Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/ceph/mds_client.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0
2
#include <linux/ceph/ceph_debug.h>
3
4
#include <linux/fs.h>
5
#include <linux/wait.h>
6
#include <linux/slab.h>
7
#include <linux/gfp.h>
8
#include <linux/sched.h>
9
#include <linux/debugfs.h>
10
#include <linux/seq_file.h>
11
#include <linux/ratelimit.h>
12
#include <linux/bits.h>
13
#include <linux/ktime.h>
14
#include <linux/bitmap.h>
15
#include <linux/mnt_idmapping.h>
16
17
#include "super.h"
18
#include "mds_client.h"
19
#include "crypto.h"
20
21
#include <linux/ceph/ceph_features.h>
22
#include <linux/ceph/messenger.h>
23
#include <linux/ceph/decode.h>
24
#include <linux/ceph/pagelist.h>
25
#include <linux/ceph/auth.h>
26
#include <linux/ceph/debugfs.h>
27
28
#define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE)
29
30
/*
31
* A cluster of MDS (metadata server) daemons is responsible for
32
* managing the file system namespace (the directory hierarchy and
33
* inodes) and for coordinating shared access to storage. Metadata is
34
* partitioning hierarchically across a number of servers, and that
35
* partition varies over time as the cluster adjusts the distribution
36
* in order to balance load.
37
*
38
* The MDS client is primarily responsible to managing synchronous
39
* metadata requests for operations like open, unlink, and so forth.
40
* If there is a MDS failure, we find out about it when we (possibly
41
* request and) receive a new MDS map, and can resubmit affected
42
* requests.
43
*
44
* For the most part, though, we take advantage of a lossless
45
* communications channel to the MDS, and do not need to worry about
46
* timing out or resubmitting requests.
47
*
48
* We maintain a stateful "session" with each MDS we interact with.
49
* Within each session, we sent periodic heartbeat messages to ensure
50
* any capabilities or leases we have been issues remain valid. If
51
* the session times out and goes stale, our leases and capabilities
52
* are no longer valid.
53
*/
54
55
struct ceph_reconnect_state {
56
struct ceph_mds_session *session;
57
int nr_caps, nr_realms;
58
struct ceph_pagelist *pagelist;
59
unsigned msg_version;
60
bool allow_multi;
61
};
62
63
static void __wake_requests(struct ceph_mds_client *mdsc,
64
struct list_head *head);
65
static void ceph_cap_release_work(struct work_struct *work);
66
static void ceph_cap_reclaim_work(struct work_struct *work);
67
68
static const struct ceph_connection_operations mds_con_ops;
69
70
71
/*
72
* mds reply parsing
73
*/
74
75
static int parse_reply_info_quota(void **p, void *end,
76
struct ceph_mds_reply_info_in *info)
77
{
78
u8 struct_v, struct_compat;
79
u32 struct_len;
80
81
ceph_decode_8_safe(p, end, struct_v, bad);
82
ceph_decode_8_safe(p, end, struct_compat, bad);
83
/* struct_v is expected to be >= 1. we only
84
* understand encoding with struct_compat == 1. */
85
if (!struct_v || struct_compat != 1)
86
goto bad;
87
ceph_decode_32_safe(p, end, struct_len, bad);
88
ceph_decode_need(p, end, struct_len, bad);
89
end = *p + struct_len;
90
ceph_decode_64_safe(p, end, info->max_bytes, bad);
91
ceph_decode_64_safe(p, end, info->max_files, bad);
92
*p = end;
93
return 0;
94
bad:
95
return -EIO;
96
}
97
98
/*
99
* parse individual inode info
100
*/
101
static int parse_reply_info_in(void **p, void *end,
102
struct ceph_mds_reply_info_in *info,
103
u64 features)
104
{
105
int err = 0;
106
u8 struct_v = 0;
107
108
if (features == (u64)-1) {
109
u32 struct_len;
110
u8 struct_compat;
111
ceph_decode_8_safe(p, end, struct_v, bad);
112
ceph_decode_8_safe(p, end, struct_compat, bad);
113
/* struct_v is expected to be >= 1. we only understand
114
* encoding with struct_compat == 1. */
115
if (!struct_v || struct_compat != 1)
116
goto bad;
117
ceph_decode_32_safe(p, end, struct_len, bad);
118
ceph_decode_need(p, end, struct_len, bad);
119
end = *p + struct_len;
120
}
121
122
ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad);
123
info->in = *p;
124
*p += sizeof(struct ceph_mds_reply_inode) +
125
sizeof(*info->in->fragtree.splits) *
126
le32_to_cpu(info->in->fragtree.nsplits);
127
128
ceph_decode_32_safe(p, end, info->symlink_len, bad);
129
ceph_decode_need(p, end, info->symlink_len, bad);
130
info->symlink = *p;
131
*p += info->symlink_len;
132
133
ceph_decode_copy_safe(p, end, &info->dir_layout,
134
sizeof(info->dir_layout), bad);
135
ceph_decode_32_safe(p, end, info->xattr_len, bad);
136
ceph_decode_need(p, end, info->xattr_len, bad);
137
info->xattr_data = *p;
138
*p += info->xattr_len;
139
140
if (features == (u64)-1) {
141
/* inline data */
142
ceph_decode_64_safe(p, end, info->inline_version, bad);
143
ceph_decode_32_safe(p, end, info->inline_len, bad);
144
ceph_decode_need(p, end, info->inline_len, bad);
145
info->inline_data = *p;
146
*p += info->inline_len;
147
/* quota */
148
err = parse_reply_info_quota(p, end, info);
149
if (err < 0)
150
goto out_bad;
151
/* pool namespace */
152
ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
153
if (info->pool_ns_len > 0) {
154
ceph_decode_need(p, end, info->pool_ns_len, bad);
155
info->pool_ns_data = *p;
156
*p += info->pool_ns_len;
157
}
158
159
/* btime */
160
ceph_decode_need(p, end, sizeof(info->btime), bad);
161
ceph_decode_copy(p, &info->btime, sizeof(info->btime));
162
163
/* change attribute */
164
ceph_decode_64_safe(p, end, info->change_attr, bad);
165
166
/* dir pin */
167
if (struct_v >= 2) {
168
ceph_decode_32_safe(p, end, info->dir_pin, bad);
169
} else {
170
info->dir_pin = -ENODATA;
171
}
172
173
/* snapshot birth time, remains zero for v<=2 */
174
if (struct_v >= 3) {
175
ceph_decode_need(p, end, sizeof(info->snap_btime), bad);
176
ceph_decode_copy(p, &info->snap_btime,
177
sizeof(info->snap_btime));
178
} else {
179
memset(&info->snap_btime, 0, sizeof(info->snap_btime));
180
}
181
182
/* snapshot count, remains zero for v<=3 */
183
if (struct_v >= 4) {
184
ceph_decode_64_safe(p, end, info->rsnaps, bad);
185
} else {
186
info->rsnaps = 0;
187
}
188
189
if (struct_v >= 5) {
190
u32 alen;
191
192
ceph_decode_32_safe(p, end, alen, bad);
193
194
while (alen--) {
195
u32 len;
196
197
/* key */
198
ceph_decode_32_safe(p, end, len, bad);
199
ceph_decode_skip_n(p, end, len, bad);
200
/* value */
201
ceph_decode_32_safe(p, end, len, bad);
202
ceph_decode_skip_n(p, end, len, bad);
203
}
204
}
205
206
/* fscrypt flag -- ignore */
207
if (struct_v >= 6)
208
ceph_decode_skip_8(p, end, bad);
209
210
info->fscrypt_auth = NULL;
211
info->fscrypt_auth_len = 0;
212
info->fscrypt_file = NULL;
213
info->fscrypt_file_len = 0;
214
if (struct_v >= 7) {
215
ceph_decode_32_safe(p, end, info->fscrypt_auth_len, bad);
216
if (info->fscrypt_auth_len) {
217
info->fscrypt_auth = kmalloc(info->fscrypt_auth_len,
218
GFP_KERNEL);
219
if (!info->fscrypt_auth)
220
return -ENOMEM;
221
ceph_decode_copy_safe(p, end, info->fscrypt_auth,
222
info->fscrypt_auth_len, bad);
223
}
224
ceph_decode_32_safe(p, end, info->fscrypt_file_len, bad);
225
if (info->fscrypt_file_len) {
226
info->fscrypt_file = kmalloc(info->fscrypt_file_len,
227
GFP_KERNEL);
228
if (!info->fscrypt_file)
229
return -ENOMEM;
230
ceph_decode_copy_safe(p, end, info->fscrypt_file,
231
info->fscrypt_file_len, bad);
232
}
233
}
234
*p = end;
235
} else {
236
/* legacy (unversioned) struct */
237
if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
238
ceph_decode_64_safe(p, end, info->inline_version, bad);
239
ceph_decode_32_safe(p, end, info->inline_len, bad);
240
ceph_decode_need(p, end, info->inline_len, bad);
241
info->inline_data = *p;
242
*p += info->inline_len;
243
} else
244
info->inline_version = CEPH_INLINE_NONE;
245
246
if (features & CEPH_FEATURE_MDS_QUOTA) {
247
err = parse_reply_info_quota(p, end, info);
248
if (err < 0)
249
goto out_bad;
250
} else {
251
info->max_bytes = 0;
252
info->max_files = 0;
253
}
254
255
info->pool_ns_len = 0;
256
info->pool_ns_data = NULL;
257
if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
258
ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
259
if (info->pool_ns_len > 0) {
260
ceph_decode_need(p, end, info->pool_ns_len, bad);
261
info->pool_ns_data = *p;
262
*p += info->pool_ns_len;
263
}
264
}
265
266
if (features & CEPH_FEATURE_FS_BTIME) {
267
ceph_decode_need(p, end, sizeof(info->btime), bad);
268
ceph_decode_copy(p, &info->btime, sizeof(info->btime));
269
ceph_decode_64_safe(p, end, info->change_attr, bad);
270
}
271
272
info->dir_pin = -ENODATA;
273
/* info->snap_btime and info->rsnaps remain zero */
274
}
275
return 0;
276
bad:
277
err = -EIO;
278
out_bad:
279
return err;
280
}
281
282
static int parse_reply_info_dir(void **p, void *end,
283
struct ceph_mds_reply_dirfrag **dirfrag,
284
u64 features)
285
{
286
if (features == (u64)-1) {
287
u8 struct_v, struct_compat;
288
u32 struct_len;
289
ceph_decode_8_safe(p, end, struct_v, bad);
290
ceph_decode_8_safe(p, end, struct_compat, bad);
291
/* struct_v is expected to be >= 1. we only understand
292
* encoding whose struct_compat == 1. */
293
if (!struct_v || struct_compat != 1)
294
goto bad;
295
ceph_decode_32_safe(p, end, struct_len, bad);
296
ceph_decode_need(p, end, struct_len, bad);
297
end = *p + struct_len;
298
}
299
300
ceph_decode_need(p, end, sizeof(**dirfrag), bad);
301
*dirfrag = *p;
302
*p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist);
303
if (unlikely(*p > end))
304
goto bad;
305
if (features == (u64)-1)
306
*p = end;
307
return 0;
308
bad:
309
return -EIO;
310
}
311
312
static int parse_reply_info_lease(void **p, void *end,
313
struct ceph_mds_reply_lease **lease,
314
u64 features, u32 *altname_len, u8 **altname)
315
{
316
u8 struct_v;
317
u32 struct_len;
318
void *lend;
319
320
if (features == (u64)-1) {
321
u8 struct_compat;
322
323
ceph_decode_8_safe(p, end, struct_v, bad);
324
ceph_decode_8_safe(p, end, struct_compat, bad);
325
326
/* struct_v is expected to be >= 1. we only understand
327
* encoding whose struct_compat == 1. */
328
if (!struct_v || struct_compat != 1)
329
goto bad;
330
331
ceph_decode_32_safe(p, end, struct_len, bad);
332
} else {
333
struct_len = sizeof(**lease);
334
*altname_len = 0;
335
*altname = NULL;
336
}
337
338
lend = *p + struct_len;
339
ceph_decode_need(p, end, struct_len, bad);
340
*lease = *p;
341
*p += sizeof(**lease);
342
343
if (features == (u64)-1) {
344
if (struct_v >= 2) {
345
ceph_decode_32_safe(p, end, *altname_len, bad);
346
ceph_decode_need(p, end, *altname_len, bad);
347
*altname = *p;
348
*p += *altname_len;
349
} else {
350
*altname = NULL;
351
*altname_len = 0;
352
}
353
}
354
*p = lend;
355
return 0;
356
bad:
357
return -EIO;
358
}
359
360
/*
361
* parse a normal reply, which may contain a (dir+)dentry and/or a
362
* target inode.
363
*/
364
static int parse_reply_info_trace(void **p, void *end,
365
struct ceph_mds_reply_info_parsed *info,
366
u64 features)
367
{
368
int err;
369
370
if (info->head->is_dentry) {
371
err = parse_reply_info_in(p, end, &info->diri, features);
372
if (err < 0)
373
goto out_bad;
374
375
err = parse_reply_info_dir(p, end, &info->dirfrag, features);
376
if (err < 0)
377
goto out_bad;
378
379
ceph_decode_32_safe(p, end, info->dname_len, bad);
380
ceph_decode_need(p, end, info->dname_len, bad);
381
info->dname = *p;
382
*p += info->dname_len;
383
384
err = parse_reply_info_lease(p, end, &info->dlease, features,
385
&info->altname_len, &info->altname);
386
if (err < 0)
387
goto out_bad;
388
}
389
390
if (info->head->is_target) {
391
err = parse_reply_info_in(p, end, &info->targeti, features);
392
if (err < 0)
393
goto out_bad;
394
}
395
396
if (unlikely(*p != end))
397
goto bad;
398
return 0;
399
400
bad:
401
err = -EIO;
402
out_bad:
403
pr_err("problem parsing mds trace %d\n", err);
404
return err;
405
}
406
407
/*
408
* parse readdir results
409
*/
410
static int parse_reply_info_readdir(void **p, void *end,
411
struct ceph_mds_request *req,
412
u64 features)
413
{
414
struct ceph_mds_reply_info_parsed *info = &req->r_reply_info;
415
struct ceph_client *cl = req->r_mdsc->fsc->client;
416
u32 num, i = 0;
417
int err;
418
419
err = parse_reply_info_dir(p, end, &info->dir_dir, features);
420
if (err < 0)
421
goto out_bad;
422
423
ceph_decode_need(p, end, sizeof(num) + 2, bad);
424
num = ceph_decode_32(p);
425
{
426
u16 flags = ceph_decode_16(p);
427
info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
428
info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
429
info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
430
info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH);
431
}
432
if (num == 0)
433
goto done;
434
435
BUG_ON(!info->dir_entries);
436
if ((unsigned long)(info->dir_entries + num) >
437
(unsigned long)info->dir_entries + info->dir_buf_size) {
438
pr_err_client(cl, "dir contents are larger than expected\n");
439
WARN_ON(1);
440
goto bad;
441
}
442
443
info->dir_nr = num;
444
while (num) {
445
struct inode *inode = d_inode(req->r_dentry);
446
struct ceph_inode_info *ci = ceph_inode(inode);
447
struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
448
struct fscrypt_str tname = FSTR_INIT(NULL, 0);
449
struct fscrypt_str oname = FSTR_INIT(NULL, 0);
450
struct ceph_fname fname;
451
u32 altname_len, _name_len;
452
u8 *altname, *_name;
453
454
/* dentry */
455
ceph_decode_32_safe(p, end, _name_len, bad);
456
ceph_decode_need(p, end, _name_len, bad);
457
_name = *p;
458
*p += _name_len;
459
doutc(cl, "parsed dir dname '%.*s'\n", _name_len, _name);
460
461
if (info->hash_order)
462
rde->raw_hash = ceph_str_hash(ci->i_dir_layout.dl_dir_hash,
463
_name, _name_len);
464
465
/* dentry lease */
466
err = parse_reply_info_lease(p, end, &rde->lease, features,
467
&altname_len, &altname);
468
if (err)
469
goto out_bad;
470
471
/*
472
* Try to dencrypt the dentry names and update them
473
* in the ceph_mds_reply_dir_entry struct.
474
*/
475
fname.dir = inode;
476
fname.name = _name;
477
fname.name_len = _name_len;
478
fname.ctext = altname;
479
fname.ctext_len = altname_len;
480
/*
481
* The _name_len maybe larger than altname_len, such as
482
* when the human readable name length is in range of
483
* (CEPH_NOHASH_NAME_MAX, CEPH_NOHASH_NAME_MAX + SHA256_DIGEST_SIZE),
484
* then the copy in ceph_fname_to_usr will corrupt the
485
* data if there has no encryption key.
486
*
487
* Just set the no_copy flag and then if there has no
488
* encryption key the oname.name will be assigned to
489
* _name always.
490
*/
491
fname.no_copy = true;
492
if (altname_len == 0) {
493
/*
494
* Set tname to _name, and this will be used
495
* to do the base64_decode in-place. It's
496
* safe because the decoded string should
497
* always be shorter, which is 3/4 of origin
498
* string.
499
*/
500
tname.name = _name;
501
502
/*
503
* Set oname to _name too, and this will be
504
* used to do the dencryption in-place.
505
*/
506
oname.name = _name;
507
oname.len = _name_len;
508
} else {
509
/*
510
* This will do the decryption only in-place
511
* from altname cryptext directly.
512
*/
513
oname.name = altname;
514
oname.len = altname_len;
515
}
516
rde->is_nokey = false;
517
err = ceph_fname_to_usr(&fname, &tname, &oname, &rde->is_nokey);
518
if (err) {
519
pr_err_client(cl, "unable to decode %.*s, got %d\n",
520
_name_len, _name, err);
521
goto out_bad;
522
}
523
rde->name = oname.name;
524
rde->name_len = oname.len;
525
526
/* inode */
527
err = parse_reply_info_in(p, end, &rde->inode, features);
528
if (err < 0)
529
goto out_bad;
530
/* ceph_readdir_prepopulate() will update it */
531
rde->offset = 0;
532
i++;
533
num--;
534
}
535
536
done:
537
/* Skip over any unrecognized fields */
538
*p = end;
539
return 0;
540
541
bad:
542
err = -EIO;
543
out_bad:
544
pr_err_client(cl, "problem parsing dir contents %d\n", err);
545
return err;
546
}
547
548
/*
549
* parse fcntl F_GETLK results
550
*/
551
static int parse_reply_info_filelock(void **p, void *end,
552
struct ceph_mds_reply_info_parsed *info,
553
u64 features)
554
{
555
if (*p + sizeof(*info->filelock_reply) > end)
556
goto bad;
557
558
info->filelock_reply = *p;
559
560
/* Skip over any unrecognized fields */
561
*p = end;
562
return 0;
563
bad:
564
return -EIO;
565
}
566
567
568
#if BITS_PER_LONG == 64
569
570
#define DELEGATED_INO_AVAILABLE xa_mk_value(1)
571
572
static int ceph_parse_deleg_inos(void **p, void *end,
573
struct ceph_mds_session *s)
574
{
575
struct ceph_client *cl = s->s_mdsc->fsc->client;
576
u32 sets;
577
578
ceph_decode_32_safe(p, end, sets, bad);
579
doutc(cl, "got %u sets of delegated inodes\n", sets);
580
while (sets--) {
581
u64 start, len;
582
583
ceph_decode_64_safe(p, end, start, bad);
584
ceph_decode_64_safe(p, end, len, bad);
585
586
/* Don't accept a delegation of system inodes */
587
if (start < CEPH_INO_SYSTEM_BASE) {
588
pr_warn_ratelimited_client(cl,
589
"ignoring reserved inode range delegation (start=0x%llx len=0x%llx)\n",
590
start, len);
591
continue;
592
}
593
while (len--) {
594
int err = xa_insert(&s->s_delegated_inos, start++,
595
DELEGATED_INO_AVAILABLE,
596
GFP_KERNEL);
597
if (!err) {
598
doutc(cl, "added delegated inode 0x%llx\n", start - 1);
599
} else if (err == -EBUSY) {
600
pr_warn_client(cl,
601
"MDS delegated inode 0x%llx more than once.\n",
602
start - 1);
603
} else {
604
return err;
605
}
606
}
607
}
608
return 0;
609
bad:
610
return -EIO;
611
}
612
613
u64 ceph_get_deleg_ino(struct ceph_mds_session *s)
614
{
615
unsigned long ino;
616
void *val;
617
618
xa_for_each(&s->s_delegated_inos, ino, val) {
619
val = xa_erase(&s->s_delegated_inos, ino);
620
if (val == DELEGATED_INO_AVAILABLE)
621
return ino;
622
}
623
return 0;
624
}
625
626
int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino)
627
{
628
return xa_insert(&s->s_delegated_inos, ino, DELEGATED_INO_AVAILABLE,
629
GFP_KERNEL);
630
}
631
#else /* BITS_PER_LONG == 64 */
632
/*
633
* FIXME: xarrays can't handle 64-bit indexes on a 32-bit arch. For now, just
634
* ignore delegated_inos on 32 bit arch. Maybe eventually add xarrays for top
635
* and bottom words?
636
*/
637
static int ceph_parse_deleg_inos(void **p, void *end,
638
struct ceph_mds_session *s)
639
{
640
u32 sets;
641
642
ceph_decode_32_safe(p, end, sets, bad);
643
if (sets)
644
ceph_decode_skip_n(p, end, sets * 2 * sizeof(__le64), bad);
645
return 0;
646
bad:
647
return -EIO;
648
}
649
650
u64 ceph_get_deleg_ino(struct ceph_mds_session *s)
651
{
652
return 0;
653
}
654
655
int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino)
656
{
657
return 0;
658
}
659
#endif /* BITS_PER_LONG == 64 */
660
661
/*
662
* parse create results
663
*/
664
static int parse_reply_info_create(void **p, void *end,
665
struct ceph_mds_reply_info_parsed *info,
666
u64 features, struct ceph_mds_session *s)
667
{
668
int ret;
669
670
if (features == (u64)-1 ||
671
(features & CEPH_FEATURE_REPLY_CREATE_INODE)) {
672
if (*p == end) {
673
/* Malformed reply? */
674
info->has_create_ino = false;
675
} else if (test_bit(CEPHFS_FEATURE_DELEG_INO, &s->s_features)) {
676
info->has_create_ino = true;
677
/* struct_v, struct_compat, and len */
678
ceph_decode_skip_n(p, end, 2 + sizeof(u32), bad);
679
ceph_decode_64_safe(p, end, info->ino, bad);
680
ret = ceph_parse_deleg_inos(p, end, s);
681
if (ret)
682
return ret;
683
} else {
684
/* legacy */
685
ceph_decode_64_safe(p, end, info->ino, bad);
686
info->has_create_ino = true;
687
}
688
} else {
689
if (*p != end)
690
goto bad;
691
}
692
693
/* Skip over any unrecognized fields */
694
*p = end;
695
return 0;
696
bad:
697
return -EIO;
698
}
699
700
static int parse_reply_info_getvxattr(void **p, void *end,
701
struct ceph_mds_reply_info_parsed *info,
702
u64 features)
703
{
704
u32 value_len;
705
706
ceph_decode_skip_8(p, end, bad); /* skip current version: 1 */
707
ceph_decode_skip_8(p, end, bad); /* skip first version: 1 */
708
ceph_decode_skip_32(p, end, bad); /* skip payload length */
709
710
ceph_decode_32_safe(p, end, value_len, bad);
711
712
if (value_len == end - *p) {
713
info->xattr_info.xattr_value = *p;
714
info->xattr_info.xattr_value_len = value_len;
715
*p = end;
716
return value_len;
717
}
718
bad:
719
return -EIO;
720
}
721
722
/*
723
* parse extra results
724
*/
725
static int parse_reply_info_extra(void **p, void *end,
726
struct ceph_mds_request *req,
727
u64 features, struct ceph_mds_session *s)
728
{
729
struct ceph_mds_reply_info_parsed *info = &req->r_reply_info;
730
u32 op = le32_to_cpu(info->head->op);
731
732
if (op == CEPH_MDS_OP_GETFILELOCK)
733
return parse_reply_info_filelock(p, end, info, features);
734
else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP)
735
return parse_reply_info_readdir(p, end, req, features);
736
else if (op == CEPH_MDS_OP_CREATE)
737
return parse_reply_info_create(p, end, info, features, s);
738
else if (op == CEPH_MDS_OP_GETVXATTR)
739
return parse_reply_info_getvxattr(p, end, info, features);
740
else
741
return -EIO;
742
}
743
744
/*
745
* parse entire mds reply
746
*/
747
static int parse_reply_info(struct ceph_mds_session *s, struct ceph_msg *msg,
748
struct ceph_mds_request *req, u64 features)
749
{
750
struct ceph_mds_reply_info_parsed *info = &req->r_reply_info;
751
struct ceph_client *cl = s->s_mdsc->fsc->client;
752
void *p, *end;
753
u32 len;
754
int err;
755
756
info->head = msg->front.iov_base;
757
p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
758
end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
759
760
/* trace */
761
ceph_decode_32_safe(&p, end, len, bad);
762
if (len > 0) {
763
ceph_decode_need(&p, end, len, bad);
764
err = parse_reply_info_trace(&p, p+len, info, features);
765
if (err < 0)
766
goto out_bad;
767
}
768
769
/* extra */
770
ceph_decode_32_safe(&p, end, len, bad);
771
if (len > 0) {
772
ceph_decode_need(&p, end, len, bad);
773
err = parse_reply_info_extra(&p, p+len, req, features, s);
774
if (err < 0)
775
goto out_bad;
776
}
777
778
/* snap blob */
779
ceph_decode_32_safe(&p, end, len, bad);
780
info->snapblob_len = len;
781
info->snapblob = p;
782
p += len;
783
784
if (p != end)
785
goto bad;
786
return 0;
787
788
bad:
789
err = -EIO;
790
out_bad:
791
pr_err_client(cl, "mds parse_reply err %d\n", err);
792
ceph_msg_dump(msg);
793
return err;
794
}
795
796
static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
797
{
798
int i;
799
800
kfree(info->diri.fscrypt_auth);
801
kfree(info->diri.fscrypt_file);
802
kfree(info->targeti.fscrypt_auth);
803
kfree(info->targeti.fscrypt_file);
804
if (!info->dir_entries)
805
return;
806
807
for (i = 0; i < info->dir_nr; i++) {
808
struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
809
810
kfree(rde->inode.fscrypt_auth);
811
kfree(rde->inode.fscrypt_file);
812
}
813
free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
814
}
815
816
/*
817
* In async unlink case the kclient won't wait for the first reply
818
* from MDS and just drop all the links and unhash the dentry and then
819
* succeeds immediately.
820
*
821
* For any new create/link/rename,etc requests followed by using the
822
* same file names we must wait for the first reply of the inflight
823
* unlink request, or the MDS possibly will fail these following
824
* requests with -EEXIST if the inflight async unlink request was
825
* delayed for some reasons.
826
*
827
* And the worst case is that for the none async openc request it will
828
* successfully open the file if the CDentry hasn't been unlinked yet,
829
* but later the previous delayed async unlink request will remove the
830
* CDentry. That means the just created file is possibly deleted later
831
* by accident.
832
*
833
* We need to wait for the inflight async unlink requests to finish
834
* when creating new files/directories by using the same file names.
