Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/dcache.c
26131 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* fs/dcache.c
4
*
5
* Complete reimplementation
6
* (C) 1997 Thomas Schoebel-Theuer,
7
* with heavy changes by Linus Torvalds
8
*/
9
10
/*
11
* Notes on the allocation strategy:
12
*
13
* The dcache is a master of the icache - whenever a dcache entry
14
* exists, the inode will always exist. "iput()" is done either when
15
* the dcache entry is deleted or garbage collected.
16
*/
17
18
#include <linux/ratelimit.h>
19
#include <linux/string.h>
20
#include <linux/mm.h>
21
#include <linux/fs.h>
22
#include <linux/fscrypt.h>
23
#include <linux/fsnotify.h>
24
#include <linux/slab.h>
25
#include <linux/init.h>
26
#include <linux/hash.h>
27
#include <linux/cache.h>
28
#include <linux/export.h>
29
#include <linux/security.h>
30
#include <linux/seqlock.h>
31
#include <linux/memblock.h>
32
#include <linux/bit_spinlock.h>
33
#include <linux/rculist_bl.h>
34
#include <linux/list_lru.h>
35
#include "internal.h"
36
#include "mount.h"
37
38
#include <asm/runtime-const.h>
39
40
/*
41
* Usage:
42
* dcache->d_inode->i_lock protects:
43
* - i_dentry, d_u.d_alias, d_inode of aliases
44
* dcache_hash_bucket lock protects:
45
* - the dcache hash table
46
* s_roots bl list spinlock protects:
47
* - the s_roots list (see __d_drop)
48
* dentry->d_sb->s_dentry_lru_lock protects:
49
* - the dcache lru lists and counters
50
* d_lock protects:
51
* - d_flags
52
* - d_name
53
* - d_lru
54
* - d_count
55
* - d_unhashed()
56
* - d_parent and d_chilren
57
* - childrens' d_sib and d_parent
58
* - d_u.d_alias, d_inode
59
*
60
* Ordering:
61
* dentry->d_inode->i_lock
62
* dentry->d_lock
63
* dentry->d_sb->s_dentry_lru_lock
64
* dcache_hash_bucket lock
65
* s_roots lock
66
*
67
* If there is an ancestor relationship:
68
* dentry->d_parent->...->d_parent->d_lock
69
* ...
70
* dentry->d_parent->d_lock
71
* dentry->d_lock
72
*
73
* If no ancestor relationship:
74
* arbitrary, since it's serialized on rename_lock
75
*/
76
static int sysctl_vfs_cache_pressure __read_mostly = 100;
77
static int sysctl_vfs_cache_pressure_denom __read_mostly = 100;
78
79
unsigned long vfs_pressure_ratio(unsigned long val)
80
{
81
return mult_frac(val, sysctl_vfs_cache_pressure, sysctl_vfs_cache_pressure_denom);
82
}
83
EXPORT_SYMBOL_GPL(vfs_pressure_ratio);
84
85
__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87
EXPORT_SYMBOL(rename_lock);
88
89
static struct kmem_cache *dentry_cache __ro_after_init;
90
91
const struct qstr empty_name = QSTR_INIT("", 0);
92
EXPORT_SYMBOL(empty_name);
93
const struct qstr slash_name = QSTR_INIT("/", 1);
94
EXPORT_SYMBOL(slash_name);
95
const struct qstr dotdot_name = QSTR_INIT("..", 2);
96
EXPORT_SYMBOL(dotdot_name);
97
98
/*
99
* This is the single most critical data structure when it comes
100
* to the dcache: the hashtable for lookups. Somebody should try
101
* to make this good - I've just made it work.
102
*
103
* This hash-function tries to avoid losing too many bits of hash
104
* information, yet avoid using a prime hash-size or similar.
105
*
106
* Marking the variables "used" ensures that the compiler doesn't
107
* optimize them away completely on architectures with runtime
108
* constant infrastructure, this allows debuggers to see their
109
* values. But updating these values has no effect on those arches.
110
*/
111
112
static unsigned int d_hash_shift __ro_after_init __used;
113
114
static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
115
116
static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
117
{
118
return runtime_const_ptr(dentry_hashtable) +
119
runtime_const_shift_right_32(hashlen, d_hash_shift);
120
}
121
122
#define IN_LOOKUP_SHIFT 10
123
static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
124
125
static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
126
unsigned int hash)
127
{
128
hash += (unsigned long) parent / L1_CACHE_BYTES;
129
return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
130
}
131
132
struct dentry_stat_t {
133
long nr_dentry;
134
long nr_unused;
135
long age_limit; /* age in seconds */
136
long want_pages; /* pages requested by system */
137
long nr_negative; /* # of unused negative dentries */
138
long dummy; /* Reserved for future use */
139
};
140
141
static DEFINE_PER_CPU(long, nr_dentry);
142
static DEFINE_PER_CPU(long, nr_dentry_unused);
143
static DEFINE_PER_CPU(long, nr_dentry_negative);
144
static int dentry_negative_policy;
145
146
#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
147
/* Statistics gathering. */
148
static struct dentry_stat_t dentry_stat = {
149
.age_limit = 45,
150
};
151
152
/*
153
* Here we resort to our own counters instead of using generic per-cpu counters
154
* for consistency with what the vfs inode code does. We are expected to harvest
155
* better code and performance by having our own specialized counters.
156
*
157
* Please note that the loop is done over all possible CPUs, not over all online
158
* CPUs. The reason for this is that we don't want to play games with CPUs going
159
* on and off. If one of them goes off, we will just keep their counters.
160
*
161
* glommer: See cffbc8a for details, and if you ever intend to change this,
162
* please update all vfs counters to match.
163
*/
164
static long get_nr_dentry(void)
165
{
166
int i;
167
long sum = 0;
168
for_each_possible_cpu(i)
169
sum += per_cpu(nr_dentry, i);
170
return sum < 0 ? 0 : sum;
171
}
172
173
static long get_nr_dentry_unused(void)
174
{
175
int i;
176
long sum = 0;
177
for_each_possible_cpu(i)
178
sum += per_cpu(nr_dentry_unused, i);
179
return sum < 0 ? 0 : sum;
180
}
181
182
static long get_nr_dentry_negative(void)
183
{
184
int i;
185
long sum = 0;
186
187
for_each_possible_cpu(i)
188
sum += per_cpu(nr_dentry_negative, i);
189
return sum < 0 ? 0 : sum;
190
}
191
192
static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
193
size_t *lenp, loff_t *ppos)
194
{
195
dentry_stat.nr_dentry = get_nr_dentry();
196
dentry_stat.nr_unused = get_nr_dentry_unused();
197
dentry_stat.nr_negative = get_nr_dentry_negative();
198
return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
199
}
200
201
static const struct ctl_table fs_dcache_sysctls[] = {
202
{
203
.procname = "dentry-state",
204
.data = &dentry_stat,
205
.maxlen = 6*sizeof(long),
206
.mode = 0444,
207
.proc_handler = proc_nr_dentry,
208
},
209
{
210
.procname = "dentry-negative",
211
.data = &dentry_negative_policy,
212
.maxlen = sizeof(dentry_negative_policy),
213
.mode = 0644,
214
.proc_handler = proc_dointvec_minmax,
215
.extra1 = SYSCTL_ZERO,
216
.extra2 = SYSCTL_ONE,
217
},
218
};
219
220
static const struct ctl_table vm_dcache_sysctls[] = {
221
{
222
.procname = "vfs_cache_pressure",
223
.data = &sysctl_vfs_cache_pressure,
224
.maxlen = sizeof(sysctl_vfs_cache_pressure),
225
.mode = 0644,
226
.proc_handler = proc_dointvec_minmax,
227
.extra1 = SYSCTL_ZERO,
228
},
229
{
230
.procname = "vfs_cache_pressure_denom",
231
.data = &sysctl_vfs_cache_pressure_denom,
232
.maxlen = sizeof(sysctl_vfs_cache_pressure_denom),
233
.mode = 0644,
234
.proc_handler = proc_dointvec_minmax,
235
.extra1 = SYSCTL_ONE_HUNDRED,
236
},
237
};
238
239
static int __init init_fs_dcache_sysctls(void)
240
{
241
register_sysctl_init("vm", vm_dcache_sysctls);
242
register_sysctl_init("fs", fs_dcache_sysctls);
243
return 0;
244
}
245
fs_initcall(init_fs_dcache_sysctls);
246
#endif
247
248
/*
249
* Compare 2 name strings, return 0 if they match, otherwise non-zero.
250
* The strings are both count bytes long, and count is non-zero.
251
*/
252
#ifdef CONFIG_DCACHE_WORD_ACCESS
253
254
#include <asm/word-at-a-time.h>
255
/*
256
* NOTE! 'cs' and 'scount' come from a dentry, so it has a
257
* aligned allocation for this particular component. We don't
258
* strictly need the load_unaligned_zeropad() safety, but it
259
* doesn't hurt either.
260
*
261
* In contrast, 'ct' and 'tcount' can be from a pathname, and do
262
* need the careful unaligned handling.
263
*/
264
static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
265
{
266
unsigned long a,b,mask;
267
268
for (;;) {
269
a = read_word_at_a_time(cs);
270
b = load_unaligned_zeropad(ct);
271
if (tcount < sizeof(unsigned long))
272
break;
273
if (unlikely(a != b))
274
return 1;
275
cs += sizeof(unsigned long);
276
ct += sizeof(unsigned long);
277
tcount -= sizeof(unsigned long);
278
if (!tcount)
279
return 0;
280
}
281
mask = bytemask_from_count(tcount);
282
return unlikely(!!((a ^ b) & mask));
283
}
284
285
#else
286
287
static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
288
{
289
do {
290
if (*cs != *ct)
291
return 1;
292
cs++;
293
ct++;
294
tcount--;
295
} while (tcount);
296
return 0;
297
}
298
299
#endif
300
301
static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
302
{
303
/*
304
* Be careful about RCU walk racing with rename:
305
* use 'READ_ONCE' to fetch the name pointer.
306
*
307
* NOTE! Even if a rename will mean that the length
308
* was not loaded atomically, we don't care. The
309
* RCU walk will check the sequence count eventually,
310
* and catch it. And we won't overrun the buffer,
311
* because we're reading the name pointer atomically,
312
* and a dentry name is guaranteed to be properly
313
* terminated with a NUL byte.
314
*
315
* End result: even if 'len' is wrong, we'll exit
316
* early because the data cannot match (there can
317
* be no NUL in the ct/tcount data)
318
*/
319
const unsigned char *cs = READ_ONCE(dentry->d_name.name);
320
321
return dentry_string_cmp(cs, ct, tcount);
322
}
323
324
/*
325
* long names are allocated separately from dentry and never modified.
326
* Refcounted, freeing is RCU-delayed. See take_dentry_name_snapshot()
327
* for the reason why ->count and ->head can't be combined into a union.
328
* dentry_string_cmp() relies upon ->name[] being word-aligned.
329
*/
330
struct external_name {
331
atomic_t count;
332
struct rcu_head head;
333
unsigned char name[] __aligned(sizeof(unsigned long));
334
};
335
336
static inline struct external_name *external_name(struct dentry *dentry)
337
{
338
return container_of(dentry->d_name.name, struct external_name, name[0]);
339
}
340
341
static void __d_free(struct rcu_head *head)
342
{
343
struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
344
345
kmem_cache_free(dentry_cache, dentry);
346
}
347
348
static void __d_free_external(struct rcu_head *head)
349
{
350
struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
351
kfree(external_name(dentry));
352
kmem_cache_free(dentry_cache, dentry);
353
}
354
355
static inline int dname_external(const struct dentry *dentry)
356
{
357
return dentry->d_name.name != dentry->d_shortname.string;
358
}
359
360
void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
361
{
362
unsigned seq;
363
const unsigned char *s;
364
365
rcu_read_lock();
366
retry:
367
seq = read_seqcount_begin(&dentry->d_seq);
368
s = READ_ONCE(dentry->d_name.name);
369
name->name.hash_len = dentry->d_name.hash_len;
370
name->name.name = name->inline_name.string;
371
if (likely(s == dentry->d_shortname.string)) {
372
name->inline_name = dentry->d_shortname;
373
} else {
374
struct external_name *p;
375
p = container_of(s, struct external_name, name[0]);
376
// get a valid reference
377
if (unlikely(!atomic_inc_not_zero(&p->count)))
378
goto retry;
379
name->name.name = s;
380
}
381
if (read_seqcount_retry(&dentry->d_seq, seq)) {
382
release_dentry_name_snapshot(name);
383
goto retry;
384
}
385
rcu_read_unlock();
386
}
387
EXPORT_SYMBOL(take_dentry_name_snapshot);
388
389
void release_dentry_name_snapshot(struct name_snapshot *name)
390
{
391
if (unlikely(name->name.name != name->inline_name.string)) {
392
struct external_name *p;
393
p = container_of(name->name.name, struct external_name, name[0]);
394
if (unlikely(atomic_dec_and_test(&p->count)))
395
kfree_rcu(p, head);
396
}
397
}
398
EXPORT_SYMBOL(release_dentry_name_snapshot);
399
400
static inline void __d_set_inode_and_type(struct dentry *dentry,
401
struct inode *inode,
402
unsigned type_flags)
403
{
404
unsigned flags;
405
406
dentry->d_inode = inode;
407
flags = READ_ONCE(dentry->d_flags);
408
flags &= ~DCACHE_ENTRY_TYPE;
409
flags |= type_flags;
410
smp_store_release(&dentry->d_flags, flags);
411
}
412
413
static inline void __d_clear_type_and_inode(struct dentry *dentry)
414
{
415
unsigned flags = READ_ONCE(dentry->d_flags);
416
417
flags &= ~DCACHE_ENTRY_TYPE;
418
WRITE_ONCE(dentry->d_flags, flags);
419
dentry->d_inode = NULL;
420
/*
421
* The negative counter only tracks dentries on the LRU. Don't inc if
422
* d_lru is on another list.
