Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/dcache.c
49256 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* fs/dcache.c
4
*
5
* Complete reimplementation
6
* (C) 1997 Thomas Schoebel-Theuer,
7
* with heavy changes by Linus Torvalds
8
*/
9
10
/*
11
* Notes on the allocation strategy:
12
*
13
* The dcache is a master of the icache - whenever a dcache entry
14
* exists, the inode will always exist. "iput()" is done either when
15
* the dcache entry is deleted or garbage collected.
16
*/
17
18
#include <linux/ratelimit.h>
19
#include <linux/string.h>
20
#include <linux/mm.h>
21
#include <linux/fs.h>
22
#include <linux/fscrypt.h>
23
#include <linux/fsnotify.h>
24
#include <linux/slab.h>
25
#include <linux/init.h>
26
#include <linux/hash.h>
27
#include <linux/cache.h>
28
#include <linux/export.h>
29
#include <linux/security.h>
30
#include <linux/seqlock.h>
31
#include <linux/memblock.h>
32
#include <linux/bit_spinlock.h>
33
#include <linux/rculist_bl.h>
34
#include <linux/list_lru.h>
35
#include "internal.h"
36
#include "mount.h"
37
38
#include <asm/runtime-const.h>
39
40
/*
41
* Usage:
42
* dcache->d_inode->i_lock protects:
43
* - i_dentry, d_u.d_alias, d_inode of aliases
44
* dcache_hash_bucket lock protects:
45
* - the dcache hash table
46
* s_roots bl list spinlock protects:
47
* - the s_roots list (see __d_drop)
48
* dentry->d_sb->s_dentry_lru_lock protects:
49
* - the dcache lru lists and counters
50
* d_lock protects:
51
* - d_flags
52
* - d_name
53
* - d_lru
54
* - d_count
55
* - d_unhashed()
56
* - d_parent and d_chilren
57
* - childrens' d_sib and d_parent
58
* - d_u.d_alias, d_inode
59
*
60
* Ordering:
61
* dentry->d_inode->i_lock
62
* dentry->d_lock
63
* dentry->d_sb->s_dentry_lru_lock
64
* dcache_hash_bucket lock
65
* s_roots lock
66
*
67
* If there is an ancestor relationship:
68
* dentry->d_parent->...->d_parent->d_lock
69
* ...
70
* dentry->d_parent->d_lock
71
* dentry->d_lock
72
*
73
* If no ancestor relationship:
74
* arbitrary, since it's serialized on rename_lock
75
*/
76
static int sysctl_vfs_cache_pressure __read_mostly = 100;
77
static int sysctl_vfs_cache_pressure_denom __read_mostly = 100;
78
79
unsigned long vfs_pressure_ratio(unsigned long val)
80
{
81
return mult_frac(val, sysctl_vfs_cache_pressure, sysctl_vfs_cache_pressure_denom);
82
}
83
EXPORT_SYMBOL_GPL(vfs_pressure_ratio);
84
85
__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87
EXPORT_SYMBOL(rename_lock);
88
89
static struct kmem_cache *__dentry_cache __ro_after_init;
90
#define dentry_cache runtime_const_ptr(__dentry_cache)
91
92
const struct qstr empty_name = QSTR_INIT("", 0);
93
EXPORT_SYMBOL(empty_name);
94
const struct qstr slash_name = QSTR_INIT("/", 1);
95
EXPORT_SYMBOL(slash_name);
96
const struct qstr dotdot_name = QSTR_INIT("..", 2);
97
EXPORT_SYMBOL(dotdot_name);
98
99
/*
100
* This is the single most critical data structure when it comes
101
* to the dcache: the hashtable for lookups. Somebody should try
102
* to make this good - I've just made it work.
103
*
104
* This hash-function tries to avoid losing too many bits of hash
105
* information, yet avoid using a prime hash-size or similar.
106
*
107
* Marking the variables "used" ensures that the compiler doesn't
108
* optimize them away completely on architectures with runtime
109
* constant infrastructure, this allows debuggers to see their
110
* values. But updating these values has no effect on those arches.
111
*/
112
113
static unsigned int d_hash_shift __ro_after_init __used;
114
115
static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
116
117
static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
118
{
119
return runtime_const_ptr(dentry_hashtable) +
120
runtime_const_shift_right_32(hashlen, d_hash_shift);
121
}
122
123
#define IN_LOOKUP_SHIFT 10
124
static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
125
126
static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
127
unsigned int hash)
128
{
129
hash += (unsigned long) parent / L1_CACHE_BYTES;
130
return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
131
}
132
133
struct dentry_stat_t {
134
long nr_dentry;
135
long nr_unused;
136
long age_limit; /* age in seconds */
137
long want_pages; /* pages requested by system */
138
long nr_negative; /* # of unused negative dentries */
139
long dummy; /* Reserved for future use */
140
};
141
142
static DEFINE_PER_CPU(long, nr_dentry);
143
static DEFINE_PER_CPU(long, nr_dentry_unused);
144
static DEFINE_PER_CPU(long, nr_dentry_negative);
145
static int dentry_negative_policy;
146
147
#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
148
/* Statistics gathering. */
149
static struct dentry_stat_t dentry_stat = {
150
.age_limit = 45,
151
};
152
153
/*
154
* Here we resort to our own counters instead of using generic per-cpu counters
155
* for consistency with what the vfs inode code does. We are expected to harvest
156
* better code and performance by having our own specialized counters.
157
*
158
* Please note that the loop is done over all possible CPUs, not over all online
159
* CPUs. The reason for this is that we don't want to play games with CPUs going
160
* on and off. If one of them goes off, we will just keep their counters.
161
*
162
* glommer: See cffbc8a for details, and if you ever intend to change this,
163
* please update all vfs counters to match.
164
*/
165
static long get_nr_dentry(void)
166
{
167
int i;
168
long sum = 0;
169
for_each_possible_cpu(i)
170
sum += per_cpu(nr_dentry, i);
171
return sum < 0 ? 0 : sum;
172
}
173
174
static long get_nr_dentry_unused(void)
175
{
176
int i;
177
long sum = 0;
178
for_each_possible_cpu(i)
179
sum += per_cpu(nr_dentry_unused, i);
180
return sum < 0 ? 0 : sum;
181
}
182
183
static long get_nr_dentry_negative(void)
184
{
185
int i;
186
long sum = 0;
187
188
for_each_possible_cpu(i)
189
sum += per_cpu(nr_dentry_negative, i);
190
return sum < 0 ? 0 : sum;
191
}
192
193
static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
194
size_t *lenp, loff_t *ppos)
195
{
196
dentry_stat.nr_dentry = get_nr_dentry();
197
dentry_stat.nr_unused = get_nr_dentry_unused();
198
dentry_stat.nr_negative = get_nr_dentry_negative();
199
return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
200
}
201
202
static const struct ctl_table fs_dcache_sysctls[] = {
203
{
204
.procname = "dentry-state",
205
.data = &dentry_stat,
206
.maxlen = 6*sizeof(long),
207
.mode = 0444,
208
.proc_handler = proc_nr_dentry,
209
},
210
{
211
.procname = "dentry-negative",
212
.data = &dentry_negative_policy,
213
.maxlen = sizeof(dentry_negative_policy),
214
.mode = 0644,
215
.proc_handler = proc_dointvec_minmax,
216
.extra1 = SYSCTL_ZERO,
217
.extra2 = SYSCTL_ONE,
218
},
219
};
220
221
static const struct ctl_table vm_dcache_sysctls[] = {
222
{
223
.procname = "vfs_cache_pressure",
224
.data = &sysctl_vfs_cache_pressure,
225
.maxlen = sizeof(sysctl_vfs_cache_pressure),
226
.mode = 0644,
227
.proc_handler = proc_dointvec_minmax,
228
.extra1 = SYSCTL_ZERO,
229
},
230
{
231
.procname = "vfs_cache_pressure_denom",
232
.data = &sysctl_vfs_cache_pressure_denom,
233
.maxlen = sizeof(sysctl_vfs_cache_pressure_denom),
234
.mode = 0644,
235
.proc_handler = proc_dointvec_minmax,
236
.extra1 = SYSCTL_ONE_HUNDRED,
237
},
238
};
239
240
static int __init init_fs_dcache_sysctls(void)
241
{
242
register_sysctl_init("vm", vm_dcache_sysctls);
243
register_sysctl_init("fs", fs_dcache_sysctls);
244
return 0;
245
}
246
fs_initcall(init_fs_dcache_sysctls);
247
#endif
248
249
/*
250
* Compare 2 name strings, return 0 if they match, otherwise non-zero.
251
* The strings are both count bytes long, and count is non-zero.
252
*/
253
#ifdef CONFIG_DCACHE_WORD_ACCESS
254
255
#include <asm/word-at-a-time.h>
256
/*
257
* NOTE! 'cs' and 'scount' come from a dentry, so it has a
258
* aligned allocation for this particular component. We don't
259
* strictly need the load_unaligned_zeropad() safety, but it
260
* doesn't hurt either.
261
*
262
* In contrast, 'ct' and 'tcount' can be from a pathname, and do
263
* need the careful unaligned handling.
264
*/
265
static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
266
{
267
unsigned long a,b,mask;
268
269
for (;;) {
270
a = read_word_at_a_time(cs);
271
b = load_unaligned_zeropad(ct);
272
if (tcount < sizeof(unsigned long))
273
break;
274
if (unlikely(a != b))
275
return 1;
276
cs += sizeof(unsigned long);
277
ct += sizeof(unsigned long);
278
tcount -= sizeof(unsigned long);
279
if (!tcount)
280
return 0;
281
}
282
mask = bytemask_from_count(tcount);
283
return unlikely(!!((a ^ b) & mask));
284
}
285
286
#else
287
288
static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
289
{
290
do {
291
if (*cs != *ct)
292
return 1;
293
cs++;
294
ct++;
295
tcount--;
296
} while (tcount);
297
return 0;
298
}
299
300
#endif
301
302
static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
303
{
304
/*
305
* Be careful about RCU walk racing with rename:
306
* use 'READ_ONCE' to fetch the name pointer.
307
*
308
* NOTE! Even if a rename will mean that the length
309
* was not loaded atomically, we don't care. The
310
* RCU walk will check the sequence count eventually,
311
* and catch it. And we won't overrun the buffer,
312
* because we're reading the name pointer atomically,
313
* and a dentry name is guaranteed to be properly
314
* terminated with a NUL byte.
315
*
316
* End result: even if 'len' is wrong, we'll exit
317
* early because the data cannot match (there can
318
* be no NUL in the ct/tcount data)
319
*/
320
const unsigned char *cs = READ_ONCE(dentry->d_name.name);
321
322
return dentry_string_cmp(cs, ct, tcount);
323
}
324
325
/*
326
* long names are allocated separately from dentry and never modified.
327
* Refcounted, freeing is RCU-delayed. See take_dentry_name_snapshot()
328
* for the reason why ->count and ->head can't be combined into a union.
329
* dentry_string_cmp() relies upon ->name[] being word-aligned.
330
*/
331
struct external_name {
332
atomic_t count;
333
struct rcu_head head;
334
unsigned char name[] __aligned(sizeof(unsigned long));
335
};
336
337
static inline struct external_name *external_name(struct dentry *dentry)
338
{
339
return container_of(dentry->d_name.name, struct external_name, name[0]);
340
}
341
342
static void __d_free(struct rcu_head *head)
343
{
344
struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
345
346
kmem_cache_free(dentry_cache, dentry);
347
}
348
349
static void __d_free_external(struct rcu_head *head)
350
{
351
struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
352
kfree(external_name(dentry));
353
kmem_cache_free(dentry_cache, dentry);
354
}
355
356
static inline int dname_external(const struct dentry *dentry)
357
{
358
return dentry->d_name.name != dentry->d_shortname.string;
359
}
360
361
void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
362
{
363
unsigned seq;
364
const unsigned char *s;
365
366
rcu_read_lock();
367
retry:
368
seq = read_seqcount_begin(&dentry->d_seq);
369
s = READ_ONCE(dentry->d_name.name);
370
name->name.hash_len = dentry->d_name.hash_len;
371
name->name.name = name->inline_name.string;
372
if (likely(s == dentry->d_shortname.string)) {
373
name->inline_name = dentry->d_shortname;
374
} else {
375
struct external_name *p;
376
p = container_of(s, struct external_name, name[0]);
377
// get a valid reference
378
if (unlikely(!atomic_inc_not_zero(&p->count)))
379
goto retry;
380
name->name.name = s;
381
}
382
if (read_seqcount_retry(&dentry->d_seq, seq)) {
383
release_dentry_name_snapshot(name);
384
goto retry;
385
}
386
rcu_read_unlock();
387
}
388
EXPORT_SYMBOL(take_dentry_name_snapshot);
389
390
void release_dentry_name_snapshot(struct name_snapshot *name)
391
{
392
if (unlikely(name->name.name != name->inline_name.string)) {
393
struct external_name *p;
394
p = container_of(name->name.name, struct external_name, name[0]);
395
if (unlikely(atomic_dec_and_test(&p->count)))
396
kfree_rcu(p, head);
397
}
398
}
399
EXPORT_SYMBOL(release_dentry_name_snapshot);
400
401
static inline void __d_set_inode_and_type(struct dentry *dentry,
402
struct inode *inode,
403
unsigned type_flags)
404
{
405
unsigned flags;
406
407
dentry->d_inode = inode;
408
flags = READ_ONCE(dentry->d_flags);
409
flags &= ~DCACHE_ENTRY_TYPE;
410
flags |= type_flags;
411
smp_store_release(&dentry->d_flags, flags);
412
}
413
414
static inline void __d_clear_type_and_inode(struct dentry *dentry)
415
{
416
unsigned flags = READ_ONCE(dentry->d_flags);
417
418
flags &= ~DCACHE_ENTRY_TYPE;
419
WRITE_ONCE(dentry->d_flags, flags);
420
dentry->d_inode = NULL;
421
/*
422
* The negative counter only tracks dentries on the LRU. Don't inc if
423
* d_lru is on another list.