835
*/
836
int ceph_wait_on_conflict_unlink(struct dentry *dentry)
837
{
838
struct ceph_fs_client *fsc = ceph_sb_to_fs_client(dentry->d_sb);
839
struct ceph_client *cl = fsc->client;
840
struct dentry *pdentry = dentry->d_parent;
841
struct dentry *udentry, *found = NULL;
842
struct ceph_dentry_info *di;
843
struct qstr dname;
844
u32 hash = dentry->d_name.hash;
845
int err;
846
847
dname.name = dentry->d_name.name;
848
dname.len = dentry->d_name.len;
849
850
rcu_read_lock();
851
hash_for_each_possible_rcu(fsc->async_unlink_conflict, di,
852
hnode, hash) {
853
udentry = di->dentry;
854
855
spin_lock(&udentry->d_lock);
856
if (udentry->d_name.hash != hash)
857
goto next;
858
if (unlikely(udentry->d_parent != pdentry))
859
goto next;
860
if (!hash_hashed(&di->hnode))
861
goto next;
862
863
if (!test_bit(CEPH_DENTRY_ASYNC_UNLINK_BIT, &di->flags))
864
pr_warn_client(cl, "dentry %p:%pd async unlink bit is not set\n",
865
dentry, dentry);
866
867
if (!d_same_name(udentry, pdentry, &dname))
868
goto next;
869
870
found = dget_dlock(udentry);
871
spin_unlock(&udentry->d_lock);
872
break;
873
next:
874
spin_unlock(&udentry->d_lock);
875
}
876
rcu_read_unlock();
877
878
if (likely(!found))
879
return 0;
880
881
doutc(cl, "dentry %p:%pd conflict with old %p:%pd\n", dentry, dentry,
882
found, found);
883
884
err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_UNLINK_BIT,
885
TASK_KILLABLE);
886
dput(found);
887
return err;
888
}
889
890
891
/*
892
* sessions
893
*/
894
const char *ceph_session_state_name(int s)
895
{
896
switch (s) {
897
case CEPH_MDS_SESSION_NEW: return "new";
898
case CEPH_MDS_SESSION_OPENING: return "opening";
899
case CEPH_MDS_SESSION_OPEN: return "open";
900
case CEPH_MDS_SESSION_HUNG: return "hung";
901
case CEPH_MDS_SESSION_CLOSING: return "closing";
902
case CEPH_MDS_SESSION_CLOSED: return "closed";
903
case CEPH_MDS_SESSION_RESTARTING: return "restarting";
904
case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
905
case CEPH_MDS_SESSION_REJECTED: return "rejected";
906
default: return "???";
907
}
908
}
909
910
struct ceph_mds_session *ceph_get_mds_session(struct ceph_mds_session *s)
911
{
912
if (refcount_inc_not_zero(&s->s_ref))
913
return s;
914
return NULL;
915
}
916
917
void ceph_put_mds_session(struct ceph_mds_session *s)
918
{
919
if (IS_ERR_OR_NULL(s))
920
return;
921
922
if (refcount_dec_and_test(&s->s_ref)) {
923
if (s->s_auth.authorizer)
924
ceph_auth_destroy_authorizer(s->s_auth.authorizer);
925
WARN_ON(mutex_is_locked(&s->s_mutex));
926
xa_destroy(&s->s_delegated_inos);
927
kfree(s);
928
}
929
}
930
931
/*
932
* called under mdsc->mutex
933
*/
934
struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
935
int mds)
936
{
937
if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
938
return NULL;
939
return ceph_get_mds_session(mdsc->sessions[mds]);
940
}
941
942
static bool __have_session(struct ceph_mds_client *mdsc, int mds)
943
{
944
if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
945
return false;
946
else
947
return true;
948
}
949
950
static int __verify_registered_session(struct ceph_mds_client *mdsc,
951
struct ceph_mds_session *s)
952
{
953
if (s->s_mds >= mdsc->max_sessions ||
954
mdsc->sessions[s->s_mds] != s)
955
return -ENOENT;
956
return 0;
957
}
958
959
/*
960
* create+register a new session for given mds.
961
* called under mdsc->mutex.
962
*/
963
static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
964
int mds)
965
{
966
struct ceph_client *cl = mdsc->fsc->client;
967
struct ceph_mds_session *s;
968
969
if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO)
970
return ERR_PTR(-EIO);
971
972
if (mds >= mdsc->mdsmap->possible_max_rank)
973
return ERR_PTR(-EINVAL);
974
975
s = kzalloc(sizeof(*s), GFP_NOFS);
976
if (!s)
977
return ERR_PTR(-ENOMEM);
978
979
if (mds >= mdsc->max_sessions) {
980
int newmax = 1 << get_count_order(mds + 1);
981
struct ceph_mds_session **sa;
982
983
doutc(cl, "realloc to %d\n", newmax);
984
sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
985
if (!sa)
986
goto fail_realloc;
987
if (mdsc->sessions) {
988
memcpy(sa, mdsc->sessions,
989
mdsc->max_sessions * sizeof(void *));
990
kfree(mdsc->sessions);
991
}
992
mdsc->sessions = sa;
993
mdsc->max_sessions = newmax;
994
}
995
996
doutc(cl, "mds%d\n", mds);
997
s->s_mdsc = mdsc;
998
s->s_mds = mds;
999
s->s_state = CEPH_MDS_SESSION_NEW;
1000
mutex_init(&s->s_mutex);
1001
1002
ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
1003
1004
atomic_set(&s->s_cap_gen, 1);
1005
s->s_cap_ttl = jiffies - 1;
1006
1007
spin_lock_init(&s->s_cap_lock);
1008
INIT_LIST_HEAD(&s->s_caps);
1009
refcount_set(&s->s_ref, 1);
1010
INIT_LIST_HEAD(&s->s_waiting);
1011
INIT_LIST_HEAD(&s->s_unsafe);
1012
xa_init(&s->s_delegated_inos);
1013
INIT_LIST_HEAD(&s->s_cap_releases);
1014
INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work);
1015
1016
INIT_LIST_HEAD(&s->s_cap_dirty);
1017
INIT_LIST_HEAD(&s->s_cap_flushing);
1018
1019
mdsc->sessions[mds] = s;
1020
atomic_inc(&mdsc->num_sessions);
1021
refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */
1022
1023
ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
1024
ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
1025
1026
return s;
1027
1028
fail_realloc:
1029
kfree(s);
1030
return ERR_PTR(-ENOMEM);
1031
}
1032
1033
/*
1034
* called under mdsc->mutex
1035
*/
1036
static void __unregister_session(struct ceph_mds_client *mdsc,
1037
struct ceph_mds_session *s)
1038
{
1039
doutc(mdsc->fsc->client, "mds%d %p\n", s->s_mds, s);
1040
BUG_ON(mdsc->sessions[s->s_mds] != s);
1041
mdsc->sessions[s->s_mds] = NULL;
1042
ceph_con_close(&s->s_con);
1043
ceph_put_mds_session(s);
1044
atomic_dec(&mdsc->num_sessions);
1045
}
1046
1047
/*
1048
* drop session refs in request.
1049
*
1050
* should be last request ref, or hold mdsc->mutex
1051
*/
1052
static void put_request_session(struct ceph_mds_request *req)
1053
{
1054
if (req->r_session) {
1055
ceph_put_mds_session(req->r_session);
1056
req->r_session = NULL;
1057
}
1058
}
1059
1060
void ceph_mdsc_iterate_sessions(struct ceph_mds_client *mdsc,
1061
void (*cb)(struct ceph_mds_session *),
1062
bool check_state)
1063
{
1064
int mds;
1065
1066
mutex_lock(&mdsc->mutex);
1067
for (mds = 0; mds < mdsc->max_sessions; ++mds) {
1068
struct ceph_mds_session *s;
1069
1070
s = __ceph_lookup_mds_session(mdsc, mds);
1071
if (!s)
1072
continue;
1073
1074
if (check_state && !check_session_state(s)) {
1075
ceph_put_mds_session(s);
1076
continue;
1077
}
1078
1079
mutex_unlock(&mdsc->mutex);
1080
cb(s);
1081
ceph_put_mds_session(s);
1082
mutex_lock(&mdsc->mutex);
1083
}
1084
mutex_unlock(&mdsc->mutex);
1085
}
1086
1087
void ceph_mdsc_release_request(struct kref *kref)
1088
{
1089
struct ceph_mds_request *req = container_of(kref,
1090
struct ceph_mds_request,
1091
r_kref);
1092
ceph_mdsc_release_dir_caps_async(req);
1093
destroy_reply_info(&req->r_reply_info);
1094
if (req->r_request)
1095
ceph_msg_put(req->r_request);
1096
if (req->r_reply)
1097
ceph_msg_put(req->r_reply);
1098
if (req->r_inode) {
1099
ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1100
iput(req->r_inode);
1101
}
1102
if (req->r_parent) {
1103
ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
1104
iput(req->r_parent);
1105
}
1106
iput(req->r_target_inode);
1107
iput(req->r_new_inode);
1108
if (req->r_dentry)
1109
dput(req->r_dentry);
1110
if (req->r_old_dentry)
1111
dput(req->r_old_dentry);
1112
if (req->r_old_dentry_dir) {
1113
/*
1114
* track (and drop pins for) r_old_dentry_dir
1115
* separately, since r_old_dentry's d_parent may have
1116
* changed between the dir mutex being dropped and
1117
* this request being freed.
1118
*/
1119
ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
1120
CEPH_CAP_PIN);
1121
iput(req->r_old_dentry_dir);
1122
}
1123
kfree(req->r_path1);
1124
kfree(req->r_path2);
1125
put_cred(req->r_cred);
1126
if (req->r_mnt_idmap)
1127
mnt_idmap_put(req->r_mnt_idmap);
1128
if (req->r_pagelist)
1129
ceph_pagelist_release(req->r_pagelist);
1130
kfree(req->r_fscrypt_auth);
1131
kfree(req->r_altname);
1132
put_request_session(req);
1133
ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
1134
WARN_ON_ONCE(!list_empty(&req->r_wait));
1135
kmem_cache_free(ceph_mds_request_cachep, req);
1136
}
1137
1138
DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
1139
1140
/*
1141
* lookup session, bump ref if found.
1142
*
1143
* called under mdsc->mutex.
1144
*/
1145
static struct ceph_mds_request *
1146
lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
1147
{
1148
struct ceph_mds_request *req;
1149
1150
req = lookup_request(&mdsc->request_tree, tid);
1151
if (req)
1152
ceph_mdsc_get_request(req);
1153
1154
return req;
1155
}
1156
1157
/*
1158
* Register an in-flight request, and assign a tid. Link to directory
1159
* are modifying (if any).
1160
*
1161
* Called under mdsc->mutex.
1162
*/
1163
static void __register_request(struct ceph_mds_client *mdsc,
1164
struct ceph_mds_request *req,
1165
struct inode *dir)
1166
{
1167
struct ceph_client *cl = mdsc->fsc->client;
1168
int ret = 0;
1169
1170
req->r_tid = ++mdsc->last_tid;
1171
if (req->r_num_caps) {
1172
ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation,
1173
req->r_num_caps);
1174
if (ret < 0) {
1175
pr_err_client(cl, "%p failed to reserve caps: %d\n",
1176
req, ret);
1177
/* set req->r_err to fail early from __do_request */
1178
req->r_err = ret;
1179
return;
1180
}
1181
}
1182
doutc(cl, "%p tid %lld\n", req, req->r_tid);
1183
ceph_mdsc_get_request(req);
1184
insert_request(&mdsc->request_tree, req);
1185
1186
req->r_cred = get_current_cred();
1187
if (!req->r_mnt_idmap)
1188
req->r_mnt_idmap = &nop_mnt_idmap;
1189
1190
if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
1191
mdsc->oldest_tid = req->r_tid;
1192
1193
if (dir) {
1194
struct ceph_inode_info *ci = ceph_inode(dir);
1195
1196
ihold(dir);
1197
req->r_unsafe_dir = dir;
1198
spin_lock(&ci->i_unsafe_lock);
1199
list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
1200
spin_unlock(&ci->i_unsafe_lock);
1201
}
1202
}
1203
1204
static void __unregister_request(struct ceph_mds_client *mdsc,
1205
struct ceph_mds_request *req)
1206
{
1207
doutc(mdsc->fsc->client, "%p tid %lld\n", req, req->r_tid);
1208
1209
/* Never leave an unregistered request on an unsafe list! */
1210
list_del_init(&req->r_unsafe_item);
1211
1212
if (req->r_tid == mdsc->oldest_tid) {
1213
struct rb_node *p = rb_next(&req->r_node);
1214
mdsc->oldest_tid = 0;
1215
while (p) {
1216
struct ceph_mds_request *next_req =
1217
rb_entry(p, struct ceph_mds_request, r_node);
1218
if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
1219
mdsc->oldest_tid = next_req->r_tid;
1220
break;
1221
}
1222
p = rb_next(p);
1223
}
1224
}
1225
1226
erase_request(&mdsc->request_tree, req);
1227
1228
if (req->r_unsafe_dir) {
1229
struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
1230
spin_lock(&ci->i_unsafe_lock);
1231
list_del_init(&req->r_unsafe_dir_item);
1232
spin_unlock(&ci->i_unsafe_lock);
1233
}
1234
if (req->r_target_inode &&
1235
test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
1236
struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
1237
spin_lock(&ci->i_unsafe_lock);
1238
list_del_init(&req->r_unsafe_target_item);
1239
spin_unlock(&ci->i_unsafe_lock);
1240
}
1241
1242
if (req->r_unsafe_dir) {
1243
iput(req->r_unsafe_dir);
1244
req->r_unsafe_dir = NULL;
1245
}
1246
1247
complete_all(&req->r_safe_completion);
1248
1249
ceph_mdsc_put_request(req);
1250
}
1251
1252
/*
1253
* Walk back up the dentry tree until we hit a dentry representing a
1254
* non-snapshot inode. We do this using the rcu_read_lock (which must be held
1255
* when calling this) to ensure that the objects won't disappear while we're
1256
* working with them. Once we hit a candidate dentry, we attempt to take a
1257
* reference to it, and return that as the result.
1258
*/
1259
static struct inode *get_nonsnap_parent(struct dentry *dentry)
1260
{
1261
struct inode *inode = NULL;
1262
1263
while (dentry && !IS_ROOT(dentry)) {
1264
inode = d_inode_rcu(dentry);
1265
if (!inode || ceph_snap(inode) == CEPH_NOSNAP)
1266
break;
1267
dentry = dentry->d_parent;
1268
}
1269
if (inode)
1270
inode = igrab(inode);
1271
return inode;
1272
}
1273
1274
/*
1275
* Choose mds to send request to next. If there is a hint set in the
1276
* request (e.g., due to a prior forward hint from the mds), use that.
1277
* Otherwise, consult frag tree and/or caps to identify the
1278
* appropriate mds. If all else fails, choose randomly.
1279
*
1280
* Called under mdsc->mutex.
1281
*/
1282
static int __choose_mds(struct ceph_mds_client *mdsc,
1283
struct ceph_mds_request *req,
1284
bool *random)
1285
{
1286
struct inode *inode;
1287
struct ceph_inode_info *ci;
1288
struct ceph_cap *cap;
1289
int mode = req->r_direct_mode;
1290
int mds = -1;
1291
u32 hash = req->r_direct_hash;
1292
bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags);
1293
struct ceph_client *cl = mdsc->fsc->client;
1294
1295
if (random)
1296
*random = false;
1297
1298
/*
1299
* is there a specific mds we should try? ignore hint if we have
1300
* no session and the mds is not up (active or recovering).
1301
*/
1302
if (req->r_resend_mds >= 0 &&
1303
(__have_session(mdsc, req->r_resend_mds) ||
1304
ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
1305
doutc(cl, "using resend_mds mds%d\n", req->r_resend_mds);
1306
return req->r_resend_mds;
1307
}
1308
1309
if (mode == USE_RANDOM_MDS)
1310
goto random;
1311
1312
inode = NULL;
1313
if (req->r_inode) {
1314
if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) {
1315
inode = req->r_inode;
1316
ihold(inode);
1317
} else {
1318
/* req->r_dentry is non-null for LSSNAP request */
1319
rcu_read_lock();
1320
inode = get_nonsnap_parent(req->r_dentry);
1321
rcu_read_unlock();
1322
doutc(cl, "using snapdir's parent %p %llx.%llx\n",
1323
inode, ceph_vinop(inode));
1324
}
1325
} else if (req->r_dentry) {
1326
/* ignore race with rename; old or new d_parent is okay */
1327
struct dentry *parent;
1328
struct inode *dir;
1329
1330
rcu_read_lock();
1331
parent = READ_ONCE(req->r_dentry->d_parent);
1332
dir = req->r_parent ? : d_inode_rcu(parent);
1333
1334
if (!dir || dir->i_sb != mdsc->fsc->sb) {
1335
/* not this fs or parent went negative */
1336
inode = d_inode(req->r_dentry);
1337
if (inode)
1338
ihold(inode);
1339
} else if (ceph_snap(dir) != CEPH_NOSNAP) {
1340
/* direct snapped/virtual snapdir requests
1341
* based on parent dir inode */
1342
inode = get_nonsnap_parent(parent);
1343
doutc(cl, "using nonsnap parent %p %llx.%llx\n",
1344
inode, ceph_vinop(inode));
1345
} else {
1346
/* dentry target */
1347
inode = d_inode(req->r_dentry);
1348
if (!inode || mode == USE_AUTH_MDS) {
1349
/* dir + name */
1350
inode = igrab(dir);
1351
hash = ceph_dentry_hash(dir, req->r_dentry);
1352
is_hash = true;
1353
} else {
1354
ihold(inode);
1355
}
1356
}
1357
rcu_read_unlock();
1358
}
1359
1360
if (!inode)
1361
goto random;
1362
1363
doutc(cl, "%p %llx.%llx is_hash=%d (0x%x) mode %d\n", inode,
1364
ceph_vinop(inode), (int)is_hash, hash, mode);
1365
ci = ceph_inode(inode);
1366
1367
if (is_hash && S_ISDIR(inode->i_mode)) {
1368
struct ceph_inode_frag frag;
1369
int found;
1370
1371
ceph_choose_frag(ci, hash, &frag, &found);
1372
if (found) {
1373
if (mode == USE_ANY_MDS && frag.ndist > 0) {
1374
u8 r;
1375
1376
/* choose a random replica */
1377
get_random_bytes(&r, 1);
1378
r %= frag.ndist;
1379
mds = frag.dist[r];
1380
doutc(cl, "%p %llx.%llx frag %u mds%d (%d/%d)\n",
1381
inode, ceph_vinop(inode), frag.frag,
1382
mds, (int)r, frag.ndist);
1383
if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
1384
CEPH_MDS_STATE_ACTIVE &&
1385
!ceph_mdsmap_is_laggy(mdsc->mdsmap, mds))
1386
goto out;
1387
}
1388
1389
/* since this file/dir wasn't known to be
1390
* replicated, then we want to look for the
1391
* authoritative mds. */
1392
if (frag.mds >= 0) {
1393
/* choose auth mds */
1394
mds = frag.mds;
1395
doutc(cl, "%p %llx.%llx frag %u mds%d (auth)\n",
1396
inode, ceph_vinop(inode), frag.frag, mds);
1397
if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
1398
CEPH_MDS_STATE_ACTIVE) {
1399
if (!ceph_mdsmap_is_laggy(mdsc->mdsmap,
1400
mds))
1401
goto out;
1402
}
1403
}
1404
mode = USE_AUTH_MDS;
1405
}
1406
}
1407
1408
spin_lock(&ci->i_ceph_lock);
1409
cap = NULL;
1410
if (mode == USE_AUTH_MDS)
1411
cap = ci->i_auth_cap;
1412
if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
1413
cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
1414
if (!cap) {
1415
spin_unlock(&ci->i_ceph_lock);
1416
iput(inode);
1417
goto random;
1418
}
1419
mds = cap->session->s_mds;
1420
doutc(cl, "%p %llx.%llx mds%d (%scap %p)\n", inode,
1421
ceph_vinop(inode), mds,
1422
cap == ci->i_auth_cap ? "auth " : "", cap);
1423
spin_unlock(&ci->i_ceph_lock);
1424
out:
1425
iput(inode);
1426
return mds;
1427
1428
random:
1429
if (random)
1430
*random = true;
1431
1432
mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
1433
doutc(cl, "chose random mds%d\n", mds);
1434
return mds;
1435
}
1436
1437
1438
/*
1439
* session messages
1440
*/
1441
struct ceph_msg *ceph_create_session_msg(u32 op, u64 seq)
1442
{
1443
struct ceph_msg *msg;
1444
struct ceph_mds_session_head *h;
1445
1446
msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
1447
false);
1448
if (!msg) {
1449
pr_err("ENOMEM creating session %s msg\n",
1450
ceph_session_op_name(op));
1451
return NULL;
1452
}
1453
h = msg->front.iov_base;
1454
h->op = cpu_to_le32(op);
1455
h->seq = cpu_to_le64(seq);
1456
1457
return msg;
1458
}
1459
1460
static const unsigned char feature_bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED;
1461
#define FEATURE_BYTES(c) (DIV_ROUND_UP((size_t)feature_bits[c - 1] + 1, 64) * 8)
1462
static int encode_supported_features(void **p, void *end)
1463
{
1464
static const size_t count = ARRAY_SIZE(feature_bits);
1465
1466
if (count > 0) {
1467
size_t i;
1468
size_t size = FEATURE_BYTES(count);
1469
unsigned long bit;
1470
1471
if (WARN_ON_ONCE(*p + 4 + size > end))
1472
return -ERANGE;
1473
1474
ceph_encode_32(p, size);
1475
memset(*p, 0, size);
1476
for (i = 0; i < count; i++) {
1477
bit = feature_bits[i];
1478
((unsigned char *)(*p))[bit / 8] |= BIT(bit % 8);
1479
}
1480
*p += size;
1481
} else {
1482
if (WARN_ON_ONCE(*p + 4 > end))
1483
return -ERANGE;
1484
1485
ceph_encode_32(p, 0);
1486
}
1487
1488
return 0;
1489
}
1490
1491
static const unsigned char metric_bits[] = CEPHFS_METRIC_SPEC_CLIENT_SUPPORTED;
1492
#define METRIC_BYTES(cnt) (DIV_ROUND_UP((size_t)metric_bits[cnt - 1] + 1, 64) * 8)
1493
static int encode_metric_spec(void **p, void *end)
1494
{
1495
static const size_t count = ARRAY_SIZE(metric_bits);
1496
1497
/* header */
1498
if (WARN_ON_ONCE(*p + 2 > end))
1499
return -ERANGE;
1500
1501
ceph_encode_8(p, 1); /* version */
1502
ceph_encode_8(p, 1); /* compat */
1503
1504
if (count > 0) {
1505
size_t i;
1506
size_t size = METRIC_BYTES(count);
1507
1508
if (WARN_ON_ONCE(*p + 4 + 4 + size > end))
1509
return -ERANGE;
1510
1511
/* metric spec info length */
1512
ceph_encode_32(p, 4 + size);
1513
1514
/* metric spec */
1515
ceph_encode_32(p, size);
1516
memset(*p, 0, size);
1517
for (i = 0; i < count; i++)
1518
((unsigned char *)(*p))[i / 8] |= BIT(metric_bits[i] % 8);
1519
*p += size;
1520
} else {
1521
if (WARN_ON_ONCE(*p + 4 + 4 > end))
1522
return -ERANGE;
1523
1524
/* metric spec info length */
1525
ceph_encode_32(p, 4);
1526
/* metric spec */
1527
ceph_encode_32(p, 0);
1528
}
1529
1530
return 0;
1531
}
1532
1533
/*
1534
* session message, specialization for CEPH_SESSION_REQUEST_OPEN
1535
* to include additional client metadata fields.
1536
*/
1537
static struct ceph_msg *
1538
create_session_full_msg(struct ceph_mds_client *mdsc, int op, u64 seq)
1539
{
1540
struct ceph_msg *msg;
1541
struct ceph_mds_session_head *h;
1542
int i;
1543
int extra_bytes = 0;
1544
int metadata_key_count = 0;
1545
struct ceph_options *opt = mdsc->fsc->client->options;
1546
struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
1547
struct ceph_client *cl = mdsc->fsc->client;
1548
size_t size, count;
1549
void *p, *end;
1550
int ret;
1551
1552
const char* metadata[][2] = {
1553
{"hostname", mdsc->nodename},
1554
{"kernel_version", init_utsname()->release},
1555
{"entity_id", opt->name ? : ""},
1556
{"root", fsopt->server_path ? : "/"},
1557
{NULL, NULL}
1558
};
1559
1560
/* Calculate serialized length of metadata */
1561
extra_bytes = 4; /* map length */
1562
for (i = 0; metadata[i][0]; ++i) {
1563
extra_bytes += 8 + strlen(metadata[i][0]) +
1564
strlen(metadata[i][1]);
1565
metadata_key_count++;
1566
}
1567
1568
/* supported feature */
1569
size = 0;
1570
count = ARRAY_SIZE(feature_bits);
1571
if (count > 0)
1572
size = FEATURE_BYTES(count);
1573
extra_bytes += 4 + size;
1574
1575
/* metric spec */
1576
size = 0;
1577
count = ARRAY_SIZE(metric_bits);
1578
if (count > 0)
1579
size = METRIC_BYTES(count);
1580
extra_bytes += 2 + 4 + 4 + size;
1581
1582
/* flags, mds auth caps and oldest_client_tid */
1583
extra_bytes += 4 + 4 + 8;
1584
1585
/* Allocate the message */
1586
msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes,
1587
GFP_NOFS, false);
1588
if (!msg) {
1589
pr_err_client(cl, "ENOMEM creating session open msg\n");
1590
return ERR_PTR(-ENOMEM);
1591
}
1592
p = msg->front.iov_base;
1593
end = p + msg->front.iov_len;
1594
1595
h = p;
1596
h->op = cpu_to_le32(op);
1597
h->seq = cpu_to_le64(seq);
1598
1599
/*
1600
* Serialize client metadata into waiting buffer space, using
1601
* the format that userspace expects for map<string, string>
1602
*
1603
* ClientSession messages with metadata are v7
1604
*/
1605
msg->hdr.version = cpu_to_le16(7);
1606
msg->hdr.compat_version = cpu_to_le16(1);
1607
1608
/* The write pointer, following the session_head structure */
1609
p += sizeof(*h);
1610
1611
/* Number of entries in the map */
1612
ceph_encode_32(&p, metadata_key_count);
1613
1614
/* Two length-prefixed strings for each entry in the map */
1615
for (i = 0; metadata[i][0]; ++i) {
1616
size_t const key_len = strlen(metadata[i][0]);
1617
size_t const val_len = strlen(metadata[i][1]);
1618
1619
ceph_encode_32(&p, key_len);
1620
memcpy(p, metadata[i][0], key_len);
1621
p += key_len;
1622
ceph_encode_32(&p, val_len);
1623
memcpy(p, metadata[i][1], val_len);
1624
p += val_len;
1625
}
1626
1627
ret = encode_supported_features(&p, end);
1628
if (ret) {
1629
pr_err_client(cl, "encode_supported_features failed!\n");
1630
ceph_msg_put(msg);
1631
return ERR_PTR(ret);
1632
}
1633
1634
ret = encode_metric_spec(&p, end);
1635
if (ret) {
1636
pr_err_client(cl, "encode_metric_spec failed!\n");
1637
ceph_msg_put(msg);
1638
return ERR_PTR(ret);
1639
}
1640
1641
/* version == 5, flags */
1642
ceph_encode_32(&p, 0);
1643
1644
/* version == 6, mds auth caps */
1645
ceph_encode_32(&p, 0);
1646
1647
/* version == 7, oldest_client_tid */
1648
ceph_encode_64(&p, mdsc->oldest_tid);
1649
1650
msg->front.iov_len = p - msg->front.iov_base;
1651
msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1652
1653
return msg;
1654
}
1655
1656
/*
1657
* send session open request.
