Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/crypto/keysetup.c
26282 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Key setup facility for FS encryption support.
4
*
5
* Copyright (C) 2015, Google, Inc.
6
*
7
* Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8
* Heavily modified since then.
9
*/
10
11
#include <crypto/skcipher.h>
12
#include <linux/export.h>
13
#include <linux/random.h>
14
15
#include "fscrypt_private.h"
16
17
struct fscrypt_mode fscrypt_modes[] = {
18
[FSCRYPT_MODE_AES_256_XTS] = {
19
.friendly_name = "AES-256-XTS",
20
.cipher_str = "xts(aes)",
21
.keysize = 64,
22
.security_strength = 32,
23
.ivsize = 16,
24
.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
25
},
26
[FSCRYPT_MODE_AES_256_CTS] = {
27
.friendly_name = "AES-256-CBC-CTS",
28
.cipher_str = "cts(cbc(aes))",
29
.keysize = 32,
30
.security_strength = 32,
31
.ivsize = 16,
32
},
33
[FSCRYPT_MODE_AES_128_CBC] = {
34
.friendly_name = "AES-128-CBC-ESSIV",
35
.cipher_str = "essiv(cbc(aes),sha256)",
36
.keysize = 16,
37
.security_strength = 16,
38
.ivsize = 16,
39
.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
40
},
41
[FSCRYPT_MODE_AES_128_CTS] = {
42
.friendly_name = "AES-128-CBC-CTS",
43
.cipher_str = "cts(cbc(aes))",
44
.keysize = 16,
45
.security_strength = 16,
46
.ivsize = 16,
47
},
48
[FSCRYPT_MODE_SM4_XTS] = {
49
.friendly_name = "SM4-XTS",
50
.cipher_str = "xts(sm4)",
51
.keysize = 32,
52
.security_strength = 16,
53
.ivsize = 16,
54
.blk_crypto_mode = BLK_ENCRYPTION_MODE_SM4_XTS,
55
},
56
[FSCRYPT_MODE_SM4_CTS] = {
57
.friendly_name = "SM4-CBC-CTS",
58
.cipher_str = "cts(cbc(sm4))",
59
.keysize = 16,
60
.security_strength = 16,
61
.ivsize = 16,
62
},
63
[FSCRYPT_MODE_ADIANTUM] = {
64
.friendly_name = "Adiantum",
65
.cipher_str = "adiantum(xchacha12,aes)",
66
.keysize = 32,
67
.security_strength = 32,
68
.ivsize = 32,
69
.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
70
},
71
[FSCRYPT_MODE_AES_256_HCTR2] = {
72
.friendly_name = "AES-256-HCTR2",
73
.cipher_str = "hctr2(aes)",
74
.keysize = 32,
75
.security_strength = 32,
76
.ivsize = 32,
77
},
78
};
79
80
static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
81
82
static struct fscrypt_mode *
83
select_encryption_mode(const union fscrypt_policy *policy,
84
const struct inode *inode)
85
{
86
BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1);
87
88
if (S_ISREG(inode->i_mode))
89
return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
90
91
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
92
return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
93
94
WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
95
inode->i_ino, (inode->i_mode & S_IFMT));
96
return ERR_PTR(-EINVAL);
97
}
98
99
/* Create a symmetric cipher object for the given encryption mode and key */
100
static struct crypto_sync_skcipher *
101
fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
102
const struct inode *inode)
103
{
104
struct crypto_sync_skcipher *tfm;
105
int err;
106
107
tfm = crypto_alloc_sync_skcipher(mode->cipher_str, 0,
108
FSCRYPT_CRYPTOAPI_MASK);
109
if (IS_ERR(tfm)) {
110
if (PTR_ERR(tfm) == -ENOENT) {
111
fscrypt_warn(inode,
112
"Missing crypto API support for %s (API name: \"%s\")",
113
mode->friendly_name, mode->cipher_str);
114
return ERR_PTR(-ENOPKG);
115
}
116
fscrypt_err(inode, "Error allocating '%s' transform: %ld",
117
mode->cipher_str, PTR_ERR(tfm));
118
return tfm;
119
}
120
if (!xchg(&mode->logged_cryptoapi_impl, 1)) {
121
/*
122
* fscrypt performance can vary greatly depending on which
123
* crypto algorithm implementation is used. Help people debug
124
* performance problems by logging the ->cra_driver_name the
125
* first time a mode is used.
