// SPDX-License-Identifier: GPL-2.0-only1/*2* fs/direct-io.c3*4* Copyright (C) 2002, Linus Torvalds.5*6* O_DIRECT7*8* 04Jul2002 Andrew Morton9* Initial version10* 11Sep2002 [email protected]11* added readv/writev support.12* 29Oct2002 Andrew Morton13* rewrote bio_add_page() support.14* 30Oct2002 [email protected]15* added support for non-aligned IO.16* 06Nov2002 [email protected]17* added asynchronous IO support.18* 21Jul2003 [email protected]19* added IO completion notifier.20*/2122#include <linux/kernel.h>23#include <linux/module.h>24#include <linux/types.h>25#include <linux/fs.h>26#include <linux/mm.h>27#include <linux/slab.h>28#include <linux/highmem.h>29#include <linux/pagemap.h>30#include <linux/task_io_accounting_ops.h>31#include <linux/bio.h>32#include <linux/wait.h>33#include <linux/err.h>34#include <linux/blkdev.h>35#include <linux/buffer_head.h>36#include <linux/rwsem.h>37#include <linux/uio.h>38#include <linux/atomic.h>3940#include "internal.h"4142/*43* How many user pages to map in one call to iov_iter_extract_pages(). This44* determines the size of a structure in the slab cache45*/46#define DIO_PAGES 644748/*49* Flags for dio_complete()50*/51#define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */52#define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */5354/*55* This code generally works in units of "dio_blocks". A dio_block is56* somewhere between the hard sector size and the filesystem block size. it57* is determined on a per-invocation basis. When talking to the filesystem58* we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity59* down by dio->blkfactor. Similarly, fs-blocksize quantities are converted60* to bio_block quantities by shifting left by blkfactor.61*62* If blkfactor is zero then the user's request was aligned to the filesystem's63* blocksize.64*/6566/* dio_state only used in the submission path */6768struct dio_submit {69struct bio *bio; /* bio under assembly */70unsigned blkbits; /* doesn't change */71unsigned blkfactor; /* When we're using an alignment which72is finer than the filesystem's soft73blocksize, this specifies how much74finer. blkfactor=2 means 1/4-block75alignment. Does not change */76unsigned start_zero_done; /* flag: sub-blocksize zeroing has77been performed at the start of a78write */79int pages_in_io; /* approximate total IO pages */80sector_t block_in_file; /* Current offset into the underlying81file in dio_block units. */82unsigned blocks_available; /* At block_in_file. changes */83int reap_counter; /* rate limit reaping */84sector_t final_block_in_request;/* doesn't change */85int boundary; /* prev block is at a boundary */86get_block_t *get_block; /* block mapping function */8788loff_t logical_offset_in_bio; /* current first logical block in bio */89sector_t final_block_in_bio; /* current final block in bio + 1 */90sector_t next_block_for_io; /* next block to be put under IO,91in dio_blocks units */9293/*94* Deferred addition of a page to the dio. These variables are95* private to dio_send_cur_page(), submit_page_section() and96* dio_bio_add_page().97*/98struct page *cur_page; /* The page */99unsigned cur_page_offset; /* Offset into it, in bytes */100unsigned cur_page_len; /* Nr of bytes at cur_page_offset */101sector_t cur_page_block; /* Where it starts */102loff_t cur_page_fs_offset; /* Offset in file */103104struct iov_iter *iter;105/*106* Page queue. These variables belong to dio_refill_pages() and107* dio_get_page().108*/109unsigned head; /* next page to process */110unsigned tail; /* last valid page + 1 */111size_t from, to;112};113114/* dio_state communicated between submission path and end_io */115struct dio {116int flags; /* doesn't change */117blk_opf_t opf; /* request operation type and flags */118struct gendisk *bio_disk;119struct inode *inode;120loff_t i_size; /* i_size when submitted */121dio_iodone_t *end_io; /* IO completion function */122bool is_pinned; /* T if we have pins on the pages */123124void *private; /* copy from map_bh.b_private */125126/* BIO completion state */127spinlock_t bio_lock; /* protects BIO fields below */128int page_errors; /* err from iov_iter_extract_pages() */129int is_async; /* is IO async ? */130bool defer_completion; /* defer AIO completion to workqueue? */131bool should_dirty; /* if pages should be dirtied */132int io_error; /* IO error in completion path */133unsigned long refcount; /* direct_io_worker() and bios */134struct bio *bio_list; /* singly linked via bi_private */135struct task_struct *waiter; /* waiting task (NULL if none) */136137/* AIO related stuff */138struct kiocb *iocb; /* kiocb */139ssize_t result; /* IO result */140141/*142* pages[] (and any fields placed after it) are not zeroed out at143* allocation time. Don't add new fields after pages[] unless you144* wish that they not be zeroed.145*/146union {147struct page *pages[DIO_PAGES]; /* page buffer */148struct work_struct complete_work;/* deferred AIO completion */149};150} ____cacheline_aligned_in_smp;151152static struct kmem_cache *dio_cache __ro_after_init;153154/*155* How many pages are in the queue?156*/157static inline unsigned dio_pages_present(struct dio_submit *sdio)158{159return sdio->tail - sdio->head;160}161162/*163* Go grab and pin some userspace pages. Typically we'll get 64 at a time.164*/165static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)166{167struct page **pages = dio->pages;168const enum req_op dio_op = dio->opf & REQ_OP_MASK;169ssize_t ret;170171ret = iov_iter_extract_pages(sdio->iter, &pages, LONG_MAX,172DIO_PAGES, 0, &sdio->from);173174if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) {175/*176* A memory fault, but the filesystem has some outstanding177* mapped blocks. We need to use those blocks up to avoid178* leaking stale data in the file.179*/180if (dio->page_errors == 0)181dio->page_errors = ret;182dio->pages[0] = ZERO_PAGE(0);183sdio->head = 0;184sdio->tail = 1;185sdio->from = 0;186sdio->to = PAGE_SIZE;187return 0;188}189190if (ret >= 0) {191ret += sdio->from;192sdio->head = 0;193sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;194sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;195return 0;196}197return ret;198}199200/*201* Get another userspace page. Returns an ERR_PTR on error. Pages are202* buffered inside the dio so that we can call iov_iter_extract_pages()203* against a decent number of pages, less frequently. To provide nicer use of204* the L1 cache.205*/206static inline struct page *dio_get_page(struct dio *dio,207struct dio_submit *sdio)208{209if (dio_pages_present(sdio) == 0) {210int ret;211212ret = dio_refill_pages(dio, sdio);213if (ret)214return ERR_PTR(ret);215BUG_ON(dio_pages_present(sdio) == 0);216}217return dio->pages[sdio->head];218}219220static void dio_pin_page(struct dio *dio, struct page *page)221{222if (dio->is_pinned)223folio_add_pin(page_folio(page));224}225226static void dio_unpin_page(struct dio *dio, struct page *page)227{228if (dio->is_pinned)229unpin_user_page(page);230}231232/*233* dio_complete() - called when all DIO BIO I/O has been completed234*235* This drops i_dio_count, lets interested parties know that a DIO operation236* has completed, and calculates the resulting return code for the operation.237*238* It lets the filesystem know if it registered an interest earlier via239* get_block. Pass the private field of the map buffer_head so that240* filesystems can use it to hold additional state between get_block calls and241* dio_complete.242*/243static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)244{245const enum req_op dio_op = dio->opf & REQ_OP_MASK;246loff_t offset = dio->iocb->ki_pos;247ssize_t transferred = 0;248int err;249250/*251* AIO submission can race with bio completion to get here while252* expecting to have the last io completed by bio completion.253* In that case -EIOCBQUEUED is in fact not an error we want254* to preserve through this call.255*/256if (ret == -EIOCBQUEUED)257ret = 0;258259if (dio->result) {260transferred = dio->result;261262/* Check for short read case */263if (dio_op == REQ_OP_READ &&264((offset + transferred) > dio->i_size))265transferred = dio->i_size - offset;266/* ignore EFAULT if some IO has been done */267if (unlikely(ret == -EFAULT) && transferred)268ret = 0;269}270271if (ret == 0)272ret = dio->page_errors;273if (ret == 0)274ret = dio->io_error;275if (ret == 0)276ret = transferred;277278if (dio->end_io) {279// XXX: ki_pos??280err = dio->end_io(dio->iocb, offset, ret, dio->private);281if (err)282ret = err;283}284285/*286* Try again to invalidate clean pages which might have been cached by287* non-direct readahead, or faulted in by get_user_pages() if the source288* of the write was an mmap'ed region of the file we're writing. Either289* one is a pretty crazy thing to do, so we don't support it 100%. If290* this invalidation fails, tough, the write still worked...291*292* And this page cache invalidation has to be after dio->end_io(), as293* some filesystems convert unwritten extents to real allocations in294* end_io() when necessary, otherwise a racing buffer read would cache295* zeros from unwritten extents.296*/297if (flags & DIO_COMPLETE_INVALIDATE &&298ret > 0 && dio_op == REQ_OP_WRITE)299kiocb_invalidate_post_direct_write(dio->iocb, ret);300301inode_dio_end(dio->inode);302303if (flags & DIO_COMPLETE_ASYNC) {304/*305* generic_write_sync expects ki_pos to have been updated306* already, but the submission path only does this for307* synchronous I/O.308*/309dio->iocb->ki_pos += transferred;310311if (ret > 0 && dio_op == REQ_OP_WRITE)312ret = generic_write_sync(dio->iocb, ret);313dio->iocb->ki_complete(dio->iocb, ret);314}315316kmem_cache_free(dio_cache, dio);317return ret;318}319320static void dio_aio_complete_work(struct work_struct *work)321{322struct dio *dio = container_of(work, struct dio, complete_work);323324dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);325}326327static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);328329/*330* Asynchronous