1658
*
1659
* called under mdsc->mutex
1660
*/
1661
static int __open_session(struct ceph_mds_client *mdsc,
1662
struct ceph_mds_session *session)
1663
{
1664
struct ceph_msg *msg;
1665
int mstate;
1666
int mds = session->s_mds;
1667
1668
if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO)
1669
return -EIO;
1670
1671
/* wait for mds to go active? */
1672
mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
1673
doutc(mdsc->fsc->client, "open_session to mds%d (%s)\n", mds,
1674
ceph_mds_state_name(mstate));
1675
session->s_state = CEPH_MDS_SESSION_OPENING;
1676
session->s_renew_requested = jiffies;
1677
1678
/* send connect message */
1679
msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_OPEN,
1680
session->s_seq);
1681
if (IS_ERR(msg))
1682
return PTR_ERR(msg);
1683
ceph_con_send(&session->s_con, msg);
1684
return 0;
1685
}
1686
1687
/*
1688
* open sessions for any export targets for the given mds
1689
*
1690
* called under mdsc->mutex
1691
*/
1692
static struct ceph_mds_session *
1693
__open_export_target_session(struct ceph_mds_client *mdsc, int target)
1694
{
1695
struct ceph_mds_session *session;
1696
int ret;
1697
1698
session = __ceph_lookup_mds_session(mdsc, target);
1699
if (!session) {
1700
session = register_session(mdsc, target);
1701
if (IS_ERR(session))
1702
return session;
1703
}
1704
if (session->s_state == CEPH_MDS_SESSION_NEW ||
1705
session->s_state == CEPH_MDS_SESSION_CLOSING) {
1706
ret = __open_session(mdsc, session);
1707
if (ret)
1708
return ERR_PTR(ret);
1709
}
1710
1711
return session;
1712
}
1713
1714
struct ceph_mds_session *
1715
ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
1716
{
1717
struct ceph_mds_session *session;
1718
struct ceph_client *cl = mdsc->fsc->client;
1719
1720
doutc(cl, "to mds%d\n", target);
1721
1722
mutex_lock(&mdsc->mutex);
1723
session = __open_export_target_session(mdsc, target);
1724
mutex_unlock(&mdsc->mutex);
1725
1726
return session;
1727
}
1728
1729
static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
1730
struct ceph_mds_session *session)
1731
{
1732
struct ceph_mds_info *mi;
1733
struct ceph_mds_session *ts;
1734
int i, mds = session->s_mds;
1735
struct ceph_client *cl = mdsc->fsc->client;
1736
1737
if (mds >= mdsc->mdsmap->possible_max_rank)
1738
return;
1739
1740
mi = &mdsc->mdsmap->m_info[mds];
1741
doutc(cl, "for mds%d (%d targets)\n", session->s_mds,
1742
mi->num_export_targets);
1743
1744
for (i = 0; i < mi->num_export_targets; i++) {
1745
ts = __open_export_target_session(mdsc, mi->export_targets[i]);
1746
ceph_put_mds_session(ts);
1747
}
1748
}
1749
1750
/*
1751
* session caps
1752
*/
1753
1754
static void detach_cap_releases(struct ceph_mds_session *session,
1755
struct list_head *target)
1756
{
1757
struct ceph_client *cl = session->s_mdsc->fsc->client;
1758
1759
lockdep_assert_held(&session->s_cap_lock);
1760
1761
list_splice_init(&session->s_cap_releases, target);
1762
session->s_num_cap_releases = 0;
1763
doutc(cl, "mds%d\n", session->s_mds);
1764
}
1765
1766
static void dispose_cap_releases(struct ceph_mds_client *mdsc,
1767
struct list_head *dispose)
1768
{
1769
while (!list_empty(dispose)) {
1770
struct ceph_cap *cap;
1771
/* zero out the in-progress message */
1772
cap = list_first_entry(dispose, struct ceph_cap, session_caps);
1773
list_del(&cap->session_caps);
1774
ceph_put_cap(mdsc, cap);
1775
}
1776
}
1777
1778
static void cleanup_session_requests(struct ceph_mds_client *mdsc,
1779
struct ceph_mds_session *session)
1780
{
1781
struct ceph_client *cl = mdsc->fsc->client;
1782
struct ceph_mds_request *req;
1783
struct rb_node *p;
1784
1785
doutc(cl, "mds%d\n", session->s_mds);
1786
mutex_lock(&mdsc->mutex);
1787
while (!list_empty(&session->s_unsafe)) {
1788
req = list_first_entry(&session->s_unsafe,
1789
struct ceph_mds_request, r_unsafe_item);
1790
pr_warn_ratelimited_client(cl, " dropping unsafe request %llu\n",
1791
req->r_tid);
1792
if (req->r_target_inode)
1793
mapping_set_error(req->r_target_inode->i_mapping, -EIO);
1794
if (req->r_unsafe_dir)
1795
mapping_set_error(req->r_unsafe_dir->i_mapping, -EIO);
1796
__unregister_request(mdsc, req);
1797
}
1798
/* zero r_attempts, so kick_requests() will re-send requests */
1799
p = rb_first(&mdsc->request_tree);
1800
while (p) {
1801
req = rb_entry(p, struct ceph_mds_request, r_node);
1802
p = rb_next(p);
1803
if (req->r_session &&
1804
req->r_session->s_mds == session->s_mds)
1805
req->r_attempts = 0;
1806
}
1807
mutex_unlock(&mdsc->mutex);
1808
}
1809
1810
/*
1811
* Helper to safely iterate over all caps associated with a session, with
1812
* special care taken to handle a racing __ceph_remove_cap().
1813
*
1814
* Caller must hold session s_mutex.
1815
*/
1816
int ceph_iterate_session_caps(struct ceph_mds_session *session,
1817
int (*cb)(struct inode *, int mds, void *),
1818
void *arg)
1819
{
1820
struct ceph_client *cl = session->s_mdsc->fsc->client;
1821
struct list_head *p;
1822
struct ceph_cap *cap;
1823
struct inode *inode, *last_inode = NULL;
1824
struct ceph_cap *old_cap = NULL;
1825
int ret;
1826
1827
doutc(cl, "%p mds%d\n", session, session->s_mds);
1828
spin_lock(&session->s_cap_lock);
1829
p = session->s_caps.next;
1830
while (p != &session->s_caps) {
1831
int mds;
1832
1833
cap = list_entry(p, struct ceph_cap, session_caps);
1834
inode = igrab(&cap->ci->netfs.inode);
1835
if (!inode) {
1836
p = p->next;
1837
continue;
1838
}
1839
session->s_cap_iterator = cap;
1840
mds = cap->mds;
1841
spin_unlock(&session->s_cap_lock);
1842
1843
if (last_inode) {
1844
iput(last_inode);
1845
last_inode = NULL;
1846
}
1847
if (old_cap) {
1848
ceph_put_cap(session->s_mdsc, old_cap);
1849
old_cap = NULL;
1850
}
1851
1852
ret = cb(inode, mds, arg);
1853
last_inode = inode;
1854
1855
spin_lock(&session->s_cap_lock);
1856
p = p->next;
1857
if (!cap->ci) {
1858
doutc(cl, "finishing cap %p removal\n", cap);
1859
BUG_ON(cap->session != session);
1860
cap->session = NULL;
1861
list_del_init(&cap->session_caps);
1862
session->s_nr_caps--;
1863
atomic64_dec(&session->s_mdsc->metric.total_caps);
1864
if (cap->queue_release)
1865
__ceph_queue_cap_release(session, cap);
1866
else
1867
old_cap = cap; /* put_cap it w/o locks held */
1868
}
1869
if (ret < 0)
1870
goto out;
1871
}
1872
ret = 0;
1873
out:
1874
session->s_cap_iterator = NULL;
1875
spin_unlock(&session->s_cap_lock);
1876
1877
iput(last_inode);
1878
if (old_cap)
1879
ceph_put_cap(session->s_mdsc, old_cap);
1880
1881
return ret;
1882
}
1883
1884
static int remove_session_caps_cb(struct inode *inode, int mds, void *arg)
1885
{
1886
struct ceph_inode_info *ci = ceph_inode(inode);
1887
struct ceph_client *cl = ceph_inode_to_client(inode);
1888
bool invalidate = false;
1889
struct ceph_cap *cap;
1890
int iputs = 0;
1891
1892
spin_lock(&ci->i_ceph_lock);
1893
cap = __get_cap_for_mds(ci, mds);
1894
if (cap) {
1895
doutc(cl, " removing cap %p, ci is %p, inode is %p\n",
1896
cap, ci, &ci->netfs.inode);
1897
1898
iputs = ceph_purge_inode_cap(inode, cap, &invalidate);
1899
}
1900
spin_unlock(&ci->i_ceph_lock);
1901
1902
if (cap)
1903
wake_up_all(&ci->i_cap_wq);
1904
if (invalidate)
1905
ceph_queue_invalidate(inode);
1906
while (iputs--)
1907
iput(inode);
1908
return 0;
1909
}
1910
1911
/*
1912
* caller must hold session s_mutex
1913
*/
1914
static void remove_session_caps(struct ceph_mds_session *session)
1915
{
1916
struct ceph_fs_client *fsc = session->s_mdsc->fsc;
1917
struct super_block *sb = fsc->sb;
1918
LIST_HEAD(dispose);
1919
1920
doutc(fsc->client, "on %p\n", session);
1921
ceph_iterate_session_caps(session, remove_session_caps_cb, fsc);
1922
1923
wake_up_all(&fsc->mdsc->cap_flushing_wq);
1924
1925
spin_lock(&session->s_cap_lock);
1926
if (session->s_nr_caps > 0) {
1927
struct inode *inode;
1928
struct ceph_cap *cap, *prev = NULL;
1929
struct ceph_vino vino;
1930
/*
1931
* iterate_session_caps() skips inodes that are being
1932
* deleted, we need to wait until deletions are complete.
1933
* __wait_on_freeing_inode() is designed for the job,
1934
* but it is not exported, so use lookup inode function
1935
* to access it.
1936
*/
1937
while (!list_empty(&session->s_caps)) {
1938
cap = list_entry(session->s_caps.next,
1939
struct ceph_cap, session_caps);
1940
if (cap == prev)
1941
break;
1942
prev = cap;
1943
vino = cap->ci->i_vino;
1944
spin_unlock(&session->s_cap_lock);
1945
1946
inode = ceph_find_inode(sb, vino);
1947
iput(inode);
1948
1949
spin_lock(&session->s_cap_lock);
1950
}
1951
}
1952
1953
// drop cap expires and unlock s_cap_lock
1954
detach_cap_releases(session, &dispose);
1955
1956
BUG_ON(session->s_nr_caps > 0);
1957
BUG_ON(!list_empty(&session->s_cap_flushing));
1958
spin_unlock(&session->s_cap_lock);
1959
dispose_cap_releases(session->s_mdsc, &dispose);
1960
}
1961
1962
enum {
1963
RECONNECT,
1964
RENEWCAPS,
1965
FORCE_RO,
1966
};
1967
1968
/*
1969
* wake up any threads waiting on this session's caps. if the cap is
1970
* old (didn't get renewed on the client reconnect), remove it now.
1971
*
1972
* caller must hold s_mutex.
1973
*/
1974
static int wake_up_session_cb(struct inode *inode, int mds, void *arg)
1975
{
1976
struct ceph_inode_info *ci = ceph_inode(inode);
1977
unsigned long ev = (unsigned long)arg;
1978
1979
if (ev == RECONNECT) {
1980
spin_lock(&ci->i_ceph_lock);
1981
ci->i_wanted_max_size = 0;
1982
ci->i_requested_max_size = 0;
1983
spin_unlock(&ci->i_ceph_lock);
1984
} else if (ev == RENEWCAPS) {
1985
struct ceph_cap *cap;
1986
1987
spin_lock(&ci->i_ceph_lock);
1988
cap = __get_cap_for_mds(ci, mds);
1989
/* mds did not re-issue stale cap */
1990
if (cap && cap->cap_gen < atomic_read(&cap->session->s_cap_gen))
1991
cap->issued = cap->implemented = CEPH_CAP_PIN;
1992
spin_unlock(&ci->i_ceph_lock);
1993
} else if (ev == FORCE_RO) {
1994
}
1995
wake_up_all(&ci->i_cap_wq);
1996
return 0;
1997
}
1998
1999
static void wake_up_session_caps(struct ceph_mds_session *session, int ev)
2000
{
2001
struct ceph_client *cl = session->s_mdsc->fsc->client;
2002
2003
doutc(cl, "session %p mds%d\n", session, session->s_mds);
2004
ceph_iterate_session_caps(session, wake_up_session_cb,
2005
(void *)(unsigned long)ev);
2006
}
2007
2008
/*
2009
* Send periodic message to MDS renewing all currently held caps. The
2010
* ack will reset the expiration for all caps from this session.
2011
*
2012
* caller holds s_mutex
2013
*/
2014
static int send_renew_caps(struct ceph_mds_client *mdsc,
2015
struct ceph_mds_session *session)
2016
{
2017
struct ceph_client *cl = mdsc->fsc->client;
2018
struct ceph_msg *msg;
2019
int state;
2020
2021
if (time_after_eq(jiffies, session->s_cap_ttl) &&
2022
time_after_eq(session->s_cap_ttl, session->s_renew_requested))
2023
pr_info_client(cl, "mds%d caps stale\n", session->s_mds);
2024
session->s_renew_requested = jiffies;
2025
2026
/* do not try to renew caps until a recovering mds has reconnected
2027
* with its clients. */
2028
state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
2029
if (state < CEPH_MDS_STATE_RECONNECT) {
2030
doutc(cl, "ignoring mds%d (%s)\n", session->s_mds,
2031
ceph_mds_state_name(state));
2032
return 0;
2033
}
2034
2035
doutc(cl, "to mds%d (%s)\n", session->s_mds,
2036
ceph_mds_state_name(state));
2037
msg = create_session_full_msg(mdsc, CEPH_SESSION_REQUEST_RENEWCAPS,
2038
++session->s_renew_seq);
2039
if (IS_ERR(msg))
2040
return PTR_ERR(msg);
2041
ceph_con_send(&session->s_con, msg);
2042
return 0;
2043
}
2044
2045
static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
2046
struct ceph_mds_session *session, u64 seq)
2047
{
2048
struct ceph_client *cl = mdsc->fsc->client;
2049
struct ceph_msg *msg;
2050
2051
doutc(cl, "to mds%d (%s)s seq %lld\n", session->s_mds,
2052
ceph_session_state_name(session->s_state), seq);
2053
msg = ceph_create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
2054
if (!msg)
2055
return -ENOMEM;
2056
ceph_con_send(&session->s_con, msg);
2057
return 0;
2058
}
2059
2060
2061
/*
2062
* Note new cap ttl, and any transition from stale -> not stale (fresh?).
2063
*
2064
* Called under session->s_mutex
2065
*/
2066
static void renewed_caps(struct ceph_mds_client *mdsc,
2067
struct ceph_mds_session *session, int is_renew)
2068
{
2069
struct ceph_client *cl = mdsc->fsc->client;
2070
int was_stale;
2071
int wake = 0;
2072
2073
spin_lock(&session->s_cap_lock);
2074
was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
2075
2076
session->s_cap_ttl = session->s_renew_requested +
2077
mdsc->mdsmap->m_session_timeout*HZ;
2078
2079
if (was_stale) {
2080
if (time_before(jiffies, session->s_cap_ttl)) {
2081
pr_info_client(cl, "mds%d caps renewed\n",
2082
session->s_mds);
2083
wake = 1;
2084
} else {
2085
pr_info_client(cl, "mds%d caps still stale\n",
2086
session->s_mds);
2087
}
2088
}
2089
doutc(cl, "mds%d ttl now %lu, was %s, now %s\n", session->s_mds,
2090
session->s_cap_ttl, was_stale ? "stale" : "fresh",
2091
time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
2092
spin_unlock(&session->s_cap_lock);
2093
2094
if (wake)
2095
wake_up_session_caps(session, RENEWCAPS);
2096
}
2097
2098
/*
2099
* send a session close request
2100
*/
2101
static int request_close_session(struct ceph_mds_session *session)
2102
{
2103
struct ceph_client *cl = session->s_mdsc->fsc->client;
2104
struct ceph_msg *msg;
2105
2106
doutc(cl, "mds%d state %s seq %lld\n", session->s_mds,
2107
ceph_session_state_name(session->s_state), session->s_seq);
2108
msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_CLOSE,
2109
session->s_seq);
2110
if (!msg)
2111
return -ENOMEM;
2112
ceph_con_send(&session->s_con, msg);
2113
return 1;
2114
}
2115
2116
/*
2117
* Called with s_mutex held.
2118
*/
2119
static int __close_session(struct ceph_mds_client *mdsc,
2120
struct ceph_mds_session *session)
2121
{
2122
if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
2123
return 0;
2124
session->s_state = CEPH_MDS_SESSION_CLOSING;
2125
return request_close_session(session);
2126
}
2127
2128
static bool drop_negative_children(struct dentry *dentry)
2129
{
2130
struct dentry *child;
2131
bool all_negative = true;
2132
2133
if (!d_is_dir(dentry))
2134
goto out;
2135
2136
spin_lock(&dentry->d_lock);
2137
hlist_for_each_entry(child, &dentry->d_children, d_sib) {
2138
if (d_really_is_positive(child)) {
2139
all_negative = false;
2140
break;
2141
}
2142
}
2143
spin_unlock(&dentry->d_lock);
2144
2145
if (all_negative)
2146
shrink_dcache_parent(dentry);
2147
out:
2148
return all_negative;
2149
}
2150
2151
/*
2152
* Trim old(er) caps.
2153
*
2154
* Because we can't cache an inode without one or more caps, we do
2155
* this indirectly: if a cap is unused, we prune its aliases, at which
2156
* point the inode will hopefully get dropped to.
2157
*
2158
* Yes, this is a bit sloppy. Our only real goal here is to respond to
2159
* memory pressure from the MDS, though, so it needn't be perfect.
2160
*/
2161
static int trim_caps_cb(struct inode *inode, int mds, void *arg)
2162
{
2163
struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
2164
struct ceph_client *cl = mdsc->fsc->client;
2165
int *remaining = arg;
2166
struct ceph_inode_info *ci = ceph_inode(inode);
2167
int used, wanted, oissued, mine;
2168
struct ceph_cap *cap;
2169
2170
if (*remaining <= 0)
2171
return -1;
2172
2173
spin_lock(&ci->i_ceph_lock);
2174
cap = __get_cap_for_mds(ci, mds);
2175
if (!cap) {
2176
spin_unlock(&ci->i_ceph_lock);
2177
return 0;
2178
}
2179
mine = cap->issued | cap->implemented;
2180
used = __ceph_caps_used(ci);
2181
wanted = __ceph_caps_file_wanted(ci);
2182
oissued = __ceph_caps_issued_other(ci, cap);
2183
2184
doutc(cl, "%p %llx.%llx cap %p mine %s oissued %s used %s wanted %s\n",
2185
inode, ceph_vinop(inode), cap, ceph_cap_string(mine),
2186
ceph_cap_string(oissued), ceph_cap_string(used),
2187
ceph_cap_string(wanted));
2188
if (cap == ci->i_auth_cap) {
2189
if (ci->i_dirty_caps || ci->i_flushing_caps ||
2190
!list_empty(&ci->i_cap_snaps))
2191
goto out;
2192
if ((used | wanted) & CEPH_CAP_ANY_WR)
2193
goto out;
2194
/* Note: it's possible that i_filelock_ref becomes non-zero
2195
* after dropping auth caps. It doesn't hurt because reply
2196
* of lock mds request will re-add auth caps. */
2197
if (atomic_read(&ci->i_filelock_ref) > 0)
2198
goto out;
2199
}
2200
/* The inode has cached pages, but it's no longer used.
2201
* we can safely drop it */
2202
if (S_ISREG(inode->i_mode) &&
2203
wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
2204
!(oissued & CEPH_CAP_FILE_CACHE)) {
2205
used = 0;
2206
oissued = 0;
2207
}
2208
if ((used | wanted) & ~oissued & mine)
2209
goto out; /* we need these caps */
2210
2211
if (oissued) {
2212
/* we aren't the only cap.. just remove us */
2213
ceph_remove_cap(mdsc, cap, true);
2214
(*remaining)--;
2215
} else {
2216
struct dentry *dentry;
2217
/* try dropping referring dentries */
2218
spin_unlock(&ci->i_ceph_lock);
2219
dentry = d_find_any_alias(inode);
2220
if (dentry && drop_negative_children(dentry)) {
2221
int count;
2222
dput(dentry);
2223
d_prune_aliases(inode);
2224
count = atomic_read(&inode->i_count);
2225
if (count == 1)
2226
(*remaining)--;
2227
doutc(cl, "%p %llx.%llx cap %p pruned, count now %d\n",
2228
inode, ceph_vinop(inode), cap, count);
2229
} else {
2230
dput(dentry);
2231
}
2232
return 0;
2233
}
2234
2235
out:
2236
spin_unlock(&ci->i_ceph_lock);
2237
return 0;
2238
}
2239
2240
/*
2241
* Trim session cap count down to some max number.
2242
*/
2243
int ceph_trim_caps(struct ceph_mds_client *mdsc,
2244
struct ceph_mds_session *session,
2245
int max_caps)
2246
{
2247
struct ceph_client *cl = mdsc->fsc->client;
2248
int trim_caps = session->s_nr_caps - max_caps;
2249
2250
doutc(cl, "mds%d start: %d / %d, trim %d\n", session->s_mds,
2251
session->s_nr_caps, max_caps, trim_caps);
2252
if (trim_caps > 0) {
2253
int remaining = trim_caps;
2254
2255
ceph_iterate_session_caps(session, trim_caps_cb, &remaining);
2256
doutc(cl, "mds%d done: %d / %d, trimmed %d\n",
2257
session->s_mds, session->s_nr_caps, max_caps,
2258
trim_caps - remaining);
2259
}
2260
2261
ceph_flush_session_cap_releases(mdsc, session);
2262
return 0;
2263
}
2264
2265
static int check_caps_flush(struct ceph_mds_client *mdsc,
2266
u64 want_flush_tid)
2267
{
2268
struct ceph_client *cl = mdsc->fsc->client;
2269
int ret = 1;
2270
2271
spin_lock(&mdsc->cap_dirty_lock);
2272
if (!list_empty(&mdsc->cap_flush_list)) {
2273
struct ceph_cap_flush *cf =
2274
list_first_entry(&mdsc->cap_flush_list,
2275
struct ceph_cap_flush, g_list);
2276
if (cf->tid <= want_flush_tid) {
2277
doutc(cl, "still flushing tid %llu <= %llu\n",
2278
cf->tid, want_flush_tid);
2279
ret = 0;
2280
}
2281
}
2282
spin_unlock(&mdsc->cap_dirty_lock);
2283
return ret;
2284
}
2285
2286
/*
2287
* flush all dirty inode data to disk.
2288
*
2289
* returns true if we've flushed through want_flush_tid
2290
*/
2291
static void wait_caps_flush(struct ceph_mds_client *mdsc,
2292
u64 want_flush_tid)
2293
{
2294
struct ceph_client *cl = mdsc->fsc->client;
2295
2296
doutc(cl, "want %llu\n", want_flush_tid);
2297
2298
wait_event(mdsc->cap_flushing_wq,
2299
check_caps_flush(mdsc, want_flush_tid));
2300
2301
doutc(cl, "ok, flushed thru %llu\n", want_flush_tid);
2302
}
2303
2304
/*
2305
* called under s_mutex
2306
*/
2307
static void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
2308
struct ceph_mds_session *session)
2309
{
2310
struct ceph_client *cl = mdsc->fsc->client;
2311
struct ceph_msg *msg = NULL;
2312
struct ceph_mds_cap_release *head;
2313
struct ceph_mds_cap_item *item;
2314
struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc;
2315
struct ceph_cap *cap;
2316
LIST_HEAD(tmp_list);
2317
int num_cap_releases;
2318
__le32 barrier, *cap_barrier;
2319
2320
down_read(&osdc->lock);
2321
barrier = cpu_to_le32(osdc->epoch_barrier);
2322
up_read(&osdc->lock);
2323
2324
spin_lock(&session->s_cap_lock);
2325
again:
2326
list_splice_init(&session->s_cap_releases, &tmp_list);
2327
num_cap_releases = session->s_num_cap_releases;
2328
session->s_num_cap_releases = 0;
2329
spin_unlock(&session->s_cap_lock);
2330
2331
while (!list_empty(&tmp_list)) {
2332
if (!msg) {
2333
msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
2334
PAGE_SIZE, GFP_NOFS, false);
2335
if (!msg)
2336
goto out_err;
2337
head = msg->front.iov_base;
2338
head->num = cpu_to_le32(0);
2339
msg->front.iov_len = sizeof(*head);
2340
2341
msg->hdr.version = cpu_to_le16(2);
2342
msg->hdr.compat_version = cpu_to_le16(1);
2343
}
2344
2345
cap = list_first_entry(&tmp_list, struct ceph_cap,
2346
session_caps);
2347
list_del(&cap->session_caps);
2348
num_cap_releases--;
2349
2350
head = msg->front.iov_base;
2351
put_unaligned_le32(get_unaligned_le32(&head->num) + 1,
2352
&head->num);
2353
item = msg->front.iov_base + msg->front.iov_len;
2354
item->ino = cpu_to_le64(cap->cap_ino);
2355
item->cap_id = cpu_to_le64(cap->cap_id);
2356
item->migrate_seq = cpu_to_le32(cap->mseq);
2357
item->issue_seq = cpu_to_le32(cap->issue_seq);
2358
msg->front.iov_len += sizeof(*item);
2359
2360
ceph_put_cap(mdsc, cap);
2361
2362
if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
2363
// Append cap_barrier field
2364
cap_barrier = msg->front.iov_base + msg->front.iov_len;
2365
*cap_barrier = barrier;
2366
msg->front.iov_len += sizeof(*cap_barrier);
2367
2368
msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2369
doutc(cl, "mds%d %p\n", session->s_mds, msg);
2370
ceph_con_send(&session->s_con, msg);
2371
msg = NULL;
2372
}
2373
}
2374
2375
BUG_ON(num_cap_releases != 0);
2376
2377
spin_lock(&session->s_cap_lock);
2378
if (!list_empty(&session->s_cap_releases))
2379
goto again;
2380
spin_unlock(&session->s_cap_lock);
2381
2382
if (msg) {
2383
// Append cap_barrier field
2384
cap_barrier = msg->front.iov_base + msg->front.iov_len;
2385
*cap_barrier = barrier;
2386
msg->front.iov_len += sizeof(*cap_barrier);
2387
2388
msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
2389
doutc(cl, "mds%d %p\n", session->s_mds, msg);
2390
ceph_con_send(&session->s_con, msg);
2391
}
2392
return;
2393
out_err:
2394
pr_err_client(cl, "mds%d, failed to allocate message\n",
2395
session->s_mds);
2396
spin_lock(&session->s_cap_lock);
2397
list_splice(&tmp_list, &session->s_cap_releases);
2398
session->s_num_cap_releases += num_cap_releases;
2399
spin_unlock(&session->s_cap_lock);
2400
}
2401
2402
static void ceph_cap_release_work(struct work_struct *work)
2403
{
2404
struct ceph_mds_session *session =
2405
container_of(work, struct ceph_mds_session, s_cap_release_work);
2406
2407
mutex_lock(&session->s_mutex);
2408
if (session->s_state == CEPH_MDS_SESSION_OPEN ||
2409
session->s_state == CEPH_MDS_SESSION_HUNG)
2410
ceph_send_cap_releases(session->s_mdsc, session);
2411
mutex_unlock(&session->s_mutex);
2412
ceph_put_mds_session(session);
2413
}
2414
2415
void ceph_flush_session_cap_releases(struct ceph_mds_client *mdsc,
2416
struct ceph_mds_session *session)
2417
{
2418
struct ceph_client *cl = mdsc->fsc->client;
2419
if (mdsc->stopping)
2420
return;
2421
2422
ceph_get_mds_session(session);
2423
if (queue_work(mdsc->fsc->cap_wq,
2424
&session->s_cap_release_work)) {
2425
doutc(cl, "cap release work queued\n");
2426
} else {
2427
ceph_put_mds_session(session);
2428
doutc(cl, "failed to queue cap release work\n");
2429
}
2430
}
2431
2432
/*
2433
* caller holds session->s_cap_lock
2434
*/
2435
void __ceph_queue_cap_release(struct ceph_mds_session *session,
2436
struct ceph_cap *cap)
2437
{
2438
list_add_tail(&cap->session_caps, &session->s_cap_releases);
2439
session->s_num_cap_releases++;
2440
2441
if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE))
2442
ceph_flush_session_cap_releases(session->s_mdsc, session);
2443
}
2444
2445
static void ceph_cap_reclaim_work(struct work_struct *work)
2446
{
2447
struct ceph_mds_client *mdsc =
2448
container_of(work, struct ceph_mds_client, cap_reclaim_work);
2449
int ret = ceph_trim_dentries(mdsc);
2450
if (ret == -EAGAIN)
2451
ceph_queue_cap_reclaim_work(mdsc);
2452
}
2453
2454
void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc)
2455
{
2456
struct ceph_client *cl = mdsc->fsc->client;
2457
if (mdsc->stopping)
2458
return;
2459
2460
if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) {
2461
doutc(cl, "caps reclaim work queued\n");
2462
} else {
2463
doutc(cl, "failed to queue caps release work\n");
2464
}
2465
}
2466
2467
void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr)
2468
{
2469
int val;
2470
if (!nr)
2471
return;
2472
val = atomic_add_return(nr, &mdsc->cap_reclaim_pending);
2473
if ((val % CEPH_CAPS_PER_RELEASE) < nr) {
2474
atomic_set(&mdsc->cap_reclaim_pending, 0);
2475
ceph_queue_cap_reclaim_work(mdsc);
2476
}
2477
}
2478
2479
void ceph_queue_cap_unlink_work(struct ceph_mds_client *mdsc)
2480
{
2481
struct ceph_client *cl = mdsc->fsc->client;
2482
if (mdsc->stopping)
2483
return;
2484
2485
if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_unlink_work)) {
2486
doutc(cl, "caps unlink work queued\n");
2487
} else {
2488
doutc(cl, "failed to queue caps unlink work\n");
2489
}
2490
}
2491
2492
static void ceph_cap_unlink_work(struct work_struct *work)
2493
{
2494
struct ceph_mds_client *mdsc =
2495
container_of(work, struct ceph_mds_client, cap_unlink_work);
2496
struct ceph_client *cl = mdsc->fsc->client;
2497
2498
doutc(cl, "begin\n");
2499
spin_lock(&mdsc->cap_delay_lock);
2500
while (!list_empty(&mdsc->cap_unlink_delay_list)) {
2501
struct ceph_inode_info *ci;
2502
struct inode *inode;
2503
2504
ci = list_first_entry(&mdsc->cap_unlink_delay_list,
2505
struct ceph_inode_info,
2506
i_cap_delay_list);
2507
list_del_init(&ci->i_cap_delay_list);
2508
2509
inode = igrab(&ci->netfs.inode);
2510
if (inode) {
2511
spin_unlock(&mdsc->cap_delay_lock);
2512
doutc(cl, "on %p %llx.%llx\n", inode,
2513
ceph_vinop(inode));
2514
ceph_check_caps(ci, CHECK_CAPS_FLUSH);
2515
iput(inode);
2516
spin_lock(&mdsc->cap_delay_lock);
2517
}
2518
}
2519
spin_unlock(&mdsc->cap_delay_lock);
2520
doutc(cl, "done\n");
2521
}
2522
2523
/*
2524
* requests
2525
*/
2526
2527
int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
2528
struct inode *dir)
2529
{
2530
struct ceph_inode_info *ci = ceph_inode(dir);
2531
struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
2532
struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
2533
size_t size = sizeof(struct ceph_mds_reply_dir_entry);
2534
unsigned int num_entries;
2535
int order;
2536
2537
spin_lock(&ci->i_ceph_lock);
2538
num_entries = ci->i_files + ci->i_subdirs;
2539
spin_unlock(&ci->i_ceph_lock);
2540
num_entries = max(num_entries, 1U);
2541
num_entries = min(num_entries, opt->max_readdir);
2542
2543
order = get_order(size * num_entries);
2544
while (order >= 0) {
2545
rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
2546
__GFP_NOWARN |
2547
__GFP_ZERO,
2548
order);
2549
if (rinfo->dir_entries)
2550
break;
2551
order--;
2552
}
2553
if (!rinfo->dir_entries)
2554
return -ENOMEM;
2555
2556
num_entries = (PAGE_SIZE << order) / size;
2557
num_entries = min(num_entries, opt->max_readdir);
2558
2559
rinfo->dir_buf_size = PAGE_SIZE << order;
2560
req->r_num_caps = num_entries + 1;
2561
req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
2562
req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
2563
return 0;
2564
}
2565
2566
/*
2567
* Create an mds request.