126
*/
127
pr_info("fscrypt: %s using implementation \"%s\"\n",
128
mode->friendly_name,
129
crypto_skcipher_driver_name(&tfm->base));
130
}
131
if (WARN_ON_ONCE(crypto_sync_skcipher_ivsize(tfm) != mode->ivsize)) {
132
err = -EINVAL;
133
goto err_free_tfm;
134
}
135
crypto_sync_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
136
err = crypto_sync_skcipher_setkey(tfm, raw_key, mode->keysize);
137
if (err)
138
goto err_free_tfm;
139
140
return tfm;
141
142
err_free_tfm:
143
crypto_free_sync_skcipher(tfm);
144
return ERR_PTR(err);
145
}
146
147
/*
148
* Prepare the crypto transform object or blk-crypto key in @prep_key, given the
149
* raw key, encryption mode (@ci->ci_mode), flag indicating which encryption
150
* implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt),
151
* and IV generation method (@ci->ci_policy.flags).
152
*/
153
int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
154
const u8 *raw_key, const struct fscrypt_inode_info *ci)
155
{
156
struct crypto_sync_skcipher *tfm;
157
158
if (fscrypt_using_inline_encryption(ci))
159
return fscrypt_prepare_inline_crypt_key(prep_key, raw_key,
160
ci->ci_mode->keysize,
161
false, ci);
162
163
tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
164
if (IS_ERR(tfm))
165
return PTR_ERR(tfm);
166
/*
167
* Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
168
* I.e., here we publish ->tfm with a RELEASE barrier so that
169
* concurrent tasks can ACQUIRE it. Note that this concurrency is only
170
* possible for per-mode keys, not for per-file keys.
171
*/
172
smp_store_release(&prep_key->tfm, tfm);
173
return 0;
174
}
175
176
/* Destroy a crypto transform object and/or blk-crypto key. */
177
void fscrypt_destroy_prepared_key(struct super_block *sb,
178
struct fscrypt_prepared_key *prep_key)
179
{
180
crypto_free_sync_skcipher(prep_key->tfm);
181
fscrypt_destroy_inline_crypt_key(sb, prep_key);
182
memzero_explicit(prep_key, sizeof(*prep_key));
183
}
184
185
/* Given a per-file encryption key, set up the file's crypto transform object */
186
int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci,
187
const u8 *raw_key)
188
{
189
ci->ci_owns_key = true;
190
return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
191
}
192
193
static int setup_per_mode_enc_key(struct fscrypt_inode_info *ci,
194
struct fscrypt_master_key *mk,
195
struct fscrypt_prepared_key *keys,
196
u8 hkdf_context, bool include_fs_uuid)
197
{
198
const struct inode *inode = ci->ci_inode;
199
const struct super_block *sb = inode->i_sb;
200
struct fscrypt_mode *mode = ci->ci_mode;
201
const u8 mode_num = mode - fscrypt_modes;
202
struct fscrypt_prepared_key *prep_key;
203
u8 mode_key[FSCRYPT_MAX_RAW_KEY_SIZE];
204
u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
205
unsigned int hkdf_infolen = 0;
206
bool use_hw_wrapped_key = false;
207
int err;
208
209
if (WARN_ON_ONCE(mode_num > FSCRYPT_MODE_MAX))
210
return -EINVAL;
211
212
if (mk->mk_secret.is_hw_wrapped && S_ISREG(inode->i_mode)) {
213
/* Using a hardware-wrapped key for file contents encryption */
214
if (!fscrypt_using_inline_encryption(ci)) {
215
if (sb->s_flags & SB_INLINECRYPT)
216
fscrypt_warn(ci->ci_inode,
217
"Hardware-wrapped key required, but no suitable inline encryption capabilities are available");
218
else
219
fscrypt_warn(ci->ci_inode,
220
"Hardware-wrapped keys require inline encryption (-o inlinecrypt)");
221
return -EINVAL;
222
}
223
use_hw_wrapped_key = true;
224
}
225
226
prep_key = &keys[mode_num];
227
if (fscrypt_is_key_prepared(prep_key, ci)) {
228
ci->ci_enc_key = *prep_key;
229
return 0;
230
}
231
232
mutex_lock(&fscrypt_mode_key_setup_mutex);
233
234
if (fscrypt_is_key_prepared(prep_key, ci))
235
goto done_unlock;
236
237
if (use_hw_wrapped_key) {
238
err = fscrypt_prepare_inline_crypt_key(prep_key,
239
mk->mk_secret.bytes,
240
mk->mk_secret.size, true,
241
ci);
242
if (err)
243
goto out_unlock;
244
goto done_unlock;
245
}
246
247
BUILD_BUG_ON(sizeof(mode_num) != 1);
248
BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
249
BUILD_BUG_ON(sizeof(hkdf_info) != 17);
250
hkdf_info[hkdf_infolen++] = mode_num;
251
if (include_fs_uuid) {
252
memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
253
sizeof(sb->s_uuid));
254
hkdf_infolen += sizeof(sb->s_uuid);
255
}
256
err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
257
hkdf_context, hkdf_info, hkdf_infolen,
258
mode_key, mode->keysize);
259
if (err)
260
goto out_unlock;
261
err = fscrypt_prepare_key(prep_key, mode_key, ci);
262
memzero_explicit(mode_key, mode->keysize);
263
if (err)
264
goto out_unlock;
265
done_unlock:
266
ci->ci_enc_key = *prep_key;
267
err = 0;
268
out_unlock:
269
mutex_unlock(&fscrypt_mode_key_setup_mutex);
270
return err;
271
}
272
273
/*
274
* Derive a SipHash key from the given fscrypt master key and the given
275
* application-specific information string.
