Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/crypto/hooks.c
26281 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* fs/crypto/hooks.c
4
*
5
* Encryption hooks for higher-level filesystem operations.
6
*/
7
8
#include <linux/export.h>
9
10
#include "fscrypt_private.h"
11
12
/**
13
* fscrypt_file_open() - prepare to open a possibly-encrypted regular file
14
* @inode: the inode being opened
15
* @filp: the struct file being set up
16
*
17
* Currently, an encrypted regular file can only be opened if its encryption key
18
* is available; access to the raw encrypted contents is not supported.
19
* Therefore, we first set up the inode's encryption key (if not already done)
20
* and return an error if it's unavailable.
21
*
22
* We also verify that if the parent directory (from the path via which the file
23
* is being opened) is encrypted, then the inode being opened uses the same
24
* encryption policy. This is needed as part of the enforcement that all files
25
* in an encrypted directory tree use the same encryption policy, as a
26
* protection against certain types of offline attacks. Note that this check is
27
* needed even when opening an *unencrypted* file, since it's forbidden to have
28
* an unencrypted file in an encrypted directory.
29
*
30
* Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
31
*/
32
int fscrypt_file_open(struct inode *inode, struct file *filp)
33
{
34
int err;
35
struct dentry *dentry, *dentry_parent;
36
struct inode *inode_parent;
37
38
err = fscrypt_require_key(inode);
39
if (err)
40
return err;
41
42
dentry = file_dentry(filp);
43
44
/*
45
* Getting a reference to the parent dentry is needed for the actual
46
* encryption policy comparison, but it's expensive on multi-core
47
* systems. Since this function runs on unencrypted files too, start
48
* with a lightweight RCU-mode check for the parent directory being
49
* unencrypted (in which case it's fine for the child to be either
50
* unencrypted, or encrypted with any policy). Only continue on to the
51
* full policy check if the parent directory is actually encrypted.
52
*/
53
rcu_read_lock();
54
dentry_parent = READ_ONCE(dentry->d_parent);
55
inode_parent = d_inode_rcu(dentry_parent);
56
if (inode_parent != NULL && !IS_ENCRYPTED(inode_parent)) {
57
rcu_read_unlock();
58
return 0;
59
}
60
rcu_read_unlock();
61
62
dentry_parent = dget_parent(dentry);
63
if (!fscrypt_has_permitted_context(d_inode(dentry_parent), inode)) {
64
fscrypt_warn(inode,
65
"Inconsistent encryption context (parent directory: %lu)",
66
d_inode(dentry_parent)->i_ino);
67
err = -EPERM;
68
}
69
dput(dentry_parent);
70
return err;
71
}
72
EXPORT_SYMBOL_GPL(fscrypt_file_open);
73
74
int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
75
struct dentry *dentry)
76
{
77
if (fscrypt_is_nokey_name(dentry))
78
return -ENOKEY;
79
/*
80
* We don't need to separately check that the directory inode's key is
81
* available, as it's implied by the dentry not being a no-key name.
82
*/
83
84
if (!fscrypt_has_permitted_context(dir, inode))
85
return -EXDEV;
86
87
return 0;
88
}
89
EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
90
91
int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
92
struct inode *new_dir, struct dentry *new_dentry,
93
unsigned int flags)
94
{
95
if (fscrypt_is_nokey_name(old_dentry) ||
96
fscrypt_is_nokey_name(new_dentry))
97
return -ENOKEY;
98
/*
99
* We don't need to separately check that the directory inodes' keys are
100
* available, as it's implied by the dentries not being no-key names.