423
*/
424
if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
425
this_cpu_inc(nr_dentry_negative);
426
}
427
428
static void dentry_free(struct dentry *dentry)
429
{
430
WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
431
if (unlikely(dname_external(dentry))) {
432
struct external_name *p = external_name(dentry);
433
if (likely(atomic_dec_and_test(&p->count))) {
434
call_rcu(&dentry->d_u.d_rcu, __d_free_external);
435
return;
436
}
437
}
438
/* if dentry was never visible to RCU, immediate free is OK */
439
if (dentry->d_flags & DCACHE_NORCU)
440
__d_free(&dentry->d_u.d_rcu);
441
else
442
call_rcu(&dentry->d_u.d_rcu, __d_free);
443
}
444
445
/*
446
* Release the dentry's inode, using the filesystem
447
* d_iput() operation if defined.
448
*/
449
static void dentry_unlink_inode(struct dentry * dentry)
450
__releases(dentry->d_lock)
451
__releases(dentry->d_inode->i_lock)
452
{
453
struct inode *inode = dentry->d_inode;
454
455
raw_write_seqcount_begin(&dentry->d_seq);
456
__d_clear_type_and_inode(dentry);
457
hlist_del_init(&dentry->d_u.d_alias);
458
raw_write_seqcount_end(&dentry->d_seq);
459
spin_unlock(&dentry->d_lock);
460
spin_unlock(&inode->i_lock);
461
if (!inode->i_nlink)
462
fsnotify_inoderemove(inode);
463
if (dentry->d_op && dentry->d_op->d_iput)
464
dentry->d_op->d_iput(dentry, inode);
465
else
466
iput(inode);
467
}
468
469
/*
470
* The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
471
* is in use - which includes both the "real" per-superblock
472
* LRU list _and_ the DCACHE_SHRINK_LIST use.
473
*
474
* The DCACHE_SHRINK_LIST bit is set whenever the dentry is
475
* on the shrink list (ie not on the superblock LRU list).
476
*
477
* The per-cpu "nr_dentry_unused" counters are updated with
478
* the DCACHE_LRU_LIST bit.
479
*
480
* The per-cpu "nr_dentry_negative" counters are only updated
481
* when deleted from or added to the per-superblock LRU list, not
482
* from/to the shrink list. That is to avoid an unneeded dec/inc
483
* pair when moving from LRU to shrink list in select_collect().
484
*
485
* These helper functions make sure we always follow the
486
* rules. d_lock must be held by the caller.
487
*/
488
#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
489
static void d_lru_add(struct dentry *dentry)
490
{
491
D_FLAG_VERIFY(dentry, 0);
492
dentry->d_flags |= DCACHE_LRU_LIST;
493
this_cpu_inc(nr_dentry_unused);
494
if (d_is_negative(dentry))
495
this_cpu_inc(nr_dentry_negative);
496
WARN_ON_ONCE(!list_lru_add_obj(
497
&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
498
}
499
500
static void d_lru_del(struct dentry *dentry)
501
{
502
D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
503
dentry->d_flags &= ~DCACHE_LRU_LIST;
504
this_cpu_dec(nr_dentry_unused);
505
if (d_is_negative(dentry))
506
this_cpu_dec(nr_dentry_negative);
507
WARN_ON_ONCE(!list_lru_del_obj(
508
&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
509
}
510
511
static void d_shrink_del(struct dentry *dentry)
512
{
513
D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
514
list_del_init(&dentry->d_lru);
515
dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
516
this_cpu_dec(nr_dentry_unused);
517
}
518
519
static void d_shrink_add(struct dentry *dentry, struct list_head *list)
520
{
521
D_FLAG_VERIFY(dentry, 0);
522
list_add(&dentry->d_lru, list);
523
dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
524
this_cpu_inc(nr_dentry_unused);
525
}
526
527
/*
528
* These can only be called under the global LRU lock, ie during the
529
* callback for freeing the LRU list. "isolate" removes it from the
530
* LRU lists entirely, while shrink_move moves it to the indicated
531
* private list.
532
*/
533
static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
534
{
535
D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
536
dentry->d_flags &= ~DCACHE_LRU_LIST;
537
this_cpu_dec(nr_dentry_unused);
538
if (d_is_negative(dentry))
539
this_cpu_dec(nr_dentry_negative);
540
list_lru_isolate(lru, &dentry->d_lru);
541
}
542
543
static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
544
struct list_head *list)
545
{
546
D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
547
dentry->d_flags |= DCACHE_SHRINK_LIST;
548
if (d_is_negative(dentry))
549
this_cpu_dec(nr_dentry_negative);
550
list_lru_isolate_move(lru, &dentry->d_lru, list);
551
}
552
553
static void ___d_drop(struct dentry *dentry)
554
{
555
struct hlist_bl_head *b;
556
/*
557
* Hashed dentries are normally on the dentry hashtable,
558
* with the exception of those newly allocated by
559
* d_obtain_root, which are always IS_ROOT:
560
*/
561
if (unlikely(IS_ROOT(dentry)))
562
b = &dentry->d_sb->s_roots;
563
else
564
b = d_hash(dentry->d_name.hash);
565
566
hlist_bl_lock(b);
567
__hlist_bl_del(&dentry->d_hash);
568
hlist_bl_unlock(b);
569
}
570
571
void __d_drop(struct dentry *dentry)
572
{
573
if (!d_unhashed(dentry)) {
574
___d_drop(dentry);
575
dentry->d_hash.pprev = NULL;
576
write_seqcount_invalidate(&dentry->d_seq);
577
}
578
}
579
EXPORT_SYMBOL(__d_drop);
580
581
/**
582
* d_drop - drop a dentry
583
* @dentry: dentry to drop
584
*
585
* d_drop() unhashes the entry from the parent dentry hashes, so that it won't
586
* be found through a VFS lookup any more. Note that this is different from
587
* deleting the dentry - d_delete will try to mark the dentry negative if
588
* possible, giving a successful _negative_ lookup, while d_drop will
589
* just make the cache lookup fail.
590
*
591
* d_drop() is used mainly for stuff that wants to invalidate a dentry for some
592
* reason (NFS timeouts or autofs deletes).
593
*
594
* __d_drop requires dentry->d_lock
595
*
596
* ___d_drop doesn't mark dentry as "unhashed"
597
* (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
598
*/
599
void d_drop(struct dentry *dentry)
600
{
601
spin_lock(&dentry->d_lock);
602
__d_drop(dentry);
603
spin_unlock(&dentry->d_lock);
604
}
605
EXPORT_SYMBOL(d_drop);
606
607
static inline void dentry_unlist(struct dentry *dentry)
608
{
609
struct dentry *next;
610
/*
611
* Inform d_walk() and shrink_dentry_list() that we are no longer
612
* attached to the dentry tree
613
*/
614
dentry->d_flags |= DCACHE_DENTRY_KILLED;
615
if (unlikely(hlist_unhashed(&dentry->d_sib)))
616
return;
617
__hlist_del(&dentry->d_sib);
618
/*
619
* Cursors can move around the list of children. While we'd been
620
* a normal list member, it didn't matter - ->d_sib.next would've
621
* been updated. However, from now on it won't be and for the
622
* things like d_walk() it might end up with a nasty surprise.
623
* Normally d_walk() doesn't care about cursors moving around -
624
* ->d_lock on parent prevents that and since a cursor has no children
625
* of its own, we get through it without ever unlocking the parent.
626
* There is one exception, though - if we ascend from a child that
627
* gets killed as soon as we unlock it, the next sibling is found
628
* using the value left in its ->d_sib.next. And if _that_
629
* pointed to a cursor, and cursor got moved (e.g. by lseek())
630
* before d_walk() regains parent->d_lock, we'll end up skipping
631
* everything the cursor had been moved past.
632
*
633
* Solution: make sure that the pointer left behind in ->d_sib.next
634
* points to something that won't be moving around. I.e. skip the
635
* cursors.
636
*/
637
while (dentry->d_sib.next) {
638
next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
639
if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
640
break;
641
dentry->d_sib.next = next->d_sib.next;
642
}
643
}
644
645
static struct dentry *__dentry_kill(struct dentry *dentry)
646
{
647
struct dentry *parent = NULL;
648
bool can_free = true;
649
650
/*
651
* The dentry is now unrecoverably dead to the world.
652
*/
653
lockref_mark_dead(&dentry->d_lockref);
654
655
/*
656
* inform the fs via d_prune that this dentry is about to be
657
* unhashed and destroyed.
658
*/
659
if (dentry->d_flags & DCACHE_OP_PRUNE)
660
dentry->d_op->d_prune(dentry);
661
662
if (dentry->d_flags & DCACHE_LRU_LIST) {
663
if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
664
d_lru_del(dentry);
665
}
666
/* if it was on the hash then remove it */
667
__d_drop(dentry);
668
if (dentry->d_inode)
669
dentry_unlink_inode(dentry);
670
else
671
spin_unlock(&dentry->d_lock);
672
this_cpu_dec(nr_dentry);
673
if (dentry->d_op && dentry->d_op->d_release)
674
dentry->d_op->d_release(dentry);
675
676
cond_resched();
677
/* now that it's negative, ->d_parent is stable */
678
if (!IS_ROOT(dentry)) {
679
parent = dentry->d_parent;
680
spin_lock(&parent->d_lock);
681
}
682
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
683
dentry_unlist(dentry);
684
if (dentry->d_flags & DCACHE_SHRINK_LIST)
685
can_free = false;
686
spin_unlock(&dentry->d_lock);
687
if (likely(can_free))
688
dentry_free(dentry);
689
if (parent && --parent->d_lockref.count) {
690
spin_unlock(&parent->d_lock);
691
return NULL;
692
}
693
return parent;
694
}
695
696
/*
697
* Lock a dentry for feeding it to __dentry_kill().
698
* Called under rcu_read_lock() and dentry->d_lock; the former
699
* guarantees that nothing we access will be freed under us.
700
* Note that dentry is *not* protected from concurrent dentry_kill(),
701
* d_delete(), etc.
702
*
703
* Return false if dentry is busy. Otherwise, return true and have
704
* that dentry's inode locked.
705
*/
706
707
static bool lock_for_kill(struct dentry *dentry)
708
{
709
struct inode *inode = dentry->d_inode;
710
711
if (unlikely(dentry->d_lockref.count))
712
return false;
713
714
if (!inode || likely(spin_trylock(&inode->i_lock)))
715
return true;
716
717
do {
718
spin_unlock(&dentry->d_lock);
719
spin_lock(&inode->i_lock);
720
spin_lock(&dentry->d_lock);
721
if (likely(inode == dentry->d_inode))
722
break;
723
spin_unlock(&inode->i_lock);
724
inode = dentry->d_inode;
725
} while (inode);
726
if (likely(!dentry->d_lockref.count))
727
return true;
728
if (inode)
729
spin_unlock(&inode->i_lock);
730
return false;
731
}
732
733
/*
734
* Decide if dentry is worth retaining. Usually this is called with dentry
735
* locked; if not locked, we are more limited and might not be able to tell
736
* without a lock. False in this case means "punt to locked path and recheck".
737
*
738
* In case we aren't locked, these predicates are not "stable". However, it is
739
* sufficient that at some point after we dropped the reference the dentry was
740
* hashed and the flags had the proper value. Other dentry users may have
741
* re-gotten a reference to the dentry and change that, but our work is done -
742
* we can leave the dentry around with a zero refcount.
743
*/
744
static inline bool retain_dentry(struct dentry *dentry, bool locked)
745
{
746
unsigned int d_flags;
747
748
smp_rmb();
749
d_flags = READ_ONCE(dentry->d_flags);
750
751
// Unreachable? Nobody would be able to look it up, no point retaining
752
if (unlikely(d_unhashed(dentry)))
753
return false;
754
755
// Same if it's disconnected
756
if (unlikely(d_flags & DCACHE_DISCONNECTED))
757
return false;
758
759
// ->d_delete() might tell us not to bother, but that requires
760
// ->d_lock; can't decide without it
761
if (unlikely(d_flags & DCACHE_OP_DELETE)) {
762
if (!locked || dentry->d_op->d_delete(dentry))
763
return false;
764
}
765
766
// Explicitly told not to bother
767
if (unlikely(d_flags & DCACHE_DONTCACHE))
768
return false;
769
770
// At this point it looks like we ought to keep it. We also might
771
// need to do something - put it on LRU if it wasn't there already
772
// and mark it referenced if it was on LRU, but not marked yet.
773
// Unfortunately, both actions require ->d_lock, so in lockless
774
// case we'd have to punt rather than doing those.
775
if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
776
if (!locked)
777
return false;
778
d_lru_add(dentry);
779
} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
780
if (!locked)
781
return false;
782
dentry->d_flags |= DCACHE_REFERENCED;
783
}
784
return true;
785
}
786
787
void d_mark_dontcache(struct inode *inode)
788
{
789
struct dentry *de;
790
791
spin_lock(&inode->i_lock);
792
hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
793
spin_lock(&de->d_lock);
794
de->d_flags |= DCACHE_DONTCACHE;
795
spin_unlock(&de->d_lock);
796
}
797
inode->i_state |= I_DONTCACHE;
798
spin_unlock(&inode->i_lock);
799
}
800
EXPORT_SYMBOL(d_mark_dontcache);
801
802
/*
803
* Try to do a lockless dput(), and return whether that was successful.
804
*
805
* If unsuccessful, we return false, having already taken the dentry lock.
806
* In that case refcount is guaranteed to be zero and we have already
807
* decided that it's not worth keeping around.
808
*
809
* The caller needs to hold the RCU read lock, so that the dentry is
810
* guaranteed to stay around even if the refcount goes down to zero!