IO callback.331*/332static void dio_bio_end_aio(struct bio *bio)333{334struct dio *dio = bio->bi_private;335const enum req_op dio_op = dio->opf & REQ_OP_MASK;336unsigned long remaining;337unsigned long flags;338bool defer_completion = false;339340/* cleanup the bio */341dio_bio_complete(dio, bio);342343spin_lock_irqsave(&dio->bio_lock, flags);344remaining = --dio->refcount;345if (remaining == 1 && dio->waiter)346wake_up_process(dio->waiter);347spin_unlock_irqrestore(&dio->bio_lock, flags);348349if (remaining == 0) {350/*351* Defer completion when defer_completion is set or352* when the inode has pages mapped and this is AIO write.353* We need to invalidate those pages because there is a354* chance they contain stale data in the case buffered IO355* went in between AIO submission and completion into the356* same region.357*/358if (dio->result)359defer_completion = dio->defer_completion ||360(dio_op == REQ_OP_WRITE &&361dio->inode->i_mapping->nrpages);362if (defer_completion) {363INIT_WORK(&dio->complete_work, dio_aio_complete_work);364queue_work(dio->inode->i_sb->s_dio_done_wq,365&dio->complete_work);366} else {367dio_complete(dio, 0, DIO_COMPLETE_ASYNC);368}369}370}371372/*373* The BIO completion handler simply queues the BIO up for the process-context374* handler.375*376* During I/O bi_private points at the dio. After I/O, bi_private is used to377* implement a singly-linked list of completed BIOs, at dio->bio_list.378*/379static void dio_bio_end_io(struct bio *bio)380{381struct dio *dio = bio->bi_private;382unsigned long flags;383384spin_lock_irqsave(&dio->bio_lock, flags);385bio->bi_private = dio->bio_list;386dio->bio_list = bio;387if (--dio->refcount == 1 && dio->waiter)388wake_up_process(dio->waiter);389spin_unlock_irqrestore(&dio->bio_lock, flags);390}391392static inline void393dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,394struct block_device *bdev,395sector_t first_sector, int nr_vecs)396{397struct bio *bio;398399/*400* bio_alloc() is guaranteed to return a bio when allowed to sleep and401* we request a valid number of vectors.402*/403bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL);404bio->bi_iter.bi_sector = first_sector;405if (dio->is_async)406bio->bi_end_io = dio_bio_end_aio;407else408bio->bi_end_io = dio_bio_end_io;409if (dio->is_pinned)410bio_set_flag(bio, BIO_PAGE_PINNED);411bio->bi_write_hint = file_inode(dio->iocb->ki_filp)->i_write_hint;412413sdio->bio = bio;414sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;415}416417/*418* In the AIO read case we speculatively dirty the pages before starting IO.419* During IO completion, any of these pages which happen to have been written420* back will be redirtied by bio_check_pages_dirty().421*422* bios hold a dio reference between submit_bio and ->end_io.423*/424static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)425{426const enum req_op dio_op = dio->opf & REQ_OP_MASK;427struct bio *bio = sdio->bio;428unsigned long flags;429430bio->bi_private = dio;431432spin_lock_irqsave(&dio->bio_lock, flags);433dio->refcount++;434spin_unlock_irqrestore(&dio->bio_lock, flags);435436if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty)437bio_set_pages_dirty(bio);438439dio->bio_disk = bio->bi_bdev->bd_disk;440441submit_bio(bio);442443sdio->bio = NULL;444sdio->boundary = 0;445sdio->logical_offset_in_bio = 0;446}447448/*449* Release any resources in case of a failure450*/451static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)452{453if (dio->is_pinned)454unpin_user_pages(dio->pages + sdio->head,455sdio->tail - sdio->head);456sdio->head = sdio->tail;457}458459/*460* Wait for the next BIO to complete. Remove it and return it. NULL is461* returned once all BIOs have been completed. This must only be called once462* all bios have been issued so that dio->refcount can only decrease. This463* requires that the caller hold a reference on the dio.464*/465static struct bio *dio_await_one(struct dio *dio)466{467unsigned long flags;468struct bio *bio = NULL;469470spin_lock_irqsave(&dio->bio_lock, flags);471472/*473* Wait as long as the list is empty and there are bios in flight. bio474* completion drops the count, maybe adds to the list, and wakes while475* holding the bio_lock so we don't need set_current_state()'s barrier476* and can call it after testing our condition.477*/478while (dio->refcount > 1 && dio->bio_list == NULL) {479__set_current_state(TASK_UNINTERRUPTIBLE);480dio->waiter = current;481spin_unlock_irqrestore(&dio->bio_lock, flags);482blk_io_schedule();483/* wake up sets us TASK_RUNNING */484spin_lock_irqsave(&dio->bio_lock, flags);485dio->waiter = NULL;486}487if (dio->bio_list) {488bio = dio->bio_list;489dio->bio_list = bio->bi_private;490}491spin_unlock_irqrestore(&dio->bio_lock, flags);492return bio;493}494495/*496* Process one completed BIO. No locks are