101
*/
102
103
if (old_dir != new_dir) {
104
if (IS_ENCRYPTED(new_dir) &&
105
!fscrypt_has_permitted_context(new_dir,
106
d_inode(old_dentry)))
107
return -EXDEV;
108
109
if ((flags & RENAME_EXCHANGE) &&
110
IS_ENCRYPTED(old_dir) &&
111
!fscrypt_has_permitted_context(old_dir,
112
d_inode(new_dentry)))
113
return -EXDEV;
114
}
115
return 0;
116
}
117
EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
118
119
int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
120
struct fscrypt_name *fname)
121
{
122
int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
123
124
if (err && err != -ENOENT)
125
return err;
126
127
fscrypt_prepare_dentry(dentry, fname->is_nokey_name);
128
129
return err;
130
}
131
EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
132
133
/**
134
* fscrypt_prepare_lookup_partial() - prepare lookup without filename setup
135
* @dir: the encrypted directory being searched
136
* @dentry: the dentry being looked up in @dir
137
*
138
* This function should be used by the ->lookup and ->atomic_open methods of
139
* filesystems that handle filename encryption and no-key name encoding
140
* themselves and thus can't use fscrypt_prepare_lookup(). Like
141
* fscrypt_prepare_lookup(), this will try to set up the directory's encryption
142
* key and will set DCACHE_NOKEY_NAME on the dentry if the key is unavailable.
143
* However, this function doesn't set up a struct fscrypt_name for the filename.
144
*
145
* Return: 0 on success; -errno on error. Note that the encryption key being
146
* unavailable is not considered an error. It is also not an error if
147
* the encryption policy is unsupported by this kernel; that is treated
148
* like the key being unavailable, so that files can still be deleted.
149
*/
150
int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry)
151
{
152
int err = fscrypt_get_encryption_info(dir, true);
153
bool is_nokey_name = (!err && !fscrypt_has_encryption_key(dir));
154
155
fscrypt_prepare_dentry(dentry, is_nokey_name);
156
157
return err;
158
}
159
EXPORT_SYMBOL_GPL(fscrypt_prepare_lookup_partial);
160
161
int __fscrypt_prepare_readdir(struct inode *dir)
162
{
163
return fscrypt_get_encryption_info(dir, true);
164
}
165
EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir);
166
167
int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr)
168
{
169
if (attr->ia_valid & ATTR_SIZE)
170
return fscrypt_require_key(d_inode(dentry));
171
return 0;
172
}
173
EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);
174
175
/**
176
* fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
177
* @inode: the inode on which flags are being changed
178
* @oldflags: the old flags
179
* @flags: the new flags
180
*
181
* The caller should be holding i_rwsem for write.
182
*
183
* Return: 0 on success; -errno if the flags change isn't allowed or if
184
* another error occurs.
185
*/
186
int fscrypt_prepare_setflags(struct inode *inode,
187
unsigned int oldflags, unsigned int flags)
188
{
189
struct fscrypt_inode_info *ci;
190
struct fscrypt_master_key *mk;
191
int err;
192
193
/*
194
* When the CASEFOLD flag is set on an encrypted directory, we must
195
* derive the secret key needed for the dirhash. This is only possible
196
* if the directory uses a v2 encryption policy.
197
*/
198
if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
199
err = fscrypt_require_key(inode);
200
if (err)
201
return err;
202
ci = inode->i_crypt_info;
203
if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
204
return -EINVAL;
205
mk = ci->ci_master_key;
206
down_read(&mk->mk_sem);
207
if (mk->mk_present)
208
err = fscrypt_derive_dirhash_key(ci, mk);
209
else
210
err = -ENOKEY;
211
up_read(&mk->mk_sem);
212
return err;
213
}
214
return 0;
215
}
216
217
/**
218
* fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
219
* @dir: directory in which the symlink is being created
220
* @target: plaintext symlink target
221
* @len: length of @target excluding null terminator
222
* @max_len: space the filesystem has available to store the symlink target
223
* @disk_link: (out) the on-disk symlink target being prepared
224
*
225
* This function computes the size the symlink target will require on-disk,
226
* stores it in @disk_link->len, and validates it against @max_len. An
227
* encrypted symlink may be longer than the original.
228
*
229
* Additionally, @disk_link->name is set to @target if the symlink will be
230
* unencrypted, but left NULL if the symlink will be encrypted. For encrypted
231
* symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
232
* on-disk target later. (The reason for the two-step process is that some
233
* filesystems need to know the size of the symlink target before creating the
234
* inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
235
*
236
* Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
237
* -ENOKEY if the encryption key is missing, or another -errno code if a problem
238
* occurred while setting up the encryption key.
