Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/direct-io.c
26131 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* fs/direct-io.c
4
*
5
* Copyright (C) 2002, Linus Torvalds.
6
*
7
* O_DIRECT
8
*
9
* 04Jul2002 Andrew Morton
10
* Initial version
11
* 11Sep2002 [email protected]
12
* added readv/writev support.
13
* 29Oct2002 Andrew Morton
14
* rewrote bio_add_page() support.
15
* 30Oct2002 [email protected]
16
* added support for non-aligned IO.
17
* 06Nov2002 [email protected]
18
* added asynchronous IO support.
19
* 21Jul2003 [email protected]
20
* added IO completion notifier.
21
*/
22
23
#include <linux/kernel.h>
24
#include <linux/module.h>
25
#include <linux/types.h>
26
#include <linux/fs.h>
27
#include <linux/mm.h>
28
#include <linux/slab.h>
29
#include <linux/highmem.h>
30
#include <linux/pagemap.h>
31
#include <linux/task_io_accounting_ops.h>
32
#include <linux/bio.h>
33
#include <linux/wait.h>
34
#include <linux/err.h>
35
#include <linux/blkdev.h>
36
#include <linux/buffer_head.h>
37
#include <linux/rwsem.h>
38
#include <linux/uio.h>
39
#include <linux/atomic.h>
40
41
#include "internal.h"
42
43
/*
44
* How many user pages to map in one call to iov_iter_extract_pages(). This
45
* determines the size of a structure in the slab cache
46
*/
47
#define DIO_PAGES 64
48
49
/*
50
* Flags for dio_complete()
51
*/
52
#define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
53
#define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
54
55
/*
56
* This code generally works in units of "dio_blocks". A dio_block is
57
* somewhere between the hard sector size and the filesystem block size. it
58
* is determined on a per-invocation basis. When talking to the filesystem
59
* we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
60
* down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
61
* to bio_block quantities by shifting left by blkfactor.
62
*
63
* If blkfactor is zero then the user's request was aligned to the filesystem's
64
* blocksize.
65
*/
66
67
/* dio_state only used in the submission path */
68
69
struct dio_submit {
70
struct bio *bio; /* bio under assembly */
71
unsigned blkbits; /* doesn't change */
72
unsigned blkfactor; /* When we're using an alignment which
73
is finer than the filesystem's soft
74
blocksize, this specifies how much
75
finer. blkfactor=2 means 1/4-block
76
alignment. Does not change */
77
unsigned start_zero_done; /* flag: sub-blocksize zeroing has
78
been performed at the start of a
79
write */
80
int pages_in_io; /* approximate total IO pages */
81
sector_t block_in_file; /* Current offset into the underlying
82
file in dio_block units. */
83
unsigned blocks_available; /* At block_in_file. changes */
84
int reap_counter; /* rate limit reaping */
85
sector_t final_block_in_request;/* doesn't change */
86
int boundary; /* prev block is at a boundary */
87
get_block_t *get_block; /* block mapping function */
88
89
loff_t logical_offset_in_bio; /* current first logical block in bio */
90
sector_t final_block_in_bio; /* current final block in bio + 1 */
91
sector_t next_block_for_io; /* next block to be put under IO,
92
in dio_blocks units */
93
94
/*
95
* Deferred addition of a page to the dio. These variables are
96
* private to dio_send_cur_page(), submit_page_section() and
97
* dio_bio_add_page().
98
*/
99
struct page *cur_page; /* The page */
100
unsigned cur_page_offset; /* Offset into it, in bytes */
101
unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
102
sector_t cur_page_block; /* Where it starts */
103
loff_t cur_page_fs_offset; /* Offset in file */
104
105
struct iov_iter *iter;
106
/*
107
* Page queue. These variables belong to dio_refill_pages() and
108
* dio_get_page().
109
*/
110
unsigned head; /* next page to process */
111
unsigned tail; /* last valid page + 1 */
112
size_t from, to;
113
};
114
115
/* dio_state communicated between submission path and end_io */
116
struct dio {
117
int flags; /* doesn't change */
118
blk_opf_t opf; /* request operation type and flags */
119
struct gendisk *bio_disk;
120
struct inode *inode;
121
loff_t i_size; /* i_size when submitted */
122
dio_iodone_t *end_io; /* IO completion function */
123
bool is_pinned; /* T if we have pins on the pages */
124
125
void *private; /* copy from map_bh.b_private */
126
127
/* BIO completion state */
128
spinlock_t bio_lock; /* protects BIO fields below */
129
int page_errors; /* err from iov_iter_extract_pages() */
130
int is_async; /* is IO async ? */
131
bool defer_completion; /* defer AIO completion to workqueue? */
132
bool should_dirty; /* if pages should be dirtied */
133
int io_error; /* IO error in completion path */
134
unsigned long refcount; /* direct_io_worker() and bios */
135
struct bio *bio_list; /* singly linked via bi_private */
136
struct task_struct *waiter; /* waiting task (NULL if none) */
137
138
/* AIO related stuff */
139
struct kiocb *iocb; /* kiocb */
140
ssize_t result; /* IO result */
141
142
/*
143
* pages[] (and any fields placed after it) are not zeroed out at
144
* allocation time. Don't add new fields after pages[] unless you
145
* wish that they not be zeroed.
146
*/
147
union {
148
struct page *pages[DIO_PAGES]; /* page buffer */
149
struct work_struct complete_work;/* deferred AIO completion */
150
};
151
} ____cacheline_aligned_in_smp;
152
153
static struct kmem_cache *dio_cache __ro_after_init;
154
155
/*
156
* How many pages are in the queue?