424
*/
425
if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
426
this_cpu_inc(nr_dentry_negative);
427
}
428
429
static void dentry_free(struct dentry *dentry)
430
{
431
WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
432
if (unlikely(dname_external(dentry))) {
433
struct external_name *p = external_name(dentry);
434
if (likely(atomic_dec_and_test(&p->count))) {
435
call_rcu(&dentry->d_u.d_rcu, __d_free_external);
436
return;
437
}
438
}
439
/* if dentry was never visible to RCU, immediate free is OK */
440
if (dentry->d_flags & DCACHE_NORCU)
441
__d_free(&dentry->d_u.d_rcu);
442
else
443
call_rcu(&dentry->d_u.d_rcu, __d_free);
444
}
445
446
/*
447
* Release the dentry's inode, using the filesystem
448
* d_iput() operation if defined.
449
*/
450
static void dentry_unlink_inode(struct dentry * dentry)
451
__releases(dentry->d_lock)
452
__releases(dentry->d_inode->i_lock)
453
{
454
struct inode *inode = dentry->d_inode;
455
456
raw_write_seqcount_begin(&dentry->d_seq);
457
__d_clear_type_and_inode(dentry);
458
hlist_del_init(&dentry->d_u.d_alias);
459
raw_write_seqcount_end(&dentry->d_seq);
460
spin_unlock(&dentry->d_lock);
461
spin_unlock(&inode->i_lock);
462
if (!inode->i_nlink)
463
fsnotify_inoderemove(inode);
464
if (dentry->d_op && dentry->d_op->d_iput)
465
dentry->d_op->d_iput(dentry, inode);
466
else
467
iput(inode);
468
}
469
470
/*
471
* The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
472
* is in use - which includes both the "real" per-superblock
473
* LRU list _and_ the DCACHE_SHRINK_LIST use.
474
*
475
* The DCACHE_SHRINK_LIST bit is set whenever the dentry is
476
* on the shrink list (ie not on the superblock LRU list).
477
*
478
* The per-cpu "nr_dentry_unused" counters are updated with
479
* the DCACHE_LRU_LIST bit.
480
*
481
* The per-cpu "nr_dentry_negative" counters are only updated
482
* when deleted from or added to the per-superblock LRU list, not
483
* from/to the shrink list. That is to avoid an unneeded dec/inc
484
* pair when moving from LRU to shrink list in select_collect().
485
*
486
* These helper functions make sure we always follow the
487
* rules. d_lock must be held by the caller.
488
*/
489
#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
490
static void d_lru_add(struct dentry *dentry)
491
{
492
D_FLAG_VERIFY(dentry, 0);
493
dentry->d_flags |= DCACHE_LRU_LIST;
494
this_cpu_inc(nr_dentry_unused);
495
if (d_is_negative(dentry))
496
this_cpu_inc(nr_dentry_negative);
497
WARN_ON_ONCE(!list_lru_add_obj(
498
&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
499
}
500
501
static void d_lru_del(struct dentry *dentry)
502
{
503
D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
504
dentry->d_flags &= ~DCACHE_LRU_LIST;
505
this_cpu_dec(nr_dentry_unused);
506
if (d_is_negative(dentry))
507
this_cpu_dec(nr_dentry_negative);
508
WARN_ON_ONCE(!list_lru_del_obj(
509
&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
510
}
511
512
static void d_shrink_del(struct dentry *dentry)
513
{
514
D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
515
list_del_init(&dentry->d_lru);
516
dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
517
this_cpu_dec(nr_dentry_unused);
518
}
519
520
static void d_shrink_add(struct dentry *dentry, struct list_head *list)
521
{
522
D_FLAG_VERIFY(dentry, 0);
523
list_add(&dentry->d_lru, list);
524
dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
525
this_cpu_inc(nr_dentry_unused);
526
}
527
528
/*
529
* These can only be called under the global LRU lock, ie during the
530
* callback for freeing the LRU list. "isolate" removes it from the
531
* LRU lists entirely, while shrink_move moves it to the indicated
532
* private list.
533
*/
534
static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
535
{
536
D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
537
dentry->d_flags &= ~DCACHE_LRU_LIST;
538
this_cpu_dec(nr_dentry_unused);
539
if (d_is_negative(dentry))
540
this_cpu_dec(nr_dentry_negative);
541
list_lru_isolate(lru, &dentry->d_lru);
542
}
543
544
static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
545
struct list_head *list)
546
{
547
D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
548
dentry->d_flags |= DCACHE_SHRINK_LIST;
549
if (d_is_negative(dentry))
550
this_cpu_dec(nr_dentry_negative);
551
list_lru_isolate_move(lru, &dentry->d_lru, list);
552
}
553
554
static void ___d_drop(struct dentry *dentry)
555
{
556
struct hlist_bl_head *b;
557
/*
558
* Hashed dentries are normally on the dentry hashtable,
559
* with the exception of those newly allocated by
560
* d_obtain_root, which are always IS_ROOT:
561
*/
562
if (unlikely(IS_ROOT(dentry)))
563
b = &dentry->d_sb->s_roots;
564
else
565
b = d_hash(dentry->d_name.hash);
566
567
hlist_bl_lock(b);
568
__hlist_bl_del(&dentry->d_hash);
569
hlist_bl_unlock(b);
570
}
571
572
void __d_drop(struct dentry *dentry)
573
{
574
if (!d_unhashed(dentry)) {
575
___d_drop(dentry);
576
dentry->d_hash.pprev = NULL;
577
write_seqcount_invalidate(&dentry->d_seq);
578
}
579
}
580
EXPORT_SYMBOL(__d_drop);
581
582
/**
583
* d_drop - drop a dentry
584
* @dentry: dentry to drop
585
*
586
* d_drop() unhashes the entry from the parent dentry hashes, so that it won't
587
* be found through a VFS lookup any more. Note that this is different from
588
* deleting the dentry - d_delete will try to mark the dentry negative if
589
* possible, giving a successful _negative_ lookup, while d_drop will
590
* just make the cache lookup fail.
591
*
592
* d_drop() is used mainly for stuff that wants to invalidate a dentry for some
593
* reason (NFS timeouts or autofs deletes).
594
*
595
* __d_drop requires dentry->d_lock
596
*
597
* ___d_drop doesn't mark dentry as "unhashed"
598
* (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
599
*/
600
void d_drop(struct dentry *dentry)
601
{
602
spin_lock(&dentry->d_lock);
603
__d_drop(dentry);
604
spin_unlock(&dentry->d_lock);
605
}
606
EXPORT_SYMBOL(d_drop);
607
608
static inline void dentry_unlist(struct dentry *dentry)
609
{
610
struct dentry *next;
611
/*
612
* Inform d_walk() and shrink_dentry_list() that we are no longer
613
* attached to the dentry tree
614
*/
615
dentry->d_flags |= DCACHE_DENTRY_KILLED;
616
if (unlikely(hlist_unhashed(&dentry->d_sib)))
617
return;
618
__hlist_del(&dentry->d_sib);
619
/*
620
* Cursors can move around the list of children. While we'd been
621
* a normal list member, it didn't matter - ->d_sib.next would've
622
* been updated. However, from now on it won't be and for the
623
* things like d_walk() it might end up with a nasty surprise.
624
* Normally d_walk() doesn't care about cursors moving around -
625
* ->d_lock on parent prevents that and since a cursor has no children
626
* of its own, we get through it without ever unlocking the parent.
627
* There is one exception, though - if we ascend from a child that
628
* gets killed as soon as we unlock it, the next sibling is found
629
* using the value left in its ->d_sib.next. And if _that_
630
* pointed to a cursor, and cursor got moved (e.g. by lseek())
631
* before d_walk() regains parent->d_lock, we'll end up skipping
632
* everything the cursor had been moved past.
633
*
634
* Solution: make sure that the pointer left behind in ->d_sib.next
635
* points to something that won't be moving around. I.e. skip the
636
* cursors.
637
*/
638
while (dentry->d_sib.next) {
639
next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
640
if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
641
break;
642
dentry->d_sib.next = next->d_sib.next;
643
}
644
}
645
646
static struct dentry *__dentry_kill(struct dentry *dentry)
647
{
648
struct dentry *parent = NULL;
649
bool can_free = true;
650
651
/*
652
* The dentry is now unrecoverably dead to the world.
653
*/
654
lockref_mark_dead(&dentry->d_lockref);
655
656
/*
657
* inform the fs via d_prune that this dentry is about to be
658
* unhashed and destroyed.
659
*/
660
if (dentry->d_flags & DCACHE_OP_PRUNE)
661
dentry->d_op->d_prune(dentry);
662
663
if (dentry->d_flags & DCACHE_LRU_LIST) {
664
if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
665
d_lru_del(dentry);
666
}
667
/* if it was on the hash then remove it */
668
__d_drop(dentry);
669
if (dentry->d_inode)
670
dentry_unlink_inode(dentry);
671
else
672
spin_unlock(&dentry->d_lock);
673
this_cpu_dec(nr_dentry);
674
if (dentry->d_op && dentry->d_op->d_release)
675
dentry->d_op->d_release(dentry);
676
677
cond_resched();
678
/* now that it's negative, ->d_parent is stable */
679
if (!IS_ROOT(dentry)) {
680
parent = dentry->d_parent;
681
spin_lock(&parent->d_lock);
682
}
683
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
684
dentry_unlist(dentry);
685
if (dentry->d_flags & DCACHE_SHRINK_LIST)
686
can_free = false;
687
spin_unlock(&dentry->d_lock);
688
if (likely(can_free))
689
dentry_free(dentry);
690
if (parent && --parent->d_lockref.count) {
691
spin_unlock(&parent->d_lock);
692
return NULL;
693
}
694
return parent;
695
}
696
697
/*
698
* Lock a dentry for feeding it to __dentry_kill().
699
* Called under rcu_read_lock() and dentry->d_lock; the former
700
* guarantees that nothing we access will be freed under us.
701
* Note that dentry is *not* protected from concurrent dentry_kill(),
702
* d_delete(), etc.
703
*
704
* Return false if dentry is busy. Otherwise, return true and have
705
* that dentry's inode locked.
706
*/
707
708
static bool lock_for_kill(struct dentry *dentry)
709
{
710
struct inode *inode = dentry->d_inode;
711
712
if (unlikely(dentry->d_lockref.count))
713
return false;
714
715
if (!inode || likely(spin_trylock(&inode->i_lock)))
716
return true;
717
718
do {
719
spin_unlock(&dentry->d_lock);
720
spin_lock(&inode->i_lock);
721
spin_lock(&dentry->d_lock);
722
if (likely(inode == dentry->d_inode))
723
break;
724
spin_unlock(&inode->i_lock);
725
inode = dentry->d_inode;
726
} while (inode);
727
if (likely(!dentry->d_lockref.count))
728
return true;
729
if (inode)
730
spin_unlock(&inode->i_lock);
731
return false;
732
}
733
734
/*
735
* Decide if dentry is worth retaining. Usually this is called with dentry
736
* locked; if not locked, we are more limited and might not be able to tell
737
* without a lock. False in this case means "punt to locked path and recheck".
738
*
739
* In case we aren't locked, these predicates are not "stable". However, it is
740
* sufficient that at some point after we dropped the reference the dentry was
741
* hashed and the flags had the proper value. Other dentry users may have
742
* re-gotten a reference to the dentry and change that, but our work is done -
743
* we can leave the dentry around with a zero refcount.
744
*/
745
static inline bool retain_dentry(struct dentry *dentry, bool locked)
746
{
747
unsigned int d_flags;
748
749
smp_rmb();
750
d_flags = READ_ONCE(dentry->d_flags);
751
752
// Unreachable? Nobody would be able to look it up, no point retaining
753
if (unlikely(d_unhashed(dentry)))
754
return false;
755
756
// Same if it's disconnected
757
if (unlikely(d_flags & DCACHE_DISCONNECTED))
758
return false;
759
760
// ->d_delete() might tell us not to bother, but that requires
761
// ->d_lock; can't decide without it
762
if (unlikely(d_flags & DCACHE_OP_DELETE)) {
763
if (!locked || dentry->d_op->d_delete(dentry))
764
return false;
765
}
766
767
// Explicitly told not to bother
768
if (unlikely(d_flags & DCACHE_DONTCACHE))
769
return false;
770
771
// At this point it looks like we ought to keep it. We also might
772
// need to do something - put it on LRU if it wasn't there already
773
// and mark it referenced if it was on LRU, but not marked yet.
774
// Unfortunately, both actions require ->d_lock, so in lockless
775
// case we'd have to punt rather than doing those.
776
if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
777
if (!locked)
778
return false;
779
d_lru_add(dentry);
780
} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
781
if (!locked)
782
return false;
783
dentry->d_flags |= DCACHE_REFERENCED;
784
}
785
return true;
786
}
787
788
void d_mark_dontcache(struct inode *inode)
789
{
790
struct dentry *de;
791
792
spin_lock(&inode->i_lock);
793
hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
794
spin_lock(&de->d_lock);
795
de->d_flags |= DCACHE_DONTCACHE;
796
spin_unlock(&de->d_lock);
797
}
798
inode_state_set(inode, I_DONTCACHE);
799
spin_unlock(&inode->i_lock);
800
}
801
EXPORT_SYMBOL(d_mark_dontcache);
802
803
/*
804
* Try to do a lockless dput(), and return whether that was successful.
805
*
806
* If unsuccessful, we return false, having already taken the dentry lock.
807
* In that case refcount is guaranteed to be zero and we have already
808
* decided that it's not worth keeping around.
809
*
810
* The caller needs to hold the RCU read lock, so that the dentry is
811
* guaranteed to stay around even if the refcount goes down to zero!
812
*/
813
static inline bool fast_dput(struct dentry *dentry)
814
{
815
int ret;
816
817
/*
818
* try to decrement the lockref optimistically.
819
*/
820
ret = lockref_put_return(&dentry->d_lockref);
821
822
/*
823
* If the lockref_put_return() failed due to the lock being held
824
* by somebody else, the fast path has failed. We will need to
825
* get the lock, and then check the count again.
826
*/
827
if (unlikely(ret < 0)) {
828
spin_lock(&dentry->d_lock);
829
if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
830
spin_unlock(&dentry->d_lock);
831
return true;
832
}
833
dentry->d_lockref.count--;
834
goto locked;
835
}
836
837
/*
838
* If we weren't the last ref, we're done.