held.497*/498static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)499{500blk_status_t err = bio->bi_status;501const enum req_op dio_op = dio->opf & REQ_OP_MASK;502bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty;503504if (err) {505if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))506dio->io_error = -EAGAIN;507else508dio->io_error = -EIO;509}510511if (dio->is_async && should_dirty) {512bio_check_pages_dirty(bio); /* transfers ownership */513} else {514bio_release_pages(bio, should_dirty);515bio_put(bio);516}517return err;518}519520/*521* Wait on and process all in-flight BIOs. This must only be called once522* all bios have been issued so that the refcount can only decrease.523* This just waits for all bios to make it through dio_bio_complete. IO524* errors are propagated through dio->io_error and should be propagated via525* dio_complete().526*/527static void dio_await_completion(struct dio *dio)528{529struct bio *bio;530do {531bio = dio_await_one(dio);532if (bio)533dio_bio_complete(dio, bio);534} while (bio);535}536537/*538* A really large O_DIRECT read or write can generate a lot of BIOs. So539* to keep the memory consumption sane we periodically reap any completed BIOs540* during the BIO generation phase.541*542* This also helps to limit the peak amount of pinned userspace memory.543*/544static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)545{546int ret = 0;547548if (sdio->reap_counter++ >= 64) {549while (dio->bio_list) {550unsigned long flags;551struct bio *bio;552int ret2;553554spin_lock_irqsave(&dio->bio_lock, flags);555bio = dio->bio_list;556dio->bio_list = bio->bi_private;557spin_unlock_irqrestore(&dio->bio_lock, flags);558ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));559if (ret == 0)560ret = ret2;561}562sdio->reap_counter = 0;563}564return ret;565}566567static int dio_set_defer_completion(struct dio *dio)568{569struct super_block *sb = dio->inode->i_sb;570571if (dio->defer_completion)572return 0;573dio->defer_completion = true;574if (!sb->s_dio_done_wq)575return sb_init_dio_done_wq(sb);576return 0;577}578579/*580* Call into the fs to map some more disk blocks. We record the current number581* of available blocks at sdio->blocks_available. These are in units of the582* fs blocksize, i_blocksize(inode).583*584* The fs is allowed to map lots of blocks at once. If it wants to do that,585* it uses the passed inode-relative block number as the file offset, as usual.586*587* get_block() is passed the number of i_blkbits-sized blocks which direct_io588* has remaining to do. The fs should not map more than this number of blocks.589*590* If the fs has mapped a lot of blocks, it should populate bh->b_size to591* indicate how much contiguous disk space has been made available at592* bh->b_blocknr.593*594* If *any* of the mapped blocks are new, then the fs must set buffer_new().595* This isn't very efficient...596*597* In the case of filesystem holes: the fs may return an arbitrarily-large598* hole by returning an appropriate value in b_size and by clearing599* buffer_mapped(). However the direct-io code will only process holes one600* block at a time - it will repeatedly call get_block() as it walks the hole.601*/602static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,603struct buffer_head *map_bh)604{605const enum req_op dio_op = dio->opf & REQ_OP_MASK;606int ret;607sector_t fs_startblk; /* Into file, in filesystem-sized blocks */608sector_t fs_endblk; /* Into file, in filesystem-sized blocks */609unsigned long fs_count; /* Number of filesystem-sized blocks */610int create;611unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;612loff_t i_size;613614/*615* If there was a memory error and we've overwritten all the616* mapped blocks then we can now return that memory error617*/618ret = dio->page_errors;619if (ret == 0) {620BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);621fs_startblk = sdio->block_in_file >> sdio->blkfactor;622fs_endblk = (sdio->final_block_in_request - 1) >>623sdio->blkfactor;624fs_count = fs_endblk - fs_startblk + 1;625626map_bh->b_state = 0;627map_bh->b_size = fs_count << i_blkbits;628629/*630* For writes that could fill holes inside i_size on a631* DIO_SKIP_HOLES filesystem we forbid block creations: only632* overwrites are permitted. We will return early to the caller633* once we see an unmapped buffer head returned, and the caller634* will fall back to buffered I/O.635*636* Otherwise the decision is left to the get_blocks method,637* which may decide to handle it or also return an unmapped638* buffer head.639*/640create = dio_op == REQ_OP_WRITE;641if (dio->flags & DIO_SKIP_HOLES) {642i_size = i_size_read(dio->inode);643if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)644create = 0;645}646647ret = (*sdio->get_block)(dio->inode, fs_startblk,648map_bh, create);649650/* Store for completion */651dio->private = map_bh->b_private;652653if (ret == 0 && buffer_defer_completion(map_bh))654ret = dio_set_defer_completion(dio);655}656return