157
*/
158
static inline unsigned dio_pages_present(struct dio_submit *sdio)
159
{
160
return sdio->tail - sdio->head;
161
}
162
163
/*
164
* Go grab and pin some userspace pages. Typically we'll get 64 at a time.
165
*/
166
static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
167
{
168
struct page **pages = dio->pages;
169
const enum req_op dio_op = dio->opf & REQ_OP_MASK;
170
ssize_t ret;
171
172
ret = iov_iter_extract_pages(sdio->iter, &pages, LONG_MAX,
173
DIO_PAGES, 0, &sdio->from);
174
175
if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) {
176
/*
177
* A memory fault, but the filesystem has some outstanding
178
* mapped blocks. We need to use those blocks up to avoid
179
* leaking stale data in the file.
180
*/
181
if (dio->page_errors == 0)
182
dio->page_errors = ret;
183
dio->pages[0] = ZERO_PAGE(0);
184
sdio->head = 0;
185
sdio->tail = 1;
186
sdio->from = 0;
187
sdio->to = PAGE_SIZE;
188
return 0;
189
}
190
191
if (ret >= 0) {
192
ret += sdio->from;
193
sdio->head = 0;
194
sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
195
sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
196
return 0;
197
}
198
return ret;
199
}
200
201
/*
202
* Get another userspace page. Returns an ERR_PTR on error. Pages are
203
* buffered inside the dio so that we can call iov_iter_extract_pages()
204
* against a decent number of pages, less frequently. To provide nicer use of
205
* the L1 cache.
206
*/
207
static inline struct page *dio_get_page(struct dio *dio,
208
struct dio_submit *sdio)
209
{
210
if (dio_pages_present(sdio) == 0) {
211
int ret;
212
213
ret = dio_refill_pages(dio, sdio);
214
if (ret)
215
return ERR_PTR(ret);
216
BUG_ON(dio_pages_present(sdio) == 0);
217
}
218
return dio->pages[sdio->head];
219
}
220
221
static void dio_pin_page(struct dio *dio, struct page *page)
222
{
223
if (dio->is_pinned)
224
folio_add_pin(page_folio(page));
225
}
226
227
static void dio_unpin_page(struct dio *dio, struct page *page)
228
{
229
if (dio->is_pinned)
230
unpin_user_page(page);
231
}
232
233
/*
234
* dio_complete() - called when all DIO BIO I/O has been completed
235
*
236
* This drops i_dio_count, lets interested parties know that a DIO operation
237
* has completed, and calculates the resulting return code for the operation.
238
*
239
* It lets the filesystem know if it registered an interest earlier via
240
* get_block. Pass the private field of the map buffer_head so that
241
* filesystems can use it to hold additional state between get_block calls and
242
* dio_complete.
243
*/
244
static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
245
{
246
const enum req_op dio_op = dio->opf & REQ_OP_MASK;
247
loff_t offset = dio->iocb->ki_pos;
248
ssize_t transferred = 0;
249
int err;
250
251
/*
252
* AIO submission can race with bio completion to get here while
253
* expecting to have the last io completed by bio completion.
254
* In that case -EIOCBQUEUED is in fact not an error we want
255
* to preserve through this call.
256
*/
257
if (ret == -EIOCBQUEUED)
258
ret = 0;
259
260
if (dio->result) {
261
transferred = dio->result;
262
263
/* Check for short read case */
264
if (dio_op == REQ_OP_READ &&
265
((offset + transferred) > dio->i_size))
266
transferred = dio->i_size - offset;
267
/* ignore EFAULT if some IO has been done */
268
if (unlikely(ret == -EFAULT) && transferred)
269
ret = 0;
270
}
271
272
if (ret == 0)
273
ret = dio->page_errors;
274
if (ret == 0)
275
ret = dio->io_error;
276
if (ret == 0)
277
ret = transferred;
278
279
if (dio->end_io) {
280
// XXX: ki_pos??
281
err = dio->end_io(dio->iocb, offset, ret, dio->private);
282
if (err)
283
ret = err;
284
}
285
286
/*
287
* Try again to invalidate clean pages which might have been cached by
288
* non-direct readahead, or faulted in by get_user_pages() if the source
289
* of the write was an mmap'ed region of the file we're writing. Either
290
* one is a pretty crazy thing to do, so we don't support it 100%. If
291
* this invalidation fails, tough, the write still worked...
292
*
293
* And this page cache invalidation has to be after dio->end_io(), as
294
* some filesystems convert unwritten extents to real allocations in
295
* end_io() when necessary, otherwise a racing buffer read would cache
296
* zeros from unwritten extents.
297
*/
298
if (flags & DIO_COMPLETE_INVALIDATE &&
299
ret > 0 && dio_op == REQ_OP_WRITE)
300
kiocb_invalidate_post_direct_write(dio->iocb, ret);
301
302
inode_dio_end(dio->inode);
303
304
if (flags & DIO_COMPLETE_ASYNC) {
305
/*
306
* generic_write_sync expects ki_pos to have been updated
307
* already, but the submission path only does this for
308
* synchronous I/O.
309
*/
310
dio->iocb->ki_pos += transferred;
311
312
if (ret > 0 && dio_op == REQ_OP_WRITE)
313
ret = generic_write_sync(dio->iocb, ret);
314
dio->iocb->ki_complete(dio->iocb, ret);
315
}
316
317
kmem_cache_free(dio_cache, dio);
318
return ret;
319
}
320
321
static void dio_aio_complete_work(struct work_struct *work)
322
{
323
struct dio *dio = container_of(work, struct dio, complete_work);
324
325
dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
326
}
327
328
static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
329
330
/*
331
* Asynchronous IO callback.