239
*/
240
int fscrypt_prepare_symlink(struct inode *dir, const char *target,
241
unsigned int len, unsigned int max_len,
242
struct fscrypt_str *disk_link)
243
{
244
const union fscrypt_policy *policy;
245
246
/*
247
* To calculate the size of the encrypted symlink target we need to know
248
* the amount of NUL padding, which is determined by the flags set in
249
* the encryption policy which will be inherited from the directory.
250
*/
251
policy = fscrypt_policy_to_inherit(dir);
252
if (policy == NULL) {
253
/* Not encrypted */
254
disk_link->name = (unsigned char *)target;
255
disk_link->len = len + 1;
256
if (disk_link->len > max_len)
257
return -ENAMETOOLONG;
258
return 0;
259
}
260
if (IS_ERR(policy))
261
return PTR_ERR(policy);
262
263
/*
264
* Calculate the size of the encrypted symlink and verify it won't
265
* exceed max_len. Note that for historical reasons, encrypted symlink
266
* targets are prefixed with the ciphertext length, despite this
267
* actually being redundant with i_size. This decreases by 2 bytes the
268
* longest symlink target we can accept.
269
*
270
* We could recover 1 byte by not counting a null terminator, but
271
* counting it (even though it is meaningless for ciphertext) is simpler
272
* for now since filesystems will assume it is there and subtract it.
273
*/
274
if (!__fscrypt_fname_encrypted_size(policy, len,
275
max_len - sizeof(struct fscrypt_symlink_data) - 1,
276
&disk_link->len))
277
return -ENAMETOOLONG;
278
disk_link->len += sizeof(struct fscrypt_symlink_data) + 1;
279
280
disk_link->name = NULL;
281
return 0;
282
}
283
EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
284
285
int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
286
unsigned int len, struct fscrypt_str *disk_link)
287
{
288
int err;
289
struct qstr iname = QSTR_INIT(target, len);
290
struct fscrypt_symlink_data *sd;
291
unsigned int ciphertext_len;
292
293
/*
294
* fscrypt_prepare_new_inode() should have already set up the new
295
* symlink inode's encryption key. We don't wait until now to do it,
296
* since we may be in a filesystem transaction now.
297
*/
298
if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
299
return -ENOKEY;
300
301
if (disk_link->name) {
302
/* filesystem-provided buffer */
303
sd = (struct fscrypt_symlink_data *)disk_link->name;
304
} else {
305
sd = kmalloc(disk_link->len, GFP_NOFS);
306
if (!sd)
307
return -ENOMEM;
308
}
309
ciphertext_len = disk_link->len - sizeof(*sd) - 1;
310
sd->len = cpu_to_le16(ciphertext_len);
311
312
err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
313
ciphertext_len);
314
if (err)
315
goto err_free_sd;
316
317
/*
318
* Null-terminating the ciphertext doesn't make sense, but we still
319
* count the null terminator in the length, so we might as well
320
* initialize it just in case the filesystem writes it out.
321
*/
322
sd->encrypted_path[ciphertext_len] = '\0';
323
324
/* Cache the plaintext symlink target for later use by get_link() */
325
err = -ENOMEM;
326
inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
327
if (!inode->i_link)
328
goto err_free_sd;
329
330
if (!disk_link->name)
331
disk_link->name = (unsigned char *)sd;
332
return 0;
333
334
err_free_sd:
335
if (!disk_link->name)
336
kfree(sd);
337
return err;
338
}
339
EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
340
341
/**
342
* fscrypt_get_symlink() - get the target of an encrypted symlink
343
* @inode: the symlink inode
344
* @caddr: the on-disk contents of the symlink
345
* @max_size: size of @caddr buffer
346
* @done: if successful, will be set up to free the returned target if needed
347
*
348
* If the symlink's encryption key is available, we decrypt its target.
349
* Otherwise, we encode its target for presentation.
350
*
351
* This may sleep, so the filesystem must have dropped out of RCU mode already.