ret;657}658659/*660* There is no bio. Make one now.661*/662static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,663sector_t start_sector, struct buffer_head *map_bh)664{665sector_t sector;666int ret, nr_pages;667668ret = dio_bio_reap(dio, sdio);669if (ret)670goto out;671sector = start_sector << (sdio->blkbits - 9);672nr_pages = bio_max_segs(sdio->pages_in_io);673BUG_ON(nr_pages <= 0);674dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);675sdio->boundary = 0;676out:677return ret;678}679680/*681* Attempt to put the current chunk of 'cur_page' into the current BIO. If682* that was successful then update final_block_in_bio and take a ref against683* the just-added page.684*685* Return zero on success. Non-zero means the caller needs to start a new BIO.686*/687static inline int dio_bio_add_page(struct dio *dio, struct dio_submit *sdio)688{689int ret;690691ret = bio_add_page(sdio->bio, sdio->cur_page,692sdio->cur_page_len, sdio->cur_page_offset);693if (ret == sdio->cur_page_len) {694/*695* Decrement count only, if we are done with this page696*/697if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)698sdio->pages_in_io--;699dio_pin_page(dio, sdio->cur_page);700sdio->final_block_in_bio = sdio->cur_page_block +701(sdio->cur_page_len >> sdio->blkbits);702ret = 0;703} else {704ret = 1;705}706return ret;707}708709/*710* Put cur_page under IO. The section of cur_page which is described by711* cur_page_offset,cur_page_len is put into a BIO. The section of cur_page712* starts on-disk at cur_page_block.713*714* We take a ref against the page here (on behalf of its presence in the bio).715*716* The caller of this function is responsible for removing cur_page from the717* dio, and for dropping the refcount which came from that presence.718*/719static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,720struct buffer_head *map_bh)721{722int ret = 0;723724if (sdio->bio) {725loff_t cur_offset = sdio->cur_page_fs_offset;726loff_t bio_next_offset = sdio->logical_offset_in_bio +727sdio->bio->bi_iter.bi_size;728729/*730* See whether this new request is contiguous with the old.731*732* Btrfs cannot handle having logically non-contiguous requests733* submitted. For example if you have734*735* Logical: [0-4095][HOLE][8192-12287]736* Physical: [0-4095] [4096-8191]737*738* We cannot submit those pages together as one BIO. So if our739* current logical offset in the file does not equal what would740* be the next logical offset in the bio, submit the bio we741* have.742*/743if (sdio->final_block_in_bio != sdio->cur_page_block ||744cur_offset != bio_next_offset)745dio_bio_submit(dio, sdio);746}747748if (sdio->bio == NULL) {749ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);750if (ret)751goto out;752}753754if (dio_bio_add_page(dio, sdio) != 0) {755dio_bio_submit(dio, sdio);756ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);757if (ret == 0) {758ret = dio_bio_add_page(dio, sdio);759BUG_ON(ret != 0);760}761}762out:763return ret;764}765766/*767* An autonomous function to put a chunk of a page under deferred IO.768*769* The caller doesn't actually know (or care) whether this piece of page is in770* a BIO, or is under IO or whatever. We just take care of all possible771* situations here. The separation between the logic of do_direct_IO() and772* that of submit_page_section() is important for clarity. Please don't break.773*774* The chunk of page starts on-disk at blocknr.775*776* We perform deferred IO, by recording the last-submitted page inside our777* private part of the dio structure. If possible, we just expand the IO778* across that page here.779*780* If that doesn't work out then we put the old page into the bio and add this781* page to the dio instead.782*/783static inline int784submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,785unsigned offset, unsigned len, sector_t blocknr,786struct buffer_head *map_bh)787{788const enum req_op dio_op = dio->opf & REQ_OP_MASK;789int ret = 0;790int boundary = sdio->boundary; /* dio_send_cur_page may clear it */791792if (dio_op == REQ_OP_WRITE) {793/*794* Read accounting is performed in submit_bio()795*/796task_io_account_write(len);797}798799/*800* Can we just grow the current page's presence in the dio?801*/802if (sdio->cur_page == page &&803sdio->cur_page_offset + sdio->cur_page_len == offset &&804sdio->cur_page_block +805(sdio->cur_page_len >> sdio->blkbits) == blocknr) {806sdio->cur_page_len += len;807goto out;808}809810/*811* If there's a deferred page already there then send it.812*/813if (sdio->cur_page) {814ret = dio_send_cur_page(dio, sdio, map_bh);815dio_unpin_page(dio, sdio->cur_page);816sdio->cur_page = NULL;817if (ret)818return ret;819}820821dio_pin_page(dio, page); /* It is in dio */822sdio->cur_page = page;823sdio->cur_page_offset = offset;824sdio->cur_page_len = len;825sdio->cur_page_block = blocknr;826sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;827out:828/*829* If boundary