332
*/
333
static void dio_bio_end_aio(struct bio *bio)
334
{
335
struct dio *dio = bio->bi_private;
336
const enum req_op dio_op = dio->opf & REQ_OP_MASK;
337
unsigned long remaining;
338
unsigned long flags;
339
bool defer_completion = false;
340
341
/* cleanup the bio */
342
dio_bio_complete(dio, bio);
343
344
spin_lock_irqsave(&dio->bio_lock, flags);
345
remaining = --dio->refcount;
346
if (remaining == 1 && dio->waiter)
347
wake_up_process(dio->waiter);
348
spin_unlock_irqrestore(&dio->bio_lock, flags);
349
350
if (remaining == 0) {
351
/*
352
* Defer completion when defer_completion is set or
353
* when the inode has pages mapped and this is AIO write.
354
* We need to invalidate those pages because there is a
355
* chance they contain stale data in the case buffered IO
356
* went in between AIO submission and completion into the
357
* same region.
358
*/
359
if (dio->result)
360
defer_completion = dio->defer_completion ||
361
(dio_op == REQ_OP_WRITE &&
362
dio->inode->i_mapping->nrpages);
363
if (defer_completion) {
364
INIT_WORK(&dio->complete_work, dio_aio_complete_work);
365
queue_work(dio->inode->i_sb->s_dio_done_wq,
366
&dio->complete_work);
367
} else {
368
dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
369
}
370
}
371
}
372
373
/*
374
* The BIO completion handler simply queues the BIO up for the process-context
375
* handler.
376
*
377
* During I/O bi_private points at the dio. After I/O, bi_private is used to
378
* implement a singly-linked list of completed BIOs, at dio->bio_list.
379
*/
380
static void dio_bio_end_io(struct bio *bio)
381
{
382
struct dio *dio = bio->bi_private;
383
unsigned long flags;
384
385
spin_lock_irqsave(&dio->bio_lock, flags);
386
bio->bi_private = dio->bio_list;
387
dio->bio_list = bio;
388
if (--dio->refcount == 1 && dio->waiter)
389
wake_up_process(dio->waiter);
390
spin_unlock_irqrestore(&dio->bio_lock, flags);
391
}
392
393
static inline void
394
dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
395
struct block_device *bdev,
396
sector_t first_sector, int nr_vecs)
397
{
398
struct bio *bio;
399
400
/*
401
* bio_alloc() is guaranteed to return a bio when allowed to sleep and
402
* we request a valid number of vectors.
403
*/
404
bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL);
405
bio->bi_iter.bi_sector = first_sector;
406
if (dio->is_async)
407
bio->bi_end_io = dio_bio_end_aio;
408
else
409
bio->bi_end_io = dio_bio_end_io;
410
if (dio->is_pinned)
411
bio_set_flag(bio, BIO_PAGE_PINNED);
412
bio->bi_write_hint = file_inode(dio->iocb->ki_filp)->i_write_hint;
413
414
sdio->bio = bio;
415
sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
416
}
417
418
/*
419
* In the AIO read case we speculatively dirty the pages before starting IO.
420
* During IO completion, any of these pages which happen to have been written
421
* back will be redirtied by bio_check_pages_dirty().
422
*
423
* bios hold a dio reference between submit_bio and ->end_io.
424
*/
425
static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
426
{
427
const enum req_op dio_op = dio->opf & REQ_OP_MASK;
428
struct bio *bio = sdio->bio;
429
unsigned long flags;
430
431
bio->bi_private = dio;
432
433
spin_lock_irqsave(&dio->bio_lock, flags);
434
dio->refcount++;
435
spin_unlock_irqrestore(&dio->bio_lock, flags);
436
437
if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty)
438
bio_set_pages_dirty(bio);
439
440
dio->bio_disk = bio->bi_bdev->bd_disk;
441
442
submit_bio(bio);
443
444
sdio->bio = NULL;
445
sdio->boundary = 0;
446
sdio->logical_offset_in_bio = 0;
447
}
448
449
/*
450
* Release any resources in case of a failure
451
*/
452
static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
453
{
454
if (dio->is_pinned)
455
unpin_user_pages(dio->pages + sdio->head,
456
sdio->tail - sdio->head);
457
sdio->head = sdio->tail;
458
}
459
460
/*
461
* Wait for the next BIO to complete. Remove it and return it. NULL is
462
* returned once all BIOs have been completed. This must only be called once
463
* all bios have been issued so that dio->refcount can only decrease. This
464
* requires that the caller hold a reference on the dio.
465
*/
466
static struct bio *dio_await_one(struct dio *dio)
467
{
468
unsigned long flags;
469
struct bio *bio = NULL;
470
471
spin_lock_irqsave(&dio->bio_lock, flags);
472
473
/*
474
* Wait as long as the list is empty and there are bios in flight. bio
475
* completion drops the count, maybe adds to the list, and wakes while
476
* holding the bio_lock so we don't need set_current_state()'s barrier
477
* and can call it after testing our condition.
478
*/
479
while (dio->refcount > 1 && dio->bio_list == NULL) {
480
__set_current_state(TASK_UNINTERRUPTIBLE);
481
dio->waiter = current;
482
spin_unlock_irqrestore(&dio->bio_lock, flags);
483
blk_io_schedule();
484
/* wake up sets us TASK_RUNNING */
485
spin_lock_irqsave(&dio->bio_lock, flags);
486
dio->waiter = NULL;
487
}
488
if (dio->bio_list) {
489
bio = dio->bio_list;
490
dio->bio_list = bio->bi_private;
491
}
492
spin_unlock_irqrestore(&dio->bio_lock, flags);
493
return bio;
494
}
495
496
/*
497
* Process one completed BIO. No locks are held.