2568
*/
2569
struct ceph_mds_request *
2570
ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
2571
{
2572
struct ceph_mds_request *req;
2573
2574
req = kmem_cache_zalloc(ceph_mds_request_cachep, GFP_NOFS);
2575
if (!req)
2576
return ERR_PTR(-ENOMEM);
2577
2578
mutex_init(&req->r_fill_mutex);
2579
req->r_mdsc = mdsc;
2580
req->r_started = jiffies;
2581
req->r_start_latency = ktime_get();
2582
req->r_resend_mds = -1;
2583
INIT_LIST_HEAD(&req->r_unsafe_dir_item);
2584
INIT_LIST_HEAD(&req->r_unsafe_target_item);
2585
req->r_fmode = -1;
2586
req->r_feature_needed = -1;
2587
kref_init(&req->r_kref);
2588
RB_CLEAR_NODE(&req->r_node);
2589
INIT_LIST_HEAD(&req->r_wait);
2590
init_completion(&req->r_completion);
2591
init_completion(&req->r_safe_completion);
2592
INIT_LIST_HEAD(&req->r_unsafe_item);
2593
2594
ktime_get_coarse_real_ts64(&req->r_stamp);
2595
2596
req->r_op = op;
2597
req->r_direct_mode = mode;
2598
return req;
2599
}
2600
2601
/*
2602
* return oldest (lowest) request, tid in request tree, 0 if none.
2603
*
2604
* called under mdsc->mutex.
2605
*/
2606
static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
2607
{
2608
if (RB_EMPTY_ROOT(&mdsc->request_tree))
2609
return NULL;
2610
return rb_entry(rb_first(&mdsc->request_tree),
2611
struct ceph_mds_request, r_node);
2612
}
2613
2614
static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
2615
{
2616
return mdsc->oldest_tid;
2617
}
2618
2619
#if IS_ENABLED(CONFIG_FS_ENCRYPTION)
2620
static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen)
2621
{
2622
struct inode *dir = req->r_parent;
2623
struct dentry *dentry = req->r_dentry;
2624
const struct qstr *name = req->r_dname;
2625
u8 *cryptbuf = NULL;
2626
u32 len = 0;
2627
int ret = 0;
2628
2629
/* only encode if we have parent and dentry */
2630
if (!dir || !dentry)
2631
goto success;
2632
2633
/* No-op unless this is encrypted */
2634
if (!IS_ENCRYPTED(dir))
2635
goto success;
2636
2637
ret = ceph_fscrypt_prepare_readdir(dir);
2638
if (ret < 0)
2639
return ERR_PTR(ret);
2640
2641
/* No key? Just ignore it. */
2642
if (!fscrypt_has_encryption_key(dir))
2643
goto success;
2644
2645
if (!name)
2646
name = &dentry->d_name;
2647
2648
if (!fscrypt_fname_encrypted_size(dir, name->len, NAME_MAX, &len)) {
2649
WARN_ON_ONCE(1);
2650
return ERR_PTR(-ENAMETOOLONG);
2651
}
2652
2653
/* No need to append altname if name is short enough */
2654
if (len <= CEPH_NOHASH_NAME_MAX) {
2655
len = 0;
2656
goto success;
2657
}
2658
2659
cryptbuf = kmalloc(len, GFP_KERNEL);
2660
if (!cryptbuf)
2661
return ERR_PTR(-ENOMEM);
2662
2663
ret = fscrypt_fname_encrypt(dir, name, cryptbuf, len);
2664
if (ret) {
2665
kfree(cryptbuf);
2666
return ERR_PTR(ret);
2667
}
2668
success:
2669
*plen = len;
2670
return cryptbuf;
2671
}
2672
#else
2673
static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen)
2674
{
2675
*plen = 0;
2676
return NULL;
2677
}
2678
#endif
2679
2680
/**
2681
* ceph_mdsc_build_path - build a path string to a given dentry
2682
* @mdsc: mds client
2683
* @dentry: dentry to which path should be built
2684
* @plen: returned length of string
2685
* @pbase: returned base inode number
2686
* @for_wire: is this path going to be sent to the MDS?
2687
*
2688
* Build a string that represents the path to the dentry. This is mostly called
2689
* for two different purposes:
2690
*
2691
* 1) we need to build a path string to send to the MDS (for_wire == true)
2692
* 2) we need a path string for local presentation (e.g. debugfs)
2693
* (for_wire == false)
2694
*
2695
* The path is built in reverse, starting with the dentry. Walk back up toward
2696
* the root, building the path until the first non-snapped inode is reached
2697
* (for_wire) or the root inode is reached (!for_wire).
2698
*
2699
* Encode hidden .snap dirs as a double /, i.e.
2700
* foo/.snap/bar -> foo//bar
2701
*/
2702
char *ceph_mdsc_build_path(struct ceph_mds_client *mdsc, struct dentry *dentry,
2703
int *plen, u64 *pbase, int for_wire)
2704
{
2705
struct ceph_client *cl = mdsc->fsc->client;
2706
struct dentry *cur;
2707
struct inode *inode;
2708
char *path;
2709
int pos;
2710
unsigned seq;
2711
u64 base;
2712
2713
if (!dentry)
2714
return ERR_PTR(-EINVAL);
2715
2716
path = __getname();
2717
if (!path)
2718
return ERR_PTR(-ENOMEM);
2719
retry:
2720
pos = PATH_MAX - 1;
2721
path[pos] = '\0';
2722
2723
seq = read_seqbegin(&rename_lock);
2724
cur = dget(dentry);
2725
for (;;) {
2726
struct dentry *parent;
2727
2728
spin_lock(&cur->d_lock);
2729
inode = d_inode(cur);
2730
if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
2731
doutc(cl, "path+%d: %p SNAPDIR\n", pos, cur);
2732
spin_unlock(&cur->d_lock);
2733
parent = dget_parent(cur);
2734
} else if (for_wire && inode && dentry != cur &&
2735
ceph_snap(inode) == CEPH_NOSNAP) {
2736
spin_unlock(&cur->d_lock);
2737
pos++; /* get rid of any prepended '/' */
2738
break;
2739
} else if (!for_wire || !IS_ENCRYPTED(d_inode(cur->d_parent))) {
2740
pos -= cur->d_name.len;
2741
if (pos < 0) {
2742
spin_unlock(&cur->d_lock);
2743
break;
2744
}
2745
memcpy(path + pos, cur->d_name.name, cur->d_name.len);
2746
spin_unlock(&cur->d_lock);
2747
parent = dget_parent(cur);
2748
} else {
2749
int len, ret;
2750
char buf[NAME_MAX];
2751
2752
/*
2753
* Proactively copy name into buf, in case we need to
2754
* present it as-is.
2755
*/
2756
memcpy(buf, cur->d_name.name, cur->d_name.len);
2757
len = cur->d_name.len;
2758
spin_unlock(&cur->d_lock);
2759
parent = dget_parent(cur);
2760
2761
ret = ceph_fscrypt_prepare_readdir(d_inode(parent));
2762
if (ret < 0) {
2763
dput(parent);
2764
dput(cur);
2765
return ERR_PTR(ret);
2766
}
2767
2768
if (fscrypt_has_encryption_key(d_inode(parent))) {
2769
len = ceph_encode_encrypted_dname(d_inode(parent),
2770
buf, len);
2771
if (len < 0) {
2772
dput(parent);
2773
dput(cur);
2774
return ERR_PTR(len);
2775
}
2776
}
2777
pos -= len;
2778
if (pos < 0) {
2779
dput(parent);
2780
break;
2781
}
2782
memcpy(path + pos, buf, len);
2783
}
2784
dput(cur);
2785
cur = parent;
2786
2787
/* Are we at the root? */
2788
if (IS_ROOT(cur))
2789
break;
2790
2791
/* Are we out of buffer? */
2792
if (--pos < 0)
2793
break;
2794
2795
path[pos] = '/';
2796
}
2797
inode = d_inode(cur);
2798
base = inode ? ceph_ino(inode) : 0;
2799
dput(cur);
2800
2801
if (read_seqretry(&rename_lock, seq))
2802
goto retry;
2803
2804
if (pos < 0) {
2805
/*
2806
* The path is longer than PATH_MAX and this function
2807
* cannot ever succeed. Creating paths that long is
2808
* possible with Ceph, but Linux cannot use them.
2809
*/
2810
return ERR_PTR(-ENAMETOOLONG);
2811
}
2812
2813
*pbase = base;
2814
*plen = PATH_MAX - 1 - pos;
2815
doutc(cl, "on %p %d built %llx '%.*s'\n", dentry, d_count(dentry),
2816
base, *plen, path + pos);
2817
return path + pos;
2818
}
2819
2820
static int build_dentry_path(struct ceph_mds_client *mdsc, struct dentry *dentry,
2821
struct inode *dir, const char **ppath, int *ppathlen,
2822
u64 *pino, bool *pfreepath, bool parent_locked)
2823
{
2824
char *path;
2825
2826
rcu_read_lock();
2827
if (!dir)
2828
dir = d_inode_rcu(dentry->d_parent);
2829
if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP &&
2830
!IS_ENCRYPTED(dir)) {
2831
*pino = ceph_ino(dir);
2832
rcu_read_unlock();
2833
*ppath = dentry->d_name.name;
2834
*ppathlen = dentry->d_name.len;
2835
return 0;
2836
}
2837
rcu_read_unlock();
2838
path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1);
2839
if (IS_ERR(path))
2840
return PTR_ERR(path);
2841
*ppath = path;
2842
*pfreepath = true;
2843
return 0;
2844
}
2845
2846
static int build_inode_path(struct inode *inode,
2847
const char **ppath, int *ppathlen, u64 *pino,
2848
bool *pfreepath)
2849
{
2850
struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
2851
struct dentry *dentry;
2852
char *path;
2853
2854
if (ceph_snap(inode) == CEPH_NOSNAP) {
2855
*pino = ceph_ino(inode);
2856
*ppathlen = 0;
2857
return 0;
2858
}
2859
dentry = d_find_alias(inode);
2860
path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1);
2861
dput(dentry);
2862
if (IS_ERR(path))
2863
return PTR_ERR(path);
2864
*ppath = path;
2865
*pfreepath = true;
2866
return 0;
2867
}
2868
2869
/*
2870
* request arguments may be specified via an inode *, a dentry *, or
2871
* an explicit ino+path.
2872
*/
2873
static int set_request_path_attr(struct ceph_mds_client *mdsc, struct inode *rinode,
2874
struct dentry *rdentry, struct inode *rdiri,
2875
const char *rpath, u64 rino, const char **ppath,
2876
int *pathlen, u64 *ino, bool *freepath,
2877
bool parent_locked)
2878
{
2879
struct ceph_client *cl = mdsc->fsc->client;
2880
int r = 0;
2881
2882
if (rinode) {
2883
r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
2884
doutc(cl, " inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
2885
ceph_snap(rinode));
2886
} else if (rdentry) {
2887
r = build_dentry_path(mdsc, rdentry, rdiri, ppath, pathlen, ino,
2888
freepath, parent_locked);
2889
doutc(cl, " dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, *ppath);
2890
} else if (rpath || rino) {
2891
*ino = rino;
2892
*ppath = rpath;
2893
*pathlen = rpath ? strlen(rpath) : 0;
2894
doutc(cl, " path %.*s\n", *pathlen, rpath);
2895
}
2896
2897
return r;
2898
}
2899
2900
static void encode_mclientrequest_tail(void **p,
2901
const struct ceph_mds_request *req)
2902
{
2903
struct ceph_timespec ts;
2904
int i;
2905
2906
ceph_encode_timespec64(&ts, &req->r_stamp);
2907
ceph_encode_copy(p, &ts, sizeof(ts));
2908
2909
/* v4: gid_list */
2910
ceph_encode_32(p, req->r_cred->group_info->ngroups);
2911
for (i = 0; i < req->r_cred->group_info->ngroups; i++)
2912
ceph_encode_64(p, from_kgid(&init_user_ns,
2913
req->r_cred->group_info->gid[i]));
2914
2915
/* v5: altname */
2916
ceph_encode_32(p, req->r_altname_len);
2917
ceph_encode_copy(p, req->r_altname, req->r_altname_len);
2918
2919
/* v6: fscrypt_auth and fscrypt_file */
2920
if (req->r_fscrypt_auth) {
2921
u32 authlen = ceph_fscrypt_auth_len(req->r_fscrypt_auth);
2922
2923
ceph_encode_32(p, authlen);
2924
ceph_encode_copy(p, req->r_fscrypt_auth, authlen);
2925
} else {
2926
ceph_encode_32(p, 0);
2927
}
2928
if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) {
2929
ceph_encode_32(p, sizeof(__le64));
2930
ceph_encode_64(p, req->r_fscrypt_file);
2931
} else {
2932
ceph_encode_32(p, 0);
2933
}
2934
}
2935
2936
static inline u16 mds_supported_head_version(struct ceph_mds_session *session)
2937
{
2938
if (!test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, &session->s_features))
2939
return 1;
2940
2941
if (!test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features))
2942
return 2;
2943
2944
return CEPH_MDS_REQUEST_HEAD_VERSION;
2945
}
2946
2947
static struct ceph_mds_request_head_legacy *
2948
find_legacy_request_head(void *p, u64 features)
2949
{
2950
bool legacy = !(features & CEPH_FEATURE_FS_BTIME);
2951
struct ceph_mds_request_head *head;
2952
2953
if (legacy)
2954
return (struct ceph_mds_request_head_legacy *)p;
2955
head = (struct ceph_mds_request_head *)p;
2956
return (struct ceph_mds_request_head_legacy *)&head->oldest_client_tid;
2957
}
2958
2959
/*
2960
* called under mdsc->mutex
2961
*/
2962
static struct ceph_msg *create_request_message(struct ceph_mds_session *session,
2963
struct ceph_mds_request *req,
2964
bool drop_cap_releases)
2965
{
2966
int mds = session->s_mds;
2967
struct ceph_mds_client *mdsc = session->s_mdsc;
2968
struct ceph_client *cl = mdsc->fsc->client;
2969
struct ceph_msg *msg;
2970
struct ceph_mds_request_head_legacy *lhead;
2971
const char *path1 = NULL;
2972
const char *path2 = NULL;
2973
u64 ino1 = 0, ino2 = 0;
2974
int pathlen1 = 0, pathlen2 = 0;
2975
bool freepath1 = false, freepath2 = false;
2976
struct dentry *old_dentry = NULL;
2977
int len;
2978
u16 releases;
2979
void *p, *end;
2980
int ret;
2981
bool legacy = !(session->s_con.peer_features & CEPH_FEATURE_FS_BTIME);
2982
u16 request_head_version = mds_supported_head_version(session);
2983
kuid_t caller_fsuid = req->r_cred->fsuid;
2984
kgid_t caller_fsgid = req->r_cred->fsgid;
2985
2986
ret = set_request_path_attr(mdsc, req->r_inode, req->r_dentry,
2987
req->r_parent, req->r_path1, req->r_ino1.ino,
2988
&path1, &pathlen1, &ino1, &freepath1,
2989
test_bit(CEPH_MDS_R_PARENT_LOCKED,
2990
&req->r_req_flags));
2991
if (ret < 0) {
2992
msg = ERR_PTR(ret);
2993
goto out;
2994
}
2995
2996
/* If r_old_dentry is set, then assume that its parent is locked */
2997
if (req->r_old_dentry &&
2998
!(req->r_old_dentry->d_flags & DCACHE_DISCONNECTED))
2999
old_dentry = req->r_old_dentry;
3000
ret = set_request_path_attr(mdsc, NULL, old_dentry,
3001
req->r_old_dentry_dir,
3002
req->r_path2, req->r_ino2.ino,
3003
&path2, &pathlen2, &ino2, &freepath2, true);
3004
if (ret < 0) {
3005
msg = ERR_PTR(ret);
3006
goto out_free1;
3007
}
3008
3009
req->r_altname = get_fscrypt_altname(req, &req->r_altname_len);
3010
if (IS_ERR(req->r_altname)) {
3011
msg = ERR_CAST(req->r_altname);
3012
req->r_altname = NULL;
3013
goto out_free2;
3014
}
3015
3016
/*
3017
* For old cephs without supporting the 32bit retry/fwd feature
3018
* it will copy the raw memories directly when decoding the
3019
* requests. While new cephs will decode the head depending the
3020
* version member, so we need to make sure it will be compatible
3021
* with them both.
3022
*/
3023
if (legacy)
3024
len = sizeof(struct ceph_mds_request_head_legacy);
3025
else if (request_head_version == 1)
3026
len = offsetofend(struct ceph_mds_request_head, args);
3027
else if (request_head_version == 2)
3028
len = offsetofend(struct ceph_mds_request_head, ext_num_fwd);
3029
else
3030
len = sizeof(struct ceph_mds_request_head);
3031
3032
/* filepaths */
3033
len += 2 * (1 + sizeof(u32) + sizeof(u64));
3034
len += pathlen1 + pathlen2;
3035
3036
/* cap releases */
3037
len += sizeof(struct ceph_mds_request_release) *
3038
(!!req->r_inode_drop + !!req->r_dentry_drop +
3039
!!req->r_old_inode_drop + !!req->r_old_dentry_drop);
3040
3041
if (req->r_dentry_drop)
3042
len += pathlen1;
3043
if (req->r_old_dentry_drop)
3044
len += pathlen2;
3045
3046
/* MClientRequest tail */
3047
3048
/* req->r_stamp */
3049
len += sizeof(struct ceph_timespec);
3050
3051
/* gid list */
3052
len += sizeof(u32) + (sizeof(u64) * req->r_cred->group_info->ngroups);
3053
3054
/* alternate name */
3055
len += sizeof(u32) + req->r_altname_len;
3056
3057
/* fscrypt_auth */
3058
len += sizeof(u32); // fscrypt_auth
3059
if (req->r_fscrypt_auth)
3060
len += ceph_fscrypt_auth_len(req->r_fscrypt_auth);
3061
3062
/* fscrypt_file */
3063
len += sizeof(u32);
3064
if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags))
3065
len += sizeof(__le64);
3066
3067
msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false);
3068
if (!msg) {
3069
msg = ERR_PTR(-ENOMEM);
3070
goto out_free2;
3071
}
3072
3073
msg->hdr.tid = cpu_to_le64(req->r_tid);
3074
3075
lhead = find_legacy_request_head(msg->front.iov_base,
3076
session->s_con.peer_features);
3077
3078
if ((req->r_mnt_idmap != &nop_mnt_idmap) &&
3079
!test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features)) {
3080
WARN_ON_ONCE(!IS_CEPH_MDS_OP_NEWINODE(req->r_op));
3081
3082
if (enable_unsafe_idmap) {
3083
pr_warn_once_client(cl,
3084
"idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID"
3085
" is not supported by MDS. UID/GID-based restrictions may"
3086
" not work properly.\n");
3087
3088
caller_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns,
3089
VFSUIDT_INIT(req->r_cred->fsuid));
3090
caller_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns,
3091
VFSGIDT_INIT(req->r_cred->fsgid));
3092
} else {
3093
pr_err_ratelimited_client(cl,
3094
"idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID"
3095
" is not supported by MDS. Fail request with -EIO.\n");
3096
3097
ret = -EIO;
3098
goto out_err;
3099
}
3100
}
3101
3102
/*
3103
* The ceph_mds_request_head_legacy didn't contain a version field, and
3104
* one was added when we moved the message version from 3->4.
3105
*/
3106
if (legacy) {
3107
msg->hdr.version = cpu_to_le16(3);
3108
p = msg->front.iov_base + sizeof(*lhead);
3109
} else if (request_head_version == 1) {
3110
struct ceph_mds_request_head *nhead = msg->front.iov_base;
3111
3112
msg->hdr.version = cpu_to_le16(4);
3113
nhead->version = cpu_to_le16(1);
3114
p = msg->front.iov_base + offsetofend(struct ceph_mds_request_head, args);
3115
} else if (request_head_version == 2) {
3116
struct ceph_mds_request_head *nhead = msg->front.iov_base;
3117
3118
msg->hdr.version = cpu_to_le16(6);
3119
nhead->version = cpu_to_le16(2);
3120
3121
p = msg->front.iov_base + offsetofend(struct ceph_mds_request_head, ext_num_fwd);
3122
} else {
3123
struct ceph_mds_request_head *nhead = msg->front.iov_base;
3124
kuid_t owner_fsuid;
3125
kgid_t owner_fsgid;
3126
3127
msg->hdr.version = cpu_to_le16(6);
3128
nhead->version = cpu_to_le16(CEPH_MDS_REQUEST_HEAD_VERSION);
3129
nhead->struct_len = cpu_to_le32(sizeof(struct ceph_mds_request_head));
3130
3131
if (IS_CEPH_MDS_OP_NEWINODE(req->r_op)) {
3132
owner_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns,
3133
VFSUIDT_INIT(req->r_cred->fsuid));
3134
owner_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns,
3135
VFSGIDT_INIT(req->r_cred->fsgid));
3136
nhead->owner_uid = cpu_to_le32(from_kuid(&init_user_ns, owner_fsuid));
3137
nhead->owner_gid = cpu_to_le32(from_kgid(&init_user_ns, owner_fsgid));
3138
} else {
3139
nhead->owner_uid = cpu_to_le32(-1);
3140
nhead->owner_gid = cpu_to_le32(-1);
3141
}
3142
3143
p = msg->front.iov_base + sizeof(*nhead);
3144
}
3145
3146
end = msg->front.iov_base + msg->front.iov_len;
3147
3148
lhead->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
3149
lhead->op = cpu_to_le32(req->r_op);
3150
lhead->caller_uid = cpu_to_le32(from_kuid(&init_user_ns,
3151
caller_fsuid));
3152
lhead->caller_gid = cpu_to_le32(from_kgid(&init_user_ns,
3153
caller_fsgid));
3154
lhead->ino = cpu_to_le64(req->r_deleg_ino);
3155
lhead->args = req->r_args;
3156
3157
ceph_encode_filepath(&p, end, ino1, path1);
3158
ceph_encode_filepath(&p, end, ino2, path2);
3159
3160
/* make note of release offset, in case we need to replay */
3161
req->r_request_release_offset = p - msg->front.iov_base;
3162
3163
/* cap releases */
3164
releases = 0;
3165
if (req->r_inode_drop)
3166
releases += ceph_encode_inode_release(&p,
3167
req->r_inode ? req->r_inode : d_inode(req->r_dentry),
3168
mds, req->r_inode_drop, req->r_inode_unless,
3169
req->r_op == CEPH_MDS_OP_READDIR);
3170
if (req->r_dentry_drop) {
3171
ret = ceph_encode_dentry_release(&p, req->r_dentry,
3172
req->r_parent, mds, req->r_dentry_drop,
3173
req->r_dentry_unless);
3174
if (ret < 0)
3175
goto out_err;
3176
releases += ret;
3177
}
3178
if (req->r_old_dentry_drop) {
3179
ret = ceph_encode_dentry_release(&p, req->r_old_dentry,
3180
req->r_old_dentry_dir, mds,
3181
req->r_old_dentry_drop,
3182
req->r_old_dentry_unless);
3183
if (ret < 0)
3184
goto out_err;
3185
releases += ret;
3186
}
3187
if (req->r_old_inode_drop)
3188
releases += ceph_encode_inode_release(&p,
3189
d_inode(req->r_old_dentry),
3190
mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
3191
3192
if (drop_cap_releases) {
3193
releases = 0;
3194
p = msg->front.iov_base + req->r_request_release_offset;
3195
}
3196
3197
lhead->num_releases = cpu_to_le16(releases);
3198
3199
encode_mclientrequest_tail(&p, req);
3200
3201
if (WARN_ON_ONCE(p > end)) {
3202
ceph_msg_put(msg);
3203
msg = ERR_PTR(-ERANGE);
3204
goto out_free2;
3205
}
3206
3207
msg->front.iov_len = p - msg->front.iov_base;
3208
msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
3209
3210
if (req->r_pagelist) {
3211
struct ceph_pagelist *pagelist = req->r_pagelist;
3212
ceph_msg_data_add_pagelist(msg, pagelist);
3213
msg->hdr.data_len = cpu_to_le32(pagelist->length);
3214
} else {
3215
msg->hdr.data_len = 0;
3216
}
3217
3218
msg->hdr.data_off = cpu_to_le16(0);
3219
3220
out_free2:
3221
if (freepath2)
3222
ceph_mdsc_free_path((char *)path2, pathlen2);
3223
out_free1:
3224
if (freepath1)
3225
ceph_mdsc_free_path((char *)path1, pathlen1);
3226
out:
3227
return msg;
3228
out_err:
3229
ceph_msg_put(msg);
3230
msg = ERR_PTR(ret);
3231
goto out_free2;
3232
}
3233
3234
/*
3235
* called under mdsc->mutex if error, under no mutex if
3236
* success.
3237
*/
3238
static void complete_request(struct ceph_mds_client *mdsc,
3239
struct ceph_mds_request *req)
3240
{
3241
req->r_end_latency = ktime_get();
3242
3243
if (req->r_callback)
3244
req->r_callback(mdsc, req);
3245
complete_all(&req->r_completion);
3246
}
3247
3248
/*
3249
* called under mdsc->mutex
3250
*/
3251
static int __prepare_send_request(struct ceph_mds_session *session,
3252
struct ceph_mds_request *req,
3253
bool drop_cap_releases)
3254
{
3255
int mds = session->s_mds;
3256
struct ceph_mds_client *mdsc = session->s_mdsc;
3257
struct ceph_client *cl = mdsc->fsc->client;
3258
struct ceph_mds_request_head_legacy *lhead;
3259
struct ceph_mds_request_head *nhead;
3260
struct ceph_msg *msg;
3261
int flags = 0, old_max_retry;
3262
bool old_version = !test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD,
3263
&session->s_features);
3264
3265
/*
3266
* Avoid infinite retrying after overflow. The client will
3267
* increase the retry count and if the MDS is old version,
3268
* so we limit to retry at most 256 times.
3269
*/
3270
if (req->r_attempts) {
3271
old_max_retry = sizeof_field(struct ceph_mds_request_head,
3272
num_retry);
3273
old_max_retry = 1 << (old_max_retry * BITS_PER_BYTE);
3274
if ((old_version && req->r_attempts >= old_max_retry) ||
3275
((uint32_t)req->r_attempts >= U32_MAX)) {
3276
pr_warn_ratelimited_client(cl, "request tid %llu seq overflow\n",
3277
req->r_tid);
3278
return -EMULTIHOP;
3279
}
3280
}
3281
3282
req->r_attempts++;
3283
if (req->r_inode) {
3284
struct ceph_cap *cap =
3285
ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
3286
3287
if (cap)
3288
req->r_sent_on_mseq = cap->mseq;
3289
else
3290
req->r_sent_on_mseq = -1;
3291
}
3292
doutc(cl, "%p tid %lld %s (attempt %d)\n", req, req->r_tid,
3293
ceph_mds_op_name(req->r_op), req->r_attempts);
3294
3295
if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
3296
void *p;
3297
3298
/*
3299
* Replay. Do not regenerate message (and rebuild
3300
* paths, etc.); just use the original message.
3301
* Rebuilding paths will break for renames because
3302
* d_move mangles the src name.