then we want to schedule the IO now to830* avoid metadata seeks.831*/832if (boundary) {833ret = dio_send_cur_page(dio, sdio, map_bh);834if (sdio->bio)835dio_bio_submit(dio, sdio);836dio_unpin_page(dio, sdio->cur_page);837sdio->cur_page = NULL;838}839return ret;840}841842/*843* If we are not writing the entire block and get_block() allocated844* the block for us, we need to fill-in the unused portion of the845* block with zeros. This happens only if user-buffer, fileoffset or846* io length is not filesystem block-size multiple.847*848* `end' is zero if we're doing the start of the IO, 1 at the end of the849* IO.850*/851static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,852int end, struct buffer_head *map_bh)853{854unsigned dio_blocks_per_fs_block;855unsigned this_chunk_blocks; /* In dio_blocks */856unsigned this_chunk_bytes;857struct page *page;858859sdio->start_zero_done = 1;860if (!sdio->blkfactor || !buffer_new(map_bh))861return;862863dio_blocks_per_fs_block = 1 << sdio->blkfactor;864this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);865866if (!this_chunk_blocks)867return;868869/*870* We need to zero out part of an fs block. It is either at the871* beginning or the end of the fs block.872*/873if (end)874this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;875876this_chunk_bytes = this_chunk_blocks << sdio->blkbits;877878page = ZERO_PAGE(0);879if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,880sdio->next_block_for_io, map_bh))881return;882883sdio->next_block_for_io += this_chunk_blocks;884}885886/*887* Walk the user pages, and the file, mapping blocks to disk and generating888* a sequence of (page,offset,len,block) mappings. These mappings are injected889* into submit_page_section(), which takes care of the next stage of submission890*891* Direct IO against a blockdev is different from a file. Because we can892* happily perform page-sized but 512-byte aligned IOs. It is important that893* blockdev IO be able to have fine alignment and large sizes.894*895* So what we do is to permit the ->get_block function to populate bh.b_size896* with the size of IO which is permitted at this offset and this i_blkbits.897*898* For best results, the blockdev should be set up with 512-byte i_blkbits and899* it should set b_size to PAGE_SIZE or more inside get_block(). This gives900* fine alignment but still allows this function to work in PAGE_SIZE units.901*/902static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,903struct buffer_head *map_bh)904{905const enum req_op dio_op = dio->opf & REQ_OP_MASK;906const unsigned blkbits = sdio->blkbits;907const unsigned i_blkbits = blkbits + sdio->blkfactor;908int ret = 0;909910while (sdio->block_in_file < sdio->final_block_in_request) {911struct page *page;912size_t from, to;913914page = dio_get_page(dio, sdio);915if (IS_ERR(page)) {916ret = PTR_ERR(page);917goto out;918}919from = sdio->head ? 0 : sdio->from;920to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;921sdio->head++;922923while (from < to) {924unsigned this_chunk_bytes; /* # of bytes mapped */925unsigned this_chunk_blocks; /* # of blocks */926unsigned u;927928if (sdio->blocks_available == 0) {929/*930* Need to go and map some more disk931*/932unsigned long blkmask;933unsigned long dio_remainder;934935ret = get_more_blocks(dio, sdio, map_bh);936if (ret) {937dio_unpin_page(dio, page);938goto out;939}940if (!buffer_mapped(map_bh))941goto do_holes;942943sdio->blocks_available =944map_bh->b_size >> blkbits;945sdio->next_block_for_io =946map_bh->b_blocknr << sdio->blkfactor;947if (buffer_new(map_bh)) {948clean_bdev_aliases(949map_bh->b_bdev,950map_bh->b_blocknr,951map_bh->b_size >> i_blkbits);952}953954if (!sdio->blkfactor)955goto do_holes;956957blkmask = (1 << sdio->blkfactor) - 1;958dio_remainder = (sdio->block_in_file & blkmask);959960/*961* If we are at the start of IO and that IO962* starts partway into a fs-block,963* dio_remainder will be non-zero. If the IO964* is a read then we can simply advance the IO965* cursor to the first block which is to be966* read. But if the IO is a write and the967* block was newly allocated we cannot do that;968* the start of the fs block must be zeroed out969* on-disk970*/971if (!buffer_new(map_bh))972sdio->next_block_for_io += dio_remainder;973sdio->blocks_available -= dio_remainder;974}975do_holes:976/* Handle holes */977if (!buffer_mapped(map_bh)) {978loff_t i_size_aligned;979980/* AKPM: eargh, -ENOTBLK is a hack */981if (dio_op == REQ_OP_WRITE) {982dio_unpin_page(dio, page);983return -ENOTBLK;984}985986/*987* Be sure to account for a partial block as the988* last block in the file989*/990i_size_aligned = ALIGN(i_size_read(dio->inode),9911 << blkbits);992if (sdio->block_in_file >=993i_size_aligned >> blkbits) {994/* We hit eof */995dio_unpin_page(dio, page);996goto out;997}998memzero_page(page, from, 1 << blkbits);999sdio->block_in_file++;1000from += 1 << blkbits;1001dio->result += 1 << blkbits;1002goto