Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/crypto/bio.c
49939 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Utility functions for file contents encryption/decryption on
4
* block device-based filesystems.
5
*
6
* Copyright (C) 2015, Google, Inc.
7
* Copyright (C) 2015, Motorola Mobility
8
*/
9
10
#include <linux/bio.h>
11
#include <linux/export.h>
12
#include <linux/module.h>
13
#include <linux/namei.h>
14
#include <linux/pagemap.h>
15
16
#include "fscrypt_private.h"
17
18
/**
19
* fscrypt_decrypt_bio() - decrypt the contents of a bio
20
* @bio: the bio to decrypt
21
*
22
* Decrypt the contents of a "read" bio following successful completion of the
23
* underlying disk read. The bio must be reading a whole number of blocks of an
24
* encrypted file directly into the page cache. If the bio is reading the
25
* ciphertext into bounce pages instead of the page cache (for example, because
26
* the file is also compressed, so decompression is required after decryption),
27
* then this function isn't applicable. This function may sleep, so it must be
28
* called from a workqueue rather than from the bio's bi_end_io callback.
29
*
30
* Return: %true on success; %false on failure. On failure, bio->bi_status is
31
* also set to an error status.
32
*/
33
bool fscrypt_decrypt_bio(struct bio *bio)
34
{
35
struct folio_iter fi;
36
37
bio_for_each_folio_all(fi, bio) {
38
int err = fscrypt_decrypt_pagecache_blocks(fi.folio, fi.length,
39
fi.offset);
40
41
if (err) {
42
bio->bi_status = errno_to_blk_status(err);
43
return false;
44
}
45
}
46
return true;
47
}
48
EXPORT_SYMBOL(fscrypt_decrypt_bio);
49
50
struct fscrypt_zero_done {
51
atomic_t pending;
52
blk_status_t status;
53
struct completion done;
54
};
55
56
static void fscrypt_zeroout_range_done(struct fscrypt_zero_done *done)
57
{
58
if (atomic_dec_and_test(&done->pending))
59
complete(&done->done);
60
}
61
62
static void fscrypt_zeroout_range_end_io(struct bio *bio)
63
{
64
struct fscrypt_zero_done *done = bio->bi_private;
65
66
if (bio->bi_status)
67
cmpxchg(&done->status, 0, bio->bi_status);
68
fscrypt_zeroout_range_done(done);
69
bio_put(bio);
70
}
71
72
static int fscrypt_zeroout_range_inline_crypt(const struct inode *inode,
73
pgoff_t lblk, sector_t sector,
74
unsigned int len)
75
{
76
const unsigned int blockbits = inode->i_blkbits;
77
const unsigned int blocks_per_page = 1 << (PAGE_SHIFT - blockbits);
78
struct fscrypt_zero_done done = {
79
.pending = ATOMIC_INIT(1),
80
.done = COMPLETION_INITIALIZER_ONSTACK(done.done),
81
};
82
83
while (len) {
84
struct bio *bio;
85
unsigned int n;
86
87
bio = bio_alloc(inode->i_sb->s_bdev, BIO_MAX_VECS, REQ_OP_WRITE,
88
GFP_NOFS);
89
bio->bi_iter.bi_sector = sector;
90
bio->bi_private = &done;
91
bio->bi_end_io = fscrypt_zeroout_range_end_io;
92
fscrypt_set_bio_crypt_ctx(bio, inode, lblk, GFP_NOFS);
93
94
for (n = 0; n < BIO_MAX_VECS; n++) {
95
unsigned int blocks_this_page =
96
min(len, blocks_per_page);
97
unsigned int bytes_this_page = blocks_this_page << blockbits;
98
99
__bio_add_page(bio, ZERO_PAGE(0), bytes_this_page, 0);
100
len -= blocks_this_page;
101
lblk += blocks_this_page;
102
sector += (bytes_this_page >> SECTOR_SHIFT);
103
if (!len || !fscrypt_mergeable_bio(bio, inode, lblk))
104
break;
105
}
106
107
atomic_inc(&done.pending);
108
blk_crypto_submit_bio(bio);
109
}
110
111
fscrypt_zeroout_range_done(&done);
112
113
wait_for_completion(&done.done);
114
return blk_status_to_errno(done.status);
115
}
116
117
/**
118
* fscrypt_zeroout_range() - zero out a range of blocks in an encrypted file
119
* @inode: the file's inode
120
* @lblk: the first file logical block to zero out
121
* @pblk: the first filesystem physical block to zero out
122
* @len: number of blocks to zero out
123
*
124
* Zero out filesystem blocks in an encrypted regular file on-disk, i.e. write
125
* ciphertext blocks which decrypt to the all-zeroes block. The blocks must be
126
* both logically and physically contiguous. It's also assumed that the
127
* filesystem only uses a single block device, ->s_bdev.