3303
*/
3304
msg = req->r_request;
3305
lhead = find_legacy_request_head(msg->front.iov_base,
3306
session->s_con.peer_features);
3307
3308
flags = le32_to_cpu(lhead->flags);
3309
flags |= CEPH_MDS_FLAG_REPLAY;
3310
lhead->flags = cpu_to_le32(flags);
3311
3312
if (req->r_target_inode)
3313
lhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
3314
3315
lhead->num_retry = req->r_attempts - 1;
3316
if (!old_version) {
3317
nhead = (struct ceph_mds_request_head*)msg->front.iov_base;
3318
nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1);
3319
}
3320
3321
/* remove cap/dentry releases from message */
3322
lhead->num_releases = 0;
3323
3324
p = msg->front.iov_base + req->r_request_release_offset;
3325
encode_mclientrequest_tail(&p, req);
3326
3327
msg->front.iov_len = p - msg->front.iov_base;
3328
msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
3329
return 0;
3330
}
3331
3332
if (req->r_request) {
3333
ceph_msg_put(req->r_request);
3334
req->r_request = NULL;
3335
}
3336
msg = create_request_message(session, req, drop_cap_releases);
3337
if (IS_ERR(msg)) {
3338
req->r_err = PTR_ERR(msg);
3339
return PTR_ERR(msg);
3340
}
3341
req->r_request = msg;
3342
3343
lhead = find_legacy_request_head(msg->front.iov_base,
3344
session->s_con.peer_features);
3345
lhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
3346
if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
3347
flags |= CEPH_MDS_FLAG_REPLAY;
3348
if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags))
3349
flags |= CEPH_MDS_FLAG_ASYNC;
3350
if (req->r_parent)
3351
flags |= CEPH_MDS_FLAG_WANT_DENTRY;
3352
lhead->flags = cpu_to_le32(flags);
3353
lhead->num_fwd = req->r_num_fwd;
3354
lhead->num_retry = req->r_attempts - 1;
3355
if (!old_version) {
3356
nhead = (struct ceph_mds_request_head*)msg->front.iov_base;
3357
nhead->ext_num_fwd = cpu_to_le32(req->r_num_fwd);
3358
nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1);
3359
}
3360
3361
doutc(cl, " r_parent = %p\n", req->r_parent);
3362
return 0;
3363
}
3364
3365
/*
3366
* called under mdsc->mutex
3367
*/
3368
static int __send_request(struct ceph_mds_session *session,
3369
struct ceph_mds_request *req,
3370
bool drop_cap_releases)
3371
{
3372
int err;
3373
3374
err = __prepare_send_request(session, req, drop_cap_releases);
3375
if (!err) {
3376
ceph_msg_get(req->r_request);
3377
ceph_con_send(&session->s_con, req->r_request);
3378
}
3379
3380
return err;
3381
}
3382
3383
/*
3384
* send request, or put it on the appropriate wait list.
3385
*/
3386
static void __do_request(struct ceph_mds_client *mdsc,
3387
struct ceph_mds_request *req)
3388
{
3389
struct ceph_client *cl = mdsc->fsc->client;
3390
struct ceph_mds_session *session = NULL;
3391
int mds = -1;
3392
int err = 0;
3393
bool random;
3394
3395
if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
3396
if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags))
3397
__unregister_request(mdsc, req);
3398
return;
3399
}
3400
3401
if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) {
3402
doutc(cl, "metadata corrupted\n");
3403
err = -EIO;
3404
goto finish;
3405
}
3406
if (req->r_timeout &&
3407
time_after_eq(jiffies, req->r_started + req->r_timeout)) {
3408
doutc(cl, "timed out\n");
3409
err = -ETIMEDOUT;
3410
goto finish;
3411
}
3412
if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
3413
doutc(cl, "forced umount\n");
3414
err = -EIO;
3415
goto finish;
3416
}
3417
if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) {
3418
if (mdsc->mdsmap_err) {
3419
err = mdsc->mdsmap_err;
3420
doutc(cl, "mdsmap err %d\n", err);
3421
goto finish;
3422
}
3423
if (mdsc->mdsmap->m_epoch == 0) {
3424
doutc(cl, "no mdsmap, waiting for map\n");
3425
list_add(&req->r_wait, &mdsc->waiting_for_map);
3426
return;
3427
}
3428
if (!(mdsc->fsc->mount_options->flags &
3429
CEPH_MOUNT_OPT_MOUNTWAIT) &&
3430
!ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) {
3431
err = -EHOSTUNREACH;
3432
goto finish;
3433
}
3434
}
3435
3436
put_request_session(req);
3437
3438
mds = __choose_mds(mdsc, req, &random);
3439
if (mds < 0 ||
3440
ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
3441
if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) {
3442
err = -EJUKEBOX;
3443
goto finish;
3444
}
3445
doutc(cl, "no mds or not active, waiting for map\n");
3446
list_add(&req->r_wait, &mdsc->waiting_for_map);
3447
return;
3448
}
3449
3450
/* get, open session */
3451
session = __ceph_lookup_mds_session(mdsc, mds);
3452
if (!session) {
3453
session = register_session(mdsc, mds);
3454
if (IS_ERR(session)) {
3455
err = PTR_ERR(session);
3456
goto finish;
3457
}
3458
}
3459
req->r_session = ceph_get_mds_session(session);
3460
3461
doutc(cl, "mds%d session %p state %s\n", mds, session,
3462
ceph_session_state_name(session->s_state));
3463
3464
/*
3465
* The old ceph will crash the MDSs when see unknown OPs
3466
*/
3467
if (req->r_feature_needed > 0 &&
3468
!test_bit(req->r_feature_needed, &session->s_features)) {
3469
err = -EOPNOTSUPP;
3470
goto out_session;
3471
}
3472
3473
if (session->s_state != CEPH_MDS_SESSION_OPEN &&
3474
session->s_state != CEPH_MDS_SESSION_HUNG) {
3475
/*
3476
* We cannot queue async requests since the caps and delegated
3477
* inodes are bound to the session. Just return -EJUKEBOX and
3478
* let the caller retry a sync request in that case.
3479
*/
3480
if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) {
3481
err = -EJUKEBOX;
3482
goto out_session;
3483
}
3484
3485
/*
3486
* If the session has been REJECTED, then return a hard error,
3487
* unless it's a CLEANRECOVER mount, in which case we'll queue
3488
* it to the mdsc queue.
3489
*/
3490
if (session->s_state == CEPH_MDS_SESSION_REJECTED) {
3491
if (ceph_test_mount_opt(mdsc->fsc, CLEANRECOVER))
3492
list_add(&req->r_wait, &mdsc->waiting_for_map);
3493
else
3494
err = -EACCES;
3495
goto out_session;
3496
}
3497
3498
if (session->s_state == CEPH_MDS_SESSION_NEW ||
3499
session->s_state == CEPH_MDS_SESSION_CLOSING) {
3500
err = __open_session(mdsc, session);
3501
if (err)
3502
goto out_session;
3503
/* retry the same mds later */
3504
if (random)
3505
req->r_resend_mds = mds;
3506
}
3507
list_add(&req->r_wait, &session->s_waiting);
3508
goto out_session;
3509
}
3510
3511
/* send request */
3512
req->r_resend_mds = -1; /* forget any previous mds hint */
3513
3514
if (req->r_request_started == 0) /* note request start time */
3515
req->r_request_started = jiffies;
3516
3517
/*
3518
* For async create we will choose the auth MDS of frag in parent
3519
* directory to send the request and usually this works fine, but
3520
* if the migrated the dirtory to another MDS before it could handle
3521
* it the request will be forwarded.
3522
*
3523
* And then the auth cap will be changed.
3524
*/
3525
if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags) && req->r_num_fwd) {
3526
struct ceph_dentry_info *di = ceph_dentry(req->r_dentry);
3527
struct ceph_inode_info *ci;
3528
struct ceph_cap *cap;
3529
3530
/*
3531
* The request maybe handled very fast and the new inode
3532
* hasn't been linked to the dentry yet. We need to wait
3533
* for the ceph_finish_async_create(), which shouldn't be
3534
* stuck too long or fail in thoery, to finish when forwarding
3535
* the request.
3536
*/
3537
if (!d_inode(req->r_dentry)) {
3538
err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_CREATE_BIT,
3539
TASK_KILLABLE);
3540
if (err) {
3541
mutex_lock(&req->r_fill_mutex);
3542
set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
3543
mutex_unlock(&req->r_fill_mutex);
3544
goto out_session;
3545
}
3546
}
3547
3548
ci = ceph_inode(d_inode(req->r_dentry));
3549
3550
spin_lock(&ci->i_ceph_lock);
3551
cap = ci->i_auth_cap;
3552
if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE && mds != cap->mds) {
3553
doutc(cl, "session changed for auth cap %d -> %d\n",
3554
cap->session->s_mds, session->s_mds);
3555
3556
/* Remove the auth cap from old session */
3557
spin_lock(&cap->session->s_cap_lock);
3558
cap->session->s_nr_caps--;
3559
list_del_init(&cap->session_caps);
3560
spin_unlock(&cap->session->s_cap_lock);
3561
3562
/* Add the auth cap to the new session */
3563
cap->mds = mds;
3564
cap->session = session;
3565
spin_lock(&session->s_cap_lock);
3566
session->s_nr_caps++;
3567
list_add_tail(&cap->session_caps, &session->s_caps);
3568
spin_unlock(&session->s_cap_lock);
3569
3570
change_auth_cap_ses(ci, session);
3571
}
3572
spin_unlock(&ci->i_ceph_lock);
3573
}
3574
3575
err = __send_request(session, req, false);
3576
3577
out_session:
3578
ceph_put_mds_session(session);
3579
finish:
3580
if (err) {
3581
doutc(cl, "early error %d\n", err);
3582
req->r_err = err;
3583
complete_request(mdsc, req);
3584
__unregister_request(mdsc, req);
3585
}
3586
return;
3587
}
3588
3589
/*
3590
* called under mdsc->mutex
3591
*/
3592
static void __wake_requests(struct ceph_mds_client *mdsc,
3593
struct list_head *head)
3594
{
3595
struct ceph_client *cl = mdsc->fsc->client;
3596
struct ceph_mds_request *req;
3597
LIST_HEAD(tmp_list);
3598
3599
list_splice_init(head, &tmp_list);
3600
3601
while (!list_empty(&tmp_list)) {
3602
req = list_entry(tmp_list.next,
3603
struct ceph_mds_request, r_wait);
3604
list_del_init(&req->r_wait);
3605
doutc(cl, " wake request %p tid %llu\n", req,
3606
req->r_tid);
3607
__do_request(mdsc, req);
3608
}
3609
}
3610
3611
/*
3612
* Wake up threads with requests pending for @mds, so that they can
3613
* resubmit their requests to a possibly different mds.
3614
*/
3615
static void kick_requests(struct ceph_mds_client *mdsc, int mds)
3616
{
3617
struct ceph_client *cl = mdsc->fsc->client;
3618
struct ceph_mds_request *req;
3619
struct rb_node *p = rb_first(&mdsc->request_tree);
3620
3621
doutc(cl, "kick_requests mds%d\n", mds);
3622
while (p) {
3623
req = rb_entry(p, struct ceph_mds_request, r_node);
3624
p = rb_next(p);
3625
if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
3626
continue;
3627
if (req->r_attempts > 0)
3628
continue; /* only new requests */
3629
if (req->r_session &&
3630
req->r_session->s_mds == mds) {
3631
doutc(cl, " kicking tid %llu\n", req->r_tid);
3632
list_del_init(&req->r_wait);
3633
__do_request(mdsc, req);
3634
}
3635
}
3636
}
3637
3638
int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir,
3639
struct ceph_mds_request *req)
3640
{
3641
struct ceph_client *cl = mdsc->fsc->client;
3642
int err = 0;
3643
3644
/* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */
3645
if (req->r_inode)
3646
ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
3647
if (req->r_parent) {
3648
struct ceph_inode_info *ci = ceph_inode(req->r_parent);
3649
int fmode = (req->r_op & CEPH_MDS_OP_WRITE) ?
3650
CEPH_FILE_MODE_WR : CEPH_FILE_MODE_RD;
3651
spin_lock(&ci->i_ceph_lock);
3652
ceph_take_cap_refs(ci, CEPH_CAP_PIN, false);
3653
__ceph_touch_fmode(ci, mdsc, fmode);
3654
spin_unlock(&ci->i_ceph_lock);
3655
}
3656
if (req->r_old_dentry_dir)
3657
ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
3658
CEPH_CAP_PIN);
3659
3660
if (req->r_inode) {
3661
err = ceph_wait_on_async_create(req->r_inode);
3662
if (err) {
3663
doutc(cl, "wait for async create returned: %d\n", err);
3664
return err;
3665
}
3666
}
3667
3668
if (!err && req->r_old_inode) {
3669
err = ceph_wait_on_async_create(req->r_old_inode);
3670
if (err) {
3671
doutc(cl, "wait for async create returned: %d\n", err);
3672
return err;
3673
}
3674
}
3675
3676
doutc(cl, "submit_request on %p for inode %p\n", req, dir);
3677
mutex_lock(&mdsc->mutex);
3678
__register_request(mdsc, req, dir);
3679
__do_request(mdsc, req);
3680
err = req->r_err;
3681
mutex_unlock(&mdsc->mutex);
3682
return err;
3683
}
3684
3685
int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc,
3686
struct ceph_mds_request *req,
3687
ceph_mds_request_wait_callback_t wait_func)
3688
{
3689
struct ceph_client *cl = mdsc->fsc->client;
3690
int err;
3691
3692
/* wait */
3693
doutc(cl, "do_request waiting\n");
3694
if (wait_func) {
3695
err = wait_func(mdsc, req);
3696
} else {
3697
long timeleft = wait_for_completion_killable_timeout(
3698
&req->r_completion,
3699
ceph_timeout_jiffies(req->r_timeout));
3700
if (timeleft > 0)
3701
err = 0;
3702
else if (!timeleft)
3703
err = -ETIMEDOUT; /* timed out */
3704
else
3705
err = timeleft; /* killed */
3706
}
3707
doutc(cl, "do_request waited, got %d\n", err);
3708
mutex_lock(&mdsc->mutex);
3709
3710
/* only abort if we didn't race with a real reply */
3711
if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
3712
err = le32_to_cpu(req->r_reply_info.head->result);
3713
} else if (err < 0) {
3714
doutc(cl, "aborted request %lld with %d\n", req->r_tid, err);
3715
3716
/*
3717
* ensure we aren't running concurrently with
3718
* ceph_fill_trace or ceph_readdir_prepopulate, which
3719
* rely on locks (dir mutex) held by our caller.
3720
*/
3721
mutex_lock(&req->r_fill_mutex);
3722
req->r_err = err;
3723
set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
3724
mutex_unlock(&req->r_fill_mutex);
3725
3726
if (req->r_parent &&
3727
(req->r_op & CEPH_MDS_OP_WRITE))
3728
ceph_invalidate_dir_request(req);
3729
} else {
3730
err = req->r_err;
3731
}
3732
3733
mutex_unlock(&mdsc->mutex);
3734
return err;
3735
}
3736
3737
/*
3738
* Synchrously perform an mds request. Take care of all of the
3739
* session setup, forwarding, retry details.
3740
*/
3741
int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
3742
struct inode *dir,
3743
struct ceph_mds_request *req)
3744
{
3745
struct ceph_client *cl = mdsc->fsc->client;
3746
int err;
3747
3748
doutc(cl, "do_request on %p\n", req);
3749
3750
/* issue */
3751
err = ceph_mdsc_submit_request(mdsc, dir, req);
3752
if (!err)
3753
err = ceph_mdsc_wait_request(mdsc, req, NULL);
3754
doutc(cl, "do_request %p done, result %d\n", req, err);
3755
return err;
3756
}
3757
3758
/*
3759
* Invalidate dir's completeness, dentry lease state on an aborted MDS
3760
* namespace request.
3761
*/
3762
void ceph_invalidate_dir_request(struct ceph_mds_request *req)
3763
{
3764
struct inode *dir = req->r_parent;
3765
struct inode *old_dir = req->r_old_dentry_dir;
3766
struct ceph_client *cl = req->r_mdsc->fsc->client;
3767
3768
doutc(cl, "invalidate_dir_request %p %p (complete, lease(s))\n",
3769
dir, old_dir);
3770
3771
ceph_dir_clear_complete(dir);
3772
if (old_dir)
3773
ceph_dir_clear_complete(old_dir);
3774
if (req->r_dentry)
3775
ceph_invalidate_dentry_lease(req->r_dentry);
3776
if (req->r_old_dentry)
3777
ceph_invalidate_dentry_lease(req->r_old_dentry);
3778
}
3779
3780
/*
3781
* Handle mds reply.
3782
*
3783
* We take the session mutex and parse and process the reply immediately.
3784
* This preserves the logical ordering of replies, capabilities, etc., sent
3785
* by the MDS as they are applied to our local cache.
3786
*/
3787
static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
3788
{
3789
struct ceph_mds_client *mdsc = session->s_mdsc;
3790
struct ceph_client *cl = mdsc->fsc->client;
3791
struct ceph_mds_request *req;
3792
struct ceph_mds_reply_head *head = msg->front.iov_base;
3793
struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
3794
struct ceph_snap_realm *realm;
3795
u64 tid;
3796
int err, result;
3797
int mds = session->s_mds;
3798
bool close_sessions = false;
3799
3800
if (msg->front.iov_len < sizeof(*head)) {
3801
pr_err_client(cl, "got corrupt (short) reply\n");
3802
ceph_msg_dump(msg);
3803
return;
3804
}
3805
3806
/* get request, session */
3807
tid = le64_to_cpu(msg->hdr.tid);
3808
mutex_lock(&mdsc->mutex);
3809
req = lookup_get_request(mdsc, tid);
3810
if (!req) {
3811
doutc(cl, "on unknown tid %llu\n", tid);
3812
mutex_unlock(&mdsc->mutex);
3813
return;
3814
}
3815
doutc(cl, "handle_reply %p\n", req);
3816
3817
/* correct session? */
3818
if (req->r_session != session) {
3819
pr_err_client(cl, "got %llu on session mds%d not mds%d\n",
3820
tid, session->s_mds,
3821
req->r_session ? req->r_session->s_mds : -1);
3822
mutex_unlock(&mdsc->mutex);
3823
goto out;
3824
}
3825
3826
/* dup? */
3827
if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) ||
3828
(test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) {
3829
pr_warn_client(cl, "got a dup %s reply on %llu from mds%d\n",
3830
head->safe ? "safe" : "unsafe", tid, mds);
3831
mutex_unlock(&mdsc->mutex);
3832
goto out;
3833
}
3834
if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) {
3835
pr_warn_client(cl, "got unsafe after safe on %llu from mds%d\n",
3836
tid, mds);
3837
mutex_unlock(&mdsc->mutex);
3838
goto out;
3839
}
3840
3841
result = le32_to_cpu(head->result);
3842
3843
if (head->safe) {
3844
set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags);
3845
__unregister_request(mdsc, req);
3846
3847
/* last request during umount? */
3848
if (mdsc->stopping && !__get_oldest_req(mdsc))
3849
complete_all(&mdsc->safe_umount_waiters);
3850
3851
if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
3852
/*
3853
* We already handled the unsafe response, now do the
3854
* cleanup. No need to examine the response; the MDS
3855
* doesn't include any result info in the safe
3856
* response. And even if it did, there is nothing
3857
* useful we could do with a revised return value.
3858
*/
3859
doutc(cl, "got safe reply %llu, mds%d\n", tid, mds);
3860
3861
mutex_unlock(&mdsc->mutex);
3862
goto out;
3863
}
3864
} else {
3865
set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags);
3866
list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
3867
}
3868
3869
doutc(cl, "tid %lld result %d\n", tid, result);
3870
if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features))
3871
err = parse_reply_info(session, msg, req, (u64)-1);
3872
else
3873
err = parse_reply_info(session, msg, req,
3874
session->s_con.peer_features);
3875
mutex_unlock(&mdsc->mutex);
3876
3877
/* Must find target inode outside of mutexes to avoid deadlocks */
3878
rinfo = &req->r_reply_info;
3879
if ((err >= 0) && rinfo->head->is_target) {
3880
struct inode *in = xchg(&req->r_new_inode, NULL);
3881
struct ceph_vino tvino = {
3882
.ino = le64_to_cpu(rinfo->targeti.in->ino),
3883
.snap = le64_to_cpu(rinfo->targeti.in->snapid)
3884
};
3885
3886
/*
3887
* If we ended up opening an existing inode, discard
3888
* r_new_inode
3889
*/
3890
if (req->r_op == CEPH_MDS_OP_CREATE &&
3891
!req->r_reply_info.has_create_ino) {
3892
/* This should never happen on an async create */
3893
WARN_ON_ONCE(req->r_deleg_ino);
3894
iput(in);
3895
in = NULL;
3896
}
3897
3898
in = ceph_get_inode(mdsc->fsc->sb, tvino, in);
3899
if (IS_ERR(in)) {
3900
err = PTR_ERR(in);
3901
mutex_lock(&session->s_mutex);
3902
goto out_err;
3903
}
3904
req->r_target_inode = in;
3905
}
3906
3907
mutex_lock(&session->s_mutex);
3908
if (err < 0) {
3909
pr_err_client(cl, "got corrupt reply mds%d(tid:%lld)\n",
3910
mds, tid);
3911
ceph_msg_dump(msg);
3912
goto out_err;
3913
}
3914
3915
/* snap trace */
3916
realm = NULL;
3917
if (rinfo->snapblob_len) {
3918
down_write(&mdsc->snap_rwsem);
3919
err = ceph_update_snap_trace(mdsc, rinfo->snapblob,
3920
rinfo->snapblob + rinfo->snapblob_len,
3921
le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
3922
&realm);
3923
if (err) {
3924
up_write(&mdsc->snap_rwsem);
3925
close_sessions = true;
3926
if (err == -EIO)
3927
ceph_msg_dump(msg);
3928
goto out_err;
3929
}
3930
downgrade_write(&mdsc->snap_rwsem);
3931
} else {
3932
down_read(&mdsc->snap_rwsem);
3933
}
3934
3935
/* insert trace into our cache */
3936
mutex_lock(&req->r_fill_mutex);
3937
current->journal_info = req;
3938
err = ceph_fill_trace(mdsc->fsc->sb, req);
3939
if (err == 0) {
3940
if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
3941
req->r_op == CEPH_MDS_OP_LSSNAP))
3942
err = ceph_readdir_prepopulate(req, req->r_session);
3943
}
3944
current->journal_info = NULL;
3945
mutex_unlock(&req->r_fill_mutex);
3946
3947
up_read(&mdsc->snap_rwsem);
3948
if (realm)
3949
ceph_put_snap_realm(mdsc, realm);
3950
3951
if (err == 0) {
3952
if (req->r_target_inode &&
3953
test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
3954
struct ceph_inode_info *ci =
3955
ceph_inode(req->r_target_inode);
3956
spin_lock(&ci->i_unsafe_lock);
3957
list_add_tail(&req->r_unsafe_target_item,
3958
&ci->i_unsafe_iops);
3959
spin_unlock(&ci->i_unsafe_lock);
3960
}
3961
3962
ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
3963
}
3964
out_err:
3965
mutex_lock(&mdsc->mutex);
3966
if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
3967
if (err) {
3968
req->r_err = err;
3969
} else {
3970
req->r_reply = ceph_msg_get(msg);
3971
set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags);
3972
}
3973
} else {
3974
doutc(cl, "reply arrived after request %lld was aborted\n", tid);
3975
}
3976
mutex_unlock(&mdsc->mutex);
3977
3978
mutex_unlock(&session->s_mutex);
3979
3980
/* kick calling process */
3981
complete_request(mdsc, req);
3982
3983
ceph_update_metadata_metrics(&mdsc->metric, req->r_start_latency,
3984
req->r_end_latency, err);
3985
out:
3986
ceph_mdsc_put_request(req);
3987
3988
/* Defer closing the sessions after s_mutex lock being released */
3989
if (close_sessions)
3990
ceph_mdsc_close_sessions(mdsc);
3991
return;
3992
}
3993
3994
3995
3996
/*
3997
* handle mds notification that our request has been forwarded.
3998
*/
3999
static void handle_forward(struct ceph_mds_client *mdsc,
4000
struct ceph_mds_session *session,
4001
struct ceph_msg *msg)
4002
{
4003
struct ceph_client *cl = mdsc->fsc->client;
4004
struct ceph_mds_request *req;
4005
u64 tid = le64_to_cpu(msg->hdr.tid);
4006
u32 next_mds;
4007
u32 fwd_seq;
4008
int err = -EINVAL;
4009
void *p = msg->front.iov_base;
4010
void *end = p + msg->front.iov_len;
4011
bool aborted = false;
4012
4013
ceph_decode_need(&p, end, 2*sizeof(u32), bad);
4014
next_mds = ceph_decode_32(&p);
4015
fwd_seq = ceph_decode_32(&p);
4016
4017
mutex_lock(&mdsc->mutex);
4018
req = lookup_get_request(mdsc, tid);
4019
if (!req) {
4020
mutex_unlock(&mdsc->mutex);
4021
doutc(cl, "forward tid %llu to mds%d - req dne\n", tid, next_mds);
4022
return; /* dup reply? */
4023
}
4024
4025
if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
4026
doutc(cl, "forward tid %llu aborted, unregistering\n", tid);
4027
__unregister_request(mdsc, req);
4028
} else if (fwd_seq <= req->r_num_fwd || (uint32_t)fwd_seq >= U32_MAX) {
4029
/*
4030
* Avoid infinite retrying after overflow.
4031
*
4032
* The MDS will increase the fwd count and in client side
4033
* if the num_fwd is less than the one saved in request
4034
* that means the MDS is an old version and overflowed of
4035
* 8 bits.
4036
*/
4037
mutex_lock(&req->r_fill_mutex);
4038
req->r_err = -EMULTIHOP;
4039
set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
4040
mutex_unlock(&req->r_fill_mutex);
4041
aborted = true;
4042
pr_warn_ratelimited_client(cl, "forward tid %llu seq overflow\n",
4043
tid);
4044
} else {
4045
/* resend. forward race not possible; mds would drop */
4046
doutc(cl, "forward tid %llu to mds%d (we resend)\n", tid, next_mds);
4047
BUG_ON(req->r_err);
4048
BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags));
4049
req->r_attempts = 0;
4050
req->r_num_fwd = fwd_seq;
4051
req->r_resend_mds = next_mds;
4052
put_request_session(req);
4053
__do_request(mdsc, req);
4054
}
4055
mutex_unlock(&mdsc->mutex);
4056
4057
/* kick calling process */
4058
if (aborted)
4059
complete_request(mdsc, req);
4060
ceph_mdsc_put_request(req);
4061
return;
4062
4063
bad:
4064
pr_err_client(cl, "decode error err=%d\n", err);
4065
ceph_msg_dump(msg);
4066
}
4067
4068
static int __decode_session_metadata(void **p, void *end,
4069
bool *blocklisted)
4070
{
4071
/* map<string,string> */
4072
u32 n;
4073
bool err_str;
4074
ceph_decode_32_safe(p, end, n, bad);
4075
while (n-- > 0) {
4076
u32 len;
4077
ceph_decode_32_safe(p, end, len, bad);
4078
ceph_decode_need(p, end, len, bad);
4079
err_str = !strncmp(*p, "error_string", len);
4080
*p += len;
4081
ceph_decode_32_safe(p, end, len, bad);
4082
ceph_decode_need(p, end, len, bad);
4083
/*
4084
* Match "blocklisted (blacklisted)" from newer MDSes,
4085
* or "blacklisted" from older MDSes.
4086
*/
4087
if (err_str && strnstr(*p, "blacklisted", len))
4088
*blocklisted = true;
4089
*p += len;
4090
}
4091
return 0;
4092
bad:
4093
return -1;
4094
}
4095
4096
/*
4097
* handle a mds session control message
4098
*/
4099
static void handle_session(struct ceph_mds_session *session,
4100
struct ceph_msg *msg)
4101
{
4102
struct ceph_mds_client *mdsc = session->s_mdsc;
4103
struct ceph_client *cl = mdsc->fsc->client;
4104
int mds = session->s_mds;
4105
int msg_version = le16_to_cpu(msg->hdr.version);
4106
void *p = msg->front.iov_base;
4107
void *end = p + msg->front.iov_len;
4108
struct ceph_mds_session_head *h;
4109
struct ceph_mds_cap_auth *cap_auths = NULL;
4110
u32 op, cap_auths_num = 0;
4111
u64 seq, features = 0;
4112
int wake = 0;
4113
bool blocklisted = false;
4114
u32 i;
4115
4116
4117
/* decode */
4118
ceph_decode_need(&p, end, sizeof(*h), bad);
4119
h = p;
4120
p += sizeof(*h);
4121
4122
op = le32_to_cpu(h->op);
4123
seq = le64_to_cpu(h->seq);
4124
4125
if (msg_version >= 3) {
4126
u32 len;
4127
/* version >= 2 and < 5, decode metadata, skip otherwise
4128
* as it's handled via flags.