276
*
277
* Note that the KDF produces a byte array, but the SipHash APIs expect the key
278
* as a pair of 64-bit words. Therefore, on big endian CPUs we have to do an
279
* endianness swap in order to get the same results as on little endian CPUs.
280
*/
281
static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk,
282
u8 context, const u8 *info,
283
unsigned int infolen, siphash_key_t *key)
284
{
285
int err;
286
287
err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen,
288
(u8 *)key, sizeof(*key));
289
if (err)
290
return err;
291
292
BUILD_BUG_ON(sizeof(*key) != 16);
293
BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2);
294
le64_to_cpus(&key->key[0]);
295
le64_to_cpus(&key->key[1]);
296
return 0;
297
}
298
299
int fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci,
300
const struct fscrypt_master_key *mk)
301
{
302
int err;
303
304
err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
305
ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
306
&ci->ci_dirhash_key);
307
if (err)
308
return err;
309
ci->ci_dirhash_key_initialized = true;
310
return 0;
311
}
312
313
void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci,
314
const struct fscrypt_master_key *mk)
315
{
316
WARN_ON_ONCE(ci->ci_inode->i_ino == 0);
317
WARN_ON_ONCE(!mk->mk_ino_hash_key_initialized);
318
319
ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
320
&mk->mk_ino_hash_key);
321
}
322
323
static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_inode_info *ci,
324
struct fscrypt_master_key *mk)
325
{
326
int err;
327
328
err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
329
HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
330
if (err)
331
return err;
332
333
/* pairs with smp_store_release() below */
334
if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
335
336
mutex_lock(&fscrypt_mode_key_setup_mutex);
337
338
if (mk->mk_ino_hash_key_initialized)
339
goto unlock;
340
341
err = fscrypt_derive_siphash_key(mk,
342
HKDF_CONTEXT_INODE_HASH_KEY,
343
NULL, 0, &mk->mk_ino_hash_key);
344
if (err)
345
goto unlock;
346
/* pairs with smp_load_acquire() above */
347
smp_store_release(&mk->mk_ino_hash_key_initialized, true);
348
unlock:
349
mutex_unlock(&fscrypt_mode_key_setup_mutex);
350
if (err)
351
return err;
352
}
353
354
/*
355
* New inodes may not have an inode number assigned yet.
356
* Hashing their inode number is delayed until later.
357
*/
358
if (ci->ci_inode->i_ino)
359
fscrypt_hash_inode_number(ci, mk);
360
return 0;
361
}
362
363
static int fscrypt_setup_v2_file_key(struct fscrypt_inode_info *ci,
364
struct fscrypt_master_key *mk,
365
bool need_dirhash_key)
366
{
367
int err;
368
369
if (mk->mk_secret.is_hw_wrapped &&
370
!(ci->ci_policy.v2.flags & (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 |
371
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32))) {
372
fscrypt_warn(ci->ci_inode,
373
"Hardware-wrapped keys are only supported with IV_INO_LBLK policies");
374
return -EINVAL;
375
}
376
377
if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
378
/*
379
* DIRECT_KEY: instead of deriving per-file encryption keys, the
380
* per-file nonce will be included in all the IVs. But unlike
381
* v1 policies, for v2 policies in this case we don't encrypt
382
* with the master key directly but rather derive a per-mode
383
* encryption key. This ensures that the master key is
384
* consistently used only for HKDF, avoiding key reuse issues.