498
*/
499
static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
500
{
501
blk_status_t err = bio->bi_status;
502
const enum req_op dio_op = dio->opf & REQ_OP_MASK;
503
bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty;
504
505
if (err) {
506
if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
507
dio->io_error = -EAGAIN;
508
else
509
dio->io_error = -EIO;
510
}
511
512
if (dio->is_async && should_dirty) {
513
bio_check_pages_dirty(bio); /* transfers ownership */
514
} else {
515
bio_release_pages(bio, should_dirty);
516
bio_put(bio);
517
}
518
return err;
519
}
520
521
/*
522
* Wait on and process all in-flight BIOs. This must only be called once
523
* all bios have been issued so that the refcount can only decrease.
524
* This just waits for all bios to make it through dio_bio_complete. IO
525
* errors are propagated through dio->io_error and should be propagated via
526
* dio_complete().
527
*/
528
static void dio_await_completion(struct dio *dio)
529
{
530
struct bio *bio;
531
do {
532
bio = dio_await_one(dio);
533
if (bio)
534
dio_bio_complete(dio, bio);
535
} while (bio);
536
}
537
538
/*
539
* A really large O_DIRECT read or write can generate a lot of BIOs. So
540
* to keep the memory consumption sane we periodically reap any completed BIOs
541
* during the BIO generation phase.
542
*
543
* This also helps to limit the peak amount of pinned userspace memory.
544
*/
545
static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
546
{
547
int ret = 0;
548
549
if (sdio->reap_counter++ >= 64) {
550
while (dio->bio_list) {
551
unsigned long flags;
552
struct bio *bio;
553
int ret2;
554
555
spin_lock_irqsave(&dio->bio_lock, flags);
556
bio = dio->bio_list;
557
dio->bio_list = bio->bi_private;
558
spin_unlock_irqrestore(&dio->bio_lock, flags);
559
ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
560
if (ret == 0)
561
ret = ret2;
562
}
563
sdio->reap_counter = 0;
564
}
565
return ret;
566
}
567
568
static int dio_set_defer_completion(struct dio *dio)
569
{
570
struct super_block *sb = dio->inode->i_sb;
571
572
if (dio->defer_completion)
573
return 0;
574
dio->defer_completion = true;
575
if (!sb->s_dio_done_wq)
576
return sb_init_dio_done_wq(sb);
577
return 0;
578
}
579
580
/*
581
* Call into the fs to map some more disk blocks. We record the current number
582
* of available blocks at sdio->blocks_available. These are in units of the
583
* fs blocksize, i_blocksize(inode).
584
*
585
* The fs is allowed to map lots of blocks at once. If it wants to do that,
586
* it uses the passed inode-relative block number as the file offset, as usual.
587
*
588
* get_block() is passed the number of i_blkbits-sized blocks which direct_io
589
* has remaining to do. The fs should not map more than this number of blocks.
590
*
591
* If the fs has mapped a lot of blocks, it should populate bh->b_size to
592
* indicate how much contiguous disk space has been made available at
593
* bh->b_blocknr.
594
*
595
* If *any* of the mapped blocks are new, then the fs must set buffer_new().
596
* This isn't very efficient...
597
*
598
* In the case of filesystem holes: the fs may return an arbitrarily-large
599
* hole by returning an appropriate value in b_size and by clearing
600
* buffer_mapped(). However the direct-io code will only process holes one
601
* block at a time - it will repeatedly call get_block() as it walks the hole.
602
*/
603
static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
604
struct buffer_head *map_bh)
605
{
606
const enum req_op dio_op = dio->opf & REQ_OP_MASK;
607
int ret;
608
sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
609
sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
610
unsigned long fs_count; /* Number of filesystem-sized blocks */
611
int create;
612
unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
613
loff_t i_size;
614
615
/*
616
* If there was a memory error and we've overwritten all the
617
* mapped blocks then we can now return that memory error
618
*/
619
ret = dio->page_errors;
620
if (ret == 0) {
621
BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
622
fs_startblk = sdio->block_in_file >> sdio->blkfactor;
623
fs_endblk = (sdio->final_block_in_request - 1) >>
624
sdio->blkfactor;
625
fs_count = fs_endblk - fs_startblk + 1;
626
627
map_bh->b_state = 0;
628
map_bh->b_size = fs_count << i_blkbits;
629
630
/*
631
* For writes that could fill holes inside i_size on a
632
* DIO_SKIP_HOLES filesystem we forbid block creations: only
633
* overwrites are permitted. We will return early to the caller
634
* once we see an unmapped buffer head returned, and the caller
635
* will fall back to buffered I/O.
636
*
637
* Otherwise the decision is left to the get_blocks method,
638
* which may decide to handle it or also return an unmapped
639
* buffer head.
640
*/
641
create = dio_op == REQ_OP_WRITE;
642
if (dio->flags & DIO_SKIP_HOLES) {
643
i_size = i_size_read(dio->inode);
644
if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
645
create = 0;
646
}
647
648
ret = (*sdio->get_block)(dio->inode, fs_startblk,
649
map_bh, create);
650
651
/* Store for completion */
652
dio->private = map_bh->b_private;
653
654
if (ret == 0 && buffer_defer_completion(map_bh))
655
ret = dio_set_defer_completion(dio);
656
}
657
return ret;
658
}
659
660
/*
661
* There is no bio. Make one now.