4129
*/
4130
if (msg_version >= 5)
4131
ceph_decode_skip_map(&p, end, string, string, bad);
4132
else if (__decode_session_metadata(&p, end, &blocklisted) < 0)
4133
goto bad;
4134
4135
/* version >= 3, feature bits */
4136
ceph_decode_32_safe(&p, end, len, bad);
4137
if (len) {
4138
ceph_decode_64_safe(&p, end, features, bad);
4139
p += len - sizeof(features);
4140
}
4141
}
4142
4143
if (msg_version >= 5) {
4144
u32 flags, len;
4145
4146
/* version >= 4 */
4147
ceph_decode_skip_16(&p, end, bad); /* struct_v, struct_cv */
4148
ceph_decode_32_safe(&p, end, len, bad); /* len */
4149
ceph_decode_skip_n(&p, end, len, bad); /* metric_spec */
4150
4151
/* version >= 5, flags */
4152
ceph_decode_32_safe(&p, end, flags, bad);
4153
if (flags & CEPH_SESSION_BLOCKLISTED) {
4154
pr_warn_client(cl, "mds%d session blocklisted\n",
4155
session->s_mds);
4156
blocklisted = true;
4157
}
4158
}
4159
4160
if (msg_version >= 6) {
4161
ceph_decode_32_safe(&p, end, cap_auths_num, bad);
4162
doutc(cl, "cap_auths_num %d\n", cap_auths_num);
4163
4164
if (cap_auths_num && op != CEPH_SESSION_OPEN) {
4165
WARN_ON_ONCE(op != CEPH_SESSION_OPEN);
4166
goto skip_cap_auths;
4167
}
4168
4169
cap_auths = kcalloc(cap_auths_num,
4170
sizeof(struct ceph_mds_cap_auth),
4171
GFP_KERNEL);
4172
if (!cap_auths) {
4173
pr_err_client(cl, "No memory for cap_auths\n");
4174
return;
4175
}
4176
4177
for (i = 0; i < cap_auths_num; i++) {
4178
u32 _len, j;
4179
4180
/* struct_v, struct_compat, and struct_len in MDSCapAuth */
4181
ceph_decode_skip_n(&p, end, 2 + sizeof(u32), bad);
4182
4183
/* struct_v, struct_compat, and struct_len in MDSCapMatch */
4184
ceph_decode_skip_n(&p, end, 2 + sizeof(u32), bad);
4185
ceph_decode_64_safe(&p, end, cap_auths[i].match.uid, bad);
4186
ceph_decode_32_safe(&p, end, _len, bad);
4187
if (_len) {
4188
cap_auths[i].match.gids = kcalloc(_len, sizeof(u32),
4189
GFP_KERNEL);
4190
if (!cap_auths[i].match.gids) {
4191
pr_err_client(cl, "No memory for gids\n");
4192
goto fail;
4193
}
4194
4195
cap_auths[i].match.num_gids = _len;
4196
for (j = 0; j < _len; j++)
4197
ceph_decode_32_safe(&p, end,
4198
cap_auths[i].match.gids[j],
4199
bad);
4200
}
4201
4202
ceph_decode_32_safe(&p, end, _len, bad);
4203
if (_len) {
4204
cap_auths[i].match.path = kcalloc(_len + 1, sizeof(char),
4205
GFP_KERNEL);
4206
if (!cap_auths[i].match.path) {
4207
pr_err_client(cl, "No memory for path\n");
4208
goto fail;
4209
}
4210
ceph_decode_copy(&p, cap_auths[i].match.path, _len);
4211
4212
/* Remove the tailing '/' */
4213
while (_len && cap_auths[i].match.path[_len - 1] == '/') {
4214
cap_auths[i].match.path[_len - 1] = '\0';
4215
_len -= 1;
4216
}
4217
}
4218
4219
ceph_decode_32_safe(&p, end, _len, bad);
4220
if (_len) {
4221
cap_auths[i].match.fs_name = kcalloc(_len + 1, sizeof(char),
4222
GFP_KERNEL);
4223
if (!cap_auths[i].match.fs_name) {
4224
pr_err_client(cl, "No memory for fs_name\n");
4225
goto fail;
4226
}
4227
ceph_decode_copy(&p, cap_auths[i].match.fs_name, _len);
4228
}
4229
4230
ceph_decode_8_safe(&p, end, cap_auths[i].match.root_squash, bad);
4231
ceph_decode_8_safe(&p, end, cap_auths[i].readable, bad);
4232
ceph_decode_8_safe(&p, end, cap_auths[i].writeable, bad);
4233
doutc(cl, "uid %lld, num_gids %u, path %s, fs_name %s, root_squash %d, readable %d, writeable %d\n",
4234
cap_auths[i].match.uid, cap_auths[i].match.num_gids,
4235
cap_auths[i].match.path, cap_auths[i].match.fs_name,
4236
cap_auths[i].match.root_squash,
4237
cap_auths[i].readable, cap_auths[i].writeable);
4238
}
4239
}
4240
4241
skip_cap_auths:
4242
mutex_lock(&mdsc->mutex);
4243
if (op == CEPH_SESSION_OPEN) {
4244
if (mdsc->s_cap_auths) {
4245
for (i = 0; i < mdsc->s_cap_auths_num; i++) {
4246
kfree(mdsc->s_cap_auths[i].match.gids);
4247
kfree(mdsc->s_cap_auths[i].match.path);
4248
kfree(mdsc->s_cap_auths[i].match.fs_name);
4249
}
4250
kfree(mdsc->s_cap_auths);
4251
}
4252
mdsc->s_cap_auths_num = cap_auths_num;
4253
mdsc->s_cap_auths = cap_auths;
4254
}
4255
if (op == CEPH_SESSION_CLOSE) {
4256
ceph_get_mds_session(session);
4257
__unregister_session(mdsc, session);
4258
}
4259
/* FIXME: this ttl calculation is generous */
4260
session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
4261
mutex_unlock(&mdsc->mutex);
4262
4263
mutex_lock(&session->s_mutex);
4264
4265
doutc(cl, "mds%d %s %p state %s seq %llu\n", mds,
4266
ceph_session_op_name(op), session,
4267
ceph_session_state_name(session->s_state), seq);
4268
4269
if (session->s_state == CEPH_MDS_SESSION_HUNG) {
4270
session->s_state = CEPH_MDS_SESSION_OPEN;
4271
pr_info_client(cl, "mds%d came back\n", session->s_mds);
4272
}
4273
4274
switch (op) {
4275
case CEPH_SESSION_OPEN:
4276
if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
4277
pr_info_client(cl, "mds%d reconnect success\n",
4278
session->s_mds);
4279
4280
session->s_features = features;
4281
if (session->s_state == CEPH_MDS_SESSION_OPEN) {
4282
pr_notice_client(cl, "mds%d is already opened\n",
4283
session->s_mds);
4284
} else {
4285
session->s_state = CEPH_MDS_SESSION_OPEN;
4286
renewed_caps(mdsc, session, 0);
4287
if (test_bit(CEPHFS_FEATURE_METRIC_COLLECT,
4288
&session->s_features))
4289
metric_schedule_delayed(&mdsc->metric);
4290
}
4291
4292
/*
4293
* The connection maybe broken and the session in client
4294
* side has been reinitialized, need to update the seq
4295
* anyway.
4296
*/
4297
if (!session->s_seq && seq)
4298
session->s_seq = seq;
4299
4300
wake = 1;
4301
if (mdsc->stopping)
4302
__close_session(mdsc, session);
4303
break;
4304
4305
case CEPH_SESSION_RENEWCAPS:
4306
if (session->s_renew_seq == seq)
4307
renewed_caps(mdsc, session, 1);
4308
break;
4309
4310
case CEPH_SESSION_CLOSE:
4311
if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
4312
pr_info_client(cl, "mds%d reconnect denied\n",
4313
session->s_mds);
4314
session->s_state = CEPH_MDS_SESSION_CLOSED;
4315
cleanup_session_requests(mdsc, session);
4316
remove_session_caps(session);
4317
wake = 2; /* for good measure */
4318
wake_up_all(&mdsc->session_close_wq);
4319
break;
4320
4321
case CEPH_SESSION_STALE:
4322
pr_info_client(cl, "mds%d caps went stale, renewing\n",
4323
session->s_mds);
4324
atomic_inc(&session->s_cap_gen);
4325
session->s_cap_ttl = jiffies - 1;
4326
send_renew_caps(mdsc, session);
4327
break;
4328
4329
case CEPH_SESSION_RECALL_STATE:
4330
ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
4331
break;
4332
4333
case CEPH_SESSION_FLUSHMSG:
4334
/* flush cap releases */
4335
spin_lock(&session->s_cap_lock);
4336
if (session->s_num_cap_releases)
4337
ceph_flush_session_cap_releases(mdsc, session);
4338
spin_unlock(&session->s_cap_lock);
4339
4340
send_flushmsg_ack(mdsc, session, seq);
4341
break;
4342
4343
case CEPH_SESSION_FORCE_RO:
4344
doutc(cl, "force_session_readonly %p\n", session);
4345
spin_lock(&session->s_cap_lock);
4346
session->s_readonly = true;
4347
spin_unlock(&session->s_cap_lock);
4348
wake_up_session_caps(session, FORCE_RO);
4349
break;
4350
4351
case CEPH_SESSION_REJECT:
4352
WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING);
4353
pr_info_client(cl, "mds%d rejected session\n",
4354
session->s_mds);
4355
session->s_state = CEPH_MDS_SESSION_REJECTED;
4356
cleanup_session_requests(mdsc, session);
4357
remove_session_caps(session);
4358
if (blocklisted)
4359
mdsc->fsc->blocklisted = true;
4360
wake = 2; /* for good measure */
4361
break;
4362
4363
default:
4364
pr_err_client(cl, "bad op %d mds%d\n", op, mds);
4365
WARN_ON(1);
4366
}
4367
4368
mutex_unlock(&session->s_mutex);
4369
if (wake) {
4370
mutex_lock(&mdsc->mutex);
4371
__wake_requests(mdsc, &session->s_waiting);
4372
if (wake == 2)
4373
kick_requests(mdsc, mds);
4374
mutex_unlock(&mdsc->mutex);
4375
}
4376
if (op == CEPH_SESSION_CLOSE)
4377
ceph_put_mds_session(session);
4378
return;
4379
4380
bad:
4381
pr_err_client(cl, "corrupt message mds%d len %d\n", mds,
4382
(int)msg->front.iov_len);
4383
ceph_msg_dump(msg);
4384
fail:
4385
for (i = 0; i < cap_auths_num; i++) {
4386
kfree(cap_auths[i].match.gids);
4387
kfree(cap_auths[i].match.path);
4388
kfree(cap_auths[i].match.fs_name);
4389
}
4390
kfree(cap_auths);
4391
return;
4392
}
4393
4394
void ceph_mdsc_release_dir_caps(struct ceph_mds_request *req)
4395
{
4396
struct ceph_client *cl = req->r_mdsc->fsc->client;
4397
int dcaps;
4398
4399
dcaps = xchg(&req->r_dir_caps, 0);
4400
if (dcaps) {
4401
doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps));
4402
ceph_put_cap_refs(ceph_inode(req->r_parent), dcaps);
4403
}
4404
}
4405
4406
void ceph_mdsc_release_dir_caps_async(struct ceph_mds_request *req)
4407
{
4408
struct ceph_client *cl = req->r_mdsc->fsc->client;
4409
int dcaps;
4410
4411
dcaps = xchg(&req->r_dir_caps, 0);
4412
if (dcaps) {
4413
doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps));
4414
ceph_put_cap_refs_async(ceph_inode(req->r_parent), dcaps);
4415
}
4416
}
4417
4418
/*
4419
* called under session->mutex.
4420
*/
4421
static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
4422
struct ceph_mds_session *session)
4423
{
4424
struct ceph_mds_request *req, *nreq;
4425
struct rb_node *p;
4426
4427
doutc(mdsc->fsc->client, "mds%d\n", session->s_mds);
4428
4429
mutex_lock(&mdsc->mutex);
4430
list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item)
4431
__send_request(session, req, true);
4432
4433
/*
4434
* also re-send old requests when MDS enters reconnect stage. So that MDS
4435
* can process completed request in clientreplay stage.
4436
*/
4437
p = rb_first(&mdsc->request_tree);
4438
while (p) {
4439
req = rb_entry(p, struct ceph_mds_request, r_node);
4440
p = rb_next(p);
4441
if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
4442
continue;
4443
if (req->r_attempts == 0)
4444
continue; /* only old requests */
4445
if (!req->r_session)
4446
continue;
4447
if (req->r_session->s_mds != session->s_mds)
4448
continue;
4449
4450
ceph_mdsc_release_dir_caps_async(req);
4451
4452
__send_request(session, req, true);
4453
}
4454
mutex_unlock(&mdsc->mutex);
4455
}
4456
4457
static int send_reconnect_partial(struct ceph_reconnect_state *recon_state)
4458
{
4459
struct ceph_msg *reply;
4460
struct ceph_pagelist *_pagelist;
4461
struct page *page;
4462
__le32 *addr;
4463
int err = -ENOMEM;
4464
4465
if (!recon_state->allow_multi)
4466
return -ENOSPC;
4467
4468
/* can't handle message that contains both caps and realm */
4469
BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms);
4470
4471
/* pre-allocate new pagelist */
4472
_pagelist = ceph_pagelist_alloc(GFP_NOFS);
4473
if (!_pagelist)
4474
return -ENOMEM;
4475
4476
reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false);
4477
if (!reply)
4478
goto fail_msg;
4479
4480
/* placeholder for nr_caps */
4481
err = ceph_pagelist_encode_32(_pagelist, 0);
4482
if (err < 0)
4483
goto fail;
4484
4485
if (recon_state->nr_caps) {
4486
/* currently encoding caps */
4487
err = ceph_pagelist_encode_32(recon_state->pagelist, 0);
4488
if (err)
4489
goto fail;
4490
} else {
4491
/* placeholder for nr_realms (currently encoding relams) */
4492
err = ceph_pagelist_encode_32(_pagelist, 0);
4493
if (err < 0)
4494
goto fail;
4495
}
4496
4497
err = ceph_pagelist_encode_8(recon_state->pagelist, 1);
4498
if (err)
4499
goto fail;
4500
4501
page = list_first_entry(&recon_state->pagelist->head, struct page, lru);
4502
addr = kmap_atomic(page);
4503
if (recon_state->nr_caps) {
4504
/* currently encoding caps */
4505
*addr = cpu_to_le32(recon_state->nr_caps);
4506
} else {
4507
/* currently encoding relams */
4508
*(addr + 1) = cpu_to_le32(recon_state->nr_realms);
4509
}
4510
kunmap_atomic(addr);
4511
4512
reply->hdr.version = cpu_to_le16(5);
4513
reply->hdr.compat_version = cpu_to_le16(4);
4514
4515
reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length);
4516
ceph_msg_data_add_pagelist(reply, recon_state->pagelist);
4517
4518
ceph_con_send(&recon_state->session->s_con, reply);
4519
ceph_pagelist_release(recon_state->pagelist);
4520
4521
recon_state->pagelist = _pagelist;
4522
recon_state->nr_caps = 0;
4523
recon_state->nr_realms = 0;
4524
recon_state->msg_version = 5;
4525
return 0;
4526
fail:
4527
ceph_msg_put(reply);
4528
fail_msg:
4529
ceph_pagelist_release(_pagelist);
4530
return err;
4531
}
4532
4533
static struct dentry* d_find_primary(struct inode *inode)
4534
{
4535
struct dentry *alias, *dn = NULL;
4536
4537
if (hlist_empty(&inode->i_dentry))
4538
return NULL;
4539
4540
spin_lock(&inode->i_lock);
4541
if (hlist_empty(&inode->i_dentry))
4542
goto out_unlock;
4543
4544
if (S_ISDIR(inode->i_mode)) {
4545
alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
4546
if (!IS_ROOT(alias))
4547
dn = dget(alias);
4548
goto out_unlock;
4549
}
4550
4551
hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
4552
spin_lock(&alias->d_lock);
4553
if (!d_unhashed(alias) &&
4554
(ceph_dentry(alias)->flags & CEPH_DENTRY_PRIMARY_LINK)) {
4555
dn = dget_dlock(alias);
4556
}
4557
spin_unlock(&alias->d_lock);
4558
if (dn)
4559
break;
4560
}
4561
out_unlock:
4562
spin_unlock(&inode->i_lock);
4563
return dn;
4564
}
4565
4566
/*
4567
* Encode information about a cap for a reconnect with the MDS.
4568
*/
4569
static int reconnect_caps_cb(struct inode *inode, int mds, void *arg)
4570
{
4571
struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
4572
struct ceph_client *cl = ceph_inode_to_client(inode);
4573
union {
4574
struct ceph_mds_cap_reconnect v2;
4575
struct ceph_mds_cap_reconnect_v1 v1;
4576
} rec;
4577
struct ceph_inode_info *ci = ceph_inode(inode);
4578
struct ceph_reconnect_state *recon_state = arg;
4579
struct ceph_pagelist *pagelist = recon_state->pagelist;
4580
struct dentry *dentry;
4581
struct ceph_cap *cap;
4582
char *path;
4583
int pathlen = 0, err;
4584
u64 pathbase;
4585
u64 snap_follows;
4586
4587
dentry = d_find_primary(inode);
4588
if (dentry) {
4589
/* set pathbase to parent dir when msg_version >= 2 */
4590
path = ceph_mdsc_build_path(mdsc, dentry, &pathlen, &pathbase,
4591
recon_state->msg_version >= 2);
4592
dput(dentry);
4593
if (IS_ERR(path)) {
4594
err = PTR_ERR(path);
4595
goto out_err;
4596
}
4597
} else {
4598
path = NULL;
4599
pathbase = 0;
4600
}
4601
4602
spin_lock(&ci->i_ceph_lock);
4603
cap = __get_cap_for_mds(ci, mds);
4604
if (!cap) {
4605
spin_unlock(&ci->i_ceph_lock);
4606
err = 0;
4607
goto out_err;
4608
}
4609
doutc(cl, " adding %p ino %llx.%llx cap %p %lld %s\n", inode,
4610
ceph_vinop(inode), cap, cap->cap_id,
4611
ceph_cap_string(cap->issued));
4612
4613
cap->seq = 0; /* reset cap seq */
4614
cap->issue_seq = 0; /* and issue_seq */
4615
cap->mseq = 0; /* and migrate_seq */
4616
cap->cap_gen = atomic_read(&cap->session->s_cap_gen);
4617
4618
/* These are lost when the session goes away */
4619
if (S_ISDIR(inode->i_mode)) {
4620
if (cap->issued & CEPH_CAP_DIR_CREATE) {
4621
ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns));
4622
memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout));
4623
}
4624
cap->issued &= ~CEPH_CAP_ANY_DIR_OPS;
4625
}
4626
4627
if (recon_state->msg_version >= 2) {
4628
rec.v2.cap_id = cpu_to_le64(cap->cap_id);
4629
rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
4630
rec.v2.issued = cpu_to_le32(cap->issued);
4631
rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
4632
rec.v2.pathbase = cpu_to_le64(pathbase);
4633
rec.v2.flock_len = (__force __le32)
4634
((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1);
4635
} else {
4636
struct timespec64 ts;
4637
4638
rec.v1.cap_id = cpu_to_le64(cap->cap_id);
4639
rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
4640
rec.v1.issued = cpu_to_le32(cap->issued);
4641
rec.v1.size = cpu_to_le64(i_size_read(inode));
4642
ts = inode_get_mtime(inode);
4643
ceph_encode_timespec64(&rec.v1.mtime, &ts);
4644
ts = inode_get_atime(inode);
4645
ceph_encode_timespec64(&rec.v1.atime, &ts);
4646
rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
4647
rec.v1.pathbase = cpu_to_le64(pathbase);
4648
}
4649
4650
if (list_empty(&ci->i_cap_snaps)) {
4651
snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0;
4652
} else {
4653
struct ceph_cap_snap *capsnap =
4654
list_first_entry(&ci->i_cap_snaps,
4655
struct ceph_cap_snap, ci_item);
4656
snap_follows = capsnap->follows;
4657
}
4658
spin_unlock(&ci->i_ceph_lock);
4659
4660
if (recon_state->msg_version >= 2) {
4661
int num_fcntl_locks, num_flock_locks;
4662
struct ceph_filelock *flocks = NULL;
4663
size_t struct_len, total_len = sizeof(u64);
4664
u8 struct_v = 0;
4665
4666
encode_again:
4667
if (rec.v2.flock_len) {
4668
ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
4669
} else {
4670
num_fcntl_locks = 0;
4671
num_flock_locks = 0;
4672
}
4673
if (num_fcntl_locks + num_flock_locks > 0) {
4674
flocks = kmalloc_array(num_fcntl_locks + num_flock_locks,
4675
sizeof(struct ceph_filelock),
4676
GFP_NOFS);
4677
if (!flocks) {
4678
err = -ENOMEM;
4679
goto out_err;
4680
}
4681
err = ceph_encode_locks_to_buffer(inode, flocks,
4682
num_fcntl_locks,
4683
num_flock_locks);
4684
if (err) {
4685
kfree(flocks);
4686
flocks = NULL;
4687
if (err == -ENOSPC)
4688
goto encode_again;
4689
goto out_err;
4690
}
4691
} else {
4692
kfree(flocks);
4693
flocks = NULL;
4694
}
4695
4696
if (recon_state->msg_version >= 3) {
4697
/* version, compat_version and struct_len */
4698
total_len += 2 * sizeof(u8) + sizeof(u32);
4699
struct_v = 2;
4700
}
4701
/*
4702
* number of encoded locks is stable, so copy to pagelist
4703
*/
4704
struct_len = 2 * sizeof(u32) +
4705
(num_fcntl_locks + num_flock_locks) *
4706
sizeof(struct ceph_filelock);
4707
rec.v2.flock_len = cpu_to_le32(struct_len);
4708
4709
struct_len += sizeof(u32) + pathlen + sizeof(rec.v2);
4710
4711
if (struct_v >= 2)
4712
struct_len += sizeof(u64); /* snap_follows */
4713
4714
total_len += struct_len;
4715
4716
if (pagelist->length + total_len > RECONNECT_MAX_SIZE) {
4717
err = send_reconnect_partial(recon_state);
4718
if (err)
4719
goto out_freeflocks;
4720
pagelist = recon_state->pagelist;
4721
}
4722
4723
err = ceph_pagelist_reserve(pagelist, total_len);
4724
if (err)
4725
goto out_freeflocks;
4726
4727
ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
4728
if (recon_state->msg_version >= 3) {
4729
ceph_pagelist_encode_8(pagelist, struct_v);
4730
ceph_pagelist_encode_8(pagelist, 1);
4731
ceph_pagelist_encode_32(pagelist, struct_len);
4732
}
4733
ceph_pagelist_encode_string(pagelist, path, pathlen);
4734
ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2));
4735
ceph_locks_to_pagelist(flocks, pagelist,
4736
num_fcntl_locks, num_flock_locks);
4737
if (struct_v >= 2)
4738
ceph_pagelist_encode_64(pagelist, snap_follows);
4739
out_freeflocks:
4740
kfree(flocks);
4741
} else {
4742
err = ceph_pagelist_reserve(pagelist,
4743
sizeof(u64) + sizeof(u32) +
4744
pathlen + sizeof(rec.v1));
4745
if (err)
4746
goto out_err;
4747
4748
ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
4749
ceph_pagelist_encode_string(pagelist, path, pathlen);
4750
ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1));
4751
}
4752
4753
out_err:
4754
ceph_mdsc_free_path(path, pathlen);
4755
if (!err)
4756
recon_state->nr_caps++;
4757
return err;
4758
}
4759
4760
static int encode_snap_realms(struct ceph_mds_client *mdsc,
4761
struct ceph_reconnect_state *recon_state)
4762
{
4763
struct rb_node *p;
4764
struct ceph_pagelist *pagelist = recon_state->pagelist;
4765
struct ceph_client *cl = mdsc->fsc->client;
4766
int err = 0;
4767
4768
if (recon_state->msg_version >= 4) {
4769
err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms);
4770
if (err < 0)
4771
goto fail;
4772
}
4773
4774
/*
4775
* snaprealms. we provide mds with the ino, seq (version), and
4776
* parent for all of our realms. If the mds has any newer info,
4777
* it will tell us.
4778
*/
4779
for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
4780
struct ceph_snap_realm *realm =
4781
rb_entry(p, struct ceph_snap_realm, node);
4782
struct ceph_mds_snaprealm_reconnect sr_rec;
4783
4784
if (recon_state->msg_version >= 4) {
4785
size_t need = sizeof(u8) * 2 + sizeof(u32) +
4786
sizeof(sr_rec);
4787
4788
if (pagelist->length + need > RECONNECT_MAX_SIZE) {
4789
err = send_reconnect_partial(recon_state);
4790
if (err)
4791
goto fail;
4792
pagelist = recon_state->pagelist;
4793
}
4794
4795
err = ceph_pagelist_reserve(pagelist, need);
4796
if (err)
4797
goto fail;
4798
4799
ceph_pagelist_encode_8(pagelist, 1);
4800
ceph_pagelist_encode_8(pagelist, 1);
4801
ceph_pagelist_encode_32(pagelist, sizeof(sr_rec));
4802
}
4803
4804
doutc(cl, " adding snap realm %llx seq %lld parent %llx\n",
4805
realm->ino, realm->seq, realm->parent_ino);
4806
sr_rec.ino = cpu_to_le64(realm->ino);
4807
sr_rec.seq = cpu_to_le64(realm->seq);
4808
sr_rec.parent = cpu_to_le64(realm->parent_ino);
4809
4810
err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
4811
if (err)
4812
goto fail;
4813
4814
recon_state->nr_realms++;
4815
}
4816
fail:
4817
return err;
4818
}
4819
4820
4821
/*
4822
* If an MDS fails and recovers, clients need to reconnect in order to
4823
* reestablish shared state. This includes all caps issued through
4824
* this session _and_ the snap_realm hierarchy. Because it's not
4825
* clear which snap realms the mds cares about, we send everything we
4826
* know about.. that ensures we'll then get any new info the
4827
* recovering MDS might have.
4828
*
4829
* This is a relatively heavyweight operation, but it's rare.
4830
*/
4831
static void send_mds_reconnect(struct ceph_mds_client *mdsc,
4832
struct ceph_mds_session *session)
4833
{
4834
struct ceph_client *cl = mdsc->fsc->client;
4835
struct ceph_msg *reply;
4836
int mds = session->s_mds;
4837
int err = -ENOMEM;
4838
struct ceph_reconnect_state recon_state = {
4839
.session = session,
4840
};
4841
LIST_HEAD(dispose);
4842
4843
pr_info_client(cl, "mds%d reconnect start\n", mds);
4844
4845
recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS);
4846
if (!recon_state.pagelist)
4847
goto fail_nopagelist;
4848
4849
reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false);
4850
if (!reply)
4851
goto fail_nomsg;
4852
4853
xa_destroy(&session->s_delegated_inos);
4854
4855
mutex_lock(&session->s_mutex);
4856
session->s_state = CEPH_MDS_SESSION_RECONNECTING;
4857
session->s_seq = 0;
4858
4859
doutc(cl, "session %p state %s\n", session,
4860
ceph_session_state_name(session->s_state));
4861
4862
atomic_inc(&session->s_cap_gen);
4863
4864
spin_lock(&session->s_cap_lock);
4865
/* don't know if session is readonly */
4866
session->s_readonly = 0;
4867
/*
4868
* notify __ceph_remove_cap() that we are composing cap reconnect.
4869
* If a cap get released before being added to the cap reconnect,
4870
* __ceph_remove_cap() should skip queuing cap release.