839
*/
840
if (ret)
841
return true;
842
843
/*
844
* Can we decide that decrement of refcount is all we needed without
845
* taking the lock? There's a very common case when it's all we need -
846
* dentry looks like it ought to be retained and there's nothing else
847
* to do.
848
*/
849
if (retain_dentry(dentry, false))
850
return true;
851
852
/*
853
* Either not worth retaining or we can't tell without the lock.
854
* Get the lock, then. We've already decremented the refcount to 0,
855
* but we'll need to re-check the situation after getting the lock.
856
*/
857
spin_lock(&dentry->d_lock);
858
859
/*
860
* Did somebody else grab a reference to it in the meantime, and
861
* we're no longer the last user after all? Alternatively, somebody
862
* else could have killed it and marked it dead. Either way, we
863
* don't need to do anything else.
864
*/
865
locked:
866
if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
867
spin_unlock(&dentry->d_lock);
868
return true;
869
}
870
return false;
871
}
872
873
static void finish_dput(struct dentry *dentry)
874
__releases(dentry->d_lock)
875
__releases(RCU)
876
{
877
while (lock_for_kill(dentry)) {
878
rcu_read_unlock();
879
dentry = __dentry_kill(dentry);
880
if (!dentry)
881
return;
882
if (retain_dentry(dentry, true)) {
883
spin_unlock(&dentry->d_lock);
884
return;
885
}
886
rcu_read_lock();
887
}
888
rcu_read_unlock();
889
spin_unlock(&dentry->d_lock);
890
}
891
892
/*
893
* This is dput
894
*
895
* This is complicated by the fact that we do not want to put
896
* dentries that are no longer on any hash chain on the unused
897
* list: we'd much rather just get rid of them immediately.
898
*
899
* However, that implies that we have to traverse the dentry
900
* tree upwards to the parents which might _also_ now be
901
* scheduled for deletion (it may have been only waiting for
902
* its last child to go away).
903
*
904
* This tail recursion is done by hand as we don't want to depend
905
* on the compiler to always get this right (gcc generally doesn't).
906
* Real recursion would eat up our stack space.
907
*/
908
909
/*
910
* dput - release a dentry
911
* @dentry: dentry to release
912
*
913
* Release a dentry. This will drop the usage count and if appropriate
914
* call the dentry unlink method as well as removing it from the queues and
915
* releasing its resources. If the parent dentries were scheduled for release
916
* they too may now get deleted.
917
*/
918
void dput(struct dentry *dentry)
919
{
920
if (!dentry)
921
return;
922
might_sleep();
923
rcu_read_lock();
924
if (likely(fast_dput(dentry))) {
925
rcu_read_unlock();
926
return;
927
}
928
finish_dput(dentry);
929
}
930
EXPORT_SYMBOL(dput);
931
932
void d_make_discardable(struct dentry *dentry)
933
{
934
spin_lock(&dentry->d_lock);
935
WARN_ON(!(dentry->d_flags & DCACHE_PERSISTENT));
936
dentry->d_flags &= ~DCACHE_PERSISTENT;
937
dentry->d_lockref.count--;
938
rcu_read_lock();
939
finish_dput(dentry);
940
}
941
EXPORT_SYMBOL(d_make_discardable);
942
943
static void to_shrink_list(struct dentry *dentry, struct list_head *list)
944
__must_hold(&dentry->d_lock)
945
{
946
if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
947
if (dentry->d_flags & DCACHE_LRU_LIST)
948
d_lru_del(dentry);
949
d_shrink_add(dentry, list);
950
}
951
}
952
953
void dput_to_list(struct dentry *dentry, struct list_head *list)
954
{
955
rcu_read_lock();
956
if (likely(fast_dput(dentry))) {
957
rcu_read_unlock();
958
return;
959
}
960
rcu_read_unlock();
961
to_shrink_list(dentry, list);
962
spin_unlock(&dentry->d_lock);
963
}
964
965
struct dentry *dget_parent(struct dentry *dentry)
966
{
967
int gotref;
968
struct dentry *ret;
969
unsigned seq;
970
971
/*
972
* Do optimistic parent lookup without any
973
* locking.
974
*/
975
rcu_read_lock();
976
seq = raw_seqcount_begin(&dentry->d_seq);
977
ret = READ_ONCE(dentry->d_parent);
978
gotref = lockref_get_not_zero(&ret->d_lockref);
979
rcu_read_unlock();
980
if (likely(gotref)) {
981
if (!read_seqcount_retry(&dentry->d_seq, seq))
982
return ret;
983
dput(ret);
984
}
985
986
repeat:
987
/*
988
* Don't need rcu_dereference because we re-check it was correct under
989
* the lock.
990
*/
991
rcu_read_lock();
992
ret = dentry->d_parent;
993
spin_lock(&ret->d_lock);
994
if (unlikely(ret != dentry->d_parent)) {
995
spin_unlock(&ret->d_lock);
996
rcu_read_unlock();
997
goto repeat;
998
}
999
rcu_read_unlock();
1000
BUG_ON(!ret->d_lockref.count);
1001
ret->d_lockref.count++;
1002
spin_unlock(&ret->d_lock);
1003
return ret;
1004
}
1005
EXPORT_SYMBOL(dget_parent);
1006
1007
static struct dentry * __d_find_any_alias(struct inode *inode)
1008
{
1009
struct dentry *alias;
1010
1011
if (hlist_empty(&inode->i_dentry))
1012
return NULL;
1013
alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1014
lockref_get(&alias->d_lockref);
1015
return alias;
1016
}
1017
1018
/**
1019
* d_find_any_alias - find any alias for a given inode
1020
* @inode: inode to find an alias for
1021
*
1022
* If any aliases exist for the given inode, take and return a
1023
* reference for one of them. If no aliases exist, return %NULL.
1024
*/
1025
struct dentry *d_find_any_alias(struct inode *inode)
1026
{
1027
struct dentry *de;
1028
1029
spin_lock(&inode->i_lock);
1030
de = __d_find_any_alias(inode);
1031
spin_unlock(&inode->i_lock);
1032
return de;
1033
}
1034
EXPORT_SYMBOL(d_find_any_alias);
1035
1036
static struct dentry *__d_find_alias(struct inode *inode)
1037
{
1038
struct dentry *alias;
1039
1040
if (S_ISDIR(inode->i_mode))
1041
return __d_find_any_alias(inode);
1042
1043
hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1044
spin_lock(&alias->d_lock);
1045
if (!d_unhashed(alias)) {
1046
dget_dlock(alias);
1047
spin_unlock(&alias->d_lock);
1048
return alias;
1049
}
1050
spin_unlock(&alias->d_lock);
1051
}
1052
return NULL;
1053
}
1054
1055
/**
1056
* d_find_alias - grab a hashed alias of inode
1057
* @inode: inode in question
1058
*
1059
* If inode has a hashed alias, or is a directory and has any alias,
1060
* acquire the reference to alias and return it. Otherwise return NULL.
1061
* Notice that if inode is a directory there can be only one alias and
1062
* it can be unhashed only if it has no children, or if it is the root
1063
* of a filesystem, or if the directory was renamed and d_revalidate
1064
* was the first vfs operation to notice.
1065
*
1066
* If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1067
* any other hashed alias over that one.
1068
*/
1069
struct dentry *d_find_alias(struct inode *inode)
1070
{
1071
struct dentry *de = NULL;
1072
1073
if (!hlist_empty(&inode->i_dentry)) {
1074
spin_lock(&inode->i_lock);
1075
de = __d_find_alias(inode);
1076
spin_unlock(&inode->i_lock);
1077
}
1078
return de;
1079
}
1080
EXPORT_SYMBOL(d_find_alias);
1081
1082
/*
1083
* Caller MUST be holding rcu_read_lock() and be guaranteed
1084
* that inode won't get freed until rcu_read_unlock().
1085
*/
1086
struct dentry *d_find_alias_rcu(struct inode *inode)
1087
{
1088
struct hlist_head *l = &inode->i_dentry;
1089
struct dentry *de = NULL;
1090
1091
spin_lock(&inode->i_lock);
1092
// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1093
// used without having I_FREEING set, which means no aliases left
1094
if (likely(!(inode_state_read(inode) & I_FREEING) && !hlist_empty(l))) {
1095
if (S_ISDIR(inode->i_mode)) {
1096
de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1097
} else {
1098
hlist_for_each_entry(de, l, d_u.d_alias)
1099
if (!d_unhashed(de))
1100
break;
1101
}
1102
}
1103
spin_unlock(&inode->i_lock);
1104
return de;
1105
}
1106
1107
/**
1108
* d_dispose_if_unused - move unreferenced dentries to shrink list
1109
* @dentry: dentry in question
1110
* @dispose: head of shrink list
1111
*
1112
* If dentry has no external references, move it to shrink list.
1113
*
1114
* NOTE!!! The caller is responsible for preventing eviction of the dentry by
1115
* holding dentry->d_inode->i_lock or equivalent.
1116
*/
1117
void d_dispose_if_unused(struct dentry *dentry, struct list_head *dispose)
1118
{
1119
spin_lock(&dentry->d_lock);
1120
if (!dentry->d_lockref.count)
1121
to_shrink_list(dentry, dispose);
1122
spin_unlock(&dentry->d_lock);
1123
}
1124
EXPORT_SYMBOL(d_dispose_if_unused);
1125
1126
/*
1127
* Try to kill dentries associated with this inode.
1128
* WARNING: you must own a reference to inode.
1129
*/
1130
void d_prune_aliases(struct inode *inode)
1131
{
1132
LIST_HEAD(dispose);
1133
struct dentry *dentry;
1134
1135
spin_lock(&inode->i_lock);
1136
hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias)
1137
d_dispose_if_unused(dentry, &dispose);
1138
spin_unlock(&inode->i_lock);
1139
shrink_dentry_list(&dispose);
1140
}
1141
EXPORT_SYMBOL(d_prune_aliases);
1142
1143
static inline void shrink_kill(struct dentry *victim)
1144
{
1145
do {
1146
rcu_read_unlock();
1147
victim = __dentry_kill(victim);
1148
rcu_read_lock();
1149
} while (victim && lock_for_kill(victim));
1150
rcu_read_unlock();
1151
if (victim)
1152
spin_unlock(&victim->d_lock);
1153
}
1154
1155
void shrink_dentry_list(struct list_head *list)
1156
{
1157
while (!list_empty(list)) {
1158
struct dentry *dentry;
1159
1160
dentry = list_entry(list->prev, struct dentry, d_lru);
1161
spin_lock(&dentry->d_lock);
1162
rcu_read_lock();
1163
if (!lock_for_kill(dentry)) {
1164
bool can_free;
1165
rcu_read_unlock();
1166
d_shrink_del(dentry);
1167
can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1168
spin_unlock(&dentry->d_lock);
1169
if (can_free)
1170
dentry_free(dentry);
1171
continue;
1172
}
1173
d_shrink_del(dentry);
1174
shrink_kill(dentry);
1175
}
1176
}
1177
EXPORT_SYMBOL(shrink_dentry_list);
1178
1179
static enum lru_status dentry_lru_isolate(struct list_head *item,
1180
struct list_lru_one *lru, void *arg)
1181
{
1182
struct list_head *freeable = arg;
1183
struct dentry *dentry = container_of(item, struct dentry, d_lru);
1184
1185
1186
/*
1187
* we are inverting the lru lock/dentry->d_lock here,
1188
* so use a trylock. If we fail to get the lock, just skip
1189
* it
1190
*/
1191
if (!spin_trylock(&dentry->d_lock))
1192
return LRU_SKIP;
1193
1194
/*
1195
* Referenced dentries are still in use. If they have active
1196
* counts, just remove them from the LRU. Otherwise give them
1197
* another pass through the LRU.
1198
*/
1199
if (dentry->d_lockref.count) {
1200
d_lru_isolate(lru, dentry);
1201
spin_unlock(&dentry->d_lock);
1202
return LRU_REMOVED;
1203
}
1204
1205
if (dentry->d_flags & DCACHE_REFERENCED) {
1206
dentry->d_flags &= ~DCACHE_REFERENCED;
1207
spin_unlock(&dentry->d_lock);
1208
1209
/*
1210
* The list move itself will be made by the common LRU code. At
1211
* this point, we've dropped the dentry->d_lock but keep the
1212
* lru lock. This is safe to do, since every list movement is
1213
* protected by the lru lock even if both locks are held.
1214
*
1215
* This is guaranteed by the fact that all LRU management
1216
* functions are intermediated by the LRU API calls like
1217
* list_lru_add_obj and list_lru_del_obj. List movement in this file
1218
* only ever occur through this functions or through callbacks
1219
* like this one, that are called from the LRU API.
1220
*
1221
* The only exceptions to this are functions like
1222
* shrink_dentry_list, and code that first checks for the
1223
* DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1224
* operating only with stack provided lists after they are
1225
* properly isolated from the main list. It is thus, always a
1226
* local access.
1227
*/
1228
return LRU_ROTATE;
1229
}
1230
1231
d_lru_shrink_move(lru, dentry, freeable);
1232
spin_unlock(&dentry->d_lock);
1233
1234
return LRU_REMOVED;
1235
}
1236
1237
/**
1238
* prune_dcache_sb - shrink the dcache
1239
* @sb: superblock
1240
* @sc: shrink control, passed to list_lru_shrink_walk()
1241
*
1242
* Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1243
* is done when we need more memory and called from the superblock shrinker
1244
* function.
1245
*
1246
* This function may fail to free any resources if all the dentries are in
1247
* use.
1248
*/
1249
long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1250
{
1251
LIST_HEAD(dispose);
1252
long freed;
1253
1254
freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1255
dentry_lru_isolate, &dispose);
1256
shrink_dentry_list(&dispose);
1257
return freed;
1258
}
1259
1260
static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1261
struct list_lru_one *lru, void *arg)
1262
{
1263
struct list_head *freeable = arg;
1264
struct dentry *dentry = container_of(item, struct dentry, d_lru);
1265
1266
/*
1267
* we are inverting the lru lock/dentry->d_lock here,
1268
* so use a trylock. If we fail to get the lock, just skip
1269
* it
1270
*/
1271
if (!spin_trylock(&dentry->d_lock))
1272
return LRU_SKIP;
1273
1274
d_lru_shrink_move(lru, dentry, freeable);
1275
spin_unlock(&dentry->d_lock);
1276
1277
return LRU_REMOVED;
1278
}
1279
1280
1281
/**
1282
* shrink_dcache_sb - shrink dcache for a superblock
1283
* @sb: superblock
1284
*
1285
* Shrink the dcache for the specified super block. This is used to free
1286
* the dcache before unmounting a file system.