next_block;1003}10041005/*1006* If we're performing IO which has an alignment which1007* is finer than the underlying fs, go check to see if1008* we must zero out the start of this block.1009*/1010if (unlikely(sdio->blkfactor && !sdio->start_zero_done))1011dio_zero_block(dio, sdio, 0, map_bh);10121013/*1014* Work out, in this_chunk_blocks, how much disk we1015* can add to this page1016*/1017this_chunk_blocks = sdio->blocks_available;1018u = (to - from) >> blkbits;1019if (this_chunk_blocks > u)1020this_chunk_blocks = u;1021u = sdio->final_block_in_request - sdio->block_in_file;1022if (this_chunk_blocks > u)1023this_chunk_blocks = u;1024this_chunk_bytes = this_chunk_blocks << blkbits;1025BUG_ON(this_chunk_bytes == 0);10261027if (this_chunk_blocks == sdio->blocks_available)1028sdio->boundary = buffer_boundary(map_bh);1029ret = submit_page_section(dio, sdio, page,1030from,1031this_chunk_bytes,1032sdio->next_block_for_io,1033map_bh);1034if (ret) {1035dio_unpin_page(dio, page);1036goto out;1037}1038sdio->next_block_for_io += this_chunk_blocks;10391040sdio->block_in_file += this_chunk_blocks;1041from += this_chunk_bytes;1042dio->result += this_chunk_bytes;1043sdio->blocks_available -= this_chunk_blocks;1044next_block:1045BUG_ON(sdio->block_in_file > sdio->final_block_in_request);1046if (sdio->block_in_file == sdio->final_block_in_request)1047break;1048}10491050/* Drop the pin which was taken in get_user_pages() */1051dio_unpin_page(dio, page);1052}1053out:1054return ret;1055}10561057static inline int drop_refcount(struct dio *dio)1058{1059int ret2;1060unsigned long flags;10611062/*1063* Sync will always be dropping the final ref and completing the1064* operation. AIO can if it was a broken operation described above or1065* in fact if all the bios race to complete before we get here. In1066* that case dio_complete() translates the EIOCBQUEUED into the proper1067* return code that the caller will hand to ->complete().1068*1069* This is managed by the bio_lock instead of being an atomic_t so that1070* completion paths can drop their ref and use the remaining count to1071* decide to wake the submission path atomically.1072*/1073spin_lock_irqsave(&dio->bio_lock, flags);1074ret2 = --dio->refcount;1075spin_unlock_irqrestore(&dio->bio_lock, flags);1076return ret2;1077}10781079/*1080* This is a library function for use by filesystem drivers.1081*1082* The locking rules are governed by the flags parameter:1083* - if the flags value contains DIO_LOCKING we use a fancy locking1084* scheme for dumb filesystems.1085* For writes this function is called under i_rwsem and returns with1086* i_rwsem held, for reads, i_rwsem is not held on entry, but it is1087* taken and dropped again before returning.1088* - if the flags value does NOT contain DIO_LOCKING we don't use any1089* internal locking but rather rely on the filesystem to synchronize1090* direct I/O reads/writes versus each other and truncate.1091*1092* To help with locking against truncate we incremented the i_dio_count1093* counter before starting direct I/O, and decrement it once we are done.1094* Truncate can wait for it to reach zero to provide exclusion. It is1095* expected that filesystem provide exclusion between new direct I/O1096* and truncates. For DIO_LOCKING filesystems this is done by i_rwsem,1097* but other filesystems need to take care of this on their own.1098*1099* NOTE: if you pass "sdio" to anything by pointer make sure that function1100* is always inlined. Otherwise gcc is unable to split the structure into1101* individual fields and will generate much worse code. This is important1102* for the whole file.1103*/1104ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,1105struct block_device *bdev, struct iov_iter *iter,1106get_block_t get_block, dio_iodone_t end_io,1107int flags)1108{1109unsigned i_blkbits = READ_ONCE(inode->i_blkbits);1110unsigned blkbits = i_blkbits;1111unsigned blocksize_mask = (1 << blkbits) - 1;1112ssize_t retval = -EINVAL;1113const size_t count = iov_iter_count(iter);1114loff_t offset = iocb->ki_pos;1115const loff_t end = offset + count;1116struct dio *dio;1117struct dio_submit sdio = { NULL, };1118struct buffer_head map_bh = { 0, };1119struct blk_plug plug;1120unsigned long align = offset | iov_iter_alignment(iter);11211122/* watch out for a 0 len io from a tricksy fs */1123if (iov_iter_rw(iter) == READ && !count)1124return 0;11251126dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);1127if (!dio)1128return -ENOMEM;1129/*1130* Believe it or not, zeroing out the page array caused a .5%1131* performance regression in a database benchmark. So, we take1132* care to only zero out what's needed.1133*/1134memset(dio, 0, offsetof(struct dio, pages));11351136dio->flags = flags;1137if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {1138/* will be released by direct_io_worker */1139inode_lock(inode);1140}1141dio->is_pinned = iov_iter_extract_will_pin(iter);11421143/* Once we sampled