662
*/
663
static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
664
sector_t start_sector, struct buffer_head *map_bh)
665
{
666
sector_t sector;
667
int ret, nr_pages;
668
669
ret = dio_bio_reap(dio, sdio);
670
if (ret)
671
goto out;
672
sector = start_sector << (sdio->blkbits - 9);
673
nr_pages = bio_max_segs(sdio->pages_in_io);
674
BUG_ON(nr_pages <= 0);
675
dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
676
sdio->boundary = 0;
677
out:
678
return ret;
679
}
680
681
/*
682
* Attempt to put the current chunk of 'cur_page' into the current BIO. If
683
* that was successful then update final_block_in_bio and take a ref against
684
* the just-added page.
685
*
686
* Return zero on success. Non-zero means the caller needs to start a new BIO.
687
*/
688
static inline int dio_bio_add_page(struct dio *dio, struct dio_submit *sdio)
689
{
690
int ret;
691
692
ret = bio_add_page(sdio->bio, sdio->cur_page,
693
sdio->cur_page_len, sdio->cur_page_offset);
694
if (ret == sdio->cur_page_len) {
695
/*
696
* Decrement count only, if we are done with this page
697
*/
698
if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
699
sdio->pages_in_io--;
700
dio_pin_page(dio, sdio->cur_page);
701
sdio->final_block_in_bio = sdio->cur_page_block +
702
(sdio->cur_page_len >> sdio->blkbits);
703
ret = 0;
704
} else {
705
ret = 1;
706
}
707
return ret;
708
}
709
710
/*
711
* Put cur_page under IO. The section of cur_page which is described by
712
* cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
713
* starts on-disk at cur_page_block.
714
*
715
* We take a ref against the page here (on behalf of its presence in the bio).
716
*
717
* The caller of this function is responsible for removing cur_page from the
718
* dio, and for dropping the refcount which came from that presence.
719
*/
720
static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
721
struct buffer_head *map_bh)
722
{
723
int ret = 0;
724
725
if (sdio->bio) {
726
loff_t cur_offset = sdio->cur_page_fs_offset;
727
loff_t bio_next_offset = sdio->logical_offset_in_bio +
728
sdio->bio->bi_iter.bi_size;
729
730
/*
731
* See whether this new request is contiguous with the old.
732
*
733
* Btrfs cannot handle having logically non-contiguous requests
734
* submitted. For example if you have
735
*
736
* Logical: [0-4095][HOLE][8192-12287]
737
* Physical: [0-4095] [4096-8191]
738
*
739
* We cannot submit those pages together as one BIO. So if our
740
* current logical offset in the file does not equal what would
741
* be the next logical offset in the bio, submit the bio we
742
* have.
743
*/
744
if (sdio->final_block_in_bio != sdio->cur_page_block ||
745
cur_offset != bio_next_offset)
746
dio_bio_submit(dio, sdio);
747
}
748
749
if (sdio->bio == NULL) {
750
ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
751
if (ret)
752
goto out;
753
}
754
755
if (dio_bio_add_page(dio, sdio) != 0) {
756
dio_bio_submit(dio, sdio);
757
ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
758
if (ret == 0) {
759
ret = dio_bio_add_page(dio, sdio);
760
BUG_ON(ret != 0);
761
}
762
}
763
out:
764
return ret;
765
}
766
767
/*
768
* An autonomous function to put a chunk of a page under deferred IO.
769
*
770
* The caller doesn't actually know (or care) whether this piece of page is in
771
* a BIO, or is under IO or whatever. We just take care of all possible
772
* situations here. The separation between the logic of do_direct_IO() and
773
* that of submit_page_section() is important for clarity. Please don't break.
774
*
775
* The chunk of page starts on-disk at blocknr.
776
*
777
* We perform deferred IO, by recording the last-submitted page inside our
778
* private part of the dio structure. If possible, we just expand the IO
779
* across that page here.
780
*
781
* If that doesn't work out then we put the old page into the bio and add this
782
* page to the dio instead.
783
*/
784
static inline int
785
submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
786
unsigned offset, unsigned len, sector_t blocknr,
787
struct buffer_head *map_bh)
788
{
789
const enum req_op dio_op = dio->opf & REQ_OP_MASK;
790
int ret = 0;
791
int boundary = sdio->boundary; /* dio_send_cur_page may clear it */
792
793
if (dio_op == REQ_OP_WRITE) {
794
/*
795
* Read accounting is performed in submit_bio()
796
*/
797
task_io_account_write(len);
798
}
799
800
/*
801
* Can we just grow the current page's presence in the dio?
802
*/
803
if (sdio->cur_page == page &&
804
sdio->cur_page_offset + sdio->cur_page_len == offset &&
805
sdio->cur_page_block +
806
(sdio->cur_page_len >> sdio->blkbits) == blocknr) {
807
sdio->cur_page_len += len;
808
goto out;
809
}
810
811
/*
812
* If there's a deferred page already there then send it.
813
*/
814
if (sdio->cur_page) {
815
ret = dio_send_cur_page(dio, sdio, map_bh);
816
dio_unpin_page(dio, sdio->cur_page);
817
sdio->cur_page = NULL;
818
if (ret)
819
return ret;
820
}
821
822
dio_pin_page(dio, page); /* It is in dio */
823
sdio->cur_page = page;
824
sdio->cur_page_offset = offset;
825
sdio->cur_page_len = len;
826
sdio->cur_page_block = blocknr;
827
sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
828
out:
829
/*
830
* If boundary then we want to schedule the IO now to
831
* avoid metadata seeks.