811
*/
812
static inline bool fast_dput(struct dentry *dentry)
813
{
814
int ret;
815
816
/*
817
* try to decrement the lockref optimistically.
818
*/
819
ret = lockref_put_return(&dentry->d_lockref);
820
821
/*
822
* If the lockref_put_return() failed due to the lock being held
823
* by somebody else, the fast path has failed. We will need to
824
* get the lock, and then check the count again.
825
*/
826
if (unlikely(ret < 0)) {
827
spin_lock(&dentry->d_lock);
828
if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
829
spin_unlock(&dentry->d_lock);
830
return true;
831
}
832
dentry->d_lockref.count--;
833
goto locked;
834
}
835
836
/*
837
* If we weren't the last ref, we're done.
838
*/
839
if (ret)
840
return true;
841
842
/*
843
* Can we decide that decrement of refcount is all we needed without
844
* taking the lock? There's a very common case when it's all we need -
845
* dentry looks like it ought to be retained and there's nothing else
846
* to do.
847
*/
848
if (retain_dentry(dentry, false))
849
return true;
850
851
/*
852
* Either not worth retaining or we can't tell without the lock.
853
* Get the lock, then. We've already decremented the refcount to 0,
854
* but we'll need to re-check the situation after getting the lock.
855
*/
856
spin_lock(&dentry->d_lock);
857
858
/*
859
* Did somebody else grab a reference to it in the meantime, and
860
* we're no longer the last user after all? Alternatively, somebody
861
* else could have killed it and marked it dead. Either way, we
862
* don't need to do anything else.
863
*/
864
locked:
865
if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
866
spin_unlock(&dentry->d_lock);
867
return true;
868
}
869
return false;
870
}
871
872
873
/*
874
* This is dput
875
*
876
* This is complicated by the fact that we do not want to put
877
* dentries that are no longer on any hash chain on the unused
878
* list: we'd much rather just get rid of them immediately.
879
*
880
* However, that implies that we have to traverse the dentry
881
* tree upwards to the parents which might _also_ now be
882
* scheduled for deletion (it may have been only waiting for
883
* its last child to go away).
884
*
885
* This tail recursion is done by hand as we don't want to depend
886
* on the compiler to always get this right (gcc generally doesn't).
887
* Real recursion would eat up our stack space.
888
*/
889
890
/*
891
* dput - release a dentry
892
* @dentry: dentry to release
893
*
894
* Release a dentry. This will drop the usage count and if appropriate
895
* call the dentry unlink method as well as removing it from the queues and
896
* releasing its resources. If the parent dentries were scheduled for release
897
* they too may now get deleted.
898
*/
899
void dput(struct dentry *dentry)
900
{
901
if (!dentry)
902
return;
903
might_sleep();
904
rcu_read_lock();
905
if (likely(fast_dput(dentry))) {
906
rcu_read_unlock();
907
return;
908
}
909
while (lock_for_kill(dentry)) {
910
rcu_read_unlock();
911
dentry = __dentry_kill(dentry);
912
if (!dentry)
913
return;
914
if (retain_dentry(dentry, true)) {
915
spin_unlock(&dentry->d_lock);
916
return;
917
}
918
rcu_read_lock();
919
}
920
rcu_read_unlock();
921
spin_unlock(&dentry->d_lock);
922
}
923
EXPORT_SYMBOL(dput);
924
925
static void to_shrink_list(struct dentry *dentry, struct list_head *list)
926
__must_hold(&dentry->d_lock)
927
{
928
if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
929
if (dentry->d_flags & DCACHE_LRU_LIST)
930
d_lru_del(dentry);
931
d_shrink_add(dentry, list);
932
}
933
}
934
935
void dput_to_list(struct dentry *dentry, struct list_head *list)
936
{
937
rcu_read_lock();
938
if (likely(fast_dput(dentry))) {
939
rcu_read_unlock();
940
return;
941
}
942
rcu_read_unlock();
943
to_shrink_list(dentry, list);
944
spin_unlock(&dentry->d_lock);
945
}
946
947
struct dentry *dget_parent(struct dentry *dentry)
948
{
949
int gotref;
950
struct dentry *ret;
951
unsigned seq;
952
953
/*
954
* Do optimistic parent lookup without any
955
* locking.
956
*/
957
rcu_read_lock();
958
seq = raw_seqcount_begin(&dentry->d_seq);
959
ret = READ_ONCE(dentry->d_parent);
960
gotref = lockref_get_not_zero(&ret->d_lockref);
961
rcu_read_unlock();
962
if (likely(gotref)) {
963
if (!read_seqcount_retry(&dentry->d_seq, seq))
964
return ret;
965
dput(ret);
966
}
967
968
repeat:
969
/*
970
* Don't need rcu_dereference because we re-check it was correct under
971
* the lock.
972
*/
973
rcu_read_lock();
974
ret = dentry->d_parent;
975
spin_lock(&ret->d_lock);
976
if (unlikely(ret != dentry->d_parent)) {
977
spin_unlock(&ret->d_lock);
978
rcu_read_unlock();
979
goto repeat;
980
}
981
rcu_read_unlock();
982
BUG_ON(!ret->d_lockref.count);
983
ret->d_lockref.count++;
984
spin_unlock(&ret->d_lock);
985
return ret;
986
}
987
EXPORT_SYMBOL(dget_parent);
988
989
static struct dentry * __d_find_any_alias(struct inode *inode)
990
{
991
struct dentry *alias;
992
993
if (hlist_empty(&inode->i_dentry))
994
return NULL;
995
alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
996
lockref_get(&alias->d_lockref);
997
return alias;
998
}
999
1000
/**
1001
* d_find_any_alias - find any alias for a given inode
1002
* @inode: inode to find an alias for
1003
*
1004
* If any aliases exist for the given inode, take and return a
1005
* reference for one of them. If no aliases exist, return %NULL.
1006
*/
1007
struct dentry *d_find_any_alias(struct inode *inode)
1008
{
1009
struct dentry *de;
1010
1011
spin_lock(&inode->i_lock);
1012
de = __d_find_any_alias(inode);
1013
spin_unlock(&inode->i_lock);
1014
return de;
1015
}
1016
EXPORT_SYMBOL(d_find_any_alias);
1017
1018
static struct dentry *__d_find_alias(struct inode *inode)
1019
{
1020
struct dentry *alias;
1021
1022
if (S_ISDIR(inode->i_mode))
1023
return __d_find_any_alias(inode);
1024
1025
hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1026
spin_lock(&alias->d_lock);
1027
if (!d_unhashed(alias)) {
1028
dget_dlock(alias);
1029
spin_unlock(&alias->d_lock);
1030
return alias;
1031
}
1032
spin_unlock(&alias->d_lock);
1033
}
1034
return NULL;
1035
}
1036
1037
/**
1038
* d_find_alias - grab a hashed alias of inode
1039
* @inode: inode in question
1040
*
1041
* If inode has a hashed alias, or is a directory and has any alias,
1042
* acquire the reference to alias and return it. Otherwise return NULL.
1043
* Notice that if inode is a directory there can be only one alias and
1044
* it can be unhashed only if it has no children, or if it is the root
1045
* of a filesystem, or if the directory was renamed and d_revalidate
1046
* was the first vfs operation to notice.
1047
*
1048
* If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1049
* any other hashed alias over that one.
1050
*/
1051
struct dentry *d_find_alias(struct inode *inode)
1052
{
1053
struct dentry *de = NULL;
1054
1055
if (!hlist_empty(&inode->i_dentry)) {
1056
spin_lock(&inode->i_lock);
1057
de = __d_find_alias(inode);
1058
spin_unlock(&inode->i_lock);
1059
}
1060
return de;
1061
}
1062
EXPORT_SYMBOL(d_find_alias);
1063
1064
/*
1065
* Caller MUST be holding rcu_read_lock() and be guaranteed
1066
* that inode won't get freed until rcu_read_unlock().
1067
*/
1068
struct dentry *d_find_alias_rcu(struct inode *inode)
1069
{
1070
struct hlist_head *l = &inode->i_dentry;
1071
struct dentry *de = NULL;
1072
1073
spin_lock(&inode->i_lock);
1074
// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1075
// used without having I_FREEING set, which means no aliases left
1076
if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1077
if (S_ISDIR(inode->i_mode)) {
1078
de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1079
} else {
1080
hlist_for_each_entry(de, l, d_u.d_alias)
1081
if (!d_unhashed(de))
1082
break;
1083
}
1084
}
1085
spin_unlock(&inode->i_lock);
1086
return de;
1087
}
1088
1089
/*
1090
* Try to kill dentries associated with this inode.
1091
* WARNING: you must own a reference to inode.
1092
*/
1093
void d_prune_aliases(struct inode *inode)
1094
{
1095
LIST_HEAD(dispose);
1096
struct dentry *dentry;
1097
1098
spin_lock(&inode->i_lock);
1099
hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1100
spin_lock(&dentry->d_lock);
1101
if (!dentry->d_lockref.count)
1102
to_shrink_list(dentry, &dispose);
1103
spin_unlock(&dentry->d_lock);
1104
}
1105
spin_unlock(&inode->i_lock);
1106
shrink_dentry_list(&dispose);
1107
}
1108
EXPORT_SYMBOL(d_prune_aliases);
1109
1110
static inline void shrink_kill(struct dentry *victim)
1111
{
1112
do {
1113
rcu_read_unlock();
1114
victim = __dentry_kill(victim);
1115
rcu_read_lock();
1116
} while (victim && lock_for_kill(victim));
1117
rcu_read_unlock();
1118
if (victim)
1119
spin_unlock(&victim->d_lock);
1120
}
1121
1122
void shrink_dentry_list(struct list_head *list)
1123
{
1124
while (!list_empty(list)) {
1125
struct dentry *dentry;
1126
1127
dentry = list_entry(list->prev, struct dentry, d_lru);
1128
spin_lock(&dentry->d_lock);
1129
rcu_read_lock();
1130
if (!lock_for_kill(dentry)) {
1131
bool can_free;
1132
rcu_read_unlock();
1133
d_shrink_del(dentry);
1134
can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1135
spin_unlock(&dentry->d_lock);
1136
if (can_free)
1137
dentry_free(dentry);
1138
continue;
1139
}
1140
d_shrink_del(dentry);
1141
shrink_kill(dentry);
1142
}
1143
}
1144
1145
static enum lru_status dentry_lru_isolate(struct list_head *item,
1146
struct list_lru_one *lru, void *arg)
1147
{
1148
struct list_head *freeable = arg;
1149
struct dentry *dentry = container_of(item, struct dentry, d_lru);
1150
1151
1152
/*
1153
* we are inverting the lru lock/dentry->d_lock here,
1154
* so use a trylock. If we fail to get the lock, just skip
1155
* it
1156
*/
1157
if (!spin_trylock(&dentry->d_lock))
1158
return LRU_SKIP;
1159
1160
/*
1161
* Referenced dentries are still in use. If they have active
1162
* counts, just remove them from the LRU. Otherwise give them
1163
* another pass through the LRU.
1164
*/
1165
if (dentry->d_lockref.count) {
1166
d_lru_isolate(lru, dentry);
1167
spin_unlock(&dentry->d_lock);
1168
return LRU_REMOVED;
1169
}
1170
1171
if (dentry->d_flags & DCACHE_REFERENCED) {
1172
dentry->d_flags &= ~DCACHE_REFERENCED;
1173
spin_unlock(&dentry->d_lock);
1174
1175
/*
1176
* The list move itself will be made by the common LRU code. At
1177
* this point, we've dropped the dentry->d_lock but keep the
1178
* lru lock. This is safe to do, since every list movement is
1179
* protected by the lru lock even if both locks are held.
1180
*
1181
* This is guaranteed by the fact that all LRU management
1182
* functions are intermediated by the LRU API calls like
1183
* list_lru_add_obj and list_lru_del_obj. List movement in this file
1184
* only ever occur through this functions or through callbacks
1185
* like this one, that are called from the LRU API.
1186
*
1187
* The only exceptions to this are functions like
1188
* shrink_dentry_list, and code that first checks for the
1189
* DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1190
* operating only with stack provided lists after they are
1191
* properly isolated from the main list. It is thus, always a
1192
* local access.
1193
*/
1194
return LRU_ROTATE;
1195
}
1196
1197
d_lru_shrink_move(lru, dentry, freeable);
1198
spin_unlock(&dentry->d_lock);
1199
1200
return LRU_REMOVED;
1201
}
1202
1203
/**
1204
* prune_dcache_sb - shrink the dcache
1205
* @sb: superblock
1206
* @sc: shrink control, passed to list_lru_shrink_walk()
1207
*
1208
* Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1209
* is done when we need more memory and called from the superblock shrinker
1210
* function.
1211
*
1212
* This function may fail to free any resources if all the dentries are in
1213
* use.
1214
*/
1215
long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1216
{
1217
LIST_HEAD(dispose);
1218
long freed;
1219
1220
freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1221
dentry_lru_isolate, &dispose);
1222
shrink_dentry_list(&dispose);
1223
return freed;
1224
}
1225
1226
static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1227
struct list_lru_one *lru, void *arg)
1228
{
1229
struct list_head *freeable = arg;
1230
struct dentry *dentry = container_of(item, struct dentry, d_lru);
1231
1232
/*
1233
* we are inverting the lru lock/dentry->d_lock here,
1234
* so use a trylock. If we fail to get the lock, just skip
1235
* it
1236
*/
1237
if (!spin_trylock(&dentry->d_lock))
1238
return LRU_SKIP;
1239
1240
d_lru_shrink_move(lru, dentry, freeable);
1241
spin_unlock(&dentry->d_lock);
1242
1243
return LRU_REMOVED;
1244
}
1245
1246
1247
/**
1248
* shrink_dcache_sb - shrink dcache for a superblock
1249
* @sb: superblock
1250
*
1251
* Shrink the dcache for the specified super block. This is used to free
1252
* the dcache before unmounting a file system.