385
*/
386
err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
387
HKDF_CONTEXT_DIRECT_KEY, false);
388
} else if (ci->ci_policy.v2.flags &
389
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
390
/*
391
* IV_INO_LBLK_64: encryption keys are derived from (master_key,
392
* mode_num, filesystem_uuid), and inode number is included in
393
* the IVs. This format is optimized for use with inline
394
* encryption hardware compliant with the UFS standard.
395
*/
396
err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
397
HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
398
true);
399
} else if (ci->ci_policy.v2.flags &
400
FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
401
err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
402
} else {
403
u8 derived_key[FSCRYPT_MAX_RAW_KEY_SIZE];
404
405
err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
406
HKDF_CONTEXT_PER_FILE_ENC_KEY,
407
ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
408
derived_key, ci->ci_mode->keysize);
409
if (err)
410
return err;
411
412
err = fscrypt_set_per_file_enc_key(ci, derived_key);
413
memzero_explicit(derived_key, ci->ci_mode->keysize);
414
}
415
if (err)
416
return err;
417
418
/* Derive a secret dirhash key for directories that need it. */
419
if (need_dirhash_key) {
420
err = fscrypt_derive_dirhash_key(ci, mk);
421
if (err)
422
return err;
423
}
424
425
return 0;
426
}
427
428
/*
429
* Check whether the size of the given master key (@mk) is appropriate for the
430
* encryption settings which a particular file will use (@ci).
431
*
432
* If the file uses a v1 encryption policy, then the master key must be at least
433
* as long as the derived key, as this is a requirement of the v1 KDF.
434
*
435
* Otherwise, the KDF can accept any size key, so we enforce a slightly looser
436
* requirement: we require that the size of the master key be at least the
437
* maximum security strength of any algorithm whose key will be derived from it
438
* (but in practice we only need to consider @ci->ci_mode, since any other
439
* possible subkeys such as DIRHASH and INODE_HASH will never increase the
440
* required key size over @ci->ci_mode). This allows AES-256-XTS keys to be
441
* derived from a 256-bit master key, which is cryptographically sufficient,
442
* rather than requiring a 512-bit master key which is unnecessarily long. (We
443
* still allow 512-bit master keys if the user chooses to use them, though.)
444
*/
445
static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk,
446
const struct fscrypt_inode_info *ci)
447
{
448
unsigned int min_keysize;
449
450
if (ci->ci_policy.version == FSCRYPT_POLICY_V1)
451
min_keysize = ci->ci_mode->keysize;
452
else
453
min_keysize = ci->ci_mode->security_strength;
454
455
if (mk->mk_secret.size < min_keysize) {
456
fscrypt_warn(NULL,
457
"key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
458
master_key_spec_type(&mk->mk_spec),
459
master_key_spec_len(&mk->mk_spec),
460
(u8 *)&mk->mk_spec.u,
461
mk->mk_secret.size, min_keysize);
462
return false;
463
}
464
return true;
465
}
466
467
/*
468
* Find the master key, then set up the inode's actual encryption key.
469
*
470
* If the master key is found in the filesystem-level keyring, then it is
471
* returned in *mk_ret with its semaphore read-locked. This is needed to ensure
472
* that only one task links the fscrypt_inode_info into ->mk_decrypted_inodes
473
* (as multiple tasks may race to create an fscrypt_inode_info for the same
474
* inode), and to synchronize the master key being removed with a new inode
475
* starting to use it.
476
*/
477
static int setup_file_encryption_key(struct fscrypt_inode_info *ci,
478
bool need_dirhash_key,
479
struct fscrypt_master_key **mk_ret)
480
{
481
struct super_block *sb = ci->ci_inode->i_sb;
482
struct fscrypt_key_specifier mk_spec;
483
struct fscrypt_master_key *mk;
484
int err;
485
486
err = fscrypt_policy_to_key_spec(&ci->ci_policy, &mk_spec);
487
if (err)
488
return err;
489
490
mk = fscrypt_find_master_key(sb, &mk_spec);
491
if (unlikely(!mk)) {
492
const union fscrypt_policy *dummy_policy =
493
fscrypt_get_dummy_policy(sb);
494
495
/*
496
* Add the test_dummy_encryption key on-demand. In principle,
497
* it should be added at mount time. Do it here instead so that
498
* the individual filesystems don't need to worry about adding
499
* this key at mount time and cleaning up on mount failure.