832
*/
833
if (boundary) {
834
ret = dio_send_cur_page(dio, sdio, map_bh);
835
if (sdio->bio)
836
dio_bio_submit(dio, sdio);
837
dio_unpin_page(dio, sdio->cur_page);
838
sdio->cur_page = NULL;
839
}
840
return ret;
841
}
842
843
/*
844
* If we are not writing the entire block and get_block() allocated
845
* the block for us, we need to fill-in the unused portion of the
846
* block with zeros. This happens only if user-buffer, fileoffset or
847
* io length is not filesystem block-size multiple.
848
*
849
* `end' is zero if we're doing the start of the IO, 1 at the end of the
850
* IO.
851
*/
852
static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
853
int end, struct buffer_head *map_bh)
854
{
855
unsigned dio_blocks_per_fs_block;
856
unsigned this_chunk_blocks; /* In dio_blocks */
857
unsigned this_chunk_bytes;
858
struct page *page;
859
860
sdio->start_zero_done = 1;
861
if (!sdio->blkfactor || !buffer_new(map_bh))
862
return;
863
864
dio_blocks_per_fs_block = 1 << sdio->blkfactor;
865
this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
866
867
if (!this_chunk_blocks)
868
return;
869
870
/*
871
* We need to zero out part of an fs block. It is either at the
872
* beginning or the end of the fs block.
873
*/
874
if (end)
875
this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
876
877
this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
878
879
page = ZERO_PAGE(0);
880
if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
881
sdio->next_block_for_io, map_bh))
882
return;
883
884
sdio->next_block_for_io += this_chunk_blocks;
885
}
886
887
/*
888
* Walk the user pages, and the file, mapping blocks to disk and generating
889
* a sequence of (page,offset,len,block) mappings. These mappings are injected
890
* into submit_page_section(), which takes care of the next stage of submission
891
*
892
* Direct IO against a blockdev is different from a file. Because we can
893
* happily perform page-sized but 512-byte aligned IOs. It is important that
894
* blockdev IO be able to have fine alignment and large sizes.
895
*
896
* So what we do is to permit the ->get_block function to populate bh.b_size
897
* with the size of IO which is permitted at this offset and this i_blkbits.
898
*
899
* For best results, the blockdev should be set up with 512-byte i_blkbits and
900
* it should set b_size to PAGE_SIZE or more inside get_block(). This gives
901
* fine alignment but still allows this function to work in PAGE_SIZE units.
902
*/
903
static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
904
struct buffer_head *map_bh)
905
{
906
const enum req_op dio_op = dio->opf & REQ_OP_MASK;
907
const unsigned blkbits = sdio->blkbits;
908
const unsigned i_blkbits = blkbits + sdio->blkfactor;
909
int ret = 0;
910
911
while (sdio->block_in_file < sdio->final_block_in_request) {
912
struct page *page;
913
size_t from, to;
914
915
page = dio_get_page(dio, sdio);
916
if (IS_ERR(page)) {
917
ret = PTR_ERR(page);
918
goto out;
919
}
920
from = sdio->head ? 0 : sdio->from;
921
to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
922
sdio->head++;
923
924
while (from < to) {
925
unsigned this_chunk_bytes; /* # of bytes mapped */
926
unsigned this_chunk_blocks; /* # of blocks */
927
unsigned u;
928
929
if (sdio->blocks_available == 0) {
930
/*
931
* Need to go and map some more disk
932
*/
933
unsigned long blkmask;
934
unsigned long dio_remainder;
935
936
ret = get_more_blocks(dio, sdio, map_bh);
937
if (ret) {
938
dio_unpin_page(dio, page);
939
goto out;
940
}
941
if (!buffer_mapped(map_bh))
942
goto do_holes;
943
944
sdio->blocks_available =
945
map_bh->b_size >> blkbits;
946
sdio->next_block_for_io =
947
map_bh->b_blocknr << sdio->blkfactor;
948
if (buffer_new(map_bh)) {
949
clean_bdev_aliases(
950
map_bh->b_bdev,
951
map_bh->b_blocknr,
952
map_bh->b_size >> i_blkbits);
953
}
954
955
if (!sdio->blkfactor)
956
goto do_holes;
957
958
blkmask = (1 << sdio->blkfactor) - 1;
959
dio_remainder = (sdio->block_in_file & blkmask);
960
961
/*
962
* If we are at the start of IO and that IO
963
* starts partway into a fs-block,
964
* dio_remainder will be non-zero. If the IO
965
* is a read then we can simply advance the IO
966
* cursor to the first block which is to be
967
* read. But if the IO is a write and the
968
* block was newly allocated we cannot do that;
969
* the start of the fs block must be zeroed out
970
* on-disk
971
*/
972
if (!buffer_new(map_bh))
973
sdio->next_block_for_io += dio_remainder;
974
sdio->blocks_available -= dio_remainder;
975
}
976
do_holes:
977
/* Handle holes */
978
if (!buffer_mapped(map_bh)) {
979
loff_t i_size_aligned;
980
981
/* AKPM: eargh, -ENOTBLK is a hack */
982
if (dio_op == REQ_OP_WRITE) {
983
dio_unpin_page(dio, page);
984
return -ENOTBLK;
985
}
986
987
/*
988
* Be sure to account for a partial block as the
989
* last block in the file
990
*/
991
i_size_aligned = ALIGN(i_size_read(dio->inode),
992
1 << blkbits);
993
if (sdio->block_in_file >=
994
i_size_aligned >> blkbits) {
995
/* We hit eof */
996
dio_unpin_page(dio, page);
997
goto out;
998
}
999
memzero_page(page, from, 1 << blkbits);
1000
sdio->block_in_file++;
1001
from += 1 << blkbits;
1002
dio->result += 1 << blkbits;
1003
goto next_block;
1004
}
1005
1006
/*
1007
* If we're performing IO which has an alignment which
1008
* is finer than the underlying fs, go check to see if
1009
* we must zero out the start of this block.