352
*
353
* Return: the presentable symlink target or an ERR_PTR()
354
*/
355
const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
356
unsigned int max_size,
357
struct delayed_call *done)
358
{
359
const struct fscrypt_symlink_data *sd;
360
struct fscrypt_str cstr, pstr;
361
bool has_key;
362
int err;
363
364
/* This is for encrypted symlinks only */
365
if (WARN_ON_ONCE(!IS_ENCRYPTED(inode)))
366
return ERR_PTR(-EINVAL);
367
368
/* If the decrypted target is already cached, just return it. */
369
pstr.name = READ_ONCE(inode->i_link);
370
if (pstr.name)
371
return pstr.name;
372
373
/*
374
* Try to set up the symlink's encryption key, but we can continue
375
* regardless of whether the key is available or not.
376
*/
377
err = fscrypt_get_encryption_info(inode, false);
378
if (err)
379
return ERR_PTR(err);
380
has_key = fscrypt_has_encryption_key(inode);
381
382
/*
383
* For historical reasons, encrypted symlink targets are prefixed with
384
* the ciphertext length, even though this is redundant with i_size.
385
*/
386
387
if (max_size < sizeof(*sd) + 1)
388
return ERR_PTR(-EUCLEAN);
389
sd = caddr;
390
cstr.name = (unsigned char *)sd->encrypted_path;
391
cstr.len = le16_to_cpu(sd->len);
392
393
if (cstr.len == 0)
394
return ERR_PTR(-EUCLEAN);
395
396
if (cstr.len + sizeof(*sd) > max_size)
397
return ERR_PTR(-EUCLEAN);
398
399
err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
400
if (err)
401
return ERR_PTR(err);
402
403
err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
404
if (err)
405
goto err_kfree;
406
407
err = -EUCLEAN;
408
if (pstr.name[0] == '\0')
409
goto err_kfree;
410
411
pstr.name[pstr.len] = '\0';
412
413
/*
414
* Cache decrypted symlink targets in i_link for later use. Don't cache
415
* symlink targets encoded without the key, since those become outdated
416
* once the key is added. This pairs with the READ_ONCE() above and in
417
* the VFS path lookup code.
418
*/
419
if (!has_key ||
420
cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
421
set_delayed_call(done, kfree_link, pstr.name);
422
423
return pstr.name;
424
425
err_kfree:
426
kfree(pstr.name);
427
return ERR_PTR(err);
428
}
429
EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
430
431
/**
432
* fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
433
* @path: the path for the encrypted symlink being queried
434
* @stat: the struct being filled with the symlink's attributes
435
*
436
* Override st_size of encrypted symlinks to be the length of the decrypted
437
* symlink target (or the no-key encoded symlink target, if the key is
438
* unavailable) rather than the length of the encrypted symlink target. This is
439
* necessary for st_size to match the symlink target that userspace actually
440
* sees. POSIX requires this, and some userspace programs depend on it.
441
*
442
* This requires reading the symlink target from disk if needed, setting up the
443
* inode's encryption key if possible, and then decrypting or encoding the
444
* symlink target. This makes lstat() more heavyweight than is normally the
445
* case. However, decrypted symlink targets will be cached in ->i_link, so
446
* usually the symlink won't have to be read and decrypted again later if/when
447
* it is actually followed, readlink() is called, or lstat() is called again.
448
*
449
* Return: 0 on success, -errno on failure
450
*/
451
int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
452
{
453
struct dentry *dentry = path->dentry;
454
struct inode *inode = d_inode(dentry);
455
const char *link;
456
DEFINE_DELAYED_CALL(done);
457
458
/*
459
* To get the symlink target that userspace will see (whether it's the
460
* decrypted target or the no-key encoded target), we can just get it in
461
* the same way the VFS does during path resolution and readlink().
462
*/
463
link = READ_ONCE(inode->i_link);
464
if (!link) {
465
link = inode->i_op->get_link(dentry, inode, &done);
466
if (IS_ERR(link))
467
return PTR_ERR(link);
468
}
469
stat->size = strlen(link);
470
do_delayed_call(&done);
471
return 0;
472
}
473
EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);
474
475