500
*/
501
if (dummy_policy &&
502
fscrypt_policies_equal(dummy_policy, &ci->ci_policy)) {
503
err = fscrypt_add_test_dummy_key(sb, &mk_spec);
504
if (err)
505
return err;
506
mk = fscrypt_find_master_key(sb, &mk_spec);
507
}
508
}
509
if (unlikely(!mk)) {
510
if (ci->ci_policy.version != FSCRYPT_POLICY_V1)
511
return -ENOKEY;
512
513
err = fscrypt_select_encryption_impl(ci, false);
514
if (err)
515
return err;
516
517
/*
518
* As a legacy fallback for v1 policies, search for the key in
519
* the current task's subscribed keyrings too. Don't move this
520
* to before the search of ->s_master_keys, since users
521
* shouldn't be able to override filesystem-level keys.
522
*/
523
return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
524
}
525
down_read(&mk->mk_sem);
526
527
if (!mk->mk_present) {
528
/* FS_IOC_REMOVE_ENCRYPTION_KEY has been executed on this key */
529
err = -ENOKEY;
530
goto out_release_key;
531
}
532
533
if (!fscrypt_valid_master_key_size(mk, ci)) {
534
err = -ENOKEY;
535
goto out_release_key;
536
}
537
538
err = fscrypt_select_encryption_impl(ci, mk->mk_secret.is_hw_wrapped);
539
if (err)
540
goto out_release_key;
541
542
switch (ci->ci_policy.version) {
543
case FSCRYPT_POLICY_V1:
544
if (WARN_ON_ONCE(mk->mk_secret.is_hw_wrapped)) {
545
/*
546
* This should never happen, as adding a v1 policy key
547
* that is hardware-wrapped isn't allowed.
548
*/
549
err = -EINVAL;
550
goto out_release_key;
551
}
552
err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.bytes);
553
break;
554
case FSCRYPT_POLICY_V2:
555
err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key);
556
break;
557
default:
558
WARN_ON_ONCE(1);
559
err = -EINVAL;
560
break;
561
}
562
if (err)
563
goto out_release_key;
564
565
*mk_ret = mk;
566
return 0;
567
568
out_release_key:
569
up_read(&mk->mk_sem);
570
fscrypt_put_master_key(mk);
571
return err;
572
}
573
574
static void put_crypt_info(struct fscrypt_inode_info *ci)
575
{
576
struct fscrypt_master_key *mk;
577
578
if (!ci)
579
return;
580
581
if (ci->ci_direct_key)
582
fscrypt_put_direct_key(ci->ci_direct_key);
583
else if (ci->ci_owns_key)
584
fscrypt_destroy_prepared_key(ci->ci_inode->i_sb,
585
&ci->ci_enc_key);
586
587
mk = ci->ci_master_key;
588
if (mk) {
589
/*
590
* Remove this inode from the list of inodes that were unlocked
591
* with the master key. In addition, if we're removing the last
592
* inode from an incompletely removed key, then complete the
593
* full removal of the key.
594
*/
595
spin_lock(&mk->mk_decrypted_inodes_lock);
596
list_del(&ci->ci_master_key_link);
597
spin_unlock(&mk->mk_decrypted_inodes_lock);
598
fscrypt_put_master_key_activeref(ci->ci_inode->i_sb, mk);
599
}
600
memzero_explicit(ci, sizeof(*ci));
601
kmem_cache_free(fscrypt_inode_info_cachep, ci);
602
}
603
604
static int
605
fscrypt_setup_encryption_info(struct inode *inode,
606
const union fscrypt_policy *policy,
607
const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
608
bool need_dirhash_key)
609
{
610
struct fscrypt_inode_info *crypt_info;
611
struct fscrypt_mode *mode;
612
struct fscrypt_master_key *mk = NULL;
613
int res;
614
615
res = fscrypt_initialize(inode->i_sb);
616
if (res)
617
return res;
618
619
crypt_info = kmem_cache_zalloc(fscrypt_inode_info_cachep, GFP_KERNEL);
620
if (!crypt_info)
621
return -ENOMEM;
622
623
crypt_info->ci_inode = inode;
624
crypt_info->ci_policy = *policy;
625
memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE);
626
627
mode = select_encryption_mode(&crypt_info->ci_policy, inode);
628
if (IS_ERR(mode)) {
629
res = PTR_ERR(mode);
630
goto out;
631
}
632
WARN_ON_ONCE(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
633
crypt_info->ci_mode = mode;
634
635
crypt_info->ci_data_unit_bits =
636
fscrypt_policy_du_bits(&crypt_info->ci_policy, inode);
637
crypt_info->ci_data_units_per_block_bits =
638
inode->i_blkbits - crypt_info->ci_data_unit_bits;
639
640
res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk);
641
if (res)
642
goto out;
643
644
/*
645
* For existing inodes, multiple tasks may race to set ->i_crypt_info.