1287
*/
1288
void shrink_dcache_sb(struct super_block *sb)
1289
{
1290
do {
1291
LIST_HEAD(dispose);
1292
1293
list_lru_walk(&sb->s_dentry_lru,
1294
dentry_lru_isolate_shrink, &dispose, 1024);
1295
shrink_dentry_list(&dispose);
1296
} while (list_lru_count(&sb->s_dentry_lru) > 0);
1297
}
1298
EXPORT_SYMBOL(shrink_dcache_sb);
1299
1300
/**
1301
* enum d_walk_ret - action to talke during tree walk
1302
* @D_WALK_CONTINUE: contrinue walk
1303
* @D_WALK_QUIT: quit walk
1304
* @D_WALK_NORETRY: quit when retry is needed
1305
* @D_WALK_SKIP: skip this dentry and its children
1306
*/
1307
enum d_walk_ret {
1308
D_WALK_CONTINUE,
1309
D_WALK_QUIT,
1310
D_WALK_NORETRY,
1311
D_WALK_SKIP,
1312
};
1313
1314
/**
1315
* d_walk - walk the dentry tree
1316
* @parent: start of walk
1317
* @data: data passed to @enter() and @finish()
1318
* @enter: callback when first entering the dentry
1319
*
1320
* The @enter() callbacks are called with d_lock held.
1321
*/
1322
static void d_walk(struct dentry *parent, void *data,
1323
enum d_walk_ret (*enter)(void *, struct dentry *))
1324
{
1325
struct dentry *this_parent, *dentry;
1326
unsigned seq = 0;
1327
enum d_walk_ret ret;
1328
bool retry = true;
1329
1330
again:
1331
read_seqbegin_or_lock(&rename_lock, &seq);
1332
this_parent = parent;
1333
spin_lock(&this_parent->d_lock);
1334
1335
ret = enter(data, this_parent);
1336
switch (ret) {
1337
case D_WALK_CONTINUE:
1338
break;
1339
case D_WALK_QUIT:
1340
case D_WALK_SKIP:
1341
goto out_unlock;
1342
case D_WALK_NORETRY:
1343
retry = false;
1344
break;
1345
}
1346
repeat:
1347
dentry = d_first_child(this_parent);
1348
resume:
1349
hlist_for_each_entry_from(dentry, d_sib) {
1350
if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1351
continue;
1352
1353
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1354
1355
ret = enter(data, dentry);
1356
switch (ret) {
1357
case D_WALK_CONTINUE:
1358
break;
1359
case D_WALK_QUIT:
1360
spin_unlock(&dentry->d_lock);
1361
goto out_unlock;
1362
case D_WALK_NORETRY:
1363
retry = false;
1364
break;
1365
case D_WALK_SKIP:
1366
spin_unlock(&dentry->d_lock);
1367
continue;
1368
}
1369
1370
if (!hlist_empty(&dentry->d_children)) {
1371
spin_unlock(&this_parent->d_lock);
1372
spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1373
this_parent = dentry;
1374
spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1375
goto repeat;
1376
}
1377
spin_unlock(&dentry->d_lock);
1378
}
1379
/*
1380
* All done at this level ... ascend and resume the search.
1381
*/
1382
rcu_read_lock();
1383
ascend:
1384
if (this_parent != parent) {
1385
dentry = this_parent;
1386
this_parent = dentry->d_parent;
1387
1388
spin_unlock(&dentry->d_lock);
1389
spin_lock(&this_parent->d_lock);
1390
1391
/* might go back up the wrong parent if we have had a rename. */
1392
if (need_seqretry(&rename_lock, seq))
1393
goto rename_retry;
1394
/* go into the first sibling still alive */
1395
hlist_for_each_entry_continue(dentry, d_sib) {
1396
if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1397
rcu_read_unlock();
1398
goto resume;
1399
}
1400
}
1401
goto ascend;
1402
}
1403
if (need_seqretry(&rename_lock, seq))
1404
goto rename_retry;
1405
rcu_read_unlock();
1406
1407
out_unlock:
1408
spin_unlock(&this_parent->d_lock);
1409
done_seqretry(&rename_lock, seq);
1410
return;
1411
1412
rename_retry:
1413
spin_unlock(&this_parent->d_lock);
1414
rcu_read_unlock();
1415
BUG_ON(seq & 1);
1416
if (!retry)
1417
return;
1418
seq = 1;
1419
goto again;
1420
}
1421
1422
struct check_mount {
1423
struct vfsmount *mnt;
1424
unsigned int mounted;
1425
};
1426
1427
/* locks: mount_locked_reader && dentry->d_lock */
1428
static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1429
{
1430
struct check_mount *info = data;
1431
struct path path = { .mnt = info->mnt, .dentry = dentry };
1432
1433
if (likely(!d_mountpoint(dentry)))
1434
return D_WALK_CONTINUE;
1435
if (__path_is_mountpoint(&path)) {
1436
info->mounted = 1;
1437
return D_WALK_QUIT;
1438
}
1439
return D_WALK_CONTINUE;
1440
}
1441
1442
/**
1443
* path_has_submounts - check for mounts over a dentry in the
1444
* current namespace.
1445
* @parent: path to check.
1446
*
1447
* Return true if the parent or its subdirectories contain
1448
* a mount point in the current namespace.
1449
*/
1450
int path_has_submounts(const struct path *parent)
1451
{
1452
struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1453
1454
guard(mount_locked_reader)();
1455
d_walk(parent->dentry, &data, path_check_mount);
1456
1457
return data.mounted;
1458
}
1459
EXPORT_SYMBOL(path_has_submounts);
1460
1461
/*
1462
* Called by mount code to set a mountpoint and check if the mountpoint is
1463
* reachable (e.g. NFS can unhash a directory dentry and then the complete
1464
* subtree can become unreachable).
1465
*
1466
* Only one of d_invalidate() and d_set_mounted() must succeed. For
1467
* this reason take rename_lock and d_lock on dentry and ancestors.
1468
*/
1469
int d_set_mounted(struct dentry *dentry)
1470
{
1471
struct dentry *p;
1472
int ret = -ENOENT;
1473
read_seqlock_excl(&rename_lock);
1474
for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1475
/* Need exclusion wrt. d_invalidate() */
1476
spin_lock(&p->d_lock);
1477
if (unlikely(d_unhashed(p))) {
1478
spin_unlock(&p->d_lock);
1479
goto out;
1480
}
1481
spin_unlock(&p->d_lock);
1482
}
1483
spin_lock(&dentry->d_lock);
1484
if (!d_unlinked(dentry)) {
1485
ret = -EBUSY;
1486
if (!d_mountpoint(dentry)) {
1487
dentry->d_flags |= DCACHE_MOUNTED;
1488
ret = 0;
1489
}
1490
}
1491
spin_unlock(&dentry->d_lock);
1492
out:
1493
read_sequnlock_excl(&rename_lock);
1494
return ret;
1495
}
1496
1497
/*
1498
* Search the dentry child list of the specified parent,
1499
* and move any unused dentries to the end of the unused
1500
* list for prune_dcache(). We descend to the next level
1501
* whenever the d_children list is non-empty and continue
1502
* searching.
1503
*
1504
* It returns zero iff there are no unused children,
1505
* otherwise it returns the number of children moved to
1506
* the end of the unused list. This may not be the total
1507
* number of unused children, because select_parent can
1508
* drop the lock and return early due to latency
1509
* constraints.
1510
*/
1511
1512
struct select_data {
1513
struct dentry *start;
1514
union {
1515
long found;
1516
struct dentry *victim;
1517
};
1518
struct list_head dispose;
1519
};
1520
1521
static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1522
{
1523
struct select_data *data = _data;
1524
enum d_walk_ret ret = D_WALK_CONTINUE;
1525
1526
if (data->start == dentry)
1527
goto out;
1528
1529
if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1530
data->found++;
1531
} else if (!dentry->d_lockref.count) {
1532
to_shrink_list(dentry, &data->dispose);
1533
data->found++;
1534
} else if (dentry->d_lockref.count < 0) {
1535
data->found++;
1536
}
1537
/*
1538
* We can return to the caller if we have found some (this
1539
* ensures forward progress). We'll be coming back to find
1540
* the rest.
1541
*/
1542
if (!list_empty(&data->dispose))
1543
ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1544
out:
1545
return ret;
1546
}
1547
1548
static enum d_walk_ret select_collect_umount(void *_data, struct dentry *dentry)
1549
{
1550
if (dentry->d_flags & DCACHE_PERSISTENT) {
1551
dentry->d_flags &= ~DCACHE_PERSISTENT;
1552
dentry->d_lockref.count--;
1553
}
1554
return select_collect(_data, dentry);
1555
}
1556
1557
static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1558
{
1559
struct select_data *data = _data;
1560
enum d_walk_ret ret = D_WALK_CONTINUE;
1561
1562
if (data->start == dentry)
1563
goto out;
1564
1565
if (!dentry->d_lockref.count) {
1566
if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1567
rcu_read_lock();
1568
data->victim = dentry;
1569
return D_WALK_QUIT;
1570
}
1571
to_shrink_list(dentry, &data->dispose);
1572
}
1573
/*
1574
* We can return to the caller if we have found some (this
1575
* ensures forward progress). We'll be coming back to find
1576
* the rest.
1577
*/
1578
if (!list_empty(&data->dispose))
1579
ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1580
out:
1581
return ret;
1582
}
1583
1584
/**
1585
* shrink_dcache_tree - prune dcache
1586
* @parent: parent of entries to prune
1587
* @for_umount: true if we want to unpin the persistent ones
1588
*
1589
* Prune the dcache to remove unused children of the parent dentry.
1590
*/
1591
static void shrink_dcache_tree(struct dentry *parent, bool for_umount)
1592
{
1593
for (;;) {
1594
struct select_data data = {.start = parent};
1595
1596
INIT_LIST_HEAD(&data.dispose);
1597
d_walk(parent, &data,
1598
for_umount ? select_collect_umount : select_collect);
1599
1600
if (!list_empty(&data.dispose)) {
1601
shrink_dentry_list(&data.dispose);
1602
continue;
1603
}
1604
1605
cond_resched();
1606
if (!data.found)
1607
break;
1608
data.victim = NULL;
1609
d_walk(parent, &data, select_collect2);
1610
if (data.victim) {
1611
spin_lock(&data.victim->d_lock);
1612
if (!lock_for_kill(data.victim)) {
1613
spin_unlock(&data.victim->d_lock);
1614
rcu_read_unlock();
1615
} else {
1616
shrink_kill(data.victim);
1617
}
1618
}
1619
if (!list_empty(&data.dispose))
1620
shrink_dentry_list(&data.dispose);
1621
}
1622
}
1623
1624
void shrink_dcache_parent(struct dentry *parent)
1625
{
1626
shrink_dcache_tree(parent, false);
1627
}
1628
EXPORT_SYMBOL(shrink_dcache_parent);
1629
1630
static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1631
{
1632
/* it has busy descendents; complain about those instead */
1633
if (!hlist_empty(&dentry->d_children))
1634
return D_WALK_CONTINUE;
1635
1636
/* root with refcount 1 is fine */
1637
if (dentry == _data && dentry->d_lockref.count == 1)
1638
return D_WALK_CONTINUE;
1639
1640
WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1641
" still in use (%d) [unmount of %s %s]\n",
1642
dentry,
1643
dentry->d_inode ?
1644
dentry->d_inode->i_ino : 0UL,
1645
dentry,
1646
dentry->d_lockref.count,
1647
dentry->d_sb->s_type->name,
1648
dentry->d_sb->s_id);
1649
return D_WALK_CONTINUE;
1650
}
1651
1652
static void do_one_tree(struct dentry *dentry)
1653
{
1654
shrink_dcache_tree(dentry, true);
1655
d_walk(dentry, dentry, umount_check);
1656
d_drop(dentry);
1657
dput(dentry);
1658
}
1659
1660
/*
1661
* destroy the dentries attached to a superblock on unmounting
1662
*/
1663
void shrink_dcache_for_umount(struct super_block *sb)
1664
{
1665
struct dentry *dentry;
1666
1667
rwsem_assert_held_write(&sb->s_umount);
1668
1669
dentry = sb->s_root;
1670
sb->s_root = NULL;
1671
do_one_tree(dentry);
1672
1673
while (!hlist_bl_empty(&sb->s_roots)) {
1674
dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1675
do_one_tree(dentry);
1676
}
1677
}
1678
1679
static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1680
{
1681
struct dentry **victim = _data;
1682
if (d_mountpoint(dentry)) {
1683
*victim = dget_dlock(dentry);
1684
return D_WALK_QUIT;
1685
}
1686
return D_WALK_CONTINUE;
1687
}
1688
1689
/**
1690
* d_invalidate - detach submounts, prune dcache, and drop
1691
* @dentry: dentry to invalidate (aka detach, prune and drop)
1692
*/
1693
void d_invalidate(struct dentry *dentry)
1694
{
1695
bool had_submounts = false;
1696
spin_lock(&dentry->d_lock);
1697
if (d_unhashed(dentry)) {
1698
spin_unlock(&dentry->d_lock);
1699
return;
1700
}
1701
__d_drop(dentry);
1702
spin_unlock(&dentry->d_lock);
1703
1704
/* Negative dentries can be dropped without further checks */
1705
if (!dentry->d_inode)
1706
return;
1707
1708
shrink_dcache_parent(dentry);
1709
for (;;) {
1710
struct dentry *victim = NULL;
1711
d_walk(dentry, &victim, find_submount);
1712
if (!victim) {
1713
if (had_submounts)
1714
shrink_dcache_parent(dentry);
1715
return;
1716
}
1717
had_submounts = true;
1718
detach_mounts(victim);
1719
dput(victim);
1720
}
1721
}
1722
EXPORT_SYMBOL(d_invalidate);
1723
1724
/**
1725
* __d_alloc - allocate a dcache entry
1726
* @sb: filesystem it will belong to
1727
* @name: qstr of the name
1728
*
1729
* Allocates a dentry. It returns %NULL if there is insufficient memory
1730
* available. On a success the dentry is returned. The name passed in is
1731
* copied and the copy passed in may be reused after this call.