1253
*/
1254
void shrink_dcache_sb(struct super_block *sb)
1255
{
1256
do {
1257
LIST_HEAD(dispose);
1258
1259
list_lru_walk(&sb->s_dentry_lru,
1260
dentry_lru_isolate_shrink, &dispose, 1024);
1261
shrink_dentry_list(&dispose);
1262
} while (list_lru_count(&sb->s_dentry_lru) > 0);
1263
}
1264
EXPORT_SYMBOL(shrink_dcache_sb);
1265
1266
/**
1267
* enum d_walk_ret - action to talke during tree walk
1268
* @D_WALK_CONTINUE: contrinue walk
1269
* @D_WALK_QUIT: quit walk
1270
* @D_WALK_NORETRY: quit when retry is needed
1271
* @D_WALK_SKIP: skip this dentry and its children
1272
*/
1273
enum d_walk_ret {
1274
D_WALK_CONTINUE,
1275
D_WALK_QUIT,
1276
D_WALK_NORETRY,
1277
D_WALK_SKIP,
1278
};
1279
1280
/**
1281
* d_walk - walk the dentry tree
1282
* @parent: start of walk
1283
* @data: data passed to @enter() and @finish()
1284
* @enter: callback when first entering the dentry
1285
*
1286
* The @enter() callbacks are called with d_lock held.
1287
*/
1288
static void d_walk(struct dentry *parent, void *data,
1289
enum d_walk_ret (*enter)(void *, struct dentry *))
1290
{
1291
struct dentry *this_parent, *dentry;
1292
unsigned seq = 0;
1293
enum d_walk_ret ret;
1294
bool retry = true;
1295
1296
again:
1297
read_seqbegin_or_lock(&rename_lock, &seq);
1298
this_parent = parent;
1299
spin_lock(&this_parent->d_lock);
1300
1301
ret = enter(data, this_parent);
1302
switch (ret) {
1303
case D_WALK_CONTINUE:
1304
break;
1305
case D_WALK_QUIT:
1306
case D_WALK_SKIP:
1307
goto out_unlock;
1308
case D_WALK_NORETRY:
1309
retry = false;
1310
break;
1311
}
1312
repeat:
1313
dentry = d_first_child(this_parent);
1314
resume:
1315
hlist_for_each_entry_from(dentry, d_sib) {
1316
if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1317
continue;
1318
1319
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1320
1321
ret = enter(data, dentry);
1322
switch (ret) {
1323
case D_WALK_CONTINUE:
1324
break;
1325
case D_WALK_QUIT:
1326
spin_unlock(&dentry->d_lock);
1327
goto out_unlock;
1328
case D_WALK_NORETRY:
1329
retry = false;
1330
break;
1331
case D_WALK_SKIP:
1332
spin_unlock(&dentry->d_lock);
1333
continue;
1334
}
1335
1336
if (!hlist_empty(&dentry->d_children)) {
1337
spin_unlock(&this_parent->d_lock);
1338
spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1339
this_parent = dentry;
1340
spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1341
goto repeat;
1342
}
1343
spin_unlock(&dentry->d_lock);
1344
}
1345
/*
1346
* All done at this level ... ascend and resume the search.
1347
*/
1348
rcu_read_lock();
1349
ascend:
1350
if (this_parent != parent) {
1351
dentry = this_parent;
1352
this_parent = dentry->d_parent;
1353
1354
spin_unlock(&dentry->d_lock);
1355
spin_lock(&this_parent->d_lock);
1356
1357
/* might go back up the wrong parent if we have had a rename. */
1358
if (need_seqretry(&rename_lock, seq))
1359
goto rename_retry;
1360
/* go into the first sibling still alive */
1361
hlist_for_each_entry_continue(dentry, d_sib) {
1362
if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1363
rcu_read_unlock();
1364
goto resume;
1365
}
1366
}
1367
goto ascend;
1368
}
1369
if (need_seqretry(&rename_lock, seq))
1370
goto rename_retry;
1371
rcu_read_unlock();
1372
1373
out_unlock:
1374
spin_unlock(&this_parent->d_lock);
1375
done_seqretry(&rename_lock, seq);
1376
return;
1377
1378
rename_retry:
1379
spin_unlock(&this_parent->d_lock);
1380
rcu_read_unlock();
1381
BUG_ON(seq & 1);
1382
if (!retry)
1383
return;
1384
seq = 1;
1385
goto again;
1386
}
1387
1388
struct check_mount {
1389
struct vfsmount *mnt;
1390
unsigned int mounted;
1391
};
1392
1393
static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1394
{
1395
struct check_mount *info = data;
1396
struct path path = { .mnt = info->mnt, .dentry = dentry };
1397
1398
if (likely(!d_mountpoint(dentry)))
1399
return D_WALK_CONTINUE;
1400
if (__path_is_mountpoint(&path)) {
1401
info->mounted = 1;
1402
return D_WALK_QUIT;
1403
}
1404
return D_WALK_CONTINUE;
1405
}
1406
1407
/**
1408
* path_has_submounts - check for mounts over a dentry in the
1409
* current namespace.
1410
* @parent: path to check.
1411
*
1412
* Return true if the parent or its subdirectories contain
1413
* a mount point in the current namespace.
1414
*/
1415
int path_has_submounts(const struct path *parent)
1416
{
1417
struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1418
1419
read_seqlock_excl(&mount_lock);
1420
d_walk(parent->dentry, &data, path_check_mount);
1421
read_sequnlock_excl(&mount_lock);
1422
1423
return data.mounted;
1424
}
1425
EXPORT_SYMBOL(path_has_submounts);
1426
1427
/*
1428
* Called by mount code to set a mountpoint and check if the mountpoint is
1429
* reachable (e.g. NFS can unhash a directory dentry and then the complete
1430
* subtree can become unreachable).
1431
*
1432
* Only one of d_invalidate() and d_set_mounted() must succeed. For
1433
* this reason take rename_lock and d_lock on dentry and ancestors.
1434
*/
1435
int d_set_mounted(struct dentry *dentry)
1436
{
1437
struct dentry *p;
1438
int ret = -ENOENT;
1439
read_seqlock_excl(&rename_lock);
1440
for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1441
/* Need exclusion wrt. d_invalidate() */
1442
spin_lock(&p->d_lock);
1443
if (unlikely(d_unhashed(p))) {
1444
spin_unlock(&p->d_lock);
1445
goto out;
1446
}
1447
spin_unlock(&p->d_lock);
1448
}
1449
spin_lock(&dentry->d_lock);
1450
if (!d_unlinked(dentry)) {
1451
ret = -EBUSY;
1452
if (!d_mountpoint(dentry)) {
1453
dentry->d_flags |= DCACHE_MOUNTED;
1454
ret = 0;
1455
}
1456
}
1457
spin_unlock(&dentry->d_lock);
1458
out:
1459
read_sequnlock_excl(&rename_lock);
1460
return ret;
1461
}
1462
1463
/*
1464
* Search the dentry child list of the specified parent,
1465
* and move any unused dentries to the end of the unused
1466
* list for prune_dcache(). We descend to the next level
1467
* whenever the d_children list is non-empty and continue
1468
* searching.
1469
*
1470
* It returns zero iff there are no unused children,
1471
* otherwise it returns the number of children moved to
1472
* the end of the unused list. This may not be the total
1473
* number of unused children, because select_parent can
1474
* drop the lock and return early due to latency
1475
* constraints.
1476
*/
1477
1478
struct select_data {
1479
struct dentry *start;
1480
union {
1481
long found;
1482
struct dentry *victim;
1483
};
1484
struct list_head dispose;
1485
};
1486
1487
static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1488
{
1489
struct select_data *data = _data;
1490
enum d_walk_ret ret = D_WALK_CONTINUE;
1491
1492
if (data->start == dentry)
1493
goto out;
1494
1495
if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1496
data->found++;
1497
} else if (!dentry->d_lockref.count) {
1498
to_shrink_list(dentry, &data->dispose);
1499
data->found++;
1500
} else if (dentry->d_lockref.count < 0) {
1501
data->found++;
1502
}
1503
/*
1504
* We can return to the caller if we have found some (this
1505
* ensures forward progress). We'll be coming back to find
1506
* the rest.
1507
*/
1508
if (!list_empty(&data->dispose))
1509
ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1510
out:
1511
return ret;
1512
}
1513
1514
static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1515
{
1516
struct select_data *data = _data;
1517
enum d_walk_ret ret = D_WALK_CONTINUE;
1518
1519
if (data->start == dentry)
1520
goto out;
1521
1522
if (!dentry->d_lockref.count) {
1523
if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1524
rcu_read_lock();
1525
data->victim = dentry;
1526
return D_WALK_QUIT;
1527
}
1528
to_shrink_list(dentry, &data->dispose);
1529
}
1530
/*
1531
* We can return to the caller if we have found some (this
1532
* ensures forward progress). We'll be coming back to find
1533
* the rest.
1534
*/
1535
if (!list_empty(&data->dispose))
1536
ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1537
out:
1538
return ret;
1539
}
1540
1541
/**
1542
* shrink_dcache_parent - prune dcache
1543
* @parent: parent of entries to prune
1544
*
1545
* Prune the dcache to remove unused children of the parent dentry.
1546
*/
1547
void shrink_dcache_parent(struct dentry *parent)
1548
{
1549
for (;;) {
1550
struct select_data data = {.start = parent};
1551
1552
INIT_LIST_HEAD(&data.dispose);
1553
d_walk(parent, &data, select_collect);
1554
1555
if (!list_empty(&data.dispose)) {
1556
shrink_dentry_list(&data.dispose);
1557
continue;
1558
}
1559
1560
cond_resched();
1561
if (!data.found)
1562
break;
1563
data.victim = NULL;
1564
d_walk(parent, &data, select_collect2);
1565
if (data.victim) {
1566
spin_lock(&data.victim->d_lock);
1567
if (!lock_for_kill(data.victim)) {
1568
spin_unlock(&data.victim->d_lock);
1569
rcu_read_unlock();
1570
} else {
1571
shrink_kill(data.victim);
1572
}
1573
}
1574
if (!list_empty(&data.dispose))
1575
shrink_dentry_list(&data.dispose);
1576
}
1577
}
1578
EXPORT_SYMBOL(shrink_dcache_parent);
1579
1580
static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1581
{
1582
/* it has busy descendents; complain about those instead */
1583
if (!hlist_empty(&dentry->d_children))
1584
return D_WALK_CONTINUE;
1585
1586
/* root with refcount 1 is fine */
1587
if (dentry == _data && dentry->d_lockref.count == 1)
1588
return D_WALK_CONTINUE;
1589
1590
WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1591
" still in use (%d) [unmount of %s %s]\n",
1592
dentry,
1593
dentry->d_inode ?
1594
dentry->d_inode->i_ino : 0UL,
1595
dentry,
1596
dentry->d_lockref.count,
1597
dentry->d_sb->s_type->name,
1598
dentry->d_sb->s_id);
1599
return D_WALK_CONTINUE;
1600
}
1601
1602
static void do_one_tree(struct dentry *dentry)
1603
{
1604
shrink_dcache_parent(dentry);
1605
d_walk(dentry, dentry, umount_check);
1606
d_drop(dentry);
1607
dput(dentry);
1608
}
1609
1610
/*
1611
* destroy the dentries attached to a superblock on unmounting
1612
*/
1613
void shrink_dcache_for_umount(struct super_block *sb)
1614
{
1615
struct dentry *dentry;
1616
1617
rwsem_assert_held_write(&sb->s_umount);
1618
1619
dentry = sb->s_root;
1620
sb->s_root = NULL;
1621
do_one_tree(dentry);
1622
1623
while (!hlist_bl_empty(&sb->s_roots)) {
1624
dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1625
do_one_tree(dentry);
1626
}
1627
}
1628
1629
static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1630
{
1631
struct dentry **victim = _data;
1632
if (d_mountpoint(dentry)) {
1633
*victim = dget_dlock(dentry);
1634
return D_WALK_QUIT;
1635
}
1636
return D_WALK_CONTINUE;
1637
}
1638
1639
/**
1640
* d_invalidate - detach submounts, prune dcache, and drop
1641
* @dentry: dentry to invalidate (aka detach, prune and drop)
1642
*/
1643
void d_invalidate(struct dentry *dentry)
1644
{
1645
bool had_submounts = false;
1646
spin_lock(&dentry->d_lock);
1647
if (d_unhashed(dentry)) {
1648
spin_unlock(&dentry->d_lock);
1649
return;
1650
}
1651
__d_drop(dentry);
1652
spin_unlock(&dentry->d_lock);
1653
1654
/* Negative dentries can be dropped without further checks */
1655
if (!dentry->d_inode)
1656
return;
1657
1658
shrink_dcache_parent(dentry);
1659
for (;;) {
1660
struct dentry *victim = NULL;
1661
d_walk(dentry, &victim, find_submount);
1662
if (!victim) {
1663
if (had_submounts)
1664
shrink_dcache_parent(dentry);
1665
return;
1666
}
1667
had_submounts = true;
1668
detach_mounts(victim);
1669
dput(victim);
1670
}
1671
}
1672
EXPORT_SYMBOL(d_invalidate);
1673
1674
/**
1675
* __d_alloc - allocate a dcache entry
1676
* @sb: filesystem it will belong to
1677
* @name: qstr of the name
1678
*
1679
* Allocates a dentry. It returns %NULL if there is insufficient memory
1680
* available. On a success the dentry is returned. The name passed in is
1681
* copied and the copy passed in may be reused after this call.