646
* So use cmpxchg_release(). This pairs with the smp_load_acquire() in
647
* fscrypt_get_inode_info(). I.e., here we publish ->i_crypt_info with
648
* a RELEASE barrier so that other tasks can ACQUIRE it.
649
*/
650
if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
651
/*
652
* We won the race and set ->i_crypt_info to our crypt_info.
653
* Now link it into the master key's inode list.
654
*/
655
if (mk) {
656
crypt_info->ci_master_key = mk;
657
refcount_inc(&mk->mk_active_refs);
658
spin_lock(&mk->mk_decrypted_inodes_lock);
659
list_add(&crypt_info->ci_master_key_link,
660
&mk->mk_decrypted_inodes);
661
spin_unlock(&mk->mk_decrypted_inodes_lock);
662
}
663
crypt_info = NULL;
664
}
665
res = 0;
666
out:
667
if (mk) {
668
up_read(&mk->mk_sem);
669
fscrypt_put_master_key(mk);
670
}
671
put_crypt_info(crypt_info);
672
return res;
673
}
674
675
/**
676
* fscrypt_get_encryption_info() - set up an inode's encryption key
677
* @inode: the inode to set up the key for. Must be encrypted.
678
* @allow_unsupported: if %true, treat an unsupported encryption policy (or
679
* unrecognized encryption context) the same way as the key
680
* being unavailable, instead of returning an error. Use
681
* %false unless the operation being performed is needed in
682
* order for files (or directories) to be deleted.
683
*
684
* Set up ->i_crypt_info, if it hasn't already been done.
685
*
686
* Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe. So
687
* generally this shouldn't be called from within a filesystem transaction.
688
*
689
* Return: 0 if ->i_crypt_info was set or was already set, *or* if the
690
* encryption key is unavailable. (Use fscrypt_has_encryption_key() to
691
* distinguish these cases.) Also can return another -errno code.
692
*/
693
int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported)
694
{
695
int res;
696
union fscrypt_context ctx;
697
union fscrypt_policy policy;
698
699
if (fscrypt_has_encryption_key(inode))
700
return 0;
701
702
res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
703
if (res < 0) {
704
if (res == -ERANGE && allow_unsupported)
705
return 0;
706
fscrypt_warn(inode, "Error %d getting encryption context", res);
707
return res;
708
}
709
710
res = fscrypt_policy_from_context(&policy, &ctx, res);
711
if (res) {
712
if (allow_unsupported)
713
return 0;
714
fscrypt_warn(inode,
715
"Unrecognized or corrupt encryption context");
716
return res;
717
}
718
719
if (!fscrypt_supported_policy(&policy, inode)) {
720
if (allow_unsupported)
721
return 0;
722
return -EINVAL;
723
}
724
725
res = fscrypt_setup_encryption_info(inode, &policy,
726
fscrypt_context_nonce(&ctx),
727
IS_CASEFOLDED(inode) &&
728
S_ISDIR(inode->i_mode));
729
730
if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */
731
res = 0;
732
if (res == -ENOKEY)
733
res = 0;
734
return res;
735
}
736
737
/**
738
* fscrypt_prepare_new_inode() - prepare to create a new inode in a directory
739
* @dir: a possibly-encrypted directory
740
* @inode: the new inode. ->i_mode and ->i_blkbits must be set already.
741
* ->i_ino doesn't need to be set yet.
742
* @encrypt_ret: (output) set to %true if the new inode will be encrypted
743
*
744
* If the directory is encrypted, set up its ->i_crypt_info in preparation for
745
* encrypting the name of the new file. Also, if the new inode will be
746
* encrypted, set up its ->i_crypt_info and set *encrypt_ret=true.