1010
*/
1011
if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1012
dio_zero_block(dio, sdio, 0, map_bh);
1013
1014
/*
1015
* Work out, in this_chunk_blocks, how much disk we
1016
* can add to this page
1017
*/
1018
this_chunk_blocks = sdio->blocks_available;
1019
u = (to - from) >> blkbits;
1020
if (this_chunk_blocks > u)
1021
this_chunk_blocks = u;
1022
u = sdio->final_block_in_request - sdio->block_in_file;
1023
if (this_chunk_blocks > u)
1024
this_chunk_blocks = u;
1025
this_chunk_bytes = this_chunk_blocks << blkbits;
1026
BUG_ON(this_chunk_bytes == 0);
1027
1028
if (this_chunk_blocks == sdio->blocks_available)
1029
sdio->boundary = buffer_boundary(map_bh);
1030
ret = submit_page_section(dio, sdio, page,
1031
from,
1032
this_chunk_bytes,
1033
sdio->next_block_for_io,
1034
map_bh);
1035
if (ret) {
1036
dio_unpin_page(dio, page);
1037
goto out;
1038
}
1039
sdio->next_block_for_io += this_chunk_blocks;
1040
1041
sdio->block_in_file += this_chunk_blocks;
1042
from += this_chunk_bytes;
1043
dio->result += this_chunk_bytes;
1044
sdio->blocks_available -= this_chunk_blocks;
1045
next_block:
1046
BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1047
if (sdio->block_in_file == sdio->final_block_in_request)
1048
break;
1049
}
1050
1051
/* Drop the pin which was taken in get_user_pages() */
1052
dio_unpin_page(dio, page);
1053
}
1054
out:
1055
return ret;
1056
}
1057
1058
static inline int drop_refcount(struct dio *dio)
1059
{
1060
int ret2;
1061
unsigned long flags;
1062
1063
/*
1064
* Sync will always be dropping the final ref and completing the
1065
* operation. AIO can if it was a broken operation described above or
1066
* in fact if all the bios race to complete before we get here. In
1067
* that case dio_complete() translates the EIOCBQUEUED into the proper
1068
* return code that the caller will hand to ->complete().
1069
*
1070
* This is managed by the bio_lock instead of being an atomic_t so that
1071
* completion paths can drop their ref and use the remaining count to
1072
* decide to wake the submission path atomically.
1073
*/
1074
spin_lock_irqsave(&dio->bio_lock, flags);
1075
ret2 = --dio->refcount;
1076
spin_unlock_irqrestore(&dio->bio_lock, flags);
1077
return ret2;
1078
}
1079
1080
/*
1081
* This is a library function for use by filesystem drivers.
1082
*
1083
* The locking rules are governed by the flags parameter:
1084
* - if the flags value contains DIO_LOCKING we use a fancy locking
1085
* scheme for dumb filesystems.
1086
* For writes this function is called under i_rwsem and returns with
1087
* i_rwsem held, for reads, i_rwsem is not held on entry, but it is
1088
* taken and dropped again before returning.
1089
* - if the flags value does NOT contain DIO_LOCKING we don't use any
1090
* internal locking but rather rely on the filesystem to synchronize
1091
* direct I/O reads/writes versus each other and truncate.
1092
*
1093
* To help with locking against truncate we incremented the i_dio_count
1094
* counter before starting direct I/O, and decrement it once we are done.
1095
* Truncate can wait for it to reach zero to provide exclusion. It is
1096
* expected that filesystem provide exclusion between new direct I/O
1097
* and truncates. For DIO_LOCKING filesystems this is done by i_rwsem,
1098
* but other filesystems need to take care of this on their own.
1099
*
1100
* NOTE: if you pass "sdio" to anything by pointer make sure that function
1101
* is always inlined. Otherwise gcc is unable to split the structure into
1102
* individual fields and will generate much worse code. This is important
1103
* for the whole file.
1104
*/
1105
ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1106
struct block_device *bdev, struct iov_iter *iter,
1107
get_block_t get_block, dio_iodone_t end_io,
1108
int flags)
1109
{
1110
unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1111
unsigned blkbits = i_blkbits;
1112
unsigned blocksize_mask = (1 << blkbits) - 1;
1113
ssize_t retval = -EINVAL;
1114
const size_t count = iov_iter_count(iter);
1115
loff_t offset = iocb->ki_pos;
1116
const loff_t end = offset + count;
1117
struct dio *dio;
1118
struct dio_submit sdio = { NULL, };
1119
struct buffer_head map_bh = { 0, };
1120
struct blk_plug plug;
1121
unsigned long align = offset | iov_iter_alignment(iter);
1122
1123
/* watch out for a 0 len io from a tricksy fs */
1124
if (iov_iter_rw(iter) == READ && !count)
1125
return 0;
1126
1127
dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1128
if (!dio)
1129
return -ENOMEM;
1130
/*
1131
* Believe it or not, zeroing out the page array caused a .5%
1132
* performance regression in a database benchmark. So, we take
1133
* care to only zero out what's needed.