1682
*/
1683
1684
static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1685
{
1686
struct dentry *dentry;
1687
char *dname;
1688
int err;
1689
1690
dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1691
GFP_KERNEL);
1692
if (!dentry)
1693
return NULL;
1694
1695
/*
1696
* We guarantee that the inline name is always NUL-terminated.
1697
* This way the memcpy() done by the name switching in rename
1698
* will still always have a NUL at the end, even if we might
1699
* be overwriting an internal NUL character
1700
*/
1701
dentry->d_shortname.string[DNAME_INLINE_LEN-1] = 0;
1702
if (unlikely(!name)) {
1703
name = &slash_name;
1704
dname = dentry->d_shortname.string;
1705
} else if (name->len > DNAME_INLINE_LEN-1) {
1706
size_t size = offsetof(struct external_name, name[1]);
1707
struct external_name *p = kmalloc(size + name->len,
1708
GFP_KERNEL_ACCOUNT |
1709
__GFP_RECLAIMABLE);
1710
if (!p) {
1711
kmem_cache_free(dentry_cache, dentry);
1712
return NULL;
1713
}
1714
atomic_set(&p->count, 1);
1715
dname = p->name;
1716
} else {
1717
dname = dentry->d_shortname.string;
1718
}
1719
1720
dentry->d_name.len = name->len;
1721
dentry->d_name.hash = name->hash;
1722
memcpy(dname, name->name, name->len);
1723
dname[name->len] = 0;
1724
1725
/* Make sure we always see the terminating NUL character */
1726
smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1727
1728
dentry->d_flags = 0;
1729
lockref_init(&dentry->d_lockref);
1730
seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1731
dentry->d_inode = NULL;
1732
dentry->d_parent = dentry;
1733
dentry->d_sb = sb;
1734
dentry->d_op = sb->__s_d_op;
1735
dentry->d_flags = sb->s_d_flags;
1736
dentry->d_fsdata = NULL;
1737
INIT_HLIST_BL_NODE(&dentry->d_hash);
1738
INIT_LIST_HEAD(&dentry->d_lru);
1739
INIT_HLIST_HEAD(&dentry->d_children);
1740
INIT_HLIST_NODE(&dentry->d_u.d_alias);
1741
INIT_HLIST_NODE(&dentry->d_sib);
1742
1743
if (dentry->d_op && dentry->d_op->d_init) {
1744
err = dentry->d_op->d_init(dentry);
1745
if (err) {
1746
if (dname_external(dentry))
1747
kfree(external_name(dentry));
1748
kmem_cache_free(dentry_cache, dentry);
1749
return NULL;
1750
}
1751
}
1752
1753
this_cpu_inc(nr_dentry);
1754
1755
return dentry;
1756
}
1757
1758
/**
1759
* d_alloc - allocate a dcache entry
1760
* @parent: parent of entry to allocate
1761
* @name: qstr of the name
1762
*
1763
* Allocates a dentry. It returns %NULL if there is insufficient memory
1764
* available. On a success the dentry is returned. The name passed in is
1765
* copied and the copy passed in may be reused after this call.
1766
*/
1767
struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1768
{
1769
struct dentry *dentry = __d_alloc(parent->d_sb, name);
1770
if (!dentry)
1771
return NULL;
1772
spin_lock(&parent->d_lock);
1773
/*
1774
* don't need child lock because it is not subject
1775
* to concurrency here
1776
*/
1777
dentry->d_parent = dget_dlock(parent);
1778
hlist_add_head(&dentry->d_sib, &parent->d_children);
1779
spin_unlock(&parent->d_lock);
1780
1781
return dentry;
1782
}
1783
EXPORT_SYMBOL(d_alloc);
1784
1785
struct dentry *d_alloc_anon(struct super_block *sb)
1786
{
1787
return __d_alloc(sb, NULL);
1788
}
1789
EXPORT_SYMBOL(d_alloc_anon);
1790
1791
struct dentry *d_alloc_cursor(struct dentry * parent)
1792
{
1793
struct dentry *dentry = d_alloc_anon(parent->d_sb);
1794
if (dentry) {
1795
dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1796
dentry->d_parent = dget(parent);
1797
}
1798
return dentry;
1799
}
1800
1801
/**
1802
* d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1803
* @sb: the superblock
1804
* @name: qstr of the name
1805
*
1806
* For a filesystem that just pins its dentries in memory and never
1807
* performs lookups at all, return an unhashed IS_ROOT dentry.
1808
* This is used for pipes, sockets et.al. - the stuff that should
1809
* never be anyone's children or parents. Unlike all other
1810
* dentries, these will not have RCU delay between dropping the
1811
* last reference and freeing them.
1812
*
1813
* The only user is alloc_file_pseudo() and that's what should
1814
* be considered a public interface. Don't use directly.
1815
*/
1816
struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1817
{
1818
static const struct dentry_operations anon_ops = {
1819
.d_dname = simple_dname
1820
};
1821
struct dentry *dentry = __d_alloc(sb, name);
1822
if (likely(dentry)) {
1823
dentry->d_flags |= DCACHE_NORCU;
1824
/* d_op_flags(&anon_ops) is 0 */
1825
if (!dentry->d_op)
1826
dentry->d_op = &anon_ops;
1827
}
1828
return dentry;
1829
}
1830
1831
struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1832
{
1833
struct qstr q;
1834
1835
q.name = name;
1836
q.hash_len = hashlen_string(parent, name);
1837
return d_alloc(parent, &q);
1838
}
1839
EXPORT_SYMBOL(d_alloc_name);
1840
1841
#define DCACHE_OP_FLAGS \
1842
(DCACHE_OP_HASH | DCACHE_OP_COMPARE | DCACHE_OP_REVALIDATE | \
1843
DCACHE_OP_WEAK_REVALIDATE | DCACHE_OP_DELETE | DCACHE_OP_PRUNE | \
1844
DCACHE_OP_REAL)
1845
1846
static unsigned int d_op_flags(const struct dentry_operations *op)
1847
{
1848
unsigned int flags = 0;
1849
if (op) {
1850
if (op->d_hash)
1851
flags |= DCACHE_OP_HASH;
1852
if (op->d_compare)
1853
flags |= DCACHE_OP_COMPARE;
1854
if (op->d_revalidate)
1855
flags |= DCACHE_OP_REVALIDATE;
1856
if (op->d_weak_revalidate)
1857
flags |= DCACHE_OP_WEAK_REVALIDATE;
1858
if (op->d_delete)
1859
flags |= DCACHE_OP_DELETE;
1860
if (op->d_prune)
1861
flags |= DCACHE_OP_PRUNE;
1862
if (op->d_real)
1863
flags |= DCACHE_OP_REAL;
1864
}
1865
return flags;
1866
}
1867
1868
static void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1869
{
1870
unsigned int flags = d_op_flags(op);
1871
WARN_ON_ONCE(dentry->d_op);
1872
WARN_ON_ONCE(dentry->d_flags & DCACHE_OP_FLAGS);
1873
dentry->d_op = op;
1874
if (flags)
1875
dentry->d_flags |= flags;
1876
}
1877
1878
void set_default_d_op(struct super_block *s, const struct dentry_operations *ops)
1879
{
1880
unsigned int flags = d_op_flags(ops);
1881
s->__s_d_op = ops;
1882
s->s_d_flags = (s->s_d_flags & ~DCACHE_OP_FLAGS) | flags;
1883
}
1884
EXPORT_SYMBOL(set_default_d_op);
1885
1886
static unsigned d_flags_for_inode(struct inode *inode)
1887
{
1888
unsigned add_flags = DCACHE_REGULAR_TYPE;
1889
1890
if (!inode)
1891
return DCACHE_MISS_TYPE;
1892
1893
if (S_ISDIR(inode->i_mode)) {
1894
add_flags = DCACHE_DIRECTORY_TYPE;
1895
if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1896
if (unlikely(!inode->i_op->lookup))
1897
add_flags = DCACHE_AUTODIR_TYPE;
1898
else
1899
inode->i_opflags |= IOP_LOOKUP;
1900
}
1901
goto type_determined;
1902
}
1903
1904
if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1905
if (unlikely(inode->i_op->get_link)) {
1906
add_flags = DCACHE_SYMLINK_TYPE;
1907
goto type_determined;
1908
}
1909
inode->i_opflags |= IOP_NOFOLLOW;
1910
}
1911
1912
if (unlikely(!S_ISREG(inode->i_mode)))
1913
add_flags = DCACHE_SPECIAL_TYPE;
1914
1915
type_determined:
1916
if (unlikely(IS_AUTOMOUNT(inode)))
1917
add_flags |= DCACHE_NEED_AUTOMOUNT;
1918
return add_flags;
1919
}
1920
1921
static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1922
{
1923
unsigned add_flags = d_flags_for_inode(inode);
1924
WARN_ON(d_in_lookup(dentry));
1925
1926
spin_lock(&dentry->d_lock);
1927
/*
1928
* The negative counter only tracks dentries on the LRU. Don't dec if
1929
* d_lru is on another list.
1930
*/
1931
if ((dentry->d_flags &
1932
(DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1933
this_cpu_dec(nr_dentry_negative);
1934
hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1935
raw_write_seqcount_begin(&dentry->d_seq);
1936
__d_set_inode_and_type(dentry, inode, add_flags);
1937
raw_write_seqcount_end(&dentry->d_seq);
1938
fsnotify_update_flags(dentry);
1939
spin_unlock(&dentry->d_lock);
1940
}
1941
1942
/**
1943
* d_instantiate - fill in inode information for a dentry
1944
* @entry: dentry to complete
1945
* @inode: inode to attach to this dentry
1946
*
1947
* Fill in inode information in the entry.
1948
*
1949
* This turns negative dentries into productive full members
1950
* of society.
1951
*
1952
* NOTE! This assumes that the inode count has been incremented
1953
* (or otherwise set) by the caller to indicate that it is now
1954
* in use by the dcache.
1955
*/
1956
1957
void d_instantiate(struct dentry *entry, struct inode * inode)
1958
{
1959
BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1960
if (inode) {
1961
security_d_instantiate(entry, inode);
1962
spin_lock(&inode->i_lock);
1963
__d_instantiate(entry, inode);
1964
spin_unlock(&inode->i_lock);
1965
}
1966
}
1967
EXPORT_SYMBOL(d_instantiate);
1968
1969
/*
1970
* This should be equivalent to d_instantiate() + unlock_new_inode(),
1971
* with lockdep-related part of unlock_new_inode() done before
1972
* anything else. Use that instead of open-coding d_instantiate()/
1973
* unlock_new_inode() combinations.
1974
*/
1975
void d_instantiate_new(struct dentry *entry, struct inode *inode)
1976
{
1977
BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1978
BUG_ON(!inode);
1979
lockdep_annotate_inode_mutex_key(inode);
1980
security_d_instantiate(entry, inode);
1981
spin_lock(&inode->i_lock);
1982
__d_instantiate(entry, inode);
1983
WARN_ON(!(inode->i_state & I_NEW));
1984
inode->i_state &= ~I_NEW & ~I_CREATING;
1985
/*
1986
* Pairs with the barrier in prepare_to_wait_event() to make sure
1987
* ___wait_var_event() either sees the bit cleared or
1988
* waitqueue_active() check in wake_up_var() sees the waiter.
1989
*/
1990
smp_mb();
1991
inode_wake_up_bit(inode, __I_NEW);
1992
spin_unlock(&inode->i_lock);
1993
}
1994
EXPORT_SYMBOL(d_instantiate_new);
1995
1996
struct dentry *d_make_root(struct inode *root_inode)
1997
{
1998
struct dentry *res = NULL;
1999
2000
if (root_inode) {
2001
res = d_alloc_anon(root_inode->i_sb);
2002
if (res)
2003
d_instantiate(res, root_inode);
2004
else
2005
iput(root_inode);
2006
}
2007
return res;
2008
}
2009
EXPORT_SYMBOL(d_make_root);
2010
2011
static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2012
{
2013
struct super_block *sb;
2014
struct dentry *new, *res;
2015
2016
if (!inode)
2017
return ERR_PTR(-ESTALE);
2018
if (IS_ERR(inode))
2019
return ERR_CAST(inode);
2020
2021
sb = inode->i_sb;
2022
2023
res = d_find_any_alias(inode); /* existing alias? */
2024
if (res)
2025
goto out;
2026
2027
new = d_alloc_anon(sb);
2028
if (!new) {
2029
res = ERR_PTR(-ENOMEM);
2030
goto out;
2031
}
2032
2033
security_d_instantiate(new, inode);
2034
spin_lock(&inode->i_lock);
2035
res = __d_find_any_alias(inode); /* recheck under lock */
2036
if (likely(!res)) { /* still no alias, attach a disconnected dentry */
2037
unsigned add_flags = d_flags_for_inode(inode);
2038
2039
if (disconnected)
2040
add_flags |= DCACHE_DISCONNECTED;
2041
2042
spin_lock(&new->d_lock);
2043
__d_set_inode_and_type(new, inode, add_flags);
2044
hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
2045
if (!disconnected) {
2046
hlist_bl_lock(&sb->s_roots);
2047
hlist_bl_add_head(&new->d_hash, &sb->s_roots);
2048
hlist_bl_unlock(&sb->s_roots);
2049
}
2050
spin_unlock(&new->d_lock);
2051
spin_unlock(&inode->i_lock);
2052
inode = NULL; /* consumed by new->d_inode */
2053
res = new;
2054
} else {
2055
spin_unlock(&inode->i_lock);
2056
dput(new);
2057
}
2058
2059
out:
2060
iput(inode);
2061
return res;
2062
}
2063
2064
/**
2065
* d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2066
* @inode: inode to allocate the dentry for
2067
*
2068
* Obtain a dentry for an inode resulting from NFS filehandle conversion or
2069
* similar open by handle operations. The returned dentry may be anonymous,
2070
* or may have a full name (if the inode was already in the cache).