1732
*/
1733
1734
static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1735
{
1736
struct dentry *dentry;
1737
char *dname;
1738
int err;
1739
1740
dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1741
GFP_KERNEL);
1742
if (!dentry)
1743
return NULL;
1744
1745
/*
1746
* We guarantee that the inline name is always NUL-terminated.
1747
* This way the memcpy() done by the name switching in rename
1748
* will still always have a NUL at the end, even if we might
1749
* be overwriting an internal NUL character
1750
*/
1751
dentry->d_shortname.string[DNAME_INLINE_LEN-1] = 0;
1752
if (unlikely(!name)) {
1753
name = &slash_name;
1754
dname = dentry->d_shortname.string;
1755
} else if (name->len > DNAME_INLINE_LEN-1) {
1756
size_t size = offsetof(struct external_name, name[1]);
1757
struct external_name *p = kmalloc(size + name->len,
1758
GFP_KERNEL_ACCOUNT |
1759
__GFP_RECLAIMABLE);
1760
if (!p) {
1761
kmem_cache_free(dentry_cache, dentry);
1762
return NULL;
1763
}
1764
atomic_set(&p->count, 1);
1765
dname = p->name;
1766
} else {
1767
dname = dentry->d_shortname.string;
1768
}
1769
1770
dentry->__d_name.len = name->len;
1771
dentry->__d_name.hash = name->hash;
1772
memcpy(dname, name->name, name->len);
1773
dname[name->len] = 0;
1774
1775
/* Make sure we always see the terminating NUL character */
1776
smp_store_release(&dentry->__d_name.name, dname); /* ^^^ */
1777
1778
dentry->d_flags = 0;
1779
lockref_init(&dentry->d_lockref);
1780
seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1781
dentry->d_inode = NULL;
1782
dentry->d_parent = dentry;
1783
dentry->d_sb = sb;
1784
dentry->d_op = sb->__s_d_op;
1785
dentry->d_flags = sb->s_d_flags;
1786
dentry->d_fsdata = NULL;
1787
INIT_HLIST_BL_NODE(&dentry->d_hash);
1788
INIT_LIST_HEAD(&dentry->d_lru);
1789
INIT_HLIST_HEAD(&dentry->d_children);
1790
INIT_HLIST_NODE(&dentry->d_u.d_alias);
1791
INIT_HLIST_NODE(&dentry->d_sib);
1792
1793
if (dentry->d_op && dentry->d_op->d_init) {
1794
err = dentry->d_op->d_init(dentry);
1795
if (err) {
1796
if (dname_external(dentry))
1797
kfree(external_name(dentry));
1798
kmem_cache_free(dentry_cache, dentry);
1799
return NULL;
1800
}
1801
}
1802
1803
this_cpu_inc(nr_dentry);
1804
1805
return dentry;
1806
}
1807
1808
/**
1809
* d_alloc - allocate a dcache entry
1810
* @parent: parent of entry to allocate
1811
* @name: qstr of the name
1812
*
1813
* Allocates a dentry. It returns %NULL if there is insufficient memory
1814
* available. On a success the dentry is returned. The name passed in is
1815
* copied and the copy passed in may be reused after this call.
1816
*/
1817
struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1818
{
1819
struct dentry *dentry = __d_alloc(parent->d_sb, name);
1820
if (!dentry)
1821
return NULL;
1822
spin_lock(&parent->d_lock);
1823
/*
1824
* don't need child lock because it is not subject
1825
* to concurrency here
1826
*/
1827
dentry->d_parent = dget_dlock(parent);
1828
hlist_add_head(&dentry->d_sib, &parent->d_children);
1829
spin_unlock(&parent->d_lock);
1830
1831
return dentry;
1832
}
1833
EXPORT_SYMBOL(d_alloc);
1834
1835
struct dentry *d_alloc_anon(struct super_block *sb)
1836
{
1837
return __d_alloc(sb, NULL);
1838
}
1839
EXPORT_SYMBOL(d_alloc_anon);
1840
1841
struct dentry *d_alloc_cursor(struct dentry * parent)
1842
{
1843
struct dentry *dentry = d_alloc_anon(parent->d_sb);
1844
if (dentry) {
1845
dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1846
dentry->d_parent = dget(parent);
1847
}
1848
return dentry;
1849
}
1850
1851
/**
1852
* d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1853
* @sb: the superblock
1854
* @name: qstr of the name
1855
*
1856
* For a filesystem that just pins its dentries in memory and never
1857
* performs lookups at all, return an unhashed IS_ROOT dentry.
1858
* This is used for pipes, sockets et.al. - the stuff that should
1859
* never be anyone's children or parents. Unlike all other
1860
* dentries, these will not have RCU delay between dropping the
1861
* last reference and freeing them.
1862
*
1863
* The only user is alloc_file_pseudo() and that's what should
1864
* be considered a public interface. Don't use directly.
1865
*/
1866
struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1867
{
1868
static const struct dentry_operations anon_ops = {
1869
.d_dname = simple_dname
1870
};
1871
struct dentry *dentry = __d_alloc(sb, name);
1872
if (likely(dentry)) {
1873
dentry->d_flags |= DCACHE_NORCU;
1874
/* d_op_flags(&anon_ops) is 0 */
1875
if (!dentry->d_op)
1876
dentry->d_op = &anon_ops;
1877
}
1878
return dentry;
1879
}
1880
1881
struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1882
{
1883
struct qstr q;
1884
1885
q.name = name;
1886
q.hash_len = hashlen_string(parent, name);
1887
return d_alloc(parent, &q);
1888
}
1889
EXPORT_SYMBOL(d_alloc_name);
1890
1891
#define DCACHE_OP_FLAGS \
1892
(DCACHE_OP_HASH | DCACHE_OP_COMPARE | DCACHE_OP_REVALIDATE | \
1893
DCACHE_OP_WEAK_REVALIDATE | DCACHE_OP_DELETE | DCACHE_OP_PRUNE | \
1894
DCACHE_OP_REAL)
1895
1896
static unsigned int d_op_flags(const struct dentry_operations *op)
1897
{
1898
unsigned int flags = 0;
1899
if (op) {
1900
if (op->d_hash)
1901
flags |= DCACHE_OP_HASH;
1902
if (op->d_compare)
1903
flags |= DCACHE_OP_COMPARE;
1904
if (op->d_revalidate)
1905
flags |= DCACHE_OP_REVALIDATE;
1906
if (op->d_weak_revalidate)
1907
flags |= DCACHE_OP_WEAK_REVALIDATE;
1908
if (op->d_delete)
1909
flags |= DCACHE_OP_DELETE;
1910
if (op->d_prune)
1911
flags |= DCACHE_OP_PRUNE;
1912
if (op->d_real)
1913
flags |= DCACHE_OP_REAL;
1914
}
1915
return flags;
1916
}
1917
1918
static void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1919
{
1920
unsigned int flags = d_op_flags(op);
1921
WARN_ON_ONCE(dentry->d_op);
1922
WARN_ON_ONCE(dentry->d_flags & DCACHE_OP_FLAGS);
1923
dentry->d_op = op;
1924
if (flags)
1925
dentry->d_flags |= flags;
1926
}
1927
1928
void set_default_d_op(struct super_block *s, const struct dentry_operations *ops)
1929
{
1930
unsigned int flags = d_op_flags(ops);
1931
s->__s_d_op = ops;
1932
s->s_d_flags = (s->s_d_flags & ~DCACHE_OP_FLAGS) | flags;
1933
}
1934
EXPORT_SYMBOL(set_default_d_op);
1935
1936
static unsigned d_flags_for_inode(struct inode *inode)
1937
{
1938
unsigned add_flags = DCACHE_REGULAR_TYPE;
1939
1940
if (!inode)
1941
return DCACHE_MISS_TYPE;
1942
1943
if (S_ISDIR(inode->i_mode)) {
1944
add_flags = DCACHE_DIRECTORY_TYPE;
1945
if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1946
if (unlikely(!inode->i_op->lookup))
1947
add_flags = DCACHE_AUTODIR_TYPE;
1948
else
1949
inode->i_opflags |= IOP_LOOKUP;
1950
}
1951
goto type_determined;
1952
}
1953
1954
if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1955
if (unlikely(inode->i_op->get_link)) {
1956
add_flags = DCACHE_SYMLINK_TYPE;
1957
goto type_determined;
1958
}
1959
inode->i_opflags |= IOP_NOFOLLOW;
1960
}
1961
1962
if (unlikely(!S_ISREG(inode->i_mode)))
1963
add_flags = DCACHE_SPECIAL_TYPE;
1964
1965
type_determined:
1966
if (unlikely(IS_AUTOMOUNT(inode)))
1967
add_flags |= DCACHE_NEED_AUTOMOUNT;
1968
return add_flags;
1969
}
1970
1971
static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1972
{
1973
unsigned add_flags = d_flags_for_inode(inode);
1974
WARN_ON(d_in_lookup(dentry));
1975
1976
/*
1977
* The negative counter only tracks dentries on the LRU. Don't dec if
1978
* d_lru is on another list.
1979
*/
1980
if ((dentry->d_flags &
1981
(DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1982
this_cpu_dec(nr_dentry_negative);
1983
hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1984
raw_write_seqcount_begin(&dentry->d_seq);
1985
__d_set_inode_and_type(dentry, inode, add_flags);
1986
raw_write_seqcount_end(&dentry->d_seq);
1987
fsnotify_update_flags(dentry);
1988
}
1989
1990
/**
1991
* d_instantiate - fill in inode information for a dentry
1992
* @entry: dentry to complete
1993
* @inode: inode to attach to this dentry
1994
*
1995
* Fill in inode information in the entry.
1996
*
1997
* This turns negative dentries into productive full members
1998
* of society.
1999
*
2000
* NOTE! This assumes that the inode count has been incremented
2001
* (or otherwise set) by the caller to indicate that it is now
2002
* in use by the dcache.
2003
*/
2004
2005
void d_instantiate(struct dentry *entry, struct inode * inode)
2006
{
2007
BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2008
if (inode) {
2009
security_d_instantiate(entry, inode);
2010
spin_lock(&inode->i_lock);
2011
spin_lock(&entry->d_lock);
2012
__d_instantiate(entry, inode);
2013
spin_unlock(&entry->d_lock);
2014
spin_unlock(&inode->i_lock);
2015
}
2016
}
2017
EXPORT_SYMBOL(d_instantiate);
2018
2019
/*
2020
* This should be equivalent to d_instantiate() + unlock_new_inode(),
2021
* with lockdep-related part of unlock_new_inode() done before
2022
* anything else. Use that instead of open-coding d_instantiate()/
2023
* unlock_new_inode() combinations.
2024
*/
2025
void d_instantiate_new(struct dentry *entry, struct inode *inode)
2026
{
2027
BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2028
BUG_ON(!inode);
2029
lockdep_annotate_inode_mutex_key(inode);
2030
security_d_instantiate(entry, inode);
2031
spin_lock(&inode->i_lock);
2032
spin_lock(&entry->d_lock);
2033
__d_instantiate(entry, inode);
2034
spin_unlock(&entry->d_lock);
2035
WARN_ON(!(inode_state_read(inode) & I_NEW));
2036
inode_state_clear(inode, I_NEW | I_CREATING);
2037
inode_wake_up_bit(inode, __I_NEW);
2038
spin_unlock(&inode->i_lock);
2039
}
2040
EXPORT_SYMBOL(d_instantiate_new);
2041
2042
struct dentry *d_make_root(struct inode *root_inode)
2043
{
2044
struct dentry *res = NULL;
2045
2046
if (root_inode) {
2047
res = d_alloc_anon(root_inode->i_sb);
2048
if (res)
2049
d_instantiate(res, root_inode);
2050
else
2051
iput(root_inode);
2052
}
2053
return res;
2054
}
2055
EXPORT_SYMBOL(d_make_root);
2056
2057
static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2058
{
2059
struct super_block *sb;
2060
struct dentry *new, *res;
2061
2062
if (!inode)
2063
return ERR_PTR(-ESTALE);
2064
if (IS_ERR(inode))
2065
return ERR_CAST(inode);
2066
2067
sb = inode->i_sb;
2068
2069
res = d_find_any_alias(inode); /* existing alias? */
2070
if (res)
2071
goto out;
2072
2073
new = d_alloc_anon(sb);
2074
if (!new) {
2075
res = ERR_PTR(-ENOMEM);
2076
goto out;
2077
}
2078
2079
security_d_instantiate(new, inode);
2080
spin_lock(&inode->i_lock);
2081
res = __d_find_any_alias(inode); /* recheck under lock */
2082
if (likely(!res)) { /* still no alias, attach a disconnected dentry */
2083
unsigned add_flags = d_flags_for_inode(inode);
2084
2085
if (disconnected)
2086
add_flags |= DCACHE_DISCONNECTED;
2087
2088
spin_lock(&new->d_lock);
2089
__d_set_inode_and_type(new, inode, add_flags);
2090
hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
2091
if (!disconnected) {
2092
hlist_bl_lock(&sb->s_roots);
2093
hlist_bl_add_head(&new->d_hash, &sb->s_roots);
2094
hlist_bl_unlock(&sb->s_roots);
2095
}
2096
spin_unlock(&new->d_lock);
2097
spin_unlock(&inode->i_lock);
2098
inode = NULL; /* consumed by new->d_inode */
2099
res = new;
2100
} else {
2101
spin_unlock(&inode->i_lock);
2102
dput(new);
2103
}
2104
2105
out:
2106
iput(inode);
2107
return res;
2108
}
2109
2110
/**
2111
* d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2112
* @inode: inode to allocate the dentry for
2113
*
2114
* Obtain a dentry for an inode resulting from NFS filehandle conversion or
2115
* similar open by handle operations. The returned dentry may be anonymous,
2116
* or may have a full name (if the inode was already in the cache).