1134
*/
1135
memset(dio, 0, offsetof(struct dio, pages));
1136
1137
dio->flags = flags;
1138
if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1139
/* will be released by direct_io_worker */
1140
inode_lock(inode);
1141
}
1142
dio->is_pinned = iov_iter_extract_will_pin(iter);
1143
1144
/* Once we sampled i_size check for reads beyond EOF */
1145
dio->i_size = i_size_read(inode);
1146
if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1147
retval = 0;
1148
goto fail_dio;
1149
}
1150
1151
if (align & blocksize_mask) {
1152
if (bdev)
1153
blkbits = blksize_bits(bdev_logical_block_size(bdev));
1154
blocksize_mask = (1 << blkbits) - 1;
1155
if (align & blocksize_mask)
1156
goto fail_dio;
1157
}
1158
1159
if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1160
struct address_space *mapping = iocb->ki_filp->f_mapping;
1161
1162
retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1163
if (retval)
1164
goto fail_dio;
1165
}
1166
1167
/*
1168
* For file extending writes updating i_size before data writeouts
1169
* complete can expose uninitialized blocks in dumb filesystems.
1170
* In that case we need to wait for I/O completion even if asked
1171
* for an asynchronous write.
1172
*/
1173
if (is_sync_kiocb(iocb))
1174
dio->is_async = false;
1175
else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1176
dio->is_async = false;
1177
else
1178
dio->is_async = true;
1179
1180
dio->inode = inode;
1181
if (iov_iter_rw(iter) == WRITE) {
1182
dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1183
if (iocb->ki_flags & IOCB_NOWAIT)
1184
dio->opf |= REQ_NOWAIT;
1185
} else {
1186
dio->opf = REQ_OP_READ;
1187
}
1188
1189
/*
1190
* For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1191
* so that we can call ->fsync.
1192
*/
1193
if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1194
retval = 0;
1195
if (iocb_is_dsync(iocb))
1196
retval = dio_set_defer_completion(dio);
1197
else if (!dio->inode->i_sb->s_dio_done_wq) {
1198
/*
1199
* In case of AIO write racing with buffered read we
1200
* need to defer completion. We can't decide this now,
1201
* however the workqueue needs to be initialized here.
1202
*/
1203
retval = sb_init_dio_done_wq(dio->inode->i_sb);
1204
}
1205
if (retval)
1206
goto fail_dio;
1207
}
1208
1209
/*
1210
* Will be decremented at I/O completion time.
1211
*/
1212
inode_dio_begin(inode);
1213
1214
sdio.blkbits = blkbits;
1215
sdio.blkfactor = i_blkbits - blkbits;
1216
sdio.block_in_file = offset >> blkbits;
1217
1218
sdio.get_block = get_block;
1219
dio->end_io = end_io;
1220
sdio.final_block_in_bio = -1;
1221
sdio.next_block_for_io = -1;
1222
1223
dio->iocb = iocb;
1224
1225
spin_lock_init(&dio->bio_lock);
1226
dio->refcount = 1;
1227
1228
dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ;
1229
sdio.iter = iter;
1230
sdio.final_block_in_request = end >> blkbits;
1231
1232
/*
1233
* In case of non-aligned buffers, we may need 2 more
1234
* pages since we need to zero out first and last block.
1235
*/
1236
if (unlikely(sdio.blkfactor))
1237
sdio.pages_in_io = 2;
1238
1239
sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1240
1241
blk_start_plug(&plug);
1242
1243
retval = do_direct_IO(dio, &sdio, &map_bh);
1244
if (retval)
1245
dio_cleanup(dio, &sdio);
1246
1247
if (retval == -ENOTBLK) {
1248
/*
1249
* The remaining part of the request will be
1250
* handled by buffered I/O when we return
1251
*/
1252
retval = 0;
1253
}
1254
/*
1255
* There may be some unwritten disk at the end of a part-written
1256
* fs-block-sized block. Go zero that now.
1257
*/
1258
dio_zero_block(dio, &sdio, 1, &map_bh);
1259
1260
if (sdio.cur_page) {
1261
ssize_t ret2;
1262
1263
ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1264
if (retval == 0)
1265
retval = ret2;
1266
dio_unpin_page(dio, sdio.cur_page);
1267
sdio.cur_page = NULL;
1268
}
1269
if (sdio.bio)
1270
dio_bio_submit(dio, &sdio);
1271
1272
blk_finish_plug(&plug);
1273
1274
/*
1275
* It is possible that, we return short IO due to end of file.
1276
* In that case, we need to release all the pages we got hold on.
1277
*/
1278
dio_cleanup(dio, &sdio);
1279
1280
/*
1281
* All block lookups have been performed. For READ requests
1282
* we can let i_rwsem go now that its achieved its purpose
1283
* of protecting us from looking up uninitialized blocks.
1284
*/
1285
if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1286
inode_unlock(dio->inode);
1287
1288
/*
1289
* The only time we want to leave bios in flight is when a successful
1290
* partial aio read or full aio write have been setup. In that case
1291
* bio completion will call aio_complete. The only time it's safe to
1292
* call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1293
* This had *better* be the only place that raises -EIOCBQUEUED.
1294
*/
1295
BUG_ON(retval == -EIOCBQUEUED);
1296
if (dio->is_async && retval == 0 && dio->result &&
1297
(iov_iter_rw(iter) == READ || dio->result == count))
1298
retval = -EIOCBQUEUED;
1299
else
1300
dio_await_completion(dio);
1301
1302
if (drop_refcount(dio) == 0) {
1303
retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1304
} else
1305
BUG_ON(retval != -EIOCBQUEUED);
1306
1307
return retval;
1308
1309
fail_dio:
1310
if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1311
inode_unlock(inode);
1312
1313
kmem_cache_free(dio_cache, dio);
1314
return retval;
1315
}
1316
EXPORT_SYMBOL(__blockdev_direct_IO);
1317
1318
static __init int dio_init(void)
1319
{
1320
dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1321
return 0;
1322
}
1323
module_init(dio_init)
1324
1325