2071
*
2072
* When called on a directory inode, we must ensure that the inode only ever
2073
* has one dentry. If a dentry is found, that is returned instead of
2074
* allocating a new one.
2075
*
2076
* On successful return, the reference to the inode has been transferred
2077
* to the dentry. In case of an error the reference on the inode is released.
2078
* To make it easier to use in export operations a %NULL or IS_ERR inode may
2079
* be passed in and the error will be propagated to the return value,
2080
* with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2081
*/
2082
struct dentry *d_obtain_alias(struct inode *inode)
2083
{
2084
return __d_obtain_alias(inode, true);
2085
}
2086
EXPORT_SYMBOL(d_obtain_alias);
2087
2088
/**
2089
* d_obtain_root - find or allocate a dentry for a given inode
2090
* @inode: inode to allocate the dentry for
2091
*
2092
* Obtain an IS_ROOT dentry for the root of a filesystem.
2093
*
2094
* We must ensure that directory inodes only ever have one dentry. If a
2095
* dentry is found, that is returned instead of allocating a new one.
2096
*
2097
* On successful return, the reference to the inode has been transferred
2098
* to the dentry. In case of an error the reference on the inode is
2099
* released. A %NULL or IS_ERR inode may be passed in and will be the
2100
* error will be propagate to the return value, with a %NULL @inode
2101
* replaced by ERR_PTR(-ESTALE).
2102
*/
2103
struct dentry *d_obtain_root(struct inode *inode)
2104
{
2105
return __d_obtain_alias(inode, false);
2106
}
2107
EXPORT_SYMBOL(d_obtain_root);
2108
2109
/**
2110
* d_add_ci - lookup or allocate new dentry with case-exact name
2111
* @dentry: the negative dentry that was passed to the parent's lookup func
2112
* @inode: the inode case-insensitive lookup has found
2113
* @name: the case-exact name to be associated with the returned dentry
2114
*
2115
* This is to avoid filling the dcache with case-insensitive names to the
2116
* same inode, only the actual correct case is stored in the dcache for
2117
* case-insensitive filesystems.
2118
*
2119
* For a case-insensitive lookup match and if the case-exact dentry
2120
* already exists in the dcache, use it and return it.
2121
*
2122
* If no entry exists with the exact case name, allocate new dentry with
2123
* the exact case, and return the spliced entry.
2124
*/
2125
struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2126
struct qstr *name)
2127
{
2128
struct dentry *found, *res;
2129
2130
/*
2131
* First check if a dentry matching the name already exists,
2132
* if not go ahead and create it now.
2133
*/
2134
found = d_hash_and_lookup(dentry->d_parent, name);
2135
if (found) {
2136
iput(inode);
2137
return found;
2138
}
2139
if (d_in_lookup(dentry)) {
2140
found = d_alloc_parallel(dentry->d_parent, name,
2141
dentry->d_wait);
2142
if (IS_ERR(found) || !d_in_lookup(found)) {
2143
iput(inode);
2144
return found;
2145
}
2146
} else {
2147
found = d_alloc(dentry->d_parent, name);
2148
if (!found) {
2149
iput(inode);
2150
return ERR_PTR(-ENOMEM);
2151
}
2152
}
2153
res = d_splice_alias(inode, found);
2154
if (res) {
2155
d_lookup_done(found);
2156
dput(found);
2157
return res;
2158
}
2159
return found;
2160
}
2161
EXPORT_SYMBOL(d_add_ci);
2162
2163
/**
2164
* d_same_name - compare dentry name with case-exact name
2165
* @dentry: the negative dentry that was passed to the parent's lookup func
2166
* @parent: parent dentry
2167
* @name: the case-exact name to be associated with the returned dentry
2168
*
2169
* Return: true if names are same, or false
2170
*/
2171
bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2172
const struct qstr *name)
2173
{
2174
if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2175
if (dentry->d_name.len != name->len)
2176
return false;
2177
return dentry_cmp(dentry, name->name, name->len) == 0;
2178
}
2179
return parent->d_op->d_compare(dentry,
2180
dentry->d_name.len, dentry->d_name.name,
2181
name) == 0;
2182
}
2183
EXPORT_SYMBOL_GPL(d_same_name);
2184
2185
/*
2186
* This is __d_lookup_rcu() when the parent dentry has
2187
* DCACHE_OP_COMPARE, which makes things much nastier.
2188
*/
2189
static noinline struct dentry *__d_lookup_rcu_op_compare(
2190
const struct dentry *parent,
2191
const struct qstr *name,
2192
unsigned *seqp)
2193
{
2194
u64 hashlen = name->hash_len;
2195
struct hlist_bl_head *b = d_hash(hashlen);
2196
struct hlist_bl_node *node;
2197
struct dentry *dentry;
2198
2199
hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2200
int tlen;
2201
const char *tname;
2202
unsigned seq;
2203
2204
seqretry:
2205
seq = raw_seqcount_begin(&dentry->d_seq);
2206
if (dentry->d_parent != parent)
2207
continue;
2208
if (d_unhashed(dentry))
2209
continue;
2210
if (dentry->d_name.hash != hashlen_hash(hashlen))
2211
continue;
2212
tlen = dentry->d_name.len;
2213
tname = dentry->d_name.name;
2214
/* we want a consistent (name,len) pair */
2215
if (read_seqcount_retry(&dentry->d_seq, seq)) {
2216
cpu_relax();
2217
goto seqretry;
2218
}
2219
if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2220
continue;
2221
*seqp = seq;
2222
return dentry;
2223
}
2224
return NULL;
2225
}
2226
2227
/**
2228
* __d_lookup_rcu - search for a dentry (racy, store-free)
2229
* @parent: parent dentry
2230
* @name: qstr of name we wish to find
2231
* @seqp: returns d_seq value at the point where the dentry was found
2232
* Returns: dentry, or NULL
2233
*
2234
* __d_lookup_rcu is the dcache lookup function for rcu-walk name
2235
* resolution (store-free path walking) design described in
2236
* Documentation/filesystems/path-lookup.txt.
2237
*
2238
* This is not to be used outside core vfs.
2239
*
2240
* __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2241
* held, and rcu_read_lock held. The returned dentry must not be stored into
2242
* without taking d_lock and checking d_seq sequence count against @seq
2243
* returned here.
2244
*
2245
* Alternatively, __d_lookup_rcu may be called again to look up the child of
2246
* the returned dentry, so long as its parent's seqlock is checked after the
2247
* child is looked up. Thus, an interlocking stepping of sequence lock checks
2248
* is formed, giving integrity down the path walk.
2249
*
2250
* NOTE! The caller *has* to check the resulting dentry against the sequence
2251
* number we've returned before using any of the resulting dentry state!
2252
*/
2253
struct dentry *__d_lookup_rcu(const struct dentry *parent,
2254
const struct qstr *name,
2255
unsigned *seqp)
2256
{
2257
u64 hashlen = name->hash_len;
2258
const unsigned char *str = name->name;
2259
struct hlist_bl_head *b = d_hash(hashlen);
2260
struct hlist_bl_node *node;
2261
struct dentry *dentry;
2262
2263
/*
2264
* Note: There is significant duplication with __d_lookup_rcu which is
2265
* required to prevent single threaded performance regressions
2266
* especially on architectures where smp_rmb (in seqcounts) are costly.
2267
* Keep the two functions in sync.
2268
*/
2269
2270
if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2271
return __d_lookup_rcu_op_compare(parent, name, seqp);
2272
2273
/*
2274
* The hash list is protected using RCU.
2275
*
2276
* Carefully use d_seq when comparing a candidate dentry, to avoid
2277
* races with d_move().
2278
*
2279
* It is possible that concurrent renames can mess up our list
2280
* walk here and result in missing our dentry, resulting in the
2281
* false-negative result. d_lookup() protects against concurrent
2282
* renames using rename_lock seqlock.
2283
*
2284
* See Documentation/filesystems/path-lookup.txt for more details.
2285
*/
2286
hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2287
unsigned seq;
2288
2289
/*
2290
* The dentry sequence count protects us from concurrent
2291
* renames, and thus protects parent and name fields.
2292
*
2293
* The caller must perform a seqcount check in order
2294
* to do anything useful with the returned dentry.
2295
*
2296
* NOTE! We do a "raw" seqcount_begin here. That means that
2297
* we don't wait for the sequence count to stabilize if it
2298
* is in the middle of a sequence change. If we do the slow
2299
* dentry compare, we will do seqretries until it is stable,
2300
* and if we end up with a successful lookup, we actually
2301
* want to exit RCU lookup anyway.
2302
*
2303
* Note that raw_seqcount_begin still *does* smp_rmb(), so
2304
* we are still guaranteed NUL-termination of ->d_name.name.
2305
*/
2306
seq = raw_seqcount_begin(&dentry->d_seq);
2307
if (dentry->d_parent != parent)
2308
continue;
2309
if (d_unhashed(dentry))
2310
continue;
2311
if (dentry->d_name.hash_len != hashlen)
2312
continue;
2313
if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2314
continue;
2315
*seqp = seq;
2316
return dentry;
2317
}
2318
return NULL;
2319
}
2320
2321
/**
2322
* d_lookup - search for a dentry
2323
* @parent: parent dentry
2324
* @name: qstr of name we wish to find
2325
* Returns: dentry, or NULL
2326
*
2327
* d_lookup searches the children of the parent dentry for the name in
2328
* question. If the dentry is found its reference count is incremented and the
2329
* dentry is returned. The caller must use dput to free the entry when it has
2330
* finished using it. %NULL is returned if the dentry does not exist.
2331
*/
2332
struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2333
{
2334
struct dentry *dentry;
2335
unsigned seq;
2336
2337
do {
2338
seq = read_seqbegin(&rename_lock);
2339
dentry = __d_lookup(parent, name);
2340
if (dentry)
2341
break;
2342
} while (read_seqretry(&rename_lock, seq));
2343
return dentry;
2344
}
2345
EXPORT_SYMBOL(d_lookup);
2346
2347
/**
2348
* __d_lookup - search for a dentry (racy)
2349
* @parent: parent dentry
2350
* @name: qstr of name we wish to find
2351
* Returns: dentry, or NULL
2352
*
2353
* __d_lookup is like d_lookup, however it may (rarely) return a
2354
* false-negative result due to unrelated rename activity.
2355
*
2356
* __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2357
* however it must be used carefully, eg. with a following d_lookup in
2358
* the case of failure.
2359
*
2360
* __d_lookup callers must be commented.
2361
*/
2362
struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2363
{
2364
unsigned int hash = name->hash;
2365
struct hlist_bl_head *b = d_hash(hash);
2366
struct hlist_bl_node *node;
2367
struct dentry *found = NULL;
2368
struct dentry *dentry;
2369
2370
/*
2371
* Note: There is significant duplication with __d_lookup_rcu which is
2372
* required to prevent single threaded performance regressions
2373
* especially on architectures where smp_rmb (in seqcounts) are costly.
2374
* Keep the two functions in sync.
2375
*/
2376
2377
/*
2378
* The hash list is protected using RCU.
2379
*
2380
* Take d_lock when comparing a candidate dentry, to avoid races
2381
* with d_move().
2382
*
2383
* It is possible that concurrent renames can mess up our list
2384
* walk here and result in missing our dentry, resulting in the
2385
* false-negative result. d_lookup() protects against concurrent
2386
* renames using rename_lock seqlock.
2387
*
2388
* See Documentation/filesystems/path-lookup.txt for more details.
2389
*/
2390
rcu_read_lock();
2391
2392
hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2393
2394
if (dentry->d_name.hash != hash)
2395
continue;
2396
2397
spin_lock(&dentry->d_lock);
2398
if (dentry->d_parent != parent)
2399
goto next;
2400
if (d_unhashed(dentry))
2401
goto next;
2402
2403
if (!d_same_name(dentry, parent, name))
2404
goto next;
2405
2406
dentry->d_lockref.count++;
2407
found = dentry;
2408
spin_unlock(&dentry->d_lock);
2409
break;
2410
next:
2411
spin_unlock(&dentry->d_lock);
2412
}
2413
rcu_read_unlock();
2414
2415
return found;
2416
}
2417
2418
/**
2419
* d_hash_and_lookup - hash the qstr then search for a dentry
2420
* @dir: Directory to search in
2421
* @name: qstr of name we wish to find
2422
*
2423
* On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2424
*/
2425
struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2426
{
2427
/*
2428
* Check for a fs-specific hash function. Note that we must
2429
* calculate the standard hash first, as the d_op->d_hash()
2430
* routine may choose to leave the hash value unchanged.
2431
*/
2432
name->hash = full_name_hash(dir, name->name, name->len);
2433
if (dir->d_flags & DCACHE_OP_HASH) {
2434
int err = dir->d_op->d_hash(dir, name);
2435
if (unlikely(err < 0))
2436
return ERR_PTR(err);
2437
}
2438
return d_lookup(dir, name);
2439
}
2440
2441
/*
2442
* When a file is deleted, we have two options:
2443
* - turn this dentry into a negative dentry
2444
* - unhash this dentry and free it.
2445
*
2446
* Usually, we want to just turn this into
2447
* a negative dentry, but if anybody else is
2448
* currently using the dentry or the inode
2449
* we can't do that and we fall back on removing
2450
* it from the hash queues and waiting for
2451
* it to be deleted later when it has no users
2452
*/
2453
2454
/**
2455
* d_delete - delete a dentry
2456
* @dentry: The dentry to delete
2457
*
2458
* Turn the dentry into a negative dentry if possible, otherwise
2459
* remove it from the hash queues so it can be deleted later
2460
*/
2461
2462
void d_delete(struct dentry * dentry)
2463
{
2464
struct inode *inode = dentry->d_inode;
2465
2466
spin_lock(&inode->i_lock);
2467
spin_lock(&dentry->d_lock);
2468
/*
2469
* Are we the only user?