2117
*
2118
* When called on a directory inode, we must ensure that the inode only ever
2119
* has one dentry. If a dentry is found, that is returned instead of
2120
* allocating a new one.
2121
*
2122
* On successful return, the reference to the inode has been transferred
2123
* to the dentry. In case of an error the reference on the inode is released.
2124
* To make it easier to use in export operations a %NULL or IS_ERR inode may
2125
* be passed in and the error will be propagated to the return value,
2126
* with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2127
*/
2128
struct dentry *d_obtain_alias(struct inode *inode)
2129
{
2130
return __d_obtain_alias(inode, true);
2131
}
2132
EXPORT_SYMBOL(d_obtain_alias);
2133
2134
/**
2135
* d_obtain_root - find or allocate a dentry for a given inode
2136
* @inode: inode to allocate the dentry for
2137
*
2138
* Obtain an IS_ROOT dentry for the root of a filesystem.
2139
*
2140
* We must ensure that directory inodes only ever have one dentry. If a
2141
* dentry is found, that is returned instead of allocating a new one.
2142
*
2143
* On successful return, the reference to the inode has been transferred
2144
* to the dentry. In case of an error the reference on the inode is
2145
* released. A %NULL or IS_ERR inode may be passed in and will be the
2146
* error will be propagate to the return value, with a %NULL @inode
2147
* replaced by ERR_PTR(-ESTALE).
2148
*/
2149
struct dentry *d_obtain_root(struct inode *inode)
2150
{
2151
return __d_obtain_alias(inode, false);
2152
}
2153
EXPORT_SYMBOL(d_obtain_root);
2154
2155
/**
2156
* d_add_ci - lookup or allocate new dentry with case-exact name
2157
* @dentry: the negative dentry that was passed to the parent's lookup func
2158
* @inode: the inode case-insensitive lookup has found
2159
* @name: the case-exact name to be associated with the returned dentry
2160
*
2161
* This is to avoid filling the dcache with case-insensitive names to the
2162
* same inode, only the actual correct case is stored in the dcache for
2163
* case-insensitive filesystems.
2164
*
2165
* For a case-insensitive lookup match and if the case-exact dentry
2166
* already exists in the dcache, use it and return it.
2167
*
2168
* If no entry exists with the exact case name, allocate new dentry with
2169
* the exact case, and return the spliced entry.
2170
*/
2171
struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2172
struct qstr *name)
2173
{
2174
struct dentry *found, *res;
2175
2176
/*
2177
* First check if a dentry matching the name already exists,
2178
* if not go ahead and create it now.
2179
*/
2180
found = d_hash_and_lookup(dentry->d_parent, name);
2181
if (found) {
2182
iput(inode);
2183
return found;
2184
}
2185
if (d_in_lookup(dentry)) {
2186
found = d_alloc_parallel(dentry->d_parent, name,
2187
dentry->d_wait);
2188
if (IS_ERR(found) || !d_in_lookup(found)) {
2189
iput(inode);
2190
return found;
2191
}
2192
} else {
2193
found = d_alloc(dentry->d_parent, name);
2194
if (!found) {
2195
iput(inode);
2196
return ERR_PTR(-ENOMEM);
2197
}
2198
}
2199
res = d_splice_alias(inode, found);
2200
if (res) {
2201
d_lookup_done(found);
2202
dput(found);
2203
return res;
2204
}
2205
return found;
2206
}
2207
EXPORT_SYMBOL(d_add_ci);
2208
2209
/**
2210
* d_same_name - compare dentry name with case-exact name
2211
* @dentry: the negative dentry that was passed to the parent's lookup func
2212
* @parent: parent dentry
2213
* @name: the case-exact name to be associated with the returned dentry
2214
*
2215
* Return: true if names are same, or false
2216
*/
2217
bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2218
const struct qstr *name)
2219
{
2220
if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2221
if (dentry->d_name.len != name->len)
2222
return false;
2223
return dentry_cmp(dentry, name->name, name->len) == 0;
2224
}
2225
return parent->d_op->d_compare(dentry,
2226
dentry->d_name.len, dentry->d_name.name,
2227
name) == 0;
2228
}
2229
EXPORT_SYMBOL_GPL(d_same_name);
2230
2231
/*
2232
* This is __d_lookup_rcu() when the parent dentry has
2233
* DCACHE_OP_COMPARE, which makes things much nastier.
2234
*/
2235
static noinline struct dentry *__d_lookup_rcu_op_compare(
2236
const struct dentry *parent,
2237
const struct qstr *name,
2238
unsigned *seqp)
2239
{
2240
u64 hashlen = name->hash_len;
2241
struct hlist_bl_head *b = d_hash(hashlen);
2242
struct hlist_bl_node *node;
2243
struct dentry *dentry;
2244
2245
hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2246
int tlen;
2247
const char *tname;
2248
unsigned seq;
2249
2250
seqretry:
2251
seq = raw_seqcount_begin(&dentry->d_seq);
2252
if (dentry->d_parent != parent)
2253
continue;
2254
if (d_unhashed(dentry))
2255
continue;
2256
if (dentry->d_name.hash != hashlen_hash(hashlen))
2257
continue;
2258
tlen = dentry->d_name.len;
2259
tname = dentry->d_name.name;
2260
/* we want a consistent (name,len) pair */
2261
if (read_seqcount_retry(&dentry->d_seq, seq)) {
2262
cpu_relax();
2263
goto seqretry;
2264
}
2265
if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2266
continue;
2267
*seqp = seq;
2268
return dentry;
2269
}
2270
return NULL;
2271
}
2272
2273
/**
2274
* __d_lookup_rcu - search for a dentry (racy, store-free)
2275
* @parent: parent dentry
2276
* @name: qstr of name we wish to find
2277
* @seqp: returns d_seq value at the point where the dentry was found
2278
* Returns: dentry, or NULL
2279
*
2280
* __d_lookup_rcu is the dcache lookup function for rcu-walk name
2281
* resolution (store-free path walking) design described in
2282
* Documentation/filesystems/path-lookup.txt.
2283
*
2284
* This is not to be used outside core vfs.
2285
*
2286
* __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2287
* held, and rcu_read_lock held. The returned dentry must not be stored into
2288
* without taking d_lock and checking d_seq sequence count against @seq
2289
* returned here.
2290
*
2291
* Alternatively, __d_lookup_rcu may be called again to look up the child of
2292
* the returned dentry, so long as its parent's seqlock is checked after the
2293
* child is looked up. Thus, an interlocking stepping of sequence lock checks
2294
* is formed, giving integrity down the path walk.
2295
*
2296
* NOTE! The caller *has* to check the resulting dentry against the sequence
2297
* number we've returned before using any of the resulting dentry state!
2298
*/
2299
struct dentry *__d_lookup_rcu(const struct dentry *parent,
2300
const struct qstr *name,
2301
unsigned *seqp)
2302
{
2303
u64 hashlen = name->hash_len;
2304
const unsigned char *str = name->name;
2305
struct hlist_bl_head *b = d_hash(hashlen);
2306
struct hlist_bl_node *node;
2307
struct dentry *dentry;
2308
2309
/*
2310
* Note: There is significant duplication with __d_lookup_rcu which is
2311
* required to prevent single threaded performance regressions
2312
* especially on architectures where smp_rmb (in seqcounts) are costly.
2313
* Keep the two functions in sync.
2314
*/
2315
2316
if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2317
return __d_lookup_rcu_op_compare(parent, name, seqp);
2318
2319
/*
2320
* The hash list is protected using RCU.
2321
*
2322
* Carefully use d_seq when comparing a candidate dentry, to avoid
2323
* races with d_move().
2324
*
2325
* It is possible that concurrent renames can mess up our list
2326
* walk here and result in missing our dentry, resulting in the
2327
* false-negative result. d_lookup() protects against concurrent
2328
* renames using rename_lock seqlock.
2329
*
2330
* See Documentation/filesystems/path-lookup.txt for more details.
2331
*/
2332
hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2333
unsigned seq;
2334
2335
/*
2336
* The dentry sequence count protects us from concurrent
2337
* renames, and thus protects parent and name fields.
2338
*
2339
* The caller must perform a seqcount check in order
2340
* to do anything useful with the returned dentry.
2341
*
2342
* NOTE! We do a "raw" seqcount_begin here. That means that
2343
* we don't wait for the sequence count to stabilize if it
2344
* is in the middle of a sequence change. If we do the slow
2345
* dentry compare, we will do seqretries until it is stable,
2346
* and if we end up with a successful lookup, we actually
2347
* want to exit RCU lookup anyway.
2348
*
2349
* Note that raw_seqcount_begin still *does* smp_rmb(), so
2350
* we are still guaranteed NUL-termination of ->d_name.name.
2351
*/
2352
seq = raw_seqcount_begin(&dentry->d_seq);
2353
if (dentry->d_parent != parent)
2354
continue;
2355
if (dentry->d_name.hash_len != hashlen)
2356
continue;
2357
if (unlikely(dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0))
2358
continue;
2359
/*
2360
* Check for the dentry being unhashed.
2361
*
2362
* As tempting as it is, we *can't* skip it because of a race window
2363
* between us finding the dentry before it gets unhashed and loading
2364
* the sequence counter after unhashing is finished.
2365
*
2366
* We can at least predict on it.
2367
*/
2368
if (unlikely(d_unhashed(dentry)))
2369
continue;
2370
*seqp = seq;
2371
return dentry;
2372
}
2373
return NULL;
2374
}
2375
2376
/**
2377
* d_lookup - search for a dentry
2378
* @parent: parent dentry
2379
* @name: qstr of name we wish to find
2380
* Returns: dentry, or NULL
2381
*
2382
* d_lookup searches the children of the parent dentry for the name in
2383
* question. If the dentry is found its reference count is incremented and the
2384
* dentry is returned. The caller must use dput to free the entry when it has
2385
* finished using it. %NULL is returned if the dentry does not exist.
2386
*/
2387
struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2388
{
2389
struct dentry *dentry;
2390
unsigned seq;
2391
2392
do {
2393
seq = read_seqbegin(&rename_lock);
2394
dentry = __d_lookup(parent, name);
2395
if (dentry)
2396
break;
2397
} while (read_seqretry(&rename_lock, seq));
2398
return dentry;
2399
}
2400
EXPORT_SYMBOL(d_lookup);
2401
2402
/**
2403
* __d_lookup - search for a dentry (racy)
2404
* @parent: parent dentry
2405
* @name: qstr of name we wish to find
2406
* Returns: dentry, or NULL
2407
*
2408
* __d_lookup is like d_lookup, however it may (rarely) return a
2409
* false-negative result due to unrelated rename activity.
2410
*
2411
* __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2412
* however it must be used carefully, eg. with a following d_lookup in
2413
* the case of failure.
2414
*
2415
* __d_lookup callers must be commented.
2416
*/
2417
struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2418
{
2419
unsigned int hash = name->hash;
2420
struct hlist_bl_head *b = d_hash(hash);
2421
struct hlist_bl_node *node;
2422
struct dentry *found = NULL;
2423
struct dentry *dentry;
2424
2425
/*
2426
* Note: There is significant duplication with __d_lookup_rcu which is
2427
* required to prevent single threaded performance regressions
2428
* especially on architectures where smp_rmb (in seqcounts) are costly.
2429
* Keep the two functions in sync.
2430
*/
2431
2432
/*
2433
* The hash list is protected using RCU.
2434
*
2435
* Take d_lock when comparing a candidate dentry, to avoid races
2436
* with d_move().
2437
*
2438
* It is possible that concurrent renames can mess up our list
2439
* walk here and result in missing our dentry, resulting in the
2440
* false-negative result. d_lookup() protects against concurrent
2441
* renames using rename_lock seqlock.
2442
*
2443
* See Documentation/filesystems/path-lookup.txt for more details.
2444
*/
2445
rcu_read_lock();
2446
2447
hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2448
2449
if (dentry->d_name.hash != hash)
2450
continue;
2451
2452
spin_lock(&dentry->d_lock);
2453
if (dentry->d_parent != parent)
2454
goto next;
2455
if (d_unhashed(dentry))
2456
goto next;
2457
2458
if (!d_same_name(dentry, parent, name))
2459
goto next;
2460
2461
dentry->d_lockref.count++;
2462
found = dentry;
2463
spin_unlock(&dentry->d_lock);
2464
break;
2465
next:
2466
spin_unlock(&dentry->d_lock);
2467
}
2468
rcu_read_unlock();
2469
2470
return found;
2471
}
2472
2473
/**
2474
* d_hash_and_lookup - hash the qstr then search for a dentry
2475
* @dir: Directory to search in
2476
* @name: qstr of name we wish to find
2477
*
2478
* On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2479
*/
2480
struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2481
{
2482
/*
2483
* Check for a fs-specific hash function. Note that we must
2484
* calculate the standard hash first, as the d_op->d_hash()
2485
* routine may choose to leave the hash value unchanged.
2486
*/
2487
name->hash = full_name_hash(dir, name->name, name->len);
2488
if (dir->d_flags & DCACHE_OP_HASH) {
2489
int err = dir->d_op->d_hash(dir, name);
2490
if (unlikely(err < 0))
2491
return ERR_PTR(err);
2492
}
2493
return d_lookup(dir, name);
2494
}
2495
2496
/*
2497
* When a file is deleted, we have two options:
2498
* - turn this dentry into a negative dentry
2499
* - unhash this dentry and free it.
2500
*
2501
* Usually, we want to just turn this into
2502
* a negative dentry, but if anybody else is
2503
* currently using the dentry or the inode
2504
* we can't do that and we fall back on removing
2505
* it from the hash queues and waiting for
2506
* it to be deleted later when it has no users
2507
*/
2508
2509
/**
2510
* d_delete - delete a dentry
2511
* @dentry: The dentry to delete
2512
*
2513
* Turn the dentry into a negative dentry if possible, otherwise
2514
* remove it from the hash queues so it can be deleted later
2515
*/
2516
2517
void d_delete(struct dentry * dentry)
2518
{
2519
struct inode *inode = dentry->d_inode;
2520
2521
spin_lock(&inode->i_lock);
2522
spin_lock(&dentry->d_lock);
2523
/*
2524
* Are we the only user?