747
*
748
* This isn't %GFP_NOFS-safe, and therefore it should be called before starting
749
* any filesystem transaction to create the inode. For this reason, ->i_ino
750
* isn't required to be set yet, as the filesystem may not have set it yet.
751
*
752
* This doesn't persist the new inode's encryption context. That still needs to
753
* be done later by calling fscrypt_set_context().
754
*
755
* Return: 0 on success, -ENOKEY if the encryption key is missing, or another
756
* -errno code
757
*/
758
int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
759
bool *encrypt_ret)
760
{
761
const union fscrypt_policy *policy;
762
u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
763
764
policy = fscrypt_policy_to_inherit(dir);
765
if (policy == NULL)
766
return 0;
767
if (IS_ERR(policy))
768
return PTR_ERR(policy);
769
770
if (WARN_ON_ONCE(inode->i_blkbits == 0))
771
return -EINVAL;
772
773
if (WARN_ON_ONCE(inode->i_mode == 0))
774
return -EINVAL;
775
776
/*
777
* Only regular files, directories, and symlinks are encrypted.
778
* Special files like device nodes and named pipes aren't.
779
*/
780
if (!S_ISREG(inode->i_mode) &&
781
!S_ISDIR(inode->i_mode) &&
782
!S_ISLNK(inode->i_mode))
783
return 0;
784
785
*encrypt_ret = true;
786
787
get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE);
788
return fscrypt_setup_encryption_info(inode, policy, nonce,
789
IS_CASEFOLDED(dir) &&
790
S_ISDIR(inode->i_mode));
791
}
792
EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode);
793
794
/**
795
* fscrypt_put_encryption_info() - free most of an inode's fscrypt data
796
* @inode: an inode being evicted
797
*
798
* Free the inode's fscrypt_inode_info. Filesystems must call this when the
799
* inode is being evicted. An RCU grace period need not have elapsed yet.
800
*/
801
void fscrypt_put_encryption_info(struct inode *inode)
802
{
803
put_crypt_info(inode->i_crypt_info);
804
inode->i_crypt_info = NULL;
805
}
806
EXPORT_SYMBOL(fscrypt_put_encryption_info);
807
808
/**
809
* fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
810
* @inode: an inode being freed
811
*
812
* Free the inode's cached decrypted symlink target, if any. Filesystems must
813
* call this after an RCU grace period, just before they free the inode.
814
*/
815
void fscrypt_free_inode(struct inode *inode)
816
{
817
if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
818
kfree(inode->i_link);
819
inode->i_link = NULL;
820
}
821
}
822
EXPORT_SYMBOL(fscrypt_free_inode);
823
824
/**
825
* fscrypt_drop_inode() - check whether the inode's master key has been removed
826
* @inode: an inode being considered for eviction
827
*
828
* Filesystems supporting fscrypt must call this from their ->drop_inode()
829
* method so that encrypted inodes are evicted as soon as they're no longer in
830
* use and their master key has been removed.
831
*
832
* Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
833
*/
834
int fscrypt_drop_inode(struct inode *inode)
835
{
836
const struct fscrypt_inode_info *ci = fscrypt_get_inode_info(inode);
837
838
/*
839
* If ci is NULL, then the inode doesn't have an encryption key set up
840
* so it's irrelevant. If ci_master_key is NULL, then the master key
841
* was provided via the legacy mechanism of the process-subscribed
842
* keyrings, so we don't know whether it's been removed or not.
843
*/
844
if (!ci || !ci->ci_master_key)
845
return 0;
846
847
/*
848
* With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
849
* protected by the key were cleaned by sync_filesystem(). But if
850
* userspace is still using the files, inodes can be dirtied between
851
* then and now. We mustn't lose any writes, so skip dirty inodes here.
852
*/
853
if (inode->i_state & I_DIRTY_ALL)
854
return 0;
855
856
/*
857
* We can't take ->mk_sem here, since this runs in atomic context.
858
* Therefore, ->mk_present can change concurrently, and our result may
859
* immediately become outdated. But there's no correctness problem with
860
* unnecessarily evicting. Nor is there a correctness problem with not
861
* evicting while iput() is racing with the key being removed, since
862
* then the thread removing the key will either evict the inode itself
863
* or will correctly detect that it wasn't evicted due to the race.
864
*/
865
return !READ_ONCE(ci->ci_master_key->mk_present);
866
}
867
EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
868
869