4871
*/
4872
session->s_cap_reconnect = 1;
4873
/* drop old cap expires; we're about to reestablish that state */
4874
detach_cap_releases(session, &dispose);
4875
spin_unlock(&session->s_cap_lock);
4876
dispose_cap_releases(mdsc, &dispose);
4877
4878
/* trim unused caps to reduce MDS's cache rejoin time */
4879
if (mdsc->fsc->sb->s_root)
4880
shrink_dcache_parent(mdsc->fsc->sb->s_root);
4881
4882
ceph_con_close(&session->s_con);
4883
ceph_con_open(&session->s_con,
4884
CEPH_ENTITY_TYPE_MDS, mds,
4885
ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
4886
4887
/* replay unsafe requests */
4888
replay_unsafe_requests(mdsc, session);
4889
4890
ceph_early_kick_flushing_caps(mdsc, session);
4891
4892
down_read(&mdsc->snap_rwsem);
4893
4894
/* placeholder for nr_caps */
4895
err = ceph_pagelist_encode_32(recon_state.pagelist, 0);
4896
if (err)
4897
goto fail;
4898
4899
if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) {
4900
recon_state.msg_version = 3;
4901
recon_state.allow_multi = true;
4902
} else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) {
4903
recon_state.msg_version = 3;
4904
} else {
4905
recon_state.msg_version = 2;
4906
}
4907
/* traverse this session's caps */
4908
err = ceph_iterate_session_caps(session, reconnect_caps_cb, &recon_state);
4909
4910
spin_lock(&session->s_cap_lock);
4911
session->s_cap_reconnect = 0;
4912
spin_unlock(&session->s_cap_lock);
4913
4914
if (err < 0)
4915
goto fail;
4916
4917
/* check if all realms can be encoded into current message */
4918
if (mdsc->num_snap_realms) {
4919
size_t total_len =
4920
recon_state.pagelist->length +
4921
mdsc->num_snap_realms *
4922
sizeof(struct ceph_mds_snaprealm_reconnect);
4923
if (recon_state.msg_version >= 4) {
4924
/* number of realms */
4925
total_len += sizeof(u32);
4926
/* version, compat_version and struct_len */
4927
total_len += mdsc->num_snap_realms *
4928
(2 * sizeof(u8) + sizeof(u32));
4929
}
4930
if (total_len > RECONNECT_MAX_SIZE) {
4931
if (!recon_state.allow_multi) {
4932
err = -ENOSPC;
4933
goto fail;
4934
}
4935
if (recon_state.nr_caps) {
4936
err = send_reconnect_partial(&recon_state);
4937
if (err)
4938
goto fail;
4939
}
4940
recon_state.msg_version = 5;
4941
}
4942
}
4943
4944
err = encode_snap_realms(mdsc, &recon_state);
4945
if (err < 0)
4946
goto fail;
4947
4948
if (recon_state.msg_version >= 5) {
4949
err = ceph_pagelist_encode_8(recon_state.pagelist, 0);
4950
if (err < 0)
4951
goto fail;
4952
}
4953
4954
if (recon_state.nr_caps || recon_state.nr_realms) {
4955
struct page *page =
4956
list_first_entry(&recon_state.pagelist->head,
4957
struct page, lru);
4958
__le32 *addr = kmap_atomic(page);
4959
if (recon_state.nr_caps) {
4960
WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms);
4961
*addr = cpu_to_le32(recon_state.nr_caps);
4962
} else if (recon_state.msg_version >= 4) {
4963
*(addr + 1) = cpu_to_le32(recon_state.nr_realms);
4964
}
4965
kunmap_atomic(addr);
4966
}
4967
4968
reply->hdr.version = cpu_to_le16(recon_state.msg_version);
4969
if (recon_state.msg_version >= 4)
4970
reply->hdr.compat_version = cpu_to_le16(4);
4971
4972
reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length);
4973
ceph_msg_data_add_pagelist(reply, recon_state.pagelist);
4974
4975
ceph_con_send(&session->s_con, reply);
4976
4977
mutex_unlock(&session->s_mutex);
4978
4979
mutex_lock(&mdsc->mutex);
4980
__wake_requests(mdsc, &session->s_waiting);
4981
mutex_unlock(&mdsc->mutex);
4982
4983
up_read(&mdsc->snap_rwsem);
4984
ceph_pagelist_release(recon_state.pagelist);
4985
return;
4986
4987
fail:
4988
ceph_msg_put(reply);
4989
up_read(&mdsc->snap_rwsem);
4990
mutex_unlock(&session->s_mutex);
4991
fail_nomsg:
4992
ceph_pagelist_release(recon_state.pagelist);
4993
fail_nopagelist:
4994
pr_err_client(cl, "error %d preparing reconnect for mds%d\n",
4995
err, mds);
4996
return;
4997
}
4998
4999
5000
/*
5001
* compare old and new mdsmaps, kicking requests
5002
* and closing out old connections as necessary
5003
*
5004
* called under mdsc->mutex.
5005
*/
5006
static void check_new_map(struct ceph_mds_client *mdsc,
5007
struct ceph_mdsmap *newmap,
5008
struct ceph_mdsmap *oldmap)
5009
{
5010
int i, j, err;
5011
int oldstate, newstate;
5012
struct ceph_mds_session *s;
5013
unsigned long targets[DIV_ROUND_UP(CEPH_MAX_MDS, sizeof(unsigned long))] = {0};
5014
struct ceph_client *cl = mdsc->fsc->client;
5015
5016
doutc(cl, "new %u old %u\n", newmap->m_epoch, oldmap->m_epoch);
5017
5018
if (newmap->m_info) {
5019
for (i = 0; i < newmap->possible_max_rank; i++) {
5020
for (j = 0; j < newmap->m_info[i].num_export_targets; j++)
5021
set_bit(newmap->m_info[i].export_targets[j], targets);
5022
}
5023
}
5024
5025
for (i = 0; i < oldmap->possible_max_rank && i < mdsc->max_sessions; i++) {
5026
if (!mdsc->sessions[i])
5027
continue;
5028
s = mdsc->sessions[i];
5029
oldstate = ceph_mdsmap_get_state(oldmap, i);
5030
newstate = ceph_mdsmap_get_state(newmap, i);
5031
5032
doutc(cl, "mds%d state %s%s -> %s%s (session %s)\n",
5033
i, ceph_mds_state_name(oldstate),
5034
ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
5035
ceph_mds_state_name(newstate),
5036
ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
5037
ceph_session_state_name(s->s_state));
5038
5039
if (i >= newmap->possible_max_rank) {
5040
/* force close session for stopped mds */
5041
ceph_get_mds_session(s);
5042
__unregister_session(mdsc, s);
5043
__wake_requests(mdsc, &s->s_waiting);
5044
mutex_unlock(&mdsc->mutex);
5045
5046
mutex_lock(&s->s_mutex);
5047
cleanup_session_requests(mdsc, s);
5048
remove_session_caps(s);
5049
mutex_unlock(&s->s_mutex);
5050
5051
ceph_put_mds_session(s);
5052
5053
mutex_lock(&mdsc->mutex);
5054
kick_requests(mdsc, i);
5055
continue;
5056
}
5057
5058
if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
5059
ceph_mdsmap_get_addr(newmap, i),
5060
sizeof(struct ceph_entity_addr))) {
5061
/* just close it */
5062
mutex_unlock(&mdsc->mutex);
5063
mutex_lock(&s->s_mutex);
5064
mutex_lock(&mdsc->mutex);
5065
ceph_con_close(&s->s_con);
5066
mutex_unlock(&s->s_mutex);
5067
s->s_state = CEPH_MDS_SESSION_RESTARTING;
5068
} else if (oldstate == newstate) {
5069
continue; /* nothing new with this mds */
5070
}
5071
5072
/*
5073
* send reconnect?
5074
*/
5075
if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
5076
newstate >= CEPH_MDS_STATE_RECONNECT) {
5077
mutex_unlock(&mdsc->mutex);
5078
clear_bit(i, targets);
5079
send_mds_reconnect(mdsc, s);
5080
mutex_lock(&mdsc->mutex);
5081
}
5082
5083
/*
5084
* kick request on any mds that has gone active.
5085
*/
5086
if (oldstate < CEPH_MDS_STATE_ACTIVE &&
5087
newstate >= CEPH_MDS_STATE_ACTIVE) {
5088
if (oldstate != CEPH_MDS_STATE_CREATING &&
5089
oldstate != CEPH_MDS_STATE_STARTING)
5090
pr_info_client(cl, "mds%d recovery completed\n",
5091
s->s_mds);
5092
kick_requests(mdsc, i);
5093
mutex_unlock(&mdsc->mutex);
5094
mutex_lock(&s->s_mutex);
5095
mutex_lock(&mdsc->mutex);
5096
ceph_kick_flushing_caps(mdsc, s);
5097
mutex_unlock(&s->s_mutex);
5098
wake_up_session_caps(s, RECONNECT);
5099
}
5100
}
5101
5102
/*
5103
* Only open and reconnect sessions that don't exist yet.
5104
*/
5105
for (i = 0; i < newmap->possible_max_rank; i++) {
5106
/*
5107
* In case the import MDS is crashed just after
5108
* the EImportStart journal is flushed, so when
5109
* a standby MDS takes over it and is replaying
5110
* the EImportStart journal the new MDS daemon
5111
* will wait the client to reconnect it, but the
5112
* client may never register/open the session yet.
5113
*
5114
* Will try to reconnect that MDS daemon if the
5115
* rank number is in the export targets array and
5116
* is the up:reconnect state.
5117
*/
5118
newstate = ceph_mdsmap_get_state(newmap, i);
5119
if (!test_bit(i, targets) || newstate != CEPH_MDS_STATE_RECONNECT)
5120
continue;
5121
5122
/*
5123
* The session maybe registered and opened by some
5124
* requests which were choosing random MDSes during
5125
* the mdsc->mutex's unlock/lock gap below in rare
5126
* case. But the related MDS daemon will just queue
5127
* that requests and be still waiting for the client's
5128
* reconnection request in up:reconnect state.
5129
*/
5130
s = __ceph_lookup_mds_session(mdsc, i);
5131
if (likely(!s)) {
5132
s = __open_export_target_session(mdsc, i);
5133
if (IS_ERR(s)) {
5134
err = PTR_ERR(s);
5135
pr_err_client(cl,
5136
"failed to open export target session, err %d\n",
5137
err);
5138
continue;
5139
}
5140
}
5141
doutc(cl, "send reconnect to export target mds.%d\n", i);
5142
mutex_unlock(&mdsc->mutex);
5143
send_mds_reconnect(mdsc, s);
5144
ceph_put_mds_session(s);
5145
mutex_lock(&mdsc->mutex);
5146
}
5147
5148
for (i = 0; i < newmap->possible_max_rank && i < mdsc->max_sessions; i++) {
5149
s = mdsc->sessions[i];
5150
if (!s)
5151
continue;
5152
if (!ceph_mdsmap_is_laggy(newmap, i))
5153
continue;
5154
if (s->s_state == CEPH_MDS_SESSION_OPEN ||
5155
s->s_state == CEPH_MDS_SESSION_HUNG ||
5156
s->s_state == CEPH_MDS_SESSION_CLOSING) {
5157
doutc(cl, " connecting to export targets of laggy mds%d\n", i);
5158
__open_export_target_sessions(mdsc, s);
5159
}
5160
}
5161
}
5162
5163
5164
5165
/*
5166
* leases
5167
*/
5168
5169
/*
5170
* caller must hold session s_mutex, dentry->d_lock
5171
*/
5172
void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
5173
{
5174
struct ceph_dentry_info *di = ceph_dentry(dentry);
5175
5176
ceph_put_mds_session(di->lease_session);
5177
di->lease_session = NULL;
5178
}
5179
5180
static void handle_lease(struct ceph_mds_client *mdsc,
5181
struct ceph_mds_session *session,
5182
struct ceph_msg *msg)
5183
{
5184
struct ceph_client *cl = mdsc->fsc->client;
5185
struct super_block *sb = mdsc->fsc->sb;
5186
struct inode *inode;
5187
struct dentry *parent, *dentry;
5188
struct ceph_dentry_info *di;
5189
int mds = session->s_mds;
5190
struct ceph_mds_lease *h = msg->front.iov_base;
5191
u32 seq;
5192
struct ceph_vino vino;
5193
struct qstr dname;
5194
int release = 0;
5195
5196
doutc(cl, "from mds%d\n", mds);
5197
5198
if (!ceph_inc_mds_stopping_blocker(mdsc, session))
5199
return;
5200
5201
/* decode */
5202
if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
5203
goto bad;
5204
vino.ino = le64_to_cpu(h->ino);
5205
vino.snap = CEPH_NOSNAP;
5206
seq = le32_to_cpu(h->seq);
5207
dname.len = get_unaligned_le32(h + 1);
5208
if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len)
5209
goto bad;
5210
dname.name = (void *)(h + 1) + sizeof(u32);
5211
5212
/* lookup inode */
5213
inode = ceph_find_inode(sb, vino);
5214
doutc(cl, "%s, ino %llx %p %.*s\n", ceph_lease_op_name(h->action),
5215
vino.ino, inode, dname.len, dname.name);
5216
5217
mutex_lock(&session->s_mutex);
5218
if (!inode) {
5219
doutc(cl, "no inode %llx\n", vino.ino);
5220
goto release;
5221
}
5222
5223
/* dentry */
5224
parent = d_find_alias(inode);
5225
if (!parent) {
5226
doutc(cl, "no parent dentry on inode %p\n", inode);
5227
WARN_ON(1);
5228
goto release; /* hrm... */
5229
}
5230
dname.hash = full_name_hash(parent, dname.name, dname.len);
5231
dentry = d_lookup(parent, &dname);
5232
dput(parent);
5233
if (!dentry)
5234
goto release;
5235
5236
spin_lock(&dentry->d_lock);
5237
di = ceph_dentry(dentry);
5238
switch (h->action) {
5239
case CEPH_MDS_LEASE_REVOKE:
5240
if (di->lease_session == session) {
5241
if (ceph_seq_cmp(di->lease_seq, seq) > 0)
5242
h->seq = cpu_to_le32(di->lease_seq);
5243
__ceph_mdsc_drop_dentry_lease(dentry);
5244
}
5245
release = 1;
5246
break;
5247
5248
case CEPH_MDS_LEASE_RENEW:
5249
if (di->lease_session == session &&
5250
di->lease_gen == atomic_read(&session->s_cap_gen) &&
5251
di->lease_renew_from &&
5252
di->lease_renew_after == 0) {
5253
unsigned long duration =
5254
msecs_to_jiffies(le32_to_cpu(h->duration_ms));
5255
5256
di->lease_seq = seq;
5257
di->time = di->lease_renew_from + duration;
5258
di->lease_renew_after = di->lease_renew_from +
5259
(duration >> 1);
5260
di->lease_renew_from = 0;
5261
}
5262
break;
5263
}
5264
spin_unlock(&dentry->d_lock);
5265
dput(dentry);
5266
5267
if (!release)
5268
goto out;
5269
5270
release:
5271
/* let's just reuse the same message */
5272
h->action = CEPH_MDS_LEASE_REVOKE_ACK;
5273
ceph_msg_get(msg);
5274
ceph_con_send(&session->s_con, msg);
5275
5276
out:
5277
mutex_unlock(&session->s_mutex);
5278
iput(inode);
5279
5280
ceph_dec_mds_stopping_blocker(mdsc);
5281
return;
5282
5283
bad:
5284
ceph_dec_mds_stopping_blocker(mdsc);
5285
5286
pr_err_client(cl, "corrupt lease message\n");
5287
ceph_msg_dump(msg);
5288
}
5289
5290
void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
5291
struct dentry *dentry, char action,
5292
u32 seq)
5293
{
5294
struct ceph_client *cl = session->s_mdsc->fsc->client;
5295
struct ceph_msg *msg;
5296
struct ceph_mds_lease *lease;
5297
struct inode *dir;
5298
int len = sizeof(*lease) + sizeof(u32) + NAME_MAX;
5299
5300
doutc(cl, "identry %p %s to mds%d\n", dentry, ceph_lease_op_name(action),
5301
session->s_mds);
5302
5303
msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
5304
if (!msg)
5305
return;
5306
lease = msg->front.iov_base;
5307
lease->action = action;
5308
lease->seq = cpu_to_le32(seq);
5309
5310
spin_lock(&dentry->d_lock);
5311
dir = d_inode(dentry->d_parent);
5312
lease->ino = cpu_to_le64(ceph_ino(dir));
5313
lease->first = lease->last = cpu_to_le64(ceph_snap(dir));
5314
5315
put_unaligned_le32(dentry->d_name.len, lease + 1);
5316
memcpy((void *)(lease + 1) + 4,
5317
dentry->d_name.name, dentry->d_name.len);
5318
spin_unlock(&dentry->d_lock);
5319
5320
ceph_con_send(&session->s_con, msg);
5321
}
5322
5323
/*
5324
* lock unlock the session, to wait ongoing session activities
5325
*/
5326
static void lock_unlock_session(struct ceph_mds_session *s)
5327
{
5328
mutex_lock(&s->s_mutex);
5329
mutex_unlock(&s->s_mutex);
5330
}
5331
5332
static void maybe_recover_session(struct ceph_mds_client *mdsc)
5333
{
5334
struct ceph_client *cl = mdsc->fsc->client;
5335
struct ceph_fs_client *fsc = mdsc->fsc;
5336
5337
if (!ceph_test_mount_opt(fsc, CLEANRECOVER))
5338
return;
5339
5340
if (READ_ONCE(fsc->mount_state) != CEPH_MOUNT_MOUNTED)
5341
return;
5342
5343
if (!READ_ONCE(fsc->blocklisted))
5344
return;
5345
5346
pr_info_client(cl, "auto reconnect after blocklisted\n");
5347
ceph_force_reconnect(fsc->sb);
5348
}
5349
5350
bool check_session_state(struct ceph_mds_session *s)
5351
{
5352
struct ceph_client *cl = s->s_mdsc->fsc->client;
5353
5354
switch (s->s_state) {
5355
case CEPH_MDS_SESSION_OPEN:
5356
if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
5357
s->s_state = CEPH_MDS_SESSION_HUNG;
5358
pr_info_client(cl, "mds%d hung\n", s->s_mds);
5359
}
5360
break;
5361
case CEPH_MDS_SESSION_CLOSING:
5362
case CEPH_MDS_SESSION_NEW:
5363
case CEPH_MDS_SESSION_RESTARTING:
5364
case CEPH_MDS_SESSION_CLOSED:
5365
case CEPH_MDS_SESSION_REJECTED:
5366
return false;
5367
}
5368
5369
return true;
5370
}
5371
5372
/*
5373
* If the sequence is incremented while we're waiting on a REQUEST_CLOSE reply,
5374
* then we need to retransmit that request.
5375
*/
5376
void inc_session_sequence(struct ceph_mds_session *s)
5377
{
5378
struct ceph_client *cl = s->s_mdsc->fsc->client;
5379
5380
lockdep_assert_held(&s->s_mutex);
5381
5382
s->s_seq++;
5383
5384
if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
5385
int ret;
5386
5387
doutc(cl, "resending session close request for mds%d\n", s->s_mds);
5388
ret = request_close_session(s);
5389
if (ret < 0)
5390
pr_err_client(cl, "unable to close session to mds%d: %d\n",
5391
s->s_mds, ret);
5392
}
5393
}
5394
5395
/*
5396
* delayed work -- periodically trim expired leases, renew caps with mds. If
5397
* the @delay parameter is set to 0 or if it's more than 5 secs, the default
5398
* workqueue delay value of 5 secs will be used.
5399
*/
5400
static void schedule_delayed(struct ceph_mds_client *mdsc, unsigned long delay)
5401
{
5402
unsigned long max_delay = HZ * 5;
5403
5404
/* 5 secs default delay */
5405
if (!delay || (delay > max_delay))
5406
delay = max_delay;
5407
schedule_delayed_work(&mdsc->delayed_work,
5408
round_jiffies_relative(delay));
5409
}
5410
5411
static void delayed_work(struct work_struct *work)
5412
{
5413
struct ceph_mds_client *mdsc =
5414
container_of(work, struct ceph_mds_client, delayed_work.work);
5415
unsigned long delay;
5416
int renew_interval;
5417
int renew_caps;
5418
int i;
5419
5420
doutc(mdsc->fsc->client, "mdsc delayed_work\n");
5421
5422
if (mdsc->stopping >= CEPH_MDSC_STOPPING_FLUSHED)
5423
return;
5424
5425
mutex_lock(&mdsc->mutex);
5426
renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
5427
renew_caps = time_after_eq(jiffies, HZ*renew_interval +
5428
mdsc->last_renew_caps);
5429
if (renew_caps)
5430
mdsc->last_renew_caps = jiffies;
5431
5432
for (i = 0; i < mdsc->max_sessions; i++) {
5433
struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
5434
if (!s)
5435
continue;
5436
5437
if (!check_session_state(s)) {
5438
ceph_put_mds_session(s);
5439
continue;
5440
}
5441
mutex_unlock(&mdsc->mutex);
5442
5443
ceph_flush_session_cap_releases(mdsc, s);
5444
5445
mutex_lock(&s->s_mutex);
5446
if (renew_caps)
5447
send_renew_caps(mdsc, s);
5448
else
5449
ceph_con_keepalive(&s->s_con);
5450
if (s->s_state == CEPH_MDS_SESSION_OPEN ||
5451
s->s_state == CEPH_MDS_SESSION_HUNG)
5452
ceph_send_cap_releases(mdsc, s);
5453
mutex_unlock(&s->s_mutex);
5454
ceph_put_mds_session(s);
5455
5456
mutex_lock(&mdsc->mutex);
5457
}
5458
mutex_unlock(&mdsc->mutex);
5459
5460
delay = ceph_check_delayed_caps(mdsc);
5461
5462
ceph_queue_cap_reclaim_work(mdsc);
5463
5464
ceph_trim_snapid_map(mdsc);
5465
5466
maybe_recover_session(mdsc);
5467
5468
schedule_delayed(mdsc, delay);
5469
}
5470
5471
int ceph_mdsc_init(struct ceph_fs_client *fsc)
5472
5473
{
5474
struct ceph_mds_client *mdsc;
5475
int err;
5476
5477
mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
5478
if (!mdsc)
5479
return -ENOMEM;
5480
mdsc->fsc = fsc;
5481
mutex_init(&mdsc->mutex);
5482
mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
5483
if (!mdsc->mdsmap) {
5484
err = -ENOMEM;
5485
goto err_mdsc;
5486
}
5487
5488
init_completion(&mdsc->safe_umount_waiters);
5489
spin_lock_init(&mdsc->stopping_lock);
5490
atomic_set(&mdsc->stopping_blockers, 0);
5491
init_completion(&mdsc->stopping_waiter);
5492
atomic64_set(&mdsc->dirty_folios, 0);
5493
init_waitqueue_head(&mdsc->flush_end_wq);
5494
init_waitqueue_head(&mdsc->session_close_wq);
5495
INIT_LIST_HEAD(&mdsc->waiting_for_map);
5496
mdsc->quotarealms_inodes = RB_ROOT;
5497
mutex_init(&mdsc->quotarealms_inodes_mutex);
5498
init_rwsem(&mdsc->snap_rwsem);
5499
mdsc->snap_realms = RB_ROOT;
5500
INIT_LIST_HEAD(&mdsc->snap_empty);
5501
spin_lock_init(&mdsc->snap_empty_lock);
5502
mdsc->request_tree = RB_ROOT;
5503
INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
5504
mdsc->last_renew_caps = jiffies;
5505
INIT_LIST_HEAD(&mdsc->cap_delay_list);
5506
#ifdef CONFIG_DEBUG_FS
5507
INIT_LIST_HEAD(&mdsc->cap_wait_list);
5508
#endif
5509
spin_lock_init(&mdsc->cap_delay_lock);
5510
INIT_LIST_HEAD(&mdsc->cap_unlink_delay_list);
5511
INIT_LIST_HEAD(&mdsc->snap_flush_list);
5512
spin_lock_init(&mdsc->snap_flush_lock);
5513
mdsc->last_cap_flush_tid = 1;
5514
INIT_LIST_HEAD(&mdsc->cap_flush_list);
5515
INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
5516
spin_lock_init(&mdsc->cap_dirty_lock);
5517
init_waitqueue_head(&mdsc->cap_flushing_wq);
5518
INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work);
5519
INIT_WORK(&mdsc->cap_unlink_work, ceph_cap_unlink_work);
5520
err = ceph_metric_init(&mdsc->metric);
5521
if (err)
5522
goto err_mdsmap;
5523
5524
spin_lock_init(&mdsc->dentry_list_lock);
5525
INIT_LIST_HEAD(&mdsc->dentry_leases);
5526
INIT_LIST_HEAD(&mdsc->dentry_dir_leases);
5527
5528
ceph_caps_init(mdsc);
5529
ceph_adjust_caps_max_min(mdsc, fsc->mount_options);
5530
5531
spin_lock_init(&mdsc->snapid_map_lock);
5532
mdsc->snapid_map_tree = RB_ROOT;
5533
INIT_LIST_HEAD(&mdsc->snapid_map_lru);
5534
5535
init_rwsem(&mdsc->pool_perm_rwsem);
5536
mdsc->pool_perm_tree = RB_ROOT;
5537
5538
strscpy(mdsc->nodename, utsname()->nodename,
5539
sizeof(mdsc->nodename));
5540
5541
fsc->mdsc = mdsc;
5542
return 0;
5543
5544
err_mdsmap:
5545
kfree(mdsc->mdsmap);
5546
err_mdsc:
5547
kfree(mdsc);
5548
return err;
5549
}
5550
5551
/*
5552
* Wait for safe replies on open mds requests. If we time out, drop
5553
* all requests from the tree to avoid dangling dentry refs.
5554
*/
5555
static void wait_requests(struct ceph_mds_client *mdsc)
5556
{
5557
struct ceph_client *cl = mdsc->fsc->client;
5558
struct ceph_options *opts = mdsc->fsc->client->options;
5559
struct ceph_mds_request *req;
5560
5561
mutex_lock(&mdsc->mutex);
5562
if (__get_oldest_req(mdsc)) {
5563
mutex_unlock(&mdsc->mutex);
5564
5565
doutc(cl, "waiting for requests\n");
5566
wait_for_completion_timeout(&mdsc->safe_umount_waiters,
5567
ceph_timeout_jiffies(opts->mount_timeout));
5568
5569
/* tear down remaining requests */
5570
mutex_lock(&mdsc->mutex);
5571
while ((req = __get_oldest_req(mdsc))) {
5572
doutc(cl, "timed out on tid %llu\n", req->r_tid);
5573
list_del_init(&req->r_wait);
5574
__unregister_request(mdsc, req);
5575
}
5576
}
5577
mutex_unlock(&mdsc->mutex);
5578
doutc(cl, "done\n");
5579
}
5580
5581
void send_flush_mdlog(struct ceph_mds_session *s)
5582
{
5583
struct ceph_client *cl = s->s_mdsc->fsc->client;
5584
struct ceph_msg *msg;
5585
5586
/*
5587
* Pre-luminous MDS crashes when it sees an unknown session request
5588
*/
5589
if (!CEPH_HAVE_FEATURE(s->s_con.peer_features, SERVER_LUMINOUS))
5590
return;
5591
5592
mutex_lock(&s->s_mutex);
5593
doutc(cl, "request mdlog flush to mds%d (%s)s seq %lld\n",
5594
s->s_mds, ceph_session_state_name(s->s_state), s->s_seq);
5595
msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_FLUSH_MDLOG,
5596
s->s_seq);
5597
if (!msg) {
5598
pr_err_client(cl, "failed to request mdlog flush to mds%d (%s) seq %lld\n",
5599
s->s_mds, ceph_session_state_name(s->s_state), s->s_seq);
5600
} else {
5601
ceph_con_send(&s->s_con, msg);
5602
}
5603
mutex_unlock(&s->s_mutex);
5604
}
5605
5606
static int ceph_mds_auth_match(struct ceph_mds_client *mdsc,
5607
struct ceph_mds_cap_auth *auth,
5608
const struct cred *cred,
5609
char *tpath)
5610
{
5611
u32 caller_uid = from_kuid(&init_user_ns, cred->fsuid);
5612
u32 caller_gid = from_kgid(&init_user_ns, cred->fsgid);
5613
struct ceph_client *cl = mdsc->fsc->client;
5614
const char *spath = mdsc->fsc->mount_options->server_path;
5615
bool gid_matched = false;
5616
u32 gid, tlen, len;
5617
int i, j;
5618
5619
doutc(cl, "match.uid %lld\n", auth->match.uid);
5620
if (auth->match.uid != MDS_AUTH_UID_ANY) {
5621
if (auth->match.uid != caller_uid)
5622
return 0;
5623
if (auth->match.num_gids) {
5624
for (i = 0; i < auth->match.num_gids; i++) {
5625
if (caller_gid == auth->match.gids[i])
5626
gid_matched = true;
5627
}
5628
if (!gid_matched && cred->group_info->ngroups) {
5629
for (i = 0; i < cred->group_info->ngroups; i++) {
5630
gid = from_kgid(&init_user_ns,
5631
cred->group_info->gid[i]);
5632
for (j = 0; j < auth->match.num_gids; j++) {
5633
if (gid == auth->match.gids[j]) {
5634
gid_matched = true;
5635
break;
5636
}
5637
}
5638
if (gid_matched)
5639
break;
5640
}
5641
}
5642
if (!gid_matched)
5643
return 0;
5644
}
5645
}
5646
5647
/* path match */
5648
if (auth->match.path) {
5649
if (!tpath)
5650
return 0;
5651
5652
tlen = strlen(tpath);
5653
len = strlen(auth->match.path);
5654
if (len) {
5655
char *_tpath = tpath;
5656
bool free_tpath = false;
5657
int m, n;
5658
5659
doutc(cl, "server path %s, tpath %s, match.path %s\n",
5660
spath, tpath, auth->match.path);
5661
if (spath && (m = strlen(spath)) != 1) {
5662
/* mount path + '/' + tpath + an extra space */
5663
n = m + 1 + tlen + 1;
5664
_tpath = kmalloc(n, GFP_NOFS);
5665
if (!_tpath)
5666
return -ENOMEM;
5667
/* remove the leading '/' */
5668
snprintf(_tpath, n, "%s/%s", spath + 1, tpath);
5669
free_tpath = true;
5670
tlen = strlen(_tpath);
5671
}
5672
5673
/*
5674
* Please note the tailing '/' for match.path has already
5675
* been removed when parsing.