i_size check for reads beyond EOF */1144dio->i_size = i_size_read(inode);1145if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {1146retval = 0;1147goto fail_dio;1148}11491150if (align & blocksize_mask) {1151if (bdev)1152blkbits = blksize_bits(bdev_logical_block_size(bdev));1153blocksize_mask = (1 << blkbits) - 1;1154if (align & blocksize_mask)1155goto fail_dio;1156}11571158if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {1159struct address_space *mapping = iocb->ki_filp->f_mapping;11601161retval = filemap_write_and_wait_range(mapping, offset, end - 1);1162if (retval)1163goto fail_dio;1164}11651166/*1167* For file extending writes updating i_size before data writeouts1168* complete can expose uninitialized blocks in dumb filesystems.1169* In that case we need to wait for I/O completion even if asked1170* for an asynchronous write.1171*/1172if (is_sync_kiocb(iocb))1173dio->is_async = false;1174else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))1175dio->is_async = false;1176else1177dio->is_async = true;11781179dio->inode = inode;1180if (iov_iter_rw(iter) == WRITE) {1181dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;1182if (iocb->ki_flags & IOCB_NOWAIT)1183dio->opf |= REQ_NOWAIT;1184} else {1185dio->opf = REQ_OP_READ;1186}11871188/*1189* For AIO O_(D)SYNC writes we need to defer completions to a workqueue1190* so that we can call ->fsync.1191*/1192if (dio->is_async && iov_iter_rw(iter) == WRITE) {1193retval = 0;1194if (iocb_is_dsync(iocb))1195retval = dio_set_defer_completion(dio);1196else if (!dio->inode->i_sb->s_dio_done_wq) {1197/*1198* In case of AIO write racing with buffered read we1199* need to defer completion. We can't decide this now,1200* however the workqueue needs to be initialized here.1201*/1202retval = sb_init_dio_done_wq(dio->inode->i_sb);1203}1204if (retval)1205goto fail_dio;1206}12071208/*1209* Will be decremented at I/O completion time.1210*/1211inode_dio_begin(inode);12121213sdio.blkbits = blkbits;1214sdio.blkfactor = i_blkbits - blkbits;1215sdio.block_in_file = offset >> blkbits;12161217sdio.get_block = get_block;1218dio->end_io = end_io;1219sdio.final_block_in_bio = -1;1220sdio.next_block_for_io = -1;12211222dio->iocb = iocb;12231224spin_lock_init(&dio->bio_lock);1225dio->refcount = 1;12261227dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ;1228sdio.iter = iter;1229sdio.final_block_in_request = end >> blkbits;12301231/*1232* In case of non-aligned buffers, we may need 2 more1233* pages since we need to zero out first and last block.1234*/1235if (unlikely(sdio.blkfactor))1236sdio.pages_in_io = 2;12371238sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);12391240blk_start_plug(&plug);12411242retval = do_direct_IO(dio, &sdio, &map_bh);1243if (retval)1244dio_cleanup(dio, &sdio);12451246if (retval == -ENOTBLK) {1247/*1248* The remaining part of the request will be1249* handled by buffered I/O when we return1250*/1251retval = 0;1252}1253/*1254* There may be some unwritten disk at the end of a part-written1255* fs-block-sized block. Go zero that now.1256*/1257dio_zero_block(dio, &sdio, 1, &map_bh);12581259if (sdio.cur_page) {1260ssize_t ret2;12611262ret2 = dio_send_cur_page(dio, &sdio, &map_bh);1263if (retval == 0)1264retval = ret2;1265dio_unpin_page(dio, sdio.cur_page);1266sdio.cur_page = NULL;1267}1268if (sdio.bio)1269dio_bio_submit(dio, &sdio);12701271blk_finish_plug(&plug);12721273/*1274* It is possible that, we return short IO due to end of file.1275* In that case, we need to release all the pages we got hold on.1276*/1277dio_cleanup(dio, &sdio);12781279/*1280* All block lookups have been performed. For READ requests1281* we can let i_rwsem go now that its achieved its purpose1282* of protecting us from looking up uninitialized blocks.1283*/1284if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))1285inode_unlock(dio->inode);12861287/*1288* The only time we want to leave bios in flight is when a successful1289* partial aio read or full aio write have been setup. In that case1290* bio completion will call aio_complete. The only time it's safe to1291* call aio_complete is when we return -EIOCBQUEUED, so we key on that.1292* This had *better* be the only place that raises -EIOCBQUEUED.1293*/1294BUG_ON(retval == -EIOCBQUEUED);1295if (dio->is_async && retval == 0 && dio->result &&1296(iov_iter_rw(iter) == READ || dio->result == count))1297retval = -EIOCBQUEUED;1298else1299dio_await_completion(dio);13001301if (drop_refcount(dio) == 0) {1302retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);1303} else1304BUG_ON(retval != -EIOCBQUEUED);13051306return retval;13071308fail_dio:1309if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)1310inode_unlock(inode);13111312kmem_cache_free(dio_cache, dio);1313return retval;1314}1315EXPORT_SYMBOL(__blockdev_direct_IO);13161317static __init int dio_init(void)1318{1319dio_cache = KMEM_CACHE(dio, SLAB_PANIC);1320return 0;1321}1322module_init(dio_init)132313241325