buffer batch
3111
* @bhs: a batch of struct buffer_head
3112
* @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3113
* @force_lock: force to get a lock on the buffer if set, otherwise drops any
3114
* buffer that cannot lock.
3115
*
3116
* Returns zero on success or don't wait, and -EIO on error.
3117
*/
3118
void __bh_read_batch(int nr, struct buffer_head *bhs[],
3119
blk_opf_t op_flags, bool force_lock)
3120
{
3121
int i;
3122
3123
for (i = 0; i < nr; i++) {
3124
struct buffer_head *bh = bhs[i];
3125
3126
if (buffer_uptodate(bh))
3127
continue;
3128
3129
if (force_lock)
3130
lock_buffer(bh);
3131
else
3132
if (!trylock_buffer(bh))
3133
continue;
3134
3135
if (buffer_uptodate(bh)) {
3136
unlock_buffer(bh);
3137
continue;
3138
}
3139
3140
bh->b_end_io = end_buffer_read_sync;
3141
get_bh(bh);
3142
submit_bh(REQ_OP_READ | op_flags, bh);
3143
}
3144
}
3145
EXPORT_SYMBOL(__bh_read_batch);
3146
3147
void __init buffer_init(void)
3148
{
3149
unsigned long nrpages;
3150
int ret;
3151
3152
bh_cachep = KMEM_CACHE(buffer_head,
3153
SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3154
/*
3155
* Limit the bh occupancy to 10% of ZONE_NORMAL
3156
*/
3157
nrpages = (nr_free_buffer_pages() * 10) / 100;
3158
max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3159
ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3160
NULL, buffer_exit_cpu_dead);
3161
WARN_ON(ret < 0);
3162
}
3163
3164