2525
*/
2526
if (dentry->d_lockref.count == 1) {
2527
if (dentry_negative_policy)
2528
__d_drop(dentry);
2529
dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2530
dentry_unlink_inode(dentry);
2531
} else {
2532
__d_drop(dentry);
2533
spin_unlock(&dentry->d_lock);
2534
spin_unlock(&inode->i_lock);
2535
}
2536
}
2537
EXPORT_SYMBOL(d_delete);
2538
2539
static void __d_rehash(struct dentry *entry)
2540
{
2541
struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2542
2543
hlist_bl_lock(b);
2544
hlist_bl_add_head_rcu(&entry->d_hash, b);
2545
hlist_bl_unlock(b);
2546
}
2547
2548
/**
2549
* d_rehash - add an entry back to the hash
2550
* @entry: dentry to add to the hash
2551
*
2552
* Adds a dentry to the hash according to its name.
2553
*/
2554
2555
void d_rehash(struct dentry * entry)
2556
{
2557
spin_lock(&entry->d_lock);
2558
__d_rehash(entry);
2559
spin_unlock(&entry->d_lock);
2560
}
2561
EXPORT_SYMBOL(d_rehash);
2562
2563
static inline unsigned start_dir_add(struct inode *dir)
2564
{
2565
preempt_disable_nested();
2566
for (;;) {
2567
unsigned n = READ_ONCE(dir->i_dir_seq);
2568
if (!(n & 1) && try_cmpxchg(&dir->i_dir_seq, &n, n + 1))
2569
return n;
2570
cpu_relax();
2571
}
2572
}
2573
2574
static inline void end_dir_add(struct inode *dir, unsigned int n,
2575
wait_queue_head_t *d_wait)
2576
{
2577
smp_store_release(&dir->i_dir_seq, n + 2);
2578
preempt_enable_nested();
2579
if (wq_has_sleeper(d_wait))
2580
wake_up_all(d_wait);
2581
}
2582
2583
static void d_wait_lookup(struct dentry *dentry)
2584
{
2585
if (d_in_lookup(dentry)) {
2586
DECLARE_WAITQUEUE(wait, current);
2587
add_wait_queue(dentry->d_wait, &wait);
2588
do {
2589
set_current_state(TASK_UNINTERRUPTIBLE);
2590
spin_unlock(&dentry->d_lock);
2591
schedule();
2592
spin_lock(&dentry->d_lock);
2593
} while (d_in_lookup(dentry));
2594
}
2595
}
2596
2597
struct dentry *d_alloc_parallel(struct dentry *parent,
2598
const struct qstr *name,
2599
wait_queue_head_t *wq)
2600
{
2601
unsigned int hash = name->hash;
2602
struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2603
struct hlist_bl_node *node;
2604
struct dentry *new = __d_alloc(parent->d_sb, name);
2605
struct dentry *dentry;
2606
unsigned seq, r_seq, d_seq;
2607
2608
if (unlikely(!new))
2609
return ERR_PTR(-ENOMEM);
2610
2611
new->d_flags |= DCACHE_PAR_LOOKUP;
2612
spin_lock(&parent->d_lock);
2613
new->d_parent = dget_dlock(parent);
2614
hlist_add_head(&new->d_sib, &parent->d_children);
2615
if (parent->d_flags & DCACHE_DISCONNECTED)
2616
new->d_flags |= DCACHE_DISCONNECTED;
2617
spin_unlock(&parent->d_lock);
2618
2619
retry:
2620
rcu_read_lock();
2621
seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2622
r_seq = read_seqbegin(&rename_lock);
2623
dentry = __d_lookup_rcu(parent, name, &d_seq);
2624
if (unlikely(dentry)) {
2625
if (!lockref_get_not_dead(&dentry->d_lockref)) {
2626
rcu_read_unlock();
2627
goto retry;
2628
}
2629
if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2630
rcu_read_unlock();
2631
dput(dentry);
2632
goto retry;
2633
}
2634
rcu_read_unlock();
2635
dput(new);
2636
return dentry;
2637
}
2638
if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2639
rcu_read_unlock();
2640
goto retry;
2641
}
2642
2643
if (unlikely(seq & 1)) {
2644
rcu_read_unlock();
2645
goto retry;
2646
}
2647
2648
hlist_bl_lock(b);
2649
if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2650
hlist_bl_unlock(b);
2651
rcu_read_unlock();
2652
goto retry;
2653
}
2654
/*
2655
* No changes for the parent since the beginning of d_lookup().
2656
* Since all removals from the chain happen with hlist_bl_lock(),
2657
* any potential in-lookup matches are going to stay here until
2658
* we unlock the chain. All fields are stable in everything
2659
* we encounter.
2660
*/
2661
hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2662
if (dentry->d_name.hash != hash)
2663
continue;
2664
if (dentry->d_parent != parent)
2665
continue;
2666
if (!d_same_name(dentry, parent, name))
2667
continue;
2668
hlist_bl_unlock(b);
2669
/* now we can try to grab a reference */
2670
if (!lockref_get_not_dead(&dentry->d_lockref)) {
2671
rcu_read_unlock();
2672
goto retry;
2673
}
2674
2675
rcu_read_unlock();
2676
/*
2677
* somebody is likely to be still doing lookup for it;
2678
* wait for them to finish
2679
*/
2680
spin_lock(&dentry->d_lock);
2681
d_wait_lookup(dentry);
2682
/*
2683
* it's not in-lookup anymore; in principle we should repeat
2684
* everything from dcache lookup, but it's likely to be what
2685
* d_lookup() would've found anyway. If it is, just return it;
2686
* otherwise we really have to repeat the whole thing.
2687
*/
2688
if (unlikely(dentry->d_name.hash != hash))
2689
goto mismatch;
2690
if (unlikely(dentry->d_parent != parent))
2691
goto mismatch;
2692
if (unlikely(d_unhashed(dentry)))
2693
goto mismatch;
2694
if (unlikely(!d_same_name(dentry, parent, name)))
2695
goto mismatch;
2696
/* OK, it *is* a hashed match; return it */
2697
spin_unlock(&dentry->d_lock);
2698
dput(new);
2699
return dentry;
2700
}
2701
rcu_read_unlock();
2702
new->d_wait = wq;
2703
hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2704
hlist_bl_unlock(b);
2705
return new;
2706
mismatch:
2707
spin_unlock(&dentry->d_lock);
2708
dput(dentry);
2709
goto retry;
2710
}
2711
EXPORT_SYMBOL(d_alloc_parallel);
2712
2713
/*
2714
* - Unhash the dentry
2715
* - Retrieve and clear the waitqueue head in dentry
2716
* - Return the waitqueue head
2717
*/
2718
static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2719
{
2720
wait_queue_head_t *d_wait;
2721
struct hlist_bl_head *b;
2722
2723
lockdep_assert_held(&dentry->d_lock);
2724
2725
b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2726
hlist_bl_lock(b);
2727
dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2728
__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2729
d_wait = dentry->d_wait;
2730
dentry->d_wait = NULL;
2731
hlist_bl_unlock(b);
2732
INIT_HLIST_NODE(&dentry->d_u.d_alias);
2733
INIT_LIST_HEAD(&dentry->d_lru);
2734
return d_wait;
2735
}
2736
2737
void __d_lookup_unhash_wake(struct dentry *dentry)
2738
{
2739
spin_lock(&dentry->d_lock);
2740
wake_up_all(__d_lookup_unhash(dentry));
2741
spin_unlock(&dentry->d_lock);
2742
}
2743
EXPORT_SYMBOL(__d_lookup_unhash_wake);
2744
2745
/* inode->i_lock held if inode is non-NULL */
2746
2747
static inline void __d_add(struct dentry *dentry, struct inode *inode,
2748
const struct dentry_operations *ops)
2749
{
2750
wait_queue_head_t *d_wait;
2751
struct inode *dir = NULL;
2752
unsigned n;
2753
spin_lock(&dentry->d_lock);
2754
if (unlikely(d_in_lookup(dentry))) {
2755
dir = dentry->d_parent->d_inode;
2756
n = start_dir_add(dir);
2757
d_wait = __d_lookup_unhash(dentry);
2758
}
2759
if (unlikely(ops))
2760
d_set_d_op(dentry, ops);
2761
if (inode) {
2762
unsigned add_flags = d_flags_for_inode(inode);
2763
hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2764
raw_write_seqcount_begin(&dentry->d_seq);
2765
__d_set_inode_and_type(dentry, inode, add_flags);
2766
raw_write_seqcount_end(&dentry->d_seq);
2767
fsnotify_update_flags(dentry);
2768
}
2769
__d_rehash(dentry);
2770
if (dir)
2771
end_dir_add(dir, n, d_wait);
2772
spin_unlock(&dentry->d_lock);
2773
if (inode)
2774
spin_unlock(&inode->i_lock);
2775
}
2776
2777
/**
2778
* d_add - add dentry to hash queues
2779
* @entry: dentry to add
2780
* @inode: The inode to attach to this dentry
2781
*
2782
* This adds the entry to the hash queues and initializes @inode.
2783
* The entry was actually filled in earlier during d_alloc().
2784
*/
2785
2786
void d_add(struct dentry *entry, struct inode *inode)
2787
{
2788
if (inode) {
2789
security_d_instantiate(entry, inode);
2790
spin_lock(&inode->i_lock);
2791
}
2792
__d_add(entry, inode, NULL);
2793
}
2794
EXPORT_SYMBOL(d_add);
2795
2796
struct dentry *d_make_persistent(struct dentry *dentry, struct inode *inode)
2797
{
2798
WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
2799
WARN_ON(!inode);
2800
security_d_instantiate(dentry, inode);
2801
spin_lock(&inode->i_lock);
2802
spin_lock(&dentry->d_lock);
2803
__d_instantiate(dentry, inode);
2804
dentry->d_flags |= DCACHE_PERSISTENT;
2805
dget_dlock(dentry);
2806
if (d_unhashed(dentry))
2807
__d_rehash(dentry);
2808
spin_unlock(&dentry->d_lock);
2809
spin_unlock(&inode->i_lock);
2810
return dentry;
2811
}
2812
EXPORT_SYMBOL(d_make_persistent);
2813
2814
static void swap_names(struct dentry *dentry, struct dentry *target)
2815
{
2816
if (unlikely(dname_external(target))) {
2817
if (unlikely(dname_external(dentry))) {
2818
/*
2819
* Both external: swap the pointers
2820
*/
2821
swap(target->__d_name.name, dentry->__d_name.name);
2822
} else {
2823
/*
2824
* dentry:internal, target:external. Steal target's
2825
* storage and make target internal.
2826
*/
2827
dentry->__d_name.name = target->__d_name.name;
2828
target->d_shortname = dentry->d_shortname;
2829
target->__d_name.name = target->d_shortname.string;
2830
}
2831
} else {
2832
if (unlikely(dname_external(dentry))) {
2833
/*
2834
* dentry:external, target:internal. Give dentry's
2835
* storage to target and make dentry internal
2836
*/
2837
target->__d_name.name = dentry->__d_name.name;
2838
dentry->d_shortname = target->d_shortname;
2839
dentry->__d_name.name = dentry->d_shortname.string;
2840
} else {
2841
/*
2842
* Both are internal.
2843
*/
2844
for (int i = 0; i < DNAME_INLINE_WORDS; i++)
2845
swap(dentry->d_shortname.words[i],
2846
target->d_shortname.words[i]);
2847
}
2848
}
2849
swap(dentry->__d_name.hash_len, target->__d_name.hash_len);
2850
}
2851
2852
static void copy_name(struct dentry *dentry, struct dentry *target)
2853
{
2854
struct external_name *old_name = NULL;
2855
if (unlikely(dname_external(dentry)))
2856
old_name = external_name(dentry);
2857
if (unlikely(dname_external(target))) {
2858
atomic_inc(&external_name(target)->count);
2859
dentry->__d_name = target->__d_name;
2860
} else {
2861
dentry->d_shortname = target->d_shortname;
2862
dentry->__d_name.name = dentry->d_shortname.string;
2863
dentry->__d_name.hash_len = target->__d_name.hash_len;
2864
}
2865
if (old_name && likely(atomic_dec_and_test(&old_name->count)))
2866
kfree_rcu(old_name, head);
2867
}
2868
2869
/*
2870
* __d_move - move a dentry
2871
* @dentry: entry to move
2872
* @target: new dentry
2873
* @exchange: exchange the two dentries
2874
*
2875
* Update the dcache to reflect the move of a file name. Negative dcache
2876
* entries should not be moved in this way. Caller must hold rename_lock, the
2877
* i_rwsem of the source and target directories (exclusively), and the sb->
2878
* s_vfs_rename_mutex if they differ. See lock_rename().