128
*
129
* Note that since each block uses a different IV, this involves writing a
130
* different ciphertext to each block; we can't simply reuse the same one.
131
*
132
* Return: 0 on success; -errno on failure.
133
*/
134
int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
135
sector_t pblk, unsigned int len)
136
{
137
const struct fscrypt_inode_info *ci = fscrypt_get_inode_info_raw(inode);
138
const unsigned int du_bits = ci->ci_data_unit_bits;
139
const unsigned int du_size = 1U << du_bits;
140
const unsigned int du_per_page_bits = PAGE_SHIFT - du_bits;
141
const unsigned int du_per_page = 1U << du_per_page_bits;
142
u64 du_index = (u64)lblk << (inode->i_blkbits - du_bits);
143
u64 du_remaining = (u64)len << (inode->i_blkbits - du_bits);
144
sector_t sector = pblk << (inode->i_blkbits - SECTOR_SHIFT);
145
struct page *pages[16]; /* write up to 16 pages at a time */
146
unsigned int nr_pages;
147
unsigned int i;
148
unsigned int offset;
149
struct bio *bio;
150
int ret, err;
151
152
if (len == 0)
153
return 0;
154
155
if (fscrypt_inode_uses_inline_crypto(inode))
156
return fscrypt_zeroout_range_inline_crypt(inode, lblk, sector,
157
len);
158
159
BUILD_BUG_ON(ARRAY_SIZE(pages) > BIO_MAX_VECS);
160
nr_pages = min_t(u64, ARRAY_SIZE(pages),
161
(du_remaining + du_per_page - 1) >> du_per_page_bits);
162
163
/*
164
* We need at least one page for ciphertext. Allocate the first one
165
* from a mempool, with __GFP_DIRECT_RECLAIM set so that it can't fail.
166
*
167
* Any additional page allocations are allowed to fail, as they only
168
* help performance, and waiting on the mempool for them could deadlock.
169
*/
170
for (i = 0; i < nr_pages; i++) {
171
pages[i] = fscrypt_alloc_bounce_page(i == 0 ? GFP_NOFS :
172
GFP_NOWAIT);
173
if (!pages[i])
174
break;
175
}
176
nr_pages = i;
177
if (WARN_ON_ONCE(nr_pages <= 0))
178
return -EINVAL;
179
180
/* This always succeeds since __GFP_DIRECT_RECLAIM is set. */
181
bio = bio_alloc(inode->i_sb->s_bdev, nr_pages, REQ_OP_WRITE, GFP_NOFS);
182
183
do {
184
bio->bi_iter.bi_sector = sector;
185
186
i = 0;
187
offset = 0;
188
do {
189
err = fscrypt_crypt_data_unit(ci, FS_ENCRYPT, du_index,
190
ZERO_PAGE(0), pages[i],
191
du_size, offset);
192
if (err)
193
goto out;
194
du_index++;
195
sector += 1U << (du_bits - SECTOR_SHIFT);
196
du_remaining--;
197
offset += du_size;
198
if (offset == PAGE_SIZE || du_remaining == 0) {
199
ret = bio_add_page(bio, pages[i++], offset, 0);
200
if (WARN_ON_ONCE(ret != offset)) {
201
err = -EIO;
202
goto out;
203
}
204
offset = 0;
205
}
206
} while (i != nr_pages && du_remaining != 0);
207
208
err = submit_bio_wait(bio);
209
if (err)
210
goto out;
211
bio_reset(bio, inode->i_sb->s_bdev, REQ_OP_WRITE);
212
} while (du_remaining != 0);
213
err = 0;
214
out:
215
bio_put(bio);
216
for (i = 0; i < nr_pages; i++)
217
fscrypt_free_bounce_page(pages[i]);
218
return err;
219
}
220
EXPORT_SYMBOL(fscrypt_zeroout_range);
221
222