5676
*
5677
* Remove the tailing '/' for the target path.
5678
*/
5679
while (tlen && _tpath[tlen - 1] == '/') {
5680
_tpath[tlen - 1] = '\0';
5681
tlen -= 1;
5682
}
5683
doutc(cl, "_tpath %s\n", _tpath);
5684
5685
/*
5686
* In case first == _tpath && tlen == len:
5687
* match.path=/foo --> /foo _path=/foo --> match
5688
* match.path=/foo/ --> /foo _path=/foo --> match
5689
*
5690
* In case first == _tmatch.path && tlen > len:
5691
* match.path=/foo/ --> /foo _path=/foo/ --> match
5692
* match.path=/foo --> /foo _path=/foo/ --> match
5693
* match.path=/foo/ --> /foo _path=/foo/d --> match
5694
* match.path=/foo --> /foo _path=/food --> mismatch
5695
*
5696
* All the other cases --> mismatch
5697
*/
5698
bool path_matched = true;
5699
char *first = strstr(_tpath, auth->match.path);
5700
if (first != _tpath ||
5701
(tlen > len && _tpath[len] != '/')) {
5702
path_matched = false;
5703
}
5704
5705
if (free_tpath)
5706
kfree(_tpath);
5707
5708
if (!path_matched)
5709
return 0;
5710
}
5711
}
5712
5713
doutc(cl, "matched\n");
5714
return 1;
5715
}
5716
5717
int ceph_mds_check_access(struct ceph_mds_client *mdsc, char *tpath, int mask)
5718
{
5719
const struct cred *cred = get_current_cred();
5720
u32 caller_uid = from_kuid(&init_user_ns, cred->fsuid);
5721
u32 caller_gid = from_kgid(&init_user_ns, cred->fsgid);
5722
struct ceph_mds_cap_auth *rw_perms_s = NULL;
5723
struct ceph_client *cl = mdsc->fsc->client;
5724
bool root_squash_perms = true;
5725
int i, err;
5726
5727
doutc(cl, "tpath '%s', mask %d, caller_uid %d, caller_gid %d\n",
5728
tpath, mask, caller_uid, caller_gid);
5729
5730
for (i = 0; i < mdsc->s_cap_auths_num; i++) {
5731
struct ceph_mds_cap_auth *s = &mdsc->s_cap_auths[i];
5732
5733
err = ceph_mds_auth_match(mdsc, s, cred, tpath);
5734
if (err < 0) {
5735
put_cred(cred);
5736
return err;
5737
} else if (err > 0) {
5738
/* always follow the last auth caps' permission */
5739
root_squash_perms = true;
5740
rw_perms_s = NULL;
5741
if ((mask & MAY_WRITE) && s->writeable &&
5742
s->match.root_squash && (!caller_uid || !caller_gid))
5743
root_squash_perms = false;
5744
5745
if (((mask & MAY_WRITE) && !s->writeable) ||
5746
((mask & MAY_READ) && !s->readable))
5747
rw_perms_s = s;
5748
}
5749
}
5750
5751
put_cred(cred);
5752
5753
doutc(cl, "root_squash_perms %d, rw_perms_s %p\n", root_squash_perms,
5754
rw_perms_s);
5755
if (root_squash_perms && rw_perms_s == NULL) {
5756
doutc(cl, "access allowed\n");
5757
return 0;
5758
}
5759
5760
if (!root_squash_perms) {
5761
doutc(cl, "root_squash is enabled and user(%d %d) isn't allowed to write",
5762
caller_uid, caller_gid);
5763
}
5764
if (rw_perms_s) {
5765
doutc(cl, "mds auth caps readable/writeable %d/%d while request r/w %d/%d",
5766
rw_perms_s->readable, rw_perms_s->writeable,
5767
!!(mask & MAY_READ), !!(mask & MAY_WRITE));
5768
}
5769
doutc(cl, "access denied\n");
5770
return -EACCES;
5771
}
5772
5773
/*
5774
* called before mount is ro, and before dentries are torn down.
5775
* (hmm, does this still race with new lookups?)
5776
*/
5777
void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
5778
{
5779
doutc(mdsc->fsc->client, "begin\n");
5780
mdsc->stopping = CEPH_MDSC_STOPPING_BEGIN;
5781
5782
ceph_mdsc_iterate_sessions(mdsc, send_flush_mdlog, true);
5783
ceph_mdsc_iterate_sessions(mdsc, lock_unlock_session, false);
5784
ceph_flush_dirty_caps(mdsc);
5785
wait_requests(mdsc);
5786
5787
/*
5788
* wait for reply handlers to drop their request refs and
5789
* their inode/dcache refs
5790
*/
5791
ceph_msgr_flush();
5792
5793
ceph_cleanup_quotarealms_inodes(mdsc);
5794
doutc(mdsc->fsc->client, "done\n");
5795
}
5796
5797
/*
5798
* flush the mdlog and wait for all write mds requests to flush.
5799
*/
5800
static void flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client *mdsc,
5801
u64 want_tid)
5802
{
5803
struct ceph_client *cl = mdsc->fsc->client;
5804
struct ceph_mds_request *req = NULL, *nextreq;
5805
struct ceph_mds_session *last_session = NULL;
5806
struct rb_node *n;
5807
5808
mutex_lock(&mdsc->mutex);
5809
doutc(cl, "want %lld\n", want_tid);
5810
restart:
5811
req = __get_oldest_req(mdsc);
5812
while (req && req->r_tid <= want_tid) {
5813
/* find next request */
5814
n = rb_next(&req->r_node);
5815
if (n)
5816
nextreq = rb_entry(n, struct ceph_mds_request, r_node);
5817
else
5818
nextreq = NULL;
5819
if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
5820
(req->r_op & CEPH_MDS_OP_WRITE)) {
5821
struct ceph_mds_session *s = req->r_session;
5822
5823
if (!s) {
5824
req = nextreq;
5825
continue;
5826
}
5827
5828
/* write op */
5829
ceph_mdsc_get_request(req);
5830
if (nextreq)
5831
ceph_mdsc_get_request(nextreq);
5832
s = ceph_get_mds_session(s);
5833
mutex_unlock(&mdsc->mutex);
5834
5835
/* send flush mdlog request to MDS */
5836
if (last_session != s) {
5837
send_flush_mdlog(s);
5838
ceph_put_mds_session(last_session);
5839
last_session = s;
5840
} else {
5841
ceph_put_mds_session(s);
5842
}
5843
doutc(cl, "wait on %llu (want %llu)\n",
5844
req->r_tid, want_tid);
5845
wait_for_completion(&req->r_safe_completion);
5846
5847
mutex_lock(&mdsc->mutex);
5848
ceph_mdsc_put_request(req);
5849
if (!nextreq)
5850
break; /* next dne before, so we're done! */
5851
if (RB_EMPTY_NODE(&nextreq->r_node)) {
5852
/* next request was removed from tree */
5853
ceph_mdsc_put_request(nextreq);
5854
goto restart;
5855
}
5856
ceph_mdsc_put_request(nextreq); /* won't go away */
5857
}
5858
req = nextreq;
5859
}
5860
mutex_unlock(&mdsc->mutex);
5861
ceph_put_mds_session(last_session);
5862
doutc(cl, "done\n");
5863
}
5864
5865
void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
5866
{
5867
struct ceph_client *cl = mdsc->fsc->client;
5868
u64 want_tid, want_flush;
5869
5870
if (READ_ONCE(mdsc->fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN)
5871
return;
5872
5873
doutc(cl, "sync\n");
5874
mutex_lock(&mdsc->mutex);
5875
want_tid = mdsc->last_tid;
5876
mutex_unlock(&mdsc->mutex);
5877
5878
ceph_flush_dirty_caps(mdsc);
5879
ceph_flush_cap_releases(mdsc);
5880
spin_lock(&mdsc->cap_dirty_lock);
5881
want_flush = mdsc->last_cap_flush_tid;
5882
if (!list_empty(&mdsc->cap_flush_list)) {
5883
struct ceph_cap_flush *cf =
5884
list_last_entry(&mdsc->cap_flush_list,
5885
struct ceph_cap_flush, g_list);
5886
cf->wake = true;
5887
}
5888
spin_unlock(&mdsc->cap_dirty_lock);
5889
5890
doutc(cl, "sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
5891
5892
flush_mdlog_and_wait_mdsc_unsafe_requests(mdsc, want_tid);
5893
wait_caps_flush(mdsc, want_flush);
5894
}
5895
5896
/*
5897
* true if all sessions are closed, or we force unmount
5898
*/
5899
static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped)
5900
{
5901
if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
5902
return true;
5903
return atomic_read(&mdsc->num_sessions) <= skipped;
5904
}
5905
5906
/*
5907
* called after sb is ro or when metadata corrupted.
5908
*/
5909
void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
5910
{
5911
struct ceph_options *opts = mdsc->fsc->client->options;
5912
struct ceph_client *cl = mdsc->fsc->client;
5913
struct ceph_mds_session *session;
5914
int i;
5915
int skipped = 0;
5916
5917
doutc(cl, "begin\n");
5918
5919
/* close sessions */
5920
mutex_lock(&mdsc->mutex);
5921
for (i = 0; i < mdsc->max_sessions; i++) {
5922
session = __ceph_lookup_mds_session(mdsc, i);
5923
if (!session)
5924
continue;
5925
mutex_unlock(&mdsc->mutex);
5926
mutex_lock(&session->s_mutex);
5927
if (__close_session(mdsc, session) <= 0)
5928
skipped++;
5929
mutex_unlock(&session->s_mutex);
5930
ceph_put_mds_session(session);
5931
mutex_lock(&mdsc->mutex);
5932
}
5933
mutex_unlock(&mdsc->mutex);
5934
5935
doutc(cl, "waiting for sessions to close\n");
5936
wait_event_timeout(mdsc->session_close_wq,
5937
done_closing_sessions(mdsc, skipped),
5938
ceph_timeout_jiffies(opts->mount_timeout));
5939
5940
/* tear down remaining sessions */
5941
mutex_lock(&mdsc->mutex);
5942
for (i = 0; i < mdsc->max_sessions; i++) {
5943
if (mdsc->sessions[i]) {
5944
session = ceph_get_mds_session(mdsc->sessions[i]);
5945
__unregister_session(mdsc, session);
5946
mutex_unlock(&mdsc->mutex);
5947
mutex_lock(&session->s_mutex);
5948
remove_session_caps(session);
5949
mutex_unlock(&session->s_mutex);
5950
ceph_put_mds_session(session);
5951
mutex_lock(&mdsc->mutex);
5952
}
5953
}
5954
WARN_ON(!list_empty(&mdsc->cap_delay_list));
5955
mutex_unlock(&mdsc->mutex);
5956
5957
ceph_cleanup_snapid_map(mdsc);
5958
ceph_cleanup_global_and_empty_realms(mdsc);
5959
5960
cancel_work_sync(&mdsc->cap_reclaim_work);
5961
cancel_work_sync(&mdsc->cap_unlink_work);
5962
cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
5963
5964
doutc(cl, "done\n");
5965
}
5966
5967
void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
5968
{
5969
struct ceph_mds_session *session;
5970
int mds;
5971
5972
doutc(mdsc->fsc->client, "force umount\n");
5973
5974
mutex_lock(&mdsc->mutex);
5975
for (mds = 0; mds < mdsc->max_sessions; mds++) {
5976
session = __ceph_lookup_mds_session(mdsc, mds);
5977
if (!session)
5978
continue;
5979
5980
if (session->s_state == CEPH_MDS_SESSION_REJECTED)
5981
__unregister_session(mdsc, session);
5982
__wake_requests(mdsc, &session->s_waiting);
5983
mutex_unlock(&mdsc->mutex);
5984
5985
mutex_lock(&session->s_mutex);
5986
__close_session(mdsc, session);
5987
if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
5988
cleanup_session_requests(mdsc, session);
5989
remove_session_caps(session);
5990
}
5991
mutex_unlock(&session->s_mutex);
5992
ceph_put_mds_session(session);
5993
5994
mutex_lock(&mdsc->mutex);
5995
kick_requests(mdsc, mds);
5996
}
5997
__wake_requests(mdsc, &mdsc->waiting_for_map);
5998
mutex_unlock(&mdsc->mutex);
5999
}
6000
6001
static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
6002
{
6003
doutc(mdsc->fsc->client, "stop\n");
6004
/*
6005
* Make sure the delayed work stopped before releasing
6006
* the resources.
6007
*
6008
* Because the cancel_delayed_work_sync() will only
6009
* guarantee that the work finishes executing. But the
6010
* delayed work will re-arm itself again after that.
6011
*/
6012
flush_delayed_work(&mdsc->delayed_work);
6013
6014
if (mdsc->mdsmap)
6015
ceph_mdsmap_destroy(mdsc->mdsmap);
6016
kfree(mdsc->sessions);
6017
ceph_caps_finalize(mdsc);
6018
6019
if (mdsc->s_cap_auths) {
6020
int i;
6021
6022
for (i = 0; i < mdsc->s_cap_auths_num; i++) {
6023
kfree(mdsc->s_cap_auths[i].match.gids);
6024
kfree(mdsc->s_cap_auths[i].match.path);
6025
kfree(mdsc->s_cap_auths[i].match.fs_name);
6026
}
6027
kfree(mdsc->s_cap_auths);
6028
}
6029
6030
ceph_pool_perm_destroy(mdsc);
6031
}
6032
6033
void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
6034
{
6035
struct ceph_mds_client *mdsc = fsc->mdsc;
6036
doutc(fsc->client, "%p\n", mdsc);
6037
6038
if (!mdsc)
6039
return;
6040
6041
/* flush out any connection work with references to us */
6042
ceph_msgr_flush();
6043
6044
ceph_mdsc_stop(mdsc);
6045
6046
ceph_metric_destroy(&mdsc->metric);
6047
6048
fsc->mdsc = NULL;
6049
kfree(mdsc);
6050
doutc(fsc->client, "%p done\n", mdsc);
6051
}
6052
6053
void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
6054
{
6055
struct ceph_fs_client *fsc = mdsc->fsc;
6056
struct ceph_client *cl = fsc->client;
6057
const char *mds_namespace = fsc->mount_options->mds_namespace;
6058
void *p = msg->front.iov_base;
6059
void *end = p + msg->front.iov_len;
6060
u32 epoch;
6061
u32 num_fs;
6062
u32 mount_fscid = (u32)-1;
6063
int err = -EINVAL;
6064
6065
ceph_decode_need(&p, end, sizeof(u32), bad);
6066
epoch = ceph_decode_32(&p);
6067
6068
doutc(cl, "epoch %u\n", epoch);
6069
6070
/* struct_v, struct_cv, map_len, epoch, legacy_client_fscid */
6071
ceph_decode_skip_n(&p, end, 2 + sizeof(u32) * 3, bad);
6072
6073
ceph_decode_32_safe(&p, end, num_fs, bad);
6074
while (num_fs-- > 0) {
6075
void *info_p, *info_end;
6076
u32 info_len;
6077
u32 fscid, namelen;
6078
6079
ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
6080
p += 2; // info_v, info_cv
6081
info_len = ceph_decode_32(&p);
6082
ceph_decode_need(&p, end, info_len, bad);
6083
info_p = p;
6084
info_end = p + info_len;
6085
p = info_end;
6086
6087
ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad);
6088
fscid = ceph_decode_32(&info_p);
6089
namelen = ceph_decode_32(&info_p);
6090
ceph_decode_need(&info_p, info_end, namelen, bad);
6091
6092
if (mds_namespace &&
6093
strlen(mds_namespace) == namelen &&
6094
!strncmp(mds_namespace, (char *)info_p, namelen)) {
6095
mount_fscid = fscid;
6096
break;
6097
}
6098
}
6099
6100
ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch);
6101
if (mount_fscid != (u32)-1) {
6102
fsc->client->monc.fs_cluster_id = mount_fscid;
6103
ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP,
6104
0, true);
6105
ceph_monc_renew_subs(&fsc->client->monc);
6106
} else {
6107
err = -ENOENT;
6108
goto err_out;
6109
}
6110
return;
6111
6112
bad:
6113
pr_err_client(cl, "error decoding fsmap %d. Shutting down mount.\n",
6114
err);
6115
ceph_umount_begin(mdsc->fsc->sb);
6116
ceph_msg_dump(msg);
6117
err_out:
6118
mutex_lock(&mdsc->mutex);
6119
mdsc->mdsmap_err = err;
6120
__wake_requests(mdsc, &mdsc->waiting_for_map);
6121
mutex_unlock(&mdsc->mutex);
6122
}
6123
6124
/*
6125
* handle mds map update.
6126
*/
6127
void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
6128
{
6129
struct ceph_client *cl = mdsc->fsc->client;
6130
u32 epoch;
6131
u32 maplen;
6132
void *p = msg->front.iov_base;
6133
void *end = p + msg->front.iov_len;
6134
struct ceph_mdsmap *newmap, *oldmap;
6135
struct ceph_fsid fsid;
6136
int err = -EINVAL;
6137
6138
ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
6139
ceph_decode_copy(&p, &fsid, sizeof(fsid));
6140
if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
6141
return;
6142
epoch = ceph_decode_32(&p);
6143
maplen = ceph_decode_32(&p);
6144
doutc(cl, "epoch %u len %d\n", epoch, (int)maplen);
6145
6146
/* do we need it? */
6147
mutex_lock(&mdsc->mutex);
6148
if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
6149
doutc(cl, "epoch %u <= our %u\n", epoch, mdsc->mdsmap->m_epoch);
6150
mutex_unlock(&mdsc->mutex);
6151
return;
6152
}
6153
6154
newmap = ceph_mdsmap_decode(mdsc, &p, end, ceph_msgr2(mdsc->fsc->client));
6155
if (IS_ERR(newmap)) {
6156
err = PTR_ERR(newmap);
6157
goto bad_unlock;
6158
}
6159
6160
/* swap into place */
6161
if (mdsc->mdsmap) {
6162
oldmap = mdsc->mdsmap;
6163
mdsc->mdsmap = newmap;
6164
check_new_map(mdsc, newmap, oldmap);
6165
ceph_mdsmap_destroy(oldmap);
6166
} else {
6167
mdsc->mdsmap = newmap; /* first mds map */
6168
}
6169
mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size,
6170
MAX_LFS_FILESIZE);
6171
6172
__wake_requests(mdsc, &mdsc->waiting_for_map);
6173
ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
6174
mdsc->mdsmap->m_epoch);
6175
6176
mutex_unlock(&mdsc->mutex);
6177
schedule_delayed(mdsc, 0);
6178
return;
6179
6180
bad_unlock:
6181
mutex_unlock(&mdsc->mutex);
6182
bad:
6183
pr_err_client(cl, "error decoding mdsmap %d. Shutting down mount.\n",
6184
err);
6185
ceph_umount_begin(mdsc->fsc->sb);
6186
ceph_msg_dump(msg);
6187
return;
6188
}
6189
6190
static struct ceph_connection *mds_get_con(struct ceph_connection *con)
6191
{
6192
struct ceph_mds_session *s = con->private;
6193
6194
if (ceph_get_mds_session(s))
6195
return con;
6196
return NULL;
6197
}
6198
6199
static void mds_put_con(struct ceph_connection *con)
6200
{
6201
struct ceph_mds_session *s = con->private;
6202
6203
ceph_put_mds_session(s);
6204
}
6205
6206
/*
6207
* if the client is unresponsive for long enough, the mds will kill
6208
* the session entirely.
6209
*/
6210
static void mds_peer_reset(struct ceph_connection *con)
6211
{
6212
struct ceph_mds_session *s = con->private;
6213
struct ceph_mds_client *mdsc = s->s_mdsc;
6214
6215
pr_warn_client(mdsc->fsc->client, "mds%d closed our session\n",
6216
s->s_mds);
6217
if (READ_ONCE(mdsc->fsc->mount_state) != CEPH_MOUNT_FENCE_IO &&
6218
ceph_mdsmap_get_state(mdsc->mdsmap, s->s_mds) >= CEPH_MDS_STATE_RECONNECT)
6219
send_mds_reconnect(mdsc, s);
6220
}
6221
6222
static void mds_dispatch(struct ceph_connection *con, struct ceph_msg *msg)
6223
{
6224
struct ceph_mds_session *s = con->private;
6225
struct ceph_mds_client *mdsc = s->s_mdsc;
6226
struct ceph_client *cl = mdsc->fsc->client;
6227
int type = le16_to_cpu(msg->hdr.type);
6228
6229
mutex_lock(&mdsc->mutex);
6230
if (__verify_registered_session(mdsc, s) < 0) {
6231
mutex_unlock(&mdsc->mutex);
6232
goto out;
6233
}
6234
mutex_unlock(&mdsc->mutex);
6235
6236
switch (type) {
6237
case CEPH_MSG_MDS_MAP:
6238
ceph_mdsc_handle_mdsmap(mdsc, msg);
6239
break;
6240
case CEPH_MSG_FS_MAP_USER:
6241
ceph_mdsc_handle_fsmap(mdsc, msg);
6242
break;
6243
case CEPH_MSG_CLIENT_SESSION:
6244
handle_session(s, msg);
6245
break;
6246
case CEPH_MSG_CLIENT_REPLY:
6247
handle_reply(s, msg);
6248
break;
6249
case CEPH_MSG_CLIENT_REQUEST_FORWARD:
6250
handle_forward(mdsc, s, msg);
6251
break;
6252
case CEPH_MSG_CLIENT_CAPS:
6253
ceph_handle_caps(s, msg);
6254
break;
6255
case CEPH_MSG_CLIENT_SNAP:
6256
ceph_handle_snap(mdsc, s, msg);
6257
break;
6258
case CEPH_MSG_CLIENT_LEASE:
6259
handle_lease(mdsc, s, msg);
6260
break;
6261
case CEPH_MSG_CLIENT_QUOTA:
6262
ceph_handle_quota(mdsc, s, msg);
6263
break;
6264
6265
default:
6266
pr_err_client(cl, "received unknown message type %d %s\n",
6267
type, ceph_msg_type_name(type));
6268
}
6269
out:
6270
ceph_msg_put(msg);
6271
}
6272
6273
/*
6274
* authentication
6275
*/
6276
6277
/*
6278
* Note: returned pointer is the address of a structure that's
6279
* managed separately. Caller must *not* attempt to free it.
6280
*/
6281
static struct ceph_auth_handshake *
6282
mds_get_authorizer(struct ceph_connection *con, int *proto, int force_new)
6283
{
6284
struct ceph_mds_session *s = con->private;
6285
struct ceph_mds_client *mdsc = s->s_mdsc;
6286
struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
6287
struct ceph_auth_handshake *auth = &s->s_auth;
6288
int ret;
6289
6290
ret = __ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS,
6291
force_new, proto, NULL, NULL);
6292
if (ret)
6293
return ERR_PTR(ret);
6294
6295
return auth;
6296
}
6297
6298
static int mds_add_authorizer_challenge(struct ceph_connection *con,
6299
void *challenge_buf, int challenge_buf_len)
6300
{
6301
struct ceph_mds_session *s = con->private;
6302
struct ceph_mds_client *mdsc = s->s_mdsc;
6303
struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
6304
6305
return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer,
6306
challenge_buf, challenge_buf_len);
6307
}
6308
6309
static int mds_verify_authorizer_reply(struct ceph_connection *con)
6310
{
6311
struct ceph_mds_session *s = con->private;
6312
struct ceph_mds_client *mdsc = s->s_mdsc;
6313
struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
6314
struct ceph_auth_handshake *auth = &s->s_auth;
6315
6316
return ceph_auth_verify_authorizer_reply(ac, auth->authorizer,
6317
auth->authorizer_reply_buf, auth->authorizer_reply_buf_len,
6318
NULL, NULL, NULL, NULL);
6319
}
6320
6321
static int mds_invalidate_authorizer(struct ceph_connection *con)
6322
{
6323
struct ceph_mds_session *s = con->private;
6324
struct ceph_mds_client *mdsc = s->s_mdsc;
6325
struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
6326
6327
ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
6328
6329
return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
6330
}
6331
6332
static int mds_get_auth_request(struct ceph_connection *con,
6333
void *buf, int *buf_len,
6334
void **authorizer, int *authorizer_len)
6335
{
6336
struct ceph_mds_session *s = con->private;
6337
struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
6338
struct ceph_auth_handshake *auth = &s->s_auth;
6339
int ret;
6340
6341
ret = ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS,
6342
buf, buf_len);
6343
if (ret)
6344
return ret;
6345
6346
*authorizer = auth->authorizer_buf;
6347
*authorizer_len = auth->authorizer_buf_len;
6348
return 0;
6349
}
6350
6351
static int mds_handle_auth_reply_more(struct ceph_connection *con,
6352
void *reply, int reply_len,
6353
void *buf, int *buf_len,
6354
void **authorizer, int *authorizer_len)
6355
{
6356
struct ceph_mds_session *s = con->private;
6357
struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
6358
struct ceph_auth_handshake *auth = &s->s_auth;
6359
int ret;
6360
6361
ret = ceph_auth_handle_svc_reply_more(ac, auth, reply, reply_len,
6362
buf, buf_len);
6363
if (ret)
6364
return ret;
6365
6366
*authorizer = auth->authorizer_buf;
6367
*authorizer_len = auth->authorizer_buf_len;
6368
return 0;
6369
}
6370
6371
static int mds_handle_auth_done(struct ceph_connection *con,
6372
u64 global_id, void *reply, int reply_len,
6373
u8 *session_key, int *session_key_len,
6374
u8 *con_secret, int *con_secret_len)
6375
{
6376
struct ceph_mds_session *s = con->private;
6377
struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
6378
struct ceph_auth_handshake *auth = &s->s_auth;
6379
6380
return ceph_auth_handle_svc_reply_done(ac, auth, reply, reply_len,
6381
session_key, session_key_len,
6382
con_secret, con_secret_len);
6383
}
6384
6385
static int mds_handle_auth_bad_method(struct ceph_connection *con,
6386
int used_proto, int result,
6387
const int *allowed_protos, int proto_cnt,
6388
const int *allowed_modes, int mode_cnt)
6389
{
6390
struct ceph_mds_session *s = con->private;
6391
struct ceph_mon_client *monc = &s->s_mdsc->fsc->client->monc;
6392
int ret;
6393
6394
if (ceph_auth_handle_bad_authorizer(monc->auth, CEPH_ENTITY_TYPE_MDS,
6395
used_proto, result,
6396
allowed_protos, proto_cnt,
6397
allowed_modes, mode_cnt)) {
6398
ret = ceph_monc_validate_auth(monc);
6399
if (ret)
6400
return ret;
6401
}
6402
6403
return -EACCES;
6404
}
6405
6406
static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
6407
struct ceph_msg_header *hdr, int *skip)
6408
{
6409
struct ceph_msg *msg;
6410
int type = (int) le16_to_cpu(hdr->type);
6411
int front_len = (int) le32_to_cpu(hdr->front_len);
6412
6413
if (con->in_msg)
6414
return con->in_msg;
6415
6416
*skip = 0;
6417
msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
6418
if (!msg) {
6419
pr_err("unable to allocate msg type %d len %d\n",
6420
type, front_len);
6421
return NULL;
6422
}
6423
6424
return msg;
6425
}
6426
6427
static int mds_sign_message(struct ceph_msg *msg)
6428
{
6429
struct ceph_mds_session *s = msg->con->private;
6430
struct ceph_auth_handshake *auth = &s->s_auth;
6431
6432
return ceph_auth_sign_message(auth, msg);
6433
}
6434
6435
static int mds_check_message_signature(struct ceph_msg *msg)
6436
{
6437
struct ceph_mds_session *s = msg->con->private;
6438
struct ceph_auth_handshake *auth = &s->s_auth;
6439
6440
return ceph_auth_check_message_signature(auth, msg);
6441
}
6442
6443
static const struct ceph_connection_operations mds_con_ops = {
6444
.get = mds_get_con,
6445
.put = mds_put_con,
6446
.alloc_msg = mds_alloc_msg,
6447
.dispatch = mds_dispatch,
6448
.peer_reset = mds_peer_reset,
6449
.get_authorizer = mds_get_authorizer,
6450
.add_authorizer_challenge = mds_add_authorizer_challenge,
6451
.verify_authorizer_reply = mds_verify_authorizer_reply,
6452
.invalidate_authorizer = mds_invalidate_authorizer,
6453
.sign_message = mds_sign_message,
6454
.check_message_signature = mds_check_message_signature,
6455
.get_auth_request = mds_get_auth_request,
6456
.handle_auth_reply_more = mds_handle_auth_reply_more,
6457
.handle_auth_done = mds_handle_auth_done,
6458
.handle_auth_bad_method = mds_handle_auth_bad_method,
6459
};
6460
6461
/* eof */
6462
6463