2879
*/
2880
static void __d_move(struct dentry *dentry, struct dentry *target,
2881
bool exchange)
2882
{
2883
struct dentry *old_parent, *p;
2884
wait_queue_head_t *d_wait;
2885
struct inode *dir = NULL;
2886
unsigned n;
2887
2888
WARN_ON(!dentry->d_inode);
2889
if (WARN_ON(dentry == target))
2890
return;
2891
2892
BUG_ON(d_ancestor(target, dentry));
2893
old_parent = dentry->d_parent;
2894
p = d_ancestor(old_parent, target);
2895
if (IS_ROOT(dentry)) {
2896
BUG_ON(p);
2897
spin_lock(&target->d_parent->d_lock);
2898
} else if (!p) {
2899
/* target is not a descendent of dentry->d_parent */
2900
spin_lock(&target->d_parent->d_lock);
2901
spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2902
} else {
2903
BUG_ON(p == dentry);
2904
spin_lock(&old_parent->d_lock);
2905
if (p != target)
2906
spin_lock_nested(&target->d_parent->d_lock,
2907
DENTRY_D_LOCK_NESTED);
2908
}
2909
spin_lock_nested(&dentry->d_lock, 2);
2910
spin_lock_nested(&target->d_lock, 3);
2911
2912
if (unlikely(d_in_lookup(target))) {
2913
dir = target->d_parent->d_inode;
2914
n = start_dir_add(dir);
2915
d_wait = __d_lookup_unhash(target);
2916
}
2917
2918
write_seqcount_begin(&dentry->d_seq);
2919
write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2920
2921
/* unhash both */
2922
if (!d_unhashed(dentry))
2923
___d_drop(dentry);
2924
if (!d_unhashed(target))
2925
___d_drop(target);
2926
2927
/* ... and switch them in the tree */
2928
dentry->d_parent = target->d_parent;
2929
if (!exchange) {
2930
copy_name(dentry, target);
2931
target->d_hash.pprev = NULL;
2932
dentry->d_parent->d_lockref.count++;
2933
if (dentry != old_parent) /* wasn't IS_ROOT */
2934
WARN_ON(!--old_parent->d_lockref.count);
2935
} else {
2936
target->d_parent = old_parent;
2937
swap_names(dentry, target);
2938
if (!hlist_unhashed(&target->d_sib))
2939
__hlist_del(&target->d_sib);
2940
hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2941
__d_rehash(target);
2942
fsnotify_update_flags(target);
2943
}
2944
if (!hlist_unhashed(&dentry->d_sib))
2945
__hlist_del(&dentry->d_sib);
2946
hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2947
__d_rehash(dentry);
2948
fsnotify_update_flags(dentry);
2949
fscrypt_handle_d_move(dentry);
2950
2951
write_seqcount_end(&target->d_seq);
2952
write_seqcount_end(&dentry->d_seq);
2953
2954
if (dir)
2955
end_dir_add(dir, n, d_wait);
2956
2957
if (dentry->d_parent != old_parent)
2958
spin_unlock(&dentry->d_parent->d_lock);
2959
if (dentry != old_parent)
2960
spin_unlock(&old_parent->d_lock);
2961
spin_unlock(&target->d_lock);
2962
spin_unlock(&dentry->d_lock);
2963
}
2964
2965
/*
2966
* d_move - move a dentry
2967
* @dentry: entry to move
2968
* @target: new dentry
2969
*
2970
* Update the dcache to reflect the move of a file name. Negative
2971
* dcache entries should not be moved in this way. See the locking
2972
* requirements for __d_move.
2973
*/
2974
void d_move(struct dentry *dentry, struct dentry *target)
2975
{
2976
write_seqlock(&rename_lock);
2977
__d_move(dentry, target, false);
2978
write_sequnlock(&rename_lock);
2979
}
2980
EXPORT_SYMBOL(d_move);
2981
2982
/*
2983
* d_exchange - exchange two dentries
2984
* @dentry1: first dentry
2985
* @dentry2: second dentry
2986
*/
2987
void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2988
{
2989
write_seqlock(&rename_lock);
2990
2991
WARN_ON(!dentry1->d_inode);
2992
WARN_ON(!dentry2->d_inode);
2993
WARN_ON(IS_ROOT(dentry1));
2994
WARN_ON(IS_ROOT(dentry2));
2995
2996
__d_move(dentry1, dentry2, true);
2997
2998
write_sequnlock(&rename_lock);
2999
}
3000
EXPORT_SYMBOL(d_exchange);
3001
3002
/**
3003
* d_ancestor - search for an ancestor
3004
* @p1: ancestor dentry
3005
* @p2: child dentry
3006
*
3007
* Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3008
* an ancestor of p2, else NULL.
3009
*/
3010
struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3011
{
3012
struct dentry *p;
3013
3014
for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3015
if (p->d_parent == p1)
3016
return p;
3017
}
3018
return NULL;
3019
}
3020
3021
/*
3022
* This helper attempts to cope with remotely renamed directories
3023
*
3024
* It assumes that the caller is already holding
3025
* dentry->d_parent->d_inode->i_rwsem, and rename_lock
3026
*
3027
* Note: If ever the locking in lock_rename() changes, then please
3028
* remember to update this too...
3029
*/
3030
static int __d_unalias(struct dentry *dentry, struct dentry *alias)
3031
{
3032
struct mutex *m1 = NULL;
3033
struct rw_semaphore *m2 = NULL;
3034
int ret = -ESTALE;
3035
3036
/* If alias and dentry share a parent, then no extra locks required */
3037
if (alias->d_parent == dentry->d_parent)
3038
goto out_unalias;
3039
3040
/* See lock_rename() */
3041
if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3042
goto out_err;
3043
m1 = &dentry->d_sb->s_vfs_rename_mutex;
3044
if (!inode_trylock_shared(alias->d_parent->d_inode))
3045
goto out_err;
3046
m2 = &alias->d_parent->d_inode->i_rwsem;
3047
out_unalias:
3048
if (alias->d_op && alias->d_op->d_unalias_trylock &&
3049
!alias->d_op->d_unalias_trylock(alias))
3050
goto out_err;
3051
__d_move(alias, dentry, false);
3052
if (alias->d_op && alias->d_op->d_unalias_unlock)
3053
alias->d_op->d_unalias_unlock(alias);
3054
ret = 0;
3055
out_err:
3056
if (m2)
3057
up_read(m2);
3058
if (m1)
3059
mutex_unlock(m1);
3060
return ret;
3061
}
3062
3063
struct dentry *d_splice_alias_ops(struct inode *inode, struct dentry *dentry,
3064
const struct dentry_operations *ops)
3065
{
3066
if (IS_ERR(inode))
3067
return ERR_CAST(inode);
3068
3069
BUG_ON(!d_unhashed(dentry));
3070
3071
if (!inode)
3072
goto out;
3073
3074
security_d_instantiate(dentry, inode);
3075
spin_lock(&inode->i_lock);
3076
if (S_ISDIR(inode->i_mode)) {
3077
struct dentry *new = __d_find_any_alias(inode);
3078
if (unlikely(new)) {
3079
/* The reference to new ensures it remains an alias */
3080
spin_unlock(&inode->i_lock);
3081
write_seqlock(&rename_lock);
3082
if (unlikely(d_ancestor(new, dentry))) {
3083
write_sequnlock(&rename_lock);
3084
dput(new);
3085
new = ERR_PTR(-ELOOP);
3086
pr_warn_ratelimited(
3087
"VFS: Lookup of '%s' in %s %s"
3088
" would have caused loop\n",
3089
dentry->d_name.name,
3090
inode->i_sb->s_type->name,
3091
inode->i_sb->s_id);
3092
} else if (!IS_ROOT(new)) {
3093
struct dentry *old_parent = dget(new->d_parent);
3094
int err = __d_unalias(dentry, new);
3095
write_sequnlock(&rename_lock);
3096
if (err) {
3097
dput(new);
3098
new = ERR_PTR(err);
3099
}
3100
dput(old_parent);
3101
} else {
3102
__d_move(new, dentry, false);
3103
write_sequnlock(&rename_lock);
3104
}
3105
iput(inode);
3106
return new;
3107
}
3108
}
3109
out:
3110
__d_add(dentry, inode, ops);
3111
return NULL;
3112
}
3113
3114
/**
3115
* d_splice_alias - splice a disconnected dentry into the tree if one exists
3116
* @inode: the inode which may have a disconnected dentry
3117
* @dentry: a negative dentry which we want to point to the inode.
3118
*
3119
* If inode is a directory and has an IS_ROOT alias, then d_move that in
3120
* place of the given dentry and return it, else simply d_add the inode
3121
* to the dentry and return NULL.
3122
*
3123
* If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3124
* we should error out: directories can't have multiple aliases.
3125
*
3126
* This is needed in the lookup routine of any filesystem that is exportable
3127
* (via knfsd) so that we can build dcache paths to directories effectively.
3128
*
3129
* If a dentry was found and moved, then it is returned. Otherwise NULL
3130
* is returned. This matches the expected return value of ->lookup.
3131
*
3132
* Cluster filesystems may call this function with a negative, hashed dentry.
3133
* In that case, we know that the inode will be a regular file, and also this
3134
* will only occur during atomic_open. So we need to check for the dentry
3135
* being already hashed only in the final case.
3136
*/
3137
struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3138
{
3139
return d_splice_alias_ops(inode, dentry, NULL);
3140
}
3141
EXPORT_SYMBOL(d_splice_alias);
3142
3143
/*
3144
* Test whether new_dentry is a subdirectory of old_dentry.
3145
*
3146
* Trivially implemented using the dcache structure
3147
*/
3148
3149
/**
3150
* is_subdir - is new dentry a subdirectory of old_dentry
3151
* @new_dentry: new dentry
3152
* @old_dentry: old dentry
3153
*
3154
* Returns true if new_dentry is a subdirectory of the parent (at any depth).
3155
* Returns false otherwise.
3156
* Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3157
*/
3158
3159
bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3160
{
3161
bool subdir;
3162
unsigned seq;
3163
3164
if (new_dentry == old_dentry)
3165
return true;
3166
3167
/* Access d_parent under rcu as d_move() may change it. */
3168
rcu_read_lock();
3169
seq = read_seqbegin(&rename_lock);
3170
subdir = d_ancestor(old_dentry, new_dentry);
3171
/* Try lockless once... */
3172
if (read_seqretry(&rename_lock, seq)) {
3173
/* ...else acquire lock for progress even on deep chains. */
3174
read_seqlock_excl(&rename_lock);
3175
subdir = d_ancestor(old_dentry, new_dentry);
3176
read_sequnlock_excl(&rename_lock);
3177
}
3178
rcu_read_unlock();
3179
return subdir;
3180
}
3181
EXPORT_SYMBOL(is_subdir);
3182
3183
void d_mark_tmpfile(struct file *file, struct inode *inode)
3184
{
3185
struct dentry *dentry = file->f_path.dentry;
3186
3187
BUG_ON(dname_external(dentry) ||
3188
!hlist_unhashed(&dentry->d_u.d_alias) ||
3189
!d_unlinked(dentry));
3190
spin_lock(&dentry->d_parent->d_lock);
3191
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3192
dentry->__d_name.len = sprintf(dentry->d_shortname.string, "#%llu",
3193
(unsigned long long)inode->i_ino);
3194
spin_unlock(&dentry->d_lock);
3195
spin_unlock(&dentry->d_parent->d_lock);
3196
}
3197
EXPORT_SYMBOL(d_mark_tmpfile);
3198
3199
void d_tmpfile(struct file *file, struct inode *inode)
3200
{
3201
struct dentry *dentry = file->f_path.dentry;
3202
3203
inode_dec_link_count(inode);
3204
d_mark_tmpfile(file, inode);
3205
d_instantiate(dentry, inode);
3206
}
3207
EXPORT_SYMBOL(d_tmpfile);
3208
3209
/*
3210
* Obtain inode number of the parent dentry.
3211
*/
3212
ino_t d_parent_ino(struct dentry *dentry)
3213
{
3214
struct dentry *parent;
3215
struct inode *iparent;
3216
unsigned seq;
3217
ino_t ret;
3218
3219
scoped_guard(rcu) {
3220
seq = raw_seqcount_begin(&dentry->d_seq);
3221
parent = READ_ONCE(dentry->d_parent);
3222
iparent = d_inode_rcu(parent);
3223
if (likely(iparent)) {
3224
ret = iparent->i_ino;
3225
if (!read_seqcount_retry(&dentry->d_seq, seq))
3226
return ret;
3227
}
3228
}
3229
3230
spin_lock(&dentry->d_lock);
3231
ret = dentry->d_parent->d_inode->i_ino;
3232
spin_unlock(&dentry->d_lock);
3233
return ret;
3234
}
3235
EXPORT_SYMBOL(d_parent_ino);
3236
3237
static __initdata unsigned long dhash_entries;
3238
static int __init set_dhash_entries(char *str)
3239
{
3240
if (!str)
3241
return 0;
3242
dhash_entries = simple_strtoul(str, &str, 0);
3243
return 1;
3244
}
3245
__setup("dhash_entries=", set_dhash_entries);
3246
3247
static void __init dcache_init_early(void)
3248
{
3249
/* If hashes are distributed across NUMA nodes, defer
3250
* hash allocation until vmalloc space is available.
3251
*/
3252
if (hashdist)
3253
return;
3254
3255
dentry_hashtable =
3256
alloc_large_system_hash("Dentry cache",
3257
sizeof(struct hlist_bl_head),
3258
dhash_entries,
3259
13,
3260
HASH_EARLY | HASH_ZERO,
3261
&d_hash_shift,
3262
NULL,
3263
0,
3264
0);
3265
d_hash_shift = 32 - d_hash_shift;
3266
3267
runtime_const_init(shift, d_hash_shift);
3268
runtime_const_init(ptr, dentry_hashtable);
3269
}
3270
3271
static void __init dcache_init(void)
3272
{
3273
/*
3274
* A constructor could be added for stable state like the lists,
3275
* but it is probably not worth it because of the cache nature
3276
* of the dcache.
3277
*/
3278
__dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3279
SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3280
d_shortname.string);
3281
runtime_const_init(ptr, __dentry_cache);
3282
3283
/* Hash may have been set up in dcache_init_early */
3284
if (!hashdist)
3285
return;
3286
3287
dentry_hashtable =
3288
alloc_large_system_hash("Dentry cache",
3289
sizeof(struct hlist_bl_head),
3290
dhash_entries,
3291
13,
3292
HASH_ZERO,
3293
&d_hash_shift,
3294
NULL,
3295
0,
3296
0);
3297
d_hash_shift = 32 - d_hash_shift;
3298
3299
runtime_const_init(shift, d_hash_shift);
3300
runtime_const_init(ptr, dentry_hashtable);
3301
}
3302
3303
/* SLAB cache for __getname() consumers */
3304
struct kmem_cache *names_cachep __ro_after_init;
3305
EXPORT_SYMBOL(names_cachep);
3306
3307
void __init vfs_caches_init_early(void)
3308
{
3309
int i;
3310
3311
for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3312
INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3313
3314
dcache_init_early();
3315
inode_init_early();
3316
}
3317
3318
void __init vfs_caches_init(void)
3319
{
3320
names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3321
SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3322
3323
dcache_init();
3324
inode_init();
3325
files_init();
3326
files_maxfiles_init();
3327
mnt_init();
3328
bdev_cache_init();
3329
chrdev_init();
3330
}
3331
3332