2470
*/
2471
if (dentry->d_lockref.count == 1) {
2472
if (dentry_negative_policy)
2473
__d_drop(dentry);
2474
dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2475
dentry_unlink_inode(dentry);
2476
} else {
2477
__d_drop(dentry);
2478
spin_unlock(&dentry->d_lock);
2479
spin_unlock(&inode->i_lock);
2480
}
2481
}
2482
EXPORT_SYMBOL(d_delete);
2483
2484
static void __d_rehash(struct dentry *entry)
2485
{
2486
struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2487
2488
hlist_bl_lock(b);
2489
hlist_bl_add_head_rcu(&entry->d_hash, b);
2490
hlist_bl_unlock(b);
2491
}
2492
2493
/**
2494
* d_rehash - add an entry back to the hash
2495
* @entry: dentry to add to the hash
2496
*
2497
* Adds a dentry to the hash according to its name.
2498
*/
2499
2500
void d_rehash(struct dentry * entry)
2501
{
2502
spin_lock(&entry->d_lock);
2503
__d_rehash(entry);
2504
spin_unlock(&entry->d_lock);
2505
}
2506
EXPORT_SYMBOL(d_rehash);
2507
2508
static inline unsigned start_dir_add(struct inode *dir)
2509
{
2510
preempt_disable_nested();
2511
for (;;) {
2512
unsigned n = dir->i_dir_seq;
2513
if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2514
return n;
2515
cpu_relax();
2516
}
2517
}
2518
2519
static inline void end_dir_add(struct inode *dir, unsigned int n,
2520
wait_queue_head_t *d_wait)
2521
{
2522
smp_store_release(&dir->i_dir_seq, n + 2);
2523
preempt_enable_nested();
2524
if (wq_has_sleeper(d_wait))
2525
wake_up_all(d_wait);
2526
}
2527
2528
static void d_wait_lookup(struct dentry *dentry)
2529
{
2530
if (d_in_lookup(dentry)) {
2531
DECLARE_WAITQUEUE(wait, current);
2532
add_wait_queue(dentry->d_wait, &wait);
2533
do {
2534
set_current_state(TASK_UNINTERRUPTIBLE);
2535
spin_unlock(&dentry->d_lock);
2536
schedule();
2537
spin_lock(&dentry->d_lock);
2538
} while (d_in_lookup(dentry));
2539
}
2540
}
2541
2542
struct dentry *d_alloc_parallel(struct dentry *parent,
2543
const struct qstr *name,
2544
wait_queue_head_t *wq)
2545
{
2546
unsigned int hash = name->hash;
2547
struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2548
struct hlist_bl_node *node;
2549
struct dentry *new = __d_alloc(parent->d_sb, name);
2550
struct dentry *dentry;
2551
unsigned seq, r_seq, d_seq;
2552
2553
if (unlikely(!new))
2554
return ERR_PTR(-ENOMEM);
2555
2556
new->d_flags |= DCACHE_PAR_LOOKUP;
2557
spin_lock(&parent->d_lock);
2558
new->d_parent = dget_dlock(parent);
2559
hlist_add_head(&new->d_sib, &parent->d_children);
2560
spin_unlock(&parent->d_lock);
2561
2562
retry:
2563
rcu_read_lock();
2564
seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2565
r_seq = read_seqbegin(&rename_lock);
2566
dentry = __d_lookup_rcu(parent, name, &d_seq);
2567
if (unlikely(dentry)) {
2568
if (!lockref_get_not_dead(&dentry->d_lockref)) {
2569
rcu_read_unlock();
2570
goto retry;
2571
}
2572
if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2573
rcu_read_unlock();
2574
dput(dentry);
2575
goto retry;
2576
}
2577
rcu_read_unlock();
2578
dput(new);
2579
return dentry;
2580
}
2581
if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2582
rcu_read_unlock();
2583
goto retry;
2584
}
2585
2586
if (unlikely(seq & 1)) {
2587
rcu_read_unlock();
2588
goto retry;
2589
}
2590
2591
hlist_bl_lock(b);
2592
if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2593
hlist_bl_unlock(b);
2594
rcu_read_unlock();
2595
goto retry;
2596
}
2597
/*
2598
* No changes for the parent since the beginning of d_lookup().
2599
* Since all removals from the chain happen with hlist_bl_lock(),
2600
* any potential in-lookup matches are going to stay here until
2601
* we unlock the chain. All fields are stable in everything
2602
* we encounter.
2603
*/
2604
hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2605
if (dentry->d_name.hash != hash)
2606
continue;
2607
if (dentry->d_parent != parent)
2608
continue;
2609
if (!d_same_name(dentry, parent, name))
2610
continue;
2611
hlist_bl_unlock(b);
2612
/* now we can try to grab a reference */
2613
if (!lockref_get_not_dead(&dentry->d_lockref)) {
2614
rcu_read_unlock();
2615
goto retry;
2616
}
2617
2618
rcu_read_unlock();
2619
/*
2620
* somebody is likely to be still doing lookup for it;
2621
* wait for them to finish
2622
*/
2623
spin_lock(&dentry->d_lock);
2624
d_wait_lookup(dentry);
2625
/*
2626
* it's not in-lookup anymore; in principle we should repeat
2627
* everything from dcache lookup, but it's likely to be what
2628
* d_lookup() would've found anyway. If it is, just return it;
2629
* otherwise we really have to repeat the whole thing.
2630
*/
2631
if (unlikely(dentry->d_name.hash != hash))
2632
goto mismatch;
2633
if (unlikely(dentry->d_parent != parent))
2634
goto mismatch;
2635
if (unlikely(d_unhashed(dentry)))
2636
goto mismatch;
2637
if (unlikely(!d_same_name(dentry, parent, name)))
2638
goto mismatch;
2639
/* OK, it *is* a hashed match; return it */
2640
spin_unlock(&dentry->d_lock);
2641
dput(new);
2642
return dentry;
2643
}
2644
rcu_read_unlock();
2645
new->d_wait = wq;
2646
hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2647
hlist_bl_unlock(b);
2648
return new;
2649
mismatch:
2650
spin_unlock(&dentry->d_lock);
2651
dput(dentry);
2652
goto retry;
2653
}
2654
EXPORT_SYMBOL(d_alloc_parallel);
2655
2656
/*
2657
* - Unhash the dentry
2658
* - Retrieve and clear the waitqueue head in dentry
2659
* - Return the waitqueue head
2660
*/
2661
static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2662
{
2663
wait_queue_head_t *d_wait;
2664
struct hlist_bl_head *b;
2665
2666
lockdep_assert_held(&dentry->d_lock);
2667
2668
b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2669
hlist_bl_lock(b);
2670
dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2671
__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2672
d_wait = dentry->d_wait;
2673
dentry->d_wait = NULL;
2674
hlist_bl_unlock(b);
2675
INIT_HLIST_NODE(&dentry->d_u.d_alias);
2676
INIT_LIST_HEAD(&dentry->d_lru);
2677
return d_wait;
2678
}
2679
2680
void __d_lookup_unhash_wake(struct dentry *dentry)
2681
{
2682
spin_lock(&dentry->d_lock);
2683
wake_up_all(__d_lookup_unhash(dentry));
2684
spin_unlock(&dentry->d_lock);
2685
}
2686
EXPORT_SYMBOL(__d_lookup_unhash_wake);
2687
2688
/* inode->i_lock held if inode is non-NULL */
2689
2690
static inline void __d_add(struct dentry *dentry, struct inode *inode,
2691
const struct dentry_operations *ops)
2692
{
2693
wait_queue_head_t *d_wait;
2694
struct inode *dir = NULL;
2695
unsigned n;
2696
spin_lock(&dentry->d_lock);
2697
if (unlikely(d_in_lookup(dentry))) {
2698
dir = dentry->d_parent->d_inode;
2699
n = start_dir_add(dir);
2700
d_wait = __d_lookup_unhash(dentry);
2701
}
2702
if (unlikely(ops))
2703
d_set_d_op(dentry, ops);
2704
if (inode) {
2705
unsigned add_flags = d_flags_for_inode(inode);
2706
hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2707
raw_write_seqcount_begin(&dentry->d_seq);
2708
__d_set_inode_and_type(dentry, inode, add_flags);
2709
raw_write_seqcount_end(&dentry->d_seq);
2710
fsnotify_update_flags(dentry);
2711
}
2712
__d_rehash(dentry);
2713
if (dir)
2714
end_dir_add(dir, n, d_wait);
2715
spin_unlock(&dentry->d_lock);
2716
if (inode)
2717
spin_unlock(&inode->i_lock);
2718
}
2719
2720
/**
2721
* d_add - add dentry to hash queues
2722
* @entry: dentry to add
2723
* @inode: The inode to attach to this dentry
2724
*
2725
* This adds the entry to the hash queues and initializes @inode.
2726
* The entry was actually filled in earlier during d_alloc().
2727
*/
2728
2729
void d_add(struct dentry *entry, struct inode *inode)
2730
{
2731
if (inode) {
2732
security_d_instantiate(entry, inode);
2733
spin_lock(&inode->i_lock);
2734
}
2735
__d_add(entry, inode, NULL);
2736
}
2737
EXPORT_SYMBOL(d_add);
2738
2739
static void swap_names(struct dentry *dentry, struct dentry *target)
2740
{
2741
if (unlikely(dname_external(target))) {
2742
if (unlikely(dname_external(dentry))) {
2743
/*
2744
* Both external: swap the pointers
2745
*/
2746
swap(target->d_name.name, dentry->d_name.name);
2747
} else {
2748
/*
2749
* dentry:internal, target:external. Steal target's
2750
* storage and make target internal.
2751
*/
2752
dentry->d_name.name = target->d_name.name;
2753
target->d_shortname = dentry->d_shortname;
2754
target->d_name.name = target->d_shortname.string;
2755
}
2756
} else {
2757
if (unlikely(dname_external(dentry))) {
2758
/*
2759
* dentry:external, target:internal. Give dentry's
2760
* storage to target and make dentry internal
2761
*/
2762
target->d_name.name = dentry->d_name.name;
2763
dentry->d_shortname = target->d_shortname;
2764
dentry->d_name.name = dentry->d_shortname.string;
2765
} else {
2766
/*
2767
* Both are internal.
2768
*/
2769
for (int i = 0; i < DNAME_INLINE_WORDS; i++)
2770
swap(dentry->d_shortname.words[i],
2771
target->d_shortname.words[i]);
2772
}
2773
}
2774
swap(dentry->d_name.hash_len, target->d_name.hash_len);
2775
}
2776
2777
static void copy_name(struct dentry *dentry, struct dentry *target)
2778
{
2779
struct external_name *old_name = NULL;
2780
if (unlikely(dname_external(dentry)))
2781
old_name = external_name(dentry);
2782
if (unlikely(dname_external(target))) {
2783
atomic_inc(&external_name(target)->count);
2784
dentry->d_name = target->d_name;
2785
} else {
2786
dentry->d_shortname = target->d_shortname;
2787
dentry->d_name.name = dentry->d_shortname.string;
2788
dentry->d_name.hash_len = target->d_name.hash_len;
2789
}
2790
if (old_name && likely(atomic_dec_and_test(&old_name->count)))
2791
kfree_rcu(old_name, head);
2792
}
2793
2794
/*
2795
* __d_move - move a dentry
2796
* @dentry: entry to move
2797
* @target: new dentry
2798
* @exchange: exchange the two dentries
2799
*
2800
* Update the dcache to reflect the move of a file name. Negative dcache
2801
* entries should not be moved in this way. Caller must hold rename_lock, the
2802
* i_rwsem of the source and target directories (exclusively), and the sb->
2803
* s_vfs_rename_mutex if they differ. See lock_rename().
2804
*/
2805
static void __d_move(struct dentry *dentry, struct dentry *target,
2806
bool exchange)
2807
{
2808
struct dentry *old_parent, *p;
2809
wait_queue_head_t *d_wait;
2810
struct inode *dir = NULL;
2811
unsigned n;
2812
2813
WARN_ON(!dentry->d_inode);
2814
if (WARN_ON(dentry == target))
2815
return;
2816
2817
BUG_ON(d_ancestor(target, dentry));
2818
old_parent = dentry->d_parent;
2819
p = d_ancestor(old_parent, target);
2820
if (IS_ROOT(dentry)) {
2821
BUG_ON(p);
2822
spin_lock(&target->d_parent->d_lock);
2823
} else if (!p) {
2824
/* target is not a descendent of dentry->d_parent */
2825
spin_lock(&target->d_parent->d_lock);
2826
spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2827
} else {
2828
BUG_ON(p == dentry);
2829
spin_lock(&old_parent->d_lock);
2830
if (p != target)
2831
spin_lock_nested(&target->d_parent->d_lock,
2832
DENTRY_D_LOCK_NESTED);
2833
}
2834
spin_lock_nested(&dentry->d_lock, 2);
2835
spin_lock_nested(&target->d_lock, 3);
2836
2837
if (unlikely(d_in_lookup(target))) {
2838
dir = target->d_parent->d_inode;
2839
n = start_dir_add(dir);
2840
d_wait = __d_lookup_unhash(target);
2841
}
2842
2843
write_seqcount_begin(&dentry->d_seq);
2844
write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2845
2846
/* unhash both */
2847
if (!d_unhashed(dentry))
2848
___d_drop(dentry);
2849
if (!d_unhashed(target))
2850
___d_drop(target);
2851
2852
/* ... and switch them in the tree */
2853
dentry->d_parent = target->d_parent;
2854
if (!exchange) {
2855
copy_name(dentry, target);
2856
target->d_hash.pprev = NULL;
2857
dentry->d_parent->d_lockref.count++;
2858
if (dentry != old_parent) /* wasn't IS_ROOT */
2859
WARN_ON(!--old_parent->d_lockref.count);
2860
} else {
2861
target->d_parent = old_parent;
2862
swap_names(dentry, target);
2863
if (!hlist_unhashed(&target->d_sib))
2864
__hlist_del(&target->d_sib);
2865
hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2866
__d_rehash(target);
2867
fsnotify_update_flags(target);
2868
}
2869
if (!hlist_unhashed(&dentry->d_sib))
2870
__hlist_del(&dentry->d_sib);
2871
hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2872
__d_rehash(dentry);
2873
fsnotify_update_flags(dentry);
2874
fscrypt_handle_d_move(dentry);
2875
2876
write_seqcount_end(&target->d_seq);
2877
write_seqcount_end(&dentry->d_seq);
2878
2879
if (dir)
2880
end_dir_add(dir, n, d_wait);
2881
2882
if (dentry->d_parent != old_parent)
2883
spin_unlock(&dentry->d_parent->d_lock);
2884
if (dentry != old_parent)
2885
spin_unlock(&old_parent->d_lock);
2886
spin_unlock(&target->d_lock);
2887
spin_unlock(&dentry->d_lock);
2888
}
2889
2890
/*
2891
* d_move - move a dentry
2892
* @dentry: entry to move
2893
* @target: new dentry
2894
*
2895
* Update the dcache to reflect the move of a file name. Negative
2896
* dcache entries should not be moved in this way. See the locking
2897
* requirements for __d_move.
2898
*/
2899
void d_move(struct dentry *dentry, struct dentry *target)
2900
{
2901
write_seqlock(&rename_lock);
2902
__d_move(dentry, target, false);
2903
write_sequnlock(&rename_lock);
2904
}
2905
EXPORT_SYMBOL(d_move);
2906
2907
/*
2908
* d_exchange - exchange two dentries
2909
* @dentry1: first dentry
2910
* @dentry2: second dentry
2911
*/
2912
void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2913
{
2914
write_seqlock(&rename_lock);
2915
2916
WARN_ON(!dentry1->d_inode);
2917
WARN_ON(!dentry2->d_inode);
2918
WARN_ON(IS_ROOT(dentry1));
2919
WARN_ON(IS_ROOT(dentry2));
2920
2921
__d_move(dentry1, dentry2, true);
2922
2923
write_sequnlock(&rename_lock);
2924
}
2925
2926
/**
2927
* d_ancestor - search for an ancestor
2928
* @p1: ancestor dentry
2929
* @p2: child dentry
2930
*
2931
* Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2932
* an ancestor of p2, else NULL.
2933
*/
2934
struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2935
{
2936
struct dentry *p;
2937
2938
for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2939
if (p->d_parent == p1)
2940
return p;
2941
}
2942
return NULL;
2943
}
2944
2945
/*
2946
* This helper attempts to cope with remotely renamed directories
2947
*
2948
* It assumes that the caller is already holding
2949
* dentry->d_parent->d_inode->i_rwsem, and rename_lock
2950
*
2951
* Note: If ever the locking in lock_rename() changes, then please
2952
* remember to update this too...
2953
*/
2954
static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2955
{
2956
struct mutex *m1 = NULL;
2957
struct rw_semaphore *m2 = NULL;
2958
int ret = -ESTALE;
2959
2960
/* If alias and dentry share a parent, then no extra locks required */
2961
if (alias->d_parent == dentry->d_parent)
2962
goto out_unalias;
2963
2964
/* See lock_rename() */
2965
if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2966
goto out_err;
2967
m1 = &dentry->d_sb->s_vfs_rename_mutex;
2968
if (!inode_trylock_shared(alias->d_parent->d_inode))
2969
goto out_err;
2970
m2 = &alias->d_parent->d_inode->i_rwsem;
2971
out_unalias:
2972
if (alias->d_op && alias->d_op->d_unalias_trylock &&
2973
!alias->d_op->d_unalias_trylock(alias))
2974
goto out_err;
2975
__d_move(alias, dentry, false);
2976
if (alias->d_op && alias->d_op->d_unalias_unlock)
2977
alias->d_op->d_unalias_unlock(alias);
2978
ret = 0;
2979
out_err:
2980
if (m2)
2981
up_read(m2);
2982
if (m1)
2983
mutex_unlock(m1);
2984
return ret;
2985
}
2986
2987
struct dentry *d_splice_alias_ops(struct inode *inode, struct dentry *dentry,
2988
const struct dentry_operations *ops)
2989
{
2990
if (IS_ERR(inode))
2991
return ERR_CAST(inode);
2992
2993
BUG_ON(!d_unhashed(dentry));
2994
2995
if (!inode)
2996
goto out;
2997
2998
security_d_instantiate(dentry, inode);
2999
spin_lock(&inode->i_lock);
3000
if (S_ISDIR(inode->i_mode)) {
3001
struct dentry *new = __d_find_any_alias(inode);
3002
if (unlikely(new)) {
3003
/* The reference to new ensures it remains an alias */
3004
spin_unlock(&inode->i_lock);
3005
write_seqlock(&rename_lock);
3006
if (unlikely(d_ancestor(new, dentry))) {
3007
write_sequnlock(&rename_lock);
3008
dput(new);
3009
new = ERR_PTR(-ELOOP);
3010
pr_warn_ratelimited(
3011
"VFS: Lookup of '%s' in %s %s"
3012
" would have caused loop\n",
3013
dentry->d_name.name,
3014
inode->i_sb->s_type->name,
3015
inode->i_sb->s_id);
3016
} else if (!IS_ROOT(new)) {
3017
struct dentry *old_parent = dget(new->d_parent);
3018
int err = __d_unalias(dentry, new);
3019
write_sequnlock(&rename_lock);
3020
if (err) {
3021
dput(new);
3022
new = ERR_PTR(err);
3023
}
3024
dput(old_parent);
3025
} else {
3026
__d_move(new, dentry, false);
3027
write_sequnlock(&rename_lock);
3028
}
3029
iput(inode);
3030
return new;
3031
}
3032
}
3033
out:
3034
__d_add(dentry, inode, ops);
3035
return NULL;
3036
}
3037
3038
/**
3039
* d_splice_alias - splice a disconnected dentry into the tree if one exists
3040
* @inode: the inode which may have a disconnected dentry
3041
* @dentry: a negative dentry which we want to point to the inode.
3042
*
3043
* If inode is a directory and has an IS_ROOT alias, then d_move that in
3044
* place of the given dentry and return it, else simply d_add the inode
3045
* to the dentry and return NULL.
3046
*
3047
* If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3048
* we should error out: directories can't have multiple aliases.
3049
*
3050
* This is needed in the lookup routine of any filesystem that is exportable
3051
* (via knfsd) so that we can build dcache paths to directories effectively.
3052
*
3053
* If a dentry was found and moved, then it is returned. Otherwise NULL
3054
* is returned. This matches the expected return value of ->lookup.
3055
*
3056
* Cluster filesystems may call this function with a negative, hashed dentry.
3057
* In that case, we know that the inode will be a regular file, and also this
3058
* will only occur during atomic_open. So we need to check for the dentry
3059
* being already hashed only in the final case.
3060
*/
3061
struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3062
{
3063
return d_splice_alias_ops(inode, dentry, NULL);
3064
}
3065
EXPORT_SYMBOL(d_splice_alias);
3066
3067
/*
3068
* Test whether new_dentry is a subdirectory of old_dentry.
3069
*
3070
* Trivially implemented using the dcache structure
3071
*/
3072
3073
/**
3074
* is_subdir - is new dentry a subdirectory of old_dentry
3075
* @new_dentry: new dentry
3076
* @old_dentry: old dentry
3077
*
3078
* Returns true if new_dentry is a subdirectory of the parent (at any depth).
3079
* Returns false otherwise.
3080
* Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3081
*/
3082
3083
bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3084
{
3085
bool subdir;
3086
unsigned seq;
3087
3088
if (new_dentry == old_dentry)
3089
return true;
3090
3091
/* Access d_parent under rcu as d_move() may change it. */
3092
rcu_read_lock();
3093
seq = read_seqbegin(&rename_lock);
3094
subdir = d_ancestor(old_dentry, new_dentry);
3095
/* Try lockless once... */
3096
if (read_seqretry(&rename_lock, seq)) {
3097
/* ...else acquire lock for progress even on deep chains. */
3098
read_seqlock_excl(&rename_lock);
3099
subdir = d_ancestor(old_dentry, new_dentry);
3100
read_sequnlock_excl(&rename_lock);
3101
}
3102
rcu_read_unlock();
3103
return subdir;
3104
}
3105
EXPORT_SYMBOL(is_subdir);
3106
3107
static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3108
{
3109
struct dentry *root = data;
3110
if (dentry != root) {
3111
if (d_unhashed(dentry) || !dentry->d_inode)
3112
return D_WALK_SKIP;
3113
3114
if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3115
dentry->d_flags |= DCACHE_GENOCIDE;
3116
dentry->d_lockref.count--;
3117
}
3118
}
3119
return D_WALK_CONTINUE;
3120
}
3121
3122
void d_genocide(struct dentry *parent)
3123
{
3124
d_walk(parent, parent, d_genocide_kill);
3125
}
3126
3127
void d_mark_tmpfile(struct file *file, struct inode *inode)
3128
{
3129
struct dentry *dentry = file->f_path.dentry;
3130
3131
BUG_ON(dname_external(dentry) ||
3132
!hlist_unhashed(&dentry->d_u.d_alias) ||
3133
!d_unlinked(dentry));
3134
spin_lock(&dentry->d_parent->d_lock);
3135
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3136
dentry->d_name.len = sprintf(dentry->d_shortname.string, "#%llu",
3137
(unsigned long long)inode->i_ino);
3138
spin_unlock(&dentry->d_lock);
3139
spin_unlock(&dentry->d_parent->d_lock);
3140
}
3141
EXPORT_SYMBOL(d_mark_tmpfile);
3142
3143
void d_tmpfile(struct file *file, struct inode *inode)
3144
{
3145
struct dentry *dentry = file->f_path.dentry;
3146
3147
inode_dec_link_count(inode);
3148
d_mark_tmpfile(file, inode);
3149
d_instantiate(dentry, inode);
3150
}
3151
EXPORT_SYMBOL(d_tmpfile);
3152
3153
/*
3154
* Obtain inode number of the parent dentry.
3155
*/
3156
ino_t d_parent_ino(struct dentry *dentry)
3157
{
3158
struct dentry *parent;
3159
struct inode *iparent;
3160
unsigned seq;
3161
ino_t ret;
3162
3163
scoped_guard(rcu) {
3164
seq = raw_seqcount_begin(&dentry->d_seq);
3165
parent = READ_ONCE(dentry->d_parent);
3166
iparent = d_inode_rcu(parent);
3167
if (likely(iparent)) {
3168
ret = iparent->i_ino;
3169
if (!read_seqcount_retry(&dentry->d_seq, seq))
3170
return ret;
3171
}
3172
}
3173
3174
spin_lock(&dentry->d_lock);
3175
ret = dentry->d_parent->d_inode->i_ino;
3176
spin_unlock(&dentry->d_lock);
3177
return ret;
3178
}
3179
EXPORT_SYMBOL(d_parent_ino);
3180
3181
static __initdata unsigned long dhash_entries;
3182
static int __init set_dhash_entries(char *str)
3183
{
3184
if (!str)
3185
return 0;
3186
dhash_entries = simple_strtoul(str, &str, 0);
3187
return 1;
3188
}
3189
__setup("dhash_entries=", set_dhash_entries);
3190
3191
static void __init dcache_init_early(void)
3192
{
3193
/* If hashes are distributed across NUMA nodes, defer
3194
* hash allocation until vmalloc space is available.
3195
*/
3196
if (hashdist)
3197
return;
3198
3199
dentry_hashtable =
3200
alloc_large_system_hash("Dentry cache",
3201
sizeof(struct hlist_bl_head),
3202
dhash_entries,
3203
13,
3204
HASH_EARLY | HASH_ZERO,
3205
&d_hash_shift,
3206
NULL,
3207
0,
3208
0);
3209
d_hash_shift = 32 - d_hash_shift;
3210
3211
runtime_const_init(shift, d_hash_shift);
3212
runtime_const_init(ptr, dentry_hashtable);
3213
}
3214
3215
static void __init dcache_init(void)
3216
{
3217
/*
3218
* A constructor could be added for stable state like the lists,
3219
* but it is probably not worth it because of the cache nature
3220
* of the dcache.
3221
*/
3222
dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3223
SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3224
d_shortname.string);
3225
3226
/* Hash may have been set up in dcache_init_early */
3227
if (!hashdist)
3228
return;
3229
3230
dentry_hashtable =
3231
alloc_large_system_hash("Dentry cache",
3232
sizeof(struct hlist_bl_head),
3233
dhash_entries,
3234
13,
3235
HASH_ZERO,
3236
&d_hash_shift,
3237
NULL,
3238
0,
3239
0);
3240
d_hash_shift = 32 - d_hash_shift;
3241
3242
runtime_const_init(shift, d_hash_shift);
3243
runtime_const_init(ptr, dentry_hashtable);
3244
}
3245
3246
/* SLAB cache for __getname() consumers */
3247
struct kmem_cache *names_cachep __ro_after_init;
3248
EXPORT_SYMBOL(names_cachep);
3249
3250
void __init vfs_caches_init_early(void)
3251
{
3252
int i;
3253
3254
for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3255
INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3256
3257
dcache_init_early();
3258
inode_init_early();
3259
}
3260
3261
void __init vfs_caches_init(void)
3262
{
3263
names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3264
SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3265
3266
dcache_init();
3267
inode_init();
3268
files_init();
3269
files_maxfiles_init();
3270
mnt_init();
3271
bdev_cache_init();
3272
chrdev_init